
 

 

SECURING ACCESS IN EMBEDDED SYSTEMS VIA DMA 

PROTECTION AND LIGHT-WEIGHT CRYPTOGRAPHY 

 
 

by 

 
 

FILIPPOS – GEORGE KOLYMPIANAKIS 
 

 

THESIS 

 
 

submitted in partial fulfillment of the requirements for the 

degree MASTER OF SCIENCE 

 

 

Hellenic Mediterranean University  

Department of Electrical and Computer Engineering 

 

 

 

 

 

 

 

 

 

Approved by 

 

Supervisor: 

Dr Kornaros George 

 

 



 

 

Abstract 
Embedded systems are the driving force for technological development in many 

domains such as automotive, healthcare and industrial control. Security is an important aspect 

of embedded system design. As more and more computational and networked devices are 

integrated into all aspects of our lives security becomes critical for the dependability of all smart 

or intelligent systems built upon these embedded systems. Security is provided through a DMA 

controller which is operated under certain constraints and with the use of light-weight 

cryptography as an extended mechanism to safeguard the confidentiality and integrity of stored 

and transmitted information.  

Direct memory access (DMA) protection is a necessity, especially in case of RAM 

memories where the most of accessible data are located. Different devices or users have 

different rights to data contained in each memory, which is the main reason to use a firewall as 

a method to protect the data being accessed. Penetrating a device from high speed ports that 

permit DMA is an important issue in embedded systems. A DMA firewall prevents physical 

connections from DMA attacks so that each device has restricted access for DMA transfers 

using memory limitations and device ID. In that way attackers are prevented from stealing data 

or cryptographic keys, install or run spyware and other exploits or modify the system to allow 

backdoors or other malware 
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1. Introduction 

An embedded system is a computer system with a dedicated function within a larger 

mechanical or electrical system, often with real-time computing constraints [54]. Embedded 

systems control many devices in common use today and ninety-eight percent of all 

microprocessors are manufactured as components of embedded systems [54].  Applications of 

embedded systems include smartphones, mp3 players, video game consoles, digital cameras, 

GPS receivers and technically every device that takes an input and can produce an output and 

functions as an independent system [54]. 

Direct Memory Access (DMA) is feature of computer hardware that allows devices to 

gain access to the main bus linking the processor to the system memory and move data directly 

between the main memory and another part of the system [57]. A dedicated DMA controller, 

often integrated in the processor, can be configured to move data between main memory and a 

range of subsystems, including another part of main memory [57]. 

Security and trusted operation of cyberphysical systems [59][64][65] is increasingly an 

important concern in modern digitalized, software-dominated internet-of-everything. Various 

techniques have been proposed to guarantee security for embedded devices, which focus to 

automotive systems and network communications [58][60][61][63] but also to protect internal 

execution of applications from faulty or malicious behavior [66][62]. 

 

1.1 General 

Many embedded systems have internal and external interfaces that produce or consume 

data [57]. These can be simple UARTs, external bus devices or complicated video and graphics 

devices [57]. A key part of any embedded system is ensuring that data flowing in to and out of 

these interfaces is handled properly and not lost or corrupted [57]. A simple way of moving the 

data between the peripheral device and main memory is to use the main processor to perform 

load or store operations for each byte or word of data to be moved [57]. The processor must 

wait for the peripheral to be ready before transferring each byte or word [57]. For many systems 

this is not a good use of processing time as the processor may be spending more time than 

necessary moving data between main memory and its external devices [57]. The alternative 

way is to set up a DMA transfer that gives the job of moving data to a special-purpose device 

in the system [57]. Once the processor has set up the transfer it can be occupied in his main task 

while the transfer is in progress or wait to be notified when the transfer has finished [57].      



 

 

The obvious benefit of moving data using DMA transfers is that the processor can do 

something else while the transfer is in progress. However, using DMA sometimes has other 

advantages depending on the hardware involved [57]. These include: 

Data transformations – applications targeted to video or digital signal processing, may be able 

to perform data transformations as part of the DMA transfer. These include byte-order changes 

and 2D block transfers [57]  

Lower power – if the processor load is reduced and there are fewer interrupts it may be possible 

to run the processor at a lower clock rate or even to enter a low power mode while DMA 

transfers are in order [57]. 

Higher data throughput – a given processor may be able to handle more external interfaces 

at higher data rates, or a low-end processor might be able to handle more complicated interfaces 

such as Ethernet or USB [57]. 

The simplest is a known as a single-cycle DMA transfer and is typically used to transfer 

data between devices such as UARTs or audio codecs that produce or consume data a word at 

a time [57]. In this situation the peripheral device uses a control line to signal that it has data to 

transfer or requires new data. The DMA controller obtains access to the system bus, transfers 

the data, and then releases the bus. Access to the bus is granted when the processor, or another 

bus master, is not using the bus. [57]. 

Another type of transfer is a burst transfer. This is used to transfer a block of data in a 

series to the system bus. The transfer starts with a bus request; when this is granted, the data is 

transferred in bursts [57]. The burst size depends on the processor architecture and the 

peripheral, and may be programmable depending on the details of the hardware [57]. The last 

mode of operation is the transparent mode where the CPU never stops to execute its programs 

and the DMA controller transfer data free, but those programs do not use the system buses, so 

each party works on its own [68]. 

While a burst transaction is occurring, the processor will not be able to access the system 

bus. However, preventing the processor from accessing the system bus may cause a delay, 

which can reduce the system performance [57]. To minimize the effects of this problem, the 

DMA controller may release the bus after a fixed number of burst transactions or when a pre-

determined bandwidth limit has been reached. However, if the system needs to perform large 

DMA block transfers the system designer needs to carefully work out the bus bandwidth 

requirements to ensure there are no performance bottlenecks in the hardware or software design 

[57]. 



 

 

Before a DMA transfer can begin the processor must address the DMA controller the 

amount of data and the location to be moved. A DMA transfer usually has these attributes: 

Source address - the address from where the data is transferred, in main memory or the 

peripheral address space 

Destination address - the address to where the data is transferred, in main memory or the 

peripheral address space 

Transfer length - the overall length of the transfer, specified in terms of bytes or words. 

Embedded system security is the reduction of vulnerabilities and protection against 

threats in software running on embedded devices. Like security in most IT fields, embedded 

system security involves a conscientious approach to hardware design and coding as well as 

added security software, an adherence to best practices and consultation with experts [55]. A 

DMA attack is a type of side channel attack in computer security, in which an attacker can 

penetrate a computer or other device, by exploiting the presence of high-speed expansion ports 

that permit direct memory access (DMA) [55].  

Cryptography is about constructing and analyzing protocols that prevent third parties 

from reading private messages [56]. Various aspects in information security such as data 

confidentiality, data integrity, authentication, and non-repudiation are central to modern 

cryptography [56]. Modern cryptography exists at the intersection of the disciplines of 

mathematics, computer science, electrical engineering, communication science, and physics. 

Applications of cryptography include electronic commerce, chip-based payment cards, digital 

currencies, computer passwords, and military communications [56]. 

 

1.2 Motivation 

 An embedded system controlling its peripheral devices and interfaces with the use of 

identification and permission-controlled DMA can provide the secure and reliable 

communication between memory and those peripheral devices. In addition, the use of light 

weight cryptography mechanism provides further more protection in a low-cost design and 

high-speed communication. One high performance DMA module with multiple channels and 

high throughput should provide the security needed through multiple AES hardware blocks 

designed and developed as a part of this thesis.      

 



 

 

1.3 Contribution 

 The main contribution of this thesis is to design a DMA controller with permission rights 

for each device connected using embedded AES cryptographic hardware system for the 

transmitted data. As it will be demonstrated in the following sections, we develop such a system 

which provides a simple but reliable function in transmitting data between memory and 

peripheral devices in a high speed and low-cost design.   

 A device such as this can be used in a wide area of application. In medical applications 

for online patient monitoring (sensitive data and who can access it), in automotive for firmware 

update and memory data protection, smartphone or tablet  memory protection mainly when 

accessing the internet, updating or installing new application, in surveillance system with 

camcorders with the use of id for data protection, in wave generation on real time operating 

systems and generally prevent malware attack. Those are some of the possibilities a system like 

this has to offer. 

 

1.4 Organization 

 The general approach of this work is to establish a secure protected DMA transmission 

between memory and peripheral devices on an embedded system with the use of hardware AES 

cryptography blocks. Both DMA controller and AES blocks are designed and developed as part 

of the work of this thesis. The remainder of this thesis is organized as follows:  

• Chapter 2 states some Basic Principles 

• Chapter 3 examines Embedded Systems Security 

• Chapter 4 introduces a background on related work 

• Chapter 5 analyzes the architecture and design methodology of the hardware and software 

infrastructure that has been developed  

• Chapter 6 presents the performance results and analysis of the system developed as well as 

the comparison with the systems existing 

• Chapter 7 concludes with the summary of this work and directions for future extensions 

 

 

 

 



 

 

2. Basic Principles 

Information security is the practice of protecting information and preventing 

unauthorized/inappropriate access, use, disclosure, disruption, deletion/destruction, corruption, 

modification, inspection, recording or devaluation of information, or at least reducing the 

chance of that happening [67]. The idea is to assure the authenticity, integrity, availability, 

confidentiality, non-repudiation of the data transmitted either when referring on Personal 

Computers, or in this case on Embedded systems [67] [3]. Security of embedded systems is 

creating a lot of issues because of poor security design as well as implementation and resource 

constraint [41]. 

Protection in Embedded systems is an important factor when in stage of designing of 

such systems. As explained in next chapter embedded systems like every device in personal 

computing has a lot of value Constrains, Vulnerabilities and Attacks, so in the stage of 

designing there has to be serious consideration in the methods to be used, cost of the embedded 

device as well as to the performance of the system expected. As observed in many cases the 

most of the attacks on an embedded device was targeting the DMA controller as the most data 

transfers origin from the specified controller. Some basic principles and architectures will be 

described in the sections following below. 

 

2.1 Embedded Systems  

Features demanded in todays embedded systems include acceleration, flexibility, 

personalization, security, privacy, redundancy, scalability, modularity, root-of-trust, PUF-

based keys, longer key sizes, etc. and especially in the case of multi-processor SoC (MPSoC) 

platforms and FPGAs [5]. Most of the SoCs nowadays use a security co-processor designed in 

register transistor level (RTL) on embedded systems developed for Smart grid uses sensors, 

monitoring, communications, automation and computers [6] A common application of 

coprocessors is the acceleration of cryptographic algorithms and gain speed. The purpose of 

designing such platforms is to improve the flexibility, security, reliability, efficiency, and safety 

of those systems [6]. The main idea when developing embedded systems is to achieve lower 

power consumption and lower design or manufacturing cost as much as possible but maintain 

user friendliness, feasibility and expandability [6]. 

