
HELLENIC MEDITERRANEAN UNIVERSITY

Department of Electrical and Computer Engineering

Curriculum Informatics Engineering T.I.

BACHELOR’S THESIS

VNF Validation over OpenMANO Orchestrator

Anastasios Giannoulis

(TP3919)

Supervisor: Dr. Evangelos Markakis

Heraklion, Crete 2021

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 2

Acknowledgments
I would first like to thank my supervisor, Dr. Evangelos Markakis for the excellent cooperation

and communication all this time. His expertise was invaluable in formulating the research

questions and methodology. I want to thank you also for your patient support and for all of the

opportunities I was given to further my research.

I would also like to thank my tutors, Dr. Evangelos Pallis and Yannis Nikoloudakis, PhD

Candidate, for their valuable guidance during my studies and work at Pasiphae Lab.

In addition, I would like to thank Nikolaos Zotos who believed in me, gave me a chance, and

provided me with the hardware material for the installation of my dissertation.

I also take this opportunity to express a deep sense of gratitude to my mentor and colleague MSc

George Alexiou, for his cordial support, valuable information, and guidance through all these

years of cooperation and studying. You provided me with knowledge and tools that I needed to

choose the right direction and successfully complete my dissertation. You are a role model for

me, and I really admire you.

I am extremely grateful to my parents for their love, caring and sacrifices for educating and

preparing me for my future. Your encouragement when the times got rough are much

appreciated and duly noted. I could never ask for more support than you have already given me,

and I deeply admire you for that.

I would also like to thank my friends and my little brother who provided stimulating discussions

as well as happy distractions to rest my mind outside of my research.

Finally, I could not have completed this dissertation without the support of my life partner

Artemisia Symeonidou who was the main reason I managed to complete my thesis. Thank you

for giving me strength every day with your smile.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 3

1. Abstract

 With the rapid growth of cloud computing these days, the need for better management of

hardware resources, network services and orchestration in a cloud infrastructure is necessary.

Network Function Virtualization (NFV) concept specializes in Management and Orchestration

(MANO) of a Virtual Infrastructure Manager (VIM) by turning network functions from devoted

hardware to software known as Virtual Network Functions (VNF). Further research shows that the

challenge is to create a solid and valid VNF to offer a full-scale network communication services

on the top of the NFV layer and avoid collisions and errors with the hardware layer.

The scope of Thesis elaborates on the study, design, and implementation of a VNF validation

service. The aim is to enable VNF vendors to validate their visualized network functions, to make

sure a particular VNF can function properly within the exact client environment. Open-Source

MANO is the main NFV Management and Orchestration software that we will use, the Openstack

software will be our VIM and the validation procedure will be on our custom Angular dashboard.

The platform also provides a VNF Descriptor (VNFD) Generator which is responsible for

creating a fully functional VNF based on the European Telecommunications Standards Institute

(ETSI) standards, avoiding time-consuming and error-prone tasks that result from creating

manually a VNFD. The Validation of the VNF will activated with just a push of a button, and the

automated procedure will be in three parts: (a) the first validation of the descriptor build in Yet

Another Next Generation (YANG) Yaml Data Model and based on a structure that follows the

VNF ETSI standards, for more complex style of checking validity, (b) the second validation of the

VNF initialization, deployment and connection with the public network of the VIM, and (c) the

validation through the expose and display of the VNF interfaces and connection points of the

Network Service (NS). The user also will be able to monitor in real time the successful uploaded

Virtual Display Unit (VDU) attributes and the time of its deployment.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 4

Table of Contents

Acknowledgments ... 2

1. Abstract .. 3

2. Acronyms .. 8

3. Introduction ... 10

4. NFV Fundamentals and Overview of Open Source MANO .. 11

4.1 Network Function Virtualization .. 11

4.2 Open Source MANO .. 12

4.2.1 Network Slices ... 14

4.2.2 Virtual Network Function .. 15

4.2.3 Network Services ... 16

4.2.4 OSM architecture.. 16

5. Technology Enablers ... 18

5.1. Open Source MANO .. 18

5.2. Openstack .. 19

5.3. VirtualBox ... 20

5.4. Google Firebase Real-Time Database .. 21

5.5. NodeJS ... 22

5.6. Angular .. 23

5.7. NG ALAIN .. 23

5.8. Apexcharts .. 23

5.9. Falcon .. 24

5.10. GitLab .. 25

5.11. Cloud-Init .. 25

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 5

6. Architecture and Service Validation Framework .. 26

6.1. Architecture .. 26

6.1.1. Cloud .. 26

6.1.2. Openstack as VIM... 27

6.1.3. Back-End and Falcon as RESTful API ... 27

6.1.4. Open Source MANO ... 28

6.1.5. Validation Dashboard ... 28

6.2. Implementation... 29

6.2.1. Openstack Installation .. 29

6.2.2. Openstack Custom Images ... 30

6.2.3. Automation scripts .. 31

6.3. Framework Use Case ... 33

6.3.1. Failure examples ... 44

7. Evaluation... 47

7.1. Test Case 1 .. 48

7.2. Test Case 2 .. 48

7.3. Test Case 3 .. 50

7.4. Test Case 4 .. 50

7.5. Test Case 5 .. 52

7.6. Test Case 6 .. 53

8. Conclusion .. 54

9. References ... 55

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 6

Table of Figures

Figure 1 NFV architecture. .. 11

Figure 2 OSM interaction with VIMs and VNFs. .. 13

Figure 3 Network Slice descriptor. .. 15

Figure 4 Virtual Network Function descriptor. ... 15

Figure 5 Network Service descriptor... 16

Figure 6 OSM architecture .. 17

Figure 7 Open Source Mano Dashboard. .. 19

Figure 8 Openstack Logo. .. 19

Figure 9 Openstack Dashboard. .. 20

Figure 10 VirtualBox Logo. .. 20

Figure 11 VirtualBox Menu. .. 21

Figure 12 Firebase Logo. ... 21

Figure 13 Firebase Dashboard. ... 22

Figure 14 NodeJS Logo. ... 22

Figure 15 Angular Logo. .. 23

Figure 16 NG-ALAIN Logo. ... 23

Figure 17 Apexcharts Logo. ... 24

Figure 18 Dashboard concept. .. 24

Figure 19 Falcon Logo. .. 24

Figure 20 GitLab Logo. .. 25

Figure 21 GitLab Dashboard. ... 25

Figure 22 Architecture diagram. .. Error! Bookmark not defined.

