

Hellenic Mediterranean University

School o f Engineering

E l e c tro n i c E ng i n e er i ng D e pa r tm e n t

Application development while exploring the

Digilent Nexys A7 board capabilities, using

VHDL and Xilinx's Vivado Design Suite.

FINAL PROJECT

of

Arnout Van Daele

Supervisor: Dr Eng. Nikolaos S. Petrakis,
 Lecturer HMU

Chania, Greece,

July 2021

Hellenic Mediterranean University Electronic Engineering Department

Hellenic Mediterranean University Electronic Engineering Department

Table of Contents

Table of Contents ... i
Abstract ... ii
Περίληψη ... ii
1. Introduction .. 1
2. About the development card Digilent Nexys A7 ... 3

2.1. Nexys A7 .. 3
2.2. Features... 3
2.3. Purchasing Options .. 5
2.4. Functional Description ... 6

 Power Supplies .. 6
 Protection ... 7

2.5. FPGA Configuration ... 7
 JTAG Configuration.. 8
 Quad-SPI Configuration ... 9
 USB Host and Micro SD Programming ... 9

2.6. Memory ... 10
 DDR2 ... 10
 Quad-SPI Flash .. 11

2.7. Ethernet PHY ... 12
2.8. Oscillators/Clocks .. 13
2.9. USB-UART Bridge (Serial Port) ... 13
2.10. USB HID Host ... 14

 HID Controller ... 15
 Keyboard ... 16
 Mouse ... 17

2.11. VGA Port .. 17
2.12. Basic I/O .. 18

 Seven-Segment Display ... 20
 Tri-Color LED ... 21

2.13. Pmod Ports .. 22
 Dual Analog/Digital Pmod ... 23

2.14. MicroSD Slot .. 23
2.15. Temperature Sensor .. 24

 I2C Interface... 24
2.16. Accelerometer ... 24

 SPI Interface .. 25
 Interrupts .. 25

2.17. Microphone ... 25
2.18. Built-In Self-Test .. 25

3. VHDL and the Xilinx Vivado Design Suite .. 27
3.1. Introduction .. 27
3.2. Different levels of representation and abstraction.. 27
3.3. Basic Structure of a VHDL file .. 28
3.4. Lexical Elements of VHDL .. 32
3.5. Data Objects: Signals, Variables and Constants ... 34

 Signal ... 34
 Variable ... 34
 Constant .. 35

3.6. Data types ... 35
3.7. Operators .. 37
3.8. A 2bit counter as an example .. 37
3.9. Vivado Design Suite ... 41

4. Application development examples .. 42
4.1. 4 bit adder ... 42

 A word on multiplexing ... 47
4.2. Temperature Sensor .. 47
4.3. Accelerometer ... 50

5. Conclusions ... 52
References ... 53

Hellenic Mediterranean University Electronic Engineering Department

Abstract

The purpose of this final project is to delve into the design of digital systems using a hardware

description language and FPGAs (Field Programmable Gate Arrays), taking into account both

advances in science and limited access to financial resources. To this end, the VHDL hardware

description language was systematically studied and a short user guide was compiled, which

includes the basic features of the language to be used. The Xilinx Vivado software package

was then tested, which is a complete circuit design and gateway implementation (FPGA)

environment. The design and simulation steps were described in detail. A Digilent Nexys A7

development board containing the Xilinx Artix-7 family FPGA was used to complete and test

the circuits. Exercises were then developed on this board as samples using the seven-segment

displays, the built-in temperature sensor and the built-in accelerometer.

Περίληψη

Στόχος της παρούσας πτυχιακής εργασίας είναι η εμβάθυνση στη σχεδίαση ψηφιακών

συστημάτων χρησιμοποιώντας μία γλώσσα περιγραφής υλικού και κυκλώματα FPGA (Field

Programmable Gate Array), λαμβάνοντας υπόψη τόσο την πρόοδο στον συγκεκριμένο

επιστημονικό τομέα, όσο και την περιορισμένη πρόσβαση σε οικονομικούς πόρους. Προς την

κατεύθυνση αυτή, λοιπόν, μελετήθηκε συστηματικά η γλώσσα περιγραφής υλικού VHDL και

συντάχθηκε ένας σύντομος οδηγός χρήσης, ο οποίος περιλαμβάνει τα βασικά

χαρακτηριστικά τής γλώσσας που θα χρησιμοποιηθούν στο εργαστήριο. Στην συνέχεια

δοκιμάστηκε το λογισμικό πακέτο Vivado της Xilinx, το οποίο είναι ένα πλήρες περιβάλλον

σχεδίασης κυκλωμάτων και υλοποίησης με παρατάξεις πυλών (FPGA). Περιγράφηκαν

αναλυτικά τα βήματα σχεδίασης και προσομοίωσης. Για την ολοκλήρωση και δοκιμαστική

λειτουργία των κυκλωμάτων χρησιμοποιήθηκε μια αναπτυξιακή πλακέτα Nexys Α7 της

Digilent που περιέχει το FPGA της οικογένειας Artix-7 της Xilinx. Ακολούθως αναπτύχθηκαν

σε αυτήν την πλακέτα, ως δείγματα, ασκήσεις χρησιμοποιώντας τέσσερα ψηφία 7 τομέων

(seven segment displays), τον ενσωματωμένο αισθητήρα θερμοκρασίας και το

ενσωματωμένο επιταχυνσιόμετρο.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 1 - Arnout Van Daele

1. Introduction

The evolution of technology has led to the development of reprogrammable devices that have

completely changed the process of designing digital systems. Such devices are the FPGAs that

appeared around 1980 and have now been established for simple to complex

implementations.

FPGAs are digital integrated circuits that contain programmable digital logic blocks and

programmable interfaces. By programming the logic components, the logic functions that

express the operation of a digital circuit are implemented. FPGA application development is

due to the flexibility and speed they provide and is usually done using hardware description

languages such as VHDL and/or Verilog. Such applications concern various fields such as

cryptography, bioinformatics, defense systems, etc.

The ever-increasing complexity observed in the design and construction of digital systems

requires the use of design tools that facilitate this process, which is why such a tool will be

studied in this dissertation. The five chapters of the work give the reader the opportunity to

expand their knowledge of the VHDL language, Xilinx VIVADO design environment and FPGA

implementation.

More specifically, after this chapter which is a brief introduction, the second chapter presents

the features and capabilities of the Nexys A7 development card that contains the FPGA of the

Artix-7 family of Xilinx and is compatible with Vivado. This card includes slide switches,

buttons, LEDs, 7-segment displays, temperature sensor (ADT7420) and analog accelerometer

(ADXL362), which were used in the examples.

The third chapter presents a brief guide to the VHDL hardware description language. First a

brief historical overview is made and the differences in relation to the common programming

languages are pointed out. The structure of the code in VHDL, verbal elements and syntax,

representation of numbers and characters, operators, objects and data types are then

analyzed. Finally, it describes how we can describe combinational and/or synchronous

sequential circuits with VHDL and how to design hierarchical circuits. A guide to Xilinx's Vivado

Design Suite follows, describing the design and implementation steps. Specifically, it describes

the process from writing the code in VHDL to programming the FPGA.

The fourth chapter presents three designs that were made in the design environment of

Vivado and their implementation in the Nexys A7 development board mentioned above.

The fifth chapter mentions the conclusions we reached after the completion of this work as

well as suggestions for further extensions.

Of course, there is also a list of bibliographic sources that includes the books and websites

that were used to prepare the work.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 2 - Arnout Van Daele

The reason why I chose to deal with this topic is the familiarity I gained with VHDL during my

studies and the desire to gain knowledge, experience and skills in digital design applications

using modern design tools and development cards with fantastic possibilities.

At this point I consider it my duty to thank my supervising professor Dr. Eng. Nikolaos Petrakis

for the valuable collaboration I had with him as well as for the decisive guidance and support

he offered me at all stages of the preparation of my final project.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 3 - Arnout Van Daele

2. About the development card Digilent Nexys A7

2.1. Nexys A7

The Nexys A7 board is a complete, ready-to-use digital circuit development platform based on

the latest Artix-7™ Field Programmable Gate Array (FPGA) from Xilinx®. With its large, high-

capacity FPGA, generous external memories, and collection of USB, Ethernet, and other ports,

the Nexys A7 can host designs ranging from introductory combinational circuits to powerful

embedded processors. Several built-in peripherals, including an accelerometer, temperature

sensor, MEMs digital microphone, a speaker amplifier, and several I/O devices allow the Nexys

A7 to be used for a wide range of designs without needing any other components.

2.2. Features
Artix-7 FPGA

• 15,850 Programmable logic slices, each with four 6-input LUTs and 8 flip-flops (*8,150 slices)

• 4,860 Kbits of fast block RAM (*2,700 Kbits)

• Six clock management tiles, each with phase-locked loop (PLL)

• 240 DSP slices (*120 DSPs)

• Internal clock speeds exceeding 450 MHz

• Dual-channel, 1 MSPS internal analog-digital converter (XADC)

Memory

• 128MiB DDR2

• Serial Flash

• microSD card slot

Power

• Powered from USB or any 4.5V-5.5V external power source

USB and Ethernet

• 10/100 Ethernet PHY

• USB-JTAG programming circuitry

• USB-UART bridge

• USB HID Host for mice, keyboards and memory sticks

Simple User Input/Output

• 16 Switches

• 16 LEDs

• Two RGB LEDs

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 4 - Arnout Van Daele

• Two 4-digit 7-segment displays

Audio and Video

• 12-bit VGA output

• PWM audio output

• PDM microphone

Additional Sensors

• 3-axis accelerometer

• Temperature sensor

Expansion Connectors

• Pmod connector for XADC signals

• Four Pmod connectors providing 32 total FPGA I/O

Image 2.1: Nexys A7 Feature Callout

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 5 - Arnout Van Daele

The Nexys A7-100T is compatible with Xilinx’s Vivado® Design Suite as well as the ISE® toolset, which

includes ChipScope™ and EDK. Xilinx ISE has been discontinued in favor of Vivado® Design Suite. The

Nexys A7-50T variant is compatible only with Vivado® Design Suite. Xilinx offers free WebPACK™

versions of these toolsets, so designs can be implemented at no additional cost. The Nexys A7 is not

supported by the Digilent Adept Utility.