Embedded devices transmit a large amount of sensitive data that include bank account 

numbers, passwords, social security numbers, medical records, etc. [7]. An attacker can develop 

malicious applications, thus, when installed on the device can obtain access to private sensitive 



 

 

information [7]. The best way to prevent these applications is to use anti-virus, anti-malware, 

and anti-spyware software which require a high amount of computational power and resources 

[7]; thus, the best way is to use cryptographic algorithms to protect sensitive data on SoC 

devices used in healthcare, home automation or automotive industry [13]. Embedded systems 

in automotive, healthcare and industrial control are progressively getting computationally 

efficient and network enabled, thus, security is becoming crucial for smart and intelligent 

systems built in these embedded systems [30] [41]. 

 

2.2 Direct Memory Access 

Direct Memory Access (DMA) is an attribute of Computer Systems for memory access 

and data transfer between memory and peripherals without the use of CPU [68]. The aim of 

DMA is to remove the load of the CPU so that it can be occupied with other operations. The 

processor initiates the DMA controller by sending the source address, Number of words and 

the destination address of data [53] [68]. Main advantages and modes of operation have been 

described in Chapter one so they will not be discussed further.  

 

Figure 1: Typical DMA 

As the use of DMA has become well known so has the large number of attacks on those 

controllers [69]. Direct memory access (DMA) protection is a necessity, especially in case of 

RAM memories where the most of accessible data that are currently being used by each device 

are located [69]. Penetrating a device from high speed ports that permit DMA is an important 

issue in embedded systems. Attackers use these ports to gain access to physical memory address 

space, acquire the devices purpose, steal data or cryptographic keys, install or run spyware and 

exploits or modify the system to allow backdoors or other malware [69].     



 

 

2.3 Cryptography 

 Modern cryptography depending on the key can be either symmetric (private key 

cryptography) or asymmetric (public key cryptography) [56]. In Symmetric-key cryptography 

both sender and receiver share the same key either if referring to Block ciphers, where inputs 

are in blocks, or stream ciphers, where inputs are individual characters [56]. Encryption and 

Decryption on symmetric algorithms use the same private key in each method. Most common 

private key algorithms are DES, 3-DES and AES (which is the one to be implemented in this 

thesis) [56]. In Asymmetric-key cryptography, sender and receiver use a pair of keys, a public 

key and a private key. Public-key algorithms are more computationally demanding because of 

the level of security they provide but are ideal for digital signature [56]. Most common 

algorithms are RSA, DSA and lately ECC (These is not going to be further reference thus it is 

not the topic of this thesis).  

 

2.3.1 Advanced Encryption Standard  

 The Advanced Encryption Standard (AES) originally known as Rijndael from its 

developers (Vincent Rijmen and Joan Daemen) is a symmetric cryptography algorithm (private 

key) block cipher with key sizes 128, 192 and 256 bits, so the same key is used for encryption 

and decryption [70]. AES operates on a two-dimensional table (4 x 4 array) of bytes called 

“state” and it takes 10 transformation rounds to convert the input, who is called plaintext, to the 

final output, who is called ciphertext, for a 128-bit key size, 12 rounds for 192-bit key size and 

14 rounds for 256-bit key size [70].  

 There are four steps of operation in each round of processing [70]. The first step is called 

“SubBytes” in which a 16 x 16 lookup table (substitution box or sbox) is used in order to find a 

replacement byte for every given byte of input [70]. In the second step called “ShiftRows” the 

rows of the table shift to left by zero, one, two and three according to the row [70]. The third 

step is “MixColumns” where each byte of a column is replaced of all the bytes in the same 

column, in particularly  each byte in a column is replaced by two times that byte, plus three 

times the next byte, plus the byte that comes next, plus the byte that follows (the simplest way 

to explain the step) [70]. The final step is called “AddRoundKey” in which the round key is 

added to the output with the XOR logical operation [70]. The round key is computed in every 

round in which every Byte is replaced with another using the lookup table and the xor logical 

operation [70].  



 

 

 The four steps (which can be seen in figures below) explained in previous paragraph are 

executed in the order presented in every transformation round, except the last transformation 

round in which the “MixColumns” is not executed. This operation is for the encrypt mode of 

execution, during decryption mode inversive steps are executed in reverse mode of operation 

as it can be seen in detail in the figure below. 

 

Figure 2: Steps of AES Encryption (Wikipedia) 



 

 

 

Figure 3: AES algorithm 

 The “S-box substitution” is a non-linear transformation of two steps. First, the input 

bytes are multiplicative inversed and second, a transformation is applied [38]. S-box entries are 

implemented using look-up tables or computed mathematically [38]. Transformations “Shift-

Rows” and “Mix-Columns” are linear operations [38]. The AES is a very widespread symmetric 

cryptography algorithm for encrypting data [38]. The AES algorithm has two modes of 

operation, the Electronic Codebook (ECB) mode and the Cipher Blocker Chaining (CBC) 

mode. The ECB mode in general is the main generation of AES in which each plaintext is 

encrypted as an independent block. In CBC mode each plaintext is XORed with the previous 

ciphertext so every block is dependent on the previous, thus, providing a higher level of security 

but consumes more time. The CBC mode was created because in ECB mode identical blocks 

produce the same ciphertexts, thus, it turns out to be a security risk. FPGAs in general offer the 

performance required to implement such an algorithm [38]. 

 

Figure 4: ECB vs CBC (Wikipedia) 



 

 

2.3.2 True Random Number Generator  

 For key generation often as a safe way to generate keys between parties often is used a 

hardware random number generator (HRNG) or true random number generator (TRNG). A 

TRNG is a device that generates random cryptographic keys to transmit data securely [71]. 

Most of the related work in the past use a TRNG to produce cryptographic keys [71].    

 

2.4 Xilinx Vivado 

 Vivado Design Suite is a development environment from Xilinx for system-level 

integration and implementation in order to design IP-centric SoCs. This software suite is 

produced for synthesis and analysis for hardware description language designs with a wide area 

of features including system on chip development and high-level synthesis analysis [72]. It is 

better conception compared to Xilinx ISE development kit, faster and more integrated [72]. 

This software suite is used in order to develop practical part of this thesis. The software consists 

of Vivado High-Level Synthesis (HLS), the Vivado Software and the Software Development 

Kit (SDK).    

 It is important to indicate that the communication protocol used between cores is the 

AXI4 interface protocol. Advanced eXtensible Interface (AXI) is a part of the ARM Advanced 

Microcontroller Bus Architecture (AMBA) with a parallel high-performance, synchronous, 

high-frequency, multi-master, multi-slave communication interface, mainly designed for on-

chip communication [81]. AXI4 is the interface protocol used in the architecture of this project 

for all parties communication, from Microprocessors, IP blocks to peripheral devices and 

external ports.    

 

2.4.1 Vivado High Level Synthesis 

 Vivado HLS is a software tool included in the Vivado Development kit that accelerates 

IP creation to be used in SoCs. The idea is to create hardware modules in high level 

programming language like C, C++ and SystemC and the software after a successful synthesis 

exports RTL. The IP block exported is ready to be used in Vivado or ISE and can be used and 

reused many times. The software window is shown in the figure below. 



 

 

 

Figure 5: Vivado HLS 

 

2.4.2 Vivado 

 In the Vivado Software, IP Blocks can be added and connected in the AXI -4 interface. 

IP Blocks from the Vivado repository include processing modules, memories, interconnects, 

DSP systems, mathematical functions, bus interfaces, network functionalities and many more 

as well as IP Blocks created in Vivado HLS can be imported and used at will. After a design is 

validated by the software in can be synthesized. The synthesis function is the similar function 

as the compile function but in this case the Block Design is synthesized in logical ports that it 

will use in implementation.  

 After a successful synthesis follows the implementation stage where logical ports from 

the synthesis design are translated in an FPGA design in order to download it on a FPGA 

platform. It also places and routes the logical ports into device resources. In this case the FPGA 

platform to be used is the ZedBoard described in the next section. If the implementation is 

successful the bitstream file can be generated in order to program the FPGA target device. The 

software window can be seen in the section below. 



 

 

 

Figure 6: Vivado Design Software 

 

2.4.3 Software Development Kit 

 The Xilinx Software Development Kit (SDK) is a software environment for creating 

applications for embedded systems on microprocessors like Zynq UltraScale+ MPSoC, Zynq-

7000 SoCs and Microblaze. The SDK application offers multiprocessors designs, debugger and 

performance analysis. On this software program the applications are developed that is going to 

be run on the embedded device. Through this program the FPGA of the hardware target can be 

programmed and run the applications that are developed on the FPGA or the embedded 

microprocessor. The program is included in the Xilinx Vivado package and can be seen in the 

figure below.   



 

 

 

Figure 7: Software Devepopment Kit 

 

2.5 ZedBoard 

 ZedBoard is a full development kit from AVNET that uses the Xilinx Zynq-7000 All 

Programmable SoC and supports a large area of applications. This is the FPGA hardware 

platform that is going to be used for this project so some of his features has to be mentioned. 

Features of the Zedboard include the Zynq – 7000 SoC processing system with ARM dual core 

processor A9 (677MHz max Frequency), 512 MB DDR3, 256 Mb Quad-SPI Flash, 4 GB SD 

card, Onboard USB-JTAG Programming 10/100/1000 Ethernet, USB OTG 2.0 and USB-

UART, FMC-LPC connector (68 single-ended or 34 differential I/Os), 5 Pmod™ compatible 

headers (2x6), Agile Mixed Signaling (AMS) header, 33.33333 MHz clock source for PS, 100 

MHz oscillator for PL, HDMI output supporting 1080p60 with 16-bit, YCbCr, 4:2:2 mode 



 

 

color, VGA output (12-bit resolution color), 128x32 OLED display, Onboard USB-JTAG 

interface, Xilinx Platform Cable JTAG connector, 8 user LEDs, 7 push buttons and 8 DIP 

switches. ZedBoard can be seen in the figure below.  

 

Figure 8: Zedboard 

 

    

   

 

 

 

 

 

 

 

 

 

 



 

 

3. Embedded Systems Security 

Application of embedded systems can be found in in Automobiles, in 

Telecommunication to Motor and cruise control system, for Body or Engine safety, for 

Entertainment and multimedia in car, to E-Com and Mobile access, for Robotics in assembly 

line or Wireless communication [28]. Also, in Smart Cards, Missiles and Satellites for Security 

systems, Telephone and banking, Defense and aerospace or Communication [28]. In 

Peripherals and Computer Networking for Displays and Monitors, Networking Systems, Image 

Processing, Network cards and printers and in Consumer Electronics on Digital Cameras, Set 

top Boxes, High Definition TVs, DVDs [28]. All these applications have some constrains, 

vulnerabilities and attacks which are discussed in this chapter. 