Figure 23 Dashboard Login page ... 33

Figure 24 Dashboard .. 34

Figure 25 Internal VLD and External Connection Point form fields. .. 34

Figure 26 VNFD form field. .. 35

Figure 27 NSD field form. .. 35

Figure 28 VNF Descriptor file. .. 36

Figure 29 NS Descriptor file. ... 37

Figure 30 Upload and YAML validation process. .. 38

Figure 31 Deployment Stage component. .. 39

Figure 32 Server Log modal. ... 39

Figure 33 VDUs table... 40

Figure 34 Openstack Network Topology. .. 40

Figure 35 Dashboard after the NS deployment. ... 41

Figure 36 Dashboard during the Monitoring. ... 41

Figure 37 Instances Table.. 42

Figure 38 NS Instance (a) .. 42

Figure 39 NS Instance (b) .. 43

Figure 40 VNF Instance ... 43

Figure 41 VDU Instance ... 44

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 7

Figure 42 Failure Example 1. ... 45

Figure 43 Failure Example 2. .. 45

Figure 44 Deployment Stage error 1. .. 46

Figure 45 Server Log of error 1. .. 46

Figure 46 Deployment Stages error 2. .. 47

Figure 47 Server Log of error 2. .. 47

Figure 48 Test Case 1. ... 48

Figure 49 Test Case 2. ... 49

Figure 50 Test Case 2 VNF Instance modal. .. 49

Figure 51 Test Case 3. ... 50

Figure 52 Test case 4. .. 51

Figure 53 Test Case 4 cloud init file. ... 51

Figure 54 Test Case 4 VDUs Table. .. 51

Figure 55 Test Case 4 Apache server running. .. 52

Figure 56 Test Case 5. ... 52

Figure 57 Test Case 6. ... 53

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 8

2. Acronyms

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BaaS Backend as a Service

CEP Complex Event Streaming Systems

CP Connection Point

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

E2E End-to-End

ETSI European Telecommunications Standards Institute

EPC Evolved Packet Core

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

IaaS Infrastructure as a Service

IM Information Model

IoT Internet of Things

IP Internet Protocol

JSON JavaScript Object Notation

LCM Lightweight Life Cycle Manager

LAN Local Area Network

MANO Management and Orchestration

MEC Mobile Edge Computing

NAT Network Address Translation

NBI Northbound Interface

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestration

NPM Node Package Manager

NS Network Service

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 9

NSD Network Service Descriptor

NST Network Slices

NSO Network Service Orchestration

OS Operating System

OSM Open Source MANO

RAM Random Access Memory

REST REpresentational State Transfer

RO Resource Orchestrator

PDU Physical Network Unit

PDUD Physical Network Unit Descriptor

SDN Software Defined Network

TAR Tape Archive

VCA VNF Configuration and Abstraction

VDU Virtual Display Unit

VIM Virtual Infrastructure Manager

VL Virtual Link

VLD Virtual Link Descriptor

VM Virtual Machine

VNF Virtual Network Functions

VNFD Virtual Network Functions Descriptor

WAN Wide Area Network

WSGI Web Server Gateway Interface

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language

YANG Yet Another Next Generation

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 10

3. Introduction

The mass demand and adoption of cloud computing and especially the development of

products within the telecommunication industry led the companies to search for equipment that

specifically meets protocol adherence and strict standards for stability and quality. The classic

method of specifically hardware architecture has worked well in the past but soon had problems

with producing and finding hardware (e.g., Application-Specific Integrated Circuit [ASIC]) that

follows these requirements, resulting in the undoubted creation of large growth cycles and slow

progress [13]. Soon the telecommunication companies turned their attention to NFV network

architecture as the management and the orchestration of it became more efficient and flexible [7].

Network Function Virtualization (NFV) technology has introduced to IT companies a more

flexible and cost effective way to manage and operate their network functions by shifting them

from dedicated hardware to fully functional software network functions called VNFs. Virtual

Network Functions (VNFs) can run at the top of the virtual infrastructure separate or combined as

building blocks to offer a full scale network communication service known as service chaining.

Responsible for the lifecycle management and orchestration in the NFV framework is the MANO

functional block [2] which consists of the VIM, the VNF Manager and the Orchestrator.

The challenge faced by MANO and the VNF vendors is to create a deployment template for

VNFs called VNFD, as well to validate this descriptor and the deployment of the VNF. Virtual

Network Function Descriptor (VNFD) contains all the requirements and the information about the

operational behavior of the VNF such as storage, virtual CPU cores, memory, external connection

points, interfaces, and other network specifications. The whole process of creating a manually

VNF descriptor is time consuming and very prone to errors, making it difficult for VNF vendors

to deploy a VNF for their customers. From the above, it is understood that the Validation of a solid

VNFD and a VNF deployment is necessary.

The thesis presents a solution of this issue by developing a web application in which the VNF

vendors can automate create a VNF Descriptor based on the ETSI standards and then ensure the

validation of their VNF instances through the Open Source MANO that is our main VNF-manager

and orchestrator of the NFV architecture. The rest of this thesis is organized as follows. Section 4

presents the fundamentals of NFV architecture and the overview of Open Source MANO. Section

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 11

5 presents all the technology enablers and tools that were used for the purposes of this research.

Section 6 presents the architecture of the framework as well the implementation. Section 7 presents

the evaluation of the VNFD generator and the VNF Validation. Finally, Section 8 concludes this

thesis achievements and discusses possible future updates for the web application and

consequently around the whole framework.

4. NFV Fundamentals and Overview of Open Source MANO

In this Chapter we will present and analyze the fundamentals of the NFV Architecture and give

an overview of the Open Source MANO (OSM).

4.1 Network Function Virtualization

Virtual Network Function (NFV) as we mentioned earlier is a technology that has aroused

great interest of network providers, researchers and made a huge impact in the market. By

leveraging virtualization technology to consolidate software network functions running on storage,

switches, and servers, NFV managed to significantly reduce Operating Expenses (OPEX) and

Capital Expenses (CAPEX) [9].

Figure 1 NFV architecture.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 12

As we see from Figure 1, NFV architecture consists of 3 parts: (a) Virtual Network Functions

(VNF) is the software blocks which enables the network functions, (b) NFV Infrastructure (NFVI)

that is responsible of passing all the data and provides resources for the running network services,

(c) NFV Management and Orchestration (MANO) which is responsible for building the connection

tunnels between VNFs and orchestrating resources for NFVI.