Callout Component Description Callout Component Description

1 Power jack 16 JTAG port for (optional) external
cable

2 Power switch 17 Tri-color (RGB) LEDs

3 USB host connector 18 Slide switches (16)

4 PIC24 programming port (factory
use)

19 LEDs (16)

5 Ethernet connector 20 Power supply test point(s)

6 FPGA programming done LED 21 Eight digit 7-seg display

7 VGA connector 22 Microphone

8 Audio connector 23 External configuration jumper (SD /
USB)

9 Programming mode jumper 24 MicroSD card slot

10 Analog signal Pmod port (XADC) 25 Shared UART/ JTAG USB port

11 FPGA configuration reset button 26 Power select jumper and battery
header

12 CPU reset button (for soft cores) 27 Power-good LED

13 Five pushbuttons 28 Xilinx Artix-7 FPGA

14 Pmod port(s) 29 DDR2 memory

15 Temperature sensor

2.3. Purchasing Options
The Nexys A7 can be purchased with either a XC7A100T or XC7A50T FPGA loaded. These two Nexys A7

product variants are referred to as the Nexys A7-100T and Nexys A7-50T, respectively. When Digilent

documentation describes functionality that is common to both of these variants, they are referred to

collectively as the “Nexys A7”. When describing something that is only common to a specific variant,

the variant will be explicitly called out by its name.

The only difference between the Nexys A7-100T and Nexys A7-50T is the size of the Artix-7 part. The

Artix-7 FPGAs both have the same capabilities, but the XC7100T has about a 2 times larger internal

FPGA than the XC750T. The differences between the two variants are summarized below:

Product Variant Nexys A7-100T Nexys A7-50T

FPGA Part Number XC7A100T-1CSG324C XC7A50T-1CSG324I

Look-up Tables (LUTs) 63,400 32,600

Flip-Flops 126,800 65,200

Block RAM 4,860 Kb 2,700 Kb

DSP Slices 240 120

Clock Management Tiles 6 5

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 6 - Arnout Van Daele

2.4. Functional Description

 Power Supplies
The Nexys A7 board can receive power from the Digilent USB-JTAG port (J6) or from an external power

supply. Jumper JP3 (near the power jack) determines which source is used.

All Nexys A7 power supplies can be turned on and off by a single logic-level power switch (SW16). A

power-good LED (LD22), driven by the “power good” output of the ADP2118 supply, indicates that the

supplies are turned on and operating normally. An overview of the Nexys A7 power circuit is shown in

Figure 2.2.

Image 2.2: Nexys A7 Power Circuit

The USB port can deliver enough power for the vast majority of designs. In order to power the board

from USB port set jumper JP3 to “USB”. Our out-of-box demo draws ~400mA of current from the 5V

input rail. A few demanding applications, including any that drive multiple peripheral boards, might

require more power than the USB port can provide. Also, some applications may need to run without

being connected to a PC’s USB port. In these instances, an external power supply or battery pack can

be used.

An external power supply can be used by plugging into to the power jack (J13) and setting jumper JP3

to “WALL”. The supply must use a coax, center-positive 2.1mm internal-diameter plug, and deliver

4.5VDC to 5.5VDC and at least 1A of current (i.e., at least 5W of power). Many suitable supplies can be

purchased from Digilent, through Digi-Key, or other catalog vendors.

An external battery pack can be used by connecting the battery’s positive terminal to the center pin of

JP3 and the negative terminal to the pin labeled J12, directly below JP3. Since the main regulator on

the Nexys A7 cannot accommodate input voltages over 5.5VDC, an external battery pack must be

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 7 - Arnout Van Daele

limited to 5.5VDC. The minimum voltage of the battery pack depends on the application: if the USB

Host function (J5) is used, at least 4.6V needs to be provided. In other cases, the minimum voltage is

3.6V.

Voltage regulator circuits from Analog Devices create the required 3.3V, 1.8V, and 1.0V supplies from

the main power input. Table 2.1 provides additional information. Typical currents depend strongly on

FPGA configuration and the values provided are typical of medium size/speed designs.

Supply Circuits Device Current (max/typical)

3.3V FPGA I/O, USB ports,
Clocks, RAM I/O,
Ethernet, SD slot,
Sensors, Flash

IC17: ADP2118 3A/ 0.1 to 1.5A

1.0V FPGA Core IC22: ADP2118 3A/ 0.2 to 1.3A

1.8V DDR2, FPGA Auxiliary
and RAM

IC23: ADP2118 0.8A/ 0.5A

Table 2.1 Nexys A7 power supplies.

 Protection
The Nexys A7 features overcurrent and overvoltage protection on the input power rail. A 3.5A fuse

(R287) and a 5V Zener diode (D16) provide a non-resettable protection for other on-board integrated

circuits, as displayed in Figure 2. Applying power outside of the specs outlined in this document is not

covered by warranty. If this happens, either or both might get permanently damaged. The damaged

parts are not user-replaceable.

.

2.5. FPGA Configuration
After power-on, the Artix-7 FPGA must be configured (or programmed) before it can perform any

functions. You can configure the FPGA in one of four ways:

1. A PC can use the Digilent USB-JTAG circuitry (portJ6, labeled “PROG”) to program the FPGA

any time the power is on.

2. A file stored in the nonvolatile serial (SPI) flash device can be transferred to the FPGA using

the SPI port.

3. A programming file can be transferred to the FPGA from a micro SD card.

4. A programming file can be transferred from a USB memory stick attached to the USB HID

port.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 8 - Arnout Van Daele

Image 2.3: Nexys A7 Configuration Options

Figure 2.3 shows the different options available for configuring the FPGA. An on-board “mode” jumper

(JP1) and a media selection jumper (JP2) select between the programming modes.

The FPGA configuration data is stored in files called bitstreams that have the .bit file extension. The ISE

or Vivado software from Xilinx can create bitstreams from VHDL, Verilog®, or schematic-based source

files (in the ISE toolset, EDK is used for MicroBlaze™ embedded processor-based designs).

Bitstreams are stored in SRAM-based memory cells within the FPGA. This data defines the FPGA’s logic

functions and circuit connections, and it remains valid until it is erased by removing board power, by

pressing the reset button attached to the PROG input, or by writing a new configuration file using the

JTAG port.

An Artix-7 100T bitstream is typically 30,606,304 bits and can take a long time to transfer. The time it

takes to program the Nexys A7 can be decreased by compressing the bitstream before programming,

and then allowing the FPGA to decompress the bitstream itself during configuration. Depending on

design complexity, compression ratios of 10x can be achieved. Bitstream compression can be enabled

within the Xilinx tools (ISE or Vivado) to occur during generation. For instructions on how to do this,

consult the Xilinx documentation for the toolset being used. After being successfully programmed, the

FPGA will cause the “DONE” LED to illuminate. Pressing the “PROG” button at any time will reset the

configuration memory in the FPGA. After being reset, the FPGA will immediately attempt to reprogram

itself from whatever method has been selected by the programming mode jumpers.

The following sections provide greater detail about programming the Nexys A7 using the different

methods available.

 JTAG Configuration
The Xilinx tools typically communicate with FPGAs using the Test Access Port and Boundary-Scan

Architecture, commonly referred to as JTAG. During JTAG programming, a .bit file is transferred from

the PC to the FPGA using the onboard Digilent USB-JTAG circuitry (port J6) or an external JTAG

programmer, such as the Digilent JTAG-HS2, attached to port J10. You can perform JTAG programming

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 9 - Arnout Van Daele

any time after the Nexys A7 has been powered on, regardless of what the mode jumper (JP1) is set to.

If the FPGA is already configured, then the existing configuration is overwritten with the bitstream

being transmitted over JTAG. Setting the mode jumper to the JTAG setting (seen in Figure 3) is useful

to prevent the FPGA from being configured from any other bitstream source until a JTAG programming

occurs.

Programming the Nexys A7 with an uncompressed bitstream using the on-board USB-JTAG circuitry

usually takes around five seconds. JTAG programming can be done using the hardware server in Vivado

or the iMPACT tool included with ISE and the Lab Tools version of Vivado. The demonstration project

available at www.digilentinc.com gives an in-depth tutorial on how to program your board.

 Quad-SPI Configuration
Since the FPGA on the Nexys A7 is volatile, it relies on the Quad-SPI flash memory to store the

configuration between power cycles. This configuration mode is called Master SPI. The blank FPGA

takes the role of master and reads the configuration file out of the flash device upon power-up. To that

effect, a configuration file needs to be downloaded first to the flash. When programming a nonvolatile

flash device, a bitstream file is transferred to the flash in a two-step process. First, the FPGA is

programmed with a circuit that can program flash devices, and then data is transferred to the flash

device via the FPGA circuit (this complexity is hidden from the user by the Xilinx tools). This is called

indirect programming. After the flash device has been programmed, it can automatically configure the

FPGA at a subsequent power-on or reset event as determined by the mode jumper setting.

Programming files stored in the flash device will remain until they are overwritten, regardless of

power-cycle events.

Programming the flash can take as long as four to five minutes, which is mostly due to the lengthy

erase process inherent to the memory technology. Once written however, FPGA configuration can be

very fast—less than a second. Bitstream compression, SPI bus width, and configuration rate are factors

controlled by the Xilinx tools that can affect configuration speed. The Nexys A7 supports x1, x2, and x4

bus widths and data rates of up to 50 MHz for Quad-SPI programming.

Quad-SPI programming can be done using the iMPACT tool included with ISE or the Lab Tools version

of Vivado.

