EAAnVIKO Meooyeloko Maveniotio
2 XOA Mnxavikwyv
TuAua HAekTpoAOywv Mnxavikwy kal Mnxavikwy YTToAoyIoTWV

Mtuylakn epyaocia

TitAoc:
Avamntuén ocvotipoatog dnplovpylac avadopwy yla To
nAnpodoplako cuotnuo SYNTHESIS (Report writing subsystem
for SYNTHESIS Information System)

Noatepakng EppavounA (A.M. : TM4319)

ErBAENWY kaBnyntAg : Bibakng NikoAaog

Ertitponty A€loAdynong : Namadakng NwkoAaog
Bibakng NikoAaog
KovbuAdakng Xapidnuog

Huepounvia mapouciaong: 25/02/2021

Acknowledgements

| would like to express my appreciation to my supervisor Dr. Nikolaos Vidakis and my
sincere gratitude to Dimitris Angelakis for their imnmense support as well as providing me with the
chance to be part of the CCI lab. In addition, | would like to express my utmost gratitude to
Chryssoula Bekiari. | wish to extend my special thanks to Corina Doerr for her crucial contribution
to the Design process of this project. | am also wholeheartedly thankful to all members of ISL-
FORTH’s CCl lab.

Abstract

Templatized reporting is a report generation technique utilizing template files for exporting
reports. Each report template provides a customized report formatting and stylization, allowing
more flexibility of the generated reports’ layout. Ontology based data systems have no generic
solution for exporting their data in reports. Users of the ontology-based system SYNTHESIS
required automated report exporting of the system’s existing data in specific and distinct
formatting which derived from each report type. The automated exporting of such reports would
drastically improve the efficiency of result analysis. A templatized report generator webapp was
designed and implemented. The developed tool generates and uses template files in JSON
format, each containing the structure of an ontology as that is found in the system’s database,
alongside all the custom formatting data for the template. Users can create new templates or edit
existing ones in order to suit a report type’s layout. After a template is created and edited, it can
be used to export one or more ontology instances’ data in report form by combining the data of
each selected instance with the selected template’s layout and formatting. The generated report
is previewed and then downloaded in the desired format. The developed program was finally
tested in a testing deployment and it was determined that it fulfills the initial requirements for
SYNTHESIS’ report generation.

Keywords: webapp, report, template, PDF, DOCX, XLSX, XML, XQuery, JSON

MepiAnyn

H dnuioupyia avagopwy BAcel TTPOTUTTWY €ival Hid TEXVIKNA TTAPAYWYAS AVOQOPWY TTOU
aglotroiei apyeia TPOTUTTWY yia €€aywyr avagopwyv. Kabe mpdTutro ava@opds TTapExel Hia
TTPOCAPUOCHEVN HOPQPOTTOINON KAl SIANOPPWOT, ETTITRETTOVTOG HEYaAUTEPN eueAIgia oTn dIGTALN
TWV TTAPAYOUEVWY avapopwy. ZuoThuaTa Baocifoueva o ovioloyieg dev £xouv dia yevikr) AUon
woTe va e€¢dyouv Ta OedopEvVa TOUG OE avaQPopES. XProTeG TOU PACICPEVOU € OVTOAOYiEG
ouoThpaTog SYNTHESIS cixav ammaitnon ylia QuTOPOTOTTOINUEVN €6aywyr ava@opwy Twv
0edoPEVWV TOU CUOTANOTOG o€ KaBopiouévn Kal OIOKPITA HOPYOTToiNCN TTOU TTPOEPXETAI OTTO KABE
TUTTO ava@opds. H autopatotroinuévn egaywyr autwy TWV ava@opwy Ba utropoloe va BEATILOEI
OpaCTIKA TNV ATTOBOTIKOTNTA TNG avaAuong atroteAeopudrwy. Mia SIKTUAKR YEVVATPIO Ava@OopwV
Baoiouévn oe TpdTUTTO OXEDIAOTNKE Kal UAOTTOINONKE. H avatrTuyuévn epapuoyn Tapdyel Kai
xpnoiyotroiei apxeia mTpoTuTTwyv o€ pop®r JSON, O1Tou TO KABEva TTeEpIEXEl TRV OoPn Hiag
ovToAoyiag 6tTTwg autr Bpioketalr atn Bdon dedopévwy TOU GUOTANGTOG, TTAPAAANAa pe OAa Ta
0edouéva HoPPOTTOINCEWY YIa TO TTPOTUTTO. O1 XPAROTEG PTTOPOUV VA dNUIoUPYHOOUV KAIvoUpIa
TPOTUTTA 1 va emmeéepyaoTolVv Ta UTTAPXOVTO WOTE va Taipidfouv Tn dIGTALN MIGG HOPQNS
avagopwyv. EQocov éva TpoTuTro £Xel dnuioupynOei kal eTTeCEpyaoTei, TTOPE va xpnoiyoTToinBei
woTe va g¢ayel Ta dedopéva atod Eva A TTEPICOOTEPA OTIYUIOTUTTA (instances) K&TToI0G ovToAoyiag
o€ Hopen avagopds, ouvdudlovtag Ta OeOOUEVA KABE ETTIAEYHEVOU OTIYUIOTUTTOU OVTOAOYiag HE
TN dounA KOl HOPYOTToINCN ToU ETTIAEYUEVOU TTPOTUTTOU. H TTapayouevn ava@opd TTPOETTICKOTTEITAI
Kal UTTOPEi va KATEREI TNV €TIOUPNTA Hop@r apxeiou. H avatrTuypévn e@apuoyr OOKINAOTNKE O€
Mia QOKIMOOTIKN eykaTdoTaon Kal KaBopioTnke OTI TTANPEOI TIC APXIKEG TTPOUTTOBECEIS yia TNV
TTapaywyn avagopwy Tou SYNTHESIS.

Keywords: webapp, report, template, PDF, DOCX, XLSX, XML, XQuery, JSON

Table of Contents

ACKNOWIEAGEIMENTS ...ttt 1
ADSITACT. ... 2
1 Eo1 7,3 117 S 3
[o) o] (0] 011/ 1 PP P PP PPPPPPPPPPP 6
IS o o U =SS 7
R Vi Yo [o o o SR 8
P R 7 o 1A= 4T o S 8
L2 U o0 =SS 8
1.3. Initial Problem STat@MENL...........ouuiiiiei e e e e e e e e e e 8

L S 1 11 = 9

2. Pre-Analysis - State Of THE Al ... 10
2.1. Templatized REPOIt ENGINESccooeiiieeeeeeeeee e 10
2.2. Non-Templatized REPOIM ENQINES......ccoo oot 10
2.3. Final Problem Statement..........couuieiiiii e e e e e e e e e e 11

3. MEBINOAOIOGY ... 12
K g O = o o o PR 12
N T 1Y £ LSRR 13
4.1, SOftWAIE FEQUITEIMEINTS ... 13
L =T o Lo B CT=T a1 = U] = P 13
4.3. Templatized REPOIING ...ccooeeeeeeeeeeee e 13
4.4, WYSIWYG APPHCALIONS ...t e e e e e 14
T AV 1= T To D = o 14
4.6. SYNTHESIS SYStEM OVEIVIEW.cceieeeee et 15

D DB SO s 16
5.1. SOftware LIDrari€S OVEIVIEWuuuuuuuuiuuuiiuiunnieinnaeeeinnennsnnesennsesesessennesessesssssneessnssssennnes 16
I I o = =T [0t =T o S o 19
5.3, SYStEM AFCIILECIUI ..ottt e e et e e e e e e e eaaeeeeaaann 20
5.4, Preliminary USE CaSESuuuuuuuuiiiiiiiiiiiiiiiiiiitiiiisii s nsnnnnnsnnnnnnes 21
5.5. User Interface Mockups and WOIKFOWuuuuueummmimmiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeneees 24
5.5.1. Template Creation WOrkflow............ooooiiieii e 24
5.5.2. Template Editing WOrKFIOWcoooiiiiiii 27
5.5.3. Report Generation WOrKflOW............coooiiiiii e 30

6. IMPIEMENTALION ... 33

0.1, SOMWAIE LIDIAIESeuiiiiiiiiiiiiiiie s 33
6.2. Interaction With the SYSTEMuiiiiiiiiiiiiiiii bbb areenee 34
6.2.1. SYNTHESIS System INtEractioncccovviiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 34
6.2.2. Template Creation & Manipulationcccoieeiiiiieiiiiie e 36
6.2.3. REPOIt GENEIALIONcceiiiiiiiiie e 42

7 CONCIUSION .. 45
T FUTUIE WWOTK. .. 45

2] o] [ToT | =1 o] 0| 46

List of Acronyms

U
UX
CSS
HTML
JS
JSON
RTC
PDF
XML
SQL

DOM

User Interaction

User Experience

Cascading Style Sheets
Hypertext Markup Language
JavaScript

JavaScript Object Notation
Report Template Creator
Portable Document Format
eXtensible Markup Language
Structured Query Language

Document Object Model

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:

The ENgineering DESIGN PrOCESScicuuiiiiiiiiiieiiie ettt ettt ettt e b e e e annneees 12
The MALEriAliZE 10g0eeeiiiiiiii it e et e s e e s annneeas 16
Demonstration of the Materialize lIrary ... 17
DemMO Page Of NEMI-OOCX-JSuveieeiiiiiie ittt e e e e e e aeee 17
The JSZip demo page, with a complete code example............oooueiieiiiiieiiiie e 18
LZMA-JS demo page With OULPULuuiiieiie e s e e e e s e e e e e e s s e e e e e e e s e nnnenees 19
Component Diagram Of RTC ...t e e e e e s e e e e e e s e st e e e e e e e s e nnnreneeeeees 20
SYNTHESIS USE CaSe QIAQIaM.....ceieeeeiiiiiiiiiieeee e e ieiitiieeeeeesessiteteeeeeeessssnsaseeeseaesssnnsnseseeaeesasnnns 21
RO U N O Y= N0 [F= Vo | o PSR 22
Template Creation DIAgramM............iciuiiiiee e cecee e e e e e s s e e e e e e s s ae e e e e e e e saannbaeeeeeeessannnnreees 24
Mockup depicting the "Report Templates” submenu entry..........cccoooiiiiiiiiiiiiiiiiiie e 25
Mockup depicting the "report Templates” SUBMENUcooiiiiiiiiiiiii e 25
Mockup depicting the form presented when creating a new templateccccceeveveeiiniinnnen. 26
Mockup depicting the dropdown list populated..............cuveiiiiiiiiiii e 26
Template EditiNg DIBOIAIMc.ooiiiiiiiiiii et e e e e s e e s e b e e e snbeeeeeanene 27
Mockup depicting the editing mode of RTC ... 28
Mockup depicting a finalized updated report template, ready to be savedcoooeeeenn. 28
Mockup depicting the Text Formatting menu of RTCccooooiiiiiiii e, 29
Mockup depicting the image component formatting Menu ..., 29
R o Lol ga =T aT=T =T 1 o] oI D TF= Vo = o 30
Mockup depicting an ontology's submenu, with the "Export Report" buttoncoeeeee. 31
Mockup depicting the report @XpPort FOrMooiiiiiii e 31
Mockup depicting the dropdown list of templates, populated...........ccccvvieeieeiiiiiiii e 32
Mockup depicting the file grouping selection for multiple eXportscccccceeeiviiiiiiieee e 32
The SYNTHESIS INUEX PAGE. ..c.c ittt ettt ettt sttt e e st e e s e et e e e s abe e e e e nneee 34
The "Report Templates" submenu in SYNTHESIS ... 35
The report @XPOIt FOIM . ..o 35
LI o] g10] (o VAo [o o e [0 1LY o S 35
The template creation’s confirmation MESSAgecccooiiiiiiiiiiiiiii e 36
Selecting a template for editing in the "Report Templates” submenucccois 36
A newly created (empty) report tEMPIALE..........cooiiiiiiiii e 37
SeArCh FUNCHONAIILYcooiiiiiii ittt e e bb e e e s bbeee e 37
The text fOrmMatting MENUoiiiiiiii e s ab e e 38
The image fOrmatting MENUoouiiiiii e s e e 38
Template NEAET IMAGEeiii et ab e e 39
A lINKING button iN the field trE.......u i ee e s rnrersrnrnrnrnrnees 40
BN L= LT 1 T T T e T 1 P 40
Example of an iNSerted lINK...........ooo e 41
Preview of a customized teMPIALEooiiii i 41
Selecting an ontology instance for rePort @XPOITeiiiii it 42

Figure 41: The report @XPOrt FOMMM ..ot e e s s e e e nbee e e e nees 43
Figure 42: The final report, previewed in RTC in eXPOrt MOUEoveiiiiiieiiiiee e 44
Snippet 1: LZMA compression snippet, returning a compressed string as a Promise............ccccvvvvereeernnnnns 39
Snippet 2: Decompressing and inserting another template as lINK..........cccvvveveeiiiiiciie e 40

file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176849
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176850
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176851
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176852
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176853
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176854
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176855
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176856
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176857
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176858
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176859
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176860
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176861
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176862
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176863
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176864
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176866
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176867
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176868
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176869
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176870
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176871
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176872
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176873
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176875
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176874
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176876
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176877
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176878
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176879
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176880
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176881
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176882
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176883
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176884
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176885
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176886
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176887
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176888
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176889
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176890
file:///D:/_Downloads/Thesis%20Files/%5bFINAL%5d%20Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63761260
file:///D:/_Downloads/Thesis%20Files/%5bFINAL%5d%20Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63761261

1.Introduction

Ontology based data structures are complicated and introduce difficulties when it comes
to gathering results. A severe lack of open-source report generators for ontology-based data has
been observed. This project describes the development of an open source templatized report
generator for ontology data stored in a structured markup language such as XML or JSON, that
aims to be simple and intuitive to operate and implement in other projects.

1.1. Motivation

Ontologies have become a standard for storing research data in the recent years. A
system which benefits from the use of ontologies is SYNTHESIS [1], an open-source application
that provides functions for storing, editing, and traversing scientific data, developed by ICS-
FORTH. The SYNTHESIS user base required the stored data to be exported in the form of reports
in order to optimize the result analysis process. This requirement was supported by the desire to
create a generic solution, and not one solely for the SYNTHESIS system. Such a solution would
be beneficial for a vastly larger number of potential users.

Motive for this project was the need for generating reports in SYNTHESIS using a generic
solution in order to benefit a larger user base, a task which had no clear candidate software for
this requirement.

1.2. Purpose

The main purpose of this project is to create an easy to operate open-source tool which
can generate reports of ontology data, either individually or en-mass, by utilizing templates. The
resulting program aims to help researchers export the desired data in a quick and simple manner,
making result gathering faster and more efficient. The program was purposely developed as open
source to provide as much inclusion as possible by removing the concerns of licensing.

1.3. Initial Problem Statement

Exporting data from ontology-based systems is vital for evaluating results and coming to
conclusions. It can however prove a highly complicated task. A report generator for ontology data
was required, but no open-source solution was available to fulfill this requirement. Although
templatized report generators already exist, they are either not designed for ontology data, not
open source, or neither of the two.

1.4. Outline

The starting chapter of this project is Introduction where the motivation, purposes and
initial problem statement are defined. Chapter 2 includes the background research that was
conducted and a finalized problem statement, which was redefined based on that research.
Chapter 3 describes the methodology that was followed to complete this project. Chapter 4
contains the project requirements, for both software libraries, and mechanisms. Chapter 5
describes the design process leading to the final user interface. Chapter 6 presents the
implementation which derived from the design process and resulted in the final program.

2. Pre-Analysis - State of The Art

Reporting engines are software tools designed to generate report files based on existing
data. Exporting existing data in varying formats and file types is one of the main reasons reporting
engines are implemented in applications with large databases.

2.1. Templatized Report Engines

Templatized report engines allow for faster and more uniform report creation, by following
a template’s formatting and basing all exported reports on the same style principles.

iText [2] is a widely used, largely open-source PDF generating library written in Java. iText
focuses on industrial use and provides top-of-the-line pdf creation functionalities. iText also
provides a complete template editor, iText DITO [3], which focuses on accessibility, as it requires
minimal coding knowledge. While iText is powerful and includes a lot of features, it is licensed
under AGPL, with iText DITO being completely closed-source, both of which severely limit the
potential user base.

DynamicReports [4] is an open-source Java reporting library based on JasperReports. It
allows to create dynamic report designs and it does not need a visual report designer. Instead, it
uses JRXML template files, which include the formatting and each report can be generated based
on a JRXML file. DynamicReports supports PDF, DOCX, and EXCEL files. DynamicReports is
licensed under LGPL-3.0.

2.2. Non-Templatized Report Engines

Non-templatized report engines can generate reports manually, without the use of
templates. That makes them less ideal than templatized report engines for exporting files from a
database, but their advantages lie in more specific functionalities.

jsPDF [5] is an open-source report engine written in JavaScript. The fact that it is a
JavaScript library can lead to a better user experience and implementation, as there is no need
for any backend implementation; all of jSPDF’s usage is taking place on the front end. jsPDF is
licensed under the MIT License.

html2pdf [6] is an open-source JavaScript library that converts HTML files (alongside their
CSS counterparts) or elements into PDF reports, using html2canvas [7] and jsPDF. The resulting
PDF files are perfect copies of the given HTML files, but they are converted to images and hence
contain no text elements. This makes the library perfect for 1:1 exporting of HTML files, though it
is problematic for extracting readable data from the final reports. HtmI2pdf is licensed under the
MIT License.

10

Openhtmltopdf [8] is an open-source Java library for rendering XML/XHTML or HTML files
using CSS 2.1 for layout and formatting, outputting to PDF or images. This library allows for the
creation of almost perfect PDF clones of HTML files, by converting each HTML element into a
respective PDF one, keeping the text nature of the element including all the original formatting
and style. Openhtmitopdf is licensed under LGPL.

2.3. Final Problem Statement

Data evaluation for ontology-based systems requires exporting the stored data in a
readable form for the according experts to analyze them and come to conclusions. Exporting
ontology data to readable forms and more specifically reports is achieved through the use of
report engines. Report engines are tools designed to generate reports based on a given dataset
using a predefined report format.

After evaluating the most prominent templatized and non-templatized report engines it is
evident that none of the existing tools provide the functionality required to export ontology-based
data to reports. Therefore, a report generator needs to be developed which will enable ontology
data to be seamlessly exported to reports. Since templatized report generation is faster, simpler,
and more efficient when it comes to creating similarly-styled reports, the resulting program should
also be a templatized report generator, allowing users to create and use different templates. The
developed tool can be based on an existing report generator, granted the latter would have to be
heavily modified or used simply as a library in a separate, standalone program. A combination of
report engines could be incorporated for this project in order to support multiple report generating
functions and file formats for better compatibility.

Problem Statement:

“How can an open source templatized report generator be developed to assist with ontology data
evaluation?”

11

3. Methodology

Computer programs are developed based on source code generation, accompanied by
multiple code-oriented assisting, reporting and evaluation tools. Software Development
Methodology describes the development process and how it is managed, to help assure that a
project can be completed when expected, without exceeding the time (and therefore monetary)
budget. This methodology can differ between projects, depending on the type of the final program,
its usage, the tools utilized for its development and more.

The development method that was selected for this project is the Engineering Design
Process [9]. This method is based on a series of steps that describe the development process
leading up to the creation of a new product or system. This process is not considered linear,
engineers often move back to previous steps, and reiterate them in order to reach a final solution.

3.1. Method

The Engineering Design Process steps are as follows:

1. Define the problem

Do background research

Redefine the problem

Specify requirements

Brainstorm solutions, choose the best solution and develop it
Build a prototype

Test and redesign

Communicate results

© N A WN

Brainstorm
‘ Do .) solutions, .)
Define the backaround Redefine Specify choose the Build a Test and Communicate
problem 9 the problem requirements best solution prototype redesign results
research
and develop

it

Figure 1: The Engineering Design Process

The aforementioned steps were followed to research, design, implement and improve this
project. Initially the problem was defined and specified. This allowed background research to be
conducted in order to get a deeper understanding of the challenges and demands of the project,
followed by redefining the problem according to the newly gathered information. Next, the project
requirements were specified. A plethora of solutions were brainstormed and presented based on
the final problem definition and the project requirements. The best solution was selected, and an
early design was created, describing all the possible different workflows. A prototype program
was developed based on the design. The prototype was evaluated and redesigned multiple times
based on developer, designer and user feedback, until it reached a satisfying form.

