0\1ERRAN5 an

O

\-\ELLEN/

<
C
4
)
A
-'
<

D\ 775

- -

HELLENIC MEDITERRANEAN
UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING

COURSE TYPE: INFORMATICS ENGINEERING T.E.

THESIS

Design and implementation of 3" Person Action RPG Game
in Unity 3D

George Beladakis — A.M. 4177

Supervisor: loannis Pachoulakis

Heraklion 2021

Page 1

Page 2

Thanking Section

At the beginning of this major project in 2020, | was at the most difficult phase in my life and
in this section, | would like to thank everyone because | received a great deal of support and
assistance for the completion of this project and not only.

I would like to thank and express my deepest appreciation to my supervisor, Professor loannis
Pachoulakis, whose expertise was invaluable, for giving me the chance and providing guidance
and feedback throughout this project.

I would also like to thank my parents for their unlimited support and sympathetic ear. You are
always there for me. Also, | would like to thank my family and friends Vasilis Papanikolaou
and Dimitris Iliadis, for supporting, giving constructive feedback, and noticing many of my
mistakes.

In addition, I would like to thank my doctor, Georgia Milaki, whose dedication, and
compassion are beyond limits. | really appreciate your skills and the care you have brought to
the treatment, and | feel most fortunate to have you as my physician.

Page 3

Abstract

This dissertation is about the development of a Third-Person Action RPG game by using the
game engine Unity3D. In addition, more emphasis is placed on the development of artificial
intelligence, using finite state machines that are responsible for the actions that an entity will
take based on its conditions at any given time period.

In this game, | have created a 3D world, created entities like NPCs, guards and enemies that
are controlled by the finite state machines. Also created animator controllers for the
animations of the player and the rest of the entities. Created a simple Ul and | developed a
dialogue & quests system, stats and items, player’s controllers, and an inventory system.

All things considered; player’s purpose is to discover a fantasy/medieval world through
storytelling by completing quests. At the same time, player has the ability to collect items like
weapons and consumables that will come in handy when in need and danger. Another key
feature is the ability to gain experience by completing quests and killing enemies, to become
stronger and be able to cope with the difficulty of the quests.

Page 4

Hepiinym

H wtoyakn avt éxel og okomd v avamntoén evog Third-Person Action RPG mayvidion
ypnoponotwvtag v maryvidounyavny Unity3D. EmmpooBitmg £6moa mapomdve Eueoon
otV avamtuén texvynTig vonuoovvig ypnotorolmvtag finite state machines, to omoia eivan
vrevlvva Yo TIG EVEPYELEG TOL Ba TPOYUOTOTOMGEL oL ovTOTNTO pE Pdomn TG cuvONKeg TG
0€ OTOLONTOTE YPOVIKN TTEPT0O.

g outd TO TOLVidL, dnuovpYNoa £vay TPLoOEoTOTO KOGHO, ONUOVPYNoa OVTOTNTEG OTMG
NPC, ppovpovg kat exfpovg mov eréyyovtar and ta finite state machines. Exiong dnuiovpynoa
animator controllers yw to animations tov mwoiktn Kot TOV VAOAOIT®OV OVIOTNHTOV.
Anuovpynoa éva anid Ul kot avéntuéa Evo cdotnuo dtaldyov Kot yio quUests, avtikeipeva
Kot oToTIoTIKG, controllers yio tov maiktn kot évo choTnua Yo to inventory.

Me Bdon ta mopandve, 0 6Kondg ToL ToiKTN vt VoL ovakaAVYEL Evay
(QOVTOOTIKO/LEGOLOVIKO KOGLO HECH TNG AP YNoNS oAoKANpdvovTas quests. Tavtdypova o
TOTKTNG £YEL TNV IKAVOTNTA VO GUAAEYEL OVTIKEIPEVO OTOC OTAQ KOl OVOAMGIULO TTOL Oa
QovoHV yproya 6tay vIapyeL ovaykn Kot kivouvoc. Eva GAdo Bacikd yopaktnplotikd givot
1 dVVATOTNTO ATOKTNONG EUTELPIOG OAOKANPDOVOVTOS OTOGTOAES KOl GKOTMVOVTOG £XOpoNC,
Yol va YIVETon dSuvaTOTEPOG KOt VO UTOPEL VL avTATEEEPYETOL ILE TV SVOKOAMA TV
OTOGTOAMV.

Page 5

Table of Contents

L INEFOTUCTION ..tttk b bbb bbb bbbt bbbt bbbt e bbbttt b 16
1.1 SUMMArY Of the GAME.....c..iiiie ettt st teere e e e eesaeseesreareeneens 16

1.2 Motivation of MakKing thisS PIrOJECTccciiiiiiiiiieisere e 16

1.3 Purpose and Objectives 0f the PrOJECT ...t 16

2. TEChNOIOGIES ANA CONCEPLSeuviviititeeeetist ettt bbb bbbt bbbt b bbbttt nb e nnns 17
2.1 What is a Game Engine and What iS UNItYc.ccoiiiiiiiiiiiiiceeeese e 17

2.2 What is an ACtion RPG Game GENIEceiririiiiiiee sttt 17

2.3 What is Artificial INteIlIgENCEcvieeiceccce et enes 17

2.3.1 Artificial Intelligence in Vide0 GamESccoirviiriiiiiiniicseee e 17

2.3.2 What is a Finite State MaChinecccccuviiiiiiiie e 18

2.4 A Few Important Unity CONCEPLS.oiveiiririeiiiirieiiite ettt sttt sttt sbe e sne e 18

2.4.0 GAMEODJECT ...ttt 18

2.4.2 COMPONENT ...ttt b et r bt bbb e et e e nr b nrear e s 18

243 PIEFAD ...ttt 18

2.4.4 SCrIPtADIE ODJECT.iiiieiiice e 19

2.4.5 COMOULINES ...tttk bbb bbbkt bbb bbb bbbt ne e 19

3. WOrking in UNItY AN RESOUITES.........cviuiiiiieiirteieiistesieie stttk bbbkt b ettt sb et sbe e e 19
3.1 Unity EdItOr’S INTETTACEoivitiieiieieiecii ettt e 19

Bl TOOIDAL .. 20

3.1.2 HIerarChy WINGOWccviiieiieiece ettt ettt ae e st snnennn e 20

313 SCENE VIBW ..ottt ettt 20

B.1.4 GAME VIBW .ttt bbbttt 21

3.1.5 INSPECLON WINGOW ...ttt ettt ettt te s steesnnenneeeas 21

K BRI S o o] 1= o MY/ T [0 P 22

3.2 ADOUL RESOUICES @NT ASSELSvieiiiirireeieeri ettt ettt sttt r e n e e enenr e an e enennes 22

4. Introduction to the Player & The Rest 0f the ENLItIeS..........cccvviieiiiii i 23
4.1 Main Character and CONLIOIS...........cviiiiiriiicinee s 23

B2 NP CS .ttt h bt bR E R e eh £ e R £ e b e e bt R b e R b e R e e Rt nheeebe e b e enreenreeae e 24

4.3 ENEMIES & GUAITS.c.eeueitieiiiitiit ettt bbbttt bbbttt bbb 24

4.4 Analyzing NPC, Enemy and GUAIT Alooiiiiiiiiiiiee e 24

AT PIAIN NPC....o e et b et b et b et bt sb e s b e bt et et e b sbesbesbeeneas 25

A.A.2 FAIMEE NPC ...ttt r bbbt r bt benne s 25
4.4.3WOOACULLEr NPC ...ttt et ettt see e e 26

AAAENBMY NPC ... r bbb enes 26

Page 6

A.4.5 GUAIT NPC.....ocoiicie bbbt b et b et nn s 27

5. GAME DEVEIOPIMENT ...ttt bbbt bbbt bbb bbbt bbbt b bbbt nb e r et 28
5.1 ENVIFONMENT CREALIONviviiiiiitiieeiiete ettt sttt et b e bt et sb et sn e b e 28
5.2 Lighting & POSE-PrOCESSINGc.civeveiiitirieiietesieeete sttt sb ettt sttt b e eb b b sre e b e 31
5.3 ANIMALOT CONEIOTIEIS. ..ottt ettt et b et b ettt sb e eb e sr e b e 35
5.4 QUESE & DIalOGUE SYSTEIMviitiiiiiitiieeiiet ettt ettt b e sb e bbb e ene e 39

B.A.1 OVEIVIEW ...tttk b bbb bbbt b bbbt nb 39

DAL OO ettt bbb bbbttt 40

TR J - 1Y S SPRS 51
5.5.1 OVEIVIBW ...ttt ettt n et n et nn e 51

5.5 1 0O ettt bbb bbbttt bbbt 51

5.6 STALS & HEAITN ... 64
5.8.1 OVEIVIEW ...ttt r et n et n e nr et 64

581 COOB ..ttt bbbttt bbbt 64

BT AL bbb E bbb bbbttt b bbbt 74
5.7.1 StAte MACKINE.coiriiiciiriicr e 74

5.7.1.1 OVEIVIEW. ...ttt sn e en e nr e anenn e enennes 74

B.7. 1.2 COUE ...ttt 75

5.7.2 Enemy Al CoNtroller & STateScciviiieiiiiie e 78

5.7.2.1 OVEIVIBW.....eiiitiieiiitertee ettt n e enennes 78

B.7.2.2 COUR ...ttt bbbt 78

5.7.3 Guard Al CoNtroller & STALEScceriiriiiiirieese e 87

5.7.3.1 OVEIVIBW. ..ottt ettt bbbttt b e bttt nnes 87

B.7.3.2 C0UR ...ttt bbbttt 87

ST A N | O N USSP 94

5.7.4.1 DialogueNPC and NPCS......c.ccciiiiiiriiisie et 94

5.7.4.0.1 OVEIVIBW ..ttt 94

B5.7.4.0.2 COUR.....oviniitiiiee et bbb 94

5.7.4.2 NPC Al Controller & SEatescccocvreiiireiine s 94

5.7.4.2.1 OVEIVIBW ..ttt 94

B5.7.4.2.2 COUR.....oiiniiiiiieiete et 95

5.7.4.3 Farmer Al Controller & States.........coceviiriiiiineiieese e 99

5.7.4.3.1 OVEIVIEW ..ottt 99

B.7.4.3.2 COOB....euiuiiieieie ettt 100

Page 7

5.7.4.4 Woodcutter Al Controller & STAteSccovceieiiiiiiee e 111

5.7.4.4.1 OVEIVIEW ..ottt 111

B.74.4.2 COOB...veueiiieieieie ettt ettt 112

5.8 MOVET & FIGNTE ..ot bbb e nn e 123
5.8.1 OVEIVIEW ...ttt b bbbt b bbbt bbbt et 123

5.8.2 OO etttk e bbb bRttt sttt n s 124

5.9 Items, Weapon items & CONSUMADIES. ..o 128
5.9.1 OVEIVIBW ...viiiiiietee ettt 128

5.9.2 0O ..ttt bbbttt 131

TN O (T Tox 1] =TSR 136
5.10.1 OVEIVIBW ...ttt bbbttt bbbt 136

5.10.2 COOB ..tttk ettt 137

T R 01T (o] Y TSP UPRPRP 138
5101 OVEIVIBW ...ttt bbb bbbttt bbbt 138

5102 COUB otttk bbb 139

TR 1 T] o) £ 145
5.12.1 OVEIVIBW ...ttt bbbttt bbbkttt bbbt 145

5.12.2 OO ..ttt bbb 147

TR I @] 10T o] 0] TSR 153
5.13.1 SMANRENUEIEI.CScovivieieciiie e 153

5.13.2 WayYPOINTPALN.CS ..ot e 154

5.13.3 SATE.CS ettt bbbttt 155

5.13.4 MAINMENUIMANAGET.CSuvviieiietirieiete sttt sttt sb bbbttt sb et 157

5.13.5 SCENELOAUET.CS ..ottt bbbttt b 160

5.13.6 DiSCOrdCONIIOIEI.CS ..ottt e 161

514 NAVIGALION ...ttt bbb bbbt bbbt bbb bbbt b et bt re b 162
B. EPIIOQUE. ...ttt bt bbb h e h b E R £ R bR bbb h bbbt 165
8.1 CONCIUSION. ...ttt bbbt b bt bbbt bbbt bt b e sbe ettt be st 165
8.2 DIFFICUITIES. ...t ettt ettt bttt b ettt ne b 165
6.3 FULUIE TMPIOVEIMENTS ...ttt bbbt bbbttt n b nn b 165
7. BIDIIOGIAPNY ..ottt bt bbbt ae e 166

Page 8

Table of Figures

Figure 1 — Unity Editor’s WorksSpace iNterfaceouuuriiiiriiiiiiiieisieeesiee st 19
Figure 2 — Unity EditOr’s TOOIDATcuiiuiiiiiiieiitiiteestt ettt b et b et 20
Figure 3 — HIerarChy WINGOWcooiiiiiiiiiiciee ettt bbbt b et 20
Figure 4 — Example Scene View Of the Main SCENE.coviiiiiiiiiii e 21
Figure 5 — Example Game view of the Main MENU SCENE.coiiiiiiiiiiicirees e 21
Figure 6 — Inspecting the properties of the Player GameODhJECt.ccvcviiiiiiieieiecc e 22
Figure 7 — Project files as viewed in the ProjeCt WiNAOWc.ccccveiiiiiiie e 22
FIgure 8 — Main Character “INYSA™uieriiireieririeietistesietesie et st eese st ebe st e b sbe e ebe st e e bt sbe e esesbe e s e ebeneeneabees 23
Figure 9 — Plain NPC’s finite state machine — NPCAICONIOHEr.CSccovvvveiiiiiiiece e 25
Figure 10 — Farmer’s finite state machine — FarmerController.CSccoevviviiiiiciic e 25
Figure 11 — Woodcutter’s finite state machine — WoodcutterController.CS........ccvvvviiiiieniieiiieie e 26
Figure 12 — Enemy’s finite state machine — ENemMyAICONIOIIEr.CS.........coooiiiiiiiiie s 26
Figure 13 — Woodcutter’s finite state machine — GuardController.CS........coovvvveviiciiieieceeceee e 27
Figure 14 — A Terrain GameObject and it’s COMPONENLS.ccuereiieiieriirierientiseeieie et sre st see e see e eeeas 28
Figure 15 — A top-down VIeW OF the TEITAIN.cccccviiiiiiei et sre e sre e 29
Figure 16 — A top-down view of the final result 0f the SCENE.ccocviiiiiicie e 29
Figure 17 — Textures iN PAINt TEXIUIE.cviiiiieiieiie it esteeie et te e te e te e ste e sna e s e staeste e teesteesaesreesnaesneenreeneis 30
Figure 18 — Bushes and grasses that WEIE USEU.ccveiuveiuiiiieiie ettt ste ettt e st e e e sre e 30
Figure 19 — Screenshot of the firSt VIIIAgecooiiiiii e 31
Figure 20 — Mixed Lighting in Lighting WINAOW.ccocoiiiiiiiiseie s 31
Figure 21 — Light component of Directional Light GAMEODJECL.cccoriiiiiiiree e 31
Figure 22 — Lightmapping SEIINGSc.oiveiiiieiiiriec bbbttt bbb 32
Figure 23 — Baked lights & POSt PrOCESS OFf........c.oiiiiiiiiii e 33
Figure 24 — Baked lights 0n & POSt PrOCESS OFF........oviiiiiiiiier e 33
Figure 25 — Camera GameObject’s Post-process Layer COMPONENTcocvririiirininineneisieeesieeecsie s 34
Figure 26 — Camera GameObject’s Post-process Layer COMPONENTccceririiirininineneisieeeiesieeeesie e 34
Figure 27 — Baked LightS & POSt PIrOCESS ON......ccviriiiiiiirierieiirieiete sttt eeie bbbttt st et ane s 35
Figure 28 — Player’s Animator CONIOIIEToviviriiiitiriiieiirieieti ettt sttt et 36
Figure 29 — Player’s “Locomotion” BIENd TTEEccuuiruiriiririiieiirieieiisieieiesie sttt 36
Figure 30 — Player’s Animator Controller’s PArameEterseviuirueieririeieririeiesesteseeseseeseesesse s seesesseseesesse s 36
Figure 31 Enemy & Guard Animator CONIrOIETcooiiiiiicree e 37
Figure 32 — Plain NPC ANImMator CONIOIITc.oiiie it 37
Figure 33 — Farmer NPC Animator Controller’s Parameters.ceovevrreveririeieieniieinieseeesseseesessesnesesne s 38

Page 9

Figure 34 — Woodcutter NPC Animator Controller’s Parameterscooeererreerereeinenmeeseseeseseseesesseseeessenes 38

Figure 35 — In game screenshot Of the QUESE TIST..........curiiiiiiiii e 39
Figure 36 — In game screenshot of the Nysa being in dialogue with an NPC that gives quest.cccccoervnene. 39
Figure 37 — Quest & Dialogue System fOlder SITUCIUIE.ooiviiriiiiriiecri e 40
FIQUIE 38 — SPRAKEI.CS. ...ttt bbbt bbb bbbt bbb bbbt b et b bbbt 40
FIQUIE 39 — DIAlOGUELINE.CS... vttt bbb bbbt bbbttt e et b et b et 41
FIQUIE 40 — DIAIOGUE.CS.. vtttk bbb bbb bbbt bt b bbbttt nbe s 41
Figure 41 — DialogueManager.CS PAIt L........ccccvcveieerierieriesiesiesesieeeeseessestessessesseessesaessessessessessessseseessessessessessensens 42
Figure 42 — DialogueMaNagEr.CS PAt 2.........cieieeeeierieitestesiesteseeseeseessesseseessessesssesaessessessessessesssesesssessessessesensens 42
Figure 43 — DialogueManager.CS PAIt 3.........cceiveieerierieriestesiesteeesseeeessestestesaesteesaesaessestessessesseaseeseessessessessessensens 43
Figure 44 — DialogueManager.CS PAIT 4.........eiueiieiee st eie e e e te e te e te s e s e sne e s ta e te e beestessaesseesneesneenneens 43
T [U L= L O TN) o ot ST 44
FIQUIE 46— QUESIGOAI.CS .. .viivieiiie ettt s e st e et e et e e ae e e st e saeeste e te e teesbeaneesneesreesreeneeenns 44
T U= O TU TSy 1Y o 1= ot S 45
T[N = R @ TN TSy = T3 1) oS 45
Figure 49 — NPCQUESEGIVEI.CS PAN Lcccuiieeiieiieitee sttt e e te e te e ae s e s e sne e ste e be e teesteenaesneesneesneenneennis 46
Figure 50 — NPCQUESEGIVEI.CS PAI 2eeveeeeeeeiiestee it esteeteetesaesteestaesteesteaeeaneeassesssesseestaesteeseesseesseesneesneesneenns 46
Figure 51 — QUESIIMANAGET.CS PAIT L....cveeiieiie e ciestie sttt e e st te e te et e e e e s seesaeeste e te e beeseeesaeaseesneesneenreennis 47
Figure 52 — QUESLIMENAGET.CS PAMT 2....c.veeiveeieeie e et e steeste et e e e et e s e e s e e steesteabeaneeassesseesteestaesseestesseeaseesneesneenteennas 48
Figure 53 — QUESLIMANAGET.CS PAIT 3. viiii e eie et e st ste et e e e s et e e e s te et e asbeasbesaeesseesteebeesbeeseesseesneesneenreennas 49
Figure 54 — QUESEMANAJET.CS PAIT 4 ..ottt bbbt bbb bbbttt b bbb e et nbe s 50
Figure 55 — QUESEMANAJET.CS PAIT 5.....viiiiiitirieiitirieeete ettt b bbbt b et b bbbt nbe e 50
Figure 56 — PlayerCoONtrOlEr.CS PAIT L......c.ociiiiiieirieietiieeiet ettt sttt b et 51
Figure 57 — PlayerCoONtrollEr.CS PAIT 2......c.ciuiiiiiiiieictirieeeie ettt b ettt 52
Figure 58 — PlayerCoNntroller.CS PAt 3......c.ooi ittt b ettt bbbt 52
Figure 59 — PlayerCoNtrOllEr.CS PANT 4oi ittt bbbttt 53
Figure 60 — PlayerCoNntroller.CS PAIt 5......c.viiiiiiirieieieit ettt bbb 54
Figure 61 — PlayerCoNntroller.CS PAIT B.........ciiveiiiiriiiiiirieeie ettt ettt sttt s b e abe s 55
Figure 62 — PlayerCOmDAL.CS PAN L.......ooueiiirieiitirieeeterte ettt ettt bbb e s b e abe s 56
Figure 63 — PlayerCOMDEAL.CS PAM 2.......ciueiiiriiietirieiete ettt ettt bbbttt s et e st nn e ane s 57
Figure 64 — PlayerCOmDEAL.CS PAN 3.....c.oiui ettt ettt b sttt b et e st b e nbe s 57
Figure 65 — PlayerCOmMDEAL.CS PAN 4.......couoiiiieeietirieeete ettt b bbbttt b et se s bbb s 58
Figure 66 — PlayerCOMDEL.CS PANT 5......ouiiiitiieitieiieiee ettt stttk sttt e e bbbt st beebe e s e et e sbesbesbesreeneas 59
Figure 67 — PlayerCOMDEL.CS PANT B......c.oiuiitirieitieieiieie ettt sttt bbbttt e e b e b bt besbeebe e s e et e sbesbesbesneeneas 60

Page 10

Figure 68 — PlayerMOVEMENT.CS PAIT L.......ooiieiiiieiieie ettt sttt bttt e bbb et st eebe e e et e sbesbesbesneeneas 61