On the other hand, the NFV MANO consists of 3 parts as well: (a) Virtual Infrastructure

Manager (VIM) that manages controls and the interaction of the VNF with the NFV Infrastructure

(NFVI) storage, compute, and network resources. It also has necessary monitoring and deployment

tools for the virtualization layer, (b) VNF Manager which manages the lifecycle of VNF instances.

It is responsible to initialize, query, update and terminate VNF instances, (c) Orchestrator that

manages the lifecycle of network services, which includes instantiation, policy management,

performance measurement and monitoring.

4.2 Open Source MANO

A lot of popular MANO solutions in recent years have made their appearance like Gohan1,

ONAP2, Cloudify3, Tacker4 etc. but according to [1] the 2 most mature enough orchestrators that

are driven by the ETSI NFV MANO specification are: ONAP and OSM. Both of them are the top

contenders in the telecommunication area, because they successfully cover the sectors of the NFV

Orchestration (NFVO), VNF Manager (VNFM), VIM, Software Defined Network (SDN)

controllers, reference points and security, with ONAP has the leading for bit. Open Source MANO5

(OSM) as the name suggests is an ETSI6 hosted project to develop an Open Source NFV

Management and Orchestration (MANO) software stack aligned with ETSI NFV [10]. Open

Source MANO (OSM) aims for the creation of an End-to-End Network Service Orchestrator (E2E

NSO) that will have the ability to automate and design real network services beyond the

complexity and the difficulty that an environment has [3].

1 https://gohan.cloudwan.io/
2 https://www.onap.org/
3 https://cloudify.co/
4 https://wiki.openstack.org/wiki/Tacker
5 https://osm.etsi.org/
6 https://etsi.org/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 13

The 3 things that must be settle so the OSM be able to work are :(a) each VIM must have an

API endpoint so the OSM can reach it, (b) each VIM must have a management network that can

provide an IP address to VNFs, (c) OSM must be able to reach this management network.

Figure 2 shows the OSM interaction with VIMs and VNFs:

• For the deployment of a VNF the OSM must talk with the VIM.

• OSM should be able to talk to the VNFs deployed in the VIM to execute so-called day-

0, day-1, and day-2 configurations [10].

Figure 2 OSM interaction with VIMs and VNFs.

The range of features and requirements it could give to a VNF through OSM is really a big

plus for it as a MANO. Thomas Dreibholz in [4] could manage to create the SIMULAMET EPC

an opens source VNF for an Evolved Packet Core (EPC) aims to set up a 4G/5G testbed

infrastructure easy and fast. The research on Mobile Edge Computing (MEC) instead of dealing

with the configuration of the EPC and complex features for setting it up, now she/he can simply

combine MEC functionalities with this VNF. But even with an OSM as a mature MANO where a

user can easily deploy a VNF, the critical part is how to build it and validate it, which is the topic

in this thesis.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 14

Open Source MANO (OSM) provides mature NFV technologies for the VNF vendors so they

can easily test and validate their network services, manage, and orchestrate their NFV

Infrastructures both at the production level and at the commercial level7. Thanks to the four key

aspects of the OSM, the minimization of integration efforts is more approachable.

1. A well-structured Information Model8 (IM) which provides automation and modeling

in the complete lifecycle of Network Slices (NST), Network functions and Network

Services from the time that the machine gets ready to be managed (Day-0) to the full

configuration and management of the machine (Day-1, Day-2). The IM is aligned with

ETSI NFV SOL006.

2. A unified Northbound Interface9 (NBI) which puts under control the Network Slices,

the Network Services, and enables the full operation of the system. It is the tool that

offers the functionality of managing the lifecycle of the NSTs and the NSs. Northbound

Interface is based on NFV SOL005.

3. The possibility that the Network Service can extend across the different domains

identified such as the physical/virtual ports in the OSM.

4. The management for the lifecycle of Network Slices, taking the role of Slice manager

and supporting the operations which are.

4.2.1 Network Slices

 Network Slices referred to the overlay of multiple networks on top of a public/shared

network in a VIM. The users can create Network Slices inside the VNF and the NS by provide

their characteristics in the yaml descriptors. Figure 3 shows how 2 network slice subnets are

connected by Virtual Links Descriptors (VLDs) through the connection points of the NSs.

7 https://osm.etsi.org/docs/user-guide/02-osm-architecture-and-functions.html?highlight=architecture
8 https://osm.etsi.org/docs/user-guide/11-osm-im.html
9 https://osm.etsi.org/docs/user-guide/12-osm-nbi.html

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 15

Figure 3 Network Slice descriptor.

4.2.2 Virtual Network Function

 Virtual Network Function is a virtual network service running on top of the virtualization

layer of the NFV and most of the time include virtualized firewalls, Network Address Translation

(NAT), routers, Wide Area Network (WAN) optimization services. The user has the ability to

create multiple connection points to connect the VDU interfaces with the outer of the VNF. Figure

4 shows a VNF with one VDU and 2 connection points. The VDU specifications are 2 vCPU, 4

GB 10 GB Disk, and ‘ubuntu1604’ image.

Figure 4 Virtual Network Function descriptor.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 16

4.2.3 Network Services

 Network Service is the combination of all VNFs and network slices running on the top of

the VIM. Figure 5 shows a NS with 2 VNFS connected to a public network.

Figure 5 Network Service descriptor.

4.2.4 OSM architecture

 As we can see in Figure 6, the OSM consists of 3 main blocks. (a) A Common Database

based on NoSQL with an Object Storage, (b) a Kafka bus, (c) the NBI. Let’s see a small description

about them and understand how all these components work together:

• Kafka bus is used for communications between components, for real time streams of data.

Is used to feed events to Complex Event Streaming Systems (CEP), Internet of Things

(IoT) systems and to provide durability10.

• Common Database is what it is called, a database that stores the objects as the VNF

packages, VNF Instances, Network Services etc.

• NBI as we said earlier is RESTful which admits both YAML/JSON and provides

communications depending on the API calls between the Kafka bus and the Common

Database.

10 https://dzone.com/articles/what-is-kafka

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 17

• Lightweight Life Cycle Manager (LCM) where the 2 containers, VNF Configuration and

Abstracts (VCA), and Resource Orchestrator (RO) are running.

• VCA container is responsible for the configuration and the modeling of a VNF.

• RO container is responsible for the interconnection and the deployment of the VNF and

VDUs in the instance with required resources, interacting with the Openstack controller.

