

SECURING ACCESS IN EMBEDDED SYSTEMS VIA DMA

PROTECTION AND LIGHT-WEIGHT CRYPTOGRAPHY

by

FILIPPOS – GEORGE KOLYMPIANAKIS

THESIS

submitted in partial fulfillment of the requirements for the

degree MASTER OF SCIENCE

Hellenic Mediterranean University

Department of Electrical and Computer Engineering

Approved by

Supervisor:

Dr Kornaros George

Abstract
Embedded systems are the driving force for technological development in many

domains such as automotive, healthcare and industrial control. Security is an important aspect

of embedded system design. As more and more computational and networked devices are

integrated into all aspects of our lives security becomes critical for the dependability of all smart

or intelligent systems built upon these embedded systems. Security is provided through a DMA

controller which is operated under certain constraints and with the use of light-weight

cryptography as an extended mechanism to safeguard the confidentiality and integrity of stored

and transmitted information.

Direct memory access (DMA) protection is a necessity, especially in case of RAM

memories where the most of accessible data are located. Different devices or users have

different rights to data contained in each memory, which is the main reason to use a firewall as

a method to protect the data being accessed. Penetrating a device from high speed ports that

permit DMA is an important issue in embedded systems. A DMA firewall prevents physical

connections from DMA attacks so that each device has restricted access for DMA transfers

using memory limitations and device ID. In that way attackers are prevented from stealing data

or cryptographic keys, install or run spyware and other exploits or modify the system to allow

backdoors or other malware

Table of Contents

Contents
Abstract ... 2

Table of Contents .. 3

List of Figures ... 5

Acknowledgements ... 7

1. Introduction ... 8

1.1 General .. 8

1.2 Motivation ... 10

1.3 Contribution .. 11

1.4 Organization .. 11

2. Basic Principles ... 12

2.1 Embedded Systems.. 12

2.2 Direct Memory Access .. 13

2.3 Cryptography ... 14

2.3.1 Advanced Encryption Standard .. 14

2.3.2 True Random Number Generator ... 17

2.4 Xilinx Vivado .. 17

2.4.1 Vivado High Level Synthesis ... 17

2.4.2 Vivado .. 18

2.4.3 Software Development Kit ... 19

2.5 ZedBoard ... 20

3. Embedded Systems Security ... 22

3.1 Constrains, Vulnerabilities and Attacks .. 23

4. Background on Related Work ... 27

5. Design and Architecture .. 34

5.1 DMA Controller .. 34

5.2 AES IP-Blocks .. 37

5.2.1 AES Encryption Module .. 38

5.2.2 AES Decryption Module .. 41

5.3 Cryptographic Co-Processor ... 43

5.4 True Random Number Generator .. 44

5.5 Secure Embedded System ... 45

5.5.1 Schematic Design ... 45

5.5.2 Architectural Implementation ... 47

6. Evaluation and Performance ... 51

6.1 Module Evaluation .. 51

6.2 System Analysis .. 59

6.3 System Comparison ... 64

6.4 Applications .. 64

7. Conclusion and Future work ... 66

References ... 68

List of Figures
Figure 1: Typical DMA ... 13

Figure 2: Steps of AES Encryption (Wikipedia) ... 15

Figure 3: AES algorithm ... 16

Figure 4: ECB vs CBC (Wikipedia) .. 16

Figure 5: Vivado HLS ... 18

Figure 6: Vivado Design Software .. 19

Figure 7: Software Devepopment Kit.. 20

Figure 8: Zedboard .. 21

Figure 9: Project Schematic .. 35

Figure 10: Main arguments (ARM9) ... 36

Figure 11: Boundaries Channel (Microblaze) ... 36

Figure 12: Ports of DMA... 36

Figure 13: Calculating the Limits Source and Destination ... 36

Figure 14: SubBytes in C-code ... 38

Figure 15: ShiftRows in C-code .. 38

Figure 16: MixColums in C-code .. 39

Figure 17: AddRoundKey in C-code ... 39

Figure 18: Main function to produce the ciphertext .. 40

Figure 19: Changes made in order to synthesize a Hardware IP Block .. 40

Figure 20: AddRoundKey in C-code ... 41

Figure 21: ShiftRowsInv in C-code ... 42

Figure 22: SubBytesInv in C-code .. 42

Figure 23: MixColumsInv in C-code .. 42

Figure 24: Main function to produce plaintext synthesizable for a Hardware IP Block 43

Figure 25: A secure Embedded system (Schematic) ... 46

Figure 26: A secure Embedded system (Architecture 1) ... 47

Figure 27: Logic ports from Synthesis .. 48

Figure 28: Utilization efficiency from Synthesis .. 49

Figure 29: FPGA target From Implementation ... 49

Figure 30: Utilization efficiency from Implementation .. 49

Figure 31: A secure Embedded system (Architecture 2) ... 50

Figure 32: Main operation, data copying .. 51

Figure 33: DMA Synthesis report ... 52

Figure 34: DMA testing .. 52

Figure 35: Setting the limits .. 53

Figure 36: Testing the DMA ... 53

Figure 37: Trasfer of 1KB ... 54

Figure 38: Transfer time for different amount of data .. 54

Figure 39: Utilization and Performance estimation of AES encryption/decryption block 55

Figure 40: Encryption & Decryption modules directives .. 55

Figure 41: Connecting of the AES modules .. 56

Figure 42: Testing the AES encryption module .. 56

Figure 43: Testing the AES decryption module .. 56

Figure 44: Encryption and Decryption results... 57

Figure 45: Proof of Operation ... 57

Figure 46: Performance of Encryption and Decryption blocks ... 58

Figure 47: Software implementation of AES code .. 58

Figure 48: System Design ... 59

Figure 49: HW Resources ... 59

Figure 50: A Random Number Generator ... 60

Figure 51: Hardware encryption VS Software encryption (CC) ... 61

Figure 52: Encryption and DMA transfer of 1KB ... 62

Figure 53:Encryption and Decryption ... 62

Figure 54:Performance with multiple modules (clock cycles) .. 63

Figure 55: Performance Graph .. 63

Acknowledgements
 This thesis was prepared by the postgraduate student Kolimpianakis Filippos – George

under the supervision of Professor George Kornaros. To Dr. Kornaros George I owe my sincere

gratitude for his guidance and support throughout the processing of this Graduate Thesis.

1. Introduction

An embedded system is a computer system with a dedicated function within a larger

mechanical or electrical system, often with real-time computing constraints [54]. Embedded

systems control many devices in common use today and ninety-eight percent of all

microprocessors are manufactured as components of embedded systems [54]. Applications of

embedded systems include smartphones, mp3 players, video game consoles, digital cameras,

GPS receivers and technically every device that takes an input and can produce an output and

functions as an independent system [54].

Direct Memory Access (DMA) is feature of computer hardware that allows devices to

gain access to the main bus linking the processor to the system memory and move data directly

between the main memory and another part of the system [57]. A dedicated DMA controller,

often integrated in the processor, can be configured to move data between main memory and a

range of subsystems, including another part of main memory [57].

Security and trusted operation of cyberphysical systems [59][64][65] is increasingly an

important concern in modern digitalized, software-dominated internet-of-everything. Various

techniques have been proposed to guarantee security for embedded devices, which focus to

automotive systems and network communications [58][60][61][63] but also to protect internal

execution of applications from faulty or malicious behavior [66][62].

1.1 General

Many embedded systems have internal and external interfaces that produce or consume

data [57]. These can be simple UARTs, external bus devices or complicated video and graphics

devices [57]. A key part of any embedded system is ensuring that data flowing in to and out of

these interfaces is handled properly and not lost or corrupted [57]. A simple way of moving the

data between the peripheral device and main memory is to use the main processor to perform

load or store operations for each byte or word of data to be moved [57]. The processor must

wait for the peripheral to be ready before transferring each byte or word [57]. For many systems

this is not a good use of processing time as the processor may be spending more time than

necessary moving data between main memory and its external devices [57]. The alternative

way is to set up a DMA transfer that gives the job of moving data to a special-purpose device

in the system [57]. Once the processor has set up the transfer it can be occupied in his main task

while the transfer is in progress or wait to be notified when the transfer has finished [57].

The obvious benefit of moving data using DMA transfers is that the processor can do

something else while the transfer is in progress. However, using DMA sometimes has other

advantages depending on the hardware involved [57]. These include:

Data transformations – applications targeted to video or digital signal processing, may be able

to perform data transformations as part of the DMA transfer. These include byte-order changes

and 2D block transfers [57]

Lower power – if the processor load is reduced and there are fewer interrupts it may be possible

to run the processor at a lower clock rate or even to enter a low power mode while DMA

transfers are in order [57].

Higher data throughput – a given processor may be able to handle more external interfaces

at higher data rates, or a low-end processor might be able to handle more complicated interfaces

such as Ethernet or USB [57].

The simplest is a known as a single-cycle DMA transfer and is typically used to transfer

data between devices such as UARTs or audio codecs that produce or consume data a word at

a time [57]. In this situation the peripheral device uses a control line to signal that it has data to

transfer or requires new data. The DMA controller obtains access to the system bus, transfers

the data, and then releases the bus. Access to the bus is granted when the processor, or another

bus master, is not using the bus. [57].

Another type of transfer is a burst transfer. This is used to transfer a block of data in a

series to the system bus. The transfer starts with a bus request; when this is granted, the data is

transferred in bursts [57]. The burst size depends on the processor architecture and the

peripheral, and may be programmable depending on the details of the hardware [57]. The last

mode of operation is the transparent mode where the CPU never stops to execute its programs

and the DMA controller transfer data free, but those programs do not use the system buses, so

each party works on its own [68].

While a burst transaction is occurring, the processor will not be able to access the system

bus. However, preventing the processor from accessing the system bus may cause a delay,

which can reduce the system performance [57]. To minimize the effects of this problem, the

DMA controller may release the bus after a fixed number of burst transactions or when a pre-

determined bandwidth limit has been reached. However, if the system needs to perform large

DMA block transfers the system designer needs to carefully work out the bus bandwidth

requirements to ensure there are no performance bottlenecks in the hardware or software design

[57].

Before a DMA transfer can begin the processor must address the DMA controller the

amount of data and the location to be moved. A DMA transfer usually has these attributes:

Source address - the address from where the data is transferred, in main memory or the

peripheral address space

Destination address - the address to where the data is transferred, in main memory or the

peripheral address space

Transfer length - the overall length of the transfer, specified in terms of bytes or words.

Embedded system security is the reduction of vulnerabilities and protection against

threats in software running on embedded devices. Like security in most IT fields, embedded

system security involves a conscientious approach to hardware design and coding as well as

added security software, an adherence to best practices and consultation with experts [55]. A

DMA attack is a type of side channel attack in computer security, in which an attacker can

penetrate a computer or other device, by exploiting the presence of high-speed expansion ports

that permit direct memory access (DMA) [55].

Cryptography is about constructing and analyzing protocols that prevent third parties

from reading private messages [56]. Various aspects in information security such as data

confidentiality, data integrity, authentication, and non-repudiation are central to modern

cryptography [56]. Modern cryptography exists at the intersection of the disciplines of

mathematics, computer science, electrical engineering, communication science, and physics.

Applications of cryptography include electronic commerce, chip-based payment cards, digital

currencies, computer passwords, and military communications [56].

1.2 Motivation

 An embedded system controlling its peripheral devices and interfaces with the use of

identification and permission-controlled DMA can provide the secure and reliable

communication between memory and those peripheral devices. In addition, the use of light

weight cryptography mechanism provides further more protection in a low-cost design and

high-speed communication. One high performance DMA module with multiple channels and

high throughput should provide the security needed through multiple AES hardware blocks

designed and developed as a part of this thesis.

1.3 Contribution

 The main contribution of this thesis is to design a DMA controller with permission rights

for each device connected using embedded AES cryptographic hardware system for the

transmitted data. As it will be demonstrated in the following sections, we develop such a system

which provides a simple but reliable function in transmitting data between memory and

peripheral devices in a high speed and low-cost design.

 A device such as this can be used in a wide area of application. In medical applications

for online patient monitoring (sensitive data and who can access it), in automotive for firmware

update and memory data protection, smartphone or tablet memory protection mainly when

accessing the internet, updating or installing new application, in surveillance system with

camcorders with the use of id for data protection, in wave generation on real time operating

systems and generally prevent malware attack. Those are some of the possibilities a system like

this has to offer.

1.4 Organization

 The general approach of this work is to establish a secure protected DMA transmission

between memory and peripheral devices on an embedded system with the use of hardware AES

cryptography blocks. Both DMA controller and AES blocks are designed and developed as part

of the work of this thesis. The remainder of this thesis is organized as follows:

• Chapter 2 states some Basic Principles

• Chapter 3 examines Embedded Systems Security

• Chapter 4 introduces a background on related work

• Chapter 5 analyzes the architecture and design methodology of the hardware and software

infrastructure that has been developed

• Chapter 6 presents the performance results and analysis of the system developed as well as

the comparison with the systems existing

• Chapter 7 concludes with the summary of this work and directions for future extensions

2. Basic Principles

Information security is the practice of protecting information and preventing

unauthorized/inappropriate access, use, disclosure, disruption, deletion/destruction, corruption,

modification, inspection, recording or devaluation of information, or at least reducing the

chance of that happening [67]. The idea is to assure the authenticity, integrity, availability,

confidentiality, non-repudiation of the data transmitted either when referring on Personal

Computers, or in this case on Embedded systems [67] [3]. Security of embedded systems is

creating a lot of issues because of poor security design as well as implementation and resource

constraint [41].