Most of the application above use a high-end processor for some real-time systems and 

integrate a DMA peripheral to handle the data transfers and the bus access [43]. The DMA 

reduces the power consumption it increases the CPU’s bandwidth and frees up available 

processing capacity but more over the features of DMA are: a)Access to multiple peripherals 

in the processor, b)Multiple DMA channels in the processor, c)Different priorities for each 

channel, d)Handling the source and destination address, e)Handling the increment/ decrement 

of the source and destination address based on the configuration, f)Checking for the completion 

of the transfer of configured number of bytes for a DMA channel, g)Burst transfers which split 

the whole data transfer into multiple blocks and h)Generate an interrupt when required [44]. 

When designing secure embedded systems some factors has to be taken into 

consideration such as small form factor, good performance, low energy consumption (and, thus, 

longer battery life), and robustness to attacks [26]. Such attacks can include viruses, malwares, 

worms, physical tampering, and side-channel attacks [26]. Security engineering when 

developing intelligent devices like wireless phones, routers and switches, printers, SCADA 

(Supervisory Control and Data Acquisition) systems, electronic devices in cars and even 

medical devices has been an important aspect when users tend to manipulate them or harm then 

in any way [26]. Mileage counter manipulation, unauthorized chip tuning or tachometer 

spoofing has forever been a security risk [26]. Encryption has forever been computationally 

intensive and requires dedicated hardware in an environment where resources of the embedded 

system are restricted [26]. The design must meet the arrangements and the capacity as well as 

the cost of the embedded system. As attacks continue to increase, the development of 

countermeasures and the insurance of a secure execution environment (SEE) as well as the 

dynamic adaptation has to be a must have in embedded system security [26].   



 

 

3.1 Constrains, Vulnerabilities and Attacks 

There have been observed and categorized 60,000 entries of Common Vulnerabilities 

and Exposures according to the survey in [29]. From these entries the authors have classified 

the attacks concerning embedded systems. In precondition class the requirements of the attacker 

include Internet facing device, Local or remote access to the device, Direct physical access to 

the device, Physically proximity of the attacker, Miscellaneous or Unknown [29]. For 

vulnerability they found Programming errors, Web based vulnerability, Weak access control or 

authentication, Improper use of cryptography and Unknown [29]. As far as the target concerned 

the hardware, firmware or OS and application [29]. For the attack methods they described 

Control hijacking attacks, Reverse engineering, Malware, Injecting crafted packets or input, 

Eavesdropping, Brute-force search attacks, Normal use and Unknown [29]. Last, as the effect 

of the attack they found Denial-of-Service, Code execution, Integrity violation, Information 

leakage, Illegitimate access, Financial loss, Degraded level of protection, Miscellaneous and 

Unknown [29].    

On the overview of [30] the authors categorize the topics of embedded systems security. 

Some disadvantages in the nature of embedded systems include Limited processing power, 

Limited available power, Physical exposure, Remote and unmanned operation and limited 

network connectivity [30]. Some vulnerabilities Energy drainage (exhaustion attack), Physical 

intrusion (tampering), Network intrusion (malware attack), Information theft (privacy), 

Introduction of forged information (authenticity), Confusing/damaging of sensor or other 

peripherals, Thermal event (thermal virus or cooling system failure), Reprogramming of 

systems for other purposes (stealing) [30]. Typical attacks target at privacy authenticity, access 

control and confidentiality. The attacks can be physical, logical or side channel based. physical 

attacks include micro probing, reverse engineering and eavesdropping [30]. On the other hand, 

logical can be software based or cryptographic [30]. Some countermeasures against software 

attacks are based on architecture, on safe languages, static code analyzers, dynamic code 

analyzers, anomaly detection techniques, sandboxing or damage containment approaches, 

compiler support, library support and based on Operating system [30]. Countermeasures against 

side channel attacks are masking, window method, dummy instruction insertion, 

code/algorithm modification, balancing, etc. [30]. 

Survey [7] mentions existing defenses, both software and hardware based such as 

Software-based Mechanisms, watchdog checkers, Merkle trees, integrity trees, memory 

encryption, and modification of processor architecture. The paper categorizes the hardware 



 

 

attacks as Evil maid attack, Cold boot attack, Firewire DMA attack, Bus attack and software 

attacks as Buffer overflow attacks, Return-into-libc and Code injection attacks [7].  

The developers in embedded systems had to use either software-based techniques or a 

coprocessor to achieve public-key cryptography. Software-based techniques are too 

computationally expensive for an 8-bit microcontroller. On the other hand, Coprocessor-based 

implementations need extra cost in hardware to support a single type of public-key 

cryptography [2]. Solution to that problem is the technique of reusable hardware, the share of 

computation units and the use of SRAM memory as cache [2]. One problem that arises is the 

level performance bottlenecks occurring from data transfers between the RAM and the 

coprocessor [2].   

In medical field the physician uses embedded technology to acquire medical 

information about a patient where security is an important factor considering the doctor patient 

confidentiality [28]. With the use of embedded devices, the treatment of patients can be faster 

and more reliable. Application of embedded systems in medical field include Fetal Monitor, 

Oximeter, Defibrillator, Digital Flow Sensor, Pacemaker, Pulse oximeter, etc [28]. Types of 

these application can either be real time, standalone, networked or mobile in a small scale, 

medium scale or sophisticated [28].  

IoT Sensor Devices and Automotive Electronic Control Units (ECUs) have a need for 

lightweight cryptography because they control critical functions as braking, acceleration etc. 

and are connected on a Controller Area Network (CAN) [40]. Those circuits have a need for 

Small code/area footprint, minimum latency and low power and that is the reason to use 

lightweight cryptography [40]. Automotive embedded Systems nowadays allow software 

installation, remote updates, data sharing, or application input data so software corruption has 

become a major concern [41].  

Other protocols except the CAN in ECUs include Local Interconnect Network (LIN), 

FlexRay (for better rates of steering wheel and brakes), MOST (for multimedia) and Ethernet 

[51].  Every attack on these protocols target on Theft, Electronic tuning, Sabotage, Intellectual 

property theft, Privacy breach and Intellectual challenge [51]. Attacks can be categorized as 

Internal and Remote. Internal attacks include Vulnerabilities on the bus and Local attacks [51]. 

Remote include Indirect access (OBD port, CD player, USB port), Short range attacks (Wireless 

pairing of mobile devices, Car-to-car communications, Tire Pressure Monitoring System, 

Wireless unlocking), Long-range direct attacks (Telephony, Web browsing) and Long-range 

indirect attacks (App store, Side channel triggers) [51]. Constraints on automotive embedded 

systems contain Hardware constrains, real time, Autonomy, Physical constraints, Lifecycle and 



 

 

Compatibility constrains [51]. It is important when designing a secure communication 

architecture for internal or intervehicular communication to secure external communication 

[51]. Internal protections contain Cryptographic solutions, Solutions detecting anomalies in the 

system and Solutions to ensure integrity of the embedded software [51].   

One literature survey [41] refers to attacks in Automotive Embedded systems. Low-

level memory such as RAM, FLASH, and CACHEs are very important to ECUs and if an 

attacker manages to change the firmware, he can do serious damage to the entire system [41]. 

ECUs control and regulate information acquired by the sensors (Sensors convert physical 

quantitates to electrical signals and actuators to motion.) and there are 70 ECUs in one 

automobile with more than 100 million lines of code [41] [51]. Every memory in an ECU (flash 

and RAM) has a primary bootloader (PBL) and a secondary bootloader (SBL). PBL loads the 

application software from FLASH and the SBL loads from PBL, so every update that is to be 

made occur only on SBL [41]. It is important to have restrict access to the bootloader [42].  

Features and characteristics of the automotive embedded system include limited 

processing power, limited power supply, physical exposure and network connectivity as written 

above in [26], same principles apply here [41]. Threats identified as Energy drainage 

(exhaustion attack), Physical intrusion (tampering), Network intrusion (malware attack), 

Introduction of forged information (authenticity), Confusing/damaging of sensor or other 

peripherals, Reprogramming of systems for other purposes (stealing) [41] [53]. Vulnerabilities 

in embedded systems have been discussed previously but as far as automotive is concerned are 

Programming errors, Network based vulnerability, Weak access control or authentication, 

Improper use of cryptography [29] [41]. Requirement for the attacker are Internet facing device, 

Local or remote access to the device, Direct physical access to the device, Physically proximity 

of the attacker and general attacking strategies on memories [30] [41].           

Attacks can be classified as physical, logical and side channel attacks [30], [41]. 

Physical include Reverse engineering, Micro-probing, Eavesdropping and memory access 

Using Debuggers [30] [41] [42]. Logical refer to Code injection attacks (Stack based buffer 

overflow, Heap based buffer overflow, Shell code injection, return to libc attack, Return 

oriented programming), Cryptographic attack (Brute forcing, Dictionary attack) [30] [41] [42]. 

Last side channel attacks are based on Fault injection attacks, Timing analysis attack, Power 

analysis attack and DMA attacks [30] [41].    

Wireless sensor nodes and RFID tags are very efficient devices that consume small 

amount of power and require little area. The substantial security, the performance of those 

devices as well as the minimum storage space and computational capability are the reason, we 



 

 

implement Light Weight Cryptography algorithms. Those algorithms have certain features. 

They process at low power consumption, low communication cost, low area, low energy and 

small processing time [1]. For security in Smartphones, tablets, medical implants and wireless 

sensor networks, that lack resources and power consumption a lightweight stream cipher is 

proposed in [1], [3].    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4. Background on Related Work 

Some important projects on embedded systems to provide security on applications that 

were discussed in the previous chapter are presented in brief in this one. One processor system 

with a general-purpose processor with a cryptographic processor that performs cryptographic 

operations and enforces security on critical parameters should prevent exposure of critical 

security parameters outside the cryptographic processor and implements a limited Scripting 

engine to provide highly efficient security [52].   

A hardware-based Montgomery multiplier, and pairing software is proposed in [3] but 

lack in some sections. a) Session keys must be embedded in each node at initial implementation, 

b) Use of a single session key at multiple nodes requires synchronization; and c) Digital 

signatures are not possible, since all nodes share the session key [3]. It also shows the increase 

of power and energy consumption. The design uses optimizations for Miller loop, final 

exponentiation, and Elliptic Curve Cryptography (ECC) operations. It was designed in VHDL 

and runs in an ARM Cortex-A9 processor [3]. 

Demands for security in Embedded Systems is increased every day. In [2] the authors 

propose cost-efficient hardware that can compute the public-key cryptography with the use of 

 a coprocessor that supports both RSA (range from 256 bit to 2048 bit) and Elliptic Curve 

Cryptography (ECC). They also propose a small direct memory access (DMA) to remove 

system-level performance bottlenecks and transfer data between coprocessor and external RAM 

in order to make full use of the coprocessor [2].  

