
Page 1

HELLENIC MEDITERRANEAN

UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

COURSE TYPE: INFORMATICS ENGINEERING T.E.

THESIS

Design and implementation of 3rd Person Action RPG Game

in Unity 3D

George Beladakis – Α.Μ. 4177

Supervisor: Ioannis Pachoulakis

Heraklion 2021

Page 2

Page 3

Thanking Section

At the beginning of this major project in 2020, I was at the most difficult phase in my life and

in this section, I would like to thank everyone because I received a great deal of support and

assistance for the completion of this project and not only.

I would like to thank and express my deepest appreciation to my supervisor, Professor Ioannis

Pachoulakis, whose expertise was invaluable, for giving me the chance and providing guidance

and feedback throughout this project.

I would also like to thank my parents for their unlimited support and sympathetic ear. You are

always there for me. Also, I would like to thank my family and friends Vasilis Papanikolaou

and Dimitris Iliadis, for supporting, giving constructive feedback, and noticing many of my

mistakes.

In addition, I would like to thank my doctor, Georgia Milaki, whose dedication, and

compassion are beyond limits. I really appreciate your skills and the care you have brought to

the treatment, and I feel most fortunate to have you as my physician.

Page 4

Abstract

This dissertation is about the development of a Third-Person Action RPG game by using the

game engine Unity3D. In addition, more emphasis is placed on the development of artificial

intelligence, using finite state machines that are responsible for the actions that an entity will

take based on its conditions at any given time period.

In this game, I have created a 3D world, created entities like NPCs, guards and enemies that

are controlled by the finite state machines. Also created animator controllers for the

animations of the player and the rest of the entities. Created a simple UI and I developed a

dialogue & quests system, stats and items, player’s controllers, and an inventory system.

All things considered; player’s purpose is to discover a fantasy/medieval world through

storytelling by completing quests. At the same time, player has the ability to collect items like

weapons and consumables that will come in handy when in need and danger. Another key

feature is the ability to gain experience by completing quests and killing enemies, to become

stronger and be able to cope with the difficulty of the quests.

Page 5

Περίληψη

Η πτυχιακή αυτή έχει ως σκοπό την ανάπτυξη ενός Third-Person Action RPG παιχνιδιού

χρησιμοποιώντας την παιχνιδομηχανή Unity3D. Επιπροσθέτως έδωσα παραπάνω έμφαση

στην ανάπτυξη τεχνητής νοημοσύνης χρησιμοποιώντας finite state machines, τα οποία είναι

υπεύθυνα για τις ενέργειες που θα πραγματοποιήσει μια οντότητα με βάση τις συνθήκες της

σε οποιαδήποτε χρονική περίοδο.

Σε αυτό το παιχνίδι, δημιούργησα έναν τρισδιάστατο κόσμο, δημιούργησα οντότητες όπως

NPC, φρουρούς και εχθρούς που ελέγχονται από τα finite state machines. Επίσης δημιούργησα

animator controllers για τα animations του παίκτη και των υπόλοιπων οντοτήτων.

Δημιούργησα ένα απλό UI και ανέπτυξα ένα σύστημα διαλόγου και για quests, αντικείμενα

και στατιστικά, controllers για τον παίκτη και ένα σύστημα για το inventory.

Με βάση τα παραπάνω, ο σκοπός του παίκτη είναι να ανακαλύψει έναν

φανταστικό/μεσαιωνικό κόσμο μέσω της αφήγησης ολοκληρώνοντας quests. Ταυτόχρονα ο

παίκτης έχει την ικανότητα να συλλέγει αντικείμενα όπως όπλα και αναλώσιμα που θα

φανούν χρήσιμα όταν υπάρχει ανάγκη και κίνδυνος. Ένα άλλο βασικό χαρακτηριστικό είναι

η δυνατότητα απόκτησης εμπειρίας ολοκληρώνοντας αποστολές και σκοτώνοντας εχθρούς,

για να γίνεται δυνατότερος και να μπορεί να ανταπεξέρχεται με την δυσκολία των

αποστολών.