Protection in Embedded systems is an important factor when in stage of designing of

such systems. As explained in next chapter embedded systems like every device in personal

computing has a lot of value Constrains, Vulnerabilities and Attacks, so in the stage of

designing there has to be serious consideration in the methods to be used, cost of the embedded

device as well as to the performance of the system expected. As observed in many cases the

most of the attacks on an embedded device was targeting the DMA controller as the most data

transfers origin from the specified controller. Some basic principles and architectures will be

described in the sections following below.

2.1 Embedded Systems

Features demanded in todays embedded systems include acceleration, flexibility,

personalization, security, privacy, redundancy, scalability, modularity, root-of-trust, PUF-

based keys, longer key sizes, etc. and especially in the case of multi-processor SoC (MPSoC)

platforms and FPGAs [5]. Most of the SoCs nowadays use a security co-processor designed in

register transistor level (RTL) on embedded systems developed for Smart grid uses sensors,

monitoring, communications, automation and computers [6] A common application of

coprocessors is the acceleration of cryptographic algorithms and gain speed. The purpose of

designing such platforms is to improve the flexibility, security, reliability, efficiency, and safety

of those systems [6]. The main idea when developing embedded systems is to achieve lower

power consumption and lower design or manufacturing cost as much as possible but maintain

user friendliness, feasibility and expandability [6].

Embedded devices transmit a large amount of sensitive data that include bank account

numbers, passwords, social security numbers, medical records, etc. [7]. An attacker can develop

malicious applications, thus, when installed on the device can obtain access to private sensitive

information [7]. The best way to prevent these applications is to use anti-virus, anti-malware,

and anti-spyware software which require a high amount of computational power and resources

[7]; thus, the best way is to use cryptographic algorithms to protect sensitive data on SoC

devices used in healthcare, home automation or automotive industry [13]. Embedded systems

in automotive, healthcare and industrial control are progressively getting computationally

efficient and network enabled, thus, security is becoming crucial for smart and intelligent

systems built in these embedded systems [30] [41].

2.2 Direct Memory Access

Direct Memory Access (DMA) is an attribute of Computer Systems for memory access

and data transfer between memory and peripherals without the use of CPU [68]. The aim of

DMA is to remove the load of the CPU so that it can be occupied with other operations. The

processor initiates the DMA controller by sending the source address, Number of words and

the destination address of data [53] [68]. Main advantages and modes of operation have been

described in Chapter one so they will not be discussed further.

Figure 1: Typical DMA

As the use of DMA has become well known so has the large number of attacks on those

controllers [69]. Direct memory access (DMA) protection is a necessity, especially in case of

RAM memories where the most of accessible data that are currently being used by each device

are located [69]. Penetrating a device from high speed ports that permit DMA is an important

issue in embedded systems. Attackers use these ports to gain access to physical memory address

space, acquire the devices purpose, steal data or cryptographic keys, install or run spyware and

exploits or modify the system to allow backdoors or other malware [69].

2.3 Cryptography

 Modern cryptography depending on the key can be either symmetric (private key

cryptography) or asymmetric (public key cryptography) [56]. In Symmetric-key cryptography

both sender and receiver share the same key either if referring to Block ciphers, where inputs

are in blocks, or stream ciphers, where inputs are individual characters [56]. Encryption and

Decryption on symmetric algorithms use the same private key in each method. Most common

private key algorithms are DES, 3-DES and AES (which is the one to be implemented in this

thesis) [56]. In Asymmetric-key cryptography, sender and receiver use a pair of keys, a public

key and a private key. Public-key algorithms are more computationally demanding because of

the level of security they provide but are ideal for digital signature [56]. Most common

algorithms are RSA, DSA and lately ECC (These is not going to be further reference thus it is

not the topic of this thesis).

2.3.1 Advanced Encryption Standard

 The Advanced Encryption Standard (AES) originally known as Rijndael from its

developers (Vincent Rijmen and Joan Daemen) is a symmetric cryptography algorithm (private

key) block cipher with key sizes 128, 192 and 256 bits, so the same key is used for encryption

and decryption [70]. AES operates on a two-dimensional table (4 x 4 array) of bytes called

“state” and it takes 10 transformation rounds to convert the input, who is called plaintext, to the

final output, who is called ciphertext, for a 128-bit key size, 12 rounds for 192-bit key size and

14 rounds for 256-bit key size [70].

 There are four steps of operation in each round of processing [70]. The first step is called

“SubBytes” in which a 16 x 16 lookup table (substitution box or sbox) is used in order to find a

replacement byte for every given byte of input [70]. In the second step called “ShiftRows” the

rows of the table shift to left by zero, one, two and three according to the row [70]. The third

step is “MixColumns” where each byte of a column is replaced of all the bytes in the same

column, in particularly each byte in a column is replaced by two times that byte, plus three

times the next byte, plus the byte that comes next, plus the byte that follows (the simplest way

to explain the step) [70]. The final step is called “AddRoundKey” in which the round key is

added to the output with the XOR logical operation [70]. The round key is computed in every

round in which every Byte is replaced with another using the lookup table and the xor logical

operation [70].

 The four steps (which can be seen in figures below) explained in previous paragraph are

executed in the order presented in every transformation round, except the last transformation

round in which the “MixColumns” is not executed. This operation is for the encrypt mode of

execution, during decryption mode inversive steps are executed in reverse mode of operation

as it can be seen in detail in the figure below.

Figure 2: Steps of AES Encryption (Wikipedia)

Figure 3: AES algorithm

 The “S-box substitution” is a non-linear transformation of two steps. First, the input

bytes are multiplicative inversed and second, a transformation is applied [38]. S-box entries are

implemented using look-up tables or computed mathematically [38]. Transformations “Shift-

Rows” and “Mix-Columns” are linear operations [38]. The AES is a very widespread symmetric

cryptography algorithm for encrypting data [38]. The AES algorithm has two modes of

operation, the Electronic Codebook (ECB) mode and the Cipher Blocker Chaining (CBC)

mode. The ECB mode in general is the main generation of AES in which each plaintext is

encrypted as an independent block. In CBC mode each plaintext is XORed with the previous

ciphertext so every block is dependent on the previous, thus, providing a higher level of security

but consumes more time. The CBC mode was created because in ECB mode identical blocks

produce the same ciphertexts, thus, it turns out to be a security risk. FPGAs in general offer the

performance required to implement such an algorithm [38].

Figure 4: ECB vs CBC (Wikipedia)

2.3.2 True Random Number Generator

 For key generation often as a safe way to generate keys between parties often is used a

hardware random number generator (HRNG) or true random number generator (TRNG). A

TRNG is a device that generates random cryptographic keys to transmit data securely [71].

Most of the related work in the past use a TRNG to produce cryptographic keys [71].

2.4 Xilinx Vivado

 Vivado Design Suite is a development environment from Xilinx for system-level

integration and implementation in order to design IP-centric SoCs. This software suite is

produced for synthesis and analysis for hardware description language designs with a wide area

of features including system on chip development and high-level synthesis analysis [72]. It is

better conception compared to Xilinx ISE development kit, faster and more integrated [72].

This software suite is used in order to develop practical part of this thesis. The software consists

of Vivado High-Level Synthesis (HLS), the Vivado Software and the Software Development

Kit (SDK).

 It is important to indicate that the communication protocol used between cores is the

AXI4 interface protocol. Advanced eXtensible Interface (AXI) is a part of the ARM Advanced

Microcontroller Bus Architecture (AMBA) with a parallel high-performance, synchronous,

high-frequency, multi-master, multi-slave communication interface, mainly designed for on-

chip communication [81]. AXI4 is the interface protocol used in the architecture of this project

for all parties communication, from Microprocessors, IP blocks to peripheral devices and

external ports.

2.4.1 Vivado High Level Synthesis

 Vivado HLS is a software tool included in the Vivado Development kit that accelerates

IP creation to be used in SoCs. The idea is to create hardware modules in high level

programming language like C, C++ and SystemC and the software after a successful synthesis

exports RTL. The IP block exported is ready to be used in Vivado or ISE and can be used and

reused many times. The software window is shown in the figure below.

Figure 5: Vivado HLS

2.4.2 Vivado

 In the Vivado Software, IP Blocks can be added and connected in the AXI -4 interface.

IP Blocks from the Vivado repository include processing modules, memories, interconnects,

DSP systems, mathematical functions, bus interfaces, network functionalities and many more

as well as IP Blocks created in Vivado HLS can be imported and used at will. After a design is

validated by the software in can be synthesized. The synthesis function is the similar function

as the compile function but in this case the Block Design is synthesized in logical ports that it

will use in implementation.

 After a successful synthesis follows the implementation stage where logical ports from

the synthesis design are translated in an FPGA design in order to download it on a FPGA

platform. It also places and routes the logical ports into device resources. In this case the FPGA

platform to be used is the ZedBoard described in the next section. If the implementation is

successful the bitstream file can be generated in order to program the FPGA target device. The

software window can be seen in the section below.

Figure 6: Vivado Design Software

2.4.3 Software Development Kit

 The Xilinx Software Development Kit (SDK) is a software environment for creating

applications for embedded systems on microprocessors like Zynq UltraScale+ MPSoC, Zynq-

7000 SoCs and Microblaze. The SDK application offers multiprocessors designs, debugger and

performance analysis. On this software program the applications are developed that is going to

be run on the embedded device. Through this program the FPGA of the hardware target can be

programmed and run the applications that are developed on the FPGA or the embedded

microprocessor. The program is included in the Xilinx Vivado package and can be seen in the

figure below.

Figure 7: Software Devepopment Kit

2.5 ZedBoard

 ZedBoard is a full development kit from AVNET that uses the Xilinx Zynq-7000 All

Programmable SoC and supports a large area of applications. This is the FPGA hardware

platform that is going to be used for this project so some of his features has to be mentioned.

Features of the Zedboard include the Zynq – 7000 SoC processing system with ARM dual core

processor A9 (677MHz max Frequency), 512 MB DDR3, 256 Mb Quad-SPI Flash, 4 GB SD

card, Onboard USB-JTAG Programming 10/100/1000 Ethernet, USB OTG 2.0 and USB-

UART, FMC-LPC connector (68 single-ended or 34 differential I/Os), 5 Pmod™ compatible

headers (2x6), Agile Mixed Signaling (AMS) header, 33.33333 MHz clock source for PS, 100

MHz oscillator for PL, HDMI output supporting 1080p60 with 16-bit, YCbCr, 4:2:2 mode

color, VGA output (12-bit resolution color), 128x32 OLED display, Onboard USB-JTAG

interface, Xilinx Platform Cable JTAG connector, 8 user LEDs, 7 push buttons and 8 DIP

switches. ZedBoard can be seen in the figure below.

Figure 8: Zedboard

3. Embedded Systems Security

Application of embedded systems can be found in in Automobiles, in

Telecommunication to Motor and cruise control system, for Body or Engine safety, for

Entertainment and multimedia in car, to E-Com and Mobile access, for Robotics in assembly

line or Wireless communication [28]. Also, in Smart Cards, Missiles and Satellites for Security

systems, Telephone and banking, Defense and aerospace or Communication [28]. In

Peripherals and Computer Networking for Displays and Monitors, Networking Systems, Image

Processing, Network cards and printers and in Consumer Electronics on Digital Cameras, Set

top Boxes, High Definition TVs, DVDs [28]. All these applications have some constrains,

vulnerabilities and attacks which are discussed in this chapter.

Most of the application above use a high-end processor for some real-time systems and

integrate a DMA peripheral to handle the data transfers and the bus access [43]. The DMA

reduces the power consumption it increases the CPU’s bandwidth and frees up available

processing capacity but more over the features of DMA are: a)Access to multiple peripherals

in the processor, b)Multiple DMA channels in the processor, c)Different priorities for each

channel, d)Handling the source and destination address, e)Handling the increment/ decrement

of the source and destination address based on the configuration, f)Checking for the completion

of the transfer of configured number of bytes for a DMA channel, g)Burst transfers which split

the whole data transfer into multiple blocks and h)Generate an interrupt when required [44].

When designing secure embedded systems some factors has to be taken into

consideration such as small form factor, good performance, low energy consumption (and, thus,

longer battery life), and robustness to attacks [26]. Such attacks can include viruses, malwares,

worms, physical tampering, and side-channel attacks [26]. Security engineering when

developing intelligent devices like wireless phones, routers and switches, printers, SCADA

(Supervisory Control and Data Acquisition) systems, electronic devices in cars and even

medical devices has been an important aspect when users tend to manipulate them or harm then

in any way [26]. Mileage counter manipulation, unauthorized chip tuning or tachometer

spoofing has forever been a security risk [26]. Encryption has forever been computationally

intensive and requires dedicated hardware in an environment where resources of the embedded

system are restricted [26]. The design must meet the arrangements and the capacity as well as

the cost of the embedded system. As attacks continue to increase, the development of

countermeasures and the insurance of a secure execution environment (SEE) as well as the

dynamic adaptation has to be a must have in embedded system security [26].