 USB Host and Micro SD Programming
You can program the FPGA from a pen drive attached to the USB Host port (J5) or a microSD card

inserted into J1 by doing the following:

1. Format the storage device (Pen drive or microSD card) with a FAT32 file system.

2. Place a single .bit configuration file in the root directory of the storage device.

3. Attach the storage device to the Nexys A7.

4. Set the JP1 Programming Mode jumper on the Nexys A7 to “USB/SD”.

5. Select the desired storage device using JP2.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 10 - Arnout Van Daele

6. Push the PROG button or power-cycle the Nexys A7.

The FPGA will automatically configure with the .bit file on the selected storage device. Any .bit files

that are not built for the proper Artix-7 device will be rejected by the FPGA.

The Auxiliary Function Status, or “BUSY” LED, gives visual feedback on the state of the configuration

process when the FPGA is not yet programmed:

• When steadily lit, the auxiliary microcontroller is either booting up or currently reading the

configuration medium (microSD or pen drive) and downloading a bitstream to the FPGA.

• A slow pulse means the microcontroller is waiting for a configuration medium to be plugged

in.

• In case of an error during configuration, the LED will blink rapidly.

When the FPGA has been successfully configured, the behavior of the LED is application-specific. For

example, if a USB keyboard is plugged in, a rapid blink will signal the receipt of an HID input report

from the keyboard.

2.6. Memory
The Nexys A7 board contains two external memories: a 1Gib (128MiB) DDR2 SDRAM and a 128Mib

(16MiB) non-volatile serial Flash device. The DDR2 modules are integrated on-board and connect to

the FPGA using the industry standard interface. The serial Flash is on a dedicated quad-mode (x4) SPI

bus. The connections and pin assignments between the FPGA and external memories are shown below.

 DDR2
The Nexys A7 includes one Micron MT47H64M16HR-25:H DDR2 memory component, creating a single

rank, 16-bit wide interface. It is routed to a 1.8V-powered HR (High Range) FPGA bank with 50 ohm

controlled single-ended trace impedance. 50 Οhm internal terminations in the FPGA are used to match

the trace characteristics. Similarly, on the memory side, on-die terminations (ODT) are used for

impedance matching.

For proper operation of the memory, a memory controller and physical layer (PHY) interface needs to

be included in the FPGA design. There are two recommended ways to do that, which are outlined

below and differ in complexity and design flexibility.

The straightforward way is to use the Digilent-provided DDR-to-SRAM adapter module which

instantiates the memory controller and uses an asynchronous SRAM bus for interfacing with user logic.

This module provides backward compatibility with projects written for older Nexys-line boards

featuring a CellularRAM instead of DDR2. It trades memory bandwidth for simplicity.

More advanced users or those who wish to learn more about DDR SDRAM technology may want to

use the Xilinx 7-series memory interface solutions core generated by the MIG (Memory Interface

Generator) Wizard. Depending on the tool used (ISE, EDK or Vivado), the MIG Wizard can generate a

native FIFO-style or an AXI4 interface to connect to user logic. This workflow allows the customization

of several DDR parameters optimized for the particular application. Table 2.5 below lists the MIG

Wizard settings optimized for the Nexys A7.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 11 - Arnout Van Daele

Setting Value

Memory type DDR2 SDRAM

Max. clock period 3000ps (667Mbps data rate)

Recommended clock period (for easy clock
generation)

3077ps (650Mbps data rate)

Memory part MT47H64M16HR-25E

Data width 16

Data mask Enabled

Chip Select pin Enabled

Rtt (nominal) – On-die termination 50ohms

Internal Vref Enabled

Internal termination impedance 50ohms

Table 2.2: DDR2 settings for the Nexys A7.

Although the FPGA, memory IC, and the board itself are capable of the maximum data rate of

667Mbps, the limitations in the clock generation primitives restrict the clock frequencies that can be

generated from the 100 MHz system clock. Thus, for simplicity, the next highest data rate of 650Mbps

is recommended.

The MIG Wizard will require the fixed pin-out of the memory signals to be entered and validated before

generating the IP core. For your convenience, an importable UCF file is provided on the Digilent website

to speed up the process.

For more details on the Xilinx memory interface solutions, refer to the 7 Series FPGAs Memory

Interface Solutions User Guide (ug586).

 Quad-SPI Flash
FPGA configuration files can be written to the Quad-SPI Flash (Spansion part number S25FL128S), and

mode settings are available to cause the FPGA to automatically read a configuration from this device

at power on. An Artix-7 100T configuration file requires just less than four MiB (mebibyte) of memory,

leaving about 77% of the flash device available for user data. Or, if the FPGA is getting configured from

another source, the whole memory can be used for custom data.

The contents of the memory can be manipulated by issuing certain commands on the SPI bus. The

implementation of this protocol is outside the scope of this document. All signals in the SPI bus except

SCK are general-purpose user I/O pins after FPGA configuration. SCK is an exception because it remains

a dedicated pin even after configuration. Access to this pin is provided through a special FPGA primitive

called STARTUPE2.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 12 - Arnout Van Daele

Image 2.4: Nexys A7 SPI Flash Pin-out

2.7. Ethernet PHY
The Nexys A7 board includes an SMSC 10/100 Ethernet PHY (SMSC part number LAN8720A) paired

with an RJ-45 Ethernet jack with integrated magnetics. The SMSC PHY uses the RMII interface and

supports 10/100 Mb/s. Figure 4.1 illustrates the pin connections between the Artix-7 and the Ethernet

PHY. At power-on reset, the PHY is set to the following defaults:

• RMII mode interface

• Auto-negotiation enabled, advertising all 10/100 mode capable

• PHY address=00001

Two on-board LEDs (LD23 = LED2, LD24 = LED1) connected to the PHY provide link status and data

activity feedback. See the PHY datasheet for details.

EDK-based designs can access the PHY using either the axi_ethernetlite (AXI EthernetLite) IP core or

the axi_ethernet (Tri Mode Ethernet MAC) IP core. A mii_to_rmii core (Ethernet PHY MII to Reduced

MII) needs to be inserted to convert the MAC interface from MII to RMII. Also, a 50 MHz clock needs

to be generated for the mii_to_rmii core and the CLKIN pin of the external PHY. To account for skew

introduced by the mii_to_rmii core, generate each clock individually, with the external PHY clock

having a 45 degree phase shift relative to the mii_to_rmii Ref_Clk. An EDK demonstration project that

properly uses the Ethernet PHY can be found on the Nexys A7 product page at www.digilentinc.com.

ISE designs can use the IP Core Generator wizard to create an Ethernet MAC controller IP core.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 13 - Arnout Van Daele

Image 2.5: Pin Connections between the Artix-7 and the Ethernet PHY

2.8. Oscillators/Clocks
The Nexys A7 board includes a single 100 MHz crystal oscillator connected to pin E3 (E3 is a MRCC

input on bank 35). The input clock can drive MMCMs or PLLs to generate clocks of various frequencies

and with known phase relationships that may be needed throughout a design. Some rules restrict

which MMCMs and PLLs may be driven by the 100 MHz input clock. For a full description of these rules

and of the capabilities of the Artix-7 clocking resources, refer to the “7 Series FPGAs Clocking Resources

User Guide” available from Xilinx.

Xilinx offers the Clocking Wizard IP core to help users generate the different clocks required for a

specific design. This wizard will properly instantiate the needed MMCMs and PLLs based on the desired

frequencies and phase relationships specified by the user. The wizard will then output an easy-to-use

wrapper component around these clocking resources that can be inserted into the user’s design. The

clocking wizard can be accessed from within the Project Navigator or Core Generator tools.

2.9. USB-UART Bridge (Serial Port)
The Nexys A7 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J6) that allows you

use PC applications to communicate with the board using standard Windows COM port commands.

Free USB-COM port drivers, available from www.ftdichip.com under the “Virtual Com Port” or VCP

heading, convert USB packets to UART/serial port data. Serial port data is exchanged with the FPGA

using a two-wire serial port (TXD/RXD) and optional hardware flow control (RTS/CTS). After the drivers

are installed, I/O commands can be used from the PC directed to the COM port to produce serial data

traffic on the C4 and D4 FPGA pins.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 14 - Arnout Van Daele

Two on-board status LEDs provide visual feedback on traffic flowing through the port: the transmit LED

(LD20) and the receive LED (LD19). Signal names that imply direction are from the point-of-view of the

DTE (Data Terminal Equipment), in this case the PC.

The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the USB-UART and

USB-JTAG functions behave entirely independent of one another. Programmers interested in using the

UART functionality of the FT2232 within their design do not need to worry about the JTAG circuitry

interfering with the UART data transfers, and vice-versa. The combination of these two features into a

single device allows the Nexys A7 to be programmed, communicated with via UART, and powered from

a computer attached with a single Micro USB cable.

The connections between the FT2232HQ and the Artix-7 are shown in Figure 2.6.

Image 2.6: Nexys A7 FT2322HQ Connections

2.10. USB HID Host
The Auxiliary Function microcontroller (Microchip PIC24FJ128) provides the Nexys A7 with USB

Embedded HID host capability. After power-up, the microcontroller is in configuration mode, either

downloading a bitstream to the FPGA, or waiting to be programmed from other sources. Once the

FPGA is programmed, the microcontroller switches to application mode, which is USB HID Host in this

case. Firmware in the microcontroller can drive a mouse or a keyboard attached to the type A USB

connector at J5 labeled “USB Host”. Hub support is not currently available, so only a single mouse or a

single keyboard can be used. Only keyboards and mice supporting the Boot HID interface are

supported. The PIC24 drives several signals into the FPGA – two are used to implement a standard PS/2

interface for communication with a mouse or keyboard, and the others are connected to the FPGA’s

two-wire serial programming port, so the FPGA can be programmed from a file stored on a USB pen

drive or microSD card.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 15 - Arnout Van Daele

Image 2.7: Nexys A7 PIC24 Connections

 HID Controller
The Auxiliary Function microcontroller hides the USB HID protocol from the FPGA and emulates an old-

style PS/2 bus. The microcontroller behaves just like a PS/2 keyboard or mouse would. This means new

designs can re-use existing PS/2 IP cores. Mice and keyboards that use the PS/2 protocol use a two-

wire serial bus (clock and data) to communicate with a host. On the Nexys A7, the microcontroller

emulates a PS/2 device while the FPGA plays the role of the host. Both the mouse and the keyboard

use 11-bit words that include a start bit, data byte (LSB first), odd parity, and stop bit, but the data

packets are organized differently, and the keyboard interface allows bi-directional data transfers (so

the host device can illuminate state LEDs on the keyboard). Bus timings are shown in Figure 2.8.

