

Ελληνικό Μεσογειακό Πανεπιστήμιο
Σχολή Μηχανικών

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πατεράκης Εμμανουήλ (Α.Μ. : ΤΠ4319)

Επιβλέπων καθηγητής : Βιδάκης Νικόλαος

Επιτροπή Αξιολόγησης : Παπαδάκης Νικόλαος
 Βιδάκης Νικόλαος
 Κονδυλάκης Χαρίδημος

Ημερομηνία παρουσίασης: 25/02/2021

Πτυχιακή εργασία

Τίτλος:
Ανάπτυξη συστήματος δημιουργίας αναφορών για το

πληροφοριακό σύστημα SYNTHESIS (Report writing subsystem
for SYNTHESIS Information System)

1

Acknowledgements

I would like to express my appreciation to my supervisor Dr. Nikolaos Vidakis and my

sincere gratitude to Dimitris Angelakis for their immense support as well as providing me with the

chance to be part of the CCI lab. In addition, I would like to express my utmost gratitude to

Chryssoula Bekiari. I wish to extend my special thanks to Corina Doerr for her crucial contribution

to the Design process of this project. I am also wholeheartedly thankful to all members of ISL-

FORTH’s CCI lab.

2

Abstract

Templatized reporting is a report generation technique utilizing template files for exporting

reports. Each report template provides a customized report formatting and stylization, allowing

more flexibility of the generated reports’ layout. Ontology based data systems have no generic

solution for exporting their data in reports. Users of the ontology-based system SYNTHESIS

required automated report exporting of the system’s existing data in specific and distinct

formatting which derived from each report type. The automated exporting of such reports would

drastically improve the efficiency of result analysis. A templatized report generator webapp was

designed and implemented. The developed tool generates and uses template files in JSON

format, each containing the structure of an ontology as that is found in the system’s database,

alongside all the custom formatting data for the template. Users can create new templates or edit

existing ones in order to suit a report type’s layout. After a template is created and edited, it can

be used to export one or more ontology instances’ data in report form by combining the data of

each selected instance with the selected template’s layout and formatting. The generated report

is previewed and then downloaded in the desired format. The developed program was finally

tested in a testing deployment and it was determined that it fulfills the initial requirements for

SYNTHESIS’ report generation.

Keywords: webapp, report, template, PDF, DOCX, XLSX, XML, XQuery, JSON

3

Περίληψη

Η δημιουργία αναφορών βάσει προτύπων είναι μία τεχνική παραγωγής αναφορών που

αξιοποιεί αρχεία προτύπων για εξαγωγή αναφορών. Κάθε πρότυπο αναφοράς παρέχει μια

προσαρμοσμένη μορφοποίηση και διαμόρφωση, επιτρέποντας μεγαλύτερη ευελιξία στη διάταξη

των παραγόμενων αναφορών. Συστήματα βασιζόμενα σε οντολογίες δεν έχουν μία γενική λύση

ώστε να εξάγουν τα δεδομένα τους σε αναφορές. Χρήστες του βασισμένου σε οντολογίες

συστήματος SYNTHESIS είχαν απαίτηση για αυτοματοποιημένη εξαγωγή αναφορών των

δεδομένων του συστήματος σε καθορισμένη και διακριτή μορφοποίηση που προέρχεται από κάθε

τύπο αναφοράς. Η αυτοματοποιημένη εξαγωγή αυτών των αναφορών θα μπορούσε να βελτιώσει

δραστικά την αποδοτικότητα της ανάλυσης αποτελεσμάτων. Μία δικτυακή γεννήτρια αναφορών

βασισμένη σε πρότυπα σχεδιάστηκε και υλοποιήθηκε. Η αναπτυγμένη εφαρμογή παράγει και

χρησιμοποιεί αρχεία προτύπων σε μορφή JSON, όπου το καθένα περιέχει την δομή μίας

οντολογίας όπως αυτή βρίσκεται στη βάση δεδομένων του συστήματος, παράλληλα με όλα τα

δεδομένα μορφοποιήσεων για το πρότυπο. Οι χρήστες μπορούν να δημιουργήσουν καινούρια

πρότυπα ή να επεξεργαστούν τα υπάρχοντα ώστε να ταιριάζουν τη διάταξη μιας μορφής

αναφορών. Εφόσον ένα πρότυπο έχει δημιουργηθεί και επεξεργαστεί, μπορεί να χρησιμοποιηθεί

ώστε να εξάγει τα δεδομένα από ένα ή περισσότερα στιγμιότυπα (instances) κάποιας οντολογίας

σε μορφή αναφοράς, συνδυάζοντας τα δεδομένα κάθε επιλεγμένου στιγμιότυπου οντολογίας με

τη δομή και μορφοποίηση του επιλεγμένου προτύπου. Η παραγόμενη αναφορά προεπισκοπείται

και μπορεί να κατέβει στην επιθυμητή μορφή αρχείου. Η αναπτυγμένη εφαρμογή δοκιμάστηκε σε

μία δοκιμαστική εγκατάσταση και καθορίστηκε ότι πληροί τις αρχικές προϋποθέσεις για την

παραγωγή αναφορών του SYNTHESIS.

Keywords: webapp, report, template, PDF, DOCX, XLSX, XML, XQuery, JSON

4

Table of Contents

Acknowledgements .. 1

Abstract.. 2

Περίληψη ... 3

List of Acronyms .. 6

List of Figures .. 7

1. Introduction .. 8

 Motivation ... 8

 Purpose .. 8

 Initial Problem Statement.. 8

 Outline .. 9

2. Pre-Analysis - State of The Art ...10

 Templatized Report Engines ...10

 Non-Templatized Report Engines ..10

 Final Problem Statement ...11

3. Methodology ...12

 Method ..12

4. Analysis ..13

 Software requirements ..13

 Report Generators ...13

 Templatized Reporting ..13

 WYSIWYG Applications ..14

 XML and XPath ...14

 SYNTHESIS System Overview..15

5. Design ..16

 Software Libraries Overview ..16

 Libraries licensing ..19

 System Architecture ..20

 Preliminary Use Cases ..21

 User Interface Mockups and Workflow ..24

5.5.1. Template Creation Workflow ..24

5.5.2. Template Editing Workflow ..27

5.5.3. Report Generation Workflow ..30

5

6. Implementation ...33

 Software Libraries ...33

 Interaction with the system ..34

6.2.1. SYNTHESIS System Interaction ..34

6.2.2. Template Creation & Manipulation ...36

6.2.3. Report Generation ...42

7. Conclusion ..45

 Future Work...45

Bibliography ..46

6

List of Acronyms

UI User Interaction

UX User Experience

CSS Cascading Style Sheets

HTML Hypertext Markup Language

JS JavaScript

JSON JavaScript Object Notation

RTC Report Template Creator

PDF Portable Document Format

XML eXtensible Markup Language

SQL Structured Query Language

DOM Document Object Model

7

List of Figures

Figure 1: The Engineering Design Process .. 12

Figure 2: The materialize logo .. 16

Figure 3: Demonstration of the Materialize library .. 17

Figure 4: Demo page of html-docx-js .. 17

Figure 5: The JSZip demo page, with a complete code example ... 18

Figure 6: LZMA-JS demo page with output .. 19

Figure 7: Component Diagram of RTC ... 20

Figure 8: SYNTHESIS Use Case diagram .. 21

Figure 9: RTC Use Case diagram ... 22

Figure 10: Template Creation Diagram ... 24

Figure 11: Mockup depicting the "Report Templates” submenu entry .. 25

Figure 12: Mockup depicting the "report Templates" submenu .. 25

Figure 13: Mockup depicting the form presented when creating a new template 26

Figure 14: Mockup depicting the dropdown list populated .. 26

Figure 15: Template Editing Diagram ... 27

Figure 16: Mockup depicting the editing mode of RTC ... 28

Figure 17: Mockup depicting a finalized updated report template, ready to be saved 28

Figure 18: Mockup depicting the Text Formatting menu of RTC .. 29

Figure 19: Mockup depicting the image component formatting menu .. 29

Figure 20: Report Generation Diagram ... 30

Figure 21: Mockup depicting an ontology's submenu, with the "Export Report" button 31

Figure 22: Mockup depicting the report export form ... 31

Figure 23: Mockup depicting the dropdown list of templates, populated .. 32

Figure 24: Mockup depicting the file grouping selection for multiple exports ... 32