Figure 69 — PlayerMOVEMENT.CS PAMT 2.....c.viuiieiiiitiitiietirt ettt ettt sttt e bbbt bt sbe e 62
Figure 70 — PlayerMOVEMENT.CS PAIT 3ottt ettt b bbbttt b et b et s 62
Figure 71 — PlayerMOVEMENT.CS PAMT 4c.oiuiriiiiitirieietist ettt ettt ettt ettt b et b et b 63
FIQUIE 72 — LACHION.CS ..ttt b bbbt bbb bbbt bbbt b bt b et b et nb s 63
Figure 73 — ACHIONSCNEAUIET.CS ..ottt b bbb e 64
FIQUIE 74 — CRAraCterCIaSS.CSvveveueitirteiietisteteet sttt ettt ettt b bbbt b bbbttt bbb bbbt b et n ettt b 65
1o U AT v | OSSPSR 65
Figure 76 — Progression 0f the PIAYET ...t sttt ee s ae e e eneas 66
Figure 77 — ProgreSSioN.CS PAIT Lcveiueieieieseeeeeesie st ste e e st e e s testeaseesaesae s e testestesneaneeseebeseesaesresnenneas 67
FIQUre 78 — ProgreSSIiON.CS PAN 2cveeiieeiieeieeeieseesteesteesteesteeseessae s e e staeste e teeteaseeassesssesseesteesteesteeseesseesneesneeneeenns 68
T[N T b oL 1= o= ok TS 68
Figure 80 — BaseSTALS.CS PANT L.......ecieeieiieiiee et ste et te ettt e e te et e e e e e nbesneeste e te e taebeeseeaneesneenneenreenns 69
FIQUre 81 — BaSESTALS.CS PANT 2....ccueeiveeieeiie et ettt st e st e ste et et e s e st e e te e s te et e aseeassesseesteesbe e te e teeseeaseesneesneenreennis 69
FIgure 82 — BaseSTalS.CS PAIT 3.......eieeiie e e ittt s e te e e e e e s e te e s te e s teeteeaeeasbesseestaebeesteesteeseeaneesreenneenns 70
Figure 83 — EXPEIIENCEDISPIAY.CS ...ovveiiieiie ettt sttt e e et esae e st e te et e e sbeesaeaseesneesneenreens 70
Lo [U =7 =YL= | T o] Y2 ot S 71
Lo [U RS o o B 1T o] V2ot S 71
FIQUIE 86 — HEAIN.CS PAIT L.....oiieiieiie ettt et e e e e s e st e s teesbe e beesbeesaesreesraesreenreannas 72
FIQUIE 87 — HEAIN.CS PAIT 2... ittt e et e e e st e e st e sbe e ba e be e beesaesseesraesreenteeneas 72
FIQUre 88 — HEAIN.CS PAIT 3. it b bbbt b bbbt nbe e 73
FIQUIe 89 — HEAITN.CS PAIT 4.t bbbt bbbttt b et b bbbttt e 73
Figure 90 — Example states and tranSITIONSccoiiiiiriiiiiiiei et 75
Figure 91 — StateMaching.CS PAIT Loiuiiiiiieiitirie ettt bbb bbbt b bttt 76
Figure 92 — StateMacChing.CS PAIT 2oiueiiiiieiitirieete ettt bbbttt b bbbt nbe e 77
FIOUIE 93 — I STALE.CS ..ttt etttk b bbbt bbb bbbt b bbbt b bbbt b et ebe e 77
Figure 94 — ENeMYAICONTIOIEI.CS PAIT L ...voieiiiiiiieieiirieeete ettt 79
Figure 95 — ENEMYAICONTIOIEI.CS PAMT 2 ...voviiiitiiieierie ettt 79
Figure 96 — ENeMYAICONLIOIIEI.CS PAT 3 ...viieiiieiieiietirie ettt sttt 80
Figure 97 — ENeMYAICONTIOIEI.CS PAMT 4oviiiieiieece ettt bttt 80
Figure 98 — ENeMYAICONTIOIEI.CS PAMT D ...viiiiiciiiieeiire ettt ettt 81
Figure 99 — ENEMYATACKINPC.CSc.vitiiiiriitiieeietc ettt ettt sttt et b abe s 82
Figure 100 — ENEMYATACKGUAIT.CS.....c.veitiitirieiiieiieieie ettt sttt bbbt e b besb e be b e ebe e s e e nbesbesbesbesneeneas 83
Figure 101 — ENemyAHaCKPIAYEI.CS PAM L ...cuoiuiiiiiiiie ettt bbbt e b eneas 84

Page 11

Figure 102 — ENeMYAHACKPIAYEI.CS PAM 2 ..o.veiuiiieeiieie ittt sttt sttt et bbb e b e b neeneas 84

Figure 103 — ENEMYSUSPICION.CS ...veueitiriiiiitiiteiietinteieete stttk se et b bbbt bbbttt n et b bbbt ene e 85
Figure 104 — ENemyGuUArding.CS PAIT L.......ciiiiiirieiitirieietist ettt sb et b et 86
Figure 105 — ENemMyGUArdING.CS PAIT 2c.eiuiieiiitiriiieiirteiet sttt ettt b bbbttt nb bbb 86
Figure 106 — GUardAICONTIOIEI.CS PAIT L.....oc.ciiiiiiiiciiieieie ettt b 88
Figure 107 — GUardAICONTIOIEI.CS PAIT 2.....oviiieiiiiiiiie ettt e 88
Figure 108 — GUardAICONTIOIIEI.CS PAIT 3.....oeiiieiici bbb 89
Figure 109 — GUArdAICONLIOIIEI.CS PAMt 4ceceeeeeeie it se ettt sttt et s be s te e eneesee s e saesresresneeneas 89
Figure 110 — GUardAttaCKENEMY.CS PAIT Lcveiuvieeieieriesie st ste et sttt e et et st e s te e ene e e e e e naeseesresneeneas 90
Figure 111 — GUardAttaCKENEMY.CS PAIT 2 ...veciveieeieiesiesie e ste et st ettt e e et et s beste e ena e s e e e e aeseesreanneneas 91
Figure 112 — GUardGUArding.CS PAIT Leccuiiieiie ettt te e e e rae e s esae e st e ta e beesteesaesseesneesneenreennis 91
Figure 113 — GUardGUArdiNG.CS PAI 2ecueiieiiesie sttt te e te et e e esae e s beeste e beesteasaesreesneesneenreennis 92
T [N = A €T P 0 NS U Y o [od o] oSSR 93
T [U =T ST T T (ol IF- 1ot S 93
LT TU =T T T 1 oo U] N O oS 94
T U= A I || ot ST 95
FIQUre 118 — IMOLION.CS PAIT L.....eiieeiie ettt et e e et e et e e e e sb e sne e s be e te e teesbeenaesneesraesreeneeaneas 96
FIQUIE 119 — IMOLION.CS PAMT 2. ettt e e st e st e e s te et e e aeeesbeeseeste e te e teesbeenaesseesreesreeneeeneas 97
FIQUIE 120 — FIEE.CS PAN Leeeiieiiee ettt sttt ettt et st s b e et e et e e ab e e st e eae e sne e ba e beesbeesaesseesreesaeeneeannas 98
T[N =R R T o3 o - SR 98
Figure 122 — GatherahlERESOUITE.CSoviiiitiiieiiite ettt sttt sttt b et b e bbbt nb et et sbe e b e 100
Figure 123 — FarmerController.CS PArT Lcociiiiiiiiicece ettt sb e e ebe s 100
Figure 124 — FarmerControllEr.CS PAIT 2cociiiiiiieieeee ettt e sb et 101
Figure 125 — FarmerController.CS PArt 3oooiiiiiiie ettt et 102
Figure 126 — FarmerControllEr.CS PAIT 4 ..ottt et sb e e 103
Figure 127 — FarmerController.CS PAITDooiiiiiiiiiie ettt 103
Figure 128 — FarmerInitialDECISION.CSc.viuiiiiiiitirieiiite ettt sttt b e bbbt sb e ebe e 104
Figure 129 — FarmerSEarChRESOUITE.CScuiiveieiuirieieiterieeete sttt sttt sttt sttt se et e ebe b e ere e 105
Figure 130 — FarmerMOoVETORESOUICE.CS PAIT Lvoiiiuiiieiieieiieieie ettt sttt sb e e sne s 106
Figure 131 — FarmerMOVETORESOUICE.CS PAM 2 ...o.veveiuirieieiteieeieeie ettt sttt st st se et se e ebesre e sne e 106
Figure 132 — FarmerHArVESE.CS PAMt Lcviuiieiiiieeiete ettt sttt e et et b b e 107
Figure 133 — FarmerHAIVESE.CS PAM 2o.eieiieiieiieeiete ettt sttt st se et se et sbe e ene e 107
Figure 134 — FarmMerREIUMNGOOUS.CSoviitirieitietieieie sttt sttt sttt b e e e bbb bt bt se e e e b et sbeebeene e 108
Figure 135 — FArmMErFIEE.CS PAI L. ...ttt bbb bbbttt se e e b et b ebeene e 109

Page 12

Figure 136 — FArMErFIEE.CS PAIT 2. ...ttt st b e bbbt et sb et beebeene e 110

FIQUIE 137 — FarmMErTaAIK.CS.cueitiieiiite ettt ettt b et b bbbt b bt b e sb e b nn e ene e 110
Figure 138 — WoodcutterCoNntroller.CS PAIT Lcovciiiiiiiiieciee ettt 112
Figure 139 — WoodcutterCONtrolIEr.CS PAIT 2c.oiviiiiieicieieeesit et 113
Figure 140 — WoodcutterCoNntroller.CS PAIT 3 ..ottt 114
Figure 141 — WoodcutterCOoNtrollEr.CS PAIT 4oovciiiiiiiieieeiet ettt 115
Figure 142 — WoodcutterCoNntroller.CS PAIT S ..o 115
Figure 143 — Woodcutter INitialDECISION.CSviiuieiieieie ittt sttt sttt st re e e e e e seesreene e 116
Figure 144 — Woo0dcutterSearchRESOUICE.CS PAIt L.......cceivieireeeieieseeste e steseeee e e ste e re s e e e e saeseeseesresneens 117
Figure 145 — Wo0dcutterSearchRESOUICE.CS PAI 2....c..eiveiveiieerreeeieiieseestesiesreseeeesaeseesteseesresseessessessessessessessenns 117
Figure 146 — WoOdCULtErMOVET ORESOUITE.CS ...evveveereeriesieesieesieesteesteeeesseesseesteestaeteassesssesseesreesseenseensesssesseeses 118
Figure 147 — Wo0odCUtterHArVESL.CS PAIT Locieivieieeieee ettt e st sreesteenaeenneeneennee e 119
Figure 148 — WoOdCULtErHANVESL.CS PAIT 2icviecvi ettt ee e st sreesteenee e e e eneennee e 119
Figure 149 — WoOodCULtErREIUINVWOOU.CSviivieiieiieie e ste ettt et te e sre e sreesteeeeenneeneennee e 120
Figure 150 — WOOACULEIFIEE.CS PAM L.......cciiieiecii et ste ettt te et e sre e sreesteeteeneeeneennee e 121
Figure 151 — WOOACULEIFIEE.CS PAM 2......eiiuviieiicie ettt te ettt ae e sre e sreesteenteenteeneennee e 121
Figure 152 — WoOodCULtErWAIK.CS PAIT L.........ciieiiieiieiiee sttt be e te e st esreesteenteenteeneennee e 122
Figure 153 — WoOdCULLEIWAIK.CS PAIT 2........viiiiiriceiieie s ste et e sttt ae e sra e sre e steeaeenreeneennee e 122
FIQUre 154 — WOOACULEI TAIK.CS .. veiviiie ettt te ettt te et e e e s e steesteesbeenteenbeeneennee e 123
FIQUIE 155 — IMOVEE.CS PAM L...oieeiiieiieeiie ettt ettt e s e e st e e e et e e s e s ae e s ta e beesteesbesseesseesaeesteeneeenteaneenneenes 124
FIQUIE 156 — MOVET.CS PAIT 2. ittt ettt ettt bt bbb bbbt b e bbb e st et e nb e e ebenb e ebe e 125
FIQUIE 157 — FIGNTEI.CS PAIT L. ...eiviieiiiteieeieite ettt b et b e bbbt b e bbbt et e sb e ebenn e ebe e 125
FIQUIe 158 — FIGNTEI.CS PAIT 2.....eiviieieitiieeieste ettt bbb bbbt b e bbb sttt sb e e et e nn e et e 126
FIQUre 159 — FIGNTEI.CS PAIT 3. ...ttt ettt b et b e bbbt b e s et eb e b st et e sb st ebesr e ebe e 127
FIgUre 160 — FIGNTEI.CS PAIT 4.....ocveiiiiiteieeiecte ettt bbbt b e bbbt eb e bttt se e b sb et e 128
Figure 161 — The “Fury” Weaponltem Scriptable ODJECT.coviiriiiiriiiiirieisie et 130
Figure 162 — The “Health Potion” Consumableltem scriptable 0bject.coovviriiiiiriiiiinice e 130
Figure 163 — The “Fury” sword pickup and itS COMPONENLS.cerveriririeiiirieinerieeee et 130
Figure 164 — The “Fury” sword that is used when it’s on an agent’s hands.cccccverniieiiineneiieeens 131

Page 13

FIQUIE 185 — TEBIMILCS 1.ttt et b bbbt e et e b e b e e bt b e e b e e Rt e b e eb e ke eR e eb e e bt e ne e s b e b e nbesbeebeene e 131

Figure 166 — CONSUMADIEITEIMLCScuviviiieiiitiieeeet ettt b bbbt bbb e b sr e ebe e 131
Figure 167 — WeapONnItemM.CS PAIT L.......ooiiiiiieiitiieei sttt ettt b e ab e sb e ebenr e ebe e 132
Figure 168 — WeapONITEM.CS PAIT 2.......oiveiiiiieiiite ettt sb ettt b bbbt sb et b b e 132
Figure 169 — WeapONnIteM.CS PAIT 3.......oviiiiiieiite ettt et b et b et eb et sr e b e 133
FIgure 170 — PICKUP.CS PAIT L ..ottt b bbbt et b bbbt eb e sn e b nn e ene e 133
FIQUIe 171 — PICKUD.CS PAIT 2 ..eeitieeieete ittt ettt b bbbt bbbt b e bbbt nn e b nn e ene e 134
Figure 172 — DroplteMONDEAtN.CS.......eveiieiiie ettt st a et et e saesresreene e eesbestesreateeneens 134
FIGUIE 173 — HEMPICKUP.CS ...viieiti ettt sttt et et et e st et e s ae st e e neene e s e e netesreatenne e 135
1o U T A I T 0]] (=T34 oSSR 135
Figure 175 — The arrow projectile GameObject and its COMPONENLS.ccvevveiieieeiicie e 136
Figure 176 — The arrow hit effect GameObject and its COMPONENLS.ccoevvevieiieiiie e 136
Figure 177 — Destroy AT E ECL.CS . it sre et e et et e e nnee e 137
FIQure 178 — ProJECLIHE.CS PANT Leeiveeieecie ettt et et e st e e te et e e s tesseesneesneesneenteenteeneennee e 137
FIQUIe 179 — PrOJECLIE.CS PAMT 2veeveeie et ettt ettt te et et e st e st e s te et e e te e s besseesseesreesteenteanseeneennee e 138
Figure 180 — ProjECLIE.CS PANt 3eeieeie ettt et e st e st e be e be e s e s seesseesneesteenteanseeneennee e 138
Figure 181 — A screenshot 0f the INVENTOYccviiieiiic et enee e 139
FIQure 182 — INVENTOIY.CS PAIMT L....veiieeee e ettt e e s te e et e e st e s te e te e be e s besseesreesreenteeteenseeneenneenes 140
FIQure 183 — INVENTOIY.CS PAIM 2....veiieeie ettt et e et e et e et e s te e be e be e s besseesteesreeateenteenteensensee e 141
FIQUre 184 — INVENTOIY.CS PAIM 3....veiieiie ettt ettt et e et e et e e at e s te e be e be e s besseesteesreesbeeseenseensenneenes 142
Figure 185 — INVENTOIY.CS PAM 4ottt b ettt b e bbbt s bbbttt sbe e et b e b e 143
FIgure 186 — INVENTOIY.CS PAI D .. .ottt b et b e bbbttt b e bttt sbe e ebesbe et e 144
Figure 187 — INVENTOIY.CS PAM B....c.veuiitiieiiiteiietiite ettt sttt sb et bbbt b e bbbttt sb et et sbe e b e 144
FIigure 188 — INVENTOIY.CS PAM 7e.veiiitiieeiiite ittt sttt b et b et b e bbbttt bbbttt sb e e et b e b nnes 145
Figure 189 — The HUD GamMEODJECL.ceiiiieiiitirieiitereeeste ettt bbb bbb ebe s 146
Figure 190 — Enemy’s health bar and damage diSplay.ccccevireiiiiriiiiiniie e 146
Figure 191 — PlayerHealthDiSPIAY.CScviiiiiiirieiite ettt et 147
Figure 192 — PlayerADI Ty DISPIAY.CS.....viiiiiiieiiti ettt sttt st sb e ene e 147
Figure 193 — EXPErienNCEDISPIAY.CSccviveiiitirieiiite ettt sttt sttt se et sb et b b e 148
FIQUIE 194 — LEVEIDISPIAY.CS...veitiieieiti ittt b ettt b ettt bbbt eb ettt se e b e sr s e b e 148
FIQUIE 195 — XPDISPIAY.CS ..ttt sttt sttt ettt b ettt b et b e s b e st eb e s b e st et e sb e s e et e nre s e et neas 149
FIQUIE 196 — ESCAPEIMIENULCS ...vvevieetiete ettt sttt sttt ettt ettt b bt e ettt e et sb e st e bt s b e st et sbe st et e seeseebenneneeneneas 149
FIGUIE 197 — SEIVOIUME.CS. ...ttt bbb bttt b e b e bbbttt e st e s b e b et sbeebenre e 150
Figure 198 — GraphiCSEttiNGS.CS PAM L.......oiuiiiiieiieieie sttt ettt bbb bbbttt e e e b b sbesne e 151

Page 14

Figure 199 — GraphiCSEIINGS.CS PAM 2......viiuiiieiiieiieieie ettt ettt sttt b bbb e e e st e e e sne b sbesbeene e 151

Figure 200 — EnemyHealthDiSplay.CS PAIT L.......coociiiiiiiiiiieisie ettt 152
FIQUIE 201 — POPUPTEXECS .. veveteiteeeteete ettt ettt ettt ettt b bbbt b e bt b bt b s b et bt s b e s e ab e nb e s e ebenn s e ene e 152
Figure 202 — SMartRENTErEr.CS PAI Lcoiiiieiieirieiite ettt et b e eb e bt nr e ene e 153
Figure 203 — SMartRENTEIEI.CS PAIT 2oiiuiiieiieiieeeit ettt b et b bbb eb e e ebesr e b e 153
Figure 204 — Waypoint path @XampPIe. ..o e 154
Figure 205 — WaypointPath.CS PAIT L........coiiiieiiirieiitirieiete ettt b bbb 154
Figure 206 — WaypointPath.CS PAIt 2..........cciviiiiiieieie s se ettt et sae b e s re e e e e e naeseesrearenneens 155
Figure 207 — Safe POINt BXAMPIE.ccveiiieiiie et e et e s be st e e reese e eesbesresreereeneens 156
FIgUre 208 — SAfR.CS PAIT Liieieciieicie ettt st e st et et e s teete e st e e et e besbeebeareeneeseeeeteseenrenneens 156
L[N0 T (=T otc N o o S 157
Figure 210 — Main menu SCene GamMEODJECES. ...cuviiieiiieiiiie e se e e e sreesreesee e e e eneennee e 158
Figure 211 — Camera — MainMenu Manager GameODJECL.ccocviviiii i 158
Figure 212 — MainMenuMaNager.CS PAM Lccveiieiieiesiesee e se e et e st e e e te e ee e sre e sreesreeneeeneeeneennee e 159
Figure 213 — MainMenuUMaNAgEr.CS PAMN 2ccuveiuieieiiesieeseeseesteesteete s e sseeste e teesteaseesreesseesreesseenseansesneesneeses 159
T[N = Aot g =] T o [T oSS 160
Figure 215 — DiScOrd’s TiCh PrESENCE.cviiiiiiiitieiteei e see s ee e ste et et e s e st e s ta e be e be e besreesreesteesteeeeenteensenneeses 161
Figure 216 — DiSCOTACONIIOIIEI.CS.....ueiiiiie ettt be et e s esreesreesreenteenseeneennee e 162
Figure 217 — Navigation, AQENtS taIc.iiiiiiici et ene e 163
Figure 218 — Navigation, BaKe 1aDccuiiiiiiiii et st ste e nr e e be e nne e 163
Figure 219 — NavMesh area of @ part 0f the SCENE ..o 164

Page 15

1. Introduction

1.1 Summary of the Game

Nysa's Quest is a 3rd-person action RPG game developed for PC. Thanks to the elements
of the RPG and action genres, the game gives the impression that the player is part of a
fantasy/mediaeval world. By taking on the role of a character and the scenario, player will aim
to complete quests and fight with various enemies to reach the goal.

As mentioned earlier, the game takes place in a fantasy/mediaeval world. The player takes
control of a young woman named Nysa, who has lost her parents and family estate to a band
of exiled knights. Nysa's passion for revenge and justice drives her on a quest to find those
responsible for her family's misfortune and retrieve the stolen family sword.

1.2 Motivation of Making this Project

The motivation for creating this project stems from 3 things. First, my love of games. When
| play a game similar to this project, | am always curious about the scenarios, exploration,
character empowerment, gathering, and how these things actually work. Secondly, it's exciting
to create something. For example, when | am working with Unity, it's always fun and exciting
to create a movement script for a character and then press play to see the result. The third and
final point is the will to create my own game, having an idea, writing it down and then
implementing with my resources.

1.3 Purpose and Objectives of the Project

The purpose of this project is to develop a 3D Action RPG game, focusing on creating
Artificial Intelligence and improving my programming skills. To achieve that purpose, I'm
using the reliable Unity3D game engine and programming in C#, because it's simple, well
documented and there is a wide range of tutorials available thanks to the community. The goal
of the game is to make the player feel like they are a part of this world and that there is a goal
to achieve. There are 4 quests to complete the game, but there are also 3 more side quests so
that if the player wants to explore more or to get stronger if they want to.

Page 16

2. Technologies and concepts

2.1 What is a Game Engine and What is Unity

A game engine is a software framework designed primarily for developing video game
development, and in general includes related libraries and utilities. The main features that a
game engine typically provides, include a rendering engine for two-dimensional (2D) or three-
dimensional (3D) graphics, memory management, networking, artificial intelligence,
animation, scripting, a physics engine, streaming, sound, threading, localization support, video
support for cinematics, and scene graph.

Unity was created by Unity Technologies and is a cross-platform game engine that is mainly
used to develop video games and simulations for computers, consoles, and mobile devices.
Unity was launched in 2005 and since then it has been expanded to 27 platforms. The Unity
game engine is an "all-purpose” as it supports two-dimensional (2D) and three-dimensional
(3D) graphics, is also a good choice for Virtual-Reality (VR) and natively supports the C#
programming language. It is important to note that the engine is not only used in the video
game industry, but also in industries such as engineering, construction, architecture, film, and
automotive.

2.2 What is an Action RPG Game Genre

An action RPG is a subgenre or subdivision of the RPG genre. That is, this subgenre
includes RPG combat systems that combine RPG mechanics with real-time, direct, and
reflexive action game combat systems. In action role-playing games, the player has real-time
direct control over a character's movements, actions in combat, and stats to determine relative
strength and abilities.

2.3 What is Artificial Intelligence

The natural intelligence displayed by humans or animals can also be demonstrated by
machines. This term is called Artificial Intelligence (Al). The term Artificial Intelligence is
also used for machines that attempt to mimic “cognitive"” functions that humans perform with
their minds, such as "learning™ and "problem solving."”

2.3.1 Artificial Intelligence in Video Games

In video games, artificial intelligence is used to achieve flexible, responsible, and
intelligent behaviors, especially in non-player characters (NPCs), that resemble human
intelligence. Al in video games is a distinct subfield and is different from academic Al. Today,
games often use existing techniques such as decision trees and pathfinding to drive the actions
of NPCs. Often Al is used in mechanisms that are not directly visible to the user, such as data
mining and procedural content creation.

Page 17

2.3.2 What is a Finite State Machine

A finite state machine (FSM) belongs to the field of expert systems and is represented
as a graph. An FSM graph is an abstract representation of set of objects, symbols, events,
actions, or properties of the phenomenon to be represented. Specifically, the graph contains
nodes (states) that represent a mathematical abstraction, and edges (transitions) that represent
a conditional relationship between nodes. The FSM can only be in one state at a time, and the
current state can transition to another if the condition in the corresponding transition is satisfied.
In short, an FSM is specified by three main components:

e states which store information about a task.

e transitions between states and are described by a condition that needs to be
fulfilled for a state to change.

e actions that are followed in each state.