3.1 Constrains, Vulnerabilities and Attacks

There have been observed and categorized 60,000 entries of Common Vulnerabilities

and Exposures according to the survey in [29]. From these entries the authors have classified

the attacks concerning embedded systems. In precondition class the requirements of the attacker

include Internet facing device, Local or remote access to the device, Direct physical access to

the device, Physically proximity of the attacker, Miscellaneous or Unknown [29]. For

vulnerability they found Programming errors, Web based vulnerability, Weak access control or

authentication, Improper use of cryptography and Unknown [29]. As far as the target concerned

the hardware, firmware or OS and application [29]. For the attack methods they described

Control hijacking attacks, Reverse engineering, Malware, Injecting crafted packets or input,

Eavesdropping, Brute-force search attacks, Normal use and Unknown [29]. Last, as the effect

of the attack they found Denial-of-Service, Code execution, Integrity violation, Information

leakage, Illegitimate access, Financial loss, Degraded level of protection, Miscellaneous and

Unknown [29].

On the overview of [30] the authors categorize the topics of embedded systems security.

Some disadvantages in the nature of embedded systems include Limited processing power,

Limited available power, Physical exposure, Remote and unmanned operation and limited

network connectivity [30]. Some vulnerabilities Energy drainage (exhaustion attack), Physical

intrusion (tampering), Network intrusion (malware attack), Information theft (privacy),

Introduction of forged information (authenticity), Confusing/damaging of sensor or other

peripherals, Thermal event (thermal virus or cooling system failure), Reprogramming of

systems for other purposes (stealing) [30]. Typical attacks target at privacy authenticity, access

control and confidentiality. The attacks can be physical, logical or side channel based. physical

attacks include micro probing, reverse engineering and eavesdropping [30]. On the other hand,

logical can be software based or cryptographic [30]. Some countermeasures against software

attacks are based on architecture, on safe languages, static code analyzers, dynamic code

analyzers, anomaly detection techniques, sandboxing or damage containment approaches,

compiler support, library support and based on Operating system [30]. Countermeasures against

side channel attacks are masking, window method, dummy instruction insertion,

code/algorithm modification, balancing, etc. [30].

Survey [7] mentions existing defenses, both software and hardware based such as

Software-based Mechanisms, watchdog checkers, Merkle trees, integrity trees, memory

encryption, and modification of processor architecture. The paper categorizes the hardware

attacks as Evil maid attack, Cold boot attack, Firewire DMA attack, Bus attack and software

attacks as Buffer overflow attacks, Return-into-libc and Code injection attacks [7].

The developers in embedded systems had to use either software-based techniques or a

coprocessor to achieve public-key cryptography. Software-based techniques are too

computationally expensive for an 8-bit microcontroller. On the other hand, Coprocessor-based

implementations need extra cost in hardware to support a single type of public-key

cryptography [2]. Solution to that problem is the technique of reusable hardware, the share of

computation units and the use of SRAM memory as cache [2]. One problem that arises is the

level performance bottlenecks occurring from data transfers between the RAM and the

coprocessor [2].

In medical field the physician uses embedded technology to acquire medical

information about a patient where security is an important factor considering the doctor patient

confidentiality [28]. With the use of embedded devices, the treatment of patients can be faster

and more reliable. Application of embedded systems in medical field include Fetal Monitor,

Oximeter, Defibrillator, Digital Flow Sensor, Pacemaker, Pulse oximeter, etc [28]. Types of

these application can either be real time, standalone, networked or mobile in a small scale,

medium scale or sophisticated [28].

IoT Sensor Devices and Automotive Electronic Control Units (ECUs) have a need for

lightweight cryptography because they control critical functions as braking, acceleration etc.

and are connected on a Controller Area Network (CAN) [40]. Those circuits have a need for

Small code/area footprint, minimum latency and low power and that is the reason to use

lightweight cryptography [40]. Automotive embedded Systems nowadays allow software

installation, remote updates, data sharing, or application input data so software corruption has

become a major concern [41].

Other protocols except the CAN in ECUs include Local Interconnect Network (LIN),

FlexRay (for better rates of steering wheel and brakes), MOST (for multimedia) and Ethernet

[51]. Every attack on these protocols target on Theft, Electronic tuning, Sabotage, Intellectual

property theft, Privacy breach and Intellectual challenge [51]. Attacks can be categorized as

Internal and Remote. Internal attacks include Vulnerabilities on the bus and Local attacks [51].

Remote include Indirect access (OBD port, CD player, USB port), Short range attacks (Wireless

pairing of mobile devices, Car-to-car communications, Tire Pressure Monitoring System,

Wireless unlocking), Long-range direct attacks (Telephony, Web browsing) and Long-range

indirect attacks (App store, Side channel triggers) [51]. Constraints on automotive embedded

systems contain Hardware constrains, real time, Autonomy, Physical constraints, Lifecycle and

Compatibility constrains [51]. It is important when designing a secure communication

architecture for internal or intervehicular communication to secure external communication

[51]. Internal protections contain Cryptographic solutions, Solutions detecting anomalies in the

system and Solutions to ensure integrity of the embedded software [51].

One literature survey [41] refers to attacks in Automotive Embedded systems. Low-

level memory such as RAM, FLASH, and CACHEs are very important to ECUs and if an

attacker manages to change the firmware, he can do serious damage to the entire system [41].

ECUs control and regulate information acquired by the sensors (Sensors convert physical

quantitates to electrical signals and actuators to motion.) and there are 70 ECUs in one

automobile with more than 100 million lines of code [41] [51]. Every memory in an ECU (flash

and RAM) has a primary bootloader (PBL) and a secondary bootloader (SBL). PBL loads the

application software from FLASH and the SBL loads from PBL, so every update that is to be

made occur only on SBL [41]. It is important to have restrict access to the bootloader [42].

Features and characteristics of the automotive embedded system include limited

processing power, limited power supply, physical exposure and network connectivity as written

above in [26], same principles apply here [41]. Threats identified as Energy drainage

(exhaustion attack), Physical intrusion (tampering), Network intrusion (malware attack),

Introduction of forged information (authenticity), Confusing/damaging of sensor or other

peripherals, Reprogramming of systems for other purposes (stealing) [41] [53]. Vulnerabilities

in embedded systems have been discussed previously but as far as automotive is concerned are

Programming errors, Network based vulnerability, Weak access control or authentication,

Improper use of cryptography [29] [41]. Requirement for the attacker are Internet facing device,

Local or remote access to the device, Direct physical access to the device, Physically proximity

of the attacker and general attacking strategies on memories [30] [41].

Attacks can be classified as physical, logical and side channel attacks [30], [41].

Physical include Reverse engineering, Micro-probing, Eavesdropping and memory access

Using Debuggers [30] [41] [42]. Logical refer to Code injection attacks (Stack based buffer

overflow, Heap based buffer overflow, Shell code injection, return to libc attack, Return

oriented programming), Cryptographic attack (Brute forcing, Dictionary attack) [30] [41] [42].

Last side channel attacks are based on Fault injection attacks, Timing analysis attack, Power

analysis attack and DMA attacks [30] [41].

Wireless sensor nodes and RFID tags are very efficient devices that consume small

amount of power and require little area. The substantial security, the performance of those

devices as well as the minimum storage space and computational capability are the reason, we

implement Light Weight Cryptography algorithms. Those algorithms have certain features.

They process at low power consumption, low communication cost, low area, low energy and

small processing time [1]. For security in Smartphones, tablets, medical implants and wireless

sensor networks, that lack resources and power consumption a lightweight stream cipher is

proposed in [1], [3].

4. Background on Related Work

Some important projects on embedded systems to provide security on applications that

were discussed in the previous chapter are presented in brief in this one. One processor system

with a general-purpose processor with a cryptographic processor that performs cryptographic

operations and enforces security on critical parameters should prevent exposure of critical

security parameters outside the cryptographic processor and implements a limited Scripting

engine to provide highly efficient security [52].

A hardware-based Montgomery multiplier, and pairing software is proposed in [3] but

lack in some sections. a) Session keys must be embedded in each node at initial implementation,

b) Use of a single session key at multiple nodes requires synchronization; and c) Digital

signatures are not possible, since all nodes share the session key [3]. It also shows the increase

of power and energy consumption. The design uses optimizations for Miller loop, final

exponentiation, and Elliptic Curve Cryptography (ECC) operations. It was designed in VHDL

and runs in an ARM Cortex-A9 processor [3].

Demands for security in Embedded Systems is increased every day. In [2] the authors

propose cost-efficient hardware that can compute the public-key cryptography with the use of

 a coprocessor that supports both RSA (range from 256 bit to 2048 bit) and Elliptic Curve

Cryptography (ECC). They also propose a small direct memory access (DMA) to remove

system-level performance bottlenecks and transfer data between coprocessor and external RAM

in order to make full use of the coprocessor [2].

 A hardware-software co-design of RSA is analyzed in [35] where hardware

accelerators are providing the highest performance but fail in flexibility and adaptability to

changing algorithms, parameters, and key sizes. The authors estimate that they combine

software and hardware that offer high performance and the advantage of low-power and low

energy consumption [35]. Test of this design was performed on the Xilinx Zynq- 7000 SoC

platform, which integrates a dual-core ARM CortexA9 processing system and the RELIC

library (Efficient Library for Cryptography) was used. They show the speed up of the co-design

vs the pure software implementation of the RSA algorithm that run on the same platform [35].

An RSA implementation for system on programmable chip (SoPC) can be investigated in [37].

The use of the RSA processor is believed to be at low cost, more flexible and high performance

when implemented in a FPGA platform [37]. It is a hardware/software integration of RSA in

verilog HDL language and was tested on an Altera Cyclone II FPGA [37]

 One cryptographic processor for security in embedded systems is proposed in [4] named

CryptoAeg. In difference from general SoC-based solutions, CryptoAeg has its own

cryptographic instructions to accelerate cryptographic processing by eliminating the need of

coprocessors and minimize the cost of the system for the use of RSA or ECC [4]. The design

relies on the ALU architecture without including a multiplier in order to reduce the hardware

cost and complexity of software program [4]. It provides security for portable devices and

wireless communications [4].

 Public key encryption algorithms are very cost efficient when used in wireless sensor

nodes, yet if necessary, the best to use is Elliptic Curve Cryptography (ECC) for short keys

[24]. Public-key algorithms are more computation-intensive than other types of crypto

algorithms like symmetric-key algorithms and hash functions, but are an importance when

talking about digital signature and authentication [24]. The performance of the ECC is tested

on DSP and it shows efficient results, although it does not run on a general-purpose processor

but hardware features of DSP to accelerate the ECC operations are used for this reason [24].

Same in [25], a three side-channel protected hardware/software co-design for a small but

particularly fast pairing-based cryptography in a stand-alone microprocessor seems to be

another good option when referring to embedded applications because of the low chip area

needed. With an assembly optimized software implementation, the low area requirement and

the high runtime of pairing-based cryptography the option is viable in interactive embedded

applications when involving wireless sensor networks [25].

 Elliptic Curve Cryptography for MSP430-Based Wireless Sensor Nodes is a new energy

save architecture, a dedicated hardware module for area and speed-optimized software solution

[32]. It uses 4kGE of dedicated chip area and consumes less energy but the efficiency of the

algorithm in speed is the same as before [32]. One hardware/software Co-design of Elliptic

Curve Cryptography is provided in [34] for the 8051 Microcontroller. It uses a minimalist

hardware accelerator for ECC and a dedicated interface with direct memory access for better

performance and reduction of hardware cost in comparison with previous work on similar 8-bit

platforms [34].

 Nowadays, an electronic computational unit is embedding more data and power

management in connected, autonomous and electric vehicles [5]. The authors in [5] refer to a

Reconfigurable hardware technology combined with static multicore processors and memory

into a SoC for embedded cryptosystems. Their work focuses on the HW/SW co-design of a

secure automotive computation unit which is composed of a full post-quantum cryptosystem

implemented in programmable logic to prevent intruder’s decryption using quantum computers

[5]. To achieve this, they implemented the McEliece algorithm, a true random number

generator, the advanced encryption standard and a secure hash algorithm. They used the Zynq

UltraScale+ MPSoC ZCU102 evaluation board to test their design.

 In [6] the authors propose a security coprocessor with the general-purpose processor in

an AMBA bus and an AXI interface in a MPSoC. SM2 asymmetric encryption algorithm and

SM3 hash function is used to ensure the security in the system [6]. The accelerator in the

security coprocessor mainly executes computational functions like Modular multiplication and

modular addition. This SoC could be used in a power distribution network as a smart control

terminal or a smart metering and power quality analysis instrument [6].

 The authors in [10] propose a cryptographic accelerator to multiple cryptographic tasks

for Internet Protocol security (IPsec) by using a Dynamically Reconfigurable Processor (DRP)

from NEC electronics in a SoC with the embedded processor. The accelerator provides high-

throughput cryptographies, cost efficiency, and high flexibility to embedded systems and

presents a practical solution to optimize cost, performance, and power consumption [10]. With

the use of Virtual Hardware and Run-Time Configuration based on Double Buffer the

simulation results show that co-processing system eliminates a bottleneck of the software

execution and achieves performance improvement [10].

 As technology rises the authors in [13] present a 65 nm Fulmine secure data analytics

System-on-Chip for IoT end-nodes with Convolutional Neural Networks and computer vision.

This SoC provides full programmability, low-effort data exchange between processing engines,

high speed, and low energy. By combining cores and accelerators within a single tightly-

coupled cluster this SoC improves time and energy in a simple software solution with

flexibility, high security and sensible budget [13].