Page 6

Table of Contents

1. Introduction .. 16

1.1 Summary of the Game .. 16

1.2 Motivation of Making this Project ... 16

1.3 Purpose and Objectives of the Project .. 16

2. Technologies and Concepts .. 17

2.1 What is a Game Engine and What is Unity .. 17

2.2 What is an Action RPG Game Genre ... 17

2.3 What is Artificial Intelligence .. 17

2.3.1 Artificial Intelligence in Video Games ... 17

2.3.2 What is a Finite State Machine ... 18

2.4 A Few Important Unity Concepts ... 18

2.4.1 GameObject .. 18

2.4.2 Component .. 18

2.4.3 Prefab .. 18

2.4.4 Scriptable Object ... 19

2.4.5 Coroutines ... 19

3. Working in Unity and Resources .. 19

3.1 Unity Editor’s Interface .. 19

3.1.1 Toolbar .. 20

3.1.2 Hierarchy Window .. 20

3.1.3 Scene View ... 20

3.1.4 Game View ... 21

3.1.5 Inspector Window ... 21

3.1.6 Project Window ... 22

3.2 About Resources and Assets .. 22

4. Introduction to the Player & The Rest of the Entities ... 23

4.1 Main Character and Controls .. 23

4.2 NPCs .. 24

 4.3 Enemies & Guards.. 24

4.4 Analyzing NPC, Enemy and Guard AI .. 24

4.4.1 Plain NPC .. 25

4.4.2 Farmer NPC .. 25

4.4.3 Woodcutter NPC ... 26

4.4.4 Enemy NPC .. 26

Page 7

4.4.5 Guard NPC .. 27

5. Game Development .. 28

5.1 Environment Creation .. 28

5.2 Lighting & Post-processing .. 31

5.3 Animator Controllers .. 35

5.4 Quest & Dialogue System .. 39

5.4.1 Overview ... 39

5.4.1 Code .. 40

5.5 Player .. 51

5.5.1 Overview ... 51

5.5.1 Code .. 51

5.6 Stats & Health .. 64

5.6.1 Overview ... 64

5.6.1 Code .. 64

5.7 AI.. 74

5.7.1 State Machine .. 74

5.7.1.1 Overview.. 74

5.7.1.2 Code ... 75

5.7.2 Enemy AI Controller & States .. 78

5.7.2.1 Overview.. 78

5.7.2.2 Code ... 78

5.7.3 Guard AI Controller & States ... 87

5.7.3.1 Overview.. 87

5.7.3.2 Code ... 87

5.7.4 NPC AI .. 94

5.7.4.1 DialogueNPC and NPCs .. 94

5.7.4.1.1 Overview .. 94

5.7.4.1.2 Code .. 94

5.7.4.2 NPC AI Controller & States .. 94

5.7.4.2.1 Overview .. 94

5.7.4.2.2 Code .. 95

5.7.4.3 Farmer AI Controller & States ... 99

5.7.4.3.1 Overview .. 99

5.7.4.3.2 Code .. 100

Page 8

5.7.4.4 Woodcutter AI Controller & States ... 111

5.7.4.4.1 Overview .. 111

5.7.4.4.2 Code .. 112

5.8 Mover & Fighter ... 123

5.8.1 Overview ... 123

5.8.2 Code .. 124

5.9 Items, Weapon items & Consumables .. 128

5.9.1 Overview ... 128

5.9.2 Code .. 131

5.10 Projectiles ... 136

5.10.1 Overview ... 136

5.10.2 Code .. 137

5.11 Inventory .. 138

5.11.1 Overview ... 138

5.11.2 Code .. 139

5.12 UI Scripts.. 145

5.12.1 Overview ... 145

5.12.2 Code .. 147

5.13 Other Scripts ... 153

5.13.1 SmartRenderer.cs .. 153

5.13.2 WaypointPath.cs ... 154

5.13.3 Safe.cs ... 155

5.13.4 MainMenuManager.cs .. 157

5.13.5 SceneLoader.cs ... 160

5.13.6 DiscordController.cs ... 161

5.14 Navigation .. 162

6. Epilogue .. 165

6.1 Conclusion .. 165

6.2 Difficulties .. 165

6.3 Future Improvements ... 165

7. Bibliography ... 166

Page 9

Table of Figures

Figure 1 – Unity Editor’s workspace interface ... 19

Figure 2 – Unity Editor’s toolbar .. 20

Figure 3 – Hierarchy window ... 20

Figure 4 – Example Scene view of the main scene. ... 21

Figure 5 – Example Game view of the main menu scene. ... 21

Figure 6 – Inspecting the properties of the Player GameObject. ... 22

Figure 7 – Project files as viewed in the Project window ... 22

Figure 8 – Main character “Nysa” ... 23

Figure 9 – Plain NPC’s finite state machine – NPCAIController.cs .. 25

Figure 10 – Farmer’s finite state machine – FarmerController.cs .. 25

Figure 11 – Woodcutter’s finite state machine – WoodcutterController.cs .. 26

Figure 12 – Enemy’s finite state machine – EnemyAIController.cs... 26

Figure 13 – Woodcutter’s finite state machine – GuardController.cs... 27

Figure 14 – A Terrain GameObject and it’s components. ... 28

Figure 15 – A top-down view of the Terrain. .. 29

Figure 16 – A top-down view of the final result of the Scene. .. 29

Figure 17 – Textures in Paint Texture. .. 30

Figure 18 – Bushes and grasses that were used. .. 30

Figure 19 – Screenshot of the first village .. 31

Figure 20 – Mixed Lighting in Lighting Window. .. 31

Figure 21 – Light component of Directional Light GameObject. .. 31

Figure 22 – Lightmapping Settings .. 32

Figure 23 – Baked lights & post process off... 33

Figure 24 – Baked lights on & post process off.. 33

Figure 25 – Camera GameObject’s Post-process Layer component .. 34

Figure 26 – Camera GameObject’s Post-process Layer component .. 34

Figure 27 – Baked Lights & post process on .. 35

Figure 28 – Player’s Animator Controller .. 36

Figure 29 – Player’s “Locomotion” Blend Tree ... 36

Figure 30 – Player’s Animator Controller’s parameters ... 36

Figure 31 Enemy & Guard Animator Controller .. 37

Figure 32 – Plain NPC Animator Controller .. 37

Figure 33 – Farmer NPC Animator Controller’s parameters .. 38

Page 10

Figure 34 – Woodcutter NPC Animator Controller’s parameters .. 38

Figure 35 – In game screenshot of the quest list ... 39

Figure 36 – In game screenshot of the Nysa being in dialogue with an NPC that gives quest. 39