FSMs are really easy to design, implement, visualize, and debug. Also, they have proven to
work well with games over the years of their existence. On the other hand, they can be
extraordinarily complex on a large scale and are computationally limited to specific tasks
within game Al.

2.4 A Few Important Unity Concepts
2.4.1 GameObject

A GameObject is the most important object in Unity Editor. Every object in the game
is a GameObject (characters, props, scenery, etc), but they can not do much themselves. They
are containers for the components that provide the actual functionality. A Transform
component is always attached to a GameObiject to represent its position and orientation in the
scene.

2.4.2 Component

Components are the functional pieces of a GameObject that define it’s behavior. For
example, on a Main Camera GameObject, it’s Camera component adds the functionality of the
camera to the GameObject.

2.4.3 Prefab

A prefab is a copy of a GameObject that can be saved with its properties and
components so that it can be used again and again in different scenes. Changes made to a prefab
can be applied either manually or automatically to instances of that prefab, so that changes can
be easily made throughout the project without having to repeat the same actions.

Page 18

2.4.4 Scriptable Object

A ScriptableObject serves as a data container and is used to store large amounts of data,
independent of class instances. ScriptableObjects are often used to reduce the memory footprint
of a project by avoiding copies of values. During an editor session, ScriptableObjects are
mainly used to store and hold data as an asset in a project at runtime.

2.4.5 Coroutines

A coroutine works similarly to a function, but can pause execution for a few seconds
and before resuming, a condition must be met or a certain time must be waited.

3. Working in Unity and Resources

For this project | used the 2019.4.26.f1 Long Term Support (LTS) version of Unity
because it provides maximum stability, 2 years of support and no API changes.

3.1 Unity Editor’s Interface

Unity provides a user interface (Ul) that is user-friendly and easy to customize. In the
following figure, you can see the Unity workspace interface, which uses a custom layout that |
used to create this project. In the next subsections, I'll go over some of the windows.

n Action RPG Project - MainScene - PC, Mac & Linux Standalone - Unity 2019.4.26f1 Persona | <DX11> - [m] X

Figure 1 — Unity Editor’s workspace interface

Page 19

3.1.1 Toolbar

The toolbar is located at the top of Unity Editor and consists of several groups of
controls. It provides quick access to the most important functions. It starts on the left and
contains the basic tools for controlling the scene view and the GameObjects within it. This is
followed by the Play, Pause, and Step buttons. The buttons on the right give access to Unity
Collaborate, Unity Cloud Services and Unity Account, followed by a layer visibility menu and
the customizable editor layout menu.

Hpivet Local

Figure 2 — Unity Editor’s toolbar
3.1.2 Hierarchy Window

The Hierarchy window provides a textual representation of each game object in the
scene in the hierarchy. The Hierarchy window is used to group and sort the GameObjects
present in a scene. GameObjects added or removed from Scene View can also be added or
removed from the Hierarchy window.

= Hierarchy
+ - =
<f MainScene
-:. A E"." E.

Proc
rrain

Figure 3 — Hierarchy window

3.1.3 Scene View

The Scene View allows you to visually navigate and edit the scene (add, remove, select,
and position scenery, characters, cameras, lights, and all other types of game objects). The
Scene View provides a 3D or 2D perspective, depending on the type of project.

Page 20

Figure 4 — Example Scene view of the main scene.

3.1.4 Game View

The game view is used to simulate what the final rendering of the game will look like
by the Scene Cameras. The simulation begins by clicking the Play button on the toolbar.

Scene an
Display1 ~ 10

Figure 5 — Example Game view of the main menu scene.

3.1.5 Inspector Window

In the Inspector window, you can edit, add, or remove properties (components) of the
currently selected GameObject. There are many types of GameObjects that can have different
properties. The layout and contents of the Inspector window change each time a different
GameObiject is selected.

Page 21

Player * Layer Ignore Raycast -

Open Select
Transform]
X -231.48: Y 1.98
X0 Y
X1
¥ Mesh Renderer
v Mover (Script)
~ MNav Mesh Agent
/¥ Animator
8 . capsule Collider
Action Scheduler (Script)
v Health (Script)
Rigidbody
v Base Stats (Script)
v Audio Listener

v Player Movement (Script)

Experience (Script)

Experience Points 1]

~ Player Controller (Script)

Figure 6 — Inspecting the properties of the Player GameObject.

3.1.6 Project Window

PO0DOOOOOO®OO® —o
i

CTETAE TR T TR T

I ¢

The project window is like a file explorer. It displays the files associated with the project
and is the main method for navigating through the assets and other project files in the editor.
As you can see in Figure 7, there are colored folders. This is an asset from the Unity asset store
called "Rainbow Folders", which | use because it helps me find folders easily, organize them

well, and increase productivity.

I Project
+ -

* Favorites

@@ Assets

Figure 7 — Project files as viewed in the Project window

3.2 About Resources and Assets

Some assets used in this project were either freely available or purchased for legal use,

or created by me using the image editor GIMP or the audio editor Audacity.

Page 22

4. Introduction to the Player & The Rest of the Entities

In this chapter | go through and analyze the entities of the game. These are the player,
the simple NPC, the farmer, the woodcutter, the guard, and the enemy.

4.1 Main Character and controls

Diving into "Nysa's Quest" world. player takes control of a heroine named "Nysa Fell".
Her motives are what drive her forward and make the player feel like they are pursuing the
same goals as "Nysa" and completing the quests to reach the goal.

Figure 8 — Main character “Nysa”

The model from Figure 8 is from Synty Studio’s Polygon Series Fantasy Kingdom. Once in
the game and player has control over the character then the following actions can be performed:

e Movement: WASD or Arrow keys
e Camera rotation: Q & E keys

e Zoom in & out: Mouse scroll wheel
e Attack: Left click

e Sprint: Shift key

e Roll: Space key

e Quests: Z key

e Inventory: Tab key

e Pause Menu: ESC

By pressing the Space key, player is rolling, that is an ability that can be used every 2 seconds
and when rolling player is avoiding any attacks.

Page 23

4.2 NPCs

Generally, non-player characters (NPCs) are used to populate the world of a game and
are usually controlled by the game’s Al. NPCs can be used to advance the plot, help the player
as allies or partners, and they can serve as merchants, doctors, save points, and more. In this
project, however, NPCs are used to populate the world and make it more lively, to give quests,
or just to have a little conversation.

Also, NPCs can do 3 things: first, they can walk around or stop to make the world feel more
alive rather than static. Second, they can give quests so that the player interacts with the NPC
by having a dialogue to get a quest. The NPCs that give quests can be identified by an
exclamation point above them. Third and finally, some NPCs have work, their role as well is
to make the world feel more alive, like the NPCs that walk around, but beyond that they add
variety to the NPC population. However, these 3 types can also be combined, meaning an NPC
can have a job, but also give a quest.

4.3 Enemies & Guards

Enemies are obstacles that must be overcome in order to reach the goal of a quest or
reach the finish point of a level. Usually, enemies try to kill or prevent the player from reaching
the goal. Also, enemies usually guard an area by standing still or walking on the path waiting
for the player to attack them. Also, enemies fight guards, and they can be set to attack NPCs.
Guards, on the other hand, have no conflicts with the player and only guard the town and hunt
enemies.

4.4 Analyzing NPC, Enemy and Guard Al

Al behavior is easily controlled by a finite state machine. Bellow follows each Al
controller’s finite state machine (finite state machine is explained in sub-chapter 2.3.1)
controller. Controllers:

» NPC

e NPCAIController.cs

e FarmerController.cs

e WoodcutterController.cs
» Enemy

e EnemyAlController.cs
» Guard

e GuardController.cs

Page 24

4.4.1 Plain NPC

Let us start with the simple NPC, and as Figure 9 shows, it is the simplest.

Figure 9 — Plain NPC’s finite state machine — NPCAIController.cs

The initial state of a simple NPC is movement. These NPCs can either stand still or walk. If a
simple NPC has a quest to give, the player can interact with him at any time to get the quest,
unless he is on the run. Finally, if an enemy threatens him, he flees to a safe place.

4.4.2 Farmer NPC

Figure 10 — Farmer’s finite state machine — FarmerController.cs

The farmer's initial state is colored blue, as shown in Figure 10. It starts with the farmer
deciding whether or not to go for a walk, and this depends on his work ethic. For example, if
the farmer decides to look for crops in the area (work), then he finds one and walks to that crop.
Once he gets there, he starts harvesting. After harvesting the first crop, the farmer searches for
another crop to harvest until he has collected 4 crops. Once the 4 crops are collected, the farmer
returns the goods to a return point and then decides again. If the decision was "walk™, the farmer
walks for some time before making another decision. However, if a threatening enemy appears,
the farmer will immediately flee. If the farmer is in the process of harvesting his crops when
the enemy appears, and he has collected 2 crops for example, he will drop the basket and flee

Page 25

to hide in a safe place, returning to the basket after a while to pick it up and collect the remaining
2 crops. And when the farmer gives a quest, the player only talks to him when he is not working.

4.4.3 Woodcutter NPC

Figure 11 — Woodcutter’s finite state machine — WoodcutterController.cs

Similarly, but more simply, woodcutter begins with a decision. For example, if this
NPC decides to work, he finds a nearby tree, moves to that tree and begins cutting the tree there
(harvesting), then returns the wood to a return point to decide again. However, if a threatening
enemy attacks the NPC while he is returning the wood to the return point, the woodcutter drops
the wood and flees to a point of safety. Once safe, he searches for the wood he dropped, picks
it up, and returns it to the return point. Finally, when the NPC gives a quest, the player only
talks to him when he is not working.

4.4.4 Enemy NPC

Figure 12 — Enemy’s finite state machine — EnemyAlController.cs

The enemy's initial state is guarding, by either standing still or following a path. The
player is the enemy's highest priority, then the guard, and lastly the NPC. For example, if the
enemy attacks an NPC and a guard shows up, the enemy attacks the guard, and if the player
shows up, the enemy attacks the player instead. If one of the targets disappears, the enemy

Page 26

enters the suspicion state, which means that the enemy remains in the position where it last saw
the target for a few seconds. If the target reappears in the meantime, the enemy attacks again,
if not, it enters the guard state again

4.4.5 Guard NPC

Figure 13 — Woodcutter’s finite state machine — GuardController.cs

Similar to the enemy, the guard's initial state is a guarding, and if the guard has a quest,
it can switch to the talk state if the player interacts with the guard. When an enemy appears,
the guard chases that enemy and when the guard has taken him down, returns to the initial
guard state.

Page 27

5. Game Development

In this chapter | go over terrain creation, lighting and post-processing, animations, quest
and dialogue system, player, stats and health, Al, locomotion and fighter, items, projectiles,
inventory, Ul scripts, some other scripts, and navigation.

5.1 Environment Creation

The environment was created using Unity's built-in terrain editor, which includes features for
creating landscapes. Multiple terrain tiles can be created, the height and appearance of the
landscape can be adjusted, and finally trees and grass can be added. At runtime, Unity optimizes
the terrain rendering for more efficiency.

Also, you can create a terrain by right-clicking in the hierarchy pane, then going to 3D Objects
and selecting Terrain, which will create a Terrain GameQObject in the scene.

ctor ® |ighting 4 Mavigation

* Layer Default

Enable Tree Colliders

Add Component

Figure 14 — A Terrain GameObject and it’s components.

As Figure 14 displays, Terrain component has a toolbar that provide five options:

Create Neighbor Terrains, used to quickly create and connect Terrains next to
the selected Terrain.

Paint Terrain, used to raise or lower the Terrain height, hides portions of the
Terrain, paints surface textures, smooths height and stamps a brush shape of the
current heightmap.

Paint Trees, enables tree painting.

Paint Details, paints grass and other details.

Terrain Settings

The result of painting the Terrain (Figure 15) and the final result of the terrain with the rest of
the details, such as buildings, trees, water, etc.) (Figure 16).

Page 28

Figure 15 — A top-down view of the Terrain.

Figure 16 — A top-down view of the final result of the Scene.

Page 29

To make the environment look realistic and beautiful, a number of 20 textures were used
(Figure 17) and to create paths/roads quickly and easily, the Path Painter 2 painting system was
used. It is important to note that Paint Details was not used and for tree placement the Tree
Paint option was not used, instead trees were placed individually. Tree Paint was used to place
grasses and bushes (Figure 18). A close-up of the final result (Figure 19)

o= v Terrain
Paint Texture
Paints the selected

Settings

Terrain Layers

£ Edit Terrain Layers...

CYEdit Trees.. Refresh

40

Figure 18 — Bushes and grasses that were used.

Page 30

Figure 19 — Screenshot of the first village

As for Terrain Settings, it's important to enable Draw Instanced because Unity will then convert
all heavy terrain data, such as height maps and splat maps, into textures on the GPU. Instead
of constructing a separate mesh for each terrain patch on CPU. This reduces the workload of
the terrain CPU by orders of magnitude, as a few instanced draw calls potentially replace
thousands of custom mesh draws.

5.2 Lighting & Post-processing

First off starting with Lighting window by setting the lighting mode to Baked Indirect,
after that in Hierarchy window, the scene’s Directional Light GameObject is set to Directional
type and mode set to Mixed (Figure 20 & Figure 21)

Mixed Lighting
llumination

Baked Indirect

Directional

Mode Mixed
L
1

Figure 21 — Light component of Directional Light GameObject.

Page 31

With Baked Indirect mode, Mixed Lights behave like Realtime Lights (Unity performs lighting
calculations once per frame, it’s useful for casting shadows on characters or moveable
geometry), with the additional benefit of baking indirect lighting into lightmaps (pre-rendered
textures that contain effects of light sources on static objects in the scene). In Directional lights
the light source will behave in many ways like the sun, directional light can be thought of as a
distant light source which exist infinitely far away. All objects in the scene are illuminated as
if the light is always from the same direction. Lastly, Lightmapping is the process of pre-
calculating the brightness of surfaces in a scene and storing the result in a texture called a
lightmap, and in this project is used the Progressive Lightmapper. The Progressive
Lightmapper is a fast path-tracing-based lightmapper system that provides baked lightmaps
and Light Probes with progressive updates in the Editor. It requires non-overlapping UVs with
small area and angle errors, and sufficient padding between the charts.

Lightmapping Settings

Progressive GPU (Preview)

e Sampling

4
b

Auto

10

Directional

Default-Medium

Figure 22 — Lightmapping Settings

Page 32

The following figure (Figure 23) shows how the scene looks before the lightmap data is
generated. The next figure (Figure 24) is the result of the generated lightmap data of the scene
with the settings from Figure 22.

Figure 23 — Baked lights & post process off

Figure 24 — Baked lights on & post process off

Now moving to the post-processing of the project, we must first understand what post-
processing is. Instead of rendering 3D objects directly to the screen, the scene is first rendered
to a buffer in the graphics card's memory. Pixel shaders and optionally vertex shaders are then
used to apply post-processing filters to the image buffer before it is displayed on the screen.

Page 33

Unity offers a number of post-processing effects and full screen effects. First, | created a new
layer called "Post-Processing™ and added a Post-Process Layer to the Camera GameObject and
set the layer to "Post-Processing” so that post-processing would be applied to it.

1:} ~ Post-process Layer

Volume blending

Temporal Anti-aliasing (TAA)

Figure 25 — Camera GameObject’s Post-process Layer component

Then create an empty GameObject named Post-Processing, set the layer to "Post-Processing"
and add the Post-process Volume component to add the effects.

Open
Transform
Position

Rotation

 Post-process Volume

{»Camera Profile 1 (PostProcessProfile ® New Clone

Overrides
Ambient Occlusion
slor Grading
Bloom
gnette
romatic Aberration
«~ Auto Exposure

Add effect...

Figure 26 — Camera GameObject’s Post-process Layer component

Effects that were used:

e Ambient Occlusion effect, affects the areas that are not exposed to ambient
lighting and darkens them.

e Color Grading, allows to change the visual appearance by adjusting the balance
of each color.

e Bloom effect. Makes bright areas in camera view.
e Vignette effect, darkens the edges of the camera view.

Page 34

e Chromatic Aberration effect, spreads colors along the boundaries between dark
and light areas of the camera view.

e Auto Exposure effect, dynamically adjusts the exposure according to ambient
lighting.

Figure 27 — Baked Lights & post process on

5.3 Animationor Controllers

Unity has an extensive and advanced animation system and is sometimes referred to as
"Mecanim". It provides easy workflow and animation setup for all elements of Unity,
management of complex interactions between animations with a visual programming tool,
convenient preview of animation clips, retargeting of humanoid animations, and animation of
different body parts with different logic.

The player's animator is simple (Figure 28) and includes Blend Tree called Locomotion (Figure
29), which manages motion animations for smooth transitions based on speed. For example,
when the player is moving, the animator controller is in the Locomotion state. Based on the
forwardSpeed parameter, which refers to the player's speed, the idle animation will blend with
the walking animation. When attacking, triggers the attack parameter to trigger the animation.
When the animation reaches its end time, stopAttack is triggered and the player goes back to
the Locomotion state. The roll works just like the attack, but has its own parameters (roll &
stopRoll). When the player dies, the die parameter is triggered and the player goes from any
state to the death state. For example, if the player dies while running, the transition will be from
the Locomotion to the death state.

Page 35

¥
Th
¥

Entry Lacamation

Death
Any Slate

Figure 28 — Player’s Animator Controller

Humanoidldle

Blend Trea

Blend Trea
= Blend Trea

. - Runningl
forwards g

- Blend Trea

Lavers Parameters

Figure 30 — Player’s Animator Controller’s parameters

Page 36

Enemies and guards have the same animator controller because they use the same animations.
This animator is the same as the player's animator controller, meaning it works the same as the
player's, including Locomotion Blend Tree, but does not have the Roll state.

¥
Yi
Y

Locomation

Death
Any State

Figure 31 Enemy & Guard Animator Controller

Plain NPCs have the simplest animation controls due to their behavior. They require a
locomotion blend tree and a death state.

Locomotion

Any State Death

Figure 32 — Plain NPC Animator Controller

Page 37

The farmer NPC's animator controller has a Collect state for the harvest animation, a death
state and a Locomotion blend tree like the other animator controllers.

Collect

Entry Locomotion

Any State Death

Figure 33 — Farmer NPC Animator Controller’s parameters

The animator controller of the woodcutter NPC works the same as the animator controller of
the farmer NPC. The only difference is that instead of the collect state, there is a chop state for
the animation of chopping wood.

Chop

Entry Locomotion

Any State Death

Figure 34 — Woodcutter NPC Animator Controller’s parameters

Animator override controllers, which are replacing specific animations of an animator
controller to create multiple variants of that controller. In this project | use them in weapons to
replace some animations like the attack and the motion so that the “big” swords feel heavier
when attacking and walking than the “smaller” swords (More about swords at chapter 5.9).

Page 38

5.4 Quest & Dialogue System
5.4.1 Overview

The quest system is essential for Nysa's Quest, as the player must acquire quests based
on the storyline in order to know where to go next, as planned. Thanks to this system, the player
can have dialogues with NPCs and even acquire a quest if that NPC gives one. Besides, by
pressing "Z", the player can see the accepted quests (completed and not), their information and
rewards.

Figure 35 — In game screenshot of the quest list (white color for unfinished quests & green color for
completed quests).

Figure 36 — In game screenshot of the Nysa being in dialogue with an NPC that gives quest.

Page 39

5.4.2 Code

4 [m Quest & Dialogue System
4 [od Dialogue

c* Dialogue.cs

c* Dialogueline.cs

c# DialogueManager.cs

B
B
B
4

c* Speaker.cs
[m# Quest

B c* NPCQuestGiver.cs
P O

P Q

P Q

b c* QuestT

Figure 37 — Quest & Dialogue System folder structure.

First starting with Speaker.cs, this is a scriptable object that is going to contain information of
the speaker, such as name and a sprite image.
UnityEngine;
ARPG.QuestDialogue

AssetMenu(fileName = "h 2r”, menuName =

speakerName =
speakerSprite =

isInDialogue = A

GetSpeakerName()

return speakerMame;

ite GetSpeakerSprite()

~n speakerSprite;

GetIsInDialogue()

rn isInDialogue;

SetIsInbDialogue(walue)

isInDialogue = walue;

Figure 38 — Speaker.cs

Next up is the DialogueLine.cs, this script is used to contain a single dialogue line, containing
the speaker’s information and their line. This DialogueLine class is Serializable, that means its
fields are going to be on the inspector and it is used on the next script Dialogue.cs.

Page 40

UnityEngine;

ARPG.QuestDialogue

system.s

er speaker;

dialegueline;

Figure 39 — DialogueL.ine.cs

Dialogue.cs is a scriptable object and it is used to create dialogues with multiple dialogue lines.
Unityengine;
ARPG.QuestDialogue

enu(fileName = "

ne[] GetDialogueLine()

return alllLines;

GetLineByIndex(index)

return allLimes[index];

GetLength()

return allLimes.Length - 1;

Quest GetQuest()

return quest;

GetaivesQuest()

return givesQuest;

SetcivesQuest(value)

givesQuest = value;

Figure 40 — Dialogue.cs

Page 41

uUnityEngine
unityEngine.ur;

tem. Collections;
TMPrO;

ARPG.QuestDialogue

I speakerNameUI, dialogueUI, navButtonText;
speakersprit

{instance

instance
animator
instance.Di

givenDialogue, peaker)

5

instance.np

Figure 41 — DialogueManager.cs part 1

givenDialogue)

instance. EnableBox
il -animator

instance.dialoguelI. text
instance.navButtonText. t

dl in instance.currentDialogue.GetDialoguelin:

(!dl.speaker.GetIsInDiall

dl.speaker.SetIsInDialogu

instance. Readnext

StopDialogue()

yping
instance.StartCoroutine(instance.Closel

Figure 42 — DialogueManager.cs part 2

Page 42

ReadNext ()
(currentIndex > currentDialogue.Getlength())

ce.StartCoroutine (CL

peakerNameUT.

(typing ==)

typing = instance.StartCoroutine(TypeText(currentDialogue.GetlineByIndex(currentIndex).dialogueline));

speakersprite.sprite = currentbialogue.6etlineByIndex(currentIndex).speaker.Getspeak

currentIndex++;
currentInde: currentDialogue.GetLength() + 1)
(instance.currentDialogue.GetGivesQuest())

ger.AddQuest(currentDialogue .GetQuest());
if (instance.npcSpeaker i

{
instance.npcspeake ()-HideCanvas();

3
3

Figure 43 — DialogueManager.cs part 3

EnableBo

IEmmerator T

dialoguelI.text =

eUI.text += text[inde:
index++;

typing

Figure 44 — DialogueManager.cs part 4

Page 43

Now moving to the quests by starting with Quest.cs, it’s a serializable class with fields that are
going to contain the information of a quest (title, description, experience reward, if its
completed and the quest goal).