Figure 6 OSM architecture

 Hence, a summary of the OSM architecture is that we have a unified Northbound Interface

for endpoint calls between the Database and the Kafka bus, which in turn pass the real-time stream

of data into the LCM container. VCA container will configure the VNF, and the RO container will

deploy it11.

11 https://www.youtube.com/watch?v=kCFxPV67Adw&t=405s

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 18

5. Technology Enablers

This chapter presents all the technologies that were used in this thesis with a short description.

Also noteworthy is the fact that these technologies are Open-Source and available for free,

especially if someone wants to use them for academic purposes.

5.1. Open Source MANO

Open Source MANO (OSM) is a production quality MANO for NFV [10], hosted by ETSI

open source community, available to everyone for academic and production purposes, VIM

independent, capable for the management and orchestration of all VNFs. OSM is aligned to NFV

Industry Specification Group (ISG) models, while the providing feedback is based on its

implementation experience.

In OSM, Juju Charms can be used for interacting with the Network Functions like configure

and monitor. This is achieved with the combination of YAML Ain’t Markup Language (YAML)

configuration files used to reduce the operations and ease the deployment process for cloud based

services. Vendors such as ZTE12 supports the OSM and other major European network operators

have already adopted OSM for their production environment, like Telefonica13 and British

Telecom14.

12 https://www.zte.com.cn/global/
13 https://www.telefonica.com/en/home
14 https://www.bt.com/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 19

Figure 7 Open Source Mano Dashboard.

5.2. Openstack

Openstack15 is an open source platform, an Infrastructure as a Service (IaaS) framework

that uses virtual resources to manage and build public and private clouds. The tools called

“Projects” include the Openstack platform, handling the computing for the cloud services of

networking, compute, identity, storage, and image services. Openstack can also provide

metrics, a RESTful Application programming Interface (API), and many CLI tools for

debugging and operational procedures.

Figure 8 Openstack Logo.

15 https://www.openstack.org/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 20

Figure 9 Openstack Dashboard.

5.3. VirtualBox

VirtualBox16 is a virtualization product for both home and professional use. The user can create

virtual machines over almost any operating system. Some actions worth mentioning are the

creation of different virtual cards, virtual disks, enabling virtual Dynamic Host Configuration

Protocol (DHCP) for dynamic addressing and exporting custom images of the virtual machines.

Figure 10 VirtualBox Logo.

16 https://www.virtualbox.org/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 21

Figure 11 VirtualBox Menu.

5.4. Google Firebase Real-Time Database

 Google Firebase17 is a Backend as a Service (BaaS). An open-source database system

which uses real-time processing for many functionalities such as the handle of the continuously

changing workloads state. Data is stored in JavaScript Object Notation (JSON) format and that

makes it easy to use by developers and users without the problem of synchronization because

when the data will change every client that is connected to the database will receive a real-time

update of the newest data.

Figure 12 Firebase Logo.

17 https://firebase.google.com/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 22

Figure 13 Firebase Dashboard.

5.5. NodeJS

NodeJS18 is an open-source, back-end, event-driven JavaScript runtime. Its peculiarity is to

handle asynchronous data between the web-browser communication with the server, through

server-side running scripts that help the user to build scalable network applications with dynamic

content changes. Also, the developers can install and run a big variety of modules for their web

applications through the Node Packaged Modules (NPM) manager which is an important and

functional feature of NodeJS.

Figure 14 NodeJS Logo.

18 https://nodejs.org/en/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 23

5.6. Angular

Angular19 is an open-source platform and web application framework using HyperText

Markup Language (HTML) and Typescript for building single-page client applications, created,

and led by the Angular Team at Google20. Angular is written in Typescript and implements

optional and core functionality as a part of TypeScript libraries that the users import into their

apps.

Figure 15 Angular Logo.

5.7. NG ALAIN

NG-ALAIN21 is a front-end framework for creating administration platforms, based on the

design principles developed by Ant Design22. There are a big variety of components, templates,

and design kits to improve the development experience for both the user and the administrator.

Figure 16 NG-ALAIN Logo.

5.8. Apexcharts

Apexcharts23 are modern and interactive open-source charts. Is one of the partners of

FusionCharts24 and together brings a wide range of data visualization components and the

goodness of the open-sources charts.

19 https://angular.io/
20 https://about.google/
21 https://ng-alain.com/en
22 https://ant.design/
23 https://apexcharts.com/
24 https://www.fusioncharts.com/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 24

Figure 17 Apexcharts Logo.

Figure 18 Dashboard concept.

5.9. Falcon

Falcon25 is a Web Server Gateway Interface (WSGI) library for building in very short time

web REpresentational State Transfer (REST) APIs and back-ends for applications in python. The

main difference with the building of other APIs is to avoid the unnecessary abstractions and the

massive number of dependencies. The Falcon web framework embraces the developers to create

a minimal and stable Hypertext Transfer Protocol (HTTP) and REST architectural style.

Figure 19 Falcon Logo.

25 https://falcon.readthedocs.io/en/stable/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 25

5.10. GitLab

GitLab26 is an open-source DevOps platform, that has: (a) powerful collaboration

capabilities like agile planning, version control and code review, (b) Multi-cloud CI/CD that

enables you to deploy anywhere, (c) Built-in security and monitoring right out of the box. GitLab

is based on Git27 protocol and you can self-host it in a container, in your own local server or on a

cloud provider.

Figure 20 GitLab Logo.

Figure 21 GitLab Dashboard.

5.11. Cloud-Init

 Cloud-Init28 is the industry standard multi-distribution method for the initialization of the

instances, based on Python utilities and scripts. It is running during the boot of the VM and will

provide and transfer information from VIMs (e.g., Openstack) to the cloud images or the virtual

machines. It is formatted as ‘config’ and it uses predefined configurations.

26 https://about.gitlab.com/
27 https://git-scm.com/
28 https://cloudinit.readthedocs.io/en/latest/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 26

6. Architecture and Service Validation Framework

In this section, we will analyze the architecture and the implementation of the framework by

providing a fully detailed description for each component.

6.1. Architecture

 Figure 18 shows the high-level architecture of the thesis. It consists of many components

that work together and use a common database in the cloud to share data between them.

Figure 22 Architecture diagram.