Image 2.8: PS/2 Device-to-Host Timing Diagram

The clock and data signals are only driven when data transfers occur; otherwise, they are held in the

idle state at high-impedance (open-drain drivers). This requires that when the PS/2 signals are used in

a design, internal pull-ups must be enabled in the FPGA on the data and clock pins. The clock signal is

normally driven by the device, but may be held low by the host in special cases. The timings define

signal requirements for mouse-to-host communications and bi-directional keyboard communications.

A PS/2 interface circuit can be implemented in the FPGA to create a keyboard or mouse interface.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 16 - Arnout Van Daele

When a keyboard or mouse is connected to the Nexys A7, a “self-test passed” command (0xAA) is sent

to the host. After this, commands may be issued to the device. Since both the keyboard and the mouse

use the same PS/2 port, one can tell the type of device connected using the device ID. This ID can be

read by issuing a Read ID command (0xF2). Also, a mouse sends its ID (0x00) right after the “self-test

passed” command, which distinguishes it from a keyboard.

 Keyboard
PS/2-style keyboards use scan codes to communicate key press data. Each key is assigned a code that

is sent whenever the key is pressed. If the key is held down, the scan code will be sent repeatedly about

once every 100ms. When a key is released, an F0 key-up code is sent, followed by the scan code of the

released key. If a key can be shifted to produce a new character (like a capital letter), then a shift

character is sent in addition to the scan code and the host must determine which ASCII character to

use. Some keys, called extended keys, send an E0 ahead of the scan code (and they may send more

than one scan code). When an extended key is released, an E0 F0 key-up code is sent, followed by the

scan code. Scan codes for most keys are shown in Figure 2.9.

Image 2.9: Keyboard Scan Codes

A host device can also send data to the keyboard. Table 2.3 shows a list of some common commands

a host might send.

The keyboard can send data to the host only when both the data and clock lines are high (or idle).

Because the host is the bus master, the keyboard must check to see whether the host is sending data

before driving the bus. To facilitate this, the clock line is used as a “clear to send” signal. If the host

drives the clock line low, the keyboard must not send any data until the clock is released. The keyboard

sends data to the host in 11-bit words that contain a ‘0’ start bit, followed by 8-bits of scan code (LSB

first), followed by an odd parity bit, and terminated with a ‘1’ stop bit. The keyboard generates 11 clock

transitions (at 20 to 30 KHz) when the data is sent, and data is valid on the falling edge of the clock.

Command Action

ED Set Num Lock, Caps Lock, and Scroll Lock LEDs. Keyboard returns FA after receiving
ED, then host sends a byte to set LED status: bit 0 sets Scroll Lock, bit 1 sets Num
Lock, and bit 2 sets Caps lock. Bits 3 to 7 are ignored.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 17 - Arnout Van Daele

EE Echo (test). Keyboard returns EE after receiving EE

F3 Set scan code repeat rate. Keyboard returns F3 on receiving FA, then host sends
second byte to set the repeat rate.

FE Resend. FE directs keyboard to re-send most recent scan code.

FF Reset. Resets the keyboard.

Table 2.3: Keyboard Commands

 Mouse
Once entered in stream mode and data reporting is enabled, the mouse outputs a clock and data signal

when it is moved; otherwise, these signals remain at logic ‘1.’ Each time the mouse is moved, three

11-bit words are sent from the mouse to the host device, as shown in Figure 2.10. Each of the 11-bit

words contains a ‘0’ start bit, followed by 8 bits of data (LSB first), followed by an odd parity bit, and

terminated with a ‘1’ stop bit. Thus, each data transmission contains 33 bits, where bits 0, 11, and 22

are ‘0’ start bits, and bits 11, 21, and 33 are ‘1’ stop bits. The three 8-bit data fields contain movement

data, as shown in Figure 2.10. Data is valid at the falling edge of the clock, and the clock period is 20 to

30 KHz.

The mouse assumes a relative coordinate system wherein moving the mouse to the right generates a

positive number in the X field, and moving to the left generates a negative number. Likewise, moving

the mouse up generates a positive number in the Y field, and moving down represents a negative

number (the XS and YS bits in the status byte are the sign bits – a ‘1’ indicates a negative number). The

magnitude of the X and Y numbers represent the rate of mouse movement; the larger the number, the

faster the mouse is moving (the XV and YV bits in the status byte are movement overflow indicators.

A ‘1’ means overflow has occurred). If the mouse moves continuously, the 33-bit transmissions are

repeated every 50ms or so. The L and R fields in the status byte indicate Left and Right button presses

(a ‘1’ indicates the button is being pressed).

Image 2.10: Mouse Data Format

2.11. VGA Port
The Nexys A7 board uses 14 FPGA signals to create a VGA port with 4 bits-per-color and the two

standard sync signals (HS – Horizontal Sync, and VS – Vertical Sync). The color signals use resistor-

divider circuits that work in conjunction with the 75-ohm termination resistance of the VGA display to

create 16 signal levels each on the red, green, and blue VGA signals. This circuit, shown in Figure 8.1,

produces video color signals that proceed in equal increments between 0V (fully off) and 0.7V (fully

on). Using this circuit, 4096 different colors can be displayed, one for each unique 12-bit pattern. A

video controller circuit must be created in the FPGA to drive the sync and color signals with the correct

timing in order to produce a working display system.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 18 - Arnout Van Daele

Image 2.11: Nexys A7 VGA Interface

2.12. Basic I/O
The Nexys A7 board includes two tri-color LEDs, sixteen slide switches, six push buttons, sixteen

individual LEDs, and an eight-digit seven-segment display, as shown in Figure 2.12. The pushbuttons

and slide switches are connected to the FPGA via series resistors to prevent damage from inadvertent

short circuits (a short circuit could occur if an FPGA pin assigned to a pushbutton or slide switch was

inadvertently defined as an output). The five pushbuttons arranged in a plus-sign configuration are

“momentary” switches that normally generate a low output when they are at rest, and a high output

only when they are pressed. The red pushbutton labeled “CPU RESET,” on the other hand, generates

a high output when at rest and a low output when pressed. The CPU RESET button is intended to be

used in EDK designs to reset the processor, but you can also use it as a general purpose pushbutton.

Slide switches generate constant high or low inputs depending on their position.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 19 - Arnout Van Daele

Image 2.12: General Purpose I/O Devices on the Nexys A7

The sixteen individual high-efficiency LEDs are anode-connected to the FPGA via 330-ohm resistors, so

they will turn on when a logic high voltage is applied to their respective I/O pin. Additional LEDs that

are not user-accessible indicate power-on, FPGA programming status, and USB and Ethernet port

status.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 20 - Arnout Van Daele

 Seven-Segment Display
The Nexys A7 board contains two four-digit common anode seven-segment LED displays, configured

to behave like a single eight-digit display. Each of the eight digits is composed of seven segments

arranged in a “figure 8” pattern, with an LED embedded in each segment. Segment LEDs can be

individually illuminated, so any one of 128 patterns can be displayed on a digit by illuminating certain

LED segments and leaving the others dark, as shown in Figure 2.13. Of these 128 possible patterns, the

ten corresponding to the decimal digits are the most useful.

Image 2.13: An Un-illuminated Seven-Segment Display and Nine Illumination Patterns Corresponding

to Decimal Digits

The anodes of the seven LEDs forming each digit are tied together into one “common anode” circuit

node, but the LED cathodes remain separate, as shown in Fig 2.14. The common anode signals are

available as eight “digit enable” input signals to the 8-digit display. The cathodes of similar segments

on all four displays are connected into seven circuit nodes labeled CA through CG. For example, the

eight “D” cathodes from the eight digits are grouped together into a single circuit node called “CD.”

These seven cathode signals are available as inputs to the 8-digit display. This signal connection scheme

creates a multiplexed display, where the cathode signals are common to all digits but they can only

illuminate the segments of the digit whose corresponding anode signal is asserted.

To illuminate a segment, the anode should be driven high while the cathode is driven low. However,

since the Nexys A7 uses transistors to drive enough current into the common anode point, the anode

enables are inverted. Therefore, both the AN0..7 and the CA..G/DP signals are driven low when active.

Image 2.14: Common Anode Circuit Node

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 21 - Arnout Van Daele

A scanning display controller circuit can be used to show an eight-digit number on this display. This

circuit drives the anode signals and corresponding cathode patterns of each digit in a repeating,

continuous succession at an update rate that is faster than the human eye can detect. Each digit is

illuminated just one-eighth of the time, but because the eye cannot perceive the darkening of a digit

before it is illuminated again, the digit appears continuously illuminated. If the update, or “refresh”,

rate is slowed to around 45Hz, a flicker can be noticed in the display.

For each of the four digits to appear bright and continuously illuminated, all eight digits should be

driven once every 1 to 16ms, for a refresh frequency of about 1 KHz to 60Hz. For example, in a 62.5Hz

refresh scheme, the entire display would be refreshed once every 16ms, and each digit would be

illuminated for 1/8 of the refresh cycle, or 2ms. The controller must drive low the cathodes with the

correct pattern when the corresponding anode signal is driven high. To illustrate the process, if AN0 is

asserted while CB and CC are asserted, then a “1” will be displayed in digit position 1. Then, if AN1 is

asserted while CA, CB, and CC are asserted, a “7” will be displayed in digit position 2. If AN0, CB, and

CC are driven for 4ms, and then AN1, CA, CB, and CC are driven for 4ms in an endless succession, the

display will show “71” in the first two digits. An example timing diagram for a four-digit controller is

shown in Figure 2.15.