12

4. Analysis

4.1. Software requirements

The resulting program was required to be an open-source Java Servlet project, compatible
with XQuery/XPath, more specifically eXist-db. The project had to be distributed as a Maven
package, while being fully compatible with the EUPL-1.2 license.

Apache Maven [10] is a software project management and comprehension tool. Based on
the concept of a project object model (POM), Maven can manage a project's build, reporting and
documentation from a central piece of information. A Maven engine is required for acquiring the
necessary libraries, even when the program’s basic source code is provided.

Java Servlets are web-oriented Java classes which are used for handling the program’s
API, hence the Java runtime is another requirement. The Java servlets provide a way for the
webapp to transfer data to and from the database.

eXist-db [11] is an open-source xml-based database, which supports XQuery and XPath.
It is being used on the SYNTHESIS system and is implemented for this program as well, in a
manner similar to that of SYNTHESIS in order to provide total compatibility.

An HTTP server is also required for deploying the webapp on the web, or locally.

4.2. Report Generators

Report generators [12] are computer programs that allow users to directly retrieve all the
data they want from a database, spreadsheet, XML stream, or any other source, and view it online
or export it to different document formats such as Excel, PDF, and CSV that satisfy a specific
human readership. Report generators are using report engines to generate a report based on a
given dataset.

Report generation eliminates the need for manually creating reports, lowering the risk of
errors, and allowing better data analysis. It uses a report generator, a tool that requires defining
the report, including the type of data to retrieve, the location of data, and the method of displaying
it. This allows users to create reports based on existing information (for example, a database)
with the given report definition and combining them with the report layout to produce the report.

4.3. Templatized Reporting

Templatized reporting [13] is a report generation method that utilizes user-created
templates to output the final report(s) based on the template’s properties. Instead of using a static
style, layout and data, user-created templates can be customized to suit specific purposes.
Furthermore, templates can be used to create reports for similar purposes using different datasets
for each report.

13

To fulfill a report generation request, a template must be first created and selected,
alongside some basic data, then the template is combined with data to create the final report. To
create the template, a report (template) creation request is created by the user, and a basic
template is created by the system based on the received request and its identified data. A data
generator will be later used to generate the final output based on the created template.
To output the final report, a report output request is created, where a template and some basic
parameters are selected by the user. The report generator then retrieves the template and all the
required data based on the given parameters, to finally insert all the data into the template. The
report is at this point ready for output, that can be either displaying the final result on the user’s
screen or saving it as a file.

4.4. WYSIWYG Applications

WYSIWYG stands for “what you see is what you get”, which is a programming principle
where the output is derived from the preview, becoming a near perfect clone of the latter. This
principle is used in applications that implement an editing environment similar (or identical) to the
finished product, which leads to users essentially creating the end result itself through the UI.
Examples of WYSIWYG applications are text editors like Google Docs [14] which can export files
identical to the ones previewed in the editing environment, but also assisted/automated web page
engines like WordPress [15], where users can edit the final page layout and design through the
editing UI.

4.5. XML and XPath

XML [16] is a software-independent markup language used for storing and transporting
data. XML is also extensible (XML is an acronym for eXtensible Markup Language) as it supports
custom tags and attributes instead of predefined ones. Its software independence is achieved
using the features mentioned above but also because XML stores data in plain text format.
Consequently, ontology-derived XML Schemas can be used to create XML mappings to maintain
a compliance between an ontology and a generated XML document. Additionally, XML allows for
easier expansions or upgrades to new operating systems and applications without data loss, while
also providing interoperability between different systems.

XPath is a syntax for defining parts of an XML document. It is used to traverse XML
documents and select nodes or node-sets within the XML structure. More specifically, it can be
used to navigate through elements and attributes in an XML document through path expressions.
The path expressions used by XPath are very similar to the expressions used in traditional
computer file systems. XPath can be used in the most widely used programming languages such
as JavasScript, Java, XML Schema and PHP. XPath is a major element in the XSLT standard and
XQuery.

XML datasets can be implemented either in raw XML files or in the form of databases that
use XPath (and XQuery) for data gathering requests. This is a type of NO-SQL database, where
there is no need for using SQL, instead the database can rely solely on the XML and XPath
structure and mechanisms.

14

4.6. SYNTHESIS System Overview

SYNTHESIS is a management information system developed by the Center of Cultural
Informatics of ICS-FORTH in collaboration with multiple cultural institutions worldwide. It employs
the CIDOC CRM for designing the data structures which are stored in XML (and XSD) files.
CIDOC CRM is an ontology standard, recommended as the most appropriate for documenting
cultural entities. The XML files derived from CIDOC CRM stored are managed with eXist-db.

The system’s initial goal was to provide the administration and scientific documentation
procedures, while supporting multiple languages, data exchange and interoperability. Later
implementations added e-services designed to inform target audiences (such as teachers,
researchers, schoolchildren, and the general public) about different monuments, historical
persons, events etc. This cultural information is stored in the SYNTHESIS database as XML
documents that are described by XML schema. Users with the role of editor can modify the
content of these documents using an XML editor, while lower privilege users can only view the
same content.

Additionally SYNTHESIS supports a generic workflow for documenting cultural entities,
allows the creation, editing, navigation and retrieval of documents, supports data migration,
document translation, import from and export to XML/RDF and associating documents of the
primary cultural entites with documents of additional secondary entities.

15

5. Design

In this project a web application (web app) was designed to provide the functions of a
complete report generator. The design was purposely devised to be compatible with ontology-
based data, both in its appearance and function.

Since each ontology has a determined structure (in the form of XML schema), a template
mechanism was proposed in order to provide similar report types for varying datasets of the same
ontology (or ontologies). This mechanism uses the application’s report template creator to create
and edit each report template; this is why the program was given the name Report Template
Creator or RTC. Templates are used for customizing the ontology’s components and eventually
help generate the final reports based on this customization.

The application is intended to function on any ontology-based system, it is therefore
purposely designed as a plugin. As the purpose of this report is to support report generating for
the SYNTHESIS system, the template ontologies are designed as ontologies of the SYNTHESIS
system itself.

It is important to note that the initial design mockups were illustrated by Corina Doerr, who
is a member of the SYNTHESIS team, although her involvement is outside the scope of this

paper.

5.1. Software Libraries Overview

Software libraries were carefully selected after thorough examination of each library’s
function(s) and comparisons of all suitable libraries against each other. Every candidate library
had to be open source, as per the requirements, and fully licensed with a compatible EUPL
license. The selected libraries are the following:

e Materialize [17] [18]: Materialize is an open-source JS/CSS library which implements the

Material Design as suggested by Google. It was selected for this project because it
provides the required Material Design Look and Feel, while being very simple to
implement.
The Materialize website states: “By utilizing elements and principles of Material Design,
we were able to create a framework that incorporates components and animations that
provide more feedback to users. Additionally, a single underlying responsive system
across all platforms allow for a more unified user experience.”

Figure 2: The materialize logo

16

A modern responsive front-efd itamewmk based on Mate

o, T

“y

¥ a3 O

Easy to work with

Speeds up se;" ‘d
ocuse

Figure 4: Demonstration of the Materialize library

e Html-docx-js [19]: Open-source JavaScript library which provides the ability to convert
HTML data in combination with CSS to DOCX format that is used by Microsoft Word. It
was selected for this project due to its front-end nature, which nullifies the need for a
backend implementation, while providing all the required features for DOCX file creation.
The GitHub page states: “This is a very small library that is capable of converting HTML
documents to DOCX format that is used by Microsoft Word 2007 and onward. It manages
to perform the conversion in the browser by using a feature called 'altchunks'. In a nutshell,
it allows embedding content in a different markup language. We are using MHT document
to ship the embedded content to Word as it allows to handle images. After Word opens
such file, it converts the external content to Word Processing ML (this is how the markup
language of DOCX files is called) and replaces the reference.”

Enter/paste your document here:

Filev Editv Inset~ View~ Format~ Table v Tools v

Fomatsv | B 17 = = - -

il
il
(\\o
[F]

We all live in a yellow submarine, yellow submarine, yellow submarine, yellow submarine

Images can also be exported if you source them as base64 DATA URL.

e

P

Page orientation: ® Portrait O Landscape
[Convert |

Figure 3: Demo page of html-docx-js

17

Openhtmltopdf: Open-source library written in pure Java, used for rendering HTML5 and
outputting PDF files. It was selected for this project due to its HTML support, alongside its
ability to create text-based PDF files (instead of creating PDFs of images). While it has a
complicated implementation, it provides all the required features for PDF file creation as
defined in the Analysis phase.

The GitHub page states: “An HTML to PDF library for the JVM. Based on Flying Saucer
and Apache PDF-BOX 2. With SVG image support. Now also with accessible PDF
support”. “Open HTML to PDF is a pure-Java library for rendering arbitrary well-formed
XML/XHTML (and even HTML5) using CSS 2.1 for layout and formatting, outputting to
PDF or images.”

ExcelJS [20]: An open-source JavaScript library which provides the manipulation and
creation of XLSX files that are used by Microsoft Excel. While not being as simple to
implement as the other libraries used in this project, it was selected thanks to its front-end
nature while providing all the required features for XLSX file creation.

The GitHub page states: “Read, manipulate and write spreadsheet data and styles to
XLSX and JSON. Reverse engineered from Excel spreadsheet files as a project”. The
GitHub page includes an extensive APl documentation, which was another factor that led
to its selection.

JSZip [21]: An open-source JavaScript library for managing ZIP files. It was selected due
to its very easy implementation and front-end nature for creating file packages. As shown
in the following figure, all the required commands occupy just a few lines.

The GitHub page states: “A library for creating, reading and editing .zip files with
JavaScript, with a lovely and simple API”.

JSZip is a javaseript library for creating, reading and Current version : v3.2.0

Example Installation

var zip = new JSZip();
zip fils("Hello.txt", "Hsllo Werldin"); With bower : bower install Stuk/jszip
var img = zip.folder("imagses”);

img.fila("smils.gif*, imgData, {base64: trus}); With component : component install Stuk/jszip
zip.generateAsync({type:"blob"}) Manually : download JSZip and include the file dist/jszip.js or
then(function(content) { dist/iszip.min.qs
/I zee FileSaver js
saveAs(content, "example.zip”);
Installed ? Great ! You can now check our guides and examples |

1

JSZip

diting .zip files, with a lovely and simple API.
ediling .zip ties, with & lovely and simple License : JSZip is dual-licensed. You may use it under the MIT license orthe

GPLv3 license. Ses LICENSE markdown.