6.1.1. Cloud

 The cloud of this architecture is going to be the Google Firebase. Deployed and provided

by Google’s cloud infrastructure, Google Firebase can handle and store data in real time by

multiple tenants connected to it. The data form is in JSON format so it can be easy for a user to

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 27

upload and download the data objects. Also, Google firebase can provide multiple subscriptions

for the enterprises and the developers based on quota limits per month. All the communication

between the validation dashboard, the VDUs and the Open Source Mano will be through Google

Firebase.

6.1.2. Openstack as VIM

 In a server of our network (server2 of Figure 21), we have installed an Openstack as a

hypervisor and Virtual Infrastructure Manager. It will be responsible for the virtualization of the

resources and the hosting of the network services from OSM. The Openstack must be visible to

the server1 that has installed the OSM so the second one can reach the Openstack through the API

endpoints. The 3 things that need to be done so the Openstack can host the Network Services are:

(a) the management network (public) has to be connected to the internet so the Open Source

MANO can reach it, and the VDUs has access to it, (b) the user has to create a Security Group, so

the ingress and egress direction of the data packets be functional for the VDUs, (c) the user has to

upload a custom image if it used by the VNF Descriptor package in OSM.

6.1.3. Back-End and Falcon as RESTful API

 In server 2 there is the Back-End that is built by Falcon which is a web framework written

in Python. Falcon supports some minimal front-end HTTP POST, GET etc. requests such as

authentication, push data in firebase, uploads files that are used by VNF Descriptor in OSM. For

the python interceptor we use the python 3.629 that gives us also the possibility to type the

commands to the shell. The basic modules that we need to install are the firebase module and the

yaml module. The first one will help us to connect with the Firebase and have access to the data

and the second one will help us with the transformation of the yaml files to json. Every call that

we make to retrieve data from the OSM client30 and the basic format of them is yaml. To make

them useful for us and store them in the database we must transform them into JSON objects. The

29 https://python.readthedocs.io/en/stable/tutorial/interpreter.html?highlight=re
30 https://osm.etsi.org/docs/user-guide/10-osm-client-commands-reference.html?highlight=osm%20client

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 28

Back-End is responsible for the smooth use of requests between the Validation Dashboard, the

Open Source MANO, and the Firebase. Below we will see the sequence of commands that must

be executed to better understand it.

6.1.4. Open Source MANO

 As we said earlier Open Source MANO is the orchestrator of the NFV. We installed the

stable and the latest version (EIGHT) of the OSM. The Back-End will communicate with the Open

MANO for the upload of the VNF/NS packages and for the deploy of the instances. The OSM is

responsible for the instantiation and the management of the VNFs and NSs lifecycle. The VCA

container handles the VNF Modeling and Configuration through proxy charms, with attributes and

primitives, such as to give to a VNF an external connection point etc. And on the other side the

RO container is responsible for the deployment and the creation of virtual resources for the VDUs

inside the instances, on the top of the VIMs.

6.1.5. Validation Dashboard

 The Validation Dashboard is the main component of this thesis in which the users will

validate the functionality of their VNFs. It is created by the NG-ALAIN an angular framework

which uses the design principles of the Ant-Design. The Validation process of a VNF consists of

3 things:

• The VNFD generator which is a dynamic build form based on the JSON Schema31

standard. The user can create automatically a VNFD based on the ETSI standards for the

OSM by avoiding making it manually means that it saves time and error avoidance.

• The Validator where the user can upload the VNFD package. The first validation is on

the structure of the file as a yaml, and the second one is on the instantiation and the

deployment of the VNF in VIM.

31 http://json-schema.org/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 29

• The Dashboard where the VNF instance can be displayed if it is successfully deployed.

The user can see every information of the instance, such as the connection points of the

VNF and NS as well as the real time resource’s usage of the VDUs.

6.2. Implementation

 In this chapter, we will analyze all the components we used and installed for this framework

and see the process of the implementation step by step. Furthermore, we will also show a use-case

scenario for better understanding the functionality of the Validator.

The server that we have the Openstack VIM has the following specifications:

• 8 CPU Cores.

• 16 GB of RAM.

• 250 GB of Storage.

• 1 Gbps of Internet connection speed.

The Virtual Machine (VM) that we have the Validation Dashboard, the OSM and the Back-end

has the following specifications:

• 4 vCPU Cores.

• 12 GB of RAM.

• 180 of Storage.

• 1 Gbps of Internet connection speed.

6.2.1. Openstack Installation

 For the Openstack’s installation (Devstack32) we chose the All-in-One installation with a

Single Interface33 and the version of Train. The peculiarity of this installation is that we add the

physical interface of the server to the Open vSwitch bridge and with that way the physical interface

32 https://docs.openstack.org/devstack/latest/
33 https://docs.openstack.org/devstack/rocky/guides/neutron.html

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 30

is capable of transmitting self-service project traffic, management traffic and the Openstack API

traffic. That means the management network (public) of Openstack has the same router and

gateway as the physical network in which it has been deployed, and it can use the same subnet and

DHCP. The only problem here is that if a VM is deployed in the management network there is a

big chance to have an Internet Protocol (IP) address collision with the other physical servers in the

network. As a solution we must create a configuration file before the installation of the Devstack,

to configure the network allocation pool of IPs and choose a range that we will use only for our

testing environment. Final step is to declare the Openstack VIM into the Open Source MANO

Dashboard.

6.2.2. Openstack Custom Images

 Openstack gives you the choice of uploading custom images for the virtual machines. For

the need of this thesis, we create a custom image with the help of the Virtual Box that can extract

custom images in the QCOW2 format. QCOW234 is a storage format for virtual disks supported

by the QEMU processor emulator, ideal for our virtual machines. The operation system that we

use in the custom images is the Ubuntu 16.04 Long Term Support (LTS) and the network interfaces

uses DHCP configuration. The specific version of Ubuntu 16.04 is the Server Minimal. This

version comes with no pre-installed packages from Ubuntu, except the basics for stable and better

functionality. Using a cleaner distribution like this we save a respectable percentage of storage

(2~3 gigabytes) so the custom image is as lite as it can be for the VMs. Before the extraction of

the image, we also installed:

• Cloud-init: is the tool that we use for the configuration of the VM during the boot so we

can install the npm packages that we want and run the Unix commands or the python we

configure at the start. The configuration of the cloud-init is achieved through the dpkg-

reconfigure which is an ubuntu tool.

• NodeJS and NPM Package Manager: for running scripts with JavaScript format.

34 https://people.gnome.org/~markmc/qcow-image-format.html

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 31

• Firebase package and python 3.6: for running python scripts that will export the VMs

characteristics and create a channel of communication between the VM and the Firebase

Database.