  A hardware-software co-design of RSA is analyzed in [35] where hardware 

accelerators are providing the highest performance but fail in flexibility and adaptability to 

changing algorithms, parameters, and key sizes. The authors estimate that they combine 

software and hardware that offer high performance and the advantage of low-power and low 

energy consumption [35]. Test of this design was performed on the Xilinx Zynq- 7000 SoC 

platform, which integrates a dual-core ARM CortexA9 processing system and the RELIC 

library (Efficient Library for Cryptography) was used. They show the speed up of the co-design 

vs the pure software implementation of the RSA algorithm that run on the same platform [35]. 

An RSA implementation for system on programmable chip (SoPC) can be investigated in [37]. 

The use of the RSA processor is believed to be at low cost, more flexible and high performance 

when implemented in a FPGA platform [37]. It is a hardware/software integration of RSA in 

verilog HDL language and was tested on an Altera Cyclone II FPGA [37] 



 

 

 One cryptographic processor for security in embedded systems is proposed in [4] named 

CryptoAeg. In difference from general SoC-based solutions, CryptoAeg has its own 

cryptographic instructions to accelerate cryptographic processing by eliminating the need of 

coprocessors and minimize the cost of the system for the use of RSA or ECC [4]. The design 

relies on the ALU architecture without including a multiplier in order to reduce the hardware 

cost and complexity of software program [4]. It provides security for portable devices and 

wireless communications [4].   

 Public key encryption algorithms are very cost efficient when used in wireless sensor 

nodes, yet if necessary, the best to use is Elliptic Curve Cryptography (ECC) for short keys 

[24]. Public-key algorithms are more computation-intensive than other types of crypto 

algorithms like symmetric-key algorithms and hash functions, but are an importance when 

talking about digital signature and authentication [24]. The performance of the ECC is tested 

on DSP and it shows efficient results, although it does not run on a general-purpose processor 

but hardware features of DSP to accelerate the ECC operations are used for this reason [24]. 

Same in [25], a three side-channel protected hardware/software co-design for a small but 

particularly fast pairing-based cryptography in a stand-alone microprocessor seems to be 

another good option when referring to embedded applications because of the low chip area 

needed. With an assembly optimized software implementation, the low area requirement and 

the high runtime of pairing-based cryptography the option is viable in interactive embedded 

applications when involving wireless sensor networks [25]. 

 Elliptic Curve Cryptography for MSP430-Based Wireless Sensor Nodes is a new energy 

save architecture, a dedicated hardware module for area and speed-optimized software solution 

[32]. It uses 4kGE of dedicated chip area and consumes less energy but the efficiency of the 

algorithm in speed is the same as before [32]. One hardware/software Co-design of Elliptic 

Curve Cryptography is provided in [34] for the 8051 Microcontroller. It uses a minimalist 

hardware accelerator for ECC and a dedicated interface with direct memory access for better 

performance and reduction of hardware cost in comparison with previous work on similar 8-bit 

platforms [34]. 

 Nowadays, an electronic computational unit is embedding more data and power 

management in connected, autonomous and electric vehicles [5]. The authors in [5] refer to a 

Reconfigurable hardware technology combined with static multicore processors and memory 

into a SoC for embedded cryptosystems. Their work focuses on the HW/SW co-design of a 

secure automotive computation unit which is composed of a full post-quantum cryptosystem 

implemented in programmable logic to prevent intruder’s decryption using quantum computers 



 

 

[5]. To achieve this, they implemented the McEliece algorithm, a true random number 

generator, the advanced encryption standard and a secure hash algorithm. They used the Zynq 

UltraScale+ MPSoC ZCU102 evaluation board to test their design.  

 In [6] the authors propose a security coprocessor with the general-purpose processor in 

an AMBA bus and an AXI interface in a MPSoC. SM2 asymmetric encryption algorithm and 

SM3 hash function is used to ensure the security in the system [6]. The accelerator in the 

security coprocessor mainly executes computational functions like Modular multiplication and 

modular addition. This SoC could be used in a power distribution network as a smart control 

terminal or a smart metering and power quality analysis instrument [6].  

  The authors in [10] propose a cryptographic accelerator to multiple cryptographic tasks 

for Internet Protocol security (IPsec) by using a Dynamically Reconfigurable Processor (DRP) 

from NEC electronics in a SoC with the embedded processor. The accelerator provides high-

throughput cryptographies, cost efficiency, and high flexibility to embedded systems and 

presents a practical solution to optimize cost, performance, and power consumption [10]. With 

the use of Virtual Hardware and Run-Time Configuration based on Double Buffer the 

simulation results show that co-processing system eliminates a bottleneck of the software 

execution and achieves performance improvement [10].    

 As technology rises the authors in [13] present a 65 nm Fulmine secure data analytics 

System-on-Chip for IoT end-nodes with Convolutional Neural Networks and computer vision. 

This SoC provides full programmability, low-effort data exchange between processing engines, 

high speed, and low energy. By combining cores and accelerators within a single tightly-

coupled cluster this SoC improves time and energy in a simple software solution with 

flexibility, high security and sensible budget [13]. 

 A great idea is provided in [15] where the authors make use of a dedicated DMA 

controller, which encrypts and decrypts data in every transaction according to the function 

required. The Advanced Encryption Data is used to transform data in each DMA request, that 

prevents transmitted data to be hacked by an unauthorized user [15]. The idea was developed 

for the IPhone of Apple Computers but can work for every embedded device. Another great 

idea presents in [16] where each I/O controller has its own identifier and every identifier its 

own encryption key. Whenever a DMA transaction is to be performed, a computing device 

called the cryptographic engine protects the data according to the identifier of the I/O controller 

[16]. The cryptographic engine has an identifier table with the cryptographic keys of every I/O 

controller [16]. According to the device id, the cryptographic engine encrypts with a different 

key every time a DMA request is to be made [16].  



 

 

 Same idea for DMA security developed in [19] with the use of an encryption/decryption 

unit in the DMA path. For historical reasons the idea that presented in [20] explains the scenario 

of using a security module for encrypting and decrypting data whenever a DMA request is made 

[20]. Every encryption or decryption is established through the DMA controller without 

disturbing the main processor [20]. This scenario was proposed for personal computing but 

applies still in embedded systems applications. In [22] the authors develop a high-performance 

DMA design with four channels able to transfer 1.6 megabytes of data every second. This DMA 

controller uses the advanced microcontroller bus architecture (AMBA) and was implemented 

in Verilog HDL [22]. 

 One implementation of all three AES algorithms (AES-128, AES-192 and AES-256) 

can be investigated in [23] using cryptographic accelerator with both ECB and CBC mode as 

well as SHA-1 and SHA-256 hash algorithms combining the speed of hardware with the 

flexibility of software. The Sboxes in this implementation are in RAM blocks in order to 

increase the throughput [23]. The hardware cryptographic accelerator using FPGA technology 

and the client application was tested in a linux platform on a PC using PCI Express interface 

[23]. In order to achieve higher computation speed, flexibility and implementation scalability 

parallelization mechanisms were used for all encryption and hash blocks [23]. A kernel driver 

was also developed in order to connect the hardware unit to the PC and acquire direct access 

operations to the hardware resources required by the multitasking environment [23].   

 One Hardware-Software co-design of Cellular Automata Cryptosystem (CAC) shows 

experimental results better than DES and comparable to AES [18]. CAC is supposed to be fast 

in execution because of its small code size, designed for embedded systems with an acceptable 

level of security [18]. CAC is written in verilog and was acceptable by the time invented 

because of its simplicity (only four levels of transforms) and the level of security that provides, 

but obsolete nowadays. 

 According to the authors of [31], a hardware acceleration of AES Cryptographic 

Algorithm can be developed for IPSec, to provide secure data at the IP layer but the drawback 

is that itneeds a lot of computational power. It uses a hardware acceleration of AES ECB and 

the goal was to secure speed and energy efficiency [31]. They tested it on Xilinx Virtex-6 

ML605 on 250 MHz and they achieved 391.25 Mbps throughput [31].   

An advanced bus architecture for embedded systems that use AES encryption to 

improve performance and possibilities is provided in [8], called CDBUS. The benefits using 

the CDBUS include a) low cost and low pawer control bus, b) dual bus structure, c) high – 

throughput data bus, d) high - efficient DMA with dynamic arbitration, e) high – performance 



 

 

AES transfer mode [8]. A testbed provided in [9] shows results for execution of various sha3 

algorithms. Those results include a) hardware execution time, b) software execution time, c) 

HW/SW speed up and d) maximum clock frequency. Results were obtained using vivado design 

Suite. In [11] is an example of a multi FPGA SoC with 24 microblade performing parallel and 

pipelined signal processing applications in embedded system to achieve performance and [12] 

shows an improved DMA controller to boost high speed data transfer in MPU based SOC. 

One cryptography co-processor in NoC systems can offer complete functionality with 

just an integrated DMA, embedded key registers, command priority queues, and AES counter 

mode of operation (CTR) [36]. The general-purpose processor (GPP) only requests encryption 

and decryption operations from the co-processor. The scenario proposed is high-performance 

pipelined AES core with counter mode of operation (CTR) with an integrated DMA module to 

take the load off the GPP and perform all the cryptographic tasks and data transfers in a scalable 

NoC design [36]. They used an intergraded AES core from Opencores with key register file in 

our tile to store keys and the priority command queue [36]. The design was only tested in 

modelsim and it was estimated to be 230 times faster than the pure software implementation of 

the same algorithm [36].   

Two approaches are presented in [38] to implement the AES encryption algorithm in a 

multi-processor SoC (MPSoC). The first one is composed of a Network Interface (NI), a 

Controller, AES and internal memory and for the second, a Network Interface, a plasma 

processor, AES, Direct Memory Access (DMA) and internal memory [38]. The cost to design 

a pipelined AES algorithm in FPGA is very low and it provides resource utilization, high speed 

and high throughput [38]. They developed this design in VHDL with the use of the AXIM 

platform and the customized AES based crypto module and was tested with modelsim and 

Virtex6 ML605 from Xilinx [38]. In the first approach the design uses less hardware resources 

and achieves better performance than the second approach but in both cases the latency has 

reduced significantly [38]. 

Constant growth of data transfer requirements in modern embedded systems made the 

need to implement the AES256 and TDES as hardware IP cores on FPGA platform with the 

use of AXI interface [39]. This way the performance of data encryption/decryption is 

approximately 13 to 416 times faster compared to the pure software implementation of the 

algorithms and in addition takes the offload of the main processor [39].  The results are 

comparable to modern Intel processors with specific instruction set [39]. The IP cores are 

modeled in VHDL and tested on a zedboard.  