 A great idea is provided in [15] where the authors make use of a dedicated DMA

controller, which encrypts and decrypts data in every transaction according to the function

required. The Advanced Encryption Data is used to transform data in each DMA request, that

prevents transmitted data to be hacked by an unauthorized user [15]. The idea was developed

for the IPhone of Apple Computers but can work for every embedded device. Another great

idea presents in [16] where each I/O controller has its own identifier and every identifier its

own encryption key. Whenever a DMA transaction is to be performed, a computing device

called the cryptographic engine protects the data according to the identifier of the I/O controller

[16]. The cryptographic engine has an identifier table with the cryptographic keys of every I/O

controller [16]. According to the device id, the cryptographic engine encrypts with a different

key every time a DMA request is to be made [16].

 Same idea for DMA security developed in [19] with the use of an encryption/decryption

unit in the DMA path. For historical reasons the idea that presented in [20] explains the scenario

of using a security module for encrypting and decrypting data whenever a DMA request is made

[20]. Every encryption or decryption is established through the DMA controller without

disturbing the main processor [20]. This scenario was proposed for personal computing but

applies still in embedded systems applications. In [22] the authors develop a high-performance

DMA design with four channels able to transfer 1.6 megabytes of data every second. This DMA

controller uses the advanced microcontroller bus architecture (AMBA) and was implemented

in Verilog HDL [22].

 One implementation of all three AES algorithms (AES-128, AES-192 and AES-256)

can be investigated in [23] using cryptographic accelerator with both ECB and CBC mode as

well as SHA-1 and SHA-256 hash algorithms combining the speed of hardware with the

flexibility of software. The Sboxes in this implementation are in RAM blocks in order to

increase the throughput [23]. The hardware cryptographic accelerator using FPGA technology

and the client application was tested in a linux platform on a PC using PCI Express interface

[23]. In order to achieve higher computation speed, flexibility and implementation scalability

parallelization mechanisms were used for all encryption and hash blocks [23]. A kernel driver

was also developed in order to connect the hardware unit to the PC and acquire direct access

operations to the hardware resources required by the multitasking environment [23].

 One Hardware-Software co-design of Cellular Automata Cryptosystem (CAC) shows

experimental results better than DES and comparable to AES [18]. CAC is supposed to be fast

in execution because of its small code size, designed for embedded systems with an acceptable

level of security [18]. CAC is written in verilog and was acceptable by the time invented

because of its simplicity (only four levels of transforms) and the level of security that provides,

but obsolete nowadays.

 According to the authors of [31], a hardware acceleration of AES Cryptographic

Algorithm can be developed for IPSec, to provide secure data at the IP layer but the drawback

is that itneeds a lot of computational power. It uses a hardware acceleration of AES ECB and

the goal was to secure speed and energy efficiency [31]. They tested it on Xilinx Virtex-6

ML605 on 250 MHz and they achieved 391.25 Mbps throughput [31].

An advanced bus architecture for embedded systems that use AES encryption to

improve performance and possibilities is provided in [8], called CDBUS. The benefits using

the CDBUS include a) low cost and low pawer control bus, b) dual bus structure, c) high –

throughput data bus, d) high - efficient DMA with dynamic arbitration, e) high – performance

AES transfer mode [8]. A testbed provided in [9] shows results for execution of various sha3

algorithms. Those results include a) hardware execution time, b) software execution time, c)

HW/SW speed up and d) maximum clock frequency. Results were obtained using vivado design

Suite. In [11] is an example of a multi FPGA SoC with 24 microblade performing parallel and

pipelined signal processing applications in embedded system to achieve performance and [12]

shows an improved DMA controller to boost high speed data transfer in MPU based SOC.

One cryptography co-processor in NoC systems can offer complete functionality with

just an integrated DMA, embedded key registers, command priority queues, and AES counter

mode of operation (CTR) [36]. The general-purpose processor (GPP) only requests encryption

and decryption operations from the co-processor. The scenario proposed is high-performance

pipelined AES core with counter mode of operation (CTR) with an integrated DMA module to

take the load off the GPP and perform all the cryptographic tasks and data transfers in a scalable

NoC design [36]. They used an intergraded AES core from Opencores with key register file in

our tile to store keys and the priority command queue [36]. The design was only tested in

modelsim and it was estimated to be 230 times faster than the pure software implementation of

the same algorithm [36].

Two approaches are presented in [38] to implement the AES encryption algorithm in a

multi-processor SoC (MPSoC). The first one is composed of a Network Interface (NI), a

Controller, AES and internal memory and for the second, a Network Interface, a plasma

processor, AES, Direct Memory Access (DMA) and internal memory [38]. The cost to design

a pipelined AES algorithm in FPGA is very low and it provides resource utilization, high speed

and high throughput [38]. They developed this design in VHDL with the use of the AXIM

platform and the customized AES based crypto module and was tested with modelsim and

Virtex6 ML605 from Xilinx [38]. In the first approach the design uses less hardware resources

and achieves better performance than the second approach but in both cases the latency has

reduced significantly [38].

Constant growth of data transfer requirements in modern embedded systems made the

need to implement the AES256 and TDES as hardware IP cores on FPGA platform with the

use of AXI interface [39]. This way the performance of data encryption/decryption is

approximately 13 to 416 times faster compared to the pure software implementation of the

algorithms and in addition takes the offload of the main processor [39]. The results are

comparable to modern Intel processors with specific instruction set [39]. The IP cores are

modeled in VHDL and tested on a zedboard.

The Maestro architecture described in [43] is a hardware/software co-design with two

components, one processor for system initialization and control and the hardware AES core for

high performance AES encryption/decryption. The design reaches a very high throughput,

through a tightly coupled encryption and round key generation units in encryption unit and

ahead of time round key generation in decryption unit [43]. The ten-stage pipelined architecture

was considered for the AES engine and the authors believe that it can encrypt or decrypt one

block of data in one clock cycle [43]. It is also believed to be cost efficient considering the high

throughput. The Altera DE2-115 development and educational FPGA board was used to test

this design which includes the Nios II core, Avalon interconnects, SRAM, SDRAM and on chip

memory [43].

A secure communication protocol is described in [46] in which cryptographic co-

processors are used and the cryptographic key is computed according to a password that was

set between the users. The hardware/software co-design uses AES-256 block cipher, is used in

real time applications and is supposed to be cost-efficient, high power and high secure hardware

structure [46]. It provides high security, portability and speed at low costs [46]. The design was

tested in Linux OS on a ZYBO combining the ARM CPU and the FPGA [46].

There are three ways to connect a security module to the embedded processor, a) in the

processors Datapath, b) through the internal register file of the processor and c) access through

the peripheral bus as a peripheral [47]. An AES-128 security module is implemented on [47] as

an IP-Core with a true random number generator (TRNG) for keys and is tested in different

platforms [47].

 One scenario that a Co-processor can be used in some area of application such as

random number generation or hash generation and error correction is applied in [21]. The Co-

processor performs forward error correction using BCH and Reed Muller algorithms IP Blocks

and SHA-1 IP Block for hash generation in embedded systems [21]. The CP is modeled using

Verilog HDL and tested with Altera-Acex FPGA [21].

 The main goal when referring to security in essence is a vault manager to protect the

firmware if an embedded device from unauthorized access [27]. The authors in [27] propose a

hardware vault such as this which includes of a shadow RAM or shadow Cache, flash memory,

and a vault manager. The architecture proposed offers good security with a small performance

penalty over OS applications [27]. The key points of this architecture include a) the vault is

external to the processor, b) assures instruction integrity and c) provides trust on firmware

upgrades [27].

 In [14] the authors implement a hypervisor named BitVisor with minimized code and a

parapass-through driver for ensuring storage encryption in ATA input/output devices. It is

designed for virtual machine monitors and mainly for desktop operating systems [14]. Similar

in [17] a hardware encryption module in the processor ' s memory access path is used by the

processor to secure information. Same as before used mostly for hypervisor and virtual

machines. In this work the security module is an application specific integrated circuit (ASIC),

a general-purpose processor on field programmable gate array (FPGA), designed and

configured to perform security operations for the processing system [17]. Another bare-metal

hypervisor running on virtual machine OS is the Silvermont microarchitecture for Intel x86

processors, running Windows is proposed in [33] but it is mainly used in POS machines and

industrial embedded devices.

 For secure mobile authentication a new architecture is presented to produce

cryptographic keys and values for use inside an Enhanced Cryptographic Engine (ECE) [48].

A software Application Programming Interface provide stronger security for commands and

data and a software emulator ensures secure communication between multiple computers and

mobile devices [48]. A Trusted Execution Environment (TEE) provides secure modification,

removal and update on embedded systems used in Automotive or health-care networks [48].

Securing DMA transfers can be also accomplished through virtualization based on

hardware/software and provide high security with a formal verification of isolation and

availability and a low performance overhead [49]. One software-based parallel cryptographic

solution with a parallel memory embedded SIMD matrix processor is proposed in [50] which

executes encrypting and decrypting cryptographic algorithms. The architecture is very effective

for private information protection that promises low power and small chip area consumption

and is intergraded in real time [50].

 The contribution in [45] presents one hardware solution for ensuring microcomputer

bus systems through a Tree Parity Machine Rekeying Architecture (TPMRA). The TPMRA IP-

core is designed for adaptability, low cost terms, variable bus performance requirements,

authentication of different bus participants as well as the encryption of chip-to-chip buses [45].

A co-processor module together with an application software encrypts communications

between CPU, memory and other hardware through stream cipher techniques, Tree Parity

Machine together with a hash algorithm that acts as a key stream generator for authenticated

key exchange in AMBA bus system [45]. The design was written in VHDL and tested on a

FPGA demonstration system, consisting of several FPGA boards [45].

5. Design and Architecture

 In this chapter we describe the architecture and design methodology of the hardware

and software infrastructure of the project developed. The important characteristics of an

embedded system are speed, size, power, security, integrity, authenticity, reliability, accuracy,

adaptability, functionality, cost, power requirements, size and weight. In this project a secure

DMA controller is been developed with the additional AES block cipher technique for extended

security. DMA controller is developed in high Level Synthesis the execution of which is

successful under certain constraints. Different IDs are used for every peripheral on the

embedded device with different permissions for every ID for write or read operations.

A successful data transfer over DMA depends on the permissions set by the

cryptographic co-processor with the addition of AES encryption on those data for secure

transmission. Encryption keys are set by the same cryptographic coprocessor in the beginning

of the session using a true random number generator. When a data transfer on the embedded

device is in order, according to the ID and the permissions granted, the data will be encrypted

and decrypted in the other end by AES IP-Blocks also developed in High Level Synthesis in

the purposes of this thesis. The design is explained in detail in the sections following.

5.1 DMA Controller

 DMA transfers are used for fast data transfer between the IP core or processor and the

system memory or the peripherals. In this particular project the DMA is used to transfer secure

encrypted data from the cryptographic module to the peripheral or memory that are destined.

The end device then uses the key that is provided by the cryptographic co-processor to decrypt

the transferred data. The DMA controller has been developed with the Vivado High Level

Synthesis (HLS) tool with the use of C programming language, thus, creating an IP block that

is used to transfer secure data though the peripherals.

 Every peripheral in this design uses a unique device ID for the purposes of

communication with other peripherals. The architecture of our DMA controller is designed to

receive certain arguments in order to execute a successful DMA transfer. Those arguments are

the read and write position of each memory, the quantity of data to be transferred and the ID

number for each device. Some boundaries have to be made considering every device ID,

because as explained before every device has different rights and permissions. Those

boundaries are inserted from a channel as arguments different than the channel we use for the

main arguments and is operated exclusively by the cryptographic co-processor.

 The cryptographic co-processor is a Microblaze microprocessor used as a shadow in

this design which delivers the cryptographic keys to CPU, memory and peripheral devices and

sets the arguments-boundaries for each of those devices according to the device ID. After that,

every other main process or data transfer is performed by the main CPU, the ZYNQ processing

system that includes the ARM 9 two core microprocessor. A main schematic of this project can

be shown below.

Figure 9: Project Schematic

 As it can be seen the figure above the AXI-4 environment interface protocol is used for

the communication between CPU, memory and peripherals. The DMA IP block has two

channels, one for the boundaries provided by the Microblaze microprocessor and the second

for the main arguments of the application. Two BRAMs are used in this case scenario in order

to test the liability of the system. As the systems boots the application running on the microblaze

applies the restrictions on the DMA module and after that, every DMA transfer requested by

the applications running on the ARM9 has to apply to those restrictions. The BRAMs are just

used as to transfer data from one to the other according on the boundaries given from the

microblaze.

 The architecture of the design will be explained in more detail, in the sections below.

As mentioned Vivado High Level Synthesis is used to build this DMA controller module. As a

start the two channels have to be separated, one for the boundaries and one for the main

arguments. This is a very sensitive directive as it controls who has rights to use this channel

and who doesn’t and has been made clear who is supposed to do what. DMA is designed with

a master AXI port to associate with the peripheral devices and two AXI slave ports, one for the

communication with the microblaze and one for ARM9. The channels can be seen in the

pictures bellow.

Figure 10: Main arguments (ARM9)

Figure 11: Boundaries Channel (Microblaze)

Figure 12: Ports of DMA

 The functionality of the specific design of DMA depends on the ports shown above.

Once the boundaries of the application have been inserted and the main application starts, if a

DMA transfer request occurs, the algorithm calculates if the source and destination limits are

exceeded. A successful DMA depends whether or not these limits are exceeded. A part of this

algorithm written in C Language is shown next.