6.2.3. Automation scripts

 During the building of the Validation Dashboard the communication between the platform,

the OSM and the Google Firebase was a challenge. As a solution for the creation of the VNFDs,

the configuration, the Validation of them, the upload process etc., we create a pool of automated

python scripts that are ready to run and serve a smooth communication between all these services

and components. The scripts are largely written in Python and few of them in JavaScript and they

are divided into x categories: (a) the validation scripts, (b) the initialization scripts, (c) the upload

and deployment scripts, (d) the VDUs scripts, (e) the monitoring scripts and (f) the deletion scripts.

We are going to give a small description about them:

a) Validation scripts: As we said earlier the users can create custom VNFs and NSs through

the VNFD generator. After this procedure, the yaml descriptor file will be created and

placed in the Desktop folder “VNFD-Generator” of the server. When the user selects the

yaml file before starting the upload, the Validation scripts will be activated and will start

running. With the help of the npm module yaml-validator35 the script will first check if

the file has the property yaml format and it’s not in other forms like JSON, XML etc. After

that, based on the type of the fie (e.g., VNFD, NSD, init) the script will check if the body

of the file follows a specific structure that we have pre-defined based on the ETSI

standards. The structure option gives us the choice of the most complex style of checking

validity about a descriptor so that we can be sure that the user can run/deploy the network

service/function smoothly and without any errors.

b) Initialization scripts: These specific scripts are activated when the user submit the already

successfully validated descriptors. Let’s say that they “clean” in a way the Firebase

Database and create free spaces to welcome the new entities and objects.

c) Upload and Deployment scripts: Upload scripts are different for each file (VNFD, NSD,

init) and they are activated after the user submit the already successfully validated

descriptors. It will start with the packages of the descriptors. Open Source MANO needs

35 https://www.npmjs.com/package/yaml-validator

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 32

the packages to be uploaded in a .tar format so the script will place the yaml files (VNFD

& NSD) in separate folders, with the difference that in the VNFD folder it will also put the

init file inside. After that it will compress each directory to a tar file by running the

command tar -czvf <file-name>.tar.gz . Finally, it will make a request through the OSM

client and will upload the tar files to the OpenMANO Dashboard and to the Firebase

Database as objects. The Deployment script is responsible to create the instance of the NS

though the OSM client, to keep the logs of the instantiation and deployment, and upload

them in the Firebase Database so the Validation Dashboard can retrieve them and display

them to its users. It will also upload the timestamp of the upload event to be calculated later

in the dashboard.

d) VDUs scripts: These scripts located in a GitHub36 repository and are activated by the init

file that will run when a VDU/VM of the VNF will be deployed. The VDU will download

this repository and will start running the script. The first thing that the script will do is to

check if there is an internet connection and after that it will start installing the packages it

needs(e.g., Firebase module). After that, the script will create an object to upload it later in

the Firebase Database that includes some of its attributes like RAM, CPU, Operating

System (OS) etc., and another object which will keep it updated every 30secs and concerns

the percentage consumed by the RAM and the CPUS.

e) Monitoring scripts: They are located at the server1 and are activated by the users if they

choose to monitor the NS and VNF instances in the dashboard. The scripts run OSM client

commands to retrieve the data about the instances in yaml format and convert them into

json objects to upload them to the Firebase. Note that the scripts will run every 30 min to

update the data. The Validation Dashboard using asynchronous data functions which is a

characteristic of Typescript, can easily catch every change from the database that concerns

these data.

f) Deletion scripts: Finally, the deletion scripts will be activated after the user chooses to

delete the Network Service that is running on that time and a sequence of actions will be

executed in order of priority. The python script will use the OSM client and with an API

call will delete the instance of the NS based on its Id (that we saved it in the server logs),

then first it will delete the NS package and last one the VNF package. For the final task,

36 https://github.com/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 33

the script will delete all the objects in the Firebase Database associated with the NS and

stop all the subscription to them so the Validation Dashboard could return to its primary

form.

6.3. Framework Use Case

 The Web Browser that we suggest and tested the Validation Dashboard is the Mozilla

Firefox37. The user enters the dashboard on port 4200 (e.g., 192.168.56.22:4200/#/login) and the

first thing to do is to login(Figure 23) to continue.

Figure 23 Dashboard Login page

 In Figure 24 we can see the full view of Dashboard and observe the menu bar which

consists of 4 tabs: (a) Dashboard, (b) Validator, (c) Instances, (d) VNFD Generator and (e) Info.

As we can see, dashboard contains 2 charts which displays the percentage usage in RAM and

vCPUs of the VDUs, 2 widgets of Openstack and OpenMANO which also displays the percentage

usage of specific attributes in each framework, and 1 widget which displays the VDU, VNF, and

NS instances.

37 https://www.mozilla.org/el/firefox/new/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 34

Figure 24 Dashboard

 If the users want to avoid creating manually a VNFD because it can be an error-prone and

time-consuming task, they must go to the Menu Bar and select the VNFD Generator tab. As we

can see in Figure 25 the users can create internal Virtual Links Descriptors and external connection

points so they can add below at the creation of the VNFD.

Figure 25 Internal VLD and External Connection Point form fields.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 35

Figure 26 VNFD form field.

 In the VNFD form field, a user can give the name and the description of the Descriptor as

well as add up to 2 VDUs. For each VDU, the user except the filling of the form field must select

at least 1 external point so the VNF can be visible and accessible to the outer network

services.(Figure 26). Finally, a NSD must be created in exactly the same way as the VNFD logic.

(Figure 27).

Figure 27 NSD field form.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 36

 After the submission of the VNFD and NSD forms, their data objects will be sent to the

Back-end and a part of the Validation scripts will transform them from json into a yaml format

files and place them in the VNFD-Generator dictionary.

Figure 28 VNF Descriptor file.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 37

Figure 29 NS Descriptor file.

 From the files an experienced user and accustomed to formatting VNF descriptor files can

easily understand that the file describes a network service that includes 1 public network that has

connected to it (from 2 external points), 2 VNFs with 1 VDU each. Then, the user should go to the

Validator tab to check and upload the files that have been created. Each time the user uploads a

file, a validation script runs separately for the specific file to check its validity in terms of its yaml

type and ETSI standards. The results from the validation process can be seen in the YAML file

Validation component. (Figure 30).

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 38

Figure 30 Upload and YAML validation process.