With npm : npm install jszip

Figure 5: The JSZip demo page, with a complete code example

18

e LZMA-JS [22]: Open-source JavaScript library which is used for compressing and
decompressing data by implementing the Lempel-Ziv-Markov (LZMA) chain compression
algorithm. It was selected to help lower the file size of report template files, while being
easy to implement. LZMA-JS is the easiest library used in this project in terms of
implementation, with a total of just two lines for compressing or decompressing an item.
The GitHub page states: “LZMA-JS is a JavaScript implementation of the Lempel-Ziv-
Markov (LZMA) chain compression algorithm.”

This is avery sunp_le demonstration of]'_.Z}-'L-‘—‘s_—.]' S.a brgwser— lzma-js.github.io says

based implementation of the LZMA compression algorithm.
Compressed:

You can find a more advanced demo here. 93,0,0,1,0 0,0,0,0,0,36,25,73,-104,111,22,2 -116,-24,-26,91

~19,71,-13,-

Hello, world.

Figure 6: LZMA-JS demo page with output

5.2. Libraries licensing

As mentioned in the Analysis phase, the required license for the project is EUPL. The
latest EUPL revision is v1.2 [23], hence all the third-party libraries used in this project are required
to be compatible with EUPL-1.2 [24]. Each library’s license is listed below:

e Materialize, Html-docx-js, ExceldS, LZMA-JS, JSZip*: MIT License
e JSZip*: GNU General Public License version 3 (GPL-3) [25]
e Openhtmltopdf: GNU Lesser General Public License version 2.1 or later (LGPL-2.1)

*JSZip is dual-licensed under MIT and GPL-3, allowing for the use of either license in third party
distributions.

19

5.3. System Architecture

ReportTemplateCreator

Loading Files Loading Files
~#()——— File Repository Q=-+
1

Frontend

Ul, Report Preparation, DOCX-XLSX Generation

Edit Mode Export Mode
Editing Templates Prepare Report 5 .
Data, Export Reports) | [Ge”era“gie_pfr_ts_ _____ SYNTHESIS
Bl
1
Frontend components call Backend :) -
functions “eO— eXist-db !
; Loading Data Loag:l; _Data
Backend

Database Query Tools, PDF Generation

Figure 7: Component Diagram of RTC

RTC is comprised of two main components, its frontend and backend. Each one has

different functionality but there is intercommunication between them. Besides its own
components, RTC uses two external components, a file repository, and a database, in this case
eXist-db. Finally, it used by another external component, SYNTHESIS.

In more detail, RTC’s frontend component is responsible for:

All user interactions, through the incorporation of its user interface, within which a user
can use all RTC functionalities.

RTC’s Edit Mode, which offers the user all the necessary tools to edit and enrich the
report template files to suit their needs

RTC’s Export Mode, which prepares a report’s appropriate data and files according to
the selected template and ontology instance, by using the backend functions.
Furthermore, it contains the ability to generate DOCX and XLSX files on the client-side,
provides the ability for exporting the final generated reports and finally downloading
them. The downloads can be either archives in the form of ZIP files, or individual
downloads.

RTC’s backend component is responsible for:

Providing a communication layer between RTC and the database/file repository. To
avoid cluttering code, the frontend never queries the database directly, instead it always
uses the backend to transfer data to and from the database.

20

e Generating PDF files, which is part of the backend solely due to a library limitation, as
there was no satisfactory client-side library for generating PDF files. These files are
requested by the frontend and then sent over for exporting.

Finally, SYNTHESIS is incorporating RTC for generating reports of ontologies from its
own database and file repository. The templates, data and files are stored on SYNTHESIS’
database and file repository, which must be the same used in RTC through its configuration.
This way, the intercommunication between the two systems can be seamless, and all that is
needed is for SYNTHESIS to call RTC through its own toolbox.

5.4. Preliminary Use Cases

SYNTHESIS System

Administrator

. include .

Report Template
type selection

Editor —

Use Report Template to
export a report

»
1 Jinclude
rextend
Delete an existing Report Fill report export
Template instance form
- e

include /

instance selection

Figure 8: SYNTHESIS Use Case diagram

The diagram above depicts the use cases that take place in the SYNTHESIS system in
order to generate a report, starting with the creation of a new template. There are three distinct
actors that can partake in this process, the Administrator, the Editor, and the User. The
Administrator and the Editor have higher privileges than the User, allowing them to perform more
critical actions in the process.

The actions performed by the Administrator and Editor are, in sequential order:

i. Logging in to SYNTHESIS. This is a requirement for all the other actions and for all the
users since these actions are taking place in the SYNTHESIS system.

ii. Creating a new report template instance.

21

a. By extension, filling the report template creation form with all the necessary
metadata, including the report template type.

iii. Using the report template in order to export a report. This will cause the RTC window to
load in export mode.

a. By extension, filling the report export form with all the necessary metadata,
including the report template type and a specific report template instance.

iv. Deleting an existing report template instance from the system. This will cause the instance
to be removed from the database and the template will no longer be available to use for
generating reports.

The User role is limited to only using existing report template instances that the
Administrator and/or Editor have created (as described iniii), in order to export reports using those
templates.

Report Template Creator

extend
extend Enable/Disable
o
.. extend
"\ include

Login to SYNTHESIS

} *~._include
- include !

Editor —

Edit Report Template instance

Administrator

View/Preview Report
Template instance

Generate report(s) using
templates

Download the
preview in a file
format

Figure 9: RTC Use Case diagram

The diagram above depicts the use cases that take place in RTC in order to generate a
report. These actions are triggered after an action from the previous use-case diagram has been
completed. The same three actors from the previous diagram are involved in this process, the
Administrator, the Editor, and the User.

22

The actions performed by the Administrator and Editor are, in sequential order:

i. Same as previously, logging in to SYNTHESIS. This is once again a requirement for all
the other actions and for all the users since these actions are based on actions taking
place in SYNTHESIS.

ii. Editing a report template instance. This action involves RTC loading in edit mode, allowing
the customization and stylization of a template. By extension, the edit mode allows a user
to:

a. Change the formatting of an element group. An element group includes all the
elements of the same type, such as field headers. Every element in each group is
updated at the same time when a custom formatting is applied to the element
group.

b. Select which fields are enabled. Enabled fields are the only ones visible in all the
previews as well as the final report generation.

c. Change the enabled fields’ order. The customized order includes all elements,
enabled or not. The re-ordering can only be done between elements of the same
depth because the nesting order must be kept intact for XQuery to function

properly.
iii. Viewing or previewing a report template. This allows the users to see a preview of the
edited template using sample data, in order to provide a representative demonstration

similar to the final reports that will be generated using the same template. All the
customizations and stylizations are included and being applied in this preview.

a. The preview function allows users to download the previewed report in their
desired file format, such as PDF or DOCX. When a template is being previewed
using sample data, the downloaded file will contain the same sample data.

iv. Generating final reports using report template instances. This is the most important part
of the process, where the final report is generated by RTC based on the given template
and a set of selected ontology instances. This action is a result of action iii from the
previous diagram. After generating the final report, RTC displays a preview of the
generated report.

a. Same as in iii, the preview function allows users to download the generated report
in their desired file format, such as PDF, DOCX or XLSX. XLSX is used when the
report was generated using a Table type template. After downloading the file, the
scenarios are completed, as the report export has, at this point, finished.

In this use-case, the User role is limited to only viewing, previewing, and using existing
report template instances that the Administrator and/or Editor have edited in order to generate
reports using those templates (as described in ii and iii).

23

5.5. User Interface Mockups and Workflow

5.5.1. Template Creation Workflow

The following workflow diagrams depict the sequence of all the user actions required to
create and edit templates, as well as using them for generating reports.

' ¢
Select
) Template
Login to Single Type Table
SYNTHESIS l l
l Single type Table type
report is report is
Select prepared prepared
ReportTemplates
SubMenu
l Submit
Click the + icon l
l Template
Created
Fill out required
text fields
; End

Figure 10: Template Creation Diagram

The above diagram depicts the template creation workflow. This workflow is essentially
external to RTC, as the user completes it solely through SYNTHESIS. However, it is still an
integral part of RTC’s function as presented in this project, hence it is included as such.

First, a user logs in to the SYNTHESIS system using their credentials. After logging in,
they are presented with the index page of SYNTHESIS, from which they select the “Report
Templates” submenu. This action will cause the “Report Templates” submenu to appear, from
where the user clicks on the “+” icon, indicating their desire to create a new report template.
Subsequently a form is presented, where they must fill out the required fields and then select the
template’s type. Finally, they submit the form after which the template is created by SYNTHESIS
according to the user provided data and are given the appropriate privileges.

24

Multispectral
RAMAN

Other Examinations
Persons
Organisations
Devices
Locations
Materials
Model Samples
Bibliography
Agreements

Presentation

Digital Objects
Conservation Applications
Method Applications
Examples

Glossary

Adminstration

Users
Vocabularies g
System Backap

Report Templates

Access “Report Templates” submenu from
" Administration category

Figure 11: Mockup depicting the "Report Templates” submenu entry

Part of the SYNTHESIS index page, with updated entries to accommodate report
templates. The user clicks on the “Report Templates” button and gets redirected to the following
figure, the “Report Templates” submenu.

® @ [More~

Report Templates

Showing: All

Filter Table

Template for

Object, LIBS

Showing 10 ¥ entries

Manos Paterakis 22.1.2020 Individual

Figure 12: Mockup depicting the "report Templates" submenu

The user is presented with the “Report Templates” submenu and can create a new
Template by clicking on the “+” icon placed at the top left.

25

Choose an entity to create a template:

Template title

® Individual Template

Template type:
y 1 Table Template

=l K=

Figure 13: Mockup depicting the form presented when creating a new template

The user is shown this form right after clicking the “+” icon from the previous figure. At this
point they must fill out this form by selecting an entry from the dropdown, entering a string text as
the title, and finally determining the template’s type. After that they press “OK” to create the
template.