Figure 13: Calculating the Limits Source and Destination

One benefit arises from this architecture, the use of IDs provides device authentication

in the system, so that no other party can use the same channel. The advantage of using priorities

for those IDs make it even a stronger security mechanism.

After a successful Synthesis, a Register Transistor Level (RTL) IP Block is exported in

order to be used in the general design of this project in Vivado. The security is provided by the

hardware, while the memory permissions for each ID are given by one of the applications

running over the hardware. In each call for a DMA execution the main application inserts the

user’s ID, the memory location of the BRAM memory that is going to read, the location of the

BRAM memory that is going to write, as well as the quantity of the data to be moved as

arguments to the DMA block. If the permissions being set for the certain ID are valid and do

not exceed the memory limits for the two BRAM data will be successfully moved. In other case

DMA will fail due to denied access (read/write) on one or both BRAMs.

While it is strange to connect two BRAMs in the same AXI master channel and not use

two it is perfectly explainable. Direct copy from source memory to destination memory is not

permitted so we have to use a buffer in our architecture. Data are firstly copied to the buffer

and then from the buffer to the destination, so a second AXI master channel is a waste of space.

The AXI interconnect we use is to connect the two BRAMs to one AXI master channel as well

as to prevent timing issues.

DMA controller has been designed in a way that every data transfer between two

BRAMs can be accomplished only under certain conditions and that’s the reason these

restrictions cannot be exceeded. The DMA restrictions are accomplished straight on the

hardware design of DMA block that is responsible to perform data transfers and without the

initialization of these restrictions every call for DMA transfer will be a failure.

5.2 AES IP-Blocks

 Embedded systems have sufficient resources such as memory, power and size, thus,

they are not able to provide most of the existing cryptographic algorithmic codes. In this section

Lightweight Cryptography is developed for those devices. Secure processing in this design

is accomplished with an embedded cryptographic unit. AES security cryptographic algorithm

was chosen for this particular project for its simplicity and the level of security that provides.

Two modules created to encrypt and decrypt data, one for encryption and one for decryption

algorithm. The reason the two modules are developed separate is to avoid using more chip area

than is necessary. Data are encrypted in the one end and decrypted in the other end by different

encryption/decryption modules. In that way a higher level of security and integrity is achieved.

5.2.1 AES Encryption Module

 A straight-forward implementation of the AES cryptographic algorithm is used on this

project developed at Computer Science Department from University of Santa Barbara

(http://cs.ucsb.edu/~koc/cs178/projects/JT/avr_aes.html). It was selected because it is a simple

implementation of the AES and the authors of it have given permission to use, copy, modify

and distribute of this code for any purpose. In order to use this code as a hardware module,

changes have to be made in the code. All details and changes are been explained as follows.

 The Advanced Encryption Standard, as explained in Chapter 2, has four steps of

operations. All steps are executed in the order they are described except the last transformation

where the ““MixColumns” is not executed. These four steps are analyzed in C-code.

5.2.1.1 SubBytes

 Replacement of the byte in every given byte of input from the lookup table (sbox).

Figure 14: SubBytes in C-code

5.2.1.2 ShiftRows

 The rows of the table shift to the left.

Figure 15: ShiftRows in C-code

http://cs.ucsb.edu/~koc/cs178/projects/JT/avr_aes.html

5.2.1.3 MixColums

 Each byte of a column is replaced of all the bytes in the same column.

Figure 16: MixColums in C-code

5.2.1.4 AddRoundKey

 The round key is computed in every round, in which every Byte is replaced with another

using the lookup table and the XOR logical operation.

Figure 17: AddRoundKey in C-code

Figure 18: Main function to produce the ciphertext

Figure 19: Changes made in order to synthesize a Hardware IP Block

5.2.2 AES Decryption Module

 On the AES Decryption Algorithm inversive steps are executed in the reverse mode

operation. The C-code for this implementation did not actually exist so it had to be reverse

engineered from the Encryption C-code. The inversive steps and the main operation of the AES

decryption mode are shown below. Again, all steps are executed in the order they are described

except the last transformation where the ““MixColumnInv” is not executed.

5.2.2.1 AddRoundKey

 The round key is computed in every round in which every Byte is replaced with another

using the lookup table and the XOR logical operation.

Figure 20: AddRoundKey in C-code

5.2.2.2 ShiftRowsInv

 The rows of the table shift to the right.

Figure 21: ShiftRowsInv in C-code

5.2.2.3 SubBytesInv

 Replacement of the byte in every given byte of input from the lookup table (sbox).

Figure 22: SubBytesInv in C-code

5.2.2.4 MixColumsInv

 Each byte of a column is replaced of all the bytes in the same column.

Figure 23: MixColumsInv in C-code

Figure 24: Main function to produce plaintext synthesizable for a Hardware IP Block

5.3 Cryptographic Co-Processor

The objective of this project is achieving high speed of operation with low cost

implementation, which is a difficult subject. In order to meet this requirement a Cryptographic

co-processor is used to manage cryptographic keys and initialize DMA transfers in secure

mode. A microblaze microprocessor was chosen for this purpose, for its rich instruction set,

flexibility in a very low cost for a FPGA. One true random number generator (TRNG) is running

in the hidden memory of the microblaze to generate keys for every peripheral and memory in

the system in order to use them in DMA transfers.

When the system starts the cryptographic co-processor distributes the cryptographic

keys to all devices connected to it. After that the co-processor passes arguments to the DMA

module in a private and secure channel about the boundaries that every device in the system

has. As it was explained, not everyone has the same rights in a secure system. Those rights can

only be given by the co-processor according to the specifications that have been set by the

system manager. Both the TRNG and the permissions settings are running as software

applications in the hidden memory of the cryptographic co-processor, which is the only one

that has access to those apps in the system. No other part in the system has access to this part

of the system making it reliable and safe for every application.

Once the cryptographic keys have been distributed and the boundaries of the system

have been set, any application running on the main CPU can ask for a DMA transfer. If the

arguments of the transfer apply to the options set the DMA will transfer cryptographic data

form one end to another. In any other situation the transfer request will fail. If the transfer is

successful the encrypted data can be decrypted at the other end by the key that was distributed

and by that end only since no other end has the key for this data if not allowed. Nor the CPU

nor any other peripheral in the system has access to this co-processor, but only to request new

generation of cryptographic keys or request new DMA restrictions.

The CPU executes DMA transfers in secure mode. When DMA is finished sends an

interrupt to the CPU to inform whether the data were secure transmitted or otherwise failed. A

DMA transfer moves data encrypted from source to destination only if the communication

between the two ends is allowed by the restrictions set, thus, making it a fast and reliable

communication mechanism in embedded systems applications.

5.4 True Random Number Generator

 A True Random Number Generator (TRNG) is used to generate cryptographic keys for

every pair of devices connected in the system. Every pair of devices means a different ID, which

means that number of keys depends on how many devices are connected to the system and how

many of them have communicational rights between them. The scenario for key generation can

be changed and depends on the security the user is trying to achieve. Keys can be generated in

the beginning of the session and then every month, week, day or even hour. The algorithm

creates 128 bits random keys as a function of time every time it runs and for as many IDs as

demanded. By taking in mind the time of the request for the key, XORing that time with the

time the previous key was generated gives a range of random numbers in which the generator

chooses randomly some of them, thus, creating a key.

 The original idea was to synthesize a true random number generator in a hardware

module, but since some of its functions are not synthesizable, it was decided to run it as a

software function running on the hidden memory of the microblaze microprocessor or on this

case the cryptographic co-processor. Only the cryptographic co-processor can execute this

function and it is the only one who can distribute those keys to the peripheral devices. The main

CPU has not access to this software application nor has any other device, except of requesting

new cryptographic keys. By providing these rules, the system becomes very reliable and safe

and thus, providing confidentiality, authenticity, and integrity.

5.5 Secure Embedded System

 By combining all these technologies and modules we developed, one secure embedded

system can be created providing secure access via DMA protection and lightweight

cryptography for fast but reliable communication between peripheral devices. A system of such

is responsible to deliver encrypted information from source to destination if the permissions

allow it. Those permissions depend on the settings that are set by the manager and basically

describe which peripheral can communicate with another, or, when referring to memories, the

predefined space given. In another point of view and to make it more understandable, those

restrictions refer to physical addresses in the system. Every device has some boundaries on with

which devices can communicate. For every pair of transmission an ID is created and different

restrictions are set for every ID. Every ID has a priority number in a hierarchical list on using

the DMA module to transfer data adding another security mechanism. This can be achieved by

an interrupt controller in the system, sending requests for DMA transfers and operating on

priority basis.

5.5.1 Schematic Design

 The schematic design in the image below shows how the members of the system are

connected. The system consists of the main CPU ZYNQ ARM9, the Microblaze cryptographic

co-processor, one AES Encryption module, one AES Decryption module, the DMA and two

BRAMs used for testing. The modules are connected through AXI interconnects which is the

communication protocol that is used. All rules set for this system and explained in the sections

above, apply in this design. The functionality of the system as well as the security it provides

is explained and tested in the sections following.

Every IP block has been explained in the sections above except the BRAMs and the

AXI Interconnect. The AXI Interconnect works as a main channel to connect every part in the

system that are communicating with the AXI-4 communication protocol for embedded devices.

The two BRAMs are used in this project as an example of peripheral devices, in order to test

the functionality of the system. The memory size of those BRAMs has been divided in to

sections to act as boundaries, in order to create some IDs to test the DMA and cryptographic

co-processor. By dividing the BRAMs into sections the co-processor can pass as arguments

(restrictions) from which section one ID can read and in which it can write, making it a perfect

example as if there were other peripheral devices.

Operating in that example, it really does not make any difference since the arguments

passed are device addresses, as is every memory slot in a memory. With these restrictions set,

when data are requested from one section to another and if the DMA transfer is valid according

the ID, those data will be encrypted by the AES encryption module and decrypted on the

destination by the AES decrypt module. Encryption and decryption on the two sides of

communication is accomplished by the cryptographic key assigned on this ID (both sides) by

the cryptographic co-processor.

Cryptographic keys are created through a software program running in the hidden

memory of the microblaze cryptographic co-processor. It is a true random number generator

that generates cryptographic keys for every part in the system. The cryptographic co-processor

distributes those keys to every device in the system at the start of the session. The keys can

change as how often as the user decides. The software application of the user, running on the

main CPU, requests new cryptographic keys by sending a request (interrupt) to the

cryptographic co-processor. That can happen as often as is required, every week, day, hour etc.

Figure 25: A secure Embedded system (Schematic)

5.5.2 Architectural Implementation

 IP blocks are created in Vivado high level synthesis and implemented in Vivado design

suite. Vivado design suite is used to integrate the design described in this project. The IP

modules DMA, AES Encryption and AES Decryption were developed in C language and

synthesized in Vivado high level synthesis. They were exported in IP Blocks and can be

implemented in an intergraded hardware design. One base design in Vivado consists of the

Zynq ARM 9 processing unit, the DDR memory and standard Input/Output. The IP modules

developed in this project are implemented in the base design as well as a microblaze

microprocessor to act as a cryptographic co-processor. Two double channel BRAMs are also

implemented in the design in order to check the functionality of the system. The architectural

design is shown in the image bellow.

Figure 26: A secure Embedded system (Architecture 1)

 Implementation issues and restrictions occur when designing an integrated circuit. Some

of them have to do with the connection of the IP blocks, the communication protocol, security

protocols, FPGA size, input and output ports, user restrictions, hardware restrictions, software

restrictions, etc. The AXI-4 communication protocol was chosen as channel to connect the

various IPs. Some constrains rise as who acts as a master or a slave interface. The reason for

those constrains is that some of those IPs act both as master and slave. It actually has to do

about the role they have in the design. For example, the microblaze cryptographic

microcontroller can’t be a slave to anyone since he manages cryptographic keys and in case of

a “leak” the results would be catastrophic for the whole system.

 Vivado design suite has a number of restrictions when designing. The Zynq ARM 9

obviously has a master interface since he executes all the processes, but in this case, he also has

a slave interface for the microblaze microprocessor. The co-processor passes cryptographic

keys to the Zynq every time it is requested, so he needs to have master interfaces to distribute

those keys. The Microblaze doesn’t have any slave interfaces for the reason mentioned

previously. The DMA has two slave interfaces and one master. The master is to read and

transfer the data to the peripheral that is requested. One slave is to receive the boundaries form

the co-processor and the other for the arguments of the DMA transfer, which are received from

the Zynq. The AES blocks have slave interfaces since they only transform data requested for

DMA transfers. The BRAMs have slave interfaces by default since they are simple memories.

All parties are connected through AXI interconnects, as is required from Vivado design suite.

 Users Software applications are executed by the Zynq and are stored in the DDR

memory. Boundaries, restrictions and cryptographic keys are applications running in the

microblaze co-processor, set by the system manager and are stored in the hidden memory of

the microblaze. No other part of the system has access in that memory making in perfectly

secure and reliable. The block design shows the wiring between every device in the system and

from the connections can be seen that everything claimed in this project applies. If the design

is validated from Vivado design suite and the addresses of every cell are correctly registered,

the process of synthesis can begin. From the synthesized design, the logic and hierarchy can be

examined as well as the utilization efficiency.

Figure 27: Logic ports from Synthesis

Figure 28: Utilization efficiency from Synthesis

 The successful synthesized design has to be implemented to an FPGA design. That is

the next step, the implementation stage. In this stage the design is placed and routed into FPGA

resources and the utilization efficiency is examined. If the Implementation stage is successful,

the last step is to generate the Bitstream. The bitstream is used to program the FPGA target

device, in this case the zedboard.