Figure 25: The SYNTHESIS index page ... 34

Figure 26: The "Report Templates" submenu in SYNTHESIS ... 35

Figure 27: The report export form ... 35

Figure 28: The ontology dropdown ... 35

Figure 29: The template creation’s confirmation message ... 36

Figure 30: Selecting a template for editing in the "Report Templates” submenu 36

Figure 31: A newly created (empty) report template ... 37

Figure 32: Search functionality.. 37

Figure 33: The text formatting menu ... 38

Figure 34: The image formatting menu ... 38

Figure 35: Template header image ... 39

Figure 36: A linking button in the field tree .. 40

Figure 37: The linking form ... 40

Figure 38: Example of an inserted link .. 41

Figure 39: Preview of a customized template ... 41

Figure 40: Selecting an ontology instance for report export ... 42

Figure 41: The report export form ... 43

Figure 42: The final report, previewed in RTC in export mode ... 44

Snippet 1: LZMA compression snippet, returning a compressed string as a promise................................ 39

Snippet 2: Decompressing and inserting another template as link ... 40

file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176849
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176850
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176851
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176852
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176853
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176854
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176855
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176856
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176857
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176858
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176859
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176860
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176861
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176862
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176863
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176864
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176866
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176867
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176868
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176869
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176870
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176871
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176872
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176873
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176875
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176874
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176876
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176877
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176878
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176879
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176880
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176881
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176882
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176883
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176884
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176885
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176886
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176887
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176888
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176889
file:///D:/_Downloads/Thesis%20Files/Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63176890
file:///D:/_Downloads/Thesis%20Files/%5bFINAL%5d%20Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63761260
file:///D:/_Downloads/Thesis%20Files/%5bFINAL%5d%20Thesis%20Draft%20-%20Manos%20Paterakis.docx%23_Toc63761261

8

1.Introduction

Ontology based data structures are complicated and introduce difficulties when it comes

to gathering results. A severe lack of open-source report generators for ontology-based data has

been observed. This project describes the development of an open source templatized report

generator for ontology data stored in a structured markup language such as XML or JSON, that

aims to be simple and intuitive to operate and implement in other projects.

 Motivation

Ontologies have become a standard for storing research data in the recent years. A

system which benefits from the use of ontologies is SYNTHESIS [1], an open-source application

that provides functions for storing, editing, and traversing scientific data, developed by ICS-

FORTH. The SYNTHESIS user base required the stored data to be exported in the form of reports

in order to optimize the result analysis process. This requirement was supported by the desire to

create a generic solution, and not one solely for the SYNTHESIS system. Such a solution would

be beneficial for a vastly larger number of potential users.

Motive for this project was the need for generating reports in SYNTHESIS using a generic

solution in order to benefit a larger user base, a task which had no clear candidate software for

this requirement.

 Purpose

The main purpose of this project is to create an easy to operate open-source tool which

can generate reports of ontology data, either individually or en-mass, by utilizing templates. The

resulting program aims to help researchers export the desired data in a quick and simple manner,

making result gathering faster and more efficient. The program was purposely developed as open

source to provide as much inclusion as possible by removing the concerns of licensing.

 Initial Problem Statement

Exporting data from ontology-based systems is vital for evaluating results and coming to

conclusions. It can however prove a highly complicated task. A report generator for ontology data

was required, but no open-source solution was available to fulfill this requirement. Although

templatized report generators already exist, they are either not designed for ontology data, not

open source, or neither of the two.

9

 Outline

The starting chapter of this project is Introduction where the motivation, purposes and

initial problem statement are defined. Chapter 2 includes the background research that was

conducted and a finalized problem statement, which was redefined based on that research.

Chapter 3 describes the methodology that was followed to complete this project. Chapter 4

contains the project requirements, for both software libraries, and mechanisms. Chapter 5

describes the design process leading to the final user interface. Chapter 6 presents the

implementation which derived from the design process and resulted in the final program.

10

2. Pre-Analysis - State of The Art

Reporting engines are software tools designed to generate report files based on existing

data. Exporting existing data in varying formats and file types is one of the main reasons reporting

engines are implemented in applications with large databases.

 Templatized Report Engines

Templatized report engines allow for faster and more uniform report creation, by following

a template’s formatting and basing all exported reports on the same style principles.

iText [2] is a widely used, largely open-source PDF generating library written in Java. iText

focuses on industrial use and provides top-of-the-line pdf creation functionalities. iText also

provides a complete template editor, iText DITO [3], which focuses on accessibility, as it requires

minimal coding knowledge. While iText is powerful and includes a lot of features, it is licensed

under AGPL, with iText DITO being completely closed-source, both of which severely limit the

potential user base.

DynamicReports [4] is an open-source Java reporting library based on JasperReports. It

allows to create dynamic report designs and it does not need a visual report designer. Instead, it

uses JRXML template files, which include the formatting and each report can be generated based

on a JRXML file. DynamicReports supports PDF, DOCX, and EXCEL files. DynamicReports is

licensed under LGPL-3.0.

 Non-Templatized Report Engines

Non-templatized report engines can generate reports manually, without the use of

templates. That makes them less ideal than templatized report engines for exporting files from a

database, but their advantages lie in more specific functionalities.

jsPDF [5] is an open-source report engine written in JavaScript. The fact that it is a

JavaScript library can lead to a better user experience and implementation, as there is no need

for any backend implementation; all of jsPDF’s usage is taking place on the front end. jsPDF is

licensed under the MIT License.

html2pdf [6] is an open-source JavaScript library that converts HTML files (alongside their

CSS counterparts) or elements into PDF reports, using html2canvas [7] and jsPDF. The resulting

PDF files are perfect copies of the given HTML files, but they are converted to images and hence

contain no text elements. This makes the library perfect for 1:1 exporting of HTML files, though it

is problematic for extracting readable data from the final reports. Html2pdf is licensed under the

MIT License.

11

Openhtmltopdf [8] is an open-source Java library for rendering XML/XHTML or HTML files

using CSS 2.1 for layout and formatting, outputting to PDF or images. This library allows for the

creation of almost perfect PDF clones of HTML files, by converting each HTML element into a

respective PDF one, keeping the text nature of the element including all the original formatting

and style. Openhtmltopdf is licensed under LGPL.

 Final Problem Statement

Data evaluation for ontology-based systems requires exporting the stored data in a

readable form for the according experts to analyze them and come to conclusions. Exporting

ontology data to readable forms and more specifically reports is achieved through the use of

report engines. Report engines are tools designed to generate reports based on a given dataset

using a predefined report format.

After evaluating the most prominent templatized and non-templatized report engines it is

evident that none of the existing tools provide the functionality required to export ontology-based

data to reports. Therefore, a report generator needs to be developed which will enable ontology

data to be seamlessly exported to reports. Since templatized report generation is faster, simpler,

and more efficient when it comes to creating similarly-styled reports, the resulting program should

also be a templatized report generator, allowing users to create and use different templates. The

developed tool can be based on an existing report generator, granted the latter would have to be

heavily modified or used simply as a library in a separate, standalone program. A combination of

report engines could be incorporated for this project in order to support multiple report generating

functions and file formats for better compatibility.

Problem Statement:

“How can an open source templatized report generator be developed to assist with ontology data

evaluation?”

12

3. Methodology

Computer programs are developed based on source code generation, accompanied by

multiple code-oriented assisting, reporting and evaluation tools. Software Development

Methodology describes the development process and how it is managed, to help assure that a

project can be completed when expected, without exceeding the time (and therefore monetary)

budget. This methodology can differ between projects, depending on the type of the final program,

its usage, the tools utilized for its development and more.

The development method that was selected for this project is the Engineering Design

Process [9]. This method is based on a series of steps that describe the development process

leading up to the creation of a new product or system. This process is not considered linear,

engineers often move back to previous steps, and reiterate them in order to reach a final solution.

 Method

The Engineering Design Process steps are as follows:

1. Define the problem

2. Do background research

3. Redefine the problem

4. Specify requirements

5. Brainstorm solutions, choose the best solution and develop it

6. Build a prototype

7. Test and redesign

8. Communicate results

The aforementioned steps were followed to research, design, implement and improve this

project. Initially the problem was defined and specified. This allowed background research to be

conducted in order to get a deeper understanding of the challenges and demands of the project,

followed by redefining the problem according to the newly gathered information. Next, the project

requirements were specified. A plethora of solutions were brainstormed and presented based on

the final problem definition and the project requirements. The best solution was selected, and an

early design was created, describing all the possible different workflows. A prototype program

was developed based on the design. The prototype was evaluated and redesigned multiple times

based on developer, designer and user feedback, until it reached a satisfying form.