ARPG.QuestDialogue

lalizable]

Quest

title = 3
description = F
experienceReward = @;
Completed =
questGoal;

Figure 45 — Quest.cs

QuestGoal.cs is a serializable script that is used to set whether the quest is about killing enemies
or collecting items and checking the progress.

ARPG.AT;
ARPG.Resources.Items;
UnityEngine;

ARPG.QuestDialogue

ype questType;

nemy enemyType;
item;
requiredAmount ;
currentAmount;

Is@oalReached()

return (currentAmount >= requiredAmount);

EnemyKilled(c ject killedEnemy)

{

QuestEnemy killedEnemyType = killedEnemy.GetComponent<E 1ler>().GetEnemyType();
if (questType == Ques Kill && enemyType == killedEnemyType
{

currentAmount++;

1
I

ItemGathered(Item pickedItem)

if (questType == QuestType.Gather && item == pickedItem)
{
currentAmounti+;

1
¥

————[————————1

el

Figure 46— QuestGoal.cs

Page 44

QuestType.cs is an enum used to set the quest type in QuestGoal.cs.

ARPG.QuestDialogue

QuestType

Kill,
Gather

Figure 47 — QuestType.cs

QuestEnemy.cs is an enum used on QuestType.cs to set what enemies need to be killed for a
quest.

QuestEnemy

None ,

MainQuest@,
MainQuestl,
MainQuest2,

MainQuest3,
SideQuestl,
5ideQuest2,
SideQuest3

Figure 48 — QuestEnemy.cs

NPCQuestGiver.cs is added to the NPCs and is used so the player can identify if an NPC gives
quest or not, that means if an NPC gives quest (We are going to see how an NPC gives quest
on chapter ...) there is going to be an exclamation mark image above it, else there is not.

Page 45

ARPG.AT;
UnityEngine.UT;

ARPG.QuestDialogue

npc;
e dialogue;
canvas;
image;
show;

GetComponent<D
.

(npc.GetDialogue()
logue = npc.GetDialogue();
GetComponentInChildren<C

enabled = 2
image = canvas.GetComponentInChildre

(npc.GetDialogue() != &% dialogue.GetGivesQuest())

HideCanva:

Figure 49 — NPCQuestGiver.cs part 1

how)

image.transform.rotation = main.transform.rotation;

HideCanvas()

image.enabled =

canvas.enabled =

ShowCanvas ()

canvas.enabled =
image.enabled =
show = 2

Figure 50 — NPCQuestGiver.cs part 2

Page 46

QuestManager.cs is used to display the quests and their descriptions and show if they are
completed. Also, for performance reasons all the GameObjects of the enemies are disabled, but
when acquiring a quest then that quest’s enemies are being enabled.

ARPG.Control;
System.Collections;
System.Collections.Generic;
TMPTrO;

UnityEngine;
UnityEngine.UI;

ARPG.QuestDialogue

t QuestManagerBoxPanel;
t guestListContainer;

ProUGUL questTitleUI, questDescriptionUI, questRewardUI;

mainQuests;

troller player;

instance;

completion =

Figure 51 — QuestManager.cs part 1

Page 47

H
.questTitleUI.text = "";
-ques

e()
ObjectWithTag() -GetComponent<

roy (gameObject);

rtDialogue(instance.prologue);

!player.OnInventory())
Panel.activeSelf)

Panel.SetActive(
IEnabled =

instance.UpdateCompletedQuests();
ManagerBoxPanel.SetActiv
IEnabled = F

Figure 52 — QuestManager.cs part 2

Page 48

in questsList)

.isCompleted = 8
-questGoal. currentAmount

AddQuest(t givenQuest)

in instance.questsList)

instantiated.transform.GetChild(@).GetComponent:
instance.questButton.Add(instantiated.GetComponents
index = instance.questButton.Count - 1;

instance.questButton[index].onClick.AddL ShowQuestInfo(in

r item in instance.questEnemiesConnectorlList)

ShowQuestInfo(index)

e.questTitleUI.text = i ce. sList[index].title;

-questDescriptionUI.t instance.questsList[index].description;

-questRewardUI. tex " + instance.questsL

Figure 53 — QuestManager.cs part 3

[index].experienceReward.ToString() +

1. identity);

Page 49

colors = questButton[index].colors;
colors.normalColor
questButton[index].c
H
index++;

CheckCompletion()

instance.completion) urn;
(i =@; i ¢ instance.mainQuests.Length; it++)

if (l!instance.mainQuests[i].GetQuest().isCompleted) return;
}
StartCoroutine(StartEpilogueDelayed

yield return
instance.completion F
.StartDialogue(instance.epilogue);

GetIsQuestBoxOpened()

return isUIEnabled;

questDialogue;
t enemiesParentGameObject;

Figure 55 — QuestManager.cs part 5

Page 50

5.5 Player

5.5.1 Overview

The player control consists of 3 scripts, PlayerController.cs, PlayerMovement.cs and
PlayerCombat.cs. These 3 scripts are responsible for everything the player does, i.e.
movement, combat, having the inventory opened, being on pause menu, dialogues, just about
everything. PlayerController.cs and PlayerMovement.cs also inherit from lAction and use
ActionScheduler.cs, which I'll go over at the end.

5.5.2 Code

Starting with PlayerController.cs. This is the most important script, because it checks
if the player is in the menu, in dialogue, in the inventory, or checking the quests or rolling, and
finally if in combat. It is important to check the above states because the player's behavior will
be adjusted based on this state.

UnityEngine;
ARPG.Movement;
ARPG.Core;

ARPG.

ARPG. 0
ARPG.QuestDialogue;
ARPG.Other;
ARPG.Combat;
ARPG.AI;

ARPG.Control

t playerMovement;
playerCombat;
r inventory;

health =

mover = GetComponent<Mov
playerMovement = GetComponen
playerCombat = GetComponent<Pla
inventory = GetComponent
animator = GetComponent<
speaker.5etIsInDialogue(

Figure 56 — PlayerController.cs part 1

Page 51

if (health.TsDead())

f (InDialogue()) return;
(OnInventory())

f (IsRolling()) r
f (IsInCombat()) return;

IsInCombat()

if (playerCombat.GetIsAttac
r

L
playerMovement . setSuspend(
return H

3

playerMovement. setSuspend

onMenu()

if (escapeMenu. apeMenuPanel.activeSelf)
{
playerCombat.setSuspend();
playerMovement . setSuspend(
return B
}
playerMovement . setSuspend(
playerCombat . setSuspend(

InDialogue()
if (speaker.GetIsInDialogue())
{
playerCombat. setSuspend(
playerMovement.setSuspend(

return

playerMovement. setSuspend(
playerComb. tSuspend(

Hit hit;
hasHit = 3 .Raycast(GetMouseRay(),

npc = hit.transform.GetComponen
npc !=)

t.GetMouseButtonDown
stance(transform.p npc.transform.position)

npc.wantsToTalk =

Figure 58 — PlayerController.cs part 3

Page 52

OnInvento

if (inventory.GetIsInventoryOpened() &% !gm.GetIsQuestB
{
playerCombat . setSuspend(hE
playerMovement. setSuspend(
GetComponent< >().CancelCurrentAction();
return 2
1
playerCombat . setSuspend(
playerMovement. setSuspend(

returr 5

if (gm.GetIsQuestBoxOpened() &% !inventory.GetIsInventoryOpened())
r

1
playerCombat. setSuspend(
playerMovement. setSuspend(
GetComponent h .CancelCurrentAction();
return H
3
playerCombat. setSuspend(
playerMovement. setSuspend(

return 5

Figure 59 — PlayerController.cs part 4

Page 53

IsRolling()

if (playerMovement.GetIsCurrentlyRolling())
1
playerCombat. setSuspend('H
health.AddDamageImmunity();
return 2
b
playerCombat.setSuspend(

return ;

health.RemoveDammageImmunity () ;

GetMouseRay()

"a.main.5creenPointToRay(Input.mousePosition);

killedEnemy)
t quest in gm.GetQuestsList())
isCompleted)

quest.questGoal. EnemyKilled(killedEnem
if (guest.questGoal.IsGoalReached())
{
g.Log("
GetComponent
quest.isCompleted =
gm.CheckCompletion();

) -GainExperience(quest.experienceReward);

»

Figure 60 — PlayerController.cs part 5

Page 54

DoGatherItemQuestCheck(Item pickedItem)
t quest in gm.GetQuestsList())

if (!quest.isCompleted)

1
quest.questGoal . TtemGathered (pickedItem);
if (quest.questGoal.IsGoalReached())

) .GainExperience(gquest.experienceReward);

gm.CheckCompletion();

GetSpeaker()

Figure 61 — PlayerController.cs part 6

Thanks to PlayerCombat.cs, player is able to perform attacks, equip weapon and alert NPCs when

fighting enemies.

Page 55

ARPG
ARPG

ARPG.

ARPG

ARPG.

Unit
Unit

He

ALz

.Core;

ources;
-Resources.Items;
ats;

yEngine;

yEngine. ATI;

ARPG.Combat

defaultieapon =

ce combatAudioSource;
wingClip;

0 airSwingClip;
punchClip;
arrowReleaseClip;

ip arrowHitClip;
isAttacking;
animator;
alth health;

timeSincelastAttack;
onltem currentWeapon =

suspend;

it raycastHit;

isattacking =
animator = G

timeSincelLastAttack
suspend = 2
if (currentWeapon ==

I
L

Equipkeapon(defaultkWeapon);

Figure 62 — PlayerCombat.cs part 1

Page 56

if (health.IsDead()) return;
if (!suspend)
i

if (Input.GetMouseButtonDown(@) &% timeSincelastAttack > timeBetweenAttacks)
1

ha s.Raycast(Camera.main.ScreenPointToRay(Input.mousePosition),
DialogueNPC npc = raycastHit.transform.GetComponent<DialogueNPC>();
if (npc ==) TriggerAttack();
¥
if (timeSincelastAttack > timeBetweenAttacks)
isAttacking =

¥

timeSincelastAttack += Time.deltaTime;

EquipWeapon(WeaponItem weaponItem)
currenthleapon = weaponItem;

Animator animator = GetComponent<Animator>();
weaponItem. Spawn(rightHandTransform, leftHandTransform, animator);

Figure 63 — PlayerCombat.cs part 2

TriggerAttack()
GetComponent<ActionScheduler>().StartAction(H
timeSincelastAttack = 8;
isAttacking = h
if (currentWeapon.HasProjectile())

i

transform. LookAt(raycastHit.point);

transform.LookAt(raycastHit.point);
animator.ResetTrigger(" stopA
animator.SetTrigger(“attack™);

GetComponent<NavMeshAgent>().speed = &f;

»

Cancel()

GetComponent<Animator:().ResetTrigger("attack™);
GetComponent<Animator>().SetTrigger("stopAttack™);

GetIsAttacking()

return isAttacking;

tem GetCurrentWeapon()

return currentWeapon;

Figure 64 — PlayerCombat.cs part 3

raycastHit);

Hit()

hit = 3
baseDamage = GetComponent () .GetStat(Stat.Damage) ;

damage = baseDamage +
(baseDamage * currentWeapon.GetWeaponExtraPercentageDamage()) + currentheapon.GetDamage();

temp = rightHandTransform;
F (!currentWeapon.GetIsRightHanded())

temp = leftHandTransform;

f (currentkeapon.HasProjectile

currentWeapon. LaunchProjectile(rightHandTransform, leftHandTransform, gameObject, damage, raycastHit);

rightHandTransform.localRotation,
ayer")};

puhchtlip;

temp = temp.Find("Wez) .transform;
hitColliders OverlapBox(temp.position +
\ 5f, @.5f),

1)
combatAudicSource.clip = swingClip;

Figure 65 — PlayerCombat.cs part 4

Page 58

hitCollider in hitColliders)

if (hitCollider.gameObject.tag != "P

1
Health enemyHealth = hitCollider.GetComponent<He
if (enemyHealth.IsDead()) continue;
enemyHealth.TakeDamage (gameObject, damage);
AlertClosestNPC();

if (hit currentkWeapon.name != "Unarmed”)
I

combatAudioSource.clip = swingClip;

lse if (!hit && currentWeapon.name != "U

combatAudioSource.clip = airSwingClip;

combatAudioSource.volume =
combatAudioSource.pitch = R
combatAudioSource.Play();

Hit();

combatAudioSource.clip = arrowReleaseClip
combatAudioSource.volume tandom .
combatAudioSource.pitch
combatAudioSource.Play();

setSuspend(value)

value;

Figure 66 — PlayerCombat.cs part 5

Page 59

m GetDefaultWeapon()

return defaultWeapon;

AlertClosestNPC()

verlapSphere(transform.position, 1@f, Laye
ollider in hitColliders)

if (hitCollider.gameObject.tag == "NPC" && hitCollider.GetComponent<Health>().IsDead() ==

if (hitCollider.gameObject.GetComponent<N r>())

I

L
hitCollider.gameObject.GetComponent< roller>().TriggerNPCsAlert();
return;

}

if (hitCollider.gameObject.GetComponent<koodcutter troller>())

I

1
hitCollider.gameObject.GetComponent<hoodcutter troller>().TriggerNPCsAlert();

return;
f (hitCollider.gameObject.GetComponent<FarmerControllers())

hitCollider.gameObject.GetComponent<FarmerController>().TriggerNPCsAlert();

return;

ﬁ
|
l

Figure 67 — PlayerCombat.cs part 6

PlayerMovement.cs is the player's movement script, which allows the player to perform fluid
movement. For example, when the player presses the "W" key, it starts moving at a speed of 0
and then gradually increases the speed to make the movement look more fluid. It also inherits
from the IAction interface, which I will go through after PlayerMovement.cs.

Page 60

ARPG.Core;
ARPG.Resources;
UnityEngine;
UnityEngine.AI;

ARPG.Movement

IAction

runSpeed = &6f;

walkSpeed = 2f;

turnSmoothTime = @.2
timeBetweenRolls = 2f
playerfudioSource;
ip rollcClip;

t navMeshAgent;
animator;
turnSmoothVelocity;
rm cameraTransform;
n health;
timeSincelastRoll;
isCurrentlyRolling;
suspend;

Cancel()

navMeshAgent.isStopped =

navMeshAgen

animator tComponen
cameraTransform

health = GetComponent
timeSincelastRoll = Mathf.Infinity;
isCurrentlyRolling = 5

suspend = 3

Figure 68 — PlayerMovement.cs part 1

Page 61

if (health.IsDead()) return;
if (!suspend)

3

horizontal = Input.GetAxisRaw(
vertical = Input.GetAxisRaw(Ver

Vector3 direction = vector3(horizontal, @f, vertical).normalized;
if (Input.GetKey(KeyCode.Space) &% timeSincelLastRoll > timeBetweenRolls)

Roll();
H

if (direction.magnitude »= @.1f && !isCurrentlyRolling)

Movement(direction);
H
if (direction.magnitude < @.1f &% !isCurrentlyRolling)

{

navMeshAgent.speed = navMeshAgent.speed = Mathf.Clamp(navMeshAgent.speed - walkSpeed * Time.deltaTime * 4f, ef, runSpeed);

navMeshAgent.isStopped = B
targetAngle = Mathf.Atan2(direction.x, direction.z) * Mathf.Rad2Deg + cameraTransform.eulerAngles.y;
Vector3 moveDir = Quaternion.Euler(@f, targetAngle, @f) * Vector3.forward;
navMeshAgent.destination = transform.position + (transform.forward * 1f) + moveDir.normalized * navMeshAgent.speed * Time.deltaTime;

H

UpdateAnimator();
timeSincelastRoll += Time.deltaTime;

Figure 69 — PlayerMovement.cs part 2

Movement(Vector3 direction)

GetComponent<Actionsc ler»().StartAction();

targetAngle = Mathf.Atan2(direction.x, direction.z) * Mathf.Rad2Deg + cameraTransform.eulerAngles.y;
angle = Mathf.SmoothDampAngle(transform.eulerAngles.y, targetdngle, turnSmoothVelocity, turnSmoothTime);

transform.rotation = Quaternion.Euler(@f, angle, 8f);

Vec

r3 moveDir = Quaternion.Euler(@f, targetAngle, 8f) * Vector3.forward;

navMeshAgent.destination = transform.position + (transform.forward * 1f) + moveDir.normalized * navMeshAgent.speed * Time.deltaTime;

navMeshAgent.destination = transform.position + (transform.forward * 1f) + moveDir.normalized * navMeshAgent.speed * Time.deltaTime;

if (Input.GetKey(KeyCode.LeftShift))

{

H

navMeshAgent.speed = Mathf.Clamp{navMeshAgent.speed + runSpeed * Time.deltaTime, walkSpeed, runSpeed);

if (navMeshAgent.speed > walkSpeed)

i
navMeshAgent.speed = Mathf.Clamp(navMeshAgent.speed - walkSpeed * Time.deltaTime * 2f, walkSpeed, runSpeed);
return;

¥

navMeshAgent.speed = walkSpeed;

navMeshigent . isStopped

Rol1()

GetComponent<Action ler»().CancelCurrentAction();
isCurrentlyRolling = F
timeSincelastRoll = 8;

animator.ResetTrigger("stopRoll™);
animator.SetTrigger("roll");

playerAudioSource.clip = rollClip;
playerAudioSource.volume = Random.Range(®.81f, 8.1f);
playerAudioSource.pitch = 1.Range(@.6F, B8.7f);
playerdudioSource.Play();

navMeshAgent.destination = transform.position + (transform.forward * 8);
navMeshAgent.speed = runSpeed * 2f;
navMeshAgent.isStopped = F

Figure 70 — PlayerMovement.cs part 3

IsMoving()

-3 localVelo transform. InverseTransformDirection{navMeshAgent.velocity);
urn localVeloc 23

UpdateAnimator()

ity = transform.InverseTransformDirection({navMeshAgent.velocity);

speed = loc
animator.5etFloat("fo , speed);

isCurrentlyRolling = A
navMeshAgent.speed = (walkSpeed + runSpeed) / 2f;

GetIsCurrentlyRolling()

return isCurrentlyRolling;

GetTimeBetweenRolls()

return timeBetweenRolls;

GetTimeSincelastRoll()

return timeSincelastRoll;

setSuspend(value)

suspend = value;

Figure 71 — PlayerMovement.cs part 4

Now let us move on to IAction and the ActionScheduler. IAction.cs is an interface that contains
the Cancel() function. ActionScheduler.cs is used every time the player or an enemy NPC
leaves, for example walking, they are on a walk action, if they start attacking they are on combat
action and before switching, the Cancel() function is called.

ARPG.Core

IAction

Figure 72 — lAction.cs

Page 63

UnityEngine;

ARPG.Core

IAction curremtAction;

StartAction{IAction action)

if (currentAction == action) return;
if (currentAction !=)

currentAction.Cancel();

currentAction = action;

CancelCurrentAction()

StartAction(s

Figure 73 — ActionScheduler.cs

5.6 Stats & Health

5.6.1 Overview

Stats are vital for the game because they provide the sense of progress. To improve the
stats, player has to either slay enemies or complete quests in order to level up. There are 4 kinds

of stats:

Health, which is the amount of health points.

Experience Reward, which is the amount of experience rewarded after dying.
Experience to level up, which is the amount of experience needed to level up.
Damage, which is the amount of damage inflicted on health points.

In reality the actual stats are health and damage because the other two do not directly affect the
feeling of progress.

5.6.2 Code

Starting with the Stats, they consist of 8 scripts which some of those are responsible for
Ul and others are for logic.

Basestats.cs
CharacterClass.cs
Experience.cs
ExperienceDisplay.cs
LevelDisplay.cs
Stats.cs
XPDisplay.cs

Page 64

Starting with the CharacterClass.cs, this is an enum to set the classes of the player, NPCs and
enemies (there is not a class for the guards because guards and share the same class with some
enemies, that class is called ExiledKnight).

ARPG.5tats

CharacterClass

ogue,
ExiledKnight,
Raider,

Mage,

¥

Figure 74 — CharacterClass.cs

Next is the Stat.cs which was explained earlier, it is an enum to set the stats.

ARPG.5tats

Health,

ExperienceReward,
ExperienceTolevellp,
Damage

Figure 75 — Stat.cs

Now moving to the Progression.cs which is really important. This is a scriptable object used
to set the values of a class for a number of levels. For instance, Figure 76 shows the progression
scriptable object of the Player class, also we can see that player’s progression uses 3 stats,

Health, Experience To Level Up and Damage. And all of those 3 stats are having values till the
level 10.

Page 65

Element 0

Edit th

Element 0

Edit th
Health

Element 1

Edit the selected Stat

Figure 76 — Progression of the Player

Page 66

10Ns . benerics
UnityEngine;

ARPG.5tats

nu{ fileName P - ", order = @})]

)]
ClassToEdit;

at[] stats;

Stat StatToEdit;

[] levels;

Figure 77 — Progression.cs part 1

Page 67

characterClass,

BuildLookup();

[1 lewels = loockupTable[characterClass][stat];

if(levels.Length < 1
{
return @;
1
¥

return levels[level - 1];

GetLevels(Stat stat,CharacterClass characterClass)

BuildLookup();

[1 lewels = lockupTable[ch:
return levels.Length;

BuildLookup()
if (lookupTable !=) return;

lookupTable = [1>»0);

in characterClasses)

= progressionStat.levels;

ClassToEdit] = statLookupTable;

Figure 78 — Progression.cs part 2

Now moving to Experience.cs, this is a script used to store the experience points and contains
a delegate that calls another function whenever player gains experience points.

System;
UnityEngine;

PG

experiencePoints = 8;

ExperienceGained;

GetExperience()

urn experiencePoints;

Figure 79 — Experience.cs

Page 68

The last of the logic scripts is BaseStats.cs, this script is responsible for updating the level,
leveling up, getting a stat’s level and for calculating the level.

System;
UnityEngine;

ARPG.5tats

startinglevel = 1;
= characterClass;
progression = 2
t levelUpParticleEffect =

currentlevel =
i xperience;

n onLevellp;

experience
if (experience

experience.onExperienceGained += Updatelevel;

Q

currentlevel = Calculatele

currentlevel = newle
if(levelUpParticleEf

LevelUpEffect();

i

¥
onLevelUp();

LevelUpEffect(}

Instantiate(levelUpParticleEffect, transform);

urn progression.GetStat(s

GetLevel()

if{currentlevel < 1)
{
currentlevel = Calculatelevel();

eturn currentlevel;

Figure 81 — BaseStats.cs part 2

Page 69

Calculatelevel()

xpTolLevellp = progr n.Get5tat(5tat.ExperienceTolevellp, characterClass, lewvel);
if(xpTolLevelUp > currentXP)
{
return level;

}
i
¥
return maxLevel + 1;

Figure 82 — BaseStats.cs part 3

And before moving to the Health script, there are 3 scripts that update values for the Ul as
stated earlier, those scripts are ExperienceDisplay.cs, LevelDisplay.cs and XPDisplay.cs.

e ExperienceDisplay.cs is used to display the experience on screen using a
slider.

e LevelDisplay.cs is used to display the level as text.

e XPDisplay.cs is used to display the experience as text.

experience - GetComponen
baseStats = ¢ i i) .GetComponent:
slider = GetCompo

slider.minVa

er.maxValue = baseStats.GetStat(5tat.ExperienceTolevellp);
slider.value = experience.GetExperience();

updateMinValue()

slider.minValue = baseStats.GetStat(Stat.ExperienceTolevellp, baseStats.Getlewvel() - 1);

Figure 83 — ExperienceDisplay.cs

Page 70

TMPro;
UnityEngine;

ARPG.5tats

baseStats;
II lewvelValue;

baseStats = eObject.FindWithTag(") .GetComponent<E
levelValue = GetComponent<Text

0

levelValue.SetText("{08:0}", baseStats.GetlLevel());

Figure 84 — LevelDisplay.cs

TMPro;
UnityEngine;

experience .Fi i ' g) . GetComponen
baseStats i a\ .GetComponent
¥pValue =

wpValue.SetText(experience.GetExperience()};

Figure 85 — XPDisplay.cs

Moving to the Health.cs, this script is responsible of storing the health points. Also, it contains
a few functions that apply damage, display the damage that was dealt, add or remove damage
immunity (used when player is rolling), healing and regenerating health upon leveling up.