Figure 29: FPGA target From Implementation

Figure 30: Utilization efficiency from Implementation

If everything and every step is successful the software development kit is used to test

the functionality and the performance of the system generated. The zedboard is used as the

hardware target to run the applications to be executed. Processes like synthesis, implementation

and bitstream generation usually takes a lot of time, so it is essential to try and prevent logical

mistakes and errors right at the beginning of the design.

Figure 31: A secure Embedded system (Architecture 2)

6. Evaluation and Performance

 In this chapter, the system designed is evaluated, performance measured and compared

to similar existed applications as well as with other architectures developed to provide security

in embedded systems. Several of these applications have been described in chapter four. In this

chapter this design is tested for its functionality, usability, safety, integrity, reliability,

authenticity and speed. Most of the important factors when designing an embedded system

apply in this project and all of them are tested thoroughly.

 In order to test the design as a whole system, firstly it has to be tested separately, each

IP block at a time. The first thing to test is the DMA block that is developed, thereafter the two

AES blocks and finally all together as one system. A performance comparison between software

and hardware solutions is also an importance in this project. First of all, several scenarios have

to be tested in order to gain a global view of each of the blocks that are designed. Test scenarios

include multiple blocks for AES encryption/decryption as well as multiple DMAs and one

approach that the encryption/decryption modules can operate inside the DMA block.

6.1 Module Evaluation

 After synthesizing a module, Vivado HLS conducts a synthesis report for the block.

When synthesizing one module, the software estimates performance and utilization. The

execution time for every block is estimated form the latency multiplied by the period. If we

want to increase the performance, we either lower the period or lower the latency. This can be

achieved by splitting the operations, but it’s not achievable in every situation. In this case where

data are copied from one place to another, splitting operations is not an option. Loop unrolling

and pipelining techniques are other ways to improve performance, which cannot be used in the

DMA section but have very positive results on the AES blocks, thus, removing bottlenecks and

achieve higher throughput.

As far as the DMA concerns, no loops are running in this block and every operation is

sequential, thus, no improvement can be made to provide better performance. The execution

time depends on the amount of data transferred. The main operation of the DMA core as well

as the performance and utilization estimation can be seen in the images below.

Figure 32: Main operation, data copying

Figure 33: DMA Synthesis report

From the performance estimation, it takes minimum 3 clock cycles to get going and at

least 4 more to receive new data, but that depends on the amount of data waiting to be

transferred. The next step is to use the block in Vivado as an independent module. In order to

do that, only the ZYNQ processing system is used and two BRAMs as peripheral devices. Each

of these BRAMs are divided into four segments in order to create four IDs. Suppose that a 4K

BRAM is equally divided in four segments of 1K each. Every BRAM slot is a 32-bit (4 byte)

word, thus, providing 256 memory slots for every segment and 1024 in total. Limitations for

every segment depend on the specifications of the system manager.

Figure 34: DMA testing

 The schematic design of the system for testing is presented in the image above. The

design is valid, is synthesized, implemented and a bitstream of it generated. The bitstream is

downloaded to the FPGA of the zedboard. At this point the software development kit (SDK) is

used to write the software applications, one for the restrictions and one for transfer.

Figure 35: Setting the limits

Figure 36: Testing the DMA

Applications at this time are written, so that the DMA transfer will be successful. The

idea is to test the functionality and the time needed to execute a DMA transfer of the amount of

1K of data. For time measurements purpose the ZYNQ global timer is used. It increases by one

every two clock cycles and it’s the most accurate timer as it was explained by Xilinx. It took

approximately 4268 clock cycles in a bare metal application to transfer the amount of 1KB of

data. The Zynq runs at 667 MHz, so it takes 6,41 microseconds to execute a DMA transfer of

1KB of data. It is acceptable since it takes 2000 clock cycles for the zedboard to execute a

simple print function in a bare metal application and 250.000 clock cycles for a 1024 time for

function that inserts data in two simple 4KB simple BRAMs.

Figure 37: Trasfer of 1KB

Similarly, for different amount of data the following results came up. It is obvious that

the execution time for every transfer is proportional to the amount of the data that are to be

transferred through the DMA module.

Figure 38: Transfer time for different amount of data

After recognizing that the module operates as it was designed and the execution time is

between the acceptable level of tolerance, we procced further to test the next modules

developed.

Cryptographic operations are a much more complicated process when it comes to

implement them as hardware modules. Since it was successfully achieved to create AES

hardware modules in this project, they have to be tested separately and evaluated, as well as

performance measured. Before measuring performance, it has to be proved that the encryption

and decryption modules are operating as they supposed to. One way to do that is to compare

the results from https://www.hanewin.net/encrypt/aes/aes-test.htm and if the results are the

same, the modules are successfully operating as the AES algorithm is designed to. AES comes

with three variations, AES128, AES192 and AES256 depending on the size of the key. AES256

has better performance results because of the smaller number of iterations in large blocks of

data (10 for 128, 12 for 192 and 14 for 256).

 Mainly the AES 128bit key is investigated in this project but all results and

comparisons apply to every cryptographic algorithm that is implemented in a hardware module.

Same things apply with AES 192bit key and AES 256bit key. With two simple changes in the

code, every one of the three implementations can be chosen. For simplicity we chose AES

128bit key. It is a block cipher so it processes blocks of data of 128bit (16 Bytes) each or four

https://www.hanewin.net/encrypt/aes/aes-test.htm

32bit words. The two AES blocks are synthesized and exported the RTLs. The synthesis report

on both encryption and decryption blocks are the same since the operations are similar for the

most part. At this time the Performance estimation and Utilization from the synthesis report can

be seen in the image below.

Figure 39: Utilization and Performance estimation of AES encryption/decryption block

Loop unrolling and pipelining techniques where used in these two modules to reduce

latency to the minimum and achieve higher data throughput as well as remove bottlenecks.

After a few configurations and tests to reduce latency but keep the functionality, the results

above where the best that came up. From the performance estimation the synthesizer calculates

that it takes 19 clock cycles to output the results but it takes only 1 to take new inputs, so as is

has new inputs it can pipeline the operations and generate new results. Next, they have to be

implemented to a ZYNQ base design for testing. Again, these two modules have to be tested

separately in order to prove the encryption and decryption processes are operating as they

supposed to and described by the cryptographic algorithm. The two modules are connected to

the base design in a bare metal application.

Figure 40: Encryption & Decryption modules directives

Figure 41: Connecting of the AES modules

The schematic design of the system for testing is presented in the image above. The

design again after validation, is synthesized, implemented and a bitstream of it generated. The

bitstream is downloaded to the FPGA of the zedboard. At this point the software development

kit (SDK) is used to write the software application for testing the encryption and decryption of

the data. One 128bit block of data is used to test the encryption with a 128bit block key. If the

results match to the testing website and get the initial data from the decryption the IP modules

are working correctly.

Figure 42: Testing the AES encryption module

Figure 43: Testing the AES decryption module

 Inputs as well as the cryptographic keys in both blocks are given in SKD in Hexadecimal

system. The results in the pictures below are printed in hexadecimal system for the ease of

presenting. The serial port of the zedboard is used to print the results to a screen with a terminal.

The pictures following show the functionality of the modules. The results compared to the real

cryptographic results, proof the integrity and authenticity of the blocks developed. Data were

successfully encrypted and then returned to initial state as the pictures indicate.

Figure 44: Encryption and Decryption results

Figure 45: Proof of Operation

 The next step after the confirmation of the functionality of the two blocks is to measure

the performance and execution time of each block. The use of the ZYNQ global timer provides

the clock cycles used for the encryption and decryption of 128bit block of data. When dividing

clock cycles of execution to the ZYNQs frequency, the quotient shows the time needed to

execute every operation. Of course, the highest the frequency, the fastest the execution.

Measured and tested on the zedboard CPU running maximum 667 MHz the following results

came up. It took 218 clock cycles to encrypt a block of 128-bit data and 219 to decrypt them at

0.33 microseconds time of execution. To understand how fast the results came up, it has to be

considered that it takes 280 clock cycles for the ZYNQ to execute one simple add function of

two integers on a bare metal application.

Figure 46: Performance of Encryption and Decryption blocks

The data processing and performance of the IP blocks are tested in field programmable

gate array (FPGA) implementation of the blocks. It has to be made clear how much faster the

processes of cryptography can be when implemented as hardware modules. To prove this theory

the same AES-code is implemented as software application on the same CPU of the zedboard.

The results of the measurements are presented in the image below. As a software

implementation of the same code, it took 28.506 clock cycles to encrypt the same amount of

data. The encryption hardware block operates 130 times faster than the software

implementation. Those results were obtained by processing only 128 bits of data for encryption.

That been explained, the hardware block can process new data every one clock cycle. The

software version of it has to finish with the first data to process new ones. This is only the first

proof of how much faster the encryption can be when operating it as hardware models. The

more the data the faster it can be in processing it.

Figure 47: Software implementation of AES code

6.2 System Analysis

After testing every block separately and established that everything is operating within

the framework in which was designed, the whole system explained in the previous chapters it

to be tested as an integrated system. The next stage is to test the full system with the DMA and

single and multiple encryption/decryption modules. The system has to be able to generate new

encryption keys and new access rights every time it is set to be changed or every time that’s

required to, by the system manager.

Figure 48: System Design

Figure 49: HW Resources

 The design above was validated, synthesized, implemented, bitstream was generated

and it can be downloaded to the FPGA target device as explained in the previous chapter. At

this time the software development kit is use to write applications and test scenarios. The

Vivado design suite is used from now on only to implement multiple encryption modules, but

that will be explained in the following sections. As a start, applications must be developed for

the microblaze and ZYNQ and test the functionality of the design with some test scenarios. As

the system responds as it was supposed to, more complicated scenarios can be developed.

 The first thing is to write two applications for the microblaze co-processor. The first one

is for the boundaries and restrictions that every id has and which peripheral device

communicates with which (this application was explained previously in the module evaluation).

The second is for key generation and distribution amongst the peripheral devices. A true random

number generator (TRNG) application is developed for this purpose. The application creates

keys when the session starts and periodically after that. The keys are distributed to all parts of

the system securely since only the co-processor has access to them. A TRNG is developed

uniquely for this project that creates cryptographic keys by randomly selecting integers as a

function of time.

 One integer in the system has the size of four bytes (32bits). So, in order to create one

128bit key, the generator has to provide four integers to cover the length of one key. That is the

simplest way to look at it, since any type of data is data. One number generator can look like

the image below. This function creates four random integers of a total length of 32 bytes

(128bits) as a time function and can easily be used as a cryptographic key for this algorithm. It

only needs 238 clock cycles to execute, so, there is really not a seriously delay when generating

new keys. The distribution of those keys only takes a clock cycle for the co-processor to pass

them around. The TRNG used in this project is kept secret because of its complexity and its

algorithm will remain hidden for now, but in general shares the same philosophy as the

generator below.

Figure 50: A Random Number Generator

 Once the cryptographic keys have been distributed and the restriction arguments set, the

main operational application can be developed. To test the functionality of the system one

application is running on the ZYNQ processing unit. Several scenarios can be tested on this

application depending on when the encryption begins, before the arguments of a DMA transfer

are valid or after, maybe encryption inside the DMA module. For every idea or scenario, time

execution and performance of the system remains very similar. So, every test could apply to

more than one scenario.

 Two BRAMs just like in the DMA section are used to test the design. One of them is

filled with integers starting from one and the counter increases by one in every slot. The other

one left with zeros in order to test the transfer and the encryption. The integers are just for

simplicity, those data could have been acquired by a number of peripheral devices (video

cameras, audio devices, microphones, etc). Every device that can acquire data has a memory to

temporally store it. That is the purpose for those BRAMs.

 Suppose that a DMA transfer request occurs in the application, for example private

document from a hidden memory to the DDR of the ZYNQ from processing, if the ZYNQ has

rights to access data from the hidden memory and the DMA transfer is validated, the data will

be transferred after encryption to the ZYNQ CPU. Only the ZYNQ can decrypt those data and

no other party of the system who does not have rights. That is accomplished with the keys

distributed by the co-processor. When the data are decrypted, they can be processed. The

cryptographic key for every id depends on the boundaries and restrictions that have been set.

For every id one cryptographic key is generated and is send to both ends than have rights to

communicate.

For a test like this, an amount of 1KB of data is used to be transferred and encrypted.

We set the arguments in the way that the DMA transfer will be successful in order to test the

encryption. 1KB of data means 256 memory slots. It takes about 4000 clock cycles for the DMA

to transfer 1KB of data and about 400 clock cycles to encrypt and decrypt them because the

hardware encryption modules can accept new data every 1 clock cycle. If the same data were

encrypted in software mode it would take 1.730.948 clock cycles to encrypt them making it

4.500 time faster. The more data that are to be encrypted the more it makes sense to add a

hardware model for this process. As the data rises the faster, they are encrypted in comparison

with the software version of the algorithm. We run the same test for different amount of data

and the following results came up.

Figure 51: Hardware encryption VS Software encryption (CC)

The serial port of the zedboard is used to print the data and execution time to a terminal

display. Putty is used for this purpose. The images bellow shows the results of this test. The

buffer in the second image is used to show the encryption of the data and how they are decrypted

after they are transferred in the second BRAM.