Figure 1: The Engineering Design Process

13

4. Analysis

 Software requirements

The resulting program was required to be an open-source Java Servlet project, compatible

with XQuery/XPath, more specifically eXist-db. The project had to be distributed as a Maven

package, while being fully compatible with the EUPL-1.2 license.

Apache Maven [10] is a software project management and comprehension tool. Based on

the concept of a project object model (POM), Maven can manage a project's build, reporting and

documentation from a central piece of information. A Maven engine is required for acquiring the

necessary libraries, even when the program’s basic source code is provided.

Java Servlets are web-oriented Java classes which are used for handling the program’s

API, hence the Java runtime is another requirement. The Java servlets provide a way for the

webapp to transfer data to and from the database.

eXist-db [11] is an open-source xml-based database, which supports XQuery and XPath.

It is being used on the SYNTHESIS system and is implemented for this program as well, in a

manner similar to that of SYNTHESIS in order to provide total compatibility.

An HTTP server is also required for deploying the webapp on the web, or locally.

 Report Generators

Report generators [12] are computer programs that allow users to directly retrieve all the

data they want from a database, spreadsheet, XML stream, or any other source, and view it online

or export it to different document formats such as Excel, PDF, and CSV that satisfy a specific

human readership. Report generators are using report engines to generate a report based on a

given dataset.

Report generation eliminates the need for manually creating reports, lowering the risk of

errors, and allowing better data analysis. It uses a report generator, a tool that requires defining

the report, including the type of data to retrieve, the location of data, and the method of displaying

it. This allows users to create reports based on existing information (for example, a database)

with the given report definition and combining them with the report layout to produce the report.

 Templatized Reporting

Templatized reporting [13] is a report generation method that utilizes user-created

templates to output the final report(s) based on the template’s properties. Instead of using a static

style, layout and data, user-created templates can be customized to suit specific purposes.

Furthermore, templates can be used to create reports for similar purposes using different datasets

for each report.

14

To fulfill a report generation request, a template must be first created and selected,

alongside some basic data, then the template is combined with data to create the final report. To

create the template, a report (template) creation request is created by the user, and a basic

template is created by the system based on the received request and its identified data. A data

generator will be later used to generate the final output based on the created template.

To output the final report, a report output request is created, where a template and some basic

parameters are selected by the user. The report generator then retrieves the template and all the

required data based on the given parameters, to finally insert all the data into the template. The

report is at this point ready for output, that can be either displaying the final result on the user’s

screen or saving it as a file.

 WYSIWYG Applications

WYSIWYG stands for “what you see is what you get”, which is a programming principle

where the output is derived from the preview, becoming a near perfect clone of the latter. This

principle is used in applications that implement an editing environment similar (or identical) to the

finished product, which leads to users essentially creating the end result itself through the UI.

Examples of WYSIWYG applications are text editors like Google Docs [14] which can export files

identical to the ones previewed in the editing environment, but also assisted/automated web page

engines like WordPress [15], where users can edit the final page layout and design through the

editing UI.

 XML and XPath

XML [16] is a software-independent markup language used for storing and transporting

data. XML is also extensible (XML is an acronym for eXtensible Markup Language) as it supports

custom tags and attributes instead of predefined ones. Its software independence is achieved

using the features mentioned above but also because XML stores data in plain text format.

Consequently, ontology-derived XML Schemas can be used to create XML mappings to maintain

a compliance between an ontology and a generated XML document. Additionally, XML allows for

easier expansions or upgrades to new operating systems and applications without data loss, while

also providing interoperability between different systems.

XPath is a syntax for defining parts of an XML document. It is used to traverse XML

documents and select nodes or node-sets within the XML structure. More specifically, it can be

used to navigate through elements and attributes in an XML document through path expressions.

The path expressions used by XPath are very similar to the expressions used in traditional

computer file systems. XPath can be used in the most widely used programming languages such

as JavaScript, Java, XML Schema and PHP. XPath is a major element in the XSLT standard and

XQuery.

XML datasets can be implemented either in raw XML files or in the form of databases that

use XPath (and XQuery) for data gathering requests. This is a type of NO-SQL database, where

there is no need for using SQL, instead the database can rely solely on the XML and XPath

structure and mechanisms.

15

 SYNTHESIS System Overview

SYNTHESIS is a management information system developed by the Center of Cultural

Informatics of ICS-FORTH in collaboration with multiple cultural institutions worldwide. It employs

the CIDOC CRM for designing the data structures which are stored in XML (and XSD) files.

CIDOC CRM is an ontology standard, recommended as the most appropriate for documenting

cultural entities. The XML files derived from CIDOC CRM stored are managed with eXist-db.

The system’s initial goal was to provide the administration and scientific documentation

procedures, while supporting multiple languages, data exchange and interoperability. Later

implementations added e-services designed to inform target audiences (such as teachers,

researchers, schoolchildren, and the general public) about different monuments, historical

persons, events etc. This cultural information is stored in the SYNTHESIS database as XML

documents that are described by XML schema. Users with the role of editor can modify the

content of these documents using an XML editor, while lower privilege users can only view the

same content.

Additionally SYNTHESIS supports a generic workflow for documenting cultural entities,

allows the creation, editing, navigation and retrieval of documents, supports data migration,

document translation, import from and export to XML/RDF and associating documents of the

primary cultural entities with documents of additional secondary entities.

16

5. Design

In this project a web application (web app) was designed to provide the functions of a

complete report generator. The design was purposely devised to be compatible with ontology-

based data, both in its appearance and function.

Since each ontology has a determined structure (in the form of XML schema), a template

mechanism was proposed in order to provide similar report types for varying datasets of the same

ontology (or ontologies). This mechanism uses the application’s report template creator to create

and edit each report template; this is why the program was given the name Report Template

Creator or RTC. Templates are used for customizing the ontology’s components and eventually

help generate the final reports based on this customization.

The application is intended to function on any ontology-based system, it is therefore

purposely designed as a plugin. As the purpose of this report is to support report generating for

the SYNTHESIS system, the template ontologies are designed as ontologies of the SYNTHESIS

system itself.

It is important to note that the initial design mockups were illustrated by Corina Doerr, who

is a member of the SYNTHESIS team, although her involvement is outside the scope of this

paper.

 Software Libraries Overview

Software libraries were carefully selected after thorough examination of each library’s

function(s) and comparisons of all suitable libraries against each other. Every candidate library

had to be open source, as per the requirements, and fully licensed with a compatible EUPL

license. The selected libraries are the following:

● Materialize [17] [18]: Materialize is an open-source JS/CSS library which implements the

Material Design as suggested by Google. It was selected for this project because it

provides the required Material Design Look and Feel, while being very simple to

implement.

The Materialize website states: “By utilizing elements and principles of Material Design,

we were able to create a framework that incorporates components and animations that

provide more feedback to users. Additionally, a single underlying responsive system

across all platforms allow for a more unified user experience.”

Figure 2: The materialize logo

17

● Html-docx-js [19]: Open-source JavaScript library which provides the ability to convert

HTML data in combination with CSS to DOCX format that is used by Microsoft Word. It

was selected for this project due to its front-end nature, which nullifies the need for a

backend implementation, while providing all the required features for DOCX file creation.

The GitHub page states: “This is a very small library that is capable of converting HTML

documents to DOCX format that is used by Microsoft Word 2007 and onward. It manages

to perform the conversion in the browser by using a feature called 'altchunks'. In a nutshell,

it allows embedding content in a different markup language. We are using MHT document

to ship the embedded content to Word as it allows to handle images. After Word opens

such file, it converts the external content to Word Processing ML (this is how the markup

language of DOCX files is called) and replaces the reference.”

Figure 4: Demonstration of the Materialize library

Figure 3: Demo page of html-docx-js

18

● Openhtmltopdf: Open-source library written in pure Java, used for rendering HTML5 and

outputting PDF files. It was selected for this project due to its HTML support, alongside its

ability to create text-based PDF files (instead of creating PDFs of images). While it has a

complicated implementation, it provides all the required features for PDF file creation as

defined in the Analysis phase.

The GitHub page states: “An HTML to PDF library for the JVM. Based on Flying Saucer

and Apache PDF-BOX 2. With SVG image support. Now also with accessible PDF

support”. “Open HTML to PDF is a pure-Java library for rendering arbitrary well-formed

XML/XHTML (and even HTML5) using CSS 2.1 for layout and formatting, outputting to

PDF or images.”

● ExcelJS [20]: An open-source JavaScript library which provides the manipulation and

creation of XLSX files that are used by Microsoft Excel. While not being as simple to

implement as the other libraries used in this project, it was selected thanks to its front-end

nature while providing all the required features for XLSX file creation.