Image 2.15: Four Digit Scanning Display Controller Timing Diagram

 Tri-Color LED
The Nexys A7 board contains two tri-color LEDs. Each tri-color LED has three input signals that drive

the cathodes of three smaller internal LEDs: one red, one blue, and one green. Driving the signal

corresponding to one of these colors high will illuminate the internal LED. The input signals are driven

by the FPGA through a transistor, which inverts the signals. Therefore, to light up the tri-color LED, the

corresponding signals need to be driven high. The tri-color LED will emit a color dependent on the

combination of internal LEDs that are currently being illuminated. For example, if the red and blue

signals are driven high, and green is driven low, the tri-color LED will emit a purple color.

Note: Digilent strongly recommends the use of pulse-width modulation (PWM) when driving the tri-

color LEDs. Driving any of the inputs to a steady logic ‘1’ will result in the LED being illuminated at an

uncomfortably bright level. You can avoid this by ensuring that none of the tri-color signals are driven

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 22 - Arnout Van Daele

with more than a 50% duty cycle. Using PWM also greatly expands the potential color palette of the

tri-color led. Individually adjusting the duty cycle of each color between 50% and 0% causes the

different colors to be illuminated at different intensities, allowing virtually any color to be displayed.

2.13. Pmod Ports
The Pmod ports are arranged in a 2×6 right-angle, and are 100-mil female connectors that mate with

standard 2×6 pin headers. Each 12-pin Pmod port provides two 3.3V VCC signals (pins 6 and 12), two

Ground signals (pins 5 and 11), and eight logic signals, as shown in Figure 10.1. The VCC and Ground

pins can deliver up to 1A of current. Pmod data signals are not matched pairs, and they are routed

using best-available tracks without impedance control or delay matching. Pin assignments for the

Pmod I/O connected to the FPGA are shown in Table 2.4.

Image 2.16: Pmod Connectors; Front View, as Loaded on PCB

Pmod JA Pmod JB Pmod JC Pmod JD Pmod XDAC

JA1: C17 JB1: D14 JC1: K1 JD1: H4 JXADC1: A13
(AD3P)

JA2: D18 JB2:F16 JC2: F6 JD2: H1 JXADC2: A15
(AD10P)

JA3: E18 JB3: G16 JC3:J2 JD3: G1 JXADC3: B16
(AD2P)

JA4: G17 JB4: H14 IC4: G6 JD4: G3 JXADC4: B18
(AD11P)

JA7: D17 JB7:E16 JC7: E7 JD7: H2 JXADC7: A14
(AD3N)

JA8: E17 JB8: F13 JC8: J3 JD8: G4 JXADC8: A16
(AD10N)

JA9: F18 JB9: G13 JC9: J4 JD9: G2 JXADC9: B17
(AD2N)

JA10: G18 JB10: H16 JC10: E6 JD10: F3 JXADC10: A18
(AD11N)

Table 2.4: Nexys A7 Pmod pin assignments.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 23 - Arnout Van Daele

 Dual Analog/Digital Pmod
The on-board Pmod expansion connector labeled “JXADC” is wired to the auxiliary analog input pins

of the FPGA. Depending on the configuration, this connector can be used to input differential analog

signals to the analog-to-digital converter inside of the Artix-7 (XADC). Any or all pairs in the connector

can be configured either as analog input or digital input-output.

The Dual Analog/Digital Pmod on the Nexys A7 differs from the rest in the routing of its traces. The

eight data signals are grouped into four pairs, with the pairs routed closely coupled for better analog

noise immunity. Furthermore, each pair has a partially loaded anti-alias filter laid out on the PCB. The

filter does not have capacitors C60-C63. In designs where such filters are desired, the capacitors can

be manually loaded by the user.

The XADC core within the Artix-7 is a dual channel 12-bit analog-to-digital converter capable of

operating at 1 MSPS. Either channel can be driven by any of the auxiliary analog input pairs connected

to the JXADC header. The XADC core is controlled and accessed from a user design via the Dynamic

Reconfiguration Port (DRP). The DRP also provides access to voltage monitors that are present on each

of the FPGA’s power rails, and a temperature sensor that is internal to the FPGA. For more information

on using the XADC core, refer to the Xilinx document titled “7 Series FPGAs and Zynq-7000 All

Programmable SoC XADC Dual 12-Bit 1 MSPS Analog-to-Digital Converter.”

2.14. MicroSD Slot
The Nexys A7 provides a microSD slot for both FPGA configuration and user access. The on-board

Auxiliary Function microcontroller shares the SD card bus with the FPGA. Before the FPGA is configured

the microcontroller must have access to the SD card via SPI. Once a bit file is downloaded to the FPGA

(from any source), the microcontroller power cycles the SD slot and relinquishes control of the bus.

This enables any SD card in the slot to reset its internal state machines and boot up in SD native bus

mode. All of the SD pins on the FPGA are wired to support full SD speeds in native interface mode, as

shown in Figure 2.17. The SPI is also available, if needed. Once control over the SD bus is passed from

the microcontroller to the FPGA, the SD_RESET signal needs to be actively driven low by the FPGA to

power the microSD card slot. For information on implementing an SD card controller, refer to the SD

card specification available at www.sdcard.org.

Image 2.17: Artix-7 microSD Card Connector Interface

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 24 - Arnout Van Daele

2.15. Temperature Sensor
The Nexys A7 includes an Analog Device ADT7420 temperature sensor. The sensor provides up to 16-

bit resolution with a typical accuracy better than 0.25 degrees Celsius. The interface between the

temperature sensor and FPGA is shown in Figure 2.18.

Image 2.18: Temperature Sensor Interface

 I2C Interface
The ADT7420 chip acts as a slave device using the industry standard I²C communication scheme. To

communicate with ADT7420 chip, the I²C master must specify a slave address (0x4B) and a flag

indicating whether the communication is a read (1) or a write (0). Once specifications are made for

communication, a data transfer takes place. For ADT7420, the data transfer should consist of the

address of the desired device register followed by the data to be written to the specified register. To

read from a register, the master must write the desired register address to the ADT7420, then send an

I²C restart condition, and send a new read request to the ADT7420. If the master does not generate a

restart condition prior to attempting the read, the value written to the address register will be reset

to 0x00. As some registers store 16-bit values as 8-bit register pairs, the ADT7420 will automatically

increment the address register of the device when accessing certain registers, such as the temperature

registers and the threshold registers. This allows for the master to use a single read or write request

to access both the low and high bytes of these registers. A complete listing of registers and their

behavior can be found in the ADT7420 datasheet available on the Analog Devices website.

2.16. Accelerometer
The Nexys A7 includes an Analog Device ADXL362 accelerometer. The ADXL362 is a 3-axis MEMS

accelerometer that consumes less than 2μA at a 100Hz output data rate and 270nA when in motion

triggered wake-up mode. Unlike accelerometers that use power duty cycling to achieve low power

consumption, the ADXL362 does not alias input signals by under-sampling; it samples the full

bandwidth of the sensor at all data rates. The ADXL362 always provides 12-bit output resolution; 8-bit

formatted data is also provided for more efficient single-byte transfers when a lower resolution is

sufficient. Measurement ranges of ±2 g, ±4 g, and ±8 g are available with a resolution of 1 mg/LSB on

the ±2 g range. The FPGA can talk with the ADXL362 via SPI interface. While the ADXL362 is in

Measurement Mode, it continuously measures and stores acceleration data in the X-data, Y-data, and

Z-data registers. The interface between the FPGA and accelerometer can be seen in Figure 2.19.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 25 - Arnout Van Daele

Image 2.19: Accelerometer Interface

 SPI Interface
The ADXL362 acts as a slave device using an SPI communication scheme. The recommended SPI clock

frequency ranges from 1 MHz to 5 MHz. The SPI operates in SPI mode 0 with CPOL = 0 and CPHA = 0.

All communications with the device must specify a register address and a flag that indicate whether

the communication is a read or a write. Actual data transfer always follows the register address and

communication flag. Device configuration can be performed by writing to the control registers within

the accelerometer. Access accelerometer data by reading the device registers.

 Interrupts
Several of the built-in functions of the ADXL362 can trigger interrupts that alert the host processor of

certain status conditions. Interrupts can be mapped to either (or both) of two interrupt pins (INT1,

INT2). Both of these pins require internal FPGA pull-ups when used. For more details about the

interrupts, see the ADXL362 datasheet.

2.17. Microphone
The Nexys A7 board includes an omnidirectional MEMS microphone. The microphone uses an Analog

Device ADMP421 chip which has a high signal to noise ratio (SNR) of 61dBA and high sensitivity of -26

dBFS. It also has a flat frequency response ranging from 100Hz to 15 kHz. The digitized audio is output

in the pulse density modulated (PDM) format. The component architecture is shown in Figure 2.20.

Image 2.20: Microphone Block Diagram

2.18. Built-In Self-Test
A demonstration configuration is loaded into the Quad-SPI flash device on the Nexys A7 board during

manufacturing. The source code and prebuilt bitstream for this design are available for download from

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 26 - Arnout Van Daele

the Digilent website. If the demo configuration is present in the flash and the Nexys A7 board is

powered on in SPI mode, the demo project will allow basic hardware verification. Here is an overview

of how this demo drives the different onboard components:

• The user LEDs are illuminated when the corresponding user switch is placed in the on

position.

• The tri-color LEDs are controlled by some of the user buttons. Pressing BTNL, BTNC, or BTNR

causes them to illuminate either red, green, or blue, respectively. Pressing BTND causes them

to begin cycling through many colors. Repeatedly pressing BTND will turn the two LEDs on or

off.

• Pressing BTNU will trigger a 5 second recording from the onboard PDM microphone. This

recording is then immediately played back on the mono audio out port. The status of the

recording and playback is displayed on the user LEDs. The recording is saved in the DDR2

memory.

• The VGA port displays feedback from the onboard microphone, temperature sensors,

accelerometer, RGB LEDs, and USB Mouse.