Choose an entity to create a template:

v
Entity Title

Object

Template title

Project
Template type

Persons

RAMAN

Figure 14: Mockup depicting the dropdown list populated

The dropdown list from the previous mockup, visible and populated with data. All available
ontologies of the SYNTHESIS database are visible in this dropdown.

26

5.5.2. Template Editing Workflow

Login to RTC loads in
SYNTHESIS new window
Select
ReportTemplates Aﬁ)glécmhpaiggees
SubMenu
Select template ?'Ck IS ?V,fa
from the list emplate
button
Click the edit Template
) changes are
icon
saved
End

Figure 15: Template Editing Diagram

The above diagram depicts the template editing workflow. Same as previously, the user
logs in to the SYNTHESIS system and then they select the “Report Templates” submenu. From
within the submenu, they select the template instance they want to edit from the presented list
and click the edit icon. This causes the RTC window to appear in edit mode, with the selected
template loaded and ready for editing.

After the RTC window is loaded, the user can apply any desired changes to the template;
these changes will be presented in more detail in the following figures. After all desired changes
have been completed and the template has reached a satisfactory state, the user clicks on the
“Save Template” button which will cause all the applied changes are saved in the SYNTHESIS
database.

27

Report template creation Fa X

Options Template info

Template title [

Creator name [’

Creation date 20.1.2020 Move components up

B8 Object e —————— [‘ahd dOWNn

. i ﬁj;(;me
Object ® (& IO Object name

Object description

] BazicInformation O Lorem Ipsum is simply dummy text of the printing and typesetting in-
dustry. Lorem Ipsum has been the industry's standard dummy text ever
since the 1500s, when an unknown printer took a galley of type and
scrambled it to make a type specimen book. It has survived not only
five centuries, but also the leap into electronic typesetting, remaining

CodeInformation &

Object creation date
dd/ mm/yyyy

Objectimage

s I
R Enable or
Inout & disable fields
CharacteristicImageO
File® @ ™ 1 IRS Fyaminatian

Figure 16: Mockup depicting the editing mode of RTC

The main screen of RTC’s editing mode. From here the user can select the items they
desire to enable, change positions of each item, edit the template’s data such as the title, change
text formatting, preview changes, and add external entities.

Report template creation

Options Templateinfo ____——— Save template and exit
Creation date 20.12020
. . Object name
Object W (& O Object name
@ I Object description
| BasicInformation O Lorem Ipsum is simply dummy text of the printing and typesetting in-

dustry. Lorem Ipsum has been the industry’s standard dummy text ever
since the 1500s, when an unknown printer tock a galley of type and
Code @ scrambled it to make a type specimen book. It has survived not only
Categorv O five centuries, but also the leap into electronic typesetting, remaining

CodeInformationQ

Figure 17: Mockup depicting a finalized updated report template, ready to be saved

After applying all the desired changes, the user must click on the “Save Template” button
which will cause the template file to be updated on the SYNTHESIS database.

28

[E] Text formating Creation date 20.1.2020

Object
E N a—— Object name
Object name

Font style [.] Object descrij

Lorem |lpsum
dustry. Lorem

Add Entit since the 150(
e

. - five centuries,
Object W (¥ (O

submit changes

B Object creatiq
dd/ mm/yyyy

T-BasicInformation

"JCedeInformation o

L

LIBS Examinati

Figure 18: Mockup depicting the Text Formatting menu of RTC

The text formatting menu can be toggled between open and closed by clicking the “Text
Formatting” button. In this mockup a basic set of text formatting features is included, such as font,
font size and font style, grouped by Component category. The grouping indicates which
component the current formatting selection is being applied to. After selecting the desired values,
the user can apply the changes by clicking the “Submit changes” button.

Object image Object image

Image size
Format
s «m B

Image position

P

Text wrapp

Figure 19: Mockup depicting the image component formatting menu

An image component can have specific formatting which is edited through a specialized
menu. This menu can be toggled between visible and invisible by clicking the “Format Image”
button, where some basic image formatting tools are presented, such as image size, position,

and text wrapping. The changes can be dismissed by clicking “Cancel” or applied by clicking
“Save Changes”.

29

5.5.3. Report Generation Workflow

; e
Report preview
Select loads in a new
Login to template window
SYNTHESIS single type Tﬂl"e ¢
¢ Load list with Load list with
Select an Single type Table type Depending
Ontology templates templates on template
SubMenu l J type
l ; Single
Select Select template L Click according
. Table
mstance(_s) from list file format button
from the list
Click the report Submit Download
export icon ubmi report file -
End

Figure 20: Report Generation Diagram

The above diagram depicts the template generation workflow. First, the user logs in to the
SYNTHESIS system. They then select an ontology submenu from the ontologies list. Following,
they select an instance from the presented list and click the report export button. Subsequently a
form is presented, where they select the desired template type. This causes a list of compatible
(with the selected ontology) templates to be loaded, and the user selects the desired template
from the list. Finally, the user submits their request for a report generation.

Submitting the form for a report generation will automatically cause the report preview to
load in a new window of RTC in export mode. Depending on the template type, the user can either
click the format file they prefer, causing the according download to start or wait for the download
to start automatically. The former concerns Single type templates and reports, while the latter
concerns Table type templates and reports. In both cases, this concludes the report generation
workflow as the files have at this point been generated, exported, and downloaded.

30

Documentation ' | Export Report |
N @ ® m More »
Projects
Objects '
Laser Cleaning Persons
LIBS
Multispectral Showing: All
RAMAN
Other Examinations Filter Table |
Persons
Organisations
Devices
Locations Hop hop _/Organization/2, IESL
Materials Panos Siozos .../Organization/2, IESL
Model Samples
Bibliography Kostas
Agreements Alina Melessanaki

Figure 21: Mockup depicting an ontology's submenu, with the "Export Report" button
After entering an ontology’s submenu (in the figure above, that ontology is “Persons”), the

user selects an instance from the submenu’s list and then clicks the “Export Report” button
highlighted in the figure to start the process of exporting a report.

®» Individual Report

Grouped Report

Figure 22: Mockup depicting the report export form
After clicking the “Report Export” button, the user is presented with the report export form,

in which he selects the report type and template they desire from the dropdown. Finally, they must
click “OK” to continue with the report export process.

31

Individual Report
Table Report

Template for museums, vivi Poull, 23.3.2019 (4

‘ Template for educational purposes, Kristalia Melessanaki, 56.2019 L.’

Template for presentations, Vivi Poull, 13.7.2019 [&

Figure 23: Mockup depicting the dropdown list of templates, populated

The populated dropdown list contains all templates compatible with the currently selected
ontology. The list presents some helpful information, alongside a link to a preview (presented in
this figure as a link button) which the user can click to be redirected to the template’s preview.

* Individual Report & Single File
Table Report Multiple Files

Figure 24: Mockup depicting the file grouping selection for multiple exports

As shown in the above figure, the highlighted selection on the right is only visible when
the user has selected more than one instances from the ontology’s submenu, indicating they
desire to export multiple files in a grouped manner. This extra selection solves the issue of
grouping by having the user select their preferable way of grouping. A table report will simply
output all the data in a table form (in this case an XSLX file), a “Single File, Individual” report will
simply merge all the instance data into one file, and finally a “Multiple Files, Individual” report will
include all instances, each in their own individual report file, packaged together in an archive (in
this case, a ZIP file).

32

6. Implementation

The program of this project is implemented based on Java for the back-end and the typical

web languages for the front end, specifically HTML, JavaScript, and CSS. The back-end provides
the web application with data from the database while also allowing the web application to update
and expand the database. It also provides the PDF-generating mechanism. The front-end part for
the program is responsible for the Ul and UX, providing the necessary interaction with the user
as laid out in the Design phase.

The front-end is composed of two different modes, one for managing templates and one

for providing the finalized reports by previewing them and allowing them to be downloaded. The
former is RTC’s “Edit Mode” while the latter is the latter is its “Export Mode”.

6.1. Software Libraries

Openhtmitopdf is used in this program for generating PDF files using HTML and CSS. The
program’s front-end creates a complete HTML file for the generated report, combines it
with the according CSS file and sends the HTML to the Openhtmltopdf servlet, where it
gets converted into a PDF file. Following that, the PDF is sent back to the front-end where
it gets downloaded.

Materialize is used in this program for providing the Material Design look and feel for the
front-end component of the program. Most of the components are either Materialize
components or customized versions of them.

LZMA-JS is used in this program for compressing and decompressing the report template
data. When saving a report template file from the front-end, the program compresses the
created template using LZMA-JS before sending it to the back-end. Similarly, when a
report template file is loaded, provided it has been compressed, the program
decompresses it before accessing it.

Html-docx-js is used in this program for creating the DOCX downloadable files of the
generated reports. The program’s front-end creates a complete HTML file for the
generated report, and directly converts it to a DOCX file using Html-docx-js without the
need of a back-end implementation. After the conversion has been completed, the DOCX
file is downloaded.

ExcelJS is used in this program for creating the XLSX downloadable files of the generated
reports. The program’s front end creates an XLSX file from scratch, using ExceldS, based
on the final report’s data (there is no conversion taking place) and the file is immediately
downloaded.

JSZip is used in this program for packing multiple generated reports into downloadable
ZIP files. The program’s front end first gathers all the files that need to be downloaded,
each individually. Following that, the files are packed using JSZip into a single ZIP file and
the ZIP file is instantly downloaded.

33

6.2. Interaction with the system

The creation and manipulation of the report templates is done on the RTC component of
the program, using which the user can load, edit, and update templates. Since the templates are
treated as entities of the SYNTHESIS system, creating and selecting templates, as well as
exporting reports using existing templates are actions managed by SYNTHESIS itself. This
program is being used as a plugin-in for SYNTHESIS and is called from the latter after the user
has requested a relevant action. The implementation of the user’s interaction with the system is
carried out exactly as described in subsection 7.3 of the design process.

6.2.1. SYNTHESIS System Interaction

Ol ts and Transfers

Welcome

Passages and Comments

elated Documentation

P
R
R
Historical Figures
E
L
P

Figure 25: The SYNTHESIS index page

Initially, having logged in to the system, the administrator can see a list of all the available
templates by selecting the “Report Templates” menu in the “Administration” section. The
redirected page allows the administrator to select any of the existing templates for either deletion
or editing. There is also the ability to create a new template, based on any of the existing
ontologies from the database.