The GitHub page states: “Read, manipulate and write spreadsheet data and styles to

XLSX and JSON. Reverse engineered from Excel spreadsheet files as a project”. The

GitHub page includes an extensive API documentation, which was another factor that led

to its selection.

● JSZip [21]: An open-source JavaScript library for managing ZIP files. It was selected due

to its very easy implementation and front-end nature for creating file packages. As shown

in the following figure, all the required commands occupy just a few lines.

The GitHub page states: “A library for creating, reading and editing .zip files with

JavaScript, with a lovely and simple API”.

Figure 5: The JSZip demo page, with a complete code example

19

● LZMA-JS [22]: Open-source JavaScript library which is used for compressing and

decompressing data by implementing the Lempel-Ziv-Markov (LZMA) chain compression

algorithm. It was selected to help lower the file size of report template files, while being

easy to implement. LZMA-JS is the easiest library used in this project in terms of

implementation, with a total of just two lines for compressing or decompressing an item.

The GitHub page states: “LZMA-JS is a JavaScript implementation of the Lempel-Ziv-

Markov (LZMA) chain compression algorithm.”

 Libraries licensing

As mentioned in the Analysis phase, the required license for the project is EUPL. The

latest EUPL revision is v1.2 [23], hence all the third-party libraries used in this project are required

to be compatible with EUPL-1.2 [24]. Each library’s license is listed below:

● Materialize, Html-docx-js, ExcelJS, LZMA-JS, JSZip*: MIT License

● JSZip*: GNU General Public License version 3 (GPL-3) [25]

● Openhtmltopdf: GNU Lesser General Public License version 2.1 or later (LGPL-2.1)

*JSZip is dual-licensed under MIT and GPL-3, allowing for the use of either license in third party

distributions.

Figure 6: LZMA-JS demo page with output

20

 System Architecture

RTC is comprised of two main components, its frontend and backend. Each one has

different functionality but there is intercommunication between them. Besides its own

components, RTC uses two external components, a file repository, and a database, in this case

eXist-db. Finally, it used by another external component, SYNTHESIS.

In more detail, RTC’s frontend component is responsible for:

• All user interactions, through the incorporation of its user interface, within which a user

can use all RTC functionalities.

• RTC’s Edit Mode, which offers the user all the necessary tools to edit and enrich the

report template files to suit their needs

• RTC’s Export Mode, which prepares a report’s appropriate data and files according to

the selected template and ontology instance, by using the backend functions.

Furthermore, it contains the ability to generate DOCX and XLSX files on the client-side,

provides the ability for exporting the final generated reports and finally downloading

them. The downloads can be either archives in the form of ZIP files, or individual

downloads.

RTC’s backend component is responsible for:

• Providing a communication layer between RTC and the database/file repository. To

avoid cluttering code, the frontend never queries the database directly, instead it always

uses the backend to transfer data to and from the database.

Figure 7: Component Diagram of RTC

21

• Generating PDF files, which is part of the backend solely due to a library limitation, as

there was no satisfactory client-side library for generating PDF files. These files are

requested by the frontend and then sent over for exporting.

Finally, SYNTHESIS is incorporating RTC for generating reports of ontologies from its

own database and file repository. The templates, data and files are stored on SYNTHESIS’

database and file repository, which must be the same used in RTC through its configuration.

This way, the intercommunication between the two systems can be seamless, and all that is

needed is for SYNTHESIS to call RTC through its own toolbox.

 Preliminary Use Cases

The diagram above depicts the use cases that take place in the SYNTHESIS system in

order to generate a report, starting with the creation of a new template. There are three distinct

actors that can partake in this process, the Administrator, the Editor, and the User. The

Administrator and the Editor have higher privileges than the User, allowing them to perform more

critical actions in the process.

The actions performed by the Administrator and Editor are, in sequential order:

i. Logging in to SYNTHESIS. This is a requirement for all the other actions and for all the

users since these actions are taking place in the SYNTHESIS system.

ii. Creating a new report template instance.

Figure 8: SYNTHESIS Use Case diagram

22

a. By extension, filling the report template creation form with all the necessary

metadata, including the report template type.

iii. Using the report template in order to export a report. This will cause the RTC window to

load in export mode.

a. By extension, filling the report export form with all the necessary metadata,

including the report template type and a specific report template instance.

iv. Deleting an existing report template instance from the system. This will cause the instance

to be removed from the database and the template will no longer be available to use for

generating reports.

The User role is limited to only using existing report template instances that the

Administrator and/or Editor have created (as described in iii), in order to export reports using those

templates.

The diagram above depicts the use cases that take place in RTC in order to generate a

report. These actions are triggered after an action from the previous use-case diagram has been

completed. The same three actors from the previous diagram are involved in this process, the

Administrator, the Editor, and the User.

Figure 9: RTC Use Case diagram

23

The actions performed by the Administrator and Editor are, in sequential order:

i. Same as previously, logging in to SYNTHESIS. This is once again a requirement for all

the other actions and for all the users since these actions are based on actions taking

place in SYNTHESIS.

ii. Editing a report template instance. This action involves RTC loading in edit mode, allowing

the customization and stylization of a template. By extension, the edit mode allows a user

to:

a. Change the formatting of an element group. An element group includes all the

elements of the same type, such as field headers. Every element in each group is

updated at the same time when a custom formatting is applied to the element

group.

b. Select which fields are enabled. Enabled fields are the only ones visible in all the

previews as well as the final report generation.

c. Change the enabled fields’ order. The customized order includes all elements,

enabled or not. The re-ordering can only be done between elements of the same

depth because the nesting order must be kept intact for XQuery to function

properly.

iii. Viewing or previewing a report template. This allows the users to see a preview of the

edited template using sample data, in order to provide a representative demonstration

similar to the final reports that will be generated using the same template. All the

customizations and stylizations are included and being applied in this preview.

a. The preview function allows users to download the previewed report in their

desired file format, such as PDF or DOCX. When a template is being previewed

using sample data, the downloaded file will contain the same sample data.

iv. Generating final reports using report template instances. This is the most important part

of the process, where the final report is generated by RTC based on the given template

and a set of selected ontology instances. This action is a result of action iii from the

previous diagram. After generating the final report, RTC displays a preview of the

generated report.

a. Same as in iii, the preview function allows users to download the generated report

in their desired file format, such as PDF, DOCX or XLSX. XLSX is used when the

report was generated using a Table type template. After downloading the file, the

scenarios are completed, as the report export has, at this point, finished.

In this use-case, the User role is limited to only viewing, previewing, and using existing

report template instances that the Administrator and/or Editor have edited in order to generate

reports using those templates (as described in ii and iii).

24

 User Interface Mockups and Workflow

5.5.1. Template Creation Workflow

The following workflow diagrams depict the sequence of all the user actions required to

create and edit templates, as well as using them for generating reports.

The above diagram depicts the template creation workflow. This workflow is essentially

external to RTC, as the user completes it solely through SYNTHESIS. However, it is still an

integral part of RTC’s function as presented in this project, hence it is included as such.

First, a user logs in to the SYNTHESIS system using their credentials. After logging in,

they are presented with the index page of SYNTHESIS, from which they select the “Report

Templates” submenu. This action will cause the “Report Templates” submenu to appear, from

where the user clicks on the “+” icon, indicating their desire to create a new report template.

Subsequently a form is presented, where they must fill out the required fields and then select the

template’s type. Finally, they submit the form after which the template is created by SYNTHESIS

according to the user provided data and are given the appropriate privileges.

Figure 10: Template Creation Diagram

25

Part of the SYNTHESIS index page, with updated entries to accommodate report

templates. The user clicks on the “Report Templates” button and gets redirected to the following

figure, the “Report Templates” submenu.

The user is presented with the “Report Templates” submenu and can create a new

Template by clicking on the “+” icon placed at the top left.

Figure 11: Mockup depicting the "Report Templates” submenu entry

Figure 12: Mockup depicting the "report Templates" submenu

26

The user is shown this form right after clicking the “+” icon from the previous figure. At this

point they must fill out this form by selecting an entry from the dropdown, entering a string text as

the title, and finally determining the template’s type. After that they press “OK” to create the

template.

The dropdown list from the previous mockup, visible and populated with data. All available

ontologies of the SYNTHESIS database are visible in this dropdown.