Figure 37 – Quest & Dialogue System folder structure. .. 40

Figure 38 – Speaker.cs .. 40

Figure 39 – DialogueLine.cs... 41

Figure 40 – Dialogue.cs .. 41

Figure 41 – DialogueManager.cs part 1 .. 42

Figure 42 – DialogueManager.cs part 2 .. 42

Figure 43 – DialogueManager.cs part 3 .. 43

Figure 44 – DialogueManager.cs part 4 .. 43

Figure 45 – Quest.cs ... 44

Figure 46– QuestGoal.cs .. 44

Figure 47 – QuestType.cs ... 45

Figure 48 – QuestEnemy.cs .. 45

Figure 49 – NPCQuestGiver.cs part 1 .. 46

Figure 50 – NPCQuestGiver.cs part 2 .. 46

Figure 51 – QuestManager.cs part 1 ... 47

Figure 52 – QuestManager.cs part 2 ... 48

Figure 53 – QuestManager.cs part 3 ... 49

Figure 54 – QuestManager.cs part 4 ... 50

Figure 55 – QuestManager.cs part 5 ... 50

Figure 56 – PlayerController.cs part 1 .. 51

Figure 57 – PlayerController.cs part 2 .. 52

Figure 58 – PlayerController.cs part 3 .. 52

Figure 59 – PlayerController.cs part 4 .. 53

Figure 60 – PlayerController.cs part 5 .. 54

Figure 61 – PlayerController.cs part 6 .. 55

Figure 62 – PlayerCombat.cs part 1.. 56

Figure 63 – PlayerCombat.cs part 2.. 57

Figure 64 – PlayerCombat.cs part 3.. 57

Figure 65 – PlayerCombat.cs part 4.. 58

Figure 66 – PlayerCombat.cs part 5.. 59

Figure 67 – PlayerCombat.cs part 6.. 60

Page 11

Figure 68 – PlayerMovement.cs part 1 ... 61

Figure 69 – PlayerMovement.cs part 2 ... 62

Figure 70 – PlayerMovement.cs part 3 ... 62

Figure 71 – PlayerMovement.cs part 4 ... 63

Figure 72 – IAction.cs .. 63

Figure 73 – ActionScheduler.cs .. 64

Figure 74 – CharacterClass.cs .. 65

Figure 75 – Stat.cs .. 65

Figure 76 – Progression of the Player ... 66

Figure 77 – Progression.cs part 1 ... 67

Figure 78 – Progression.cs part 2 ... 68

Figure 79 – Experience.cs... 68

Figure 80 – BaseStats.cs part 1 ... 69

Figure 81 – BaseStats.cs part 2 ... 69

 Figure 82 – BaseStats.cs part 3 .. 70

Figure 83 – ExperienceDisplay.cs .. 70

Figure 84 – LevelDisplay.cs ... 71

Figure 85 – XPDisplay.cs ... 71

Figure 86 – Health.cs part 1 .. 72

Figure 87 – Health.cs part 2 .. 72

Figure 88 – Health.cs part 3 .. 73

Figure 89 – Health.cs part 4 .. 73

Figure 90 – Example states and transitions .. 75

Figure 91 – StateMachine.cs part 1 .. 76

Figure 92 – StateMachine.cs part 2 .. 77

Figure 93 – IState.cs ... 77

Figure 94 – EnemyAIController.cs part 1 .. 79

Figure 95 – EnemyAIController.cs part 2 .. 79

Figure 96 – EnemyAIController.cs part 3 .. 80

Figure 97 – EnemyAIController.cs part 4 .. 80

Figure 98 – EnemyAIController.cs part 5 .. 81

Figure 99 – EnemyAttackNPC.cs ... 82

Figure 100 – EnemyAttackGuard.cs ... 83

Figure 101 – EnemyAttackPlayer.cs part 1 .. 84

Page 12

Figure 102 – EnemyAttackPlayer.cs part 2 .. 84

Figure 103 – EnemySuspicion.cs ... 85

Figure 104 – EnemyGuarding.cs part 1 .. 86