Page 71

UnityEngine;
ARPG.Stats;
ARPG. 3
ARPG.Control;

ARPG. Resources

afterDeathDest
damagePopup =
healthAudioSourc
hurtClip;

izDead = 3
isImmuneToDamage =

healthPoints 0 () .GetStat(
GetComponent<) .onLevelUp += Regen

{
.clip = hurtClip;
-volu
.pitch = R
-Play()

healthPoints = .Max(healthPoints - damage
if (damagePopup)

DamagePopupInstantiation(dam

(healthPoints

-DoKil1QuestChecks (gameObject) ;

item != } GetComponent ().Drop();

¥
if({destroyAfterDeath)Destroy(gameObject, afterDeathDestroyTime);

Heal(value)
xHealthPoints())

GetMaxHealthPoints

-_healthPoints + value;

Figure 87 — Health.cs part 2

Page 72

AddDamage Immunity ()

isImmuneToDamage =

RemoveDammageImmunity ()

isImmuneToDamage =

DamagePopupInstantiation(damag

instance = Instantiate(damagePopup, transform.position, transform);

Di
if (isDead)
isDead =

GetComponent:
GetComponent:

() .GetStat(Stat.ExperienceReward));

RegenerateHealth()

healthPoints

return

GetComponent

GetHealthPoints()

return healthPoints;

GetIsImmuneToDamage()

return

Figure 89 — Health.cs part 4

Page 73

5.7 Al
5.7.1 State Machine
5.7.1.1 Overview

As mentioned in an earlier section, the behavior of Al is controlled by a finite state
machine implemented with state design pattern. The State Design Pattern is one of twenty-
three design patterns documented by the gang of Four four that describe how to solve recurring
design problems. These problems cover the design of flexible and reusable object-oriented
software, such as objects that can be easily implemented, modified, tested, and reused.

The state pattern is set to solve two main problems:

e An object should change its behavior when its internal state changes.
e A state-specific behavior should be defined independently. That is, adding new states
would not affect the behavior of existing states.

Implementing state-specific behavior directly in a class is inflexible because it locks the class
into a specific behavior and makes it impossible to later add a new state or change the behavior
of an existing state independently of the class. For this, the pattern describes two solutions:

e Define separate objects that encapsulate state-specific behavior for each state. That is,
define an interface for performing state-specific behavior, and define classes that
implement the interface for each state.

e A class delegates state-specific behavior to its current state object instead of
implementing state-specific behavior directly.

Now moving on “how it works?”, there are StateMachine.cs, IState, State scripts and controller
scripts.

e StateMachine.cs is the logic of the state pattern.
e IState is an interface that’s inherited by the States scripts.
e |State has 3 methods:
e OnEnter, called once when entered the state.
e Tick, like Update called every frame.
e OnExit, called once when exiting the state.
e State scripts are inheriting from IState only and not from MonoBehavior.
e Controller scripts have the transitions between the states of the state scripts.

And now an example:

Page 74

Figure 90 — Example states and transitions

Suppose the current state is the Sit state, then the Tick method is called every frame, but if the
conditions for the transition from the state Sit to the state Eat are met, then before the current
state is changed, the OnExit method of the state Sit is called, then the current state is changed
to the state Eat and its OnEnter method is called once, and Tick is called every second.

5.7.1.2 Code

There are 2 scripts I'll go through, StateMachine.cs, which is the logic of the state
pattern, and IState, which is an interface. StateMachine.cs is responsible for the functionality
of the state pattern. It contains a class called Transition, which has 2 fields:

e Funch<bool> Condition, which is the condition that needs to be satisfied to move to
the state.
e |State To, which is the state that the transition points to.

The next up, are StateMachine Class’s fields:

e |IState currentState, is used to define the current state.

e Dictionary<Type, List<Transition>> _transitions, is used to store all the transitions
between the states.

e List<Transition> _currentTransitions, is a list of transitions used to store the possible
transitions of a state.

e List<Transition> _anyTransitions, is a list of transitions used to store the transitions
from all states in a specific state.

e List<Transition> EmptyTransitions, is an empty list of transitions.

Moving to the methods:

e GetTransition, returns a transition that it’s condition returns true, starting by the
_anytransitions and then the _currentTransitions and if no condition returns true then
the function returns null.

e SetState, sets _currentState to the given state and calls the OnExit method of the
previous state if there was a previous a state and then calls the OnEnter method of the
new state.

e Tick, tries to get a transition and if it does then sets state to that transition’s state and
calls itself again.

e AddTransition, adds a transition from a state to another state with the given condition.

e AddAnyTransition, adds transitions from all states to a specific state with the given
condition.

Page 75

ions.Generic;

ARPG.AI

Istate _currentState;

> _currentTransitions =
> _anyTransitions =

EmptyTransitions

_currentState?. Tick(};

_currentState

_transitions.TryGetValue(_currentState.GetType(), _currentTransition:
if (_currentTransitions ==)
_currentTransitions = EmptyTransitions;

_currentState.OnEnter();

Figure 91 — StateMachine.cs part 1

Page 76

AddTransition(IStat

f (_transitiocas.TryGetValue{from.GetType(),

urrentTransitions)
)

Figure 92 — StateMachine.cs part 2

As was stated in this chapter, IState is an interface containing 3 methods.

ARPG.AI

Figure 93 — IState.cs

Page 77

5.7.2 Enemy Al Controller & States
5.7.2.1 Overview

Enemies are controlled by a controller that contains the transitions between the states
that define the behavior. Specific those scripts are:

e EnemyAlController.cs

e State scripts:
e EnemyAttackNPC.cs, defines the Attack NPC State.
e EnemyAttackGuard.cs, defines the Attack Guard State.
e EnemyAttackPlayer.cs, defines the Attack Player State.
e EnemySuspicion.cs, defines the Suspicion State.
e EnemyGuarding.cs, defines the Guarding State.

Looking back at Figure 12 — Enemy’s finite state machine — EnemyAlController.cs

Enemy’s behavior is based on Figure 12 and in chapter 4.4.4 that behavior was analyzed and
explained.

5.7.2.2 Code

Let us start with the enemy controller. This script contains some useful methods and is
responsible for setting up the transitions and logic between states. Also, Figure 95 shows the
Awake method, where some variables are initialized, but most importantly, the transitions are
set up exactly as in Figure 12. Figure 96 shows the logic of all the transitions shown in Figure
95, and Figure 97 shows the Update where it makes sure to Tick as long as the enemy is alive.
The remaining methods are useful for the logic of the transitions and the states.

Page 78

UnityEngine;
UnityEngine.AT;
System;
ARPG.Resources;
ARPG.Control;
ARPG. Combat;

ARPG.ATL

chaseDistance
alertDistance

patrolspeedFraction

guardPosition;
schine stateMachine;
health;

t closestNPC {

t closestGuard { P
timeSincelastSawTarget {
timeSinceArrivedAtbaypoint {
ject player {
gotAlerted {

gotHit

. Infinity;
timeSin _Hrrluedntwawpu Infinity;
player FlndwlthTag()
guardPosition = transform. pDhltlon,
health = G
gotAlerted

fighter = GetComponent<Fight
GetComponent <k

animator

stateMachine

guarding a , waypointPath, waypointDwellTime, guardPosition, timeSinceArrivedAtWaypoint);

couard, Chec
tta.kPlaﬂrr, ;pician u:p1c1nnnftﬂrPla~@r
ttackGua i i

spicion, :tta
incian, gu-
(y CheckIfCanAttackPlayer(});
'ttEuurjln t ' er, gotAlerted);
stateMachine. Swtktatcﬁ

At(IState to, IState from . » condition) stateMachine.AddTransition(to, from, conditio

Figure 95 — EnemyAlController.cs part 2

Page 79

> CheckIfCanAttackPlayer() => (

> CheckIfCanAttackGuard() => () > 5 ime = (fighter.CanA (InAttackRange(closestGuard);

attacksnP KFo ound("NPC” e InAttackRange(clo:

> CheckToAttackGuardInsteadOfNPC() => () => CheckForNPCsAround d Fighter.CanAtta

icionAfterpla > timesincelastSawTarget < suspicionTi ange(pla; otAlerted;

icionAfterGuard(i S icionTime &% !fighter.CanAttack(closestGuard);

icionAfterNPC() CheckForNPCsAround(timeSincelastSawTarget < suspicionTime ghter.CanAttack(c:

heckToAttackGuardAfterSuspicion() => () => timeSincelastSawTarget < suspicionTime &2 CheckForNP(ighter CanAtt: estGuard) & InAttackRange(closestGuard);

> CheckToAttackNPCAftersuspicion() =»> () =»> !CheckForNPCsAround("G & at ks timeSincelastSawTarget < suspicionTime &% fighter.CanAttac sesthPC) InAttackRange(closesthPC);

f (!'health.IsDead(

stateMachine.Tick();
UpdateTimers(

UpdateTimers(

InAttackRange(

istanceToPlay

return distan

Figure 97 — EnemyAlController.cs part 4

Page 80

und(npcType)

closestNPC != €sthPC. GetCompon >().IsDead() == &% InAttackRange(c esth && closestNPC.activeSelf ==]

£ (npcType == "Guard" & closestGuard != &2 closestGuard.GetComponent<He,).IsDead() = &2 InAttackRange(closestGuard) &% closestGuard.activeSelf —)

return

épn»':rel:transform.;-ositi-:wn_‘ chaseDistance
er in hitColliders)

if (hitCollider.gameObject.tag = ollider.GetComponent<Health>().IsDead() ==

{
if (npcType hi gameObject.tag = "Guard")

uard = hitCollider.gameObject;

ollider.gameObject.tag = "NPC")

.gameObject;

3
return

ne GetStateMachine()

return stateMachine;

GetPs

return patrol

return questEnemy;

GetAlertDistance()

return alertDistance;

Figure 98 — EnemyAlController.cs part 5

Now moving on to the State scripts and beginning with the EnemyAttackNPC.cs (Figure 99)
which is the AttackNPC State. In this state OnEnter and OnExit does nothing, but Tick is
making the enemy to attack the closest NPC whilst triggering the closest NPC’ alert because
of the attack.

Page 81

enemyAIController;

_enemyAIController)

enemyAlController = _enemyAIController;

PC . GetComponent<MPCALL
enemyAlController. closestNPC.GetComponent<|
if (enemyALComtroller.closestNPC.GetComponent<
.

enemyALController.clo PC.GetCompone:

3
if {enemyAIController.closestNPC.GetComponent<
-

enemyAlController.clo PC.GetComponent< ().TriggerNPCsAlert();

OnEnter() { }

onExdt() { ¥

AttackBehaviour(Ga

ntroller. timeSincelas
ntroller.GetCompon

Figure 99 — EnemyAttackNPC.cs

Next state is Attack Guard state which is the EnemyAttackGuard.cs (Figure 100). OnEnter and
OnExit methods does nothing, but Tick is triggering enemy’s attacks to the closest guard and
if any NPCs are a round are being alerted because of that fight.

Page 82

ARPG. Combat ;
UnityEngine;

ARPG.AT

d : IState

roller enemyAIlController;

ler _enemyAIController)

enemyAlController = _enemyAIComiroller;

Tick()

AttackBehaviour(enemyAIController.close:
enemyAlController.CheckForMPCsAround ("
if (enemyAIController.closestMPC !=

£
L

if (enemyAIlController.closestNPC.GetComponent<

i
enemyAlController.closestNPC.GetComponent< roller>().TriggerNPCsAlert();
return;

1

I

if (enemyAlController.closestNPC.GetComponent< roller>())

i
enemyAlController.closestNPC . GetComponent< roller>().TriggerNPCsAlert();
return;

1

g

if (enemyAIController.closestNPC.GetComponent<FarmerControllers>())

i
enemyAlController.closestNPC.GetComponent<FarmerController>() . TriggerNPCsAlert();
return;

OnEnter() { }
OnExdt() { }
AttackBehaviour(Ga ject target)

ontroller.timeSincelastSawTal £
ontroller.GetComponen -Attack(target);

Figure 100 — EnemyAttackGuard.cs

Attack Player state follows, which is the EnemyAttackPlayer.cs (Figure 101 & 102). OnEnter
resets the enemy’s alert and OnEXxit does nothing, but Tick is triggering enemy’s attacks to the
player, calls AlertEnemyNPCsAround method and checks if there are NPCs round, to be alerted
because of that fight. AlertEnemyNPCsAround method, alerts the enemies that are close to the
enemy who alerted, making them to join the fight.

Page 83

ARPG.Combat ;
ARPG.Resources;
UnityEngine

ARPG.AL

nemyAIController = _enemyAIController;

AttackBehaviour(enemyAIController.player);
kForNPCsAround(NP

if (enemyAIController.closestNPC ! enemyAIController. InAttackRange (enemyAIController. closestNPC))
r

L
.GetComponent

.GetComponents). TriggerNPCsAlert();

(enemyAlController.closes .GetComponents ()

enemyALController.closes .GetComponent: (). TriggerNPCsAlert();
return;

(enemyAIController. closestNPC.GetComponent

enemyAIController.c tNPC. GetComponents<

].
if (enemyAIlController.InAttackRange(enemyAT:
{

AlertEnemyNPCsAround() ;

retul

Figure 101 — EnemyAttackPlayer.cs part 1

OnEnter()
ntroller.
OonExdt(} {}
target)

ntroller.timeSincelastSawTarget
etComponent ().A arget);

nd()

erlapSphere(enemyAIController. transform.position,

lider in hitColliders
if (hitCollider.gameObject.tag == i ider .GetCompone

if (hitCollider.GetComponent<E

r enemy hitCollider.GetComponent<Ene
emyAIController)

enemy . GetComponent<En

Figure 102 — EnemyAttackPlayer.cs part 2

Page 84

Next state is the Suspicion state which is the EnemySuspicion.cs (Figure 103). OnEnter resets
the timer since last saw target and initializes the mover script, and OnEXxit resets the
gotHitByBow. Tick cancels the current action, and the enemy is just waiting to the point he last
saw the player.

ARPG.Core;
ARPG . Movement ;

ARPG.AI

opller enemyAIController;

ion(EnemyAlController enemyAlController)

-enemyALController = enemyAIController;

Tick()

enemyAIController.GetComponent<Actions >(}.CancelCurrentAction(};

if(!enemyAIController.gotHitByBow)
i

mover.Cancel();

1
g

OnEnter()

enemyAIController. timeSincelastSawTarg
mover = enemyALController.GetComponent

OnExdit()

enemyAIController.gotHitByBow =

Figure 103 — EnemySuspicion.cs

The last state is the Guarding state which is the EnemyGuarding.cs (Figure 104 & 105).
OnEnter and OnExit methods does nothing. Tick uses a waypoint system where enemy goes
through a few waypoints and waits sometime before starts moving (which I will go through in
the upcoming chapters) but if not, then the enemy is guarding his standing position.

Page 85

ARPG.Control;
ARPG .Movement ;
UnityEngine;

ARPG.AT

Guarding : IState
EnemyAIController enemyAIController;
tPath waypointPath;
waypointDwellTime;
Vector3 guardPosition;
currentWaypointIndex = @;

myGuarding(EnemyAIController enemyALController, Way, ath waypointPath, waypointDwellTime, Vector3 guardPosition, timeSinceArrivedAtiWaypoint)

.enemyAlController = enemyAIController;
.waypointPath = waypointPath;
.waypointDwellTime = waypointDwellTime;
.guardPosition = guardPosition;

Tick()

PatrolBehaviour();

OnEnter() {3}

OnExdit() {}

PatrolBehaviour()

Vector3 nextPosition = guardPosition;
if (waypointPath !=)
{

if (AtIWaypoint()})

{
enemyAIController. timeSinceArrivedAtilaypoint = @;
NextWaypoint();

I

nextPosition = GetCurrentWaypoint();

Figure 104 — EnemyG

if (enemyAIController.timeSinceArriveditiWaypoint > waypointDwellTime)
{

enemyALController.GetComponent<Movers({}.StartMoveAction(nextPosition, enemyAIController.GetPatrolspeedFraction(});

AtTWaypoint()

distanceToWaypoint = Vector3.Distance{enemyAIController.transform.position, GetCurrentWaypoint());
return distanceToWaypoint < 1f;

Nexthaypoint()
if (waypointPath.GetIsCyclePath() ==)

{
currentWaypointIndex = waypointPath.GetNextIndex(currentWaypointIndex);

currentWaypointIndex = waypointPath.GetNextIndexBackwards(currentiaypointIndex);

Vector3 GetCurrentWaypoint()

return waypolntPath.GetWaypoint(currentWaypointIindex);

Figure 105 — EnemyGuarding.cs part 2

5.7.3 Guard Al Controller & States
5.7.3.1 Overview

Guard controller works in a similar way like the enemy’s controller. Its controller contains
the transitions between the states that define the behavior. Specific those scripts are:

e GuardAlController.cs
e State scripts:
e GuardAttackEnemy.cs, defines the Attack Enemy State.
e GuardGuarding.cs, defines the Guard State.
e GuardSuspicion.cs, defines the Suspicion State.
e GuardTalk.cs, defines the Talk State.

Looking back at Figure 13 — Guard’s finite state machine — GuardAlController.cs

Guard’s behavior is based on Figure 13 and in chapter 4.4.5 that behavior was analyzed and
explained. Its important to note that in GuardAlController.cs the class inherits from the
DialogueNPC to be able to have a dialogue, which will be analyzed on the next section.

5.7.3.2 Code

The guard controller script contains some useful methods and is responsible for setting
up the transitions and logic between states. Starting in Figure 107, the variables are initialised
and the transitions are set up. If the guard has a dialogue, the talk state and transitions are also
added. Figures 108 and 109 contain functions used in the logic of the transitions and in the
guard's states.

Page 87

UnityEngine;
UnityEngine.AT;
System;
ARPG.Resources;
ARPG.Control;
ARPG bat

ARPG.AT

alertDistance
chaseDistance
suspicionTime
waypointPatl
ointDwellTime

3
3

patrolspeedFraction

player
stEnemy {

LastSawTarget {

Infinity
") .GetComponent<P1

GetComponent<F
gent = GetComponent<K
animator = Ge i
tateMachine

» waypointPath, waypointDwellTime, guardPosi timeSinceArrivedAtilay

if (GetSpeaker()

{

At(guarding, talk, () istance(player. transform. position, transform.position)

At(talk, guarding, ()

At(talk, attackEnem

> condition) =»
> timeSi CanAttack(closestEnemy) && InAttackRange(
LastSawTarget

timeSincelastSawTarget <

imeSincelastSawTarget >= suspicionTime;

Figure 107 — GuardAlController.cs part 2

Page 88

if (!health.IsDead())}
{

stateMachine.Tick();
UpdateTimers();

UpdateTimers()

celastSawTarget += Time.deltaTime;
efArriveditiaypoint += Time.deltaTime;

GetPatrolspeedFraction()

return patrolspeedFraction;

GetAlertDistance()

return alertDistance;

Figure 108 — GuardAlController.cs part 3

InAttackRange(Object target)

distanceToPlayer or3.Distance(target.transform.position, transform.

return distanceToPlayer < chaseDistance;

emy . GetComponent< >().IsDead() ==

lider[]
hitCollide
foreach (

if (hitCollider.gameObject.tag ==
{

1lider.gameObject;

return

Figure 109 — GuardAlController.cs part 4

Page 89

Moving to the guard’s states and starting from the GuardAttack.cs script, in Tick method, guard
is attacking the enemy and alerting the closest NPC. OnEnter method is alerting the closest
NPC around and if the previous state was the Talk state, then the dialogue stops. OnExit method
does nothing.

: IState

oller guardController;

er guardController)

.guardController = guardController;

Tick()

if (guardController.closestEnemy.GetComponent<h 1 §))]

'S

L guardController.closestEnemy . GetComponent<NPCA 1 .TriggerNPCsAlert();

b

1F (guardController.closestEnemy . GetComponent <k on 10}

s

) guardController. <t Enemy . GetComponent<hl ontroller>().TriggerNPCsAlert();

&

3
if (guardController.closestEnemy.GetComponent<F
{
L

guardController.closestEnemy . GetComponent<F r »() . TriggerNPCsAlert();

L1
I

AttackBehaviour(guardController.closestEnemy);

OnEnter()
if (guardController.GetSpeaker() != &% puardController.GetSpeaker().GetIsInDialogue())

topDialogue();

OnExdtf) { 3

Figure 110 — GuardAttackEnemy.cs part 1

Page 90

OverlapSphere(guardController.transform.position, guardComtroller.G ertDistance(),

ider hitCollider in hitColliders)

if (hitCollider.gameObject.tag == " hitCollider.GetComponent<

1
hitCollider.gameObject
NPC . GetComponent<|

). TriggerNPCsAlert();

N

(). TriggerNPCsAlert();

0]

().TriggerNPCsAlert();

Figure 111 — GuardAttackEnemy.cs part 2

Next is the guarding state in GuardGuarding.cs script, OnEnter and OnExit methods does
nothing, Tick is repeating the patrol behavior where if the guard has a waypoint path, then is
guarding that path, else guards it’s standing position.

r guardController, waypointPath, yintDwellTime, \

.guardController = guardController;
.waypointPath

pointDwellTime
.puardPosition = g

PatrolBehaviour();

OnEnter() { }

onExdt() { }

Figure 112 — GuardGuarding.cs part 1

Page 91

PatrolBehaviour()

3 nextPosition = guardPosition;

if (waypointPath !'=
r

L
if (AtIWaypoint())
.I-
guardController.timeSinceArrivedAtWaypoint = @;
MextWaypoint();

1
E)

nextPosition = GetCurrentWaypoint

1
J

if{guardController.timeSinceArrivedAtiaypoint > waypointDwellTime)
r

L

guardController.GetComponent >(}.5tartMoveAction{nextPosition, puardController.GetPatrolspeedFraction());

AtTIWaypoint()

distanceTokaypoint Distance(guardController.transform.position, GetCurrentWaypoin
return distanceTolWaypoint <

if (waypointPath.GetIsCyclePath())
r

currentWaypointIndex = waypointPath.GetNextIndex(currenthaypoi

currentWaypointIndex = waypointPath.GetNextIndexBackwards(currentWaypointIndex);

3 GetCurrentWaypoint()

return waypointPath.GetWaypoint(currentWaypointInde

Figure 113 — GuardGuarding.cs part 2

Guard’s Suspicion state in GuardSuspicion.cs is simple as OnExit method does nothing,
OnEnter resets the timer since last saw a target, resets the target, and stops the navMeshAgent.
And Tick is only cancelling the guard’s action.