 

 

The Maestro architecture described in [43] is a hardware/software co-design with two 

components, one processor for system initialization and control and the hardware AES core for 

high performance AES encryption/decryption. The design reaches a very high throughput, 

through a tightly coupled encryption and round key generation units in encryption unit and 

ahead of time round key generation in decryption unit [43]. The ten-stage pipelined architecture 

was considered for the AES engine and the authors believe that it can encrypt or decrypt one 

block of data in one clock cycle [43]. It is also believed to be cost efficient considering the high 

throughput. The Altera DE2-115 development and educational FPGA board was used to test 

this design which includes the Nios II core, Avalon interconnects, SRAM, SDRAM and on chip 

memory [43]. 

A secure communication protocol is described in [46] in which cryptographic co-

processors are used and the cryptographic key is computed according to a password that was 

set between the users. The hardware/software co-design uses AES-256 block cipher, is used in 

real time applications and is supposed to be cost-efficient, high power and high secure hardware 

structure [46]. It provides high security, portability and speed at low costs [46]. The design was 

tested in Linux OS on a ZYBO combining the ARM CPU and the FPGA [46]. 

There are three ways to connect a security module to the embedded processor, a) in the 

processors Datapath, b) through the internal register file of the processor and c) access through 

the peripheral bus as a peripheral [47]. An AES-128 security module is implemented on [47] as 

an IP-Core with a true random number generator (TRNG) for keys and is tested in different 

platforms [47].                 

 One scenario that a Co-processor can be used in some area of application such as 

random number generation or hash generation and error correction is applied in [21]. The Co-

processor performs forward error correction using BCH and Reed Muller algorithms IP Blocks 

and SHA-1 IP Block for hash generation in embedded systems [21]. The CP is modeled using 

Verilog HDL and tested with Altera-Acex FPGA [21].   

 The main goal when referring to security in essence is a vault manager to protect the 

firmware if an embedded device from unauthorized access [27]. The authors in [27] propose a 

hardware vault such as this which includes of a shadow RAM or shadow Cache, flash memory, 

and a vault manager. The architecture proposed offers good security with a small performance 

penalty over OS applications [27]. The key points of this architecture include a) the vault is 

external to the processor, b) assures instruction integrity and c) provides trust on firmware 

upgrades [27]. 



 

 

 In [14] the authors implement a hypervisor named BitVisor with minimized code and a 

parapass-through driver for ensuring storage encryption in ATA input/output devices. It is 

designed for virtual machine monitors and mainly for desktop operating systems [14]. Similar 

in [17] a hardware encryption module in the processor ' s memory access path is used by the 

processor to secure information. Same as before used mostly for hypervisor and virtual 

machines. In this work the security module is an application specific integrated circuit (ASIC), 

a general-purpose processor on field programmable gate array (FPGA), designed and 

configured to perform security operations for the processing system [17]. Another bare-metal 

hypervisor running on virtual machine OS is the Silvermont microarchitecture for Intel x86 

processors, running Windows is proposed in [33] but it is mainly used in POS machines and 

industrial embedded devices. 

 For secure mobile authentication a new architecture is presented to produce 

cryptographic keys and values for use inside an Enhanced Cryptographic Engine (ECE) [48]. 

A software Application Programming Interface provide stronger security for commands and 

data and a software emulator ensures secure communication between multiple computers and 

mobile devices [48]. A Trusted Execution Environment (TEE) provides secure modification, 

removal and update on embedded systems used in Automotive or health-care networks [48].  

Securing DMA transfers can be also accomplished through virtualization based on 

hardware/software and provide high security with a formal verification of isolation and 

availability and a low performance overhead [49]. One software-based parallel cryptographic 

solution with a parallel memory embedded SIMD matrix processor is proposed in [50] which 

executes encrypting and decrypting cryptographic algorithms. The architecture is very effective 

for private information protection that promises low power and small chip area consumption 

and is intergraded in real time [50]. 

 The contribution in [45] presents one hardware solution for ensuring microcomputer 

bus systems through a Tree Parity Machine Rekeying Architecture (TPMRA). The TPMRA IP-

core is designed for adaptability, low cost terms, variable bus performance requirements, 

authentication of different bus participants as well as the encryption of chip-to-chip buses [45]. 

A co-processor module together with an application software encrypts communications 

between CPU, memory and other hardware through stream cipher techniques, Tree Parity 

Machine together with a hash algorithm that acts as a key stream generator for authenticated 

key exchange in AMBA bus system [45]. The design was written in VHDL and tested on a 

FPGA demonstration system, consisting of several FPGA boards [45].  

  



 

 

5. Design and Architecture 

 In this chapter we describe the architecture and design methodology of the hardware 

and software infrastructure of the project developed. The important characteristics of an 

embedded system are speed, size, power, security, integrity, authenticity, reliability, accuracy, 

adaptability, functionality, cost, power requirements, size and weight. In this project a secure 

DMA controller is been developed with the additional AES block cipher technique for extended 

security. DMA controller is developed in high Level Synthesis the execution of which is 

successful under certain constraints. Different IDs are used for every peripheral on the 

embedded device with different permissions for every ID for write or read operations.  

A successful data transfer over DMA depends on the permissions set by the 

cryptographic co-processor with the addition of AES encryption on those data for secure 

transmission. Encryption keys are set by the same cryptographic coprocessor in the beginning 

of the session using a true random number generator. When a data transfer on the embedded 

device is in order, according to the ID and the permissions granted, the data will be encrypted 

and decrypted in the other end by AES IP-Blocks also developed in High Level Synthesis in 

the purposes of this thesis. The design is explained in detail in the sections following. 

 

5.1 DMA Controller 

 DMA transfers are used for fast data transfer between the IP core or processor and the 

system memory or the peripherals. In this particular project the DMA is used to transfer secure 

encrypted data from the cryptographic module to the peripheral or memory that are destined. 

The end device then uses the key that is provided by the cryptographic co-processor to decrypt 

the transferred data. The DMA controller has been developed with the Vivado High Level 

Synthesis (HLS) tool with the use of C programming language, thus, creating an IP block that 

is used to transfer secure data though the peripherals.  

 Every peripheral in this design uses a unique device ID for the purposes of 

communication with other peripherals. The architecture of our DMA controller is designed to 

receive certain arguments in order to execute a successful DMA transfer. Those arguments are 

the read and write position of each memory, the quantity of data to be transferred and the ID 

number for each device. Some boundaries have to be made considering every device ID, 

because as explained before every device has different rights and permissions. Those 

boundaries are inserted from a channel as arguments different than the channel we use for the 

main arguments and is operated exclusively by the cryptographic co-processor. 



 

 

 The cryptographic co-processor is a Microblaze microprocessor used as a shadow in 

this design which delivers the cryptographic keys to CPU, memory and peripheral devices and 

sets the arguments-boundaries for each of those devices according to the device ID. After that, 

every other main process or data transfer is performed by the main CPU, the ZYNQ processing 

system that includes the ARM 9 two core microprocessor. A main schematic of this project can 

be shown below.  

 

Figure 9: Project Schematic 

 As it can be seen the figure above the AXI-4 environment interface protocol is used for 

the communication between CPU, memory and peripherals. The DMA IP block has two 

channels, one for the boundaries provided by the Microblaze microprocessor and the second 

for the main arguments of the application. Two BRAMs are used in this case scenario in order 

to test the liability of the system. As the systems boots the application running on the microblaze 

applies the restrictions on the DMA module and after that, every DMA transfer requested by 

the applications running on the ARM9 has to apply to those restrictions. The BRAMs are just 

used as to transfer data from one to the other according on the boundaries given from the 

microblaze. 

 The architecture of the design will be explained in more detail, in the sections below. 

As mentioned Vivado High Level Synthesis is used to build this DMA controller module. As a 

start the two channels have to be separated, one for the boundaries and one for the main 

arguments. This is a very sensitive directive as it controls who has rights to use this channel 

and who doesn’t and has been made clear who is supposed to do what. DMA is designed with 

a master AXI port to associate with the peripheral devices and two AXI slave ports, one for the 

communication with the microblaze and one for ARM9. The channels can be seen in the 

pictures bellow. 



 

 

 

Figure 10: Main arguments (ARM9) 

 

Figure 11: Boundaries Channel (Microblaze) 

 

Figure 12: Ports of DMA 

 The functionality of the specific design of DMA depends on the ports shown above. 

Once the boundaries of the application have been inserted and the main application starts, if a 

DMA transfer request occurs, the algorithm calculates if the source and destination limits are 

exceeded. A successful DMA depends whether or not these limits are exceeded. A part of this 

algorithm written in C Language is shown next.  

 

Figure 13: Calculating the Limits Source and Destination 

 

One benefit arises from this architecture, the use of IDs provides device authentication 

in the system, so that no other party can use the same channel. The advantage of using priorities 

for those IDs make it even a stronger security mechanism. 



 

 

After a successful Synthesis, a Register Transistor Level (RTL) IP Block is exported in 

order to be used in the general design of this project in Vivado.  The security is provided by the 

hardware, while the memory permissions for each ID are given by one of the applications 

running over the hardware. In each call for a DMA execution the main application inserts the 

user’s ID, the memory location of the BRAM memory that is going to read, the location of the 

BRAM memory that is going to write, as well as the quantity of the data to be moved as 

arguments to the DMA block. If the permissions being set for the certain ID are valid and do 

not exceed the memory limits for the two BRAM data will be successfully moved. In other case 

DMA will fail due to denied access (read/write) on one or both BRAMs.   

While it is strange to connect two BRAMs in the same AXI master channel and not use 

two it is perfectly explainable. Direct copy from source memory to destination memory is not 

permitted so we have to use a buffer in our architecture. Data are firstly copied to the buffer 

and then from the buffer to the destination, so a second AXI master channel is a waste of space. 

The AXI interconnect we use is to connect the two BRAMs to one AXI master channel as well 

as to prevent timing issues. 

DMA controller has been designed in a way that every data transfer between two 

BRAMs can be accomplished only under certain conditions and that’s the reason these 

restrictions cannot be exceeded. The DMA restrictions are accomplished straight on the 

hardware design of DMA block that is responsible to perform data transfers and without the 

initialization of these restrictions every call for DMA transfer will be a failure.  

 

5.2 AES IP-Blocks 

 Embedded systems have sufficient resources such as memory, power and size, thus, 

they are not able to provide most of the existing cryptographic algorithmic codes. In this section 

Lightweight Cryptography is developed for those devices.  Secure processing in this design 

is accomplished with an embedded cryptographic unit. AES security cryptographic algorithm 

was chosen for this particular project for its simplicity and the level of security that provides. 

Two modules created to encrypt and decrypt data, one for encryption and one for decryption 

algorithm. The reason the two modules are developed separate is to avoid using more chip area 

than is necessary. Data are encrypted in the one end and decrypted in the other end by different 

encryption/decryption modules. In that way a higher level of security and integrity is achieved. 