If the administrator chooses to create a new template, a new page will be loaded, where
they are asked to select one of the ontologies from the system’s database. Alongside that, the
administrator is asked to select a template type and add the appropriate complimentary
information about the template. After doing so, and submitting the form, the system creates a new
Report Template ontology instance, which includes the default template file for the selected
ontology. Following that, the administrator is redirected to the “Report Templates” page they were
previously on where the created ontology can now be found in the list of created templates.

34

\j) ® [4 More ~ Q | Search

Create New

Report Templates

Showing: My Cards
C Filter Table | | Showing entries
[Name & Related entity & Type 4 Institution & Creator 4 d 4
O Test DWP Rights Object Transfers Individual RICONTRANS admin ReportTemplate/1
O Test Template For Objects Objects Individual RICONTRANS admin ReportTemplate/2

Showing 1 to 3 of 3 entries (1 selected entries)

Previous Menct

Figure 27: The "Report Templates" submenu in SYNTHESIS

The finalized layout of the “Report Templates” submenu is almost identical to the design
mockups. The “Create New” button, indicated by the “+” symbol, is highlighted in this figure. All
available templates are also presented in the list below the buttons.

Report Templates - Create New

Report Template Title: |Test Person Template |

Description: A Person Templats for testing purposes

Select an entity to create a
report template:

Persans v

Report Template Type: @ |Individual (The report has the format of one or more documents containing the selected fields)
O Table (The report has the format of a table (excel) containing the selested fislds)

Finish

Figure 26: The report export form

In the template creation form the user is asked to
enter a template title, a description, select the ontology for
the template to be based on and choose the type of the
template between table and individual. The ontology
selection dropdown contains all the available ontologies that
are currently stored in the SYNTHESIS database. After filling
the form with the required data, the user must click on the
“Finish” button to confirm their selection. This final layout is

[|
Objscts

Persons

Organizations

Events

Locations

again, very similar to the mockups both in terms of design Figure 28: The ontology dropdown

and functionality.

35

Your action completed successfully.

Id : https://ricontrans-project.euw/ReportTemplate/3

Back

Figure 29: The template creation’s confirmation message

After clicking “Finish” on the template creation form, the user is presented with a
confirmation message, informing them of the successful creation of the new template and the new
template’s assigned Id.

® @ [@ [3 More~ Q| search v
Export Report

Persons

Showing: All
C Filter Table | | Shuwingentries
v Fullname = Creator & Id =
Sample Data stathi Person/1
O Sample Data 2 katopi Person/10

Figure 30: Selecting a template for editing in the "Report Templates” submenu

In case the user wants to edit a template, they must select an existing template instance
from the list in the “Report Templates” submenu, and then click on the edit button, highlighted in
the figure above. SYNTHESIS will consequently create a new window of RTC, with the selected
template loaded.

6.2.2. Template Creation & Manipulation

The report template instance creation mechanism is part of the SYNTHESIS system, as
described in 6.3.1. The default templates that the system includes in the report template instances
are created by the program’s CreateJson mechanism, which creates a JSON report template for
a given ontology based on its default structure from the database. In this process all the template
fields are purposely left disabled, hence for these templates to be usable, the user must edit them
and enable any of the template fields.

Manipulation or editing of a template is a process managed completely by RTC. After RTC
loads a template for editing as described in 6.2.1, the user can apply changes to the template,
save it or show a preview of the current template format.

All the formatting styles, as well as the header and footer images are stored in the
template’s JSON file. This ensures that a template JSON file is a complete standalone structure.

36

Report Template Creator

SAVE TEMPLATE

Add Header Image

PREVIEW TEMPLATE

TEXT FORMATTING

Test DWP Rights

Search Elements 27/01/2021

I:I Identification Code
I:I MName

I:I Transfer Date v
I:I Transferred Object
I:I Transferred From v
I:I Transferred To v

+ + Object Transfer

Figure 32: A newly created (empty) report template

Each template is essentially empty on creation, as shown in the figure above. This means
that for any template to be usable, a user must edit them and enable at least one of the fields.
This way, the template will output at least one data point. The only data that is inserted
automatically is the metadata such the template title. All new template instances are based or the
premade default template JSONSs. This decision was not made in the initial design phase, instead
it was implemented after testing the program. Initially there were specified fields pre-enabled but
that quickly deemed unusable and was replaced with the final functionality.

Search functionality snippet, using element classes
to filter results.

m
1]
[nal

m

m

person ... /I Hide items that don't match
dataTreeElements.forEach(function (elem, index) {
let elemText =
D Person Involved v elem.querySelector('span').textContent.toLowerCase();
Interpreted by w if (elemText.includes(inputString.toLowerCase())) {
elem.classList.remove(filter-out');
Person ~ }else {
elem.classList.add('filter-out");
D Related To Persones }
D

Figure 31: Search functionality

The template field tree on the left includes a search function, to quickly find a desired
element. When the search yields a field that has children, its children will be visible by expanding
the parent. This was also added after the initial design phase, instead it was added implemented
on user feedback.

37

TEXT FORMATTING

Test [

Font Size m + + Object Transfer
N Identification Code
Text

SUBMIT

Figure 33: The text formatting menu

The text formatting menu allows for any individual element or element group to be stylized
with a plethora of options. The changes are applied by clicking the “Submit” button as shown in
the figure. While keeping the same basic design it had in the design phase, there were many
additions, namely in the variety of options and the inclusion of individual element formatting
instead of only group formatting.

S

Image Size
H E onsectetur adipi|
onsectetur adipi|
n . Image Position

Figure 34: The image formatting menu

The image formatting menu is used on image elements to customize some image-specific
properties, such as size and position. While the basic layout is kept the same from the design
phase, some options like text wrapping were removed after they were proved unusable. Instead,
each image element occupies a vertical space on its own.

38

BiBAloypapia - TeaT

27/01/2021

Loading header image snippet. The image data is loaded from the Style json and then directly
added to the DOM

/I Set styles from presets
applyStylesFromPresets: function () {
editableComponents.forEach(function (component, index) {...[9 lines]});

if (stylePresets['Header'] && stylePresets['Header'].length > 0) {
_this.addHeaderimage(stylePresets['Header']);

Figure 35: Template header image

Users can add (and remove) their own images as headers on each template, and they are
resized to fit the page accordingly. The images appear in PDF and DOCX formats but are, as
expected, missing in XSLX formats as they are not needed. This is another function that was
added after user feedback. The header images are stored in the JSON that represents the
template itself, in order to make the template file standalone and portable. To compensate for that
extra size, a compression/decompression is used when saving and loading data, respectively.
The following snippet shows how this is achieved in the source code; the referenced function can
also be found in Appendix 1.

... Il Compress string with LZMA
compressString: function (inputString, compressionType) {
var promisedReturn = new Promise(function (resolve, reject) {
IzmaWorker.compress(inputString, compressionType, function
on_compress_complete(result) {...[3 Lines]});
return promisedReturn;

).

Snippet 1: LZMA compression, returning a compressed string as a promise

39

Select Link

Interpreted by A Select a template from the dropdown
Person) st Persen Template
Date
Interpretation v
CANCEL K
Figure 36: A linking button in the field tree Figure 37: The linking form

Linking templates allows users to add existing templates in a new template, without having
to readjust the enabled fields and order from scratch. Instead, the linked template is added as-is.
First, the user must click the linking icon of the field they want to insert a link in (shown in the
figure above in the “Person” element). This will cause a modal window to be displayed, where the
user must select an existing template that fits the criteria of the field they are trying to link. This is
done through a dropdown list in the modal window, where all the appropriate template instances
can be found. After selecting the template they desire, the user must click the “OK” button and
the link will be inserted. The following snippet shows the sequence of this action in the source
code; the referenced function can also be found in Appendix 1.

... I Insert another template from link
insertTemplateFromLink: function (json) {

let jsonString = _this.convertStringToArray(xhr.responseText)[0];
_this.decompressString(jsonString).then(function (decompressedsString) {

var json = JSON.parse(decompressedString);
_this.insertTemplateDataFromJson(json, 'linked-element');

D

¥
xhr.send(encodeURI('id=" + selectedTemplate + '&type=ReportTemplate&xpath=Data"));

Snippet 2: Decompressing and inserting another template as link

The linking functionality required a major redesign in RTC’s mechanisms as it was
requested after user feedback, but the scope of the changes was too large to implement in a
simple manner. While most post-design changes needed small adjustments, this was by far the
most demanding one in terms of sensible re-design decisions.

40

Identification Code .
0 + + Object Transfer

|:| Name
O Transfer Date v + + Interpreted by
|:| Transferred Object «
¥

|:| Transferred From v
|:| Transferred To v

. + + Person
|:| Transfer Description
[person Involved - , , |dentificationNumber

- Fixed Val
|:| Organization Involvedw xee Valus

|:| Other Object Involveds
|:| Transfer Purpose

|:| Based On v
Interpreted by v
Person ~

IdentificationNu...
[] mame and Surna...
D Name in Native be..

Figure 38: Example of an inserted link

Following the previous figures, the link is added in the appropriate position in the template,
with all its customizations intact, bar the text formatting, which is overridden by the current
template’s formatting. The link field (in this case “Person” following “Interpreted by”) is disabled,
and hence grayed out as shown in the above figure, to avoid field duplication.

Test DWP Rights

27/01/2021

Object Transfer

Interpreted by

Person

IdentificationNumber
Fixed Value

Figure 39: Preview of a customized template

Clicking the “Preview Template” button in RTC’s edit mode, will display a preview of the
template in its current customization. Since this functionality is part of edit mode, the data shown
in the preview is sample data. Through the preview screen the user can also download the shown
preview in either PDF or DOCX format. Finally, they can return to the previous screen (the main
screen of RTC’s edit mode) by clicking the “Exit” button, shown in the top left. This functionality
follows its initial design from the design phase in functionality, but since the presentation was not
solidified in that phase, some adjustments had to be made.