• Connecting a mouse to the USB-HID Mouse port will allow the pointer on the VGA display to

be controlled. Only mice compatible with the Boot Mouse HID interface are supported.

• The seven-segment display will display a moving snake pattern.[1]

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 27 - Arnout Van Daele

3. VHDL and the Xilinx Vivado Design Suite

3.1. Introduction
The VHSIC Hardware Description Language (VHDL) is a hardware description language (HDL) that can

model the behavior and structure of digital systems at multiple levels of abstraction, ranging from the

system level down to that of logic gates, for design entry, documentation, and verification purposes.

VHDL is named after the United States Department of Defense program that created it, the Very High-

Speed Integrated Circuits Program (VHSIC). In the early 1980s, the VHSIC Program sought a new HDL

for use in the design of the integrated circuits it aimed to develop. The product of this effort was VHDL

Version 7.2, released in 1985. The effort to standardize it as an IEEE standard began in the following

year.[2]

3.2. Different levels of representation and abstraction
A digital system can be represented at different levels of abstraction [1]. This keeps the description

and design of complex systems manageable. Figure 3.1 shows different levels of abstraction.

Image 3.1: Different levels of abstraction: Behavioral, Structural and Physical

The highest level of abstraction is the behavioral level that describes a system in terms of what it does

(or how it behaves) rather than in terms of its components and interconnection between them. A

behavioral description specifies the relationship between the input and output signals. This could be a

Boolean expression or a more abstract description such as the Register Transfer or Algorithmic level.

As an example, let us consider a simple circuit that warns car passengers when the door is open or the

seatbelt is not used whenever the car key is inserted in the ignition lock At the behavioral level this

could be expressed as,

Warning = Ignition_on AND (Door_open OR Seatbelt_off)

The structural level, on the other hand, describes a system as a collection of gates and

components that are interconnected to perform a desired function. A structural description

could be compared to a schematic of interconnected logic gates. It is a representation that is

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 28 - Arnout Van Daele

usually closer to the physical realization of a system. For the example above, the structural

representation is shown in Figure 3.2 below.

Image 3.2: Structural representation of a “buzzer” circuit.

VHDL allows one to describe a digital system at the structural or the behavioral level. The

behavioral level can be further divided into two kinds of styles: Data flow and Algorithmic. The

dataflow representation describes how data moves through the system. This is typically done

in terms of data flow between registers (Register Transfer level). The data flow model makes

use of concurrent statements that are executed in parallel as soon as data arrives at the input.

On the other hand, sequential statements are executed in the sequence that they are

specified. VHDL allows both concurrent and sequential signal assignments that will determine

the manner in which they are executed. Examples of both representations will be given later.

3.3. Basic Structure of a VHDL file
A digital system in VHDL consists of a design entity that can contain other entities that are then

considered components of the top-level entity. Each entity is modeled by an entity declaration and an

architecture body. One can consider the entity declaration as the interface to the outside world that

defines the input and output signals, while the architecture body contains the description of the entity

and is composed of interconnected entities, processes and components, all operating concurrently, as

schematically shown in Figure 3.3 below. In a typical design there will be many such entities connected

together to perform the desired function.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 29 - Arnout Van Daele

Image 3.3: A VHDL entity consisting of an interface (entity declaration) and a body (architectural

description).

VHDL uses reserved keywords that cannot be used as signal names or identifiers. Keywords and user-

defined identifiers are case insensitive.

Lines with comments start with two adjacent hyphens (--) and will be ignored by the compiler. VHDL

also ignores line breaks and extra spaces. VHDL is a strongly typed language which implies that one has

always to declare the type of every object that can have a value, such as signals, constants and

variables.

The entity declaration defines the NAME of the entity and lists the input and output ports. The general

form is as follows,

entity NAME_OF_ENTITY is [generic generic_declarations);]
 port (signal_names: mode type;
 signal_names: mode type;
 :
 signal_names: mode type);
end [NAME_OF_ENTITY] ;

a) Entity Declaration

An entity always starts with the keyword entity, followed by its name and the keyword is. Next

are the port declarations using the keyword port. An entity declaration always ends with the

keyword end, optionally followed by the name of the entity.

• The NAME_OF_ENTITY is a user-selected identifier

• signal_names consists of a comma separated list of one or more user-selected

identifiers that specify external interface signals.

• mode: is one of the reserved words to indicate the signal direction:

o in – indicates that the signal is an input

o out – indicates that the signal is an output of the entity whose value can only

be read by other entities that use it.

o buffer – indicates that the signal is an output of the entity whose value can be

read inside the entity’s architecture

o inout – the signal can be an input or an output.

• type: a built-in or user-defined signal type. Examples of types are bit, bit_vector,

Boolean, character, std_logic, and std_ulogic.

o bit – can have the value 0 and 1

o bit_vector – is a vector of bit values (e.g. bit_vector (0 to 7)

o std_logic, std_ulogic, std_logic_vector, std_ulogic_vector: can have 9 values to

indicate the value and strength of a signal. Std_ulogic and std_logic are

preferred over the bit or bit_vector types.

o boolean – can have the value TRUE and FALSE

o integer – can have a range of integer values

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 30 - Arnout Van Daele

o real – can have a range of real values

o character – any printing character

o time – to indicate time

• generic: generic declarations are optional and determine the local constants used for

timing and sizing (e.g. bus widths) the entity. A generic can have a default value. The

syntax for a generic follows,

generic (
constant_name: type [:=value] ;
constant_name: type [:=value] ;
:
constant_name: type [:=value]);

For the example of Figure 3.2 above, the entity declaration looks as follows.

-- comments: example of the buzzer circuit of fig. 2
entity BUZZER is
 port (DOOR, IGNITION, SBELT: in std_logic;

 WARNING: out std_logic);
 end BUZZER;

The entity is called BUZZER and has three input ports, DOOR, IGNITION and SBELT and one

output port, WARNING. Notice the use and placement of semicolons! The name BUZZER is an

identifier. Inputs are denoted by the keyword in, and outputs by the keyword out. Since VHDL

is a strongly typed language, each port has a defined type. In this case, we specified the

std_logic type. This is the preferred type of digital signals. In contrast to the bit type that can

only have the values ‘1’ and ‘0’, the std_logic and std_ulogic types can have nine values. This

is important to describe a digital system accurately including the binary values 0 and 1, as well

as the unknown value X, the uninitialized value U, “-” for don’t care, Z for high impedance, and

several symbols to indicate the signal strength (e.g. L for weak 0, H for weak 1, W for weak

unknown - see section on Enumerated Types). The std_logic type is defined in the

std_logic_1164 package of the IEEE library. The type defines the set of values an object can

have. This has the advantage that it helps with the creation of models and helps reduce errors.

For instance, if one tries to assign an illegal value to an object, the compiler will flag the error.

b) Architecture body

The architecture body specifies how the circuit operates and how it is implemented. As

discussed earlier, an entity or circuit can be specified in a variety of ways, such as behavioral,

structural (interconnected components), or a combination of the above.

The architecture body looks as follows,

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 31 - Arnout Van Daele

architecture architecture_name of NAME_OF_ENTITY is
-- Declarations
 -- components declarations
 -- signal declarations
 -- constant declarations
 -- function declarations
 -- procedure declarations
 -- type declarations

:

begin
-- Statements

 :

end architecture_name;

The architecture body for the example of Figure 3.2, described at the behavioral level, is

given below,

Architecture behavioral of BUZZER is
begin

WARNING <=(not DOOR and IGNITION) or (not SBELT and IGNITION);
 end behavioral;

The header line of the architecture body defines the architecture name, e.g. behavioral, and

associates it with the entity, BUZZER. The architecture name can be any legal identifier. The

main body of the architecture starts with the keyword begin and gives the Boolean expression

of the function. We will see later that a behavioral model can be described in several other

ways. The “<= ” symbol represents an assignment operator and assigns the value of the

expression on the right to the signal on the left. The architecture body ends with an end

keyword followed by the architecture name.

c) Library and Packages: library and use keywords

A library can be considered as a place where the compiler stores information about a design

project. A VHDL package is a file or module that contains declarations of commonly used

objects, data type, component declarations, signal, procedures and functions that can be

shared among different VHDL models.

Mentioned earlier, std_logic is defined in the package ieee.std_logic_1164 in the ieee library.

In order to use the std_logic one needs to specify the library and package. This is done at the

beginning of the VHDL file using the library and the use keywords as follows:

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 32 - Arnout Van Daele

library ieee;

use ieee.std_logic_1164.all;

The .all extension indicates to use all of the ieee.std_logic_1164 package.

The Xilinx Foundation Express comes with several packages.

ieee Library:

• std_logic_1164 package: defines the standard datatypes

• std_logic_arith package: provides arithmetic, conversion and comparison functions

for the signed, unsigned, integer, std_ulogic, std_logic and std_logic_vector types

• std_logic_unsigned

• std_logic_misc package: defines supplemental types, subtypes, constants and

functions for the std_logic_1164 package.

To use any of these one must include the library and use clause:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

3.4. Lexical Elements of VHDL
a) Identifiers

Identifiers are user-defined words used to name objects in VHDL models. When choosing an identifier

one needs to follow these basic rules:

• May contain only alpha-numeric characters (A to Z, a to z, 0-9) and the underscore (_)

character

• The first character must be a letter and the last one cannot be an underscore.

• An identifier cannot include two consecutive underscores.

• An identifier is case insensitive (ex. And2 and AND2 or and2 refer to the same object)

• An identifier can be of any length.

b) Keywords (Reserved words)

Certain identifiers are used by the system as keywords for special use such as specific constructs. These

keywords cannot be used as identifiers for signals or objects we define. We have seen several of these

reserved words already such as in, out, or, and, port, map, end, etc.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 33 - Arnout Van Daele

c) Numbers

The default number representation is the decimal system. VHDL allows integer literals and real literals.