Figure 13: Mockup depicting the form presented when creating a new template

Figure 14: Mockup depicting the dropdown list populated

27

5.5.2. Template Editing Workflow

The above diagram depicts the template editing workflow. Same as previously, the user

logs in to the SYNTHESIS system and then they select the “Report Templates” submenu. From

within the submenu, they select the template instance they want to edit from the presented list

and click the edit icon. This causes the RTC window to appear in edit mode, with the selected

template loaded and ready for editing.

After the RTC window is loaded, the user can apply any desired changes to the template;

these changes will be presented in more detail in the following figures. After all desired changes

have been completed and the template has reached a satisfactory state, the user clicks on the

“Save Template” button which will cause all the applied changes are saved in the SYNTHESIS

database.

Figure 15: Template Editing Diagram

28

The main screen of RTC’s editing mode. From here the user can select the items they

desire to enable, change positions of each item, edit the template’s data such as the title, change

text formatting, preview changes, and add external entities.

Figure 17: Mockup depicting a finalized updated report template, ready to be saved

After applying all the desired changes, the user must click on the “Save Template” button

which will cause the template file to be updated on the SYNTHESIS database.

Figure 16: Mockup depicting the editing mode of RTC

29

The text formatting menu can be toggled between open and closed by clicking the “Text

Formatting” button. In this mockup a basic set of text formatting features is included, such as font,

font size and font style, grouped by Component category. The grouping indicates which

component the current formatting selection is being applied to. After selecting the desired values,

the user can apply the changes by clicking the “Submit changes” button.

An image component can have specific formatting which is edited through a specialized

menu. This menu can be toggled between visible and invisible by clicking the “Format Image”

button, where some basic image formatting tools are presented, such as image size, position,

and text wrapping. The changes can be dismissed by clicking “Cancel” or applied by clicking

“Save Changes”.

Figure 18: Mockup depicting the Text Formatting menu of RTC

Figure 19: Mockup depicting the image component formatting menu

30

5.5.3. Report Generation Workflow

The above diagram depicts the template generation workflow. First, the user logs in to the

SYNTHESIS system. They then select an ontology submenu from the ontologies list. Following,

they select an instance from the presented list and click the report export button. Subsequently a

form is presented, where they select the desired template type. This causes a list of compatible

(with the selected ontology) templates to be loaded, and the user selects the desired template

from the list. Finally, the user submits their request for a report generation.

Submitting the form for a report generation will automatically cause the report preview to

load in a new window of RTC in export mode. Depending on the template type, the user can either

click the format file they prefer, causing the according download to start or wait for the download

to start automatically. The former concerns Single type templates and reports, while the latter

concerns Table type templates and reports. In both cases, this concludes the report generation

workflow as the files have at this point been generated, exported, and downloaded.

Figure 20: Report Generation Diagram

31

After entering an ontology’s submenu (in the figure above, that ontology is “Persons”), the

user selects an instance from the submenu’s list and then clicks the “Export Report” button

highlighted in the figure to start the process of exporting a report.

After clicking the “Report Export” button, the user is presented with the report export form,

in which he selects the report type and template they desire from the dropdown. Finally, they must

click “OK” to continue with the report export process.

Figure 21: Mockup depicting an ontology's submenu, with the "Export Report" button

Figure 22: Mockup depicting the report export form

32

The populated dropdown list contains all templates compatible with the currently selected

ontology. The list presents some helpful information, alongside a link to a preview (presented in

this figure as a link button) which the user can click to be redirected to the template’s preview.

As shown in the above figure, the highlighted selection on the right is only visible when

the user has selected more than one instances from the ontology’s submenu, indicating they

desire to export multiple files in a grouped manner. This extra selection solves the issue of

grouping by having the user select their preferable way of grouping. A table report will simply

output all the data in a table form (in this case an XSLX file), a “Single File, Individual” report will

simply merge all the instance data into one file, and finally a “Multiple Files, Individual” report will

include all instances, each in their own individual report file, packaged together in an archive (in

this case, a ZIP file).

Figure 23: Mockup depicting the dropdown list of templates, populated

Figure 24: Mockup depicting the file grouping selection for multiple exports

33

6. Implementation

The program of this project is implemented based on Java for the back-end and the typical

web languages for the front end, specifically HTML, JavaScript, and CSS. The back-end provides

the web application with data from the database while also allowing the web application to update

and expand the database. It also provides the PDF-generating mechanism. The front-end part for

the program is responsible for the UI and UX, providing the necessary interaction with the user

as laid out in the Design phase.

The front-end is composed of two different modes, one for managing templates and one

for providing the finalized reports by previewing them and allowing them to be downloaded. The

former is RTC’s “Edit Mode” while the latter is the latter is its “Export Mode”.

 Software Libraries

● Openhtmltopdf is used in this program for generating PDF files using HTML and CSS. The

program’s front-end creates a complete HTML file for the generated report, combines it

with the according CSS file and sends the HTML to the Openhtmltopdf servlet, where it

gets converted into a PDF file. Following that, the PDF is sent back to the front-end where

it gets downloaded.

● Materialize is used in this program for providing the Material Design look and feel for the

front-end component of the program. Most of the components are either Materialize

components or customized versions of them.

● LZMA-JS is used in this program for compressing and decompressing the report template

data. When saving a report template file from the front-end, the program compresses the

created template using LZMA-JS before sending it to the back-end. Similarly, when a

report template file is loaded, provided it has been compressed, the program

decompresses it before accessing it.

● Html-docx-js is used in this program for creating the DOCX downloadable files of the

generated reports. The program’s front-end creates a complete HTML file for the

generated report, and directly converts it to a DOCX file using Html-docx-js without the

need of a back-end implementation. After the conversion has been completed, the DOCX

file is downloaded.

● ExcelJS is used in this program for creating the XLSX downloadable files of the generated

reports. The program’s front end creates an XLSX file from scratch, using ExcelJS, based

on the final report’s data (there is no conversion taking place) and the file is immediately

downloaded.

● JSZip is used in this program for packing multiple generated reports into downloadable

ZIP files. The program’s front end first gathers all the files that need to be downloaded,

each individually. Following that, the files are packed using JSZip into a single ZIP file and

the ZIP file is instantly downloaded.

34

 Interaction with the system

The creation and manipulation of the report templates is done on the RTC component of

the program, using which the user can load, edit, and update templates. Since the templates are

treated as entities of the SYNTHESIS system, creating and selecting templates, as well as

exporting reports using existing templates are actions managed by SYNTHESIS itself. This

program is being used as a plugin-in for SYNTHESIS and is called from the latter after the user

has requested a relevant action. The implementation of the user’s interaction with the system is

carried out exactly as described in subsection 7.3 of the design process.

6.2.1. SYNTHESIS System Interaction

Initially, having logged in to the system, the administrator can see a list of all the available

templates by selecting the “Report Templates” menu in the “Administration” section. The

redirected page allows the administrator to select any of the existing templates for either deletion

or editing. There is also the ability to create a new template, based on any of the existing

ontologies from the database.

If the administrator chooses to create a new template, a new page will be loaded, where

they are asked to select one of the ontologies from the system’s database. Alongside that, the

administrator is asked to select a template type and add the appropriate complimentary

information about the template. After doing so, and submitting the form, the system creates a new

Report Template ontology instance, which includes the default template file for the selected

ontology. Following that, the administrator is redirected to the “Report Templates” page they were

previously on where the created ontology can now be found in the list of created templates.

Figure 25: The SYNTHESIS index page

35

The finalized layout of the “Report Templates” submenu is almost identical to the design

mockups. The “Create New” button, indicated by the “+” symbol, is highlighted in this figure. All

available templates are also presented in the list below the buttons.

In the template creation form the user is asked to

enter a template title, a description, select the ontology for

the template to be based on and choose the type of the

template between table and individual. The ontology

selection dropdown contains all the available ontologies that

are currently stored in the SYNTHESIS database. After filling

the form with the required data, the user must click on the

“Finish” button to confirm their selection. This final layout is

again, very similar to the mockups both in terms of design

and functionality.
Figure 28: The ontology dropdown

Figure 27: The "Report Templates" submenu in SYNTHESIS

Figure 26: The report export form

36

After clicking “Finish” on the template creation form, the user is presented with a

confirmation message, informing them of the successful creation of the new template and the new

template’s assigned Id.

In case the user wants to edit a template, they must select an existing template instance

from the list in the “Report Templates” submenu, and then click on the edit button, highlighted in

the figure above. SYNTHESIS will consequently create a new window of RTC, with the selected

template loaded.