41

6.2.3. Report Generation

Generating a final report involves the merging of a report template and the one or more
ontology instances’ data from the database. The user must complete this action through
SYNTHESIS, by selecting one or more instances for report export. After going through the
template selection form, RTC is tasked with generating the final report. First, the report template
file is loaded, and the report elements are inserted in the page with their appropriate formatting.
Subsequently, the ontology instance data are loaded from the database and replacing the
template elements appropriately, thus creating the finalized report.

The generated reports can be downloaded through a preview window provided by the
program. Individual-type reports are previewed in their final form in the preview window, and the
user can choose the format in which to download the report; either DOCX or PDF. Table-type
reports are previewed with sample data, and the download is done automatically in the XLSX
format.

Most of the report generation is done on the client-side, as determined in the initial design
phase, with the only integral parts of the back-end being the PDF generation and the eXist-db
guery mechanisms, both of which are implemented as Java Servlets. As mentioned in the design
phase, the final program’s front-end uses the back-end for all calls to the database, which indeed
resulted in cleaner and more efficient code for the whole project.

@ ® [[3 More~ Q | Search -
Export Report

Persons

Showing: All
C Filter Table | I Showingentries
7 Fullname 5 Creator & Id =
Sample Data stathi Person/1
OJ Sample Data 2 katopi Person/10

Figure 40: Selecting an ontology instance for report export

Having logged into the SYNTHESIS system, the user must click the desired ontology’s
button to enter the according submenu. Once they enter in the submenu, a list with all existing
instances will appear, from which they must select one (or more) that they desire to export in
report form. After completing the selection, they must click on the “Report Export” button as
highlighted in the figure above. This will cause the report export form to appear, which will be
detailed next. The report export selection process remains the same as it was in the initial design
phase.

42

Peraona - Export Report Overview of all the different RTC

Choosea templats toexport [= _ modes, including the report export
szt Perzon Template, sdmin - y .

areport: form’s View mode. These are

essentially different views

Choose report file type for @ Sings Tl
individual report:

/I Set view mode Ul

setExportModeUl: function () {...},
Test Person Template

2700 /I Set view mode Ul

setViewModeUI: function () {...},

Person

IdentificationNumber
Fived Value I/l Set preview mode Ul

lﬁ’_“b‘:'fr“_d Surname setPreviewModeUl: function () {...},
/I Set table Ul

setTableUl: function () {...},

Finish

Figure 41: The report export form

The report export form contains two main selections, the desired template, and the type
of report to export. The template selection is achieved using a dropdown element, similar in
functionality and appearance to the ontology selection demonstrated previously. The dropdown
is populated only with the templates that are compatible with the selected ontology. The report
type selection determines how the reports (specifically when there are more than one selected)
will be packaged or merged. A preview of the currently selected report is previewed in the lower
part of the form, where RTC is loaded in view mode. View mode is similar to edit mode’s preview
functionality, where the template is shown using sample data, with the exception that this mode
lacks all other Ul elements of edit mode, as well as the file download buttons.

“Single File” reports are reports merged into one DOCX or PDF file, while “Multiple Files”
reports are different individual DOCX or PDF files packaged into a single ZIP archive. Lastly, there
is a template preview, with RTC loaded in view mode, to provide a quick overview of the currently
selected template.

After the user has filled the form with their desired values, they must click on the “Finish”
button to exit the form and move to the final export process. After doing so, RTC will load in export
mode with all the appropriate data as those are selected by the user.

43

Test Person Template
27/01/2021

Person

IdentificationNumber

https://project.eu/Person/1

Name and Surname

Personious Namonious

Figure 42: The final report, previewed in RTC in export mode

The functionality of the report form was carried over from the initial design phase with
almost no changes, except that the preview is now shown in the form automatically instead of the
user having to open a hew window to see the preview.

After clicking the “Finish” button in the report export form, RTC is loaded in export mode,
which shows a preview of the final report. In more detail, RTC in this mode first loads the template
and inserts only the appropriate data (skipping the disabled fields), alongside their formatting and
custom stylizations. Second, after all the template fields have been loaded, RTC uses the back-
end to query the database and gather the appropriate data for each field. The final step is merging
the database data with the pre-loaded template data, which results in the final report form and
concludes the report generation.

Having the final report generated, RTC loads the preview and presents it to the user. This
preview is an exact copy of the downloadable report, as it is this final HTML data, combined with
their CSS styling that are sent to the DOCX and PDF generators, essentially converting the HTML
and CSS into a document file. To download the final document files, the user must click on their
desired format’s icon, colorized red with a PDF icon for PDF, and blue with a document icon for
DOCX, as shown in the figure above.

In case the user selected “Multiple Reports” in the previous selection, RTC will load only
the first selected ontology instance to present in its preview. When the user clicks on a format
icon to download the file(s), RTC will generate all reports in the background, which is still a client-
side operation, pack them in a ZIP archive and start the download of the generated ZIP file.

The final report export was not clearly specified in the initial design phase, instead it
required some extensive re-designs to implement properly. After multiple iterations of the final
report generation and export design, the presented process was the most satisfactory, and hence
was implemented.

44

7. Conclusion

In an effort to increase the efficiency of analyzing results of ontology-based systems, and
more specifically the SYNTHESIS system, a requirement for exporting existing data in the form
of reports in different formatting styles arose, with each formatting style representing a specific
report type. Through the analysis process it was clear that a templatized report generator system
was needed to fulfill the task.

A templatized report engine and user interface was developed, called Report Template
Creator, whose functionality would fit the nature of ontologies. Each ontology’s structure is
converted to a JSON object alongside all the custom formatting, which is stored as a template
JSON file. Template files can be edited by users through RTC’s edit mode. For exporting reports,
the template file is used in combination with the ontology data from the eXist database, creating
the final report(s), previewing the generated document(s) to the user, and allowing them to
download the generated file(s) in their desired format, using RTC’s export mode.

In conclusion, the original goal of exporting ontology data in the form of customized reports
was achieved, evident by a successful testing phase. The use of templatized reporting and the
creation of a templatized report engine provided the required functionality for generating reports
in a workflow that fulfills the original requirements.

7.1. Future Work

The generic nature of the tool's design allows it to be used on vastly different
configurations. As a result, it will be implemented as a manual page provider, where each section
of the manual is a specific template field and the same template(s) will be used to present different
instructions, using RTC’s view mode.

More specific and customized options are already requested and will be added, such as
grids consisting of images and multiple uploaded files (a SYNTHESIS feature) support. While
SYNTHESIS support is built in, implementing RTC in a different system would be a
straightforward task. The tool’'s design takes into consideration the fact that certain changes would
be required in order to function in a completely different system and these changes are purposely
simple to be implemented.

45

Bibliography

[1] D. Angelakis, C. Bekiari, M. Doerr and F. Kragianni, "Building Comprehensive
Management Systems for Cultural — Historical Information,” in Proceedings of the
42nd Annual Conference on Computer Applications and Quantitative Methods in
Archaeology, Rethymno, Crete, Greece, 2015.

[2] iText, "iText: The Leading PDF Platform For Developers,” iText Group nv,
Inc., 2021. [Online]. Available: itextpdf.com/en. [Accessed 25 1 2021].

[3] iText, "iText DITO®," iText Group nv, Inc, 2021. [Online]. Available:
itextpdf.com/en/products/itext-dito. [Accessed 25 1 2021].

[4] J. Moxter and E. Njeru, "Dynamicreports/Dynamicreports: Java reporting

library for creating dynamic report designs at runtime," 9 10 2020. [Online]. Available:
github.com/dynamicreports/dynamicreports. [Accessed 25 1 2021].

[5] J. Hall, "MrRio/jsPDF: Client-side JavaScript PDF generation for everyone.,"
1 25 2021. [Online]. Available: github.com/MrRio/jsPDF. [Accessed 1 25 2021].
[6] E. Koopmans, "eKoopmans/htmi2pdf: Client-side HTML-to-PDF rendering

using pure JS," 19 2 2020. [Online]. Available: github.com/eKoopmans/html2pdf.js.
[Accessed 25 1 2021].

[7] N. v. Hertzen, "Niklasvh/html2canvas: Screenshots with JavaScript," 29 12
2020. [Online]. Available: github.com/niklasvh/html2canvas. [Accessed 25 1 2021].

[8] Danfickle, "Danfickle/Openhtmitopdf: An HTML to PDF library for the JVM.,"
20 1 2021. [Online]. Available: github.com/danfickle/openhtmltopdf. [Accessed 25 1
2021].

[9] Science Buddies, "The Engineering Design Process,” 2021. [Online].
Available: https://www.sciencebuddies.org/science-fair-projects/engineering-
design-process/engineering-design-process-steps. [Accessed 25 1 2021].

[10] The Apache Software Foundation, "Maven - Welcome to Apache Maven,"
The Apache Software Foundation, 2021. [Online]. Available: maven.apache.org/.
[Accessed 25 1 2021].

[11] A. Retter, L. Windauer, T. Krebs, J. Turner and W. Meier, "eXist-db - The
Open Source Native XML Database," eXist Solutions, 2018. [Online]. Available:
exist-db.org. [Accessed 25 1 2021].

[12] G. Baltusevicius, "What Is a Report Generator," Whatagraph B.V. ©, 22 5
2020. [Online]. Available: whatagraph.com/blog/articles/report-generator. [Accessed
251 2021].

[13] R. J. Burke and B. A. Reinhart, "Templatized Reporting Engine". Texas, USA
Patent US20130054284A1, 26 11 2011.

[14] Google, "Google Docs: Free Online Documents for Personal Use," Google

LLC, 2021. [Online]. Available: www.google.com/docs/about/. [Accessed 25 1 2021].

46

[15] WordPress, "WordPress Editor," WordPress, 17 8 2020. [Online]. Available:
wordpress.org/support/article/wordpress-editor/. [Accessed 25 1 2021].

[16] W3Schools, "XML Introduction,” W3Schools, 2021. [Online]. Available:
www.w3schools.com/xml/xml_whatis.asp. [Accessed 25 1 2021].

[17] Materialize, "Materialize: A modern responsive front-end framework based
on Material Design," 2021. [Online]. Available: materializecss.com. [Accessed 25 1
2021].

[18] A. Wang, "Dogfalo/materialize: Materialize, a CSS Framework based on

Material Design,” 1 6 2020. [Online]. Available: github.com/Dogfalo/materialize.
[Accessed 25 1 2021].