 



 

 

5.2.1 AES Encryption Module 

 A straight-forward implementation of the AES cryptographic algorithm is used on this 

project developed at Computer Science Department from University of Santa Barbara 

(http://cs.ucsb.edu/~koc/cs178/projects/JT/avr_aes.html). It was selected because it is a simple 

implementation of the AES and the authors of it have given permission to use, copy, modify 

and distribute of this code for any purpose. In order to use this code as a hardware module, 

changes have to be made in the code. All details and changes are been explained as follows.  

  The Advanced Encryption Standard, as explained in Chapter 2, has four steps of 

operations. All steps are executed in the order they are described except the last transformation 

where the ““MixColumns” is not executed. These four steps are analyzed in C-code.  

 

 

5.2.1.1 SubBytes 

 Replacement of the byte in every given byte of input from the lookup table (sbox). 

 

Figure 14: SubBytes in C-code 

 

5.2.1.2 ShiftRows 

 The rows of the table shift to the left. 

 

Figure 15: ShiftRows in C-code 

 

http://cs.ucsb.edu/~koc/cs178/projects/JT/avr_aes.html


 

 

5.2.1.3 MixColums 

 Each byte of a column is replaced of all the bytes in the same column.  

 

Figure 16: MixColums in C-code 

5.2.1.4 AddRoundKey 

 The round key is computed in every round, in which every Byte is replaced with another 

using the lookup table and the XOR logical operation. 

 

 

Figure 17: AddRoundKey in C-code 



 

 

 

Figure 18: Main function to produce the ciphertext 

 

Figure 19: Changes made in order to synthesize a Hardware IP Block 



 

 

5.2.2 AES Decryption Module 

 On the AES Decryption Algorithm inversive steps are executed in the reverse mode 

operation. The C-code for this implementation did not actually exist so it had to be reverse 

engineered from the Encryption C-code. The inversive steps and the main operation of the AES 

decryption mode are shown below.  Again, all steps are executed in the order they are described 

except the last transformation where the ““MixColumnInv” is not executed. 

 

5.2.2.1 AddRoundKey 

 The round key is computed in every round in which every Byte is replaced with another 

using the lookup table and the XOR logical operation.  

 

Figure 20: AddRoundKey in C-code 

5.2.2.2 ShiftRowsInv 

 The rows of the table shift to the right. 



 

 

 

Figure 21: ShiftRowsInv in C-code 

5.2.2.3 SubBytesInv 

 Replacement of the byte in every given byte of input from the lookup table (sbox). 

 

Figure 22: SubBytesInv in C-code 

5.2.2.4 MixColumsInv 

 Each byte of a column is replaced of all the bytes in the same column.  

 

Figure 23: MixColumsInv in C-code 



 

 

 

Figure 24: Main function to produce plaintext synthesizable for a Hardware IP Block 

  

5.3 Cryptographic Co-Processor  

The objective of this project is achieving high speed of operation with low cost 

implementation, which is a difficult subject. In order to meet this requirement a Cryptographic 

co-processor is used to manage cryptographic keys and initialize DMA transfers in secure 

mode. A microblaze microprocessor was chosen for this purpose, for its rich instruction set, 

flexibility in a very low cost for a FPGA. One true random number generator (TRNG) is running 

in the hidden memory of the microblaze to generate keys for every peripheral and memory in 

the system in order to use them in DMA transfers. 

 



 

 

When the system starts the cryptographic co-processor distributes the cryptographic 

keys to all devices connected to it. After that the co-processor passes arguments to the DMA 

module in a private and secure channel about the boundaries that every device in the system 

has. As it was explained, not everyone has the same rights in a secure system. Those rights can 

only be given by the co-processor according to the specifications that have been set by the 

system manager. Both the TRNG and the permissions settings are running as software 

applications in the hidden memory of the cryptographic co-processor, which is the only one 

that has access to those apps in the system. No other part in the system has access to this part 

of the system making it reliable and safe for every application. 

Once the cryptographic keys have been distributed and the boundaries of the system 

have been set, any application running on the main CPU can ask for a DMA transfer. If the 

arguments of the transfer apply to the options set the DMA will transfer cryptographic data 

form one end to another. In any other situation the transfer request will fail. If the transfer is 

successful the encrypted data can be decrypted at the other end by the key that was distributed 

and by that end only since no other end has the key for this data if not allowed. Nor the CPU 

nor any other peripheral in the system has access to this co-processor, but only to request new 

generation of cryptographic keys or request new DMA restrictions.  

The CPU executes DMA transfers in secure mode. When DMA is finished sends an 

interrupt to the CPU to inform whether the data were secure transmitted or otherwise failed. A 

DMA transfer moves data encrypted from source to destination only if the communication 

between the two ends is allowed by the restrictions set, thus, making it a fast and reliable 

communication mechanism in embedded systems applications. 

 

5.4 True Random Number Generator 

 A True Random Number Generator (TRNG) is used to generate cryptographic keys for 

every pair of devices connected in the system. Every pair of devices means a different ID, which 

means that number of keys depends on how many devices are connected to the system and how 

many of them have communicational rights between them. The scenario for key generation can 

be changed and depends on the security the user is trying to achieve. Keys can be generated in 

the beginning of the session and then every month, week, day or even hour. The algorithm 

creates 128 bits random keys as a function of time every time it runs and for as many IDs as 

demanded. By taking in mind the time of the request for the key, XORing that time with the 

time the previous key was generated gives a range of random numbers in which the generator 

chooses randomly some of them, thus, creating a key. 



 

 

 The original idea was to synthesize a true random number generator in a hardware 

module, but since some of its functions are not synthesizable, it was decided to run it as a 

software function running on the hidden memory of the microblaze microprocessor or on this 

case the cryptographic co-processor. Only the cryptographic co-processor can execute this 

function and it is the only one who can distribute those keys to the peripheral devices. The main 

CPU has not access to this software application nor has any other device, except of requesting 

new cryptographic keys. By providing these rules, the system becomes very reliable and safe 

and thus, providing confidentiality, authenticity, and integrity. 

 

5.5 Secure Embedded System 

 By combining all these technologies and modules we developed, one secure embedded 

system can be created providing secure access via DMA protection and lightweight 

cryptography for fast but reliable communication between peripheral devices. A system of such 

is responsible to deliver encrypted information from source to destination if the permissions 

allow it. Those permissions depend on the settings that are set by the manager and basically 

describe which peripheral can communicate with another, or, when referring to memories, the 

predefined space given. In another point of view and to make it more understandable, those 

restrictions refer to physical addresses in the system. Every device has some boundaries on with 

which devices can communicate. For every pair of transmission an ID is created and different 

restrictions are set for every ID. Every ID has a priority number in a hierarchical list on using 

the DMA module to transfer data adding another security mechanism. This can be achieved by 

an interrupt controller in the system, sending requests for DMA transfers and operating on 

priority basis. 

 

5.5.1 Schematic Design 

 The schematic design in the image below shows how the members of the system are 

connected. The system consists of the main CPU ZYNQ ARM9, the Microblaze cryptographic 

co-processor, one AES Encryption module, one AES Decryption module, the DMA and two 

BRAMs used for testing. The modules are connected through AXI interconnects which is the 

communication protocol that is used. All rules set for this system and explained in the sections 

above, apply in this design. The functionality of the system as well as the security it provides 

is explained and tested in the sections following.  



 

 

Every IP block has been explained in the sections above except the BRAMs and the 

AXI Interconnect. The AXI Interconnect works as a main channel to connect every part in the 

system that are communicating with the AXI-4 communication protocol for embedded devices. 

The two BRAMs are used in this project as an example of peripheral devices, in order to test 

the functionality of the system. The memory size of those BRAMs has been divided in to 

sections to act as boundaries, in order to create some IDs to test the DMA and cryptographic 

co-processor. By dividing the BRAMs into sections the co-processor can pass as arguments 

(restrictions) from which section one ID can read and in which it can write, making it a perfect 

example as if there were other peripheral devices.  

Operating in that example, it really does not make any difference since the arguments 

passed are device addresses, as is every memory slot in a memory. With these restrictions set, 

when data are requested from one section to another and if the DMA transfer is valid according 

the ID, those data will be encrypted by the AES encryption module and decrypted on the 

destination by the AES decrypt module. Encryption and decryption on the two sides of 

communication is accomplished by the cryptographic key assigned on this ID (both sides) by 

the cryptographic co-processor.   

Cryptographic keys are created through a software program running in the hidden 

memory of the microblaze cryptographic co-processor. It is a true random number generator 

that generates cryptographic keys for every part in the system. The cryptographic co-processor 

distributes those keys to every device in the system at the start of the session. The keys can 

change as how often as the user decides. The software application of the user, running on the 

main CPU, requests new cryptographic keys by sending a request (interrupt) to the 

cryptographic co-processor. That can happen as often as is required, every week, day, hour etc.    

 

 

Figure 25: A secure Embedded system (Schematic) 



 

 

5.5.2 Architectural Implementation 

 IP blocks are created in Vivado high level synthesis and implemented in Vivado design 

suite. Vivado design suite is used to integrate the design described in this project. The IP 

modules DMA, AES Encryption and AES Decryption were developed in C language and 

synthesized in Vivado high level synthesis. They were exported in IP Blocks and can be 

implemented in an intergraded hardware design. One base design in Vivado consists of the 

Zynq ARM 9 processing unit, the DDR memory and standard Input/Output. The IP modules 

developed in this project are implemented in the base design as well as a microblaze 

microprocessor to act as a cryptographic co-processor. Two double channel BRAMs are also 

implemented in the design in order to check the functionality of the system. The architectural 

design is shown in the image bellow.   

 

Figure 26: A secure Embedded system (Architecture 1)  

 

 Implementation issues and restrictions occur when designing an integrated circuit. Some 

of them have to do with the connection of the IP blocks, the communication protocol, security 

protocols, FPGA size, input and output ports, user restrictions, hardware restrictions, software 

restrictions, etc. The AXI-4 communication protocol was chosen as channel to connect the 

various IPs. Some constrains rise as who acts as a master or a slave interface. The reason for 

those constrains is that some of those IPs act both as master and slave. It actually has to do 

about the role they have in the design. For example, the microblaze cryptographic 

microcontroller can’t be a slave to anyone since he manages cryptographic keys and in case of 

a “leak” the results would be catastrophic for the whole system. 



 

 

 Vivado design suite has a number of restrictions when designing. The Zynq ARM 9 

obviously has a master interface since he executes all the processes, but in this case, he also has 

a slave interface for the microblaze microprocessor. The co-processor passes cryptographic 

keys to the Zynq every time it is requested, so he needs to have master interfaces to distribute 

those keys. The Microblaze doesn’t have any slave interfaces for the reason mentioned 

previously. The DMA has two slave interfaces and one master. The master is to read and 

transfer the data to the peripheral that is requested. One slave is to receive the boundaries form 

the co-processor and the other for the arguments of the DMA transfer, which are received from 

the Zynq. The AES blocks have slave interfaces since they only transform data requested for 

DMA transfers. The BRAMs have slave interfaces by default since they are simple memories. 