Figure 105 – EnemyGuarding.cs part 2 .. 86

Figure 106 – GuardAIController.cs part 1 .. 88

Figure 107 – GuardAIController.cs part 2 .. 88

Figure 108 – GuardAIController.cs part 3 .. 89

Figure 109 – GuardAIController.cs part 4 .. 89

Figure 110 – GuardAttackEnemy.cs part 1 .. 90

Figure 111 – GuardAttackEnemy.cs part 2 .. 91

Figure 112 – GuardGuarding.cs part 1 ... 91

Figure 113 – GuardGuarding.cs part 2 ... 92

Figure 114 – GuardSuspicion.cs ... 93

Figure 115 – GuardTalk.cs ... 93

Figure 116 – DialogueNPC.cs .. 94

Figure 117 – Talk.cs ... 95

Figure 118 – Motion.cs part 1 ... 96

Figure 119 – Motion.cs part 2 ... 97

Figure 120 – Flee.cs part 1 ... 98

Figure 121 – Flee.cs part 2 ... 98

Figure 122 – GatherableResource.cs .. 100

Figure 123 – FarmerController.cs part 1 .. 100

Figure 124 – FarmerController.cs part 2 .. 101

Figure 125 – FarmerController.cs part 3 .. 102

Figure 126 – FarmerController.cs part 4 .. 103

Figure 127 – FarmerController.cs part 5 .. 103

Figure 128 – FarmerInitialDecision.cs ... 104

Figure 129 – FarmerSearchResource.cs ... 105

Figure 130 – FarmerMoveToResource.cs part 1 .. 106

Figure 131 – FarmerMoveToResource.cs part 2 .. 106

Figure 132 – FarmerHarvest.cs part 1 .. 107

Figure 133 – FarmerHarvest.cs part 2 .. 107

Figure 134 – FarmerReturnGoods.cs .. 108

Figure 135 – FarmerFlee.cs part 1 .. 109

Page 13

Figure 136 – FarmerFlee.cs part 2 .. 110

Figure 137 – FarmerTalk.cs .. 110

Figure 138 – WoodcutterController.cs part 1 ... 112

Figure 139 – WoodcutterController.cs part 2 ... 113

Figure 140 – WoodcutterController.cs part 3 ... 114

Figure 141 – WoodcutterController.cs part 4 ... 115

Figure 142 – WoodcutterController.cs part 5 ... 115

Figure 143 – WoodcutterInitialDecision.cs .. 116

Figure 144 – WoodcutterSearchResource.cs part 1 .. 117

Figure 145 – WoodcutterSearchResource.cs part 2 .. 117

Figure 146 – WoodcutterMoveToResource.cs ... 118

Figure 147 – WoodcutterHarvest.cs part 1 ... 119

Figure 148 – WoodcutterHarvest.cs part 2 ... 119

Figure 149 – WoodcutterReturnWood.cs ... 120

Figure 150 – WoodcutterFlee.cs part 1 ... 121

Figure 151 – WoodcutterFlee.cs part 2 ... 121

Figure 152 – WoodcutterWalk.cs part 1 ... 122

Figure 153 – WoodcutterWalk.cs part 2 ... 122

Figure 154 – WoodcutterTalk.cs .. 123

Figure 155 – Mover.cs part 1 .. 124

Figure 156 – Mover.cs part 2 .. 125

Figure 157 – Fighter.cs part 1 ... 125

Figure 158 – Fighter.cs part 2 ... 126

Figure 159 – Fighter.cs part 3 ... 127

Figure 160 – Fighter.cs part 4 ... 128

Figure 161 – The “Fury” WeaponItem scriptable object. .. 130

Figure 162 – The “Health Potion” ConsumableItem scriptable object. ... 130

Figure 163 – The “Fury” sword pickup and its components. .. 130

Figure 164 – The “Fury” sword that is used when it’s on an agent’s hands. ... 131

Page 14