6.2.2. Template Creation & Manipulation

The report template instance creation mechanism is part of the SYNTHESIS system, as

described in 6.3.1. The default templates that the system includes in the report template instances

are created by the program’s CreateJson mechanism, which creates a JSON report template for

a given ontology based on its default structure from the database. In this process all the template

fields are purposely left disabled, hence for these templates to be usable, the user must edit them

and enable any of the template fields.

Manipulation or editing of a template is a process managed completely by RTC. After RTC

loads a template for editing as described in 6.2.1, the user can apply changes to the template,

save it or show a preview of the current template format.

All the formatting styles, as well as the header and footer images are stored in the

template’s JSON file. This ensures that a template JSON file is a complete standalone structure.

Figure 30: Selecting a template for editing in the "Report Templates” submenu

Figure 29: The template creation’s confirmation message

37

Each template is essentially empty on creation, as shown in the figure above. This means

that for any template to be usable, a user must edit them and enable at least one of the fields.

This way, the template will output at least one data point. The only data that is inserted

automatically is the metadata such the template title. All new template instances are based or the

premade default template JSONs. This decision was not made in the initial design phase, instead

it was implemented after testing the program. Initially there were specified fields pre-enabled but

that quickly deemed unusable and was replaced with the final functionality.

Search functionality snippet, using element classes
to filter results.

The template field tree on the left includes a search function, to quickly find a desired

element. When the search yields a field that has children, its children will be visible by expanding

the parent. This was also added after the initial design phase, instead it was added implemented

on user feedback.

… // Hide items that don't match

dataTreeElements.forEach(function (elem, index) {

 let elemText =

elem.querySelector('span').textContent.toLowerCase();

 if (elemText.includes(inputString.toLowerCase())) {

 elem.classList.remove('filter-out');

 } else {

 elem.classList.add('filter-out');

 }

}); …

Figure 32: A newly created (empty) report template

Figure 31: Search functionality

38

The text formatting menu allows for any individual element or element group to be stylized

with a plethora of options. The changes are applied by clicking the “Submit” button as shown in

the figure. While keeping the same basic design it had in the design phase, there were many

additions, namely in the variety of options and the inclusion of individual element formatting

instead of only group formatting.

The image formatting menu is used on image elements to customize some image-specific

properties, such as size and position. While the basic layout is kept the same from the design

phase, some options like text wrapping were removed after they were proved unusable. Instead,

each image element occupies a vertical space on its own.

Figure 33: The text formatting menu

Figure 34: The image formatting menu

39

Loading header image snippet. The image data is loaded from the Style json and then directly

added to the DOM

Users can add (and remove) their own images as headers on each template, and they are

resized to fit the page accordingly. The images appear in PDF and DOCX formats but are, as

expected, missing in XSLX formats as they are not needed. This is another function that was

added after user feedback. The header images are stored in the JSON that represents the

template itself, in order to make the template file standalone and portable. To compensate for that

extra size, a compression/decompression is used when saving and loading data, respectively.

The following snippet shows how this is achieved in the source code; the referenced function can

also be found in Appendix 1.

…

// Set styles from presets

applyStylesFromPresets: function () {

editableComponents.forEach(function (component, index) {...[9 lines]});

if (stylePresets['Header'] && stylePresets['Header'].length > 0) {

_this.addHeaderImage(stylePresets['Header']);

}

},

…

Figure 35: Template header image

… // Compress string with LZMA

compressString: function (inputString, compressionType) {

var promisedReturn = new Promise(function (resolve, reject) {

lzmaWorker.compress(inputString, compressionType, function

on_compress_complete(result) {…[3 Lines]});

 return promisedReturn;

} …

Snippet 1: LZMA compression, returning a compressed string as a promise

40

Linking templates allows users to add existing templates in a new template, without having

to readjust the enabled fields and order from scratch. Instead, the linked template is added as-is.

First, the user must click the linking icon of the field they want to insert a link in (shown in the

figure above in the “Person” element). This will cause a modal window to be displayed, where the

user must select an existing template that fits the criteria of the field they are trying to link. This is

done through a dropdown list in the modal window, where all the appropriate template instances

can be found. After selecting the template they desire, the user must click the “OK” button and

the link will be inserted. The following snippet shows the sequence of this action in the source

code; the referenced function can also be found in Appendix 1.

The linking functionality required a major redesign in RTC’s mechanisms as it was

requested after user feedback, but the scope of the changes was too large to implement in a

simple manner. While most post-design changes needed small adjustments, this was by far the

most demanding one in terms of sensible re-design decisions.

Figure 36: A linking button in the field tree Figure 37: The linking form

… // Insert another template from link

insertTemplateFromLink: function (json) {

…

 let jsonString = _this.convertStringToArray(xhr.responseText)[0];

 _this.decompressString(jsonString).then(function (decompressedString) {

…

 var json = JSON.parse(decompressedString);

 _this.insertTemplateDataFromJson(json, 'linked-element');

 });

…

};

xhr.send(encodeURI('id=' + selectedTemplate + '&type=ReportTemplate&xpath=Data'));

}, …

Snippet 2: Decompressing and inserting another template as link

41

Following the previous figures, the link is added in the appropriate position in the template,

with all its customizations intact, bar the text formatting, which is overridden by the current

template’s formatting. The link field (in this case “Person” following “Interpreted by”) is disabled,

and hence grayed out as shown in the above figure, to avoid field duplication.

Clicking the “Preview Template” button in RTC’s edit mode, will display a preview of the

template in its current customization. Since this functionality is part of edit mode, the data shown

in the preview is sample data. Through the preview screen the user can also download the shown

preview in either PDF or DOCX format. Finally, they can return to the previous screen (the main

screen of RTC’s edit mode) by clicking the “Exit” button, shown in the top left. This functionality

follows its initial design from the design phase in functionality, but since the presentation was not

solidified in that phase, some adjustments had to be made.

Figure 38: Example of an inserted link

Figure 39: Preview of a customized template

42

6.2.3. Report Generation

Generating a final report involves the merging of a report template and the one or more

ontology instances’ data from the database. The user must complete this action through

SYNTHESIS, by selecting one or more instances for report export. After going through the

template selection form, RTC is tasked with generating the final report. First, the report template

file is loaded, and the report elements are inserted in the page with their appropriate formatting.

Subsequently, the ontology instance data are loaded from the database and replacing the

template elements appropriately, thus creating the finalized report.

The generated reports can be downloaded through a preview window provided by the

program. Individual-type reports are previewed in their final form in the preview window, and the

user can choose the format in which to download the report; either DOCX or PDF. Table-type

reports are previewed with sample data, and the download is done automatically in the XLSX

format.

Most of the report generation is done on the client-side, as determined in the initial design

phase, with the only integral parts of the back-end being the PDF generation and the eXist-db

query mechanisms, both of which are implemented as Java Servlets. As mentioned in the design

phase, the final program’s front-end uses the back-end for all calls to the database, which indeed

resulted in cleaner and more efficient code for the whole project.

Having logged into the SYNTHESIS system, the user must click the desired ontology’s

button to enter the according submenu. Once they enter in the submenu, a list with all existing

instances will appear, from which they must select one (or more) that they desire to export in

report form. After completing the selection, they must click on the “Report Export” button as

highlighted in the figure above. This will cause the report export form to appear, which will be

detailed next. The report export selection process remains the same as it was in the initial design

phase.

Figure 40: Selecting an ontology instance for report export

43

Overview of all the different RTC
modes, including the report export
form’s View mode. These are
essentially different views

The report export form contains two main selections, the desired template, and the type

of report to export. The template selection is achieved using a dropdown element, similar in

functionality and appearance to the ontology selection demonstrated previously. The dropdown

is populated only with the templates that are compatible with the selected ontology. The report

type selection determines how the reports (specifically when there are more than one selected)

will be packaged or merged. A preview of the currently selected report is previewed in the lower

part of the form, where RTC is loaded in view mode. View mode is similar to edit mode’s preview

functionality, where the template is shown using sample data, with the exception that this mode

lacks all other UI elements of edit mode, as well as the file download buttons.

“Single File” reports are reports merged into one DOCX or PDF file, while “Multiple Files”

reports are different individual DOCX or PDF files packaged into a single ZIP archive. Lastly, there

is a template preview, with RTC loaded in view mode, to provide a quick overview of the currently

selected template.

After the user has filled the form with their desired values, they must click on the “Finish”

button to exit the form and move to the final export process. After doing so, RTC will load in export

mode with all the appropriate data as those are selected by the user.