 The upload and deployment status can be seen in the Deployment Stages component right

after the submission of the form field (Figure 31). At that time, the Deployment script activated

and started to communicate with the NBI channel of the OSM. It is responsible to deploy the

network service to the OSM orchestrator as well as display the logs of this deployment such as

the successful messages and the error warnings (Figure 32). In case of an error or a warning the

user can press the “Abort Installation” button to cancel the process.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 39

Figure 31 Deployment Stage component.

Figure 32 Server Log modal.

 If the deployment is successful, the VDUs will appear both in Validation Dashboard

(Figure 33 & Figure 35) and Openstack Network Topology (Figure 34).

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 40

Figure 33 VDUs table.

Figure 34 Openstack Network Topology.

 The data streams in charts (Figure 35) which depict the usage percentage of RAM and

vCPU of the VDUs will always be near to 0% because the VDUs are not running a script or an

application at that moment, so there are no concerns about the functionality and confidential

information of the chart. In Figure 36 we can observe the number of activated instances that are

currently active on the OSM.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 41

Figure 35 Dashboard after the NS deployment.

Figure 36 Dashboard during the Monitoring.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 42

 By pressing on the “View” button of any Instance, the dashboard will navigate the user to

the Instances Tab (Figure 37). In this page there are all the NS (Figure 38 & Figure 39), VNF

(Figure 40), and VDU (Figure 41) Instances that we previously defined in the description files

and we can check their attributes of each one separately.

Figure 37 Instances Table.

Figure 38 NS Instance (a)

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 43

Figure 39 NS Instance (b)

Figure 40 VNF Instance

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 44

Figure 41 VDU Instance

6.3.1. Failure examples

 In case the users will not use our VNFD Generator, we made some tests to check if our

validation layers would recognize the errors , whether these are syntax errors or functional errors.

The first test was created by putting spaces, words, or commas at random points in the yaml format

of the VNFD to check the format validity and the second test was to remove an attribute from the

NSD to check the structure validity. In Figure 42 and Figure 43 we can see that in both cases the

Validation scripts/process worked perfectly, and they recognized the errors.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 45

Figure 42 Failure Example 1.

Figure 43 Failure Example 2.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 46

 To test the Deployment scripts as well, we created yaml valid files that can pass the first

layer of validation, but they have wrong values in their descriptor attributes. Such as wrong

implementation of init file that does not exist (Figure 44 & Figure 45) or a badly written VIM

attribute (Figure 46 & Figure 47).

Figure 44 Deployment Stage error 1.

Figure 45 Server Log of error 1.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 47

Figure 46 Deployment Stages error 2.

Figure 47 Server Log of error 2.

7. Evaluation

 The assessment of the Validation Dashboard was done using 6 test cases with similar init-

file but using different scenarios for VNF/NS descriptors each time. For each scenario we changed

the number of: (a) VDUs, (b) the external connection points, (c) the internal connection points, (d)

the internal VLDs, (e) and (f) the VLDs for the NS. Every NSD and VNFD that was created from

our Generator came out with no syntax errors and passed the first validation layer with a high

success rate. All the deployments were successful and valid, and we could confirm it from the

display of instances in the Validation Dashboard. That makes our dashboard a reliable framework

for someone who wants to create a VNF for the Open Source MANO and check its validity at the

same time. Below we will give a little bit of information about our use cases and a small description

for each one of them.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 48

7.1. Test Case 1

 In this case we created a VNF descriptor that contains 1 VDU with a custom image of

Ubuntu 16.04 LTS and 1 external connection point (eth0). Then we added it twice in the NS

descriptor and we connected each Connection Point (CP) with the management (public) network

of the VIM. The VNF and NS descriptors passed the Validation layers successfully and the VDUs

took 2:06 minutes to boot up (Figure 48).

Figure 48 Test Case 1.

7.2. Test Case 2

 In this case we created a VNF same as the one in Test Case 1 with the difference that we

put into the VDU 2 external connection points (eth0, eth1). Then we added it in the NS descriptor,

and we connected one of its CPs in the management network (public) and one with another network

(network_A) which is not connected to the internet. The result was that the descriptors pass the

Validation layers but the VDU script returns info (data) only for the port that is connected to the

internet (that means the CP that is connected to the public network and not the network_A). We

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 49

manage to take these data (from the network_A) through the monitoring script which displays all

the interface data from the VNF (Figure 50). The VDU boot time was 1:42 minutes (Figure 49).

Figure 49 Test Case 2.

Figure 50 Test Case 2 VNF Instance modal.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 50

7.3. Test Case 3

 In this case we created a VNF exactly the same as the one in the Test Case 1 with only one

CP. We added it in a NS descriptor, and we connected its CP to an existing network (beta) that is

already connected to the management network (public) with a router, and that means that has

internet access. The Validation and the deployment process was a success, and the VDU took 1:34

minutes to boot up (Figure 51).

Figure 51 Test Case 3.

7.4. Test Case 4

 In this case we created a VNF that contains 1 VDU with 1 CP and inside the cloud init

file (Figure 53) we put a command to install an Apache38 server. The CP was connected to the

management network (public) based on the NSD. The deployment (Figure 54) and the Validation

was a success again, as well as the installation of the Apache (Figure 55) by the cloud init file.

The boot up time of the VDU comes to 1:50 minutes (Figure 52).

38 https://httpd.apache.org/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 51

Figure 52 Test case 4.

Figure 53 Test Case 4 cloud init file.

Figure 54 Test Case 4 VDUs Table.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 52

Figure 55 Test Case 4 Apache server running.

7.5. Test Case 5

 In this case we created a VNF that contains 2 VDUs with the first VDU having 2 CPs, 1

external and 1 internal, and the second VDU with 1 internal CP only. We also created an internal

VL (custom), and we connected the 2 internal CPs into it. Finally, we added the VNF in a NS

descriptor and we connected the only external CP with the management network (public). The

VNF successfully passed the Validation but only the VDU with the port that is connected to the

public network sent data to the Firebase. The VDUs booted up in 2:40 minutes (Figure 56).

Figure 56 Test Case 5.

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 53

7.6. Test Case 6

 In the final case we created a VNF similar with the one in the Test Case 1. We added it in

a NS descriptor, and we linked its external CP with a network that is not connected to the

management network (public) and it is isolated. The VDU never returned anything because of the

internet connection loss, so the instance table, which was waiting data, kept loading indefinitely in

an infinite loop (Figure 57). The solution is the creation of a Physical Network Unit (PDU). A

PDU Descriptor (PDU) can contain a description of a router with the network interfaces that needs

to link in it. But the PDU instance has to be deployed before the VNF and NS so it can be visible

first to the VIM.