Figure 52: Encryption and DMA transfer of 1KB

Figure 53:Encryption and Decryption

 Every result in this test shows that the system operates successful even when the

permissions are not granted and the DMA fails. The execution of the operations is proven to be

so much faster than the software version of them. That was the idea of this project and can be

used in a wide area of medical applications, car automatization applications and basically in

every embedded device application were security is important. The next step is to connect

multiple encryption and decryption modules and measure performance as well as different

amount of data. The following table shows performance measurements on different scenarios.

Figure 54:Performance with multiple modules (clock cycles)

Figure 55: Performance Graph

From the results above it can be made clear that multiple AES encryption hardware

blocks make sense when large amount of data need to be encrypted since such blocks use a

large amount of resources and the hardware cost rises exponentially. For small amount of data

single AES will do just fine.

6.3 System Comparison

 The design was targeted to achieve maximum speed in hardware mode, so it lacks

flexibility. After a total system analysis, the system can be compared with other systems from

related work in the past. In compare to Santosh et al. (2017) this project achieved better

performance. They needed 12.300 clock cycles for a software implementation of 128bit key

AES and 1032 clock cycles for their hardware implementation. This project achieved it in 280

clock cycles. Mihai et al. (2006) has better performance with 100 clock cycles on 128bit AES

encryption to a block of 16bytes of data with a cryptographic accelerator.

 Paillier & Verbauwhede (2007) achieved a 15.3 Gbps from their implementation of the

AES in GCM mode on a Virtex-4 FPGA under a clock rate of 120 Mhz. In 2011, the

implementation of the AES algorithm by Soliman et al. (2011) reached 74 Gbps on a Virtex-5

FPGA under the clock rate of 557 Mhz. In 2013 43. Biglari and Qasemi et al. (2013) design a

high-performance AES system that reached a throughput of 12.8 Gbps. In 2016, Smekal et al.

(2016) described the AES implementation on Virtex-7 that achieved a 5.1 Gbps throughput

under a clock rate of 100 Mhz. Marghescu et al. (2014) developed one complete AES-256 block

processing that computed within 180 ns, working at a 100MHz. 47. Gaspar et al. (2012) with

the NIOS II-based system achieved an overall throughput of 25.1 Mb/s, the MicroBlaze-based

system achieved 18.4 Mb/s and the Cortex M1 system achieved 12.2 Mb/s. Rakanovic et al.

(2016) achieved 914 Mb/s throughput with AES256 at 100 MHz frequency.

 By analyzing the design, we come to a conclusion that offers security as well as great

speed performance. It can be used in a wide area of applications including critical applications

where response of the system is a great deal. By using interrupt controllers and prioritizing the

IDs, the system gives the opportunity for some devices to gain priority in requesting a DMA

transfer or even break a DMA transfer at the time of the request due to the criticality of the

operation. The DMA transfer that was interrupted will continue from the point of interrupt after

the most critical operation is finished.

6.4 Applications

 A secure embedded system should provide security and the cryptographic features such

as confidentiality, authenticity, and integrity as well as speed when operating on critical

applications. Establishing that the system operates upon those principles, can be set on a large

area of embedded device applications. Applications include Automotive industry, Healthcare

applications, Telecommunication, Entertainment and multimedia, Robotics, Computer

Networking and basically every system connected to the Internet of Things (IoT). As the IoT

expands the devices that connected are vulnerable to various attacks, so systems like the one

designed will always be a necessity.

 From detecting rash driving on highways to street light control and signal control system

with vehicle tracking. Home automation systems with temperature control and smart home

management is a fast-growing area for embedded devices. Automatic wireless health

monitoring system for patients in medical systems. Automotive, railways and aircraft

electronics, military applications, authentication systems, consumer electronics and fabrication

equipment, smart buildings and robotics are areas of application for modern embedded systems.

The system of this project can provide safe functionality in these areas enforcing the security

on critical security parameters with a considerably high performance and low hardware cost.

7. Conclusion and Future work

 In this thesis we have designed and developed a system that provides secure access on

an embedded system through DMA protection and lightweight cryptography. We developed a

DMA module with a priority security sequence, thus, communication between CPU, memories

and peripheral devices depend on boundaries and limitations. Those limitations are set by a

cryptographic co-processor and generates IDs between devices. Those IDs don’t refer to a

device, rather than to a communication path between devices for DMA data transfers. In order

for the DMA module to execute a DMA transfer, the ID is passed on as argument. The success

or failure depends on whether the id is valid or not. If the id is not valid, that means that the two

ends do not have permission to exchange data, thus the transfer will fail.

 In addition to the security that is provided, two hardware modules were created to

perform AES encryption to the data that are transferred through the DMA module. Depending

on the IDs the cryptographic co-processor generates a unique cryptographic key for every ID

and distributes it to both ends. But doing so, only the receiver can decrypt the data that are

transferred. Those keys are generated by a true random number generator that runs in the hidden

memory of the cryptographic co-processor at specified times or when requested by the CPU.

The design was successfully generated and downloaded to the FPGA of the zedboard for testing

in various scenarios and the addition of multiple cryptographic modules.

 Evaluation of the system provided very good results in timing and performance with the

addition of security, integrity and authenticity. It can have use in a large area of applications

and critical applications where real time response is a significant factor. The design is well

compared with existing solutions when takin into consideration the hardware cost and the

provided performance.

 Future extensions can include real system operations with real time needing applications

in every possible field that was described in previous chapters. Testing the DMA from this

project with possible different cryptographic algorithms and multiple DMA modules, maybe

could provide better security. Some variations of the AES algorithm with the use of multiple

SBoxes, maybe the use of hardware and software co-operation could provide better results in

various tests. Trying to reduce the latency even more could provide better performance in the

system. Parallel computing with various cryptographic algorithms on a Network on Chip (NoC)

would be a serious improvement in embedded systems security.

Whether we provide better performance, we lose resources and the cost rises. If we

provide better security, we lose in speed. If we provide the best in everything, the cost or the

hardware size or even the power consumption will be a great restriction. The best idea is trying

to provide a balanced solution, using as minimum as possible resources with the best possible

outcome, as this project successfully provided.

References
1. Bokhari, M. & Hassan, Shabbir. (2018). A Comparative Study on Lightweight Cryptography.

10.1007/978-981-10-8536-9_8.

2. Wang, Long & Zhao, Hui & Bai, Guoqiang. (2007). A cost-Efficient Implementation of Public-

key Cryptography on Embedded Systems. 194 - 197. 10.1109/EDST.2007.4289808.

3. Salman, Ahmad & Diehl, William & Kaps, Jens-Peter. (2017). A light-weight hardware/software

co-design for pairing-based cryptography with low power and energy consumption. 235-238.

10.1109/FPT.2017.8280149.

4. Lu, Ronghua & Han, Jun & Zeng, Xiaoyang & Li, Qing & Mai, Lang & Zhao, Jia. (2008). A low-

cost cryptographic processor for security embedded system. 113-114.

10.1109/ASPDAC.2008.4483921.

5. Francesc Fons, Mariano Fons, Paul Olivier, André Weimerskirch “A Modular, Reconfigurable and

Updateable Embedded Cyber Security Hardware Solution for Automotive”, embedded world 2017

6. Zhang, Weilong & Yuan, Yuxiang & Liu, Yang & Zhang, Yapeng & Jiang, Xueping. (2014). A

security coprocessor embedded system-on-chip architecture for smart metering, control and

communication in power grid. 1-3. 10.1109/ICSICT.2014.7021162.

7. Kanuparthi, Arun & Karri, Ramesh & Ormazabal, Gaston & Addepalli, Sateesh. (2012). A Survey

of Microarchitecture Support for Embedded Processor Security. Proceedings - 2012 IEEE

Computer Society Annual Symposium on VLSI, ISVLSI 2012. 368-373.

10.1109/ISVLSI.2012.64.

8. 8. Yang, Xiaokun. (2017). An Advanced Bus Architecture for AES-Encrypted High-

Performance Embedded Systems

9. 9. Farahmand, Farnoud & Homsirikamol, Ekawat & Gaj, Kris. (2016). A Zynq-based testbed for

the experimental benchmarking of algorithms competing in cryptographic contests. 1-7.

10.1109/ReConFig.2016.7857148

10. Hasegawa, Y. & Abe, S. & Matsutani, H. & Amano, H. & Anjo, K. & Awashima, T.. (2006). An

adaptive cryptographic accelerator for IPsec on dynamically reconfigurable processor. 2005. 163 -

170. 10.1109/FPT.2005.1568541.

11. Xinyu, li & Omar, Hammami. (2009). An Automatic Design Flow for Data Parallel and Pipelined

Signal Processing Applications on Embedded Multiprocessor with NoC: Application to

Cryptography. International Journal of Reconfigurable Computing. 2009. 10.1155/2009/631490.

12. Yuan, Hang & Chen, Hongyi & Bai, Guoqiang. (2004). An improved DMA controller for high

speed data transfer in MPU based SOC. 1372 - 1375 vol.2. 10.1109/ICSICT.2004.1436811.

13. Conti, Francesco & Schilling, Robert & Schiavone, Pasquale & Pullini, Antonio & Rossi, Davide

& Gürkaynak, Frank & Muehlberghuber, Michael & Gautschi, Michael & Loi, Igor & Haugou,

Germain & Mangard, Stefan & Benini, Luca. (2016). An IoT Endpoint System-on-Chip for Secure

and Energy-Efficient Near-Sensor Analytics. IEEE Transactions on Circuits and Systems I:

Regular Papers. PP. 10.1109/TCSI.2017.2698019.

14. Shinagawa, Takahiro & Eiraku, Hideki & Tanimoto, Kouichi & Omote, Kazumasa & Hasegawa,

Shoichi & Horie, Takashi & Hirano, Manabu & Kourai, Kenichi & Oyama, Yoshihiro & Kawai,

Eiji & Kono, Kenji & Chiba, Shigeru & Shinjo, Yasushi & Kato, Kazuhiko. (2009). Bit visor: A

thin hypervisor for enforcing i/o device security. Proceedings of the 2009 ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE'09. 121-

130. 10.1145/1508293.1508311.

15. David G. Conroy, Timothy J. Millet, Michael J. Smith, Joshua P. de Cesare. (2009). CENTRAL

DMA WITH ARBITRARY PROCESSING FUNCTIONS. Apple Inc., Cupertino.

16. Reshma Lal , Steven B . McGowan, Siddhartha Chhabra , Gideon Gerzon , Bin Xing , Hillsboro ,

Pradeep M . Pappachan ,Reouven Elbaz. (2019). CRYPTOGRAPHIC PROTECTION OF I/O

DATA FOR DMA CAPABLE I /O CONTROLLERS. Intel Corporation , Santa Clara , CA

17. David A . Kaplan , Thomas Roy Woller, Ronald Perez. (2017). CRYPTOGRAPHIC

PROTECTION OF INFORMATION IN A PROCESSING SYSTEM. Advanced Micro Devices ,

Inc ., Sunnyvale , CA

18. Sen, S. & Hossain, S.I. & Chowdhuri, D.R. & Chaudhuri, P.P.. (2003). Cryptosystem designed for

embedded system security. 271- 276. 10.1109/ICVD.2003.1183149.

19. Yoshiyuki Nakai, Koichi Sumida, Takao Yamanouchi, Yohichi Shimazawa. (2009). DATA

PROCESSING APPARATUS FOR SELECTING ETHER A PIO DATA TRANSFER METHOD

OR A DMA DATA TRANSFER METHOD, Sharp Kabushiki Kaisha, Osaka 2009

20. Charles A. Boone, Robert F. Pfeifer. (1982). DATA SECURITY MODULE. Motorola Inc.,

Schaumburg, 1982

21. Durga, G.V. & Islam, S. & Sachid, Angada & Meera, P.. (2006). Design and Implementation of a

Co-Processor for Providing Data Protection in Embedded Systems. 446- 449.

10.1109/INDCON.2005.1590209

22. Ahmed, Altaf & Aljumah, Abdullah & Ahmad, M. (2019). Design and Implementation of a Direct

Memory Access Controller for Embedded Applications. International Journal of Technology. 10.

309. 10.14716/ijtech.v10i2.795.

23. MIHAI TOGAN, ADRIAN FLOAREA, GIGI BUDARIU. (2010). DESIGN AND

IMPLEMENTATION OF CRYPTOGRAPHIC MODULES ON FPGAs. Computer Science

Department, Military Technical Academy, George Coşbuc Blvd. 81-83, Bucharest, ROMANIA

24. 24. Hai Yan, Zhijie Jerry Shi, and Yunsi Fei. (2009). Efficient Implementation of Elliptic Curve

Cryptography on DSP for Underwater Sensor Networks. Department of Electrical and Computer

Engineering, University of Connecticut, Storrs

25. Unterluggauer, Thomas & Wenger, Erich. (2014). Efficient Pairings and ECC for Embedded

Systems. 298-315. 10.1007/978-3-662-44709-3_17.

26. Ukil, Arijit & Sen, Jaydip & Koilakonda, Sripad. (2011). Embedded Security for Internet of

Things. 1 - 6. 10.1109/NCETACS.2011.5751382.

27. Wolff, Francis & Papachristou, Ch & Weyer, Daniel & Clay, William. (2010). Embedded system

protection from software corruption. 2010 NASA/ESA Conference on Adaptive Hardware and

Systems, AHS 2010. 223 - 229. 10.1109/AHS.2010.5546254.

28. Upadhyay, Aastik & Dhapola, Abhimanyu. (2015). Embedded Systems and its Application in

Medical Field. 10.13140/2.1.1299.1528.