…

// Set view mode UI

setExportModeUI: function () {…},

// Set view mode UI

setViewModeUI: function () {…},

// Set preview mode UI

setPreviewModeUI: function () {…},

// Set table UI

setTableUI: function () {…},

…

Figure 41: The report export form

44

The functionality of the report form was carried over from the initial design phase with

almost no changes, except that the preview is now shown in the form automatically instead of the

user having to open a new window to see the preview.

After clicking the “Finish” button in the report export form, RTC is loaded in export mode,

which shows a preview of the final report. In more detail, RTC in this mode first loads the template

and inserts only the appropriate data (skipping the disabled fields), alongside their formatting and

custom stylizations. Second, after all the template fields have been loaded, RTC uses the back-

end to query the database and gather the appropriate data for each field. The final step is merging

the database data with the pre-loaded template data, which results in the final report form and

concludes the report generation.

Having the final report generated, RTC loads the preview and presents it to the user. This

preview is an exact copy of the downloadable report, as it is this final HTML data, combined with

their CSS styling that are sent to the DOCX and PDF generators, essentially converting the HTML

and CSS into a document file. To download the final document files, the user must click on their

desired format’s icon, colorized red with a PDF icon for PDF, and blue with a document icon for

DOCX, as shown in the figure above.

In case the user selected “Multiple Reports” in the previous selection, RTC will load only

the first selected ontology instance to present in its preview. When the user clicks on a format

icon to download the file(s), RTC will generate all reports in the background, which is still a client-

side operation, pack them in a ZIP archive and start the download of the generated ZIP file.

The final report export was not clearly specified in the initial design phase, instead it

required some extensive re-designs to implement properly. After multiple iterations of the final

report generation and export design, the presented process was the most satisfactory, and hence

was implemented.

Figure 42: The final report, previewed in RTC in export mode

45

7. Conclusion

In an effort to increase the efficiency of analyzing results of ontology-based systems, and

more specifically the SYNTHESIS system, a requirement for exporting existing data in the form

of reports in different formatting styles arose, with each formatting style representing a specific

report type. Through the analysis process it was clear that a templatized report generator system

was needed to fulfill the task.

A templatized report engine and user interface was developed, called Report Template

Creator, whose functionality would fit the nature of ontologies. Each ontology’s structure is

converted to a JSON object alongside all the custom formatting, which is stored as a template

JSON file. Template files can be edited by users through RTC’s edit mode. For exporting reports,

the template file is used in combination with the ontology data from the eXist database, creating

the final report(s), previewing the generated document(s) to the user, and allowing them to

download the generated file(s) in their desired format, using RTC’s export mode.

In conclusion, the original goal of exporting ontology data in the form of customized reports

was achieved, evident by a successful testing phase. The use of templatized reporting and the

creation of a templatized report engine provided the required functionality for generating reports

in a workflow that fulfills the original requirements.

 Future Work

The generic nature of the tool’s design allows it to be used on vastly different

configurations. As a result, it will be implemented as a manual page provider, where each section

of the manual is a specific template field and the same template(s) will be used to present different

instructions, using RTC’s view mode.

More specific and customized options are already requested and will be added, such as

grids consisting of images and multiple uploaded files (a SYNTHESIS feature) support. While

SYNTHESIS support is built in, implementing RTC in a different system would be a

straightforward task. The tool’s design takes into consideration the fact that certain changes would

be required in order to function in a completely different system and these changes are purposely

simple to be implemented.

46

Bibliography

[1] D. Angelakis, C. Bekiari, M. Doerr and F. Kragianni, "Building Comprehensive

Management Systems for Cultural – Historical Information," in Proceedings of the

42nd Annual Conference on Computer Applications and Quantitative Methods in

Archaeology, Rethymno, Crete, Greece, 2015.

[2] iText, "iText: The Leading PDF Platform For Developers," iText Group nv,

Inc., 2021. [Online]. Available: itextpdf.com/en. [Accessed 25 1 2021].

[3] iText, "iText DITO®," iText Group nv, Inc, 2021. [Online]. Available:

itextpdf.com/en/products/itext-dito. [Accessed 25 1 2021].

[4] J. Moxter and E. Njeru, "Dynamicreports/Dynamicreports: Java reporting

library for creating dynamic report designs at runtime," 9 10 2020. [Online]. Available:

github.com/dynamicreports/dynamicreports. [Accessed 25 1 2021].

[5] J. Hall, "MrRio/jsPDF: Client-side JavaScript PDF generation for everyone.,"

1 25 2021. [Online]. Available: github.com/MrRio/jsPDF. [Accessed 1 25 2021].

[6] E. Koopmans, "eKoopmans/html2pdf: Client-side HTML-to-PDF rendering

using pure JS," 19 2 2020. [Online]. Available: github.com/eKoopmans/html2pdf.js.

[Accessed 25 1 2021].

[7] N. v. Hertzen, "Niklasvh/html2canvas: Screenshots with JavaScript," 29 12

2020. [Online]. Available: github.com/niklasvh/html2canvas. [Accessed 25 1 2021].

[8] Danfickle, "Danfickle/Openhtmltopdf: An HTML to PDF library for the JVM.,"

20 1 2021. [Online]. Available: github.com/danfickle/openhtmltopdf. [Accessed 25 1

2021].

[9] Science Buddies, "The Engineering Design Process," 2021. [Online].

Available: https://www.sciencebuddies.org/science-fair-projects/engineering-

design-process/engineering-design-process-steps. [Accessed 25 1 2021].

[10] The Apache Software Foundation, "Maven - Welcome to Apache Maven,"

The Apache Software Foundation, 2021. [Online]. Available: maven.apache.org/.

[Accessed 25 1 2021].

[11] A. Retter, L. Windauer, T. Krebs, J. Turner and W. Meier, "eXist-db - The

Open Source Native XML Database," eXist Solutions, 2018. [Online]. Available:

exist-db.org. [Accessed 25 1 2021].

[12] G. Baltusevicius, "What Is a Report Generator," Whatagraph B.V. ©, 22 5

2020. [Online]. Available: whatagraph.com/blog/articles/report-generator. [Accessed

25 1 2021].

[13] R. J. Burke and B. A. Reinhart, "Templatized Reporting Engine". Texas, USA

Patent US20130054284A1, 26 11 2011.

[14] Google, "Google Docs: Free Online Documents for Personal Use," Google

LLC, 2021. [Online]. Available: www.google.com/docs/about/. [Accessed 25 1 2021].

47

[15] WordPress, "WordPress Editor," WordPress, 17 8 2020. [Online]. Available:

wordpress.org/support/article/wordpress-editor/. [Accessed 25 1 2021].

[16] W3Schools, "XML Introduction," W3Schools, 2021. [Online]. Available:

www.w3schools.com/xml/xml_whatis.asp. [Accessed 25 1 2021].

[17] Materialize, "Materialize: A modern responsive front-end framework based

on Material Design," 2021. [Online]. Available: materializecss.com. [Accessed 25 1

2021].

[18] A. Wang, "Dogfalo/materialize: Materialize, a CSS Framework based on

Material Design," 1 6 2020. [Online]. Available: github.com/Dogfalo/materialize.

[Accessed 25 1 2021].

[19] Evidence Prime, "EvidencePrime/Html-Docx-Js: Converts HTML documents

to DOCX in the browser," Evidence Prime, 17 5 2016. [Online]. Available:

github.com/evidenceprime/html-docx-js. [Accessed 25 1 2021].

[20] A. Wang, A. Lubbe and S. Pawel, "ExcelJS/ExcelJS: Excel Workbook

Manager," 30 11 2020. [Online]. Available: github.com/exceljs/exceljs. [Accessed 25

1 2021].

[21] S. Knightley, "Stuk/JSZip: Create, read and edit .zip files with Javascript," 16

1 2021. [Online]. Available: github.com/Stuk/jszip. [Accessed 25 1 2021].

[22] LZMA-JS, "LZMA-JS/LZMA-JS: A JavaScript implementation of the Lempel-

Ziv-Markov (LZMA) chain compression algorithm," 19 11 2017. [Online]. Available:

github.com/LZMA-JS/LZMA-JS. [Accessed 25 1 2021].

[23] The European Commission, "EUROPEAN UNION PUBLIC LICENCE v. 1.2,"

18 5 2017. [Online]. Available: https://joinup.ec.europa.eu/sites/default/files/custom-

page/attachment/eupl_v1.2_en.pdf. [Accessed 25 1 2021].

[24] Joinup Europa, "Matrix of EUPL compatible open source licences," Joinup

Europa, 2021. [Online]. Available: https://joinup.ec.europa.eu/collection/eupl/matrix-

eupl-compatible-open-source-licences. [Accessed 25 1 2021].