Figure 165 – Item.cs ... 131

Figure 166 – ConsumableItem.cs ... 131

Figure 167 – WeaponItem.cs part 1 .. 132

Figure 168 – WeaponItem.cs part 2 .. 132

Figure 169 – WeaponItem.cs part 3 .. 133

Figure 170 – Pickup.cs part 1 ... 133

Figure 171 – Pickup.cs part 2 ... 134

Figure 172 – DropItemOnDeath.cs ... 134

Figure 173 – ItemPickUp.cs ... 135

Figure 174 – DropItem.cs ... 135

Figure 175 – The arrow projectile GameObject and its components. .. 136

Figure 176 – The arrow hit effect GameObject and its components. .. 136

Figure 177 – DestroyAfterEffect.cs .. 137

Figure 178 – Projectile.cs part 1 ... 137

Figure 179 – Projectile.cs part 2 ... 138

Figure 180 – Projectile.cs part 3 ... 138

Figure 181 – A screenshot of the inventory ... 139

Figure 182 – Inventory.cs part 1 ... 140

Figure 183 – Inventory.cs part 2 ... 141

Figure 184 – Inventory.cs part 3 ... 142

Figure 185 – Inventory.cs part 4 ... 143

Figure 186 – Inventory.cs part 5 ... 144

Figure 187 – Inventory.cs part 6 ... 144

Figure 188 – Inventory.cs part 7 ... 145

Figure 189 – The HUD GameObject. .. 146

Figure 190 – Enemy’s health bar and damage display. ... 146

Figure 191 – PlayerHealthDisplay.cs ... 147

Figure 192 – PlayerAbilityDisplay.cs ... 147

Figure 193 – ExperienceDisplay.cs .. 148

Figure 194 – LevelDisplay.cs ... 148

Figure 195 – XPDisplay.cs ... 149

Figure 196 – EscapeMenu.cs .. 149

Figure 197 – SetVolume.cs... 150

Figure 198 – GraphicSettings.cs part 1 ... 151

Page 15

Figure 199 – GraphicSettings.cs part 2 ... 151

Figure 200 – EnemyHealthDisplay.cs part 1 .. 152

Figure 201 – PopupText.cs ... 152

Figure 202 – SmartRenderer.cs part 1 .. 153

Figure 203 – SmartRenderer.cs part 2 .. 153

Figure 204 – Waypoint path example. ... 154

Figure 205 – WaypointPath.cs part 1.. 154

Figure 206 – WaypointPath.cs part 2.. 155

Figure 207 – Safe point example. .. 156

Figure 208 – Safe.cs part 1 ... 156

Figure 209 – Safe.cs part 2 ... 157

Figure 210 – Main menu scene GameObjects. .. 158

Figure 211 – Camera – MainMenu Manager GameObject. ... 158

Figure 212 – MainMenuManager.cs part 1 .. 159

Figure 213 – MainMenuManager.cs part 2 .. 159

Figure 214 – SceneLoader.cs .. 160

Figure 215 – Discord’s rich presence. ... 161

Figure 216 – DiscordController.cs.. 162

Figure 217 – Navigation, Agents tab .. 163

Figure 218 – Navigation, Bake tab ... 163

Figure 219 – NavMesh area of a part of the scene ... 164

Page 16

1. Introduction

1.1 Summary of the Game

Nysa's Quest is a 3rd-person action RPG game developed for PC. Thanks to the elements

of the RPG and action genres, the game gives the impression that the player is part of a

fantasy/mediaeval world. By taking on the role of a character and the scenario, player will aim

to complete quests and fight with various enemies to reach the goal.