29. Papp, Dorottya & Ma, Zhendong & Buttyan, Levente. (2015). Embedded systems security:

Threats, vulnerabilities, and attack taxonomy. 145-152. 10.1109/PST.2015.7232966.

30. Parameswaran, Sri & Wolf, Tilman. (2008). Embedded systems security—an overview. Design

Autom. for Emb. Sys.. 12. 173-183. 10.1007/s10617-008-9027-x.

31. BENHADDAD Omar Hocine, SAOUDI Mohamed, DROUICHE Amine, RABIAI Mohamed,

ALLAILOU Boufeldja. (2019). Hardware Acceleration of AES Cryptographic Algorithm for

IPSec. Malaysian Journal of Computing and Applied Mathematics 2019, Vol 2(2): 1-7

32. Wenger, Erich. (2013). Hardware Architectures for MSP430-Based Wireless Sensor Nodes

Performing Elliptic Curve Cryptography. 7954. 290-306. 10.1007/978-3-642-38980-1_18.

33. Lukacs, Sandor & Lutas, Andrei & Lutas, Dan & Sebestyen, Gheorghe. (2014). Hardware

virtualization-based security solution for embedded systems. 1-6. 10.1109/AQTR.2014.6857879.

34. Koschuch, Manuel & Lechner, Joachim & Weitzer, Andreas & Großschädl, Johann & Szekely,

Alexander & Tillich, Stefan & Wolkerstorfer, Johannes. (2006). Hardware/Software Co-design of

Elliptic Curve Cryptography on an 8051 Microcontroller. 4249. 430-444. 10.1007/11894063_34.

35. Sharif, Malik & Shahid, Rabia & Gaj, Kris & Rogawski, Marcin. (2016). Hardware-software

codesign of RSA for optimal performance vs. flexibility trade-off. 1-4.

10.1109/FPL.2016.7577368.

36. Seuschek, Hermann & Khurana, Piyush & Sigl, Georg. (2015). HiPeC — High Performance

Cryptographic Service for Heterogeneous Network-on-Chip Systems. IFAC-PapersOnLine. 48.

31-36. 10.1016/j.ifacol.2015.07.003.

37. Ken, Cai & Xiaoying, Liang. (2010). Implementation of RSA Algorithm Using SOPC

Technology. 10.1109/EBISS.2010.5473562.

38. Anwar, Hassan & Daneshtalab, Masoud & Ebrahimi, Masoumeh & Ramirez, Marco & Plosila,

Juha & Tenhunen, Hannu. (2014). Integration of AES on Heterogeneous Many-Core System. 424-

427. 10.1109/PDP.2014.86.

39. Rakanovic, Damjan & Struharik, Rastislav. (2016). IP core for AES256 and TDES algorithms

with AXI interface. 1-4. 10.1109/TELFOR.2016.7818860.

40. Santosh Ghosh, Rafael Misoczki, Li Zhao and Manoj R Sastry. (2017) Lightweight Block Cipher

Circuits for Automotive and IoTSensor Devices. HASP '17: Proceedings of the Hardware and

Architectural Support for Security and PrivacyJune 2017 Article No.: 5 Pages 1–

7https://doi.org/10.1145/3092627.3092632

41. Kalamkar, Gaurav & Gotkhindikar, Ajey & Suryawanshi, A.. (2018). Literature survey on

memory level attacks in Automotive Embedded Systems. 1-10.

10.1109/ICCUBEA.2018.8697376. IJARIIE-ISSN(O)-2395-4396.

42. Kalamkar, Gaurav & Gotkhindikar, Ajey & Suryawanshi, A.. (2018). Low-Level Memory Attacks

on Automotive Embedded Systems. 1-5. 10.1109/ICCUBEA.2018.8697376.

43. Biglari, Mehrdad & Qasemi, Ehsan & Pourmohseni, Behnaz. (2013). Maestro: A high

performance AES encryption/decryption system. 145-148. 10.1109/CADS.2013.6714255.

44. Sachin Gupta & Lakshmi Natarajan. (2010). Optimizing Embedded Applications using DMA.

Cypress Semiconductor Corp. Published in EE Times Design (http://www.eetimes.com)

45. Mühlbach, Sascha & Wallner, Sebastian. (2008). Secure communication in microcomputer bus

systems for embedded devices. Journal of Systems Architecture. 54. 1065-1076.

10.1016/j.sysarc.2008.04.003.

46. Marghescu, Andrei & Svasta, Paul. (2014). Secure communication protocol using embedded

devices based on FPGA. 1-4. 10.1109/ESTC.2014.6962858.

47. Gaspar, Lubos & Fischer, Viktor & Bossuet, Lilian & Fouquet, Robert. (2012). Secure Extension

of FPGA General Purpose Processors for Symmetric Key Cryptography with Partial

Reconfiguration Capabilities. ACM Transactions on Reconfigurable Technology and Systems. 5.

10.1145/2362374.2362380.

48. Areno, Matthew & Plusquellic, J.. (2013). Secure mobile authentication and device association

with enhanced cryptographic engines. 1-8. 10.1109/PRISMS.2013.6927180.

49. Schwarz, Oliver & Gehrmann, Christian. (2012). Securing DMA through virtualization. 1-6.

10.1109/CompEng.2012.6242958.

50. Kumaki, Takeshi & Koide, Tetsushi & Mattausch, H.J. & Tagami, Masaharu & Ishizaki,

Masakatsu. (2011). Software-Based Parallel Cryptographic Solution with Massive-Parallel

Memory-Embedded SIMD Matrix Architecture for Data-Storage Systems. IEICE Transactions on

Information and Systems. E94-D. 1742-1754. 10.1587/transinf.E94.D.1742.

51. Studnia, Ivan & Nicomette, Vincent & Alata, Eric & Deswarte, Yves & Kaaniche, Mohamed &

Laarouchi, Youssef. (2013). A Survey of Security Threats and Protection Mechanisms in

Embedded Automotive Networks. Proceedings of the International Conference on Dependable

Systems and Networks. 1-12. 10.1109/DSNW.2013.6615528.

52. Malcolm, Ronald Smith & Kshitiz, Vadera & Mark, Philip & Zagrodney, Kevin & Ka Wai Ng &

Afshin, Rezayee. (2015). Systems and methods for secure processing with embedded

cryptographic unit. Square, Inc., San Francisco, CA (US)

53. Stewin, Patrick & Bystrov, Iurii. (2012). Understanding DMA Malware. 10.1007/978-3-642-

37300-8_2.

54. Wikipedia – Embedded Systems. (https://en.wikipedia.org/wiki/Embedded_system)

55. Wikipedia – Embedded Systems Security (https://en.wikipedia.org/wiki/Embedded_system)

56. Wikipedia – Cryptography (https://en.wikipedia.org/wiki/Cryptography)

57. A Guide to Using Direct Memory Access in Embedded Systems, Pebble Bay, Embedded Software

Development. (https://www.pebblebay.com/direct-memory-access-embedded-systems/)

http://www.eetimes.com/
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Cryptography
https://www.pebblebay.com/direct-memory-access-embedded-systems/

58. George Kornaros, Othon Tomoutzoglou and Marcello Coppola, “Hardware-assisted Security in

Electronic Control Units Utilizing One-Time-Programmable Network-on-Chip and Firewalls”,

IEEE Micro, Volume: 38, Issue: 5, Sep./Oct. 2018, pp. 63-74, 2018 DOI:

https://ieeexplore.ieee.org/abstract/document/8474944

59. G. Kornaros (Editor) Multi-Core Embedded Systems, CRC Press/Taylor & Francis Group, 07-

April-2010, ISBN: 978-1-4398-1161-0

60. G. Kornaros, D. Bakoyiannis, O. Tomoutzoglou, M. Coppola and G. Gherardi, "TrustNet:

Ensuring Normal-world and Trusted-world CAN-bus Networking," 2019 IEEE International

Conference on Communications, Control, and Computing Technologies for Smart Grids

(SmartGridComm), Beijing, China, 2019, pp. 1-6. doi: 10.1109/SmartGridComm.2019.8909715

61. Dimitris Mbakoyiannis, Othon Tomoutzoglou, and George Kornaros, “Secure Over-the-air

Firmware Updating for Automotive Electronic Control Units”, Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing (SAC '19), pp. 174—181, Limassol, Cyprus,

2019, doi: 10.1145/3297280.3297299, url: http://doi.acm.org/10.1145/3297280.3297299

62. Georgios Kornaros and Marcello Coppola, “Enabling Efficient Job Dispatching in Accelerator-

extended Heterogeneous Systems with Unified Address Space”, Procs of 30th International

Symposium on Computer Architecture and High-Performance Computing, SBAC-PAD 2018,

September 24-27, 2018, doi: 10.1109/CAHPC.2018.8645945, URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8645945&isnumber=8645847 (Acc.

Rate: 27%)

63. George Kornaros and Svoronos Leivadaros, "Securing Dynamic Firmware Updates of Mixed-

Critical Applications", 3rd IEEE International Conference on Cybernetics (CYBCONF), 2017, pp.

1-7, doi:10.1109/CYBConf.2017.7985807

64. George Kornaros, Ernest Wozniak, Oliver Horst, Nora Koch, Christian Prehofer, Alvise Rigo,

Marcello Coppola, "Secure and Trusted Open CPS Platforms", in book "Handbook of Research on

Solutions for Cyber-Physical Systems Ubiquity", Editors: Norbert Druml, Andreas Genser, Armin

Krieg, Manuel Menghin and Andrea Hoeller, IGI Global book series Advances in Systems

Analysis, Software Engineering, and High Performance Computing (ASASEHPC) (ISSN: 2327-

3453; eISSN: 2327-3461), 2017

65. Christian Prehofer, Oliver Horst, Riccardo Dodi, Arjan Geven, George Kornaros, Eleonora

Montanari, Michele Paolino, “Towards Trusted Apps platforms for open CPS”, 3rd International

Workshop on Emerging Ideas and Trends in Engineering of Cyber-Physical Systems, (EITEC,

CPSWeek0, 2016, Vienna, Austria, April 11, 2016, pp. 23-28, DOI:

10.1109/EITEC.2016.7503692

66. George Kornaros, Ioannis Christoforakis, Othon Tomoutzoglou, Dimitrios Bakoyiannis, Kallia

Vazakopoulou, Miltos Grammatikakis, Antonis Papagrigoriou, “Hardware Support for Cost-

Effective System-Level Protection in Multi-core SoCs.”, 2015 Euromicro Conference on Digital

System Design, DSD 2015, Madeira, Portugal, August 26-28, 2015, pp. 41-48, DOI:

10.1109/DSD.2015.65

67. Wikipedia - Information Security (https://en.wikipedia.org/wiki/Information_security)

68. Wikipedia - Direct Memory Access (https://en.wikipedia.org/wiki/Direct_memory_access)

69. Wikipedia - DMA Attack (https://en.wikipedia.org/wiki/DMA_attack)

70. Wikipedia - Advanced Encryption Standard

(https://en.wikipedia.org/wiki/Advanced_Encryption_Standard)

71. Wikipedia – True Random Number Generator

(https://en.wikipedia.org/wiki/Hardware_random_number_generator)

72. Wikipedia - Xilinx Vivado (https://en.wikipedia.org/wiki/Xilinx_Vivado)

73. Paillier, P & Ingrid Verbauwhede. (2007). Multi-gigabit GCM-AES Architecture Optimized for

FPGAs. In Cryptographic Hardware and Embedded Systems - CHES. Springer Berlin Heidelberg,

Berlin, Heidelberg.

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/DMA_attack
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://en.wikipedia.org/wiki/Xilinx_Vivado

74. Soliman, Mostafa I & Ghada Y Abozaid. (2011). FPGA implementation and performance

evaluation of a high throughput crypto co-processor. J. Parallel and Distrib. Comput. 71, 8, 1075–

1084.

75. Smekal, D, Jakub Frolka, and Jan Hajny. (2016). Acceleration of AES Encryption Algorithm

Using Field Programmable Gate Arrays. 14th IFAC Conference on Programmable Devices and

Embedded Systems, 49, 25 (2016), 384 – 389.

76. Bossuet, L., Grand, M., Gaspar, L., Fischer, V., and Gogniat, G. (2013). Architectures of Flexible

Symmetric Key Crypto Engines & Mdash; a Survey : From Hardware Coprocessor to Multi-

crypto-processor System on Chip. ACM Comput. Surv., 45(4).

77. Tim Good, Mohammed Benaissa, “AES on FPGA from the Fastest to the Smallest,” in

Cryptographic Hardware and Embedded Systems-CHES 2005, Berlin Heidelberg: Springer-

Verlang, 2005, pp 427-440.

78. Hoang Trang, Nguyen Van Loi, “An efficient FPGA implementation of the Advanced Encryption

Standard algorithm,” in 2012 IEEE RIVF, pp. 55-59

79. Sever R, Ismailglu AN, Tekmen YC, Askar M, Okcan B, “A high speed FPGA implementation of

the Rijndael algorithm,” Euromicro Symposium on Digital System Design, 2004, pp. 358–362.

80. Wang SS, Ni WS, “An efficient FPGA implementation of advanced encryption standard

algorithm”, International Symposium on Circuits and Systems, Vol. 2, pp. 597-600, 2004.

81. Wikipedia - Advanced eXtensible Interface

(https://en.wikipedia.org/wiki/Advanced_eXtensible_Interface)