Page 92

r guardController;

er guardController)

.guardController = guardController;

Tick()

guardController.GetComponent<Ac scheduler>().CancelCurrentAction();

OnEnter()
guardController.timeSincelastSa

guardController.GetComponent<Fi ~»().ResetTarget();
guardController.GetComponent< .Cancel();

OnExdt() { }

Figure 114 — GuardSuspicion.cs

The last state is the talk state, in GuardTalk.cs. It’s OnEnter method is cancelling the guard’s
and players current action and makes them look at each other and starts the dialogue. OnExit
resets the wantsToTalk boolean and Tick does nothing.

ARPG.Core;
ARPG.QuestDialogue;

ARPG.AL
1ller guardController;

ller guardComtroller)

.guardController = guardController;

OnEnter()

guardController.GetComponent: du).C urrentAction();
guardController.player.Get 0 CancelCurrentAction();
guardController.trans - ardController.player.tr

guardController.playe . (guardContro)

D tartDialogue(guardController.GetDialogue(Controller.gameObject);

OnExdt()

guardController.wantsToTalk =

Figure 115 — GuardTalk.cs

Page 93

5.7.4 NPC Al
5.7.4.1 DialogueNPC and NPCs
5.7.4.1.1 Overview

NPCs and guards can have dialogues and player can talk with them, to achieve that |
used inheritance.

e DialogueNPC (Parent Class)
GuardAlController.cs
NPCAIController
FarmerAlController
WoodcutterAlController

Instead of repeating the same piece of code for the 3 NPC types and the guard. DialogueNPC.cs
stores information about the speaker, the dialogue and a boolean property for if the NPC wants
to talk or not.

When NPCs are on Flee state, they are running towards a safe point where they hiding from
the enemies for some time. This can be achieved thanks to Safe.cs, NPCs that are on alert can
hide in a spot.

5.7.4.1.2 Code

ARPG.QuestDialogue;
UnityEngine;

ARPG. AT

1d]

wantsToTalk {

r GetSpeaker()

return speaker;

ue GetDialogue()

return dialogue;

Figure 116 — DialogueNPC.cs

5.7.4.2 NPC Al Controller & States
5.7.4.2.1 Overview

Simple/Plain NPCs are controlled from NPCAIController.cs that controller sets up
transitions between the states and their logic. Simple NPC’s scripts are:

Page 94

e NPCAIController.cs

e State scripts:
e Talk.cs, defines the Talk State.
e Motion.cs, defines the Motion State.
o Flee.cs, defines the Flee State.

Looking back at Figure 9 — Simple NPC’s finite state machine — NPCAIController.cs

NPC’s behavior is based on Figure 9 and in chapter 4.4.1 that behavior was analyzed and
explained.

5.7.4.2.2 Code

Starting from the Talk state, OnEnter method cancels the player’s and the NPC’s
actions and then makes them look at each other before starting the dialogue. OnExit method
resets the wantsToTalk boolean and Tick does nothing.

ARPG.Core;
ARPG.QuestDialogue;

ARPG.AT

=r npcAlComtroller;
AlController)

.npcAlController = npcAIController;

OnEnter()

npcATController. GetComponent<
ntroller. player.Get(
roller.transform

npcAlController. player.t orm;L (0lle nsform);
D4 ger.StartDialogue(npcAIController.GetDialogue() ,npcAIController.gameObject);

OnExdt()

npcATController.wantsToTalk =

Figure 117 — Talk.cs

Page 95

When in Motion state, OnEnter and OnExit methods do nothing, but Tick method calls
MotionBehaviour function that is responsible for making the NPC go through the waypoints or
stand still in a position.

ath waypointPath, waypointTolerance, waypointDwellTime, speedFraction,

' MotionBehaviour();
1

OnEnter() { }

OnExdit() { }

Figure 118 — Motion.cs part 1

Page 96

MotionBehaviour()

r3 nextPosition = standPosition;
if (waypointPath !=)
r
L

(AtTWaypoint())

NextiWaypoint();

extPosition = GetCurrentWaypoint();

1
¥

npcAlController. GetComponent <t () .StartMovefction(nextPosition, speedFraction);

AtTIWaypoint ()
distanceToWaypoint =

3.Distance(npcAIController.transform.position, GetCurrentWaypoint
waypointTolerance;

int()

if (waypointPath.GetIsCyclePath() ==
r

L

npcAIController.currenthaypointIndex = waypointPath.GetNextIndex({npcAlController. currenthaypointInde

1
I

npcAIController.currentWaypointIndex = waypointPath.GetNextIndexBackwards(npcAIController.currentWaypointIndex);

} GetCurrentWaypoint()

return waypointPath.GetWaypoint{npcAlController.currentiaypointIndex);

Figure 119 — Motion.cs part 2

The Flee state OnEnter checks if the NPC was in dialogue and if so then stops the dialogue,
OnExit method does nothing. Tick is calling FleeAndAlert method which is responsible for
moving the NPC to its safe point and alerting other NPCs around.

Page 97

ARPG . Movement ;
ARPG. QuestDialogue;
ARPG.Resources;
UnityEngine;

ARPG.AT

IState

NPCAIController npcAIComtroller;

Flee{NPCAIController npcAlController)

.npcAIController = npcAIController;

Tick()

FleeAndAlert();

OnEnter()

if (npcAlController.GetSpeaker() != &% npcAlController.GetSpeaker().GetIsInDialogue())
i

DialogueManager.StopDialogue();

¥

OnExdt() { }

Figure 120 — Flee.cs part 1

FleeAndAlert()

npcAIController.GetComponent<Mover>() .MoveTo(npcAIController.GetSafePoint () .position, 1f);

.OverlapSphere(npcAIController.transform.position, npcAlController.GetAlertDistance(), LayerMask.GetMask("NPCLayer™});
foreach {Collider hitCollider in hitColliders}

if (hitCollider.gameObject.tag == "NPC" & hitCollider.GetComponent<Health>().IsDead() ==
{
closestNPC = hitCollider.gameObject;
if (closestNPC.GetComponent<NPCAIController>())
{
closesthPC.GetComponent<NPCAIController>() . TriggerNPCsAlert();

&
if (closestNPC.GetComponent<WoodcutterController>()}

closestNPC.GetComponent<koodcutterController>(). TriggerNPCsAlert() ;
&
if (closestNPC.GetComponent<FarmerController>(})

closestNPC.GetComponent<FarmerController>(). TriggerNPCsAlert();

Figure 121 — Flee.cs part 2

5.7.4.3 Farmer Al Controller & States
5.7.4.3.1 Overview

Farmer’s controller is the FarmerController.cs script, that controller sets up transitions
between the states and their logic. But also contains a few useful functions like,
InitWalkingCoroutine which starts the Walking coroutine, some animation events for
calculations and sounds, and setters and getters, all these functions can be seen in Figures 123-
127. Simple NPC’s scripts are:

e FarmerController.cs
e State scripts:
e FarmerlinitialDecision.cs, defines the Decide State.
e FarmerSearchResource.cs, defines the Search State.
e FarmerMoveToResource.cs, defines the Go To State.
e FarmerHarvest.cs, defines the Harvest State.
e FarmerReturnGood.cs, defines the Return State.
e FarmerFlee.cs, defines the Flee State.
o FarmerWalk.cs, defines the Walk State.
e FarmerTalk.cs, defines the Talk State.

Looking back at Figure 10 — Farmer’s finite state machine — FarmerController.cs

NPC’s behavior is based on Figure 9 and in chapter 4.4.2 that behavior was analyzed and
explained.

The resource that farmers harvest is a GatherableResource from the GatherableResource.cs
script. Woodcutters also harvest GatherableResource and in order to sort those resources,
farmers got their resources on a layer called “FarmResource” and woodcutters on
“WoodResource”.

Page 99

5.7.4.3.1 Code

First starting with the GatherableResource.cs and it is added on every resource
GameObiject for the farmers to harvest.

UnityEngine;

ARPG.AT.ResourceGathering

Figure 122 — GatherableResource.cs

Moving to the FarmerController.cs, in this script is where all the states, the transitions and the
logic behind them are being setted up.

urce@athering;

ARPG.AI

rceSearchDistance = 208F;
eturnPoint;

waypointPath;

r overrideController;

donelWalking { H

returningFromkalk {

iroppedBasket {

Figure 123 — FarmerController.cs part 1

Page 100

wantsToTalk
doneWalking = 3
returningFromialk =
isOnAlert = H

gBasket =
droppedBasket =
currenthaypointInd
standPosition = transform.position
player t FlndwlthTag(P1
health
mover = GetComponent<Fo

na t = GetComponent<

13

, animator, overrideController};

» animator, overrideConmtroller);
» waypointPath, speedFraction, standPosit

if (GetSpeaker() != GetDialogue() !=

I
L

A‘t(wnlklng talk, () !player.GetSpeaker().GetIsInDialogue() &% wantsToTalk
.Distance({player.transform.position, transform.position)

At(talk, walking, ()} =» !GetSpeaker().GetIsInDialogue());

> doneWalking
GotResourceTarget(
e, returnGoods, ReturnRetri
harvest, ArrivedAtResourceToHarw

returntoods.returned ==

stateMachine.SetState(initDecision);

Figure 124 — FarmerController.cs part 2

Page 101

stateMachine. A

> ReturnRetr: droppedBaske’ t : resourceTarget

urceToHarvest() => () => droppedB:

> RetrievedBasketButNotEnoughGoods() => () => droppedBasket

t.hitCounter s Target.hit: < CurrentAnimatorStateIn

or.GetCurrentAnimato

0

health.IsDead()}

stateMachine.Ti

Inithalking tine()

outine(Walking()});

af);
Speaker().GetIsInDialogue())

urningFromidali 3
To(goodsReturnPoint. position,

rn (4]
urrentiaypointInd
doneWalking =

Figure 125 — FarmerController.cs part 3

Page 102

StopWalkingCR()

StopCoroutine(Walking());

harvest. hitCounters+;
t.hitCounter

audioSource.
audicSource.
audioSource.
audioSource.

GetGoodsReturnPoint()

goodsReturnPoint;

safePoint;

GetAlertDistance()

L

alertDistan

DrawWiresphere(transform.position, resourceSearchDistance);

Figure 127 — FarmerController.cs part 5

Page 103

The first state is the Decision state from FarmerlnitialDecision.cs and is Tick, OnEnter and
OnExit methods do nothing. There is a method called WorkDecision that based on the work
ethic of the farmer it is getting a random number between 0 and 100, if work ethic is greater
than that random number then the farmer decides to work, if not then decides to walk.

UnityEngine;

ARPG. AT
n @ IState

er farmerController;

nerController farmerController)

.farmerController = farmerController;

WorkDecision()

number = R -Range(@, 101);
return number < . oller.GetWorkEthic();

Tick() { }

OnEnter() { }

onBExdt() {

Figure 128 — FarmerlnitialDecision.cs

Search state in FarmerSearchResource.cs and it is responsible for finding a resource. OnEnter
and OnExit methods do nothing, but Tick is calling FindResourceNear that locates a resource
on “FarmResource” layer, and checks if that resource is occupied by another farmer, if it is
then searches for another resource, else it doesn’t.

Page 104

ARPG.AI.ResourceGathering;
System.Collections.Generic;
UnityEngine;

ARPG.AT

I of-

roller farmerController;

troller farmerController)

farmerController = farmerController;

Tick()

farmerController.resourceTarget = FindResourceNear();
if (!farmerController.resourceTarget.isOccupied)
3
L
farmerController.resourceTarget . isOccupied =

1
E

OnEnter() { }

OnExdt() { }

ce FindResourcelear()

hDistance(),
VB

foreach (Collider hitCollider in hitColliders)
r
if (hitCollider.GetComponemt<Ga ().isOccupied ==
i
resources.Add({hitCollider.GetComponent< rce>());
}
].
if (resources ==)

e
L

LogError({"Not Enpugh Farm Reso

1
E

Figure 129 — FarmerSearchResource.cs

Go To state from FarmerMoveToResource.cs, is moving the farmer close to the resource.
OnEnter is checking if the farmer has dropped the basket (the farmer has dropped the basket
of goods if was chased by an enemy) to move to the basket’s position, else if has a resource
then goes to that resource, enables the animator and changes the animations using am override
controller. OnExit assigns the main animation controller again, and Tick method is doing
nothing. There is a method wused on the transition’s logic, called
ChecklIfArrivedAtResourceToHarvest that checks if the farmer is close to the resource.

Page 105

ARPG. AT

: IState

r farmerController;

er farmerController, Animator animator, Ani oller overrideController)

troller;
.animator = animator;
.overrideController = overrideController;
.MainRuntimeContreller = animator.runtimeAnimatorController;

OnEnter()
if (farmerController.droppedBask

MoveTo(farmerController.droppedBasket . transform. position, .2F);
IH

else if (farmerController.resourceTarget !=)]

I

L
farmerController.Ge MoveTo(farmerController. resourceTarget . transform. position, .2f);
farmerController 1
animator.enabled =

animator.runtimeAnimatorController = overrideController;

Figure 130 — FarmerMoveToResource.cs part 1

OnExit()

animator. runtimeAnimatorController = MainRuntimeController;

CheckIfArrivedAtResourceToHarvest()

Figure 131 — FarmerMoveToResource.cs part 2

Harvest state from FarmerHarvest.cs is making the farmer to chop the tree every two seconds
till reaches a specific number of hits. OnEnter resets the hit counter, stops the navMesh, makes
the farmer look at the resource and enables the animator, OnEXxit resets timers, the hit counter
and the resource target, disables the animator and un-occupies the resource target. Tick method
is making the farmer trigger the chopping animation every 2 seconds.

Page 106

UnityEngine;
UnityEngin

ARPG. AT

r farmerController;
or animat
incelastChop hf.Infinity;
etweenChops

hitCounter {

er farmerController, animator)

.farmerController = farmerController;
.animator = animator;

if (timeSincelastChop >

Figure 132 — FarmerHarvest.cs part 1

OnEnter()

hitCounter =

farmerController.GetComponent Age).is5topped = H
farmerController.transform. LookAt(farmerController.resourceTarget . transform
farmerController.GetBasket() .SetActive(

animator.enabled = 2

OnExit()

farmerController.resourceTarget.isOccupied =
farmerController.resourceTarget = £
animator.enabled = P

animator. gameObjec

animator.gameObject

hitCounter = @;

timesincelastChop =

Figure 133 — FarmerHarvest.cs part 2

Page 107

Return state from FarmerReturnGoods.cs is responsible for moving the farmer to the point that
returns the harvested goods. OnEnter method is moving the farmer to the goods return point
and changes the animator to the override controller. OnExit is assigning the animator controller
again and Tick method is checking if the farmer is at the return point of the goods.

ARPG.Movement ;
UnityEngine;

ARPG. AT

oller farmerController;

overrideController;
er MainRuntimeController;

returned { s B

ler farmerController, Animator animator, Animat i ler overrideController)

-farmerController = farmerController;

.animator = animator;

.overrideController = overrideController;
-MainRuntimeController = animator.runtimeAnimatorController;

Tick()

if (Vector3.Distance(farmerController.transform.position, farmerController.GetGoodsReturnPoint(}.transform.position) <= 1)
{
returned =

1
I

OnEnter()

returned = F

farmerController.carryingBasket =

animator.enabled = 2
animator.runtimeAnimatorController = overrideController;

farmerController.GetCompo 3 farmerController.GetGoodsReturnPoint () .position, .2F);
farmerController.GetBasks
OnExdt()
farmerController.carryin
farmerController.totalHa

returned =

animator.runtimeAnimatorController = MainRuntimeController;
farmerController.GetBasket() .SetActive(s

Figure 134 — FarmerReturnGoods.cs

Flee state from the FarmerFlee.cs script is responsible for making the farmer to drop the basket
of goods if having one and moving to the safe point while trying to alert other NPCs. OnEnter
is checking if farmer is in dialogue to stop it, reenables the animator, resets the resource target
and if the farmer carried a basket with collected goods, then drops the basket down. OnExit
method does nothing, and Tick is calling FleeAndAlert method where moves the farmer to the
safe point and notifies any NPCs that are near.

Page 108

ARPG.Movement ;
ARPG.QuestDialogue;
ARPG.Resources;
UnityEngine;

ARPG.AT

er farmerController;

r farmerController,Ani or animator)

farmerController = farmerController;
.animator = animator;

FleeAndAler

OnEnter()
&% farmerController.GetSpeaker().GetIsInDialogue())
.StopDialogue();
resourceTarget =

animator.enabled = F
animator.enabled = 7

farmerController.droppedBas () -Drop(};
ontroller.carryingB 2

farmerController.GetBasket() . SetActive(

Figure 135 — FarmerFlee.cs part 1

Page 109

OnExdt() { }

FleeAndAlert()

farmerController.GetComponent<). ol Fi o - Point().position, 1f);

verlapSphere(farmerController.transform.position, farmerController.GetAlertDistance(), L
ider hitCollider in hitColliders}
if (hitCollider.gameObject.tag == "h

hitCollider.gameObjec

GetComponent<k
closestNPC.GetComponen 11 () .TriggerNPCsAlert();
if (cl :tNPC . GetComponent<Fa

closestNPC.GetComponent<F ().TriggerNPCsAlert();

Figure 136 — FarmerFlee.cs part 2

Lastly the Talk state from the FarmerTalk.cs is setting up the farmer and the player before starting the
dialogue. OnEnter stops the farmer’s walking coroutine, cancels the player’s and farmer’s action, makes
them face each other and starts the dialogue. OnEXxit resets the wantsToTalk boolean and Tick does
nothing.

ARPG. Core;
ARPG.QuestDialogue;

ARPG.ATL

FfarmerController;

farmerController)

-farmerController = farmerController;

OnEnter()

farmerContre

farmerContre . C 4 3 () .CancelCurrentAction();
farmerController.player.GetComponent< uler>().CancelCurrentAction();
farmerController.transform. LookAt({farmerController.player.transform)
farmerController.player.transform. LookAt (farmerController.transform);

Dial =Manager . StartDialogue(farmerController.GetDialogue(), farmerController. gameObject) ;

OnExdt()

farmerController.wantsToTalk =

Figure 137 — FarmerTalk.cs

Page 110

5.7.4.4 \Woodcutter Al Controller & States
5.7.4.4.1 Overview

Woodcutter is controlled by the WoodcutterController.cs script, that controller sets up
transitions between the states and their logic. But also contains a few useful functions like,
InitWalkingCoroutine which starts the Walking coroutine, some animation events for
calculations and sounds, and setters and getters, all these functions can be seen in Figures 123-
127. Simple NPC’s scripts are:

e WoodcutterController.cs
e State scripts:
e WoodcutterlInitialDecision.cs, defines the Decide State.
e WoodcutterSearchResource.cs, defines the Search State.
e WoodcutterMoveToResource.cs, defines the Go To State.
e WoodcutterHarvest.cs, defines the Harvest State.
e WoodcutterReturnWood.cs, defines the Return State.
e WoodcutterFlee.cs, defines the Flee State.
e WoodcutterWalk.cs, defines the Walk State.
e WoodcutterTalk.cs, defines the Talk State.

Looking back at Figure 11 — Woodcutter’s finite state machine — WoodcutterController.cs

NPC’s behavior is based on Figure 11 and in chapter 4.4.3 that behavior was analyzed and
explained.

The resource that woodcutter harvests is a GatherableResource from the
GatherableResource.cs script attached on the tree GameObjects and with setted Layer on
“WoodResource”.

Page 111

5.7.4.4.2 Code

Starting with the WoodcutterController.cs, in this script is where all the states, the
transitions and the logic behind them are being setted up.

System.Collections;

UnityEngine;

UnityEngine.Al;

System;

ARPG.Resources;

ARPG.Control;

ARPG.AL.ResourceGathering;
UnityEngine.R

ARPG. AL

toolOnHand;
toolCarried;

urceSearchDistance = 28f;
m woodReturnPoint;

- safeP‘l:lint.:

hine stateMachine;
health;
r3 standPosition;
Harvest harvest;

donelalking { H

roller player {

iz0OnAlert { 2 HE

;urrentwaypcintlndex 1 g
irce resourceTarget {

carryinghood { 2

t droppedkood {

Figure 138 — WoodcutterController.cs part 1

Page 112

wantsToTalk
doneWalking
izOnAlert =
carryinghWood =
dropped

player C Componemnt+
standPosit
health = GetComponent<He

eshAgent
animator

tateMachine

» animator);
W , animator, overrideController);
» waypointPath, waypointTolerance, speedFraction, standPosition);

on
ety

r{).GetIsInDialogue() &%
.transform.position, transform.position)

Decision());
sion(});

esource, GotR
returnbiood, ReturnRetrievedWood())

rest, ArrivedAtResourceToHarvest());

isOnAlert);

stateMachine.SetState(initDecision)};

At(Istate f 3 1, Func » condition) tateMachine.AddTransition(from, to, condition);

Figure 139 — WoodcutterController.cs part 2

Page 113

> NokoodDroppedDown() droppedWood !=

> GotResourceTarget()

> droppedkood ==

> ReturnRetrievedWood() Q0

dAtResourceToHarvest () => droppedwWood ==

> IsNonOnAler

InitWalking

utine(Wa:

t()

.hitCounter++;

d()

rce.clip = chopClip

IEnumerator Wal king()

¥ turn
donelalking =

droppediWood

carryinghiood ==

carryingwood

resourceTarge

got

urce .CheckIfArrivedAtResourceToHarvest();

Figure 140 — WoodcutterController.cs part 3

Page 114

2()

if (!health.IsDead())
-

L
stateMachine.Tick();

3
I

TriggerNPCsAlert()

isOnAlert =

1 GetSafePoint()

safePoint;

GetAlertDistance()

GetToolOnHand()
toolOnHand;

GetToolCarried()

toolCarried;

GetWoodCarried()

woodCarried;

GetReso rchDistanc

resourceSearchDistance;

1 GetWoodReturnPoint ()

woodReturnPoint;

Figure 141 — WoodcutterController.cs part 4

Getl

return workEthic;

0

C r.white;
DrawWireSphere(transform.position, resourceSearchDistanc

Figure 142 — WoodcutterController.cs part 5

Page 115

Identical to the farmer, starting with the Decision state from the WoodcutterInitialDecision.cs
script which is responsible for returning a true or false based on the work ethic of the
woodcutter. Specifically, OnEnter makes the tool (axe) appear on the belt and makes sure the
tool or wood isn’t on hand. OnExit methods does nothing. There is a method called
WorkDecision that based on the work ethic of the farmer it is getting a random number between
0 and 100, if work ethic is greater than that random number then the farmer decides to work, if

not then decides to walk.