[19] Evidence Prime, "EvidencePrime/Html-Docx-Js: Converts HTML documents
to DOCX in the browser,” Evidence Prime, 17 5 2016. [Online]. Available:
github.com/evidenceprime/html-docx-js. [Accessed 25 1 2021].

[20] A. Wang, A. Lubbe and S. Pawel, "ExcelJS/ExcellS: Excel Workbook

Manager," 30 11 2020. [Online]. Available: github.com/exceljs/exceljs. [Accessed 25
12021].

[21] S. Knightley, "Stuk/JSZip: Create, read and edit .zip files with Javascript," 16
1 2021. [Online]. Available: github.com/Stuk/jszip. [Accessed 25 1 2021].
[22] LZMA-JS, "LZMA-JS/LZMA-JS: A JavaScript implementation of the Lempel-

Ziv-Markov (LZMA) chain compression algorithm,"” 19 11 2017. [Online]. Available:
github.com/LZMA-JS/LZMA-JS. [Accessed 25 1 2021].

[23] The European Commission, "EUROPEAN UNION PUBLIC LICENCE v. 1.2,"
18 5 2017. [Online]. Available: https://joinup.ec.europa.eu/sites/default/files/custom-
page/attachment/eupl_v1.2_en.pdf. [Accessed 25 1 2021].

[24] Joinup Europa, "Matrix of EUPL compatible open source licences," Joinup
Europa, 2021. [Online]. Available: https://joinup.ec.europa.eu/collection/eupl/matrix-
eupl-compatible-open-source-licences. [Accessed 25 1 2021].

[25] Free Software Foundation, Inc, "GNU Affero General Public License," Free
Software Foundation, Inc, 19 11 2007. [Online]. Available:
www.gnu.org/licenses/agpl-3.0.en.html. [Accessed 25 1 2021].

47

Appendix
1: Code
ReportTemplateCreator.js outline

/I @author Manos Paterakis
var reportTemplateCreator = {

/I Initialize components
init: async function () {3,

/I Set language strings
setLanguagesStrings: async function (lang) {},

/I Initialize data tree search funcitons
initDataTreeSearch: function () {},

/I Filter Search Tree
filterSearchTree: function (inputString) {},

/I Adjust Sidebar Height
adjustSidebarHeight: function () {},

/I Set report date to today
setDateToToday: function () {3,

/I Set template properties
setTemplateProperties: function () {},

/I Edit template hame
editTemplateTitle: function () {},

/I Set new template name
setTemplateTitle: function (title) {},

/l Load template metadata
loadMetadata: function () {},

/I Load templates
loadTemplates: function () {},

/I Adjust template select
adjustTemplateSelect: function () {},

/I Remove hidden elements from JSON
removeHiddenElementsFromJson: function (json) {},

/I Insert another template from link
insertTemplateFromLink: function (json) {},

/I Insert another json from link
insertTemplateDataFromJson: function (json, _optCustomClass) {},

/I Remove all template link
removeTemplateLinks: function () {},

/I Remove a template link
removeTemplateLink: function (link) {},

/I Check whether json is empty
checkIfEmpty: function (json) {},

/I Set view mode Ul
setExportModeUl: function () {},

/I Set view mode Ul
setViewModeUl: function () {},

/I Set preview mode Ul
setPreviewModeUl: function () {},

/I Set table Ul
setTableUl: function () {},

/I Check and hide settings sections
checkAndHideSettingsSections: function () {},

/I Add a header image
/I https://stackoverflow.com/a/40971885
addHeaderImage: function (_optimageData) {},

/I Remove header image
removeHeaderlmage() {},

49

/I Export helper function
exportHelperFunction: function () {},

/I Preview template
previewTemplate: function () {},

/I Exit preview mode
exitPreview: function () {},

/I Create a table preview
createTablePreview: function (excel) {},

/I Generate standalone HTML from current page
generateHTML: async function (exportFileType, optinputHTML) {},

/I Automatic pagination
automaticPagination: function (html) {},

/I Load db data on current page
loadDbData: function (optinputHTML, optld) {},

// Clone children elements
cloneChildrenElements: function (parentElem, idValue, idindex, _optPrevidValue) {},

/I Create file URL
getFileURL: function (filename, id, type) {},

/l Download sample file
downloadSample: function () {},

/I Create PDF file
createPDF: async function () {},

/I Create docx file
createDocx: function () {},

/I Create excel file
createExcel: function (_returnFileOpt, _sampleDataOpt) {},

/I Convert string array to string[] object
convertStringToArray: function (inputString) {},

/I Save template

saveTemplate: function () {},

/I Create JSON file from current elements
createJsonFromElements: function (elementOpt) {},

/I Get children json
createChildrenJson: function (parent) {},

Il Set styles from presets
applyStylesFromPresets: function () {},

/I Set style presets
setStylePresets: function (presets) {},

/I Get Style json component
createJsonStyle: function (_optSelectedElement) {},

/I Get element's style in a single string
getElementStyleString: function (element) {},

/I Get inner elements' style in an array
getinnerElementsStyleArray: function (element) {},

/I Force close inputs
forceCloselnputs: function () {},

/[Indent children elements
indentChildrenElements: function (_optParent, _optindent) {},

/I Unindent children elements
unindentChildrenElements: function () {},

/I Show children paths
showChildrenPaths: function () {},

/I Hide children paths
hideChildrenPaths: function () {},

/I Apply style to selected element
setElementStyle: function () {},

/I Create an element

createElement: function (elementType, elementTitle, elementValue, indentOpt,

parentOpt) {},

51

/I Load style for a specific element from JSON
loadElementStyle: function (element, styleJson) {},

/I Force important styling on elements
forcelmportantStyle: function (elem) {},

/I Hide parents with no children
hideEmptyParents: function () {},

/I Get element name from title object
getNameFromTitle: function (title) {},

/I Get element entity from title object
getEntityFromTitle: function (title) {},

/I Get page break from title object
getPageBreakFromTitle: function (title) {},

/I Get exclusion from title object
getExclusionFromTitle: function (title) {},

/I Get style from title object
getStyleFromTitle: function (title) {},

/I Create page-break button
createPagebreakButton: function (parentRow) {},

/I Toggle pagebreak
togglePageBreak: function (element) {},

/I Create element customization button
createCustomizationButton: function () {},

/I Set a custom item for formatting
setCustomElementFormatting: function (element) {},

// Handle custom element switch
adjustCustomElementSwitch: function () {},

/I Create table elements
createTableElement: function (elementType, elementName, elementValue) {},

/I Create label-changing HTML

52

createLabelChangingHTML.: function (elementName, htmIName, row,
_opt_buttonsArray) {},

/I Crate a toolbox
createToolbox: function (indent, elementType) {},

/I Adjust buttons inside toolbox
adjustToolbox: function (element) {},

/I Adjust image settings toolbox
adjustimageToolbox: function (element) {},

/I Adjust list settings toolbox
adjustListToolbox: function (element) {},

/I Move element up
moveUp: function (element) {},

/ Move element down
moveDown: function (element) {},

/l Open image formatting settings
openlmageFormatting: function (element, buttonFormatting) {},

/I Open list formatting settings
openListFormatting: function (element, listFormatting) {},

/I Merge image with other element
mergeWithimage: function (element) {},

/I Align image
alignimage: function (element, option) {},

I/l Set image size
setlmageSize: function (element, option) {},

/I Set list type
setListType: function (element, option) {},

/I Align list text
alignList: function (element, option) {},

/I Separate image from other element
separateFromimage: function (element) {},

53

/I Swap elements with visual transition
swapWithTransition: function (elementl, element2, overrideTransition) {},

/I Show template properties edit menu
showTemplatePropertiesEditMenu: function () {},

/I Toggle text formatting tools
toggleTextFormattingTools: function (_optSelectedltem, _optForceSelectedltem) {},

/I Disable required formating toolbox buttons
disableRequiredButtons: function () {},

/I Enable required formating toolbox buttons
enableRequiredButtons: function (selectedElem) {},

/I Update components dropdown list
updateComponentsDropdown: function (_optSelecteditem, _optForceSelecteditem) {},

/l Fade out an element
fadeOut: function (element, callback) {},

/I Fade in an element
fadeln: function (element, callback) {},

/I Create elements from JSON
createElementsFromJson: function (json, indentOpt, parentOpt) {},

/I Add listeners on children of element
addcChildrenListeners: function (element) {},

/I Highlight element
highlightElement: function (element, color, transitionDuration, borderRadius) {},

/I Stop highlighting element
stopHighlightingElement: function (element) {},

/I Show element and child elements
showTreeElements: function (element) {},

/l Hide element
hideTreeElements: function (element) {},

54

/I Show element
showTreeElement: function (element) {},

/I Hide element and child elements
hideTreeElement: function (element) {},

/I Show element and child elements
enableTreeElements: function (element) {},

/I Hide element and child elements
disableTreeElements: function (element) {},

/I Toggle tree element visibility
toggleTreeBranchVisibility: function (element) {},

/I Toggle tree element state
toggleTreeBranchState: function (element) {},

/I Get tree element name
getTreeElementName: function (element) {},

/I Show element in preview
showElement: function (element) {},

/I Hide element in preview
hideElement: function (element) {},

/I Create data tree from given data
createDataTree: function (data, depth, parent, isArrayData) {},

/I Select teamplate for link
selectLink: function (element) {},

/I Update tree view
updateDataTree: function () {},

/I Collapse empty parents
collapseEmptyTreeParents: function () {},

/I https://stackoverflow.com/a/722732
/] Traverse JSON

traverseJson: function (jsonObj, func, depth, parentOpt) {},

/I Get next element of same indent

55

getNextOfSamelndent: function (element) {},

/I Get previous element of same indent
getPreviousOfSamelndent: function (element) {},

/I Get children
getChildren: function (element) {},

/I Get direct children
getDirectChildren: function (element) {},

/I Get children in sequential order
getChildrenSequential: function (element) {},

/I https://stackoverflow.com/a/901144
/I Get url params
getParameterByName: function (name, url) {},

/I Convert image data to base64
convertimagesToBase64: function (html) {},

/[l Compress string with LZMA
compressString: function (inputString, compressionType) {},

/I Decompress string with LZMA
decompressString: function (inputString) {},

/I Parse array string and return an Array object
parseArray: function (input) {},

/| TESTING
loadTestData: function () {}

56