All parties are connected through AXI interconnects, as is required from Vivado design suite. 

  Users Software applications are executed by the Zynq and are stored in the DDR 

memory. Boundaries, restrictions and cryptographic keys are applications running in the 

microblaze co-processor, set by the system manager and are stored in the hidden memory of 

the microblaze. No other part of the system has access in that memory making in perfectly 

secure and reliable. The block design shows the wiring between every device in the system and 

from the connections can be seen that everything claimed in this project applies. If the design 

is validated from Vivado design suite and the addresses of every cell are correctly registered, 

the process of synthesis can begin. From the synthesized design, the logic and hierarchy can be 

examined as well as the utilization efficiency. 

 

 

Figure 27: Logic ports from Synthesis 



 

 

 

Figure 28: Utilization efficiency from Synthesis  

 The successful synthesized design has to be implemented to an FPGA design. That is 

the next step, the implementation stage. In this stage the design is placed and routed into FPGA 

resources and the utilization efficiency is examined. If the Implementation stage is successful, 

the last step is to generate the Bitstream. The bitstream is used to program the FPGA target 

device, in this case the zedboard. 

 

 

Figure 29: FPGA target From Implementation 

 

Figure 30: Utilization efficiency from Implementation 

  

If everything and every step is successful the software development kit is used to test 

the functionality and the performance of the system generated. The zedboard is used as the 

hardware target to run the applications to be executed. Processes like synthesis, implementation 

and bitstream generation usually takes a lot of time, so it is essential to try and prevent logical 

mistakes and errors right at the beginning of the design. 

 



 

 

 

Figure 31: A secure Embedded system (Architecture 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6. Evaluation and Performance 

 In this chapter, the system designed is evaluated, performance measured and compared 

to similar existed applications as well as with other architectures developed to provide security 

in embedded systems. Several of these applications have been described in chapter four. In this 

chapter this design is tested for its functionality, usability, safety, integrity, reliability, 

authenticity and speed. Most of the important factors when designing an embedded system 

apply in this project and all of them are tested thoroughly.  

 In order to test the design as a whole system, firstly it has to be tested separately, each 

IP block at a time. The first thing to test is the DMA block that is developed, thereafter the two 

AES blocks and finally all together as one system. A performance comparison between software 

and hardware solutions is also an importance in this project. First of all, several scenarios have 

to be tested in order to gain a global view of each of the blocks that are designed.  Test scenarios 

include multiple blocks for AES encryption/decryption as well as multiple DMAs and one 

approach that the encryption/decryption modules can operate inside the DMA block.      

 

6.1 Module Evaluation 

 After synthesizing a module, Vivado HLS conducts a synthesis report for the block. 

When synthesizing one module, the software estimates performance and utilization. The 

execution time for every block is estimated form the latency multiplied by the period. If we 

want to increase the performance, we either lower the period or lower the latency. This can be 

achieved by splitting the operations, but it’s not achievable in every situation. In this case where 

data are copied from one place to another, splitting operations is not an option. Loop unrolling 

and pipelining techniques are other ways to improve performance, which cannot be used in the 

DMA section but have very positive results on the AES blocks, thus, removing bottlenecks and 

achieve higher throughput. 

As far as the DMA concerns, no loops are running in this block and every operation is 

sequential, thus, no improvement can be made to provide better performance. The execution 

time depends on the amount of data transferred. The main operation of the DMA core as well 

as the performance and utilization estimation can be seen in the images below. 

 

Figure 32: Main operation, data copying 



 

 

 

Figure 33: DMA Synthesis report 

From the performance estimation, it takes minimum 3 clock cycles to get going and at 

least 4 more to receive new data, but that depends on the amount of data waiting to be 

transferred. The next step is to use the block in Vivado as an independent module. In order to 

do that, only the ZYNQ processing system is used and two BRAMs as peripheral devices. Each 

of these BRAMs are divided into four segments in order to create four IDs. Suppose that a 4K 

BRAM is equally divided in four segments of 1K each. Every BRAM slot is a 32-bit (4 byte) 

word, thus, providing 256 memory slots for every segment and 1024 in total. Limitations for 

every segment depend on the specifications of the system manager.  

 

 

Figure 34: DMA testing 



 

 

 The schematic design of the system for testing is presented in the image above. The 

design is valid, is synthesized, implemented and a bitstream of it generated. The bitstream is 

downloaded to the FPGA of the zedboard. At this point the software development kit (SDK) is 

used to write the software applications, one for the restrictions and one for transfer. 

 

Figure 35: Setting the limits 

 

Figure 36: Testing the DMA 

Applications at this time are written, so that the DMA transfer will be successful. The 

idea is to test the functionality and the time needed to execute a DMA transfer of the amount of 

1K of data. For time measurements purpose the ZYNQ global timer is used. It increases by one 

every two clock cycles and it’s the most accurate timer as it was explained by Xilinx. It took 

approximately 4268 clock cycles in a bare metal application to transfer the amount of 1KB of 

data. The Zynq runs at 667 MHz, so it takes 6,41 microseconds to execute a DMA transfer of 

1KB of data. It is acceptable since it takes 2000 clock cycles for the zedboard to execute a 

simple print function in a bare metal application and 250.000 clock cycles for a 1024 time for 

function that inserts data in two simple 4KB simple BRAMs.   



 

 

 

Figure 37: Trasfer of 1KB 

Similarly, for different amount of data the following results came up. It is obvious that 

the execution time for every transfer is proportional to the amount of the data that are to be 

transferred through the DMA module. 

 

Figure 38: Transfer time for different amount of data 

After recognizing that the module operates as it was designed and the execution time is 

between the acceptable level of tolerance, we procced further to test the next modules 

developed. 

Cryptographic operations are a much more complicated process when it comes to 

implement them as hardware modules. Since it was successfully achieved to create AES 

hardware modules in this project, they have to be tested separately and evaluated, as well as 

performance measured. Before measuring performance, it has to be proved that the encryption 

and decryption modules are operating as they supposed to. One way to do that is to compare 

the results from https://www.hanewin.net/encrypt/aes/aes-test.htm and if the results are the 

same, the modules are successfully operating as the AES algorithm is designed to. AES comes 

with three variations, AES128, AES192 and AES256 depending on the size of the key. AES256 

has better performance results because of the smaller number of iterations in large blocks of 

data (10 for 128, 12 for 192 and 14 for 256). 

  Mainly the AES 128bit key is investigated in this project but all results and 

comparisons apply to every cryptographic algorithm that is implemented in a hardware module. 

Same things apply with AES 192bit key and AES 256bit key. With two simple changes in the 

code, every one of the three implementations can be chosen. For simplicity we chose AES 

128bit key. It is a block cipher so it processes blocks of data of 128bit (16 Bytes) each or four 

https://www.hanewin.net/encrypt/aes/aes-test.htm


 

 

32bit words. The two AES blocks are synthesized and exported the RTLs. The synthesis report 

on both encryption and decryption blocks are the same since the operations are similar for the 

most part. At this time the Performance estimation and Utilization from the synthesis report can 

be seen in the image below. 

 

 

Figure 39: Utilization and Performance estimation of AES encryption/decryption block 

Loop unrolling and pipelining techniques where used in these two modules to reduce 

latency to the minimum and achieve higher data throughput as well as remove bottlenecks. 

After a few configurations and tests to reduce latency but keep the functionality, the results 

above where the best that came up. From the performance estimation the synthesizer calculates 

that it takes 19 clock cycles to output the results but it takes only 1 to take new inputs, so as is 

has new inputs it can pipeline the operations and generate new results.  Next, they have to be 

implemented to a ZYNQ base design for testing. Again, these two modules have to be tested 

separately in order to prove the encryption and decryption processes are operating as they 

supposed to and described by the cryptographic algorithm. The two modules are connected to 

the base design in a bare metal application.  

 

 

Figure 40: Encryption & Decryption modules directives 



 

 

 

Figure 41: Connecting of the AES modules 

The schematic design of the system for testing is presented in the image above. The 

design again after validation, is synthesized, implemented and a bitstream of it generated. The 

bitstream is downloaded to the FPGA of the zedboard. At this point the software development 

kit (SDK) is used to write the software application for testing the encryption and decryption of 

the data. One 128bit block of data is used to test the encryption with a 128bit block key. If the 

results match to the testing website and get the initial data from the decryption the IP modules 

are working correctly. 

 

Figure 42: Testing the AES encryption module 

 

Figure 43: Testing the AES decryption module 

 Inputs as well as the cryptographic keys in both blocks are given in SKD in Hexadecimal 

system. The results in the pictures below are printed in hexadecimal system for the ease of 

presenting. The serial port of the zedboard is used to print the results to a screen with a terminal. 

The pictures following show the functionality of the modules. The results compared to the real 



 

 

cryptographic results, proof the integrity and authenticity of the blocks developed. Data were 

successfully encrypted and then returned to initial state as the pictures indicate.   

 

Figure 44: Encryption and Decryption results 

 

Figure 45: Proof of Operation 

 The next step after the confirmation of the functionality of the two blocks is to measure 

the performance and execution time of each block. The use of the ZYNQ global timer provides 

the clock cycles used for the encryption and decryption of 128bit block of data. When dividing 

clock cycles of execution to the ZYNQs frequency, the quotient shows the time needed to 

execute every operation. Of course, the highest the frequency, the fastest the execution. 

Measured and tested on the zedboard CPU running maximum 667 MHz the following results 

came up. It took 218 clock cycles to encrypt a block of 128-bit data and 219 to decrypt them at 

0.33 microseconds time of execution. To understand how fast the results came up, it has to be 

considered that it takes 280 clock cycles for the ZYNQ to execute one simple add function of 

two integers on a bare metal application. 



 

 

 

Figure 46: Performance of Encryption and Decryption blocks 

The data processing and performance of the IP blocks are tested in field programmable 

gate array (FPGA) implementation of the blocks. It has to be made clear how much faster the 

processes of cryptography can be when implemented as hardware modules. To prove this theory 

the same AES-code is implemented as software application on the same CPU of the zedboard. 

The results of the measurements are presented in the image below. As a software 

implementation of the same code, it took 28.506 clock cycles to encrypt the same amount of 

data. The encryption hardware block operates 130 times faster than the software 

implementation. Those results were obtained by processing only 128 bits of data for encryption. 

That been explained, the hardware block can process new data every one clock cycle. The 

software version of it has to finish with the first data to process new ones. This is only the first 

proof of how much faster the encryption can be when operating it as hardware models. The 

more the data the faster it can be in processing it.    

 

Figure 47: Software implementation of AES code 



 

 

6.2 System Analysis 

After testing every block separately and established that everything is operating within 

the framework in which was designed, the whole system explained in the previous chapters it 

to be tested as an integrated system. The next stage is to test the full system with the DMA and 

single and multiple encryption/decryption modules. The system has to be able to generate new 

encryption keys and new access rights every time it is set to be changed or every time that’s 

required to, by the system manager.  