UnityEngine;

ARPG.AT

: Istate

oller woodcutterController;

r woodcutterController)

-woodcutterController = woodcutterController;

WorkDecision()

number = Range(@, 1€1);
return number odcutterController.GetWorkEthic();

Tick() { }

OnEnter()

woodcutterController.GetToolOnHand () . SetActive(|H
woodcoutterController.G 1Carrie etActive(-
woodcutterController.GetWoodCarried() . SetActive(JH

onExdt() { 3}

Figure 143 — WoodcutterInitialDecision.cs

Next up is the Search state from WoodcutterSearchResource.cs, this state finds a resource.
OnEnter resets the carryingWood boolean, makes sure that the tool is on the belt and nothing
on hand. OnExit method does nothing. Tick is calling FindResourceNear which locates a
resource in the resource search distance, and makes sure that resource is un-occupied, unless

searches again.

Page 116

System.Collections.Generic;
UnityEngine;
ARPG.AI.ResourceGatheri

ARPG.AL

r woodcutterController;

- woodcutterController)

-woodcutterController = woodcutterController;

woodcutterController.resourceTarget = FindResourceNear();

if (!woodcutterController.resourceTarget.isOccupied)
{
woodcutterController.resourceTarget.isOccupied =

1
I

OnEnter()

woodcutterController.carryingood =

woodcutt

woodcutterController
woodcutterController.GetWoodCarried() . SetActive(

Figure 144 — WoodcutterSearchResource.cs part 1

OnExdit() {

FindResourceNear()

- hitCollider in hitCollide

hitCollider .GetComponents 0 isOccupied ==

resources. Add({hitCollider.GetComponent:

Figure 145 — WoodcutterSearchResource.cs part 2

Go To state from WoodcutterMoveToResource.cs is responsible for moving the woodcutter to
the resource. OnEnter checks if the woodcutter has dropped wood (if was fleeing when carrying

Page 117

wood then there is wood dropped down), if so then moves to that wood, goes to the resource,
and makes sure the tool is on the belt while there is no tool on hand or wood. OnExit and Tick
do nothing. ChecklIfArrivedAtResourceToHarvest is used by the transitions logic to check if
woodcutter is close to the resource before starting chopping/harvesting the tree.

ARPG. Movement ;
UnityEngine;

ARPG.AT

: IState

oller woodcutterController;

r woodcutterController)

.woodcutterController = woodcutterController;

CheckIfArrivedAtResourceToHarvest()

if (woodcutterController.resourceTarget !=)
{
return Vec .Distance(woodcutterController.transform.position,
woodcutterController.resourceTarget . transform. position) 2
]_
return 2

OnEnter()

if (woodcutterController.droppedhood ==)

I

woodcutterController. GetComponent: () .MoveTo(woodcutterController.droppedWood. transform. position, .2f);

elze if (woodcutterController.resourceTarget !=)

woodcutterController. GetComponent MoveTo(woodcutterController.resourceTarget. transform. position, .2f);
¥
woodcutterController. GetToolOnHand() . SetAc
woodcutterController.GetToolCarried() . SetA (
woodcutterController.GetoodCarried() . SetActive(

OnExdt(} { }

Figure 146 — WoodcutterMoveToResource.cs

Harvest state from WoodcutterHarvest.cs is responsible for triggering the woodcutter’s
chopping animation every 2 seconds and count the hits till it reaches the resource’s hit limit.
OnEnter makes sure the tool is on hand and not on belt, stops the navMesh, enables the
animator and resets the hit counter. OnExit un-occupies the resource target, and resets the
resource target, the animator, the hit counter and the chop timer. Tick method makes sure the
chop animations are being triggered every 2 seconds.

Page 118

UnityEngine;
UnityEngine.AL;

ARPG.AT

b ~ woodcutterController;
incelastChop hf.Infinity;
timeBetweenChops =

hitCounter {
or animator;

woodcutterController, animator)

woodcutterController = woodcutterController;
.animator = animator;

if (timeSincelastChop > timeBetweenChops)
{

TriggerChop();

timeSincelastCh

e.deltaTime;

animator.Res
animato

Figure 147 — WoodcutterHarvest.cs part 1

onEnter()

hitCounter = @;

woodcutterController. GetToolOnHand() . SetActive(
woodcutterController.GetToolCarried() .5etActi
woodcutterController. GetWoodCarried() .5etActive
woodcutterController.GetComponent { d ()

woodcutterController. transform. Look podcutterController.resourceTarget.transform);
animator.enabled = 3

OonExdt()

isOccupied =

gameQbject.
gameQDbject.
r = 8;
timeSinceLastChop = Mathf.Infinity;

Figure 148 — WoodcutterHarvest.cs part 2

Page 119

Return state from WoodcutterReturnWood.cs, moves the woodcutter to the return point of
wood, while holding the wood and it is in OnEnter method, as well removing the tool from the
hand, enabling it on the belt and enabling the wood on hands (so it seems the woodcutter is
carrying the wood back). OnExit resets the animator controller to the main animator. Tick
checks if woodcutter is at return point.

ARPG.Mo
UnityEn

ARPG.AT

woodcutterController;

‘rideController;
timeController;

returned {

r woodcutterController, An r animator, A 1 er overrideController)
wdcutterController;
.animator = animator;

.overrideController = overrideController;
.MainRuntimeController = animator.runtimeAnimatorController;

stance (woodcutterController.transform. position, woodcutterController.GetWoodReturnPoint().transform.position) <= 1)

returned =

OnEnter()

returned = £
ontroller.carryinghood =

animator.runtimeAnimatorController = overrideController;

of{woodcutterController.GetWoodReturnPoint (). position, @.166F);

OnExdt()

returned = f
animator.runtimeAnimatorController = MainRuntimeController;

Figure 149 — WoodcutterReturnWood.cs

Flee state from WoodcutterFlee.cs is responsible for making the woodcutter run to a safe point
while alerting other NPCs. OnEnter checks if the woodcutter is in dialogue, if so then stops the
dialogue, then checks if carried wood, if yes then drops it down and makes sure the tool is on
belt and carries no wood on hands. OnExit does nothing and Tick method calls FleeAndAlert
which makes the NPC go to the safe point while alerting any other close NPCs.

Page 120

ARPG.Movement ;
ARPG.QuestDialc
ARPG.Resources;
UnityEngine;

ARPG. AT

r woodcutterController;

woodc Controller)

woodcutterController = woodcutterController;

FleeAndAlert()

OnEnter()

if (woodcutterController.Ge ker() ! % woodcutterController.GetSpeaker().GetIsInDialogue())
{
ger. StopDialogue();

}
if (woodcutterController.carryingWood)
{
cutterController.droppediood = woodcutterController.GetComponent<D

woodcutterController.carryingWood = H

Figure 150 — WoodcutterFlee.cs part 1

onExdt() { 3

FleeAndAlert()

woodcutterControlle <Mo .MoveTo(woodcutterControlle

1itCollider.gameObject.tag ==

hitCollider.gameObject;
esthNPC.GetComponen

closestiPC.GetComponent< »().TriggerNPCsAlert();
f (closestNPC.GetComponen

closestNPC.GetComponen .TriggerNPCsAlert();

Figure 151 — WoodcutterFlee.cs part 2

Walk state from WoodcutterWalk.cs is like all the Walk states, OnEnter makes sure the tool is
on belt and starts the walking coroutine. OnExit resets the doneWalking boolean which means

Page 121

that the woodcutter is no longer walking. Tick calls MotionBehaviour which is responsible for
making the NPC to follow the waypoint path but if it doesn’t have one then stands still.

ARPG.Control;
ARPG . Movement ;
UnityEngine;

ARPG.AT

: IState

r woodcutterController;
waypointPath;
waypointTolerance;
speedFraction;
Vector3 standPosition;

odcutterbalk(WoodcutterCont er woodcutterController, WaypointPath waypointPath, waypointTolerance, speedFraction, Vector3 standPosition)
.woodcutterController = woodcutterController;

.waypointPath = waypointPath;

.waypointTolerance = waypointTolerance;

.speedFraction = speedFraction;
.standPosition = standPosition;

Tick()

MotionBehaviour();

OnEnter()
woodcutterController.GetToolOnHand() . SetActive(
woodcutterController.GetToolCarried() .SetActive(

woodcutterController. GetWoodCarried() . SetActive(
woodcutterController. InitWalkingCoroutine();

OnExdit()

woodcutterController.doneWalking =

Figure 152 — WoodcutterWalk.cs part 1
MotionBehaviour()

Vector3 nextPosition = standPosition;
if (waypointPath !=)
f (AtIWaypoint())
NextWaypoint();
aex‘tPosition = GetCurrentWaypoint();
¥

woodcutterController.GetComponent<Mover>().5tartMoveAction(nextPosition, speedFraction);

AtTIWaypoint()

distanceToWaypoint = Vector3.Distance(woodcutterController.transform.position, GetCurrentWaypoint());
return distanceToWaypoint < waypointTolerance;

NextWaypoint()
if (waypointPath.GetIsCyclePath() ==)
{

woodcutterController. currentiWaypointIndex = waypointPath.GetNextIndex(woodcutterController. currentaypointIndex);

1se

woodcutterController. currentiWaypointIndex = waypointPath.GetNextIndexBackwards({woodcutterController. currentWaypointIndex);

Vector3 GetCurrentWaypoint()

return waypointPath.GetWaypoint (woodcutterController. currenthaypointIndex);

Figure 153 — WoodcutterWalk.cs part 2

Page 122

Lastly the Talk state from WoodcutterTalk.cs. OnEnter cancels the woodcutter’s and player’s
action and makes them look at each other and starts the dialogue. OnExit resets the
wantsToTalk boolean and Tick does nothing.

ARPG.Core;
ARPG . QuestDialogue;

ARPG.AT

roller woodcutterController;

r woodcutterController)

.woodcutterController = woodcutterController;

OnEnter()

CurrentAction();
CancelCurrentAction();
layer.transform);

transform);

(), woodcutterController.gameObject);

OnExdt()

woodcutterController.wantsToTalk =

Figure 154 — WoodcutterTalk.cs

5.8 Mover & Fighter

5.8.1 Overview

As it was seen on previous chapters, NPCs (friendly and enemies) are using a few
methods, like MoveTo and Attack, which are responsible for moving the NPC to a given
Transform and to set target for combat, those methods are in Mover.cs and Fighter.cs.
Moreover, Mover.cs contains useful methods that are related to an NPCs movement and the
update of speed for motion animations, while Fighter.cs is responsible for combat stuff, like
attacking, attacking animations and more.

Specifically, some important methods in Mover.cs are:

e MoveTo, which moves the NPC to a transform

e UpdateAnimator, is updating the parameter “forwardSpeed” of the animator of the
agent with the agent’s speed to have to correct motion animation based on the
Locomotion blend tree.

Some important methods in Fighter.cs are:

e Attack, which sets the given target as target

Page 123

e CanAttack, which checks if the agent can attack the given target.

Every important method has comments for what it is responsible for, for Mover.cs are figures
155 & 156 and for Fighter.cs are figures 157-160.

5.8.2 Code

UnityEngine;

1 = UnityEngine.R

ARPG.Movement

r, IAction

H
mentAudioSource;

navMeshAgent;
alth;

navMeshAgent = GetCom)
health = GetComponent

navMeshAgent.enabled = !health.IsDead();
UpdateAnimator();

StartMoveAction(Vector3 destination, speedFraction)

GetComponent<. ar .StartAction()
MoveTo(destination edFraction);

stination, speedFraction)

navMeshAgent. tination = destinat 3
navMeshAgent. ed = maxSpeed .Clamp@l1(speedFraction);
navMeshAgent.izStopped =

Figure 155 — Mover.cs part 1

Page 124

Cancel()}

navMeshAgent.

feshigent . velocity;
transform. InverseTransfo

Figure 156 — Mover.cs part 2

UnityEngine;

.Resources;

ARPG.S5tats

ARPG.Resources.Items;
= UnityEngine

ARPG . Combat

rs ion

timeBetweenAttacks
rightHandTrans
1 leftHandTransform
n defaultWeapon =
e combatAudioSource;

tileReleaseClip;
th target;

ncelastAttack hf. Infinity;
currentWeapon =

if {currentWeapon ==]
r

1
EquipWeapon(defaultWeapon) ;

deltaTime;

MoveTo(target.transform

Cancel();

Page 125

Figure 157 — Fighter.cs part 1

Equipkleapon(m weaponItem)
curremithWeapon = weaponliem;

animator = GetComponemn ~»();

aponItem.Spawn(rightHandTransform, leftHandTransform, animatol

h GetTarget()

return target;

AttackBehaviour()

transform. LookAt(target.transform.position);

if (timeSincelLastAttack »
r

timeBetweenAttacks)
L8

Triggerfttack();

}.ResetTrigger
rigger("at

Figure 158 — Fighter.cs part 2

Page 126

baseDamage = GetComponent< >().GetStat(Stat.Damage) ;
damag E aseDamage * currentheapon.GetWeaponExtraPercentageDamage()) + currenthleapon.GetDamag

if (currentWeapon.HasProjectile())
{

currentWeapon. LaunchProjectile{rightHandTransform, leftHandTransform, target, gameObject, damage);

currentheapon . name ==

combatAudioSource.clip = punchClip;

swingClip;

combatAudioSou olume
combatAudioSource.pitch
combatAudioSoul

transform.position, target.transform.position) < currentWeapon.G

Figure 159 — Fighter.cs part 3

Page 127

CanAttack(G t combatTarget)

if (combatTarget == || combatTarget.activeSelf ==

r
L
return
]_
Health targetToTest = combatTarget.GetComponent{He

return targetToTest != & !targetToTest.IsDead();

Attack(G ect combatTarget)

GetComponent<Acti eduler>().Star
target = combatT: GetComponent<Heal

Cancel()

Stopattack();
target =

StopAttack()

GetComponent<Anima ResetTrigge
GetComponent< at SsetTrigger(

ResetTarget()

target =

Figure 160 — Fighter.cs part 4

5.9 Items, Weapon items & Consumables

5.9.1 Overview

Items are divided into 2 categories, weapon items and consumable items. Also, items
(weapon items and consumable items) are scriptable objects that can be easily created and
manipulated. That is, the player can obtain a new weapon by picking it up. This can be achieved
through the Pickup.cs and the scriptable object weapon item. For each sword, there is a
GameObiject that contains the Pickup.cs and the Weapon Item scriptable object and is placed
in the world for the player to find and pick up. After picking it up, the player equips the weapon
(and adds it to the inventory, but that's chapter 5.11) and it's ready to use. Exactly the same is
true for consumable items (i.e. for each consumable item there are GameObjects to pick up).

Weapons can be found around the scene or can be dropped for the player to pick them up.
These are the weapons:

e Unarmed, deals 2 damage and 0 extra damage percentage.

e Arming Sword, deals 25 damage and 30% extra damage percentage.

e Epilogue Sword, deals 200 damage and 90% extra damage percentage.
e Fury Sword, deals 40 damage and 50% extra damage percentage.

Page 128

Heavy Fall Sword, deals 45 damage and 40% extra damage percentage.

Roar Sword, deals 25 damage and 20% extra damage percentage.

Short Sword 1, deals 20 damage and 20% extra damage percentage.

Short Sword 2, deals 10 damage and 20% extra damage percentage.

The Lost Crusader Sword, deals 250 damage and 70% extra damage percentage.
Bow, deals 15 damage and 20% extra damage percentage.

Magic, deals 40 damage and 50% extra damage percentage.

Each weapon has damage and damage percentage, as player, guards and enemies have a base
damage based on their level. When player attacks an enemy, the damage output gets
calculated by the following formula:

base damage + ((base damage * weapon's extra damage percentage) + weapon damage)

Consumable items are used to restore health and are placed around the scene for the player to
pick them up and use them when in need. These are the consumable items:

Apple, restores 50 health points.

Honey, restores 100 health points.

Lesser Health Potion, restores 150 health points.
Health Potion, restores 200 health points.

Scripts of this chapter:

e Item.cs, which is a scriptable object containing information.

Weaponltem.cs, is a scriptable object inheriting from Item and having more
specific information, like damage amount.

Consumableltem.cs, is a scriptable object inheriting from Item and having more
specific information like, health restoration amount.

e Pickup.cs, is attached to pickup GameObjects and upon colliding with the player,
considering the pickup gives a Weaponltem or a Consumableltem. Also, a dialogue can
be added for when player picks it up, the dialogue starts.

e Dropltem.cs, is used by the Farmer and the Woodcutter on the Flee state to drop the
basket and the wood.

e ItemPickUp.cs, is used by the farmer and the Woodcutter to pick-up the dropped wood
and basket of goods, after they dropped it because of Flee state.

e DropltemOnDeath.cs, drops the pickup GameObject that was given upon death, it is
used for the storyline for the player to get specific weapon.

Page 129

Figure 161 — The “Fury” Weaponltem scriptable object.

ag Untagged > Layer Default

P Transform

Position X0 Yo
Rotation X0 Yo
Scale

Pickup (Script)

rd (Weaponitem)

v Capsule Collider

Add Component

Fury Sword Pickup

Figure 163 — The “Fury” sword pickup and its components.

Add Component

Fury Sword

Figure 164 — The “Fury” sword that is used when it’s on an agent’s hands.

5.9.2 Code

Page 130

UnityEngine;

ARPG.Resources . Items

UnityEngine;
ARPG.Resources.Items

(fileName » menuName = "Item, I LIm:3 order = 1)]

healthRestoration;

GetHealthRestoration()

return healthRestoration;

Figure 166 — Consumableltem.cs

ARPG.Combat;
UnityEngine;

ARPG.Resources . Items

(fileName = » menuNams = n Item”, order =

animatorOverride =
t equippedPrefab =
weaponDamage = 5F;
weaponExtraPercentageDamage =
weaponRange = 2f;
isRipghtHanded =
projectile =

isEquiped =

Spaw rightHand, T FtH: I nimator)

Destroy0ldWeapon(rightHand, leftHand);

if (equippedPrefab !=
r

L

m handTra GetTransform(rightHand, leftHand);

weapon = Instantiate(equippedPrefab, handTransform);

Figure 167 — Weaponltem.cs part 1

Page 131

return

return

return

return

return

errideController = animator.runtimeAnimatorController

if (animatorOverride !
r

1
animator.runtimeAnimatorCont animatorOverride;
if | ideControll

animator.runtimeAnimatorController i ntroller.runtimeAnimatorCont

DestroyOldWweapon(T rightHand, T leftHand)

Ll oldkeapc rightHand.Find(weaponName) ;
if (oldkeapon
i
oldWeapon leftHand . Find(weaponhame) ;
2

5
if (oldWeapon =

oldl
D

rm GetTransfor r rightHand, Tr

handTransform;
ightHanded)

handTransform = rightHand;

handTransform = leftHand;

turn handTransform;

Figure 168 — Weaponltem.cs part 2

LaunchProjectile(T. rightHand, T

LaunchProjectile(T: Tra leftHand,

le projectileInstance = I
SetTarget(atta

GetDamage()

weaponDamage ;

weaponRange;

GetIsRightHanded()

isRightHanded;

Figure 169 — Weaponltem.cs part 3

.identity);

tHit raycastHit)

.identity);

Page 132

System.Collect
UnityEngine;

ARPG. Combat

if (other.gameObj
:

.addToInventory(wi

y .addToInventory

Figure 170 — Pickup.cs part 1

IEnumerator DialogueAfterPickup()

hitCollide lapSphere(t
each itCollider in hitCollide

hitCollider.gameObject.tag ==

return

eDialoguel)

dialogue =

Figure 171 — Pickup.cs part 2

Page 133

UnityEngine;

ARPG.Resources

t

Figure 172 — DropltemOnDeath.cs

ARPG.AT;
UnityEngine;

ARPG.Resources

if (other.ta y dcutters
other. - isOnAlert
other. o <l tr } .droppedhlood

other.GetComponent<kic

temp.carryingWood =
Destroy({gameCbject);

other. W L ().isOnAlert
other.G ent- .droppedBasket

r temp = other.GetComponen
mp . basketGoods;
ve()H

Figure 173 — ItemPickUp.cs

Page 134

UnityEngine;

ARPG.Resources

Figure 174 — Dropltem.cs

5.10 Projectiles
5.10.1 Overview

Other that the sword weapons there is another weapon for the player to use, that weapon
is the bow. Bows are shooting arrow projectiles, so when player or the enemy shoots with the
bow it needs to instantiate an arrow GameObject from the weapon to the position where player
clicked or for the location of a target if it’s the enemy who is using the bow, this can be achieved
thanks to the Projectile.cs.

Page 135

-
ag Untagged

A Transform

+ Projectile (Script)

Box Collider

("] Rigidbody

Add Component

Arrow Projectile

Figure 175 — The arrow projectile GameObject and its components.

As seen in figure 180, the GameObject has the Projectile.cs attached, as well as a Rigidbody to
control the projectile GameObject’s position through physics and a Box Collider so it can
collide with objects.

-
ag Untagged Layer Default

Transform

Particle System

v Destroy After Effect (Seript)

Figure 176 — The arrow hit effect GameObject and its components.

Lastly in figure 181, when the projectile GameObject collides with an object that has a Particle
System attached that is instantiated when the projectile collides with an object. That
GameObject has the DestroyAfterEffect.cs which is either destroys the GameObject when
particle system stops or after a given time.

5.10.2 Code

Page 136

UnityEngine;|

ARPG.Core

toBeDestroy erTime

destroyAfterTime

eddfterTime)

Figure 177 — DestroyAfterEffect.cs

ARPG.AL;
ARPG.Core;
ARPG . Resour
UnityEngine;

ARPG. Combat

G pon:
transform. rotati
- o

s
{

!target.IsDea

transform. LookAt (GetAimLocation(});

forward * speed * Time.deltaTime);

Figure 178 — Projectile.cs part 1

Page 137

SetTarget(

.target = targ

.attacker =

.damage = dama,
Destroy(gameObject, maxLifeTime);

SetTarget(ect attacker, damage ,RaycastHit raycastHit)

.attacker = attacker;
.damage = dama;
tHit = stHit;
Destroy(gameObject, maxLifeTime);

r3 GetAimLocation()

targetCapsule = target.GetComponent<C
if (targetC g ==]
{
return target.transform.position;
Y
J
return target.transform.position + Wector3.up * targetCapsule.height / 2;

Figure 179 — Projectile.cs part 2

if (other.tag ==

ame0bject, lifeAfterImpact);
if (hitEffect !=)]
{
Instantiate(hitEffect, transform.position, transform.rotation);
ealth temp = other.GetComponent<Health>();

if (!temp) return;
if (temp.IsDead()) return;

if (attacker.tag ==

turn;
urrentAction();

}
temp.TakeDamage(attacker, damage);

Figure 180 — Projectile.cs part 3

5.11 Inventory
5.11.1 Overview

The player needs a place to store the useful items he needs in times of need. This is
where the inventory system plays an important role. For example, in this project, the player
needs a place to store the weapons and consumables, items that he needs when picking up or
later. The inventory does not have an infinite amount of space, which means that the player
will have to discard some items to make room for other items. The inventory consists of a grid

Page 138

of 5 x 5 slots, so it has 25 slots for storing items. The inventory can be opened and closed by
pressing TAB. Clicking on a sword item will equip that sword, and clicking on a consumable
item will consume that item. There are also three other functions: First, the slots that contain
items have a red button in the top right, if you click on it, the item will be placed in front of the
player. The UNEQUIP button in the top left of the inventory will un-equip the currently
equipped weapon and the player will be able to fight with their fists. Finally, hovering the
mouse over the boxes that contain items will bring up a tooltip window with the useful
information about that item.