Figure 57 Test Case 6.

 Summing up the evaluation of our Validation Dashboard, we saw that the Validation and

the Deployment process worked effectively whenever requested. The users could check the syntax

and functional validity of their files but also could easily create automated descriptors to avoid

errors in each Test Case. Quick deployment was also observed, as well the start time of VDUs

were between 1:30 and 2:30 minutes. Finally, one thing observed from some Test Cases was the

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 54

interface’s data loss when the VDU/VM was linked in a network that has not internet access. We

could retrieve the VDU’s data only from the OSM client and not from the VDU’s automated script

that communicates with the Firebase Database in the cloud.

8. Conclusion

 The evaluation of this project/thesis revealed the time saved, for the VNF vendors, to

configure, build and validate a VNF, before production within the exact client environment. We

presented an End-to-End and functional dashboard that is very easy to use. Additionally, prevailing

the technologies that exist in the market, we managed to help the users to configure and validate

their VNFs with a minimum effort. By proposing and implementing a VNF Generator and a VNF

Validator that are user friendly, inside a good graphical environment. The sequence of actions that

the users should follow on the dashboard is a 3-step process: (a) the users can build very quick and

easy a VNF descriptor through the VNFD Generator by just filling the data form fields, (b) the

users put the generated files into the Validator form and (c) the users waits and observe the

validation process output as well the results of the NS deployments.

 Our future goal is to work on improvements in the dashboard. Some of the improvements

could be: (a) make even more generic the VNFD Generator so it can support more NFV

architectures and more type of VIMs, (b) add a PDU Generator so the users can create virtual

routers to connect their NS/NST, (c) create a tab in the menu bar, where the users can extend the

utilities of the already deployed VNF instances / autoscaling39, and (d) add the feature into the

VDUs scripts to recognize and send data of the NSTs40 that has no internet access.

 Finally, we hope to inspire the OSM community to develop more VNF Generators and

Validators or motivate them to use our Validation Dashboard to test and review it.

39 https://osm.etsi.org/docs/user-guide/05-osm-usage.html#autoscaling
40 https://osm.etsi.org/docs/user-guide/05-osm-usage.html#sharing-a-network-slice-subnet

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 55

9. References

[1] L. Mamushiane, A. Lysko, T. Mukute, J. Mwangama, and Z. Toit, “Overview of 9 Open-

Source Resource Orchestrating ETSI MANO Compliant Implementations: A Brief

Survey”, 2019 IEEE 2nd Wireless Africa Conference (WAC)., Aug 2019.

[2] T. Nguyen and M. Yoo, “A VNF Descriptor for Tacker-based NFV Management and

Orchestration”, 2018 International Conference on Information and Communication

Technology Convergence (ICTC)., Oct 2018.

[3] M. Csoma, B. Koné, R. Botez, I. Ivanciu, A. Kora and V. Dobrota, “Management and

Orchestration for Network Function Virtualization: An Open Source MANO Approach”,

2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet).,

Dec 2020.

[4] T. Dreibholz, “A 4G/5G Packet Core as VNF with Open Source MANO and

OpenAirInterface”, 2020 International Conference on Software, Telecommunications and

Computer Networks (SoftCOM)., Sep 2020

[5] M. Kourtis, M. McGrath, G. Gardikis, G.Xilouris, V. Riccobene, P. Papadimitriou, et al.,

“T-NOVA: An Open-source MANO Stack for NFV Infrastructures”, IEEE Transactions

on Network and Service Management, vol. 14, no. 3, pp. 586-602, Sept 2017.

[6] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck and R.Boutaba, “Network

Function Virtualization: State-of-the-art and Research Challenges”, IEEE

Communications Surveys & Tutorials, vol.18, no. 1, pp. 236-262, Firstquarter 2016.

[7] B. Han, V. Gopalakrishnan, L.ji and S.Lee, “Network function virtualization: Challenges

and opportunities for innovations”, IEEE Communications Magazine, vol.53, no.2, pp. 90-

97, Feb 2015.

[8] P.Karamichailidis, K.Choumas and T.Korakis, “Demonstrating Multi-Domain

Orchestration through Open Source MANO Openstack and OpenDaylight”, 2019 IEEE

Conference on Network Softwarization (NetSoft), pp. 263-265, Jun 2019.

[9] Nguyen, T. H. Nguyen, T. Nguyen and M. Yoo, “Analysis of deployment approaches for

virtual customer premises equipment”, 2018 International Conference on Information

Networking (ICOIN)., Jan 2018.

[10] “Open Source MANO”, ETSI, 2020, [Online], Available: https://osm.etsi.org/ ,

[Accessed: 02-Nov-2020].

[11] “Openstack”, OpenStack LLC, 2020, [Online], Available: https://openstack.org/ ,

[Accessed: 10-Nov-2020].

[12] “Using Neutron with a Single Interface”, Openstack, 2020, [Online], Available:

https://docs.openstack.org/devstack/rocky/guides/neutron.html/,[Accessed: 15-Nov-2020].

https://osm.etsi.org/
https://openstack.org/
https://docs.openstack.org/devstack/rocky/guides/neutron.html/

Hellenic Mediterranean University Department of Electrical and Computer Engineering

VNF Validation over OpenMANO Orchestrator P a g e | 56

[13] “YANG”, Wikipedia, 2020, [Online], Available: https://en.wikipedia.org/wiki/YANG/ ,

[Accessed: 05-Dec-2020].

[14] “Network function virtualization”, Wikipedia, 2020, [Online], Available:

https://en.wikipedia.org/wiki/Network_function_virtualization, [Accessed: 04-Nov-2020].

[15] “Structure Your Database”, Firebase Google, 2020, [Online], Available:

https://firebase.google.com/docs/database/rest/structure-data , [Accessed: 16-Jan-2021].

[16] “Check and validate descriptors”, Open Source MANO, 2020, [Online], Available:

https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_package_(Release_TH

REE) , [Accessed: 02-Feb-2021].

https://en.wikipedia.org/wiki/YANG/
https://en.wikipedia.org/wiki/Network_function_virtualization
https://firebase.google.com/docs/database/rest/structure-data
https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_package_(Release_THREE)
https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_package_(Release_THREE)