As mentioned earlier, the game takes place in a fantasy/mediaeval world. The player takes

control of a young woman named Nysa, who has lost her parents and family estate to a band

of exiled knights. Nysa's passion for revenge and justice drives her on a quest to find those

responsible for her family's misfortune and retrieve the stolen family sword.

1.2 Motivation of Making this Project

The motivation for creating this project stems from 3 things. First, my love of games. When

I play a game similar to this project, I am always curious about the scenarios, exploration,

character empowerment, gathering, and how these things actually work. Secondly, it's exciting

to create something. For example, when I am working with Unity, it's always fun and exciting

to create a movement script for a character and then press play to see the result. The third and

final point is the will to create my own game, having an idea, writing it down and then

implementing with my resources.

1.3 Purpose and Objectives of the Project

The purpose of this project is to develop a 3D Action RPG game, focusing on creating

Artificial Intelligence and improving my programming skills. To achieve that purpose, I'm

using the reliable Unity3D game engine and programming in C#, because it's simple, well

documented and there is a wide range of tutorials available thanks to the community. The goal

of the game is to make the player feel like they are a part of this world and that there is a goal

to achieve. There are 4 quests to complete the game, but there are also 3 more side quests so

that if the player wants to explore more or to get stronger if they want to.

Page 17

2. Technologies and concepts

2.1 What is a Game Engine and What is Unity

 A game engine is a software framework designed primarily for developing video game

development, and in general includes related libraries and utilities. The main features that a

game engine typically provides, include a rendering engine for two-dimensional (2D) or three-

dimensional (3D) graphics, memory management, networking, artificial intelligence,

animation, scripting, a physics engine, streaming, sound, threading, localization support, video

support for cinematics, and scene graph.

Unity was created by Unity Technologies and is a cross-platform game engine that is mainly

used to develop video games and simulations for computers, consoles, and mobile devices.

Unity was launched in 2005 and since then it has been expanded to 27 platforms. The Unity

game engine is an "all-purpose" as it supports two-dimensional (2D) and three-dimensional

(3D) graphics, is also a good choice for Virtual-Reality (VR) and natively supports the C#

programming language. It is important to note that the engine is not only used in the video

game industry, but also in industries such as engineering, construction, architecture, film, and

automotive.

2.2 What is an Action RPG Game Genre

 An action RPG is a subgenre or subdivision of the RPG genre. That is, this subgenre

includes RPG combat systems that combine RPG mechanics with real-time, direct, and

reflexive action game combat systems. In action role-playing games, the player has real-time

direct control over a character's movements, actions in combat, and stats to determine relative

strength and abilities.

2.3 What is Artificial Intelligence

The natural intelligence displayed by humans or animals can also be demonstrated by

machines. This term is called Artificial Intelligence (AI). The term Artificial Intelligence is

also used for machines that attempt to mimic "cognitive" functions that humans perform with

their minds, such as "learning" and "problem solving."

2.3.1 Artificial Intelligence in Video Games

In video games, artificial intelligence is used to achieve flexible, responsible, and

intelligent behaviors, especially in non-player characters (NPCs), that resemble human

intelligence. AI in video games is a distinct subfield and is different from academic AI. Today,

games often use existing techniques such as decision trees and pathfinding to drive the actions

of NPCs. Often AI is used in mechanisms that are not directly visible to the user, such as data

mining and procedural content creation.

Page 18

2.3.2 What is a Finite State Machine

 A finite state machine (FSM) belongs to the field of expert systems and is represented

as a graph. An FSM graph is an abstract representation of set of objects, symbols, events,

actions, or properties of the phenomenon to be represented. Specifically, the graph contains

nodes (states) that represent a mathematical abstraction, and edges (transitions) that represent

a conditional relationship between nodes. The FSM can only be in one state at a time, and the

current state can transition to another if the condition in the corresponding transition is satisfied.

In short, an FSM is specified by three main components:

• states which store information about a task.

• transitions between states and are described by a condition that needs to be

fulfilled for a state to change.

• actions that are followed in each state.