 

Figure 48: System Design 

 

Figure 49: HW Resources 

 The design above was validated, synthesized, implemented, bitstream was generated 

and it can be downloaded to the FPGA target device as explained in the previous chapter. At 

this time the software development kit is use to write applications and test scenarios. The 

Vivado design suite is used from now on only to implement multiple encryption modules, but 

that will be explained in the following sections. As a start, applications must be developed for 



 

 

the microblaze and ZYNQ and test the functionality of the design with some test scenarios. As 

the system responds as it was supposed to, more complicated scenarios can be developed. 

 The first thing is to write two applications for the microblaze co-processor. The first one 

is for the boundaries and restrictions that every id has and which peripheral device 

communicates with which (this application was explained previously in the module evaluation). 

The second is for key generation and distribution amongst the peripheral devices. A true random 

number generator (TRNG) application is developed for this purpose. The application creates 

keys when the session starts and periodically after that. The keys are distributed to all parts of 

the system securely since only the co-processor has access to them. A TRNG is developed 

uniquely for this project that creates cryptographic keys by randomly selecting integers as a 

function of time.      

 One integer in the system has the size of four bytes (32bits). So, in order to create one 

128bit key, the generator has to provide four integers to cover the length of one key. That is the 

simplest way to look at it, since any type of data is data. One number generator can look like 

the image below. This function creates four random integers of a total length of 32 bytes 

(128bits) as a time function and can easily be used as a cryptographic key for this algorithm. It 

only needs 238 clock cycles to execute, so, there is really not a seriously delay when generating 

new keys. The distribution of those keys only takes a clock cycle for the co-processor to pass 

them around. The TRNG used in this project is kept secret because of its complexity and its 

algorithm will remain hidden for now, but in general shares the same philosophy as the 

generator below. 

 

 

Figure 50: A Random Number Generator 

 Once the cryptographic keys have been distributed and the restriction arguments set, the 

main operational application can be developed. To test the functionality of the system one 

application is running on the ZYNQ processing unit. Several scenarios can be tested on this 

application depending on when the encryption begins, before the arguments of a DMA transfer 

are valid or after, maybe encryption inside the DMA module. For every idea or scenario, time 



 

 

execution and performance of the system remains very similar. So, every test could apply to 

more than one scenario. 

 Two BRAMs just like in the DMA section are used to test the design. One of them is 

filled with integers starting from one and the counter increases by one in every slot. The other 

one left with zeros in order to test the transfer and the encryption. The integers are just for 

simplicity, those data could have been acquired by a number of peripheral devices (video 

cameras, audio devices, microphones, etc). Every device that can acquire data has a memory to 

temporally store it. That is the purpose for those BRAMs.  

 Suppose that a DMA transfer request occurs in the application, for example private 

document from a hidden memory to the DDR of the ZYNQ from processing, if the ZYNQ has 

rights to access data from the hidden memory and the DMA transfer is validated, the data will 

be transferred after encryption to the ZYNQ CPU. Only the ZYNQ can decrypt those data and 

no other party of the system who does not have rights. That is accomplished with the keys 

distributed by the co-processor. When the data are decrypted, they can be processed. The 

cryptographic key for every id depends on the boundaries and restrictions that have been set. 

For every id one cryptographic key is generated and is send to both ends than have rights to 

communicate. 

For a test like this, an amount of 1KB of data is used to be transferred and encrypted. 

We set the arguments in the way that the DMA transfer will be successful in order to test the 

encryption. 1KB of data means 256 memory slots. It takes about 4000 clock cycles for the DMA 

to transfer 1KB of data and about 400 clock cycles to encrypt and decrypt them because the 

hardware encryption modules can accept new data every 1 clock cycle. If the same data were 

encrypted in software mode it would take 1.730.948 clock cycles to encrypt them making it 

4.500 time faster. The more data that are to be encrypted the more it makes sense to add a 

hardware model for this process. As the data rises the faster, they are encrypted in comparison 

with the software version of the algorithm. We run the same test for different amount of data 

and the following results came up.  

 

Figure 51: Hardware encryption VS Software encryption (CC) 



 

 

The serial port of the zedboard is used to print the data and execution time to a terminal 

display. Putty is used for this purpose. The images bellow shows the results of this test. The 

buffer in the second image is used to show the encryption of the data and how they are decrypted 

after they are transferred in the second BRAM.      

 

Figure 52: Encryption and DMA transfer of 1KB 

 

Figure 53:Encryption and Decryption 

 Every result in this test shows that the system operates successful even when the 

permissions are not granted and the DMA fails. The execution of the operations is proven to be 

so much faster than the software version of them. That was the idea of this project and can be 

used in a wide area of medical applications, car automatization applications and basically in 

every embedded device application were security is important. The next step is to connect 



 

 

multiple encryption and decryption modules and measure performance as well as different 

amount of data. The following table shows performance measurements on different scenarios.   

 

Figure 54:Performance with multiple modules (clock cycles) 

 

Figure 55: Performance Graph 

  

From the results above it can be made clear that multiple AES encryption hardware 

blocks make sense when large amount of data need to be encrypted since such blocks use a 

large amount of resources and the hardware cost rises exponentially. For small amount of data 

single AES will do just fine.   



 

 

6.3 System Comparison 

 The design was targeted to achieve maximum speed in hardware mode, so it lacks 

flexibility. After a total system analysis, the system can be compared with other systems from 

related work in the past. In compare to Santosh et al. (2017) this project achieved better 

performance. They needed 12.300 clock cycles for a software implementation of 128bit key 

AES and 1032 clock cycles for their hardware implementation. This project achieved it in 280 

clock cycles. Mihai et al. (2006) has better performance with 100 clock cycles on 128bit AES 

encryption to a block of 16bytes of data with a cryptographic accelerator.  

 Paillier & Verbauwhede (2007) achieved a 15.3 Gbps from their implementation of the 

AES in GCM mode on a Virtex-4 FPGA under a clock rate of 120 Mhz.  In 2011, the 

implementation of the AES algorithm by Soliman et al. (2011) reached 74 Gbps on a Virtex-5 

FPGA under the clock rate of 557 Mhz. In 2013 43. Biglari and Qasemi et al. (2013) design a 

high-performance AES system that reached a throughput of 12.8 Gbps. In 2016, Smekal et al. 

(2016) described the AES implementation on Virtex-7 that achieved a 5.1 Gbps throughput 

under a clock rate of 100 Mhz. Marghescu et al. (2014) developed one complete AES-256 block 

processing that computed within 180 ns, working at a 100MHz. 47. Gaspar et al. (2012) with 

the NIOS II-based system achieved an overall throughput of 25.1 Mb/s, the MicroBlaze-based 

system achieved 18.4 Mb/s and the Cortex M1 system achieved 12.2 Mb/s. Rakanovic et al. 

(2016) achieved 914 Mb/s throughput with AES256 at 100 MHz frequency. 

 By analyzing the design, we come to a conclusion that offers security as well as great 

speed performance. It can be used in a wide area of applications including critical applications 

where response of the system is a great deal. By using interrupt controllers and prioritizing the 

IDs, the system gives the opportunity for some devices to gain priority in requesting a DMA 

transfer or even break a DMA transfer at the time of the request due to the criticality of the 

operation. The DMA transfer that was interrupted will continue from the point of interrupt after 

the most critical operation is finished.  

 

6.4 Applications 

 A secure embedded system should provide security and the cryptographic features such 

as confidentiality, authenticity, and integrity as well as speed when operating on critical 

applications. Establishing that the system operates upon those principles, can be set on a large 

area of embedded device applications. Applications include Automotive industry, Healthcare 

applications, Telecommunication, Entertainment and multimedia, Robotics, Computer 



 

 

Networking and basically every system connected to the Internet of Things (IoT). As the IoT 

expands the devices that connected are vulnerable to various attacks, so systems like the one 

designed will always be a necessity. 

 From detecting rash driving on highways to street light control and signal control system 

with vehicle tracking. Home automation systems with temperature control and smart home 

management is a fast-growing area for embedded devices. Automatic wireless health 

monitoring system for patients in medical systems. Automotive, railways and aircraft 

electronics, military applications, authentication systems, consumer electronics and fabrication 

equipment, smart buildings and robotics are areas of application for modern embedded systems. 

The system of this project can provide safe functionality in these areas enforcing the security 

on critical security parameters with a considerably high performance and low hardware cost. 

     

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

7. Conclusion and Future work 

 In this thesis we have designed and developed a system that provides secure access on 

an embedded system through DMA protection and lightweight cryptography. We developed a 

DMA module with a priority security sequence, thus, communication between CPU, memories 

and peripheral devices depend on boundaries and limitations. Those limitations are set by a 

cryptographic co-processor and generates IDs between devices. Those IDs don’t refer to a 

device, rather than to a communication path between devices for DMA data transfers. In order 

for the DMA module to execute a DMA transfer, the ID is passed on as argument. The success 

or failure depends on whether the id is valid or not. If the id is not valid, that means that the two 

ends do not have permission to exchange data, thus the transfer will fail. 

 In addition to the security that is provided, two hardware modules were created to 

perform AES encryption to the data that are transferred through the DMA module. Depending 

on the IDs the cryptographic co-processor generates a unique cryptographic key for every ID 

and distributes it to both ends. But doing so, only the receiver can decrypt the data that are 

transferred. Those keys are generated by a true random number generator that runs in the hidden 

memory of the cryptographic co-processor at specified times or when requested by the CPU. 

The design was successfully generated and downloaded to the FPGA of the zedboard for testing 

in various scenarios and the addition of multiple cryptographic modules. 

 Evaluation of the system provided very good results in timing and performance with the 

addition of security, integrity and authenticity. It can have use in a large area of applications 

and critical applications where real time response is a significant factor.  The design is well 

compared with existing solutions when takin into consideration the hardware cost and the 

provided performance.  

 Future extensions can include real system operations with real time needing applications 

in every possible field that was described in previous chapters. Testing the DMA from this 

project with possible different cryptographic algorithms and multiple DMA modules, maybe 

could provide better security. Some variations of the AES algorithm with the use of multiple 

SBoxes, maybe the use of hardware and software co-operation could provide better results in 

various tests.  Trying to reduce the latency even more could provide better performance in the 

system. Parallel computing with various cryptographic algorithms on a Network on Chip (NoC) 

would be a serious improvement in embedded systems security. 

Whether we provide better performance, we lose resources and the cost rises. If we 

provide better security, we lose in speed. If we provide the best in everything, the cost or the 



 

 

hardware size or even the power consumption will be a great restriction. The best idea is trying 

to provide a balanced solution, using as minimum as possible resources with the best possible 

outcome, as this project successfully provided.   
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