Integer literals consist of whole numbers without a decimal point, while real literals always include a

decimal point. Exponential notation is allowed using the letter “E” or “e”. For integer literals the

exponent must always be positive. Examples are:

Integer literals: 12 10 256E3 12e+6

Real literals: 1.2 256.24 3.14E-2

The number –12 is a combination of a negation operator and an integer literal.

To express a number in a base different from the base “10”, one uses the following convention:

base#number#. A few examples follow.

Base 2: 2#10010# (representing the decimal number “18”)

Base 16: 16#12#

Base 8: 8#22#

Base 2: 2#11101# (representing the decimal number “29”)

Base 16: 16#1D#

Base 8: 8#35#

To make the readability of large numbers easier, one can insert underscores in the numbers

as long as the underscore is not used at the beginning or the end.

2#1001_1101_1100_0010#

215_123

d) Characters, Strings and Bit Strings

To use a character literal in a VHDL code, one puts it in a single quotation mark, as shown in

the examples below:

‘a’, ‘B’, ‘,’

On the other hand, a string of characters are placed in double quotation marks as shown in

the following examples:

“This is a string”,

“To use a double quotation mark inside a string, use two double quotation marks”

“This is a “”String””.”

Any printing character can be included inside a string.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 34 - Arnout Van Daele

A bit-string represents a sequence of bit values. In order to indicate that this is a bit string, one

places the ‘B’ in front of the string: B”1001”. One can also use strings in the hexagonal or octal

base by using the X or O specifiers, respectively. Some examples are:

Binary: B”1100_1001”, b”1001011”

Hexagonal: X”C9”, X”4b”

Octal: O”311”, o”113”

3.5. Data Objects: Signals, Variables and Constants

A data object is created by an object declaration and has a value and type associated with it. An object

can be a Constant, Variable, Signal or a File. Up to now we have seen signals that were used as input

or output ports or internal nets. Signals can be considered wires in a schematic that can have a current

value and future values, and that are a function of the signal assignment statements. On the other

hand, Variables and Constants are used to model the behavior of a circuit and are used in processes,

procedures and functions, similarly as they would be in a programming language. Following is a brief

discussion of each class of objects

 Signal
Signals are declared outside the process using the following statement:

signal list_of_signal_names: type [:= initial value] ;

Examples:

signal SUM, CARRY: std_logic;
signal CLOCK: bit;
signal TRIGGER: integer :=0;
signal DATA_BUS: bit_vector (0 to 7);
signal VALUE: integer range 0 to 100;

Signals are updated when their signal assignment statement is executed, after a certain delay, as

illustrated below,

SUM <= (A xor B) after 2 ns;

If no delay is specified, the signal will be updated after a delta delay. One can also specify multiple

waveforms using multiple events as illustrated below,

signal waveform : std_logic;

waveform <= ‘0’, ‘1’ after 5ns, ‘0’ after 10ns, ‘1’ after 20 ns;

 Variable
A variable can have a single value, as with a constant, but a variable can be updated using a variable

assignment statement. The variable is updated without any delay as soon as the statement is executed.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 35 - Arnout Van Daele

Variables must be declared inside a process (and are local to the process). The variable declaration is

as follows:

variable list_of_variable_names: type [:= initial value] ;

A few examples follow:

variable CNTR_BIT: bit :=0;
variable VAR1: boolean :=FALSE;
variable SUM: integer range 0 to 256 :=16;
variable STS_BIT: bit_vector (7 downto 0);

The variable SUM, in the example above, is an integer that has a range from 0 to 256 with initial value

of 16 at the start of the simulation. The fourth example defines a bit vector or 8 elements: STS_BIT(7),

STS_BIT(6),… STS_BIT(0).

A variable can be updated using a variable assignment statement such as

Variable_name := expression;

As soon as the expression is executed, the variable is updated without any delay.

 Constant
A constant can have a single value of a given type and cannot be changed during the simulation. A

constant is declared as follows,

constant list_of_name_of_constant: type [:= initial value] ;

where the initial value is optional. Constants can be declared at the start of an architecture and can

then be used anywhere within the architecture. Constants declared within a process can only be used

inside that specific process.

constant RISE_FALL_TME: time := 2 ns;
constant DELAY1: time := 4 ns;
constant RISE_TIME, FALL_TIME: time:= 1 ns;
constant DATA_BUS: integer:= 16;

3.6. Data types
Each data object has a type associated with it. The type defines the set of values that the object can

have and the set of operations that are allowed on it. The notion of type is key to VHDL since it is a

strongly typed language that requires each object to be of a certain type. In general one is not allowed

to assign a value of one type to an object of another data type (e.g. assigning an integer to a bit type

is not allowed). There are four classes of data types: scalar, composite, access and file types. The scalar

types represent a single value and are ordered so that relational operations can be performed on them.

The scalar type includes integer, real, and enumerated types of Boolean and Character. Examples of

these will be given further on.

a) Data Types defined in the Standard package

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 36 - Arnout Van Daele

VHDL has several predefined types in the standard package as shown in the table below. To use this

package the user has to include the following clause:

library std, work;
use std.standard.all;

Type Range of values Example

bit ‘0’, ‘1’ signal A: bit :=1;

bit_vector an array with each element of type bit signal INBUS: bit_vector(7

downto 0);

boolean FALSE, TRUE variable TEST: Boolean :=FALSE’

character any legal VHDL character (see package

standard); printable characters must be

placed between single quotes (e.g. ‘#’)

variable VAL: character :=’$’;

file_open_kind* read_mode, write_mode, append_mode

file_open_status* open_ok, status_error, name_error,

mode_error

integer range is implementation dependent but

includes at least –(231 – 1) to +(231 – 1)

constant CONST1: integer :=129;

natural integer starting with 0 up to the max

specified in the implementation

variable VAR1: natural :=2;

positive integer starting from 1 up the max

specified in the implementation

variable VAR2: positive :=2;

real* floating point number in the range of –1.0

x 1038 to +1.0x 1038 (can be

implementation dependent. Not

supported by the Foundation synthesis

program.

variable VAR3: real :=+64.2E12;

severity_level note, warning, error, failure

string array of which each element is of the type

character

variable VAR4: string(1 to 12):=

“@$#ABC*()_%Z”;

time* an integer number of which the range is

implementation defined; units can be

variable DELAY: time :=5 ns;

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 37 - Arnout Van Daele

expressed in sec, ms, us, ns, ps, fs, min

and hr. . Not supported by the Foundation

synthesis program

Table 3.1: Types defined in the package Standard of the std library

3.7. Operators
VHDL supports different classes of operators that operate on signals, variables and constants. The

different classes of operators are summarized below.

Class

1. Logical operators and or nand nor xor xnor

2. Relational operators = /= < <= > >=

3. Shift operators sll srl sla sra rol ror

4.Addition operators + = &
5. Unary operators + -
6. Multiplying op. * / mod rem
7. Miscellaneous op. ** abs not

Table 3.2: Different classes of operators

The order of precedence is the highest for the operators of class 7, followed by class 6 with the lowest

precedence for class 1. Unless parentheses are used, the operators with the highest precedence are

applied first. Operators of the same class have the same precedence and are applied from left to right

in an expression.[6][9]

3.8. A 2bit counter as an example
As an example of a simple project in VHDL, we can take a look at a 2 bit counter that has been written

during this thesis as a small exercise.

The counter will consist of 2 LEDs on the board which will count from 0 to 3 in binary, and keep

repeating when reaching the end value (which is 3).

The project consists of several files, which are the following: prescaler.vhd, Counter.vhd,

 Counter_system.vhd, TB_prescaler, TB_Counter and Counter.xdc

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 38 - Arnout Van Daele

Image 3.4: Code of prescaler.vhd

In this file, we take in the clock of the Nexys A7 board, which is 100MHz. This value is way too high to

be able to see the counting with the human eye, so we slow it down to 1Hz. Then we lay this 1Hz

signal to the output of the component.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 39 - Arnout Van Daele

Image 3.5: Code of Counter.vhd

In this file, we create the counting component. It will take in a clock signal, a reset signal and a signal

to know when it can count. The output of the component will be a 2 bit vector which will hold the

count value. As long as countup has the value ‘1’, the counter will count up once every rising clock

edge. The counter can be reset by giving it a ‘1’ on the rst_counter input signal.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 40 - Arnout Van Daele

Image 3.6: Code of Counter_system.vhd

This is the top module of the project and will connect the different signals to each other.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 41 - Arnout Van Daele

Image 3.7: Small shot of the Counter.xdc file

In this file, we connect the signals of the top module to the pins of the FPGA, to connect them to

different components (LEDs, buttons, switches, …) on the Nexys A7 board.

3.9. Vivado Design Suite
Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis of HDL (Hardware

Description Language) designs, superseding Xilinx ISE with additional features for system on a chip

development and high-level synthesis. Vivado represents a ground-up rewrite and re-thinking of the

entire design flow.[3][4]

The Vivado® Design Suite is designed to improve productivity. The tool suite is architected to increase

the overall productivity for designing, integrating, and implementing systems using the Xilinx®

UltraScale™ and 7 series devices, Zynq® UltraScale+™ MPSoC device, and Zynq®-7000 SoC. Xilinx

devices are now much larger and come with a variety of new technology, including stacked silicon

interconnect (SSI) technology, up to 28 gigabyte (GB) high speed I/O interfaces, hardened

microprocessors and peripherals, analog mixed signal, and more. These larger and more complex

devices create multidimensional design challenges, when handled incorrectly, that can prevent the

achievement of faster time-to-market and increased productivity. With the Vivado Design Suite, the

user can accelerate design implementation with place and route tools that analytically optimize for

multiple and concurrent design metrics, such as timing, congestion, total wire length, utilization and

power. The Vivado Design Suite provides the user with design analysis capabilities at each design stage.