Figure 181 — A screenshot of the inventory

5.11.2 Code

The Inventory system is in the Inventory.cs script, where all the methods are

Page 139

System.Collections.Generic;
UnityEngine;

ARPG.Combat;
UnityEngine.UTI;
ARPG.Resources.Items;
System.Ling;
UnityEngine.EventSystems;
TMPrao;

ARPG.Control;

ARPG.Resources

t inventoryUIContainer =

t tooltipParent;

 instance;

inventoryItems

[1 isOccupied =

1[1 discardItemButton
1[1 equipButton =

1 unEquipButton;
isUTEnabled =

playerCombat ;
quipedieapon =

if(instance
{
instanc £
.player Object . FindGameObj
instance.fighter = player.GetComponent< ;i
instance.playerCombat = player.GetComponent<

Destroy({gameDbject);

Figure 182 — Inventory.cs part 1

) .GetComponen

Page 140

if (Input.GetKeyDown(Key e . Tab) Iplayer.OnQuestBox(
player.GetComponen yer(o r>().Getspeaker().GetIsInDialogue())

inventoryUIContainer. SetActive(}:
isUIEnabled = F

inventoryUIContainer.SetActive():
CheckOccupied();
isUIEnabled =

IsInventoryFull()

foreach(item in isOccupied)

r

L
if (item) continue;
else return H

urn

Figure 183 — Inventory.cs part 2

Page 141

InitButtonFunctionsCreation()}

Tr m ntainer = inventoryUIContainer.transform.GetChild(@).transform;
unEquipButton = inventoryUIContainer.transform.GetChild(1).gameObject.GetComponent<But
unEquipButton.onClick.AddListener((] [UnEqui

i=ea;

ch {Tr rm child in slotsContainer)

index = i3
equipButton[i] = child.GetChild(@).gameObject.GetComponen
equipButton[i].o 4 () 1 (in :
equipButton[i].gameObject . AddComponent = V;
equipButton[i].GetComponent<H).index = i;
equipButton[i].GetComponent<H .tooltipParent = tooltipParent;

discardItemButton[i] = child.GetChild(@).transform.GetChild(1).transform.gameObject.GetComponent<E

discardItemButton[i].onClick.AddListener(()
i++;

dItem)
ler»() .DoGatherItemQuestCheck({pickedItem);
pickedIte
ontainer = inventoryUIContainer.transform.GetChild(@).transform;
yrm child in slotsContainer)

(isOccupied[i] ==

isOccupied[i] =
i+

child.GetChild(@).6etChild(@) . gameObject . GetComponent<
child.GetChild(@) .6etChild(

child.GetChild
return;

Figure 184 — Inventory.cs part 3

Page 142

inventoryTtems[i].GetTy

playerCombat . Equipkeapon((JinventoryItems[i]);
equipedWeapon = playerCombat.GetCurrenthWeapond):

if (isOccupied[i] &% inventoryItems[i].GetTyp

ci in inventoryItems.OfTy

player.GetComponent< ().Heal({ci.GetHealthRestoration());
inventoryItem

addToInventoryUL{Sprite icon}

= inventoryUIContainer.transform.GetChild(@).transform;

otsContainer)

f (isOccupied[i])

isOccupied[i]
i+

child.GetChild(@).GetChild(@). j z) .enabled =
child.GetChild(@) .GetChil, .]).sprite = icon;

child.GetChild(@) .6etChild(1) . game
return;

Figure 185 — Inventory.cs part 4

Page 143

= inventoryUIContainer.transform.GetChild(®).transfon
otsContain

Occupied[i]

child.GetChild . i a). ject.GetComponent<T nabled = 5
child.GetChild . i 1). tComponent< ().interactable =

cupied[i] =

ntoryltems.Count; i++)

addToInventoryUI(inventoryItems[i].icon

Discardltem(i)

if (equipedWeapon == inventoryItems[i])
{
UnEquip(};

].

if (inventoryItems[i].GetType(0) || inventoryItems[i].Get)

{
ate(inventoryItems[i].dropPrefab, transform.position +
) .RemoveDialogue();

JIContainer.transform.GetChild(@).GetChild(i);
.gameObject . GetComponent:
.game0bject . GetComponent:
(1) . gameObject . GetComponent

UnEquip()

playerCombat . Equiplleapon(playerCombat . GetDefaultleapon

Figure 186 — Inventory.cs part 5

UnEquip(}

playerCombat . EquipWeapon(playerCombat . GetDefaultWeapon());

) . transform.GetChild(@).transform. gameObject .activeself ==

isOccupied[i]

GetIsInventory

return isUIEnab

Figure 187 — Inventory.cs part 6

Page 144

ir, IPointerEnterHandler, IPointerExitHandler

tooltipParent;

eventData)

em wi in instance.inventoryItems.OfTy
if (wi = instance.inventoryItems[index])

wWij

+ instance.inventoryItems[index].itemName +
+ instance.im
GetDamage

.AnventoryItems[index].GetType() ==

n temp £
leltem ci in instance.inventoryItems.OfType<C

instance.inventoryItems[index])

instance.inventoryItems[index].itemName +
e tems [ind description +

+ temp.GetHealthRestoration() + " r

tooltipParent.SetActive(| H
tooltipParent.GetComponentInChildren< »().text = tooltipText;

OnPointerExit(

tooltipParent.SetActive();
tooltipParent. onentInChildren<

Figure 188 — Inventory.cs part 7

5.12 Ul Scripts
5.12.1 Overview

At any moment player has to know useful information like the current health, the
enemy’s health, the experience and the level. | created an empty GameObject where | added
other GameObjects that contain some useful information and not only, for example the
Inventory, the Quest window and the Escape menu.

Page 145

&9 HUD

Figure 189 — The HUD GameObiject.

e Health Bar GameObiject, uses the PlayerHealthDisplay.cs which displays the health
using a slider and a TMP (TextMeshPro) component.
¢ Roll Ability Bar, uses PlayerAbilityDisplay.cs which displays when the ability is ready
to be used again using a slider.
e Player XP Bar:
e Uses ExperienceDisplay.cs to display the experience using a slider.
e Uses LevelDisplay.cs displays the level using a TMP component.
e Uses XPDisplay.cs to display the experience using a TMP component.
e Inventory, displays the inventory as seen in a previous chapter.
e DialogueBox, which displays the dialogues as seen in a previous chapter
e QuestBox, which displays the quests window as seen in a previous chapter
e PauseMenu, uses EscapeMenu.cs do display a menu with settings and the option to go
to the main menu.

To control the audio and the graphic settings | created a separate GameObject that:

e Uses SetVolume.cs to control the sounds and music volume using 2 different mixers for
each one and sliders.
e Uses GraphicSettings.cs to select a graphic setting using a dropdown component.

Another important thing is that player needs to know about the enemy’s health and the damage
that is being dealt by every attack. These 2 features are provided by EnemyHealthDisplay.cs
and PopupText.cs using Ul elements.

Figure 190 — Enemy’s health bar and damage display.

Page 146

5.12.2 Code

UnityEngine;
UnityEngine.UT;

ARPG.Resources

r slider;
fillImage;

I textValue

) .GetComponent<

HealthPoints();
1th.GetHealthPoints
fillImage = transform.GetChild(@).GetComponent
color = fillImage.color;
textValue = Ge

0

if (health.GetIsImmuneToDamage!
r

i
fillImage.color or.yellow;

fillImage.colo color;

IH
,health.GetHealthPoin

ARPG .M ;
UnityEngine;

playerController;

0

erController =
GetComponent:
slider.maxValue = player{ontroller.GetTimeBetweenRolls();
slider.value = playerController.GetTimeSincelastRoll();

slider.value = playerController.GetTimeSincelastRoll();

Figure 192 — PlayerAbilityDisplay.cs

Page 147

UnityEngine;
UnityEngine

rienceTolLevelUp

updateMin\

slider.minValue = baseStats.GetStat(Stat.ExperienceTolevellUp, baseStats.Getlevel() - 1);

Figure 193 — ExperienceDisplay.cs

TMPro;
UnityEngine;

ARPG

baseStats FindWithTa, nent<B
levelValue = Get nt<T

levelValue.SetText(

Figure 194 — LevelDisplay.cs

Page 148

TMPro;
UnityEngine;

experience;
xpValue;

xperience { i i : GetComponent
¥pValue =

xpValue.SetText erience.GetExperience());

Figure 195 — XPDisplay.cs
UnityEngine

ARPG.Other

t escapeMenuPanel;
1 instani
] audioSources;

instance.escapeMenuPanel.SetActive(| H
instance.audi - .FindObjectsl

Destroy(gameObject);

instance.escapeMenuPanel.activeself)

Figure 196 — EscapeMenu.cs

Page 149

UnityEngine;
UnityEngine.Audio;
UnityEngine.UT;

ARPG.Audio

i mixer;
- slider;

r
L

1
I

if (mixer.name ==
r
L

slider.value =

.GetFloat(
mixer.GetFloat

setlevel(slider.value);

SetLevel(sliderValue)

tFloat (" Mathf.Logl@(sliderValue

, slider.wvalue);
1)

Figure 197 — SetVolume.cs

Page 150

TMPro;
UnityEngine;
UnityEngine.SceneManageme

ARPG.Other

dropdown .value) ;

neMode mode)

ChangeGraphics(dropdow

Figure 199 — GraphicSettings.cs part 2

Page 151

vEngine;
UnityEngine.UL;

ARPG.Resources

t enemyHealthl
owDistance = 1
health;
lider;

);
efab.GetComponent<!
health.GetMaxHealthPoints();

mponentInParem

if (health.IsDead(})
-

L
canvas.enabled =
1
if (!health.IsDe
i
istance(player.transform.position, health.gameObject - i ¢ showDistance)

canvas.enabled = 2
health.GetHealthPoin

canvas.enabled =

Figure 200 — EnemyHealthDisplay.cs part 1

UnityEngine;

ARPG.Other

lifeTime

1.Range(-randomXPosition, randomXPosition), @, 8);

rm.rotation;

Figure 201 — PopupText.cs

Page 152

5.13 Other Scripts

5.13.1 SmartRenderer.cs

The NPCs throughout the scene "run" and do what they are supposed to do, but that
means they are enabled even when the camera is not rendering them, and that leads to increased
CPU consumption, e.g. the CPU time to process a frame was 8.3 miliseconds and the render
time was 121 FPS (Frames Per Second). However, using SmartRenderer.cs attached to each
NPC, guard and enemy ensures that they are not activated and rendered unless they are within
a certain distance of the player. The result is that CPU took 5.2 miliseconds and 192 FPS to
process one frame, which is an improvement.

ARPG.AT;
UnityEngine;

ARPG.Core

.FindGameObjectWithTag("

r3.Distance({gameObject.transform.position, player.transform.position) > 58f)

rm.GetChild(@) . gameObject . SetActive();

else if (!isActivated &% or3.Distance(gameObject.transform.position, player.transform.position)} <= 58f)

gameDbject. transform.GetChild(8).gameObject . SetActive(HF
anage(

GetComponent<Di

ret

else if (gameObject.tag == "G

GetComponent<
return;
else if (gameObject.tag == "

GetComponent< ro »().enabled = state;

Figure 203 — SmartRenderer.cs part 2

Page 153

5.13.2 WaypointPath.cs

Basic NPCs, farmers, woodcutters, enemies, and guards use a waypoint path system
to move around the map. More specifically, it is an empty GameObject that has the
WaypointPath.cs script attached to it and has empty GameObiject children, where these child
GameObijects are the waypoints. For example, in Figure 204, the GameObject containing the
WaypointPath.cs script has 19 waypoints. It can be a cycle path and a non-cycle path, which
means that either the last waypoint can be connected to the first or not.

Select

X 4416653 Y 14.99725
X0 Yo
Y1

B waypoint Path (Script)

Is Cycle Path v

Add Component

Figure 204 — Waypoint path example.
UnityEngine;

ARPG.Control

i=CyclePath =

waypointGizmoRadius = 8.5F;
@; i ¢« transform.childCount; i++)

os.color = Color.blue;

os.DrawSphere (GetWaypoint(i), waypoimtGizmoRadius);

isCyclePath ==)

NextIndex(i)));

GetIsCyclePath()

return isCyclePath;

Figure 205 — WaypointPath.cs part 1

Page 154

GetNextIndex(i)

if (i + 1 == transform.childCount)
{
return 8;
1
I
return i + 1;

GetNextIndexBackwards(i}

if (i+1 == transform.childCount)

if{goBackwards ==
r

goBackwards =
return 1 + 1;
1
I
if (poBackwards ==
r
L
return 1 - 1;
1
¥
return 1 + 1;

or3 GetWaypoint(i)

return transform.GetChild(i).position;

Figure 206 — WaypointPath.cs part 2

5.13.3 Safe.cs

When all NPCs (Plain, Farmers, Woodcutters) are on alert because of a fight or because
an enemy is trying to attack them, they enter the Flee state. When fleeing, the NPCs stop what
they were doing and hide in a safe place. This safe place is an empty GameQObject to which the
Safe.cs script is attached, and a Box Collider (so that the script can identify the NPCs in
collisions). Example in Figure 207.

Page 155

v Safe Sanlow 1

" Tag Untagged > Layer Default
Open Select Overrides

Transform

Position 159.253 Y 9.923
Rotation X0 Y -28.414
X1 Y 1

B v safe (Script)

Add Component

Figure 207 — Safe point example.

Generic;

ARPG. Control

npcs =
woodcutt
farmers

if (other.tag

1
I

Figure 208 — Safe.cs part 1

Page 156

¥
L

farmer . gameObject . SetActive(s
StartCoroutine(WaitInSafe(farmer));

- npc)
s(waitTime));

'

er farmer)
waitTime));
meDbject.SetActive():

rrentWaypointIndex = @3
farmers . Remove (farmer) ;

Figure 209 — Safe.cs part 2

5.13.4 MainMenuManager.cs

When player first starts the game, the main menu scene is loaded and shows the game
logo with a fade out effect while the camera moving downwards. When fade out is over then
the main menu buttons are coming into the camera view and player has the options:

e Start game, which starts the game.

e How to play, shows a panel with instructions.

e About, shows a panel with the quick view on the storyline.
e Settings, shows a panel with graphics and audio settings.

e Exit game, closes the game.

Page 157

= Hierar
+ -
<« MainMenuScene
&) Eve
1
by
oD
Terrain

Camera - MainMenu Manager

ag Untagged

Transform

Camera
Post-proce
v Animator

~ Main Menu Manager (Script)

‘arent

" Audio Listener
~ Audio Source

" Discord Controller (Script)

Add C

Figure 211 — Camera — MainMenu Manager GameObject.

Page 158

System.Collections;
UnityEngine.UT;

ARPG.Other

while (temp.a

eltaTime);

ButtonsEnter();:

ButtonsEnter()

buttonsParent.GetComponent<A

C1 nels();

L

panelsParent.transform.GetChild (1) . gameOb: . ! ve(value);

AboutPanelManager(

ClosePanels();
panelsParent . transform.GetChild(2) . gameObject . SetActi

ExitGame()

.DeleteAll();
it

panelsParent.transform.childCount; i++)

panelsParent.transform.GetChild(i) . gameObject.SetAct

Figure 213 — MainMenuManager.cs part 2

Page 159

5.13.5 Sceneloader.cs

When player clicks the start game from the main menu or returning from the game
scene to the main menu scene, the ScenelLoader.cs is used. It is responsible for loading the
scene asynchronously in the background and showing random tips about the game.

System.Collections;

TMPro;

UnityEngine;
UnityEngine.SceneManagement;
UnityEngine.UT;

progressText;
UT tipText;

LoadScene(scenelndex)

StartCoroutine(lLoadAsynchronously{sceneIndex)};

IEnumerator LoadAsynchronously(

loadingScreen. SetActive(| H
or color = loadingScreen.GetComponemt<I ().color;
color.a = 1f;
loadingscreen. GetComponent<In }.color = color;
if (showTip)
-

L
tipText.gameObject.SetActive(1F
tipText.text = tips[Random.Range(®, tips.Length}];

(!operation.isDone)

progressText.
yield return

Figure 214 — ScenelLoader.cs

Page 160

5.13.6 DiscordController.cs

First what is Discord? It is a popular online communication platform that lets you
communicate with your friends directly via text, voice or video and join servers where small
and large communities interact together. | added the Discord’s rich presence integration so the
player can show to others on Discord, what game is currently playing and what is doing.

GTrouble#2437

User Info Activity

PLAYING A GAME

Nysa's Quest
On the menu
Waiting

Figure 215 — Discord’s rich presence.

After following the Discord’s developers portal, | downloaded the SDK for Unity (Csharp) and
installed it in the Plugins folder of the Project. Created an application on the Discord Developer
portal and provided a game name and a logo and lastly, | created the DiscordController.cs.

Page 161

UnityEngine;

ARPG.Other
troller

details
state =

Discord.Discord discord;

discord.Dispose();

discord = Discord.Discord(s A 1 JDiscord.CreateFlags.Default);

Manager = discord.GetActivityManager();

Discord. As ty

= details,

ctivityManager.UpdateActivity(activity, (result) =>

O = e
we

-

discord.RunCallbacks();

Figure 216 — DiscordController.cs

The red mark in figure 216 is used to hide the application’s client id.

5.14 Navigation

Unity provides a navigation system that allows the creation of intelligent characters that
can move around the game world, using navigation meshes that were created automatically
from the scene’s geometry and dynamic obstacles allow you to alter the navigation of the
characters at runtime. The following pieces are part of the navigation system:

e NavMesh, is a data structure which describes the walkable surfaces of the game world
and allows to find path from one walkable location to another. The data structure is
built, or baked, automatically from the level’s geometry.

e NavMesh Agent component helps to define characters that avoid each other when
moving in the scene.

Page 162

e Off-Mesh Link component allows to create navigation shortcuts between two locations.
e NavMesh Obstacle is a component that allows you to describe moving obstacles for the
agents to avoid when moving in the scene.

In this project, for player and NPC navigation, I first marked the terrain and some other surfaces
as Navigation Static to include them in the NavMesh baking process. | also added the NavMesh
obstacle component to trees, NPCs, and other buildings. On the Agents tab of the navigation
window, | left the settings unchanged because they fit my characters (player and NPCs). On
the Bake tab, | adjusted the settings as | did with the Humanoid agent and baked the navigation.

@ Inspector 28 Navigation ® |igh

Agents Areas Bake

Learn inste
Baked Ag

Figure 218 — Navigation, Bake tab

Page 163

Figure 219 — NavMesh area of a part of the scene

Page 164

6. Epilogue
6.1 Conclusion

In this action RPG project, Nysa's Quest, | designed and created a small 3D world
populated with many friendly entities such as simple NPCs, farmers, woodcutters, and many
aggressive enemies. For all entities, both friendly and aggressive, | created finite-state machine
controllers to control their actions. The result is a living world where friendly entities can go
from doing their chores or going for a walk, to fleeing from aggressive entities or from a fight
that is happening. The animations are simple and the transitions between them are as smooth
as | could make them with my current assets. Another great addition was the dialogue and quest
system, which gives the player the ability to receive and follow quests from the NPCs or just
talk to some of them. The stats and items make the player feel like they are progressing and
getting stronger. Another point is the Ul of the game. It is simply designed, but contains
everything the player needs to know. Lastly, the game's storyline is a small one, consisting of
4 quests and 3 additional side quests that do not clash with the storyline and give the player a
quick but fun experience.

6.2 Difficulties

There were a few difficulties that got in the way while developing Nysa's Quest, but
after study and research | was always able to solve them. When creating the inventory system,
| found it difficult to implement the tooltip feature, and | spent some time looking in Unity's
scripting documentation and on the Unity forums. Next, it was a matter of creating the Al.
Initially I created a simple controller that controlled both the NPCs and the enemies, but when
| started creating the finite state machines for the NPCs, the guard, and the enemy, while it was
easy to create the states, | found it difficult to create the logic of the transitions, meaning I had
to test, tweak, and iterate some of the transitions several times, which took a lot of time to get
to the current state of the Al behavior.

6.3 Future Improvements

To improve the game, | think adding new maps/areas to explore and new quests will
make the game significantly longer, more intriguing, and more fun. Next, improvements can
be made to the game's audio, where | think it still lacks. More and better music tracks, sound
effects, and ambient sounds can help control emotions and set the tone of a situation or story.
Another thing that needs to be improved is the game's combat, as the current combat is simple
and for an action RPG game it would be nice to have more attacks and complex attack combos.
Adding equipment and new types of items would also be a must, because the player will spend
a lot of time collecting better equipment to have a nice cosmetic look and items to help them
in the fights with the enemies. There can be more improvements of course, but these 4
improvements | mentioned are the ones that are most needed at the current state of the game.

Page 165

7. Bibliography

N =

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.

https://en.wikipedia.org/wiki/Unity (game_engine)
https://www.freecodecamp.org/news/unity-game-engine-quide-how-to-get-started-
with-the-most-popular-game-engine-out-there/
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Action_role-playing_game
https://en.wikipedia.org/wiki/Artificial _intelligence
https://en.wikipedia.org/wiki/Artificial intelligence in_video games
http://gameaibook.org/book.pdf
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/Manual/Components.html

. https://docs.unity3d.com/Manual/Prefabs.html
. https://docs.unity3d.com/Manual/class-ScriptableObject.html
. https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformancelnUnity3.ht

ml

https://docs.unity3d.com/Manual/UsingTheEditor.html
https://docs.unity3d.com/Manual/Toolbar.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/GameView.html
https://docs.unity3d.com/Manual/UsingThelnspector.html
https://docs.unity3d.com/Manual/ProjectView.html
https://gamedevbeginner.com/coroutines-in-unity-when-and-how-to-use-them/
https://docs.unity3d.com/Manual/LightingInUnity.html
https://docs.unity3d.com/Manual/AnimatorControllers.html
https://docs.unity3d.com/Manual/AnimatorOverrideController.html
https://www.youtube.com/watch?v=mhEiJ_-jyTs
https://www.youtube.com/watch?v=V75hgqcsCGOM
https://docs.unity3d.com/Manual/Navigation.html

Page 166

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://www.freecodecamp.org/news/unity-game-engine-guide-how-to-get-started-with-the-most-popular-game-engine-out-there/
https://www.freecodecamp.org/news/unity-game-engine-guide-how-to-get-started-with-the-most-popular-game-engine-out-there/
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Action_role-playing_game
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence_in_video_games
http://gameaibook.org/book.pdf
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/Manual/Components.html
https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity3.html
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity3.html
https://docs.unity3d.com/Manual/UsingTheEditor.html
https://docs.unity3d.com/Manual/Toolbar.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/GameView.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/ProjectView.html
https://gamedevbeginner.com/coroutines-in-unity-when-and-how-to-use-them/
https://docs.unity3d.com/Manual/LightingInUnity.html
https://docs.unity3d.com/Manual/AnimatorControllers.html
https://docs.unity3d.com/Manual/AnimatorOverrideController.html
https://www.youtube.com/watch?v=mhEiJ_-jyTs
https://www.youtube.com/watch?v=V75hgcsCGOM
https://docs.unity3d.com/Manual/Navigation.html