[25] Free Software Foundation, Inc, "GNU Affero General Public License," Free

Software Foundation, Inc, 19 11 2007. [Online]. Available:

www.gnu.org/licenses/agpl-3.0.en.html. [Accessed 25 1 2021].

48

Appendix

1: Code

ReportTemplateCreator.js outline

// @author Manos Paterakis

var reportTemplateCreator = {

…

// Initialize components

init: async function () {},

// Set language strings

setLanguageStrings: async function (lang) {},

// Initialize data tree search funcitons

initDataTreeSearch: function () {},

// Filter Search Tree

filterSearchTree: function (inputString) {},

// Adjust Sidebar Height

adjustSidebarHeight: function () {},

// Set report date to today

setDateToToday: function () {},

// Set template properties

setTemplateProperties: function () {},

// Edit template name

editTemplateTitle: function () {},

// Set new template name

setTemplateTitle: function (title) {},

// Load template metadata

loadMetadata: function () {},

// Load templates

loadTemplates: function () {},

49

// Adjust template select

adjustTemplateSelect: function () {},

// Remove hidden elements from JSON

removeHiddenElementsFromJson: function (json) {},

// Insert another template from link

insertTemplateFromLink: function (json) {},

// Insert another json from link

insertTemplateDataFromJson: function (json, _optCustomClass) {},

// Remove all template link

removeTemplateLinks: function () {},

// Remove a template link

removeTemplateLink: function (link) {},

// Check whether json is empty

checkIfEmpty: function (json) {},

// Set view mode UI

setExportModeUI: function () {},

// Set view mode UI

setViewModeUI: function () {},

// Set preview mode UI

setPreviewModeUI: function () {},

// Set table UI

setTableUI: function () {},

// Check and hide settings sections

checkAndHideSettingsSections: function () {},

// Add a header image

// https://stackoverflow.com/a/40971885

addHeaderImage: function (_optImageData) {},

// Remove header image

removeHeaderImage() {},

50

// Export helper function

exportHelperFunction: function () {},

// Preview template

previewTemplate: function () {},

// Exit preview mode

exitPreview: function () {},

// Create a table preview

createTablePreview: function (excel) {},

// Generate standalone HTML from current page

generateHTML: async function (exportFileType, optInputHTML) {},

// Automatic pagination

automaticPagination: function (html) {},

// Load db data on current page

loadDbData: function (optInputHTML, optId) {},

// Clone children elements

cloneChildrenElements: function (parentElem, idValue, idIndex, _optPrevIdValue) {},

// Create file URL

getFileURL: function (filename, id, type) {},

// Download sample file

downloadSample: function () {},

// Create PDF file

createPDF: async function () {},

// Create docx file

createDocx: function () {},

// Create excel file

createExcel: function (_returnFileOpt, _sampleDataOpt) {},

// Convert string array to string[] object

convertStringToArray: function (inputString) {},

// Save template

51

saveTemplate: function () {},

// Create JSON file from current elements

createJsonFromElements: function (elementOpt) {},

// Get children json

createChildrenJson: function (parent) {},

// Set styles from presets

applyStylesFromPresets: function () {},

// Set style presets

setStylePresets: function (presets) {},

// Get Style json component

createJsonStyle: function (_optSelectedElement) {},

// Get element's style in a single string

getElementStyleString: function (element) {},

// Get inner elements' style in an array

getInnerElementsStyleArray: function (element) {},

// Force close inputs

forceCloseInputs: function () {},

// Indent children elements

indentChildrenElements: function (_optParent, _optIndent) {},

// Unindent children elements

unindentChildrenElements: function () {},

// Show children paths

showChildrenPaths: function () {},

// Hide children paths

hideChildrenPaths: function () {},

// Apply style to selected element

setElementStyle: function () {},

// Create an element

createElement: function (elementType, elementTitle, elementValue, indentOpt,

parentOpt) {},

52

// Load style for a specific element from JSON

loadElementStyle: function (element, styleJson) {},

// Force important styling on elements

forceImportantStyle: function (elem) {},

// Hide parents with no children

hideEmptyParents: function () {},

// Get element name from title object

getNameFromTitle: function (title) {},

// Get element entity from title object

getEntityFromTitle: function (title) {},

// Get page break from title object

getPageBreakFromTitle: function (title) {},

// Get exclusion from title object

getExclusionFromTitle: function (title) {},

// Get style from title object

getStyleFromTitle: function (title) {},

// Create page-break button

createPagebreakButton: function (parentRow) {},

// Toggle pagebreak

togglePageBreak: function (element) {},

// Create element customization button

createCustomizationButton: function () {},

// Set a custom item for formatting

setCustomElementFormatting: function (element) {},

// Handle custom element switch

adjustCustomElementSwitch: function () {},

// Create table elements

createTableElement: function (elementType, elementName, elementValue) {},

// Create label-changing HTML

53

createLabelChangingHTML: function (elementName, htmlName, row,

_opt_buttonsArray) {},

// Crate a toolbox

createToolbox: function (indent, elementType) {},

// Adjust buttons inside toolbox

adjustToolbox: function (element) {},

// Adjust image settings toolbox

adjustImageToolbox: function (element) {},

// Adjust list settings toolbox

adjustListToolbox: function (element) {},

// Move element up

moveUp: function (element) {},

// Move element down

moveDown: function (element) {},

// Open image formatting settings

openImageFormatting: function (element, buttonFormatting) {},

// Open list formatting settings

openListFormatting: function (element, listFormatting) {},

// Merge image with other element

mergeWithImage: function (element) {},

// Align image

alignImage: function (element, option) {},

// Set image size

setImageSize: function (element, option) {},

// Set list type

setListType: function (element, option) {},

// Align list text

alignList: function (element, option) {},

// Separate image from other element

separateFromImage: function (element) {},

54

// Swap elements with visual transition

swapWithTransition: function (element1, element2, overrideTransition) {},

// Show template properties edit menu

showTemplatePropertiesEditMenu: function () {},

// Toggle text formatting tools

toggleTextFormattingTools: function (_optSelectedItem, _optForceSelectedItem) {},

// Disable required formating toolbox buttons

disableRequiredButtons: function () {},

// Enable required formating toolbox buttons

enableRequiredButtons: function (selectedElem) {},

// Update components dropdown list

updateComponentsDropdown: function (_optSelectedItem, _optForceSelectedItem) {},

// Fade out an element

fadeOut: function (element, callback) {},

// Fade in an element

fadeIn: function (element, callback) {},

// Create elements from JSON

createElementsFromJson: function (json, indentOpt, parentOpt) {},

// Add listeners on children of element

addChildrenListeners: function (element) {},

// Highlight element

highlightElement: function (element, color, transitionDuration, borderRadius) {},

// Stop highlighting element

stopHighlightingElement: function (element) {},

// Show element and child elements

showTreeElements: function (element) {},

// Hide element

hideTreeElements: function (element) {},

55

// Show element

showTreeElement: function (element) {},

// Hide element and child elements

hideTreeElement: function (element) {},

// Show element and child elements

enableTreeElements: function (element) {},

// Hide element and child elements

disableTreeElements: function (element) {},

// Toggle tree element visibility

toggleTreeBranchVisibility: function (element) {},

// Toggle tree element state

toggleTreeBranchState: function (element) {},

// Get tree element name

getTreeElementName: function (element) {},

// Show element in preview

showElement: function (element) {},

// Hide element in preview

hideElement: function (element) {},

// Create data tree from given data

createDataTree: function (data, depth, parent, isArrayData) {},

// Select teamplate for link

selectLink: function (element) {},

// Update tree view

updateDataTree: function () {},

// Collapse empty parents

collapseEmptyTreeParents: function () {},

// https://stackoverflow.com/a/722732

// Traverse JSON

traverseJson: function (jsonObj, func, depth, parentOpt) {},

// Get next element of same indent

56

getNextOfSameIndent: function (element) {},

// Get previous element of same indent

getPreviousOfSameIndent: function (element) {},

// Get children

getChildren: function (element) {},

// Get direct children

getDirectChildren: function (element) {},

// Get children in sequential order

getChildrenSequential: function (element) {},

// https://stackoverflow.com/a/901144

// Get url params

getParameterByName: function (name, url) {},

// Convert image data to base64

convertImagesToBase64: function (html) {},

// Compress string with LZMA

compressString: function (inputString, compressionType) {},

// Decompress string with LZMA

decompressString: function (inputString) {},

// Parse array string and return an Array object

parseArray: function (input) {},

// TESTING

loadTestData: function () {}

…

};