This allows for design and tool setting modifications earlier in the design processes where they have

less overall schedule impact, thus reducing design iterations and accelerating productivity.[5]

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 42 - Arnout Van Daele

4. Application development examples

4.1. 4 bit adder
The exercise given by Dr Eng. S. Petrakis was the following:

Design an implementation of a four-bit adder with registers for the operands. Use four (4) seven-

segment LED displays, eight slide switches and three push buttons. The aim of this work is to design a

four-bit adder with carry and display both, the operands and the results, in hexadecimal

representation. It is proposed to create a top module called "Adder" as well as individual modules as

follows:

A. a 2 to 4 decoder (DEC2x4),

B. a 2-bit counter (counter2bits),

C. a quadruple multiplexer 4 in 1 (MUX4x1x4),

D. a converter from hexadecimal to seven-segment display, for the control of the operation of

the 7-segment display (convHex7seg),

E. a four-bit adder with carry-in and carry-out (Adder4bits),

F. a frequency divider (prescaler240Hz), and

G. of a four-bit register with parallel loading (register4bits). You will need two of these for the

operands.

In the development card there are two groups of four seven-segment displays each. Choose one group

and make sure that the two 7-segment displays on the left represent the operands and the two on the

right the sum (all in the hexadecimal numbering system). In addition to the reset button, use one

button for the input carry and one to load the values into the registers.

To start this project, a schematic was drawn to figure out the needed components:

Image 4.1: Schematic of the 4 bit adder project

This schematic does not have the registers, as those were added later on during the development of

this project.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 43 - Arnout Van Daele

Image 4.2: four_bit_adder component

In this component, we describe the 4 bit adder. It has 3 inputs (A, B and Cin) and 2 outputs (S and

Cout). When we want to test this component before uploading it to the Nexys A7 board, we can write

a simulation component, also called a testbench, to be able to simulate the code that was just written.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 44 - Arnout Van Daele

Image 4.3: Small shot of four_bit_adder testbench

When we then press the simulate button, we get the following output:

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 45 - Arnout Van Daele

Image 4.4: Output of the four_bit_adder testbench

Here, we can check and confirm if the code we had just written provides the output we are expecting,

or if there is a mistake in the code. It is way quicker than uploading the code to the Nexys A7 board

every time we change a small portion of the code and provides detailed output of what is happening.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 46 - Arnout Van Daele

Image 4.5: multiplexer component

On figure 4.5, we can see the multiplexer component that was needed for this project. It has 6 inputs

(A, B, C, D, S0 and S1) and 1 output (Z). It will take the signals from the adder as input and put them at

the output one by one to be able to display them on the 7-segment display.

The whole working of this 4-bit adder to 7 segment works on the 2 bit counter, which is driven by the

prescaler. An explanation for the working of the prescaler was given in chapter 3. The prescaler will

drive the 2-bit counter, which in turn will drive the multiplexer and decoder. The code of the decoder

can be seen on figure 4.6.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 47 - Arnout Van Daele

Image 4.6: decoder component

This decoder component has 1 input (d, a 2-bit logic vector) and 1 output (y, a 4-bit logic vector). It will

take in the 2-bit counter value and will in turn put one of 4 bits on the output high, one by one. Using

this decoder, we can turn on one 7 segment display at a time, so we can multiplex the 4 used 7 segment

displays. A little explanation on multiplexing will follow later. This way, only 7 pins of the

microcontroller are used to control the cathodes of the segments, while 4 pins (1 pin for each used 7

segment display) are used to control the common anode of each display.

 A word on multiplexing
Multiplexed displays are electronic display devices where the entire display is not driven at one time.

Instead, sub-units of the display are multiplexed, this means, driven one at a time, but this happens so

quickly, it makes the viewer believe the entire display is continuously active. [7][8]

4.2. Temperature Sensor
The exercise provided was the following: Use the embedded temperature sensor of the development

card and display the temperature on seven-segment displays with decimal values in Celsius grades.

To start, the components TempSensorCtl and TWICtl, provided by Digilent, were used to interface with

the temperature sensor on the Nexys A7 board. This made it much easier to work with the temperature

sensor, as there was no need to write our own interfacing module.

The components were gathered from the Digilent GitHub. Here we can find the whole project that is

played on the Nexys A7 board whenever the user powers it on the first time before writing code to it.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 48 - Arnout Van Daele

The multiplexer and decoder from the 4 bit adder were used to be able to drive the 7 segment displays,

this in turn also saved a lot of time and work. But the difference in this project, was that the values

have to be displayed in decimal, and not hexadecimal. To make this work, we had to find a solution for

when a value is higher than 9, and in turn would need 2 seven segment displays to be displayed.

The solution for this, was to split the value at the decimal point, and recombine these 2 sides at the

end. This was done through 2 components; binary_to_BCD_lp and binary_to_BCD_rp, where lp stands

for left part and rp for right part.

Image 4.7: binary_to_BCD_rp component

In figure 4.7, we see the right part component. The input (4 bits) is converted to a decimal value and

then delivered at the output.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 49 - Arnout Van Daele

Image 4.8: Hexadecimal to decimal conversion

The calculation for the conversion from hexadecimal to decimal can be seen on figure 4.8. An example

can be:

HEX Value: D -> 1101

So: 1 * 0,5 + 1 * 0,25 + 0 * 0,125 + 1 * 0,0625 = 0,8125 (0,8 rounded)

A working project can be seen on figure 4.7. Here, the values were still in hexadecimal, as this image

was taken during the development of the project.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 50 - Arnout Van Daele

Image 4.9: temperature reading in hexadecimal

To be able to read this temperature, the user performs the following calculations:

Hex value: 0x1DC

Binary value: 0 0000 0001 1101 1100

Calculation: 16^1 * 1 + 16^0 * 13 + 16^-1 * 12 = 29,75

Decimal value: 29,75

After it was made sure the sensor readings were correct, the conversion from hexadecimal to decimal

was made, as this was not an easy task, it was done in steps.

4.3. Accelerometer
The exercise provided was the following:

Use the embedded accelerometer of the development card and turn on or off specific LEDs depending

of the inclination of the card in comparison with the horizontal position.

Again, components provided by Digilent were used to make it easier to interface with the

accelerometer sensor. These files are ADXL362Ctrl and SPI_If.

As the board tilts to one side or the other, the LEDs on each side, and the LEDs in the middle, to show

if the board was sitting horizontal, would be used to show the position.

To make this easy, the LEDs were mapped to a 16 bit array, each LED could on or off, 1 or 0. The

accelerometer sensor outputs a value from -211 to 211 – 1. This means the output will be from -2048 to

2047.

If the value would be smaller than -1000, the left most LEDs would light up. If it was higher than 1000,

the most right LEDs would light up, and if the value was around 0, it would be the middle LEDs.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 51 - Arnout Van Daele

Image 4.10: acc_to_leds component

On figure 4.10, we can see the implementation of this.

While in theory, this seemed to be a perfect solution, this didn’t work in practice. Only one side of LEDs

was lit up, and didn’t turn off while moving the board around. Because of time limitations, no solution

to this was found.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 52 - Arnout Van Daele

5. Conclusions

Reading the above, it becomes clear that the introduction of FPGAs in the implementation of

digital systems requires the use of efficient design tools. Leading companies in the production

of FPGA devices are Xilinx, Intel (acquired by Altera) and Lattice Semiconductor, each of which

has its own commercial design tool. Specifically, Xilinx has the Vivado Design Suite which

replaced the obsolete ISE.

The purpose of this final project was to study the features and capabilities offered by Digilent's

Nexys A7 development board that contains Xilinx FPGA Artix-7 and is compatible with both

ISE and Vivado (free Webpack version). Among other things, the development board has 16

slide switches, 16 LEDs, 8 7-segment displays, 5 buttons and incorporates multiple peripherals

such as temperature sensor, digital microphone etc. which make it possible to implement

applications without the use of other components.

So, using Vivado, version 2020.2, three exercises were developed, which were implemented

in Xilinx's FPGA (XC7A100T-1CSG324C). The board has a variety of peripherals and ports whose

use could be tested with the development of other new exercises.

Indicatively, the analog temperature sensor (ADT7420) can be used which measures

temperatures from -40 ° C to 150 ° C and communicates via the I²C standard. It has 14 8-bit

registers, of which 9 are temperature registers. After the appropriate registrations have been

made in some registers, it is then possible to read the values of the temperature registers

TEMP_H, TEMP_L and display these values in the LEDs, in the 7-segment displays or even on

a screen via the VGA connection of the board.

Another exercise could be to use the microphone containing the analog ADMP421 where the

digitized sound is received via pulse modulation (PDM). It would even be interesting to use

the two tricolor LEDs of the development board, which are driven via pulse width modulation

(PWM).

Also, where appropriate, a mouse and / or keyboard that can be connected via the USB port

provided could be used.

Finally, unlimited possibilities for various applications are provided by the existing PMOD

ports, in case the laboratory supplies the appropriate modules, such as a Global Positioning

Receiver (Pmod GPS: GPS Receiver), or an ultrasonic distance meter (Pmod MAbotixar: Max

Ultrasonic Range Finder) etc.

Hellenic Mediterranean University Electronic Engineering Department

Final Project - 53 - Arnout Van Daele

References

Books

[9] V. A. Pedroni, Circuit Design and Simulation with VHDL. The MIT Press, 2010

Webpages

[1] https://reference.digilentinc.com/programmable-logic/nexys-a7/reference-manual

[2] https://en.wikipedia.org/wiki/VHDL

[3] https://en.wikipedia.org/wiki/Xilinx_Vivado

[4] https://www.xilinx.com/products/design-tools/vivado.html

[6] https://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html

[7] https://en.wikipedia.org/wiki/Multiplexing

[8] https://en.wikipedia.org/wiki/Multiplexed_display

Other

[5] Xilinx Document Navigator : Vivado Design Suite User Guide: Getting Started

https://reference.digilentinc.com/programmable-logic/nexys-a7/reference-manual
https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/Xilinx_Vivado
https://www.xilinx.com/products/design-tools/vivado.html
https://www.seas.upenn.edu/~ese171/vhdl/vhdl_primer.html
https://en.wikipedia.org/wiki/Multiplexing
https://en.wikipedia.org/wiki/Multiplexed_display