FSMs are really easy to design, implement, visualize, and debug. Also, they have proven to

work well with games over the years of their existence. On the other hand, they can be

extraordinarily complex on a large scale and are computationally limited to specific tasks

within game AI.

2.4 A Few Important Unity Concepts

2.4.1 GameObject

A GameObject is the most important object in Unity Editor. Every object in the game

is a GameObject (characters, props, scenery, etc), but they can not do much themselves. They

are containers for the components that provide the actual functionality. A Transform

component is always attached to a GameObject to represent its position and orientation in the

scene.

2.4.2 Component

 Components are the functional pieces of a GameObject that define it’s behavior. For

example, on a Main Camera GameObject, it’s Camera component adds the functionality of the

camera to the GameObject.

2.4.3 Prefab

 A prefab is a copy of a GameObject that can be saved with its properties and

components so that it can be used again and again in different scenes. Changes made to a prefab

can be applied either manually or automatically to instances of that prefab, so that changes can

be easily made throughout the project without having to repeat the same actions.

Page 19

2.4.4 Scriptable Object

A ScriptableObject serves as a data container and is used to store large amounts of data,

independent of class instances. ScriptableObjects are often used to reduce the memory footprint

of a project by avoiding copies of values. During an editor session, ScriptableObjects are

mainly used to store and hold data as an asset in a project at runtime.

2.4.5 Coroutines

 A coroutine works similarly to a function, but can pause execution for a few seconds

and before resuming, a condition must be met or a certain time must be waited.

3. Working in Unity and Resources

 For this project I used the 2019.4.26.f1 Long Term Support (LTS) version of Unity

because it provides maximum stability, 2 years of support and no API changes.

3.1 Unity Editor’s Interface

 Unity provides a user interface (UI) that is user-friendly and easy to customize. In the

following figure, you can see the Unity workspace interface, which uses a custom layout that I

used to create this project. In the next subsections, I'll go over some of the windows.

Figure 1 – Unity Editor’s workspace interface

Page 20

3.1.1 Toolbar

 The toolbar is located at the top of Unity Editor and consists of several groups of

controls. It provides quick access to the most important functions. It starts on the left and

contains the basic tools for controlling the scene view and the GameObjects within it. This is

followed by the Play, Pause, and Step buttons. The buttons on the right give access to Unity

Collaborate, Unity Cloud Services and Unity Account, followed by a layer visibility menu and

the customizable editor layout menu.

Figure 2 – Unity Editor’s toolbar

3.1.2 Hierarchy Window

 The Hierarchy window provides a textual representation of each game object in the

scene in the hierarchy. The Hierarchy window is used to group and sort the GameObjects

present in a scene. GameObjects added or removed from Scene View can also be added or

removed from the Hierarchy window.

Figure 3 – Hierarchy window

3.1.3 Scene View

 The Scene View allows you to visually navigate and edit the scene (add, remove, select,

and position scenery, characters, cameras, lights, and all other types of game objects). The

Scene View provides a 3D or 2D perspective, depending on the type of project.

Page 21

Figure 4 – Example Scene view of the main scene.

3.1.4 Game View

 The game view is used to simulate what the final rendering of the game will look like

by the Scene Cameras. The simulation begins by clicking the Play button on the toolbar.

Figure 5 – Example Game view of the main menu scene.

3.1.5 Inspector Window

 In the Inspector window, you can edit, add, or remove properties (components) of the

currently selected GameObject. There are many types of GameObjects that can have different

properties. The layout and contents of the Inspector window change each time a different

GameObject is selected.

Page 22

Figure 6 – Inspecting the properties of the Player GameObject.

3.1.6 Project Window

 The project window is like a file explorer. It displays the files associated with the project

and is the main method for navigating through the assets and other project files in the editor.

As you can see in Figure 7, there are colored folders. This is an asset from the Unity asset store

called "Rainbow Folders", which I use because it helps me find folders easily, organize them

well, and increase productivity.

Figure 7 – Project files as viewed in the Project window

3.2 About Resources and Assets

 Some assets used in this project were either freely available or purchased for legal use,

or created by me using the image editor GIMP or the audio editor Audacity.

Page 23

4. Introduction to the Player & The Rest of the Entities

 In this chapter I go through and analyze the entities of the game. These are the player,

the simple NPC, the farmer, the woodcutter, the guard, and the enemy.

4.1 Main Character and controls

 Diving into "Nysa's Quest" world. player takes control of a heroine named "Nysa Fell".

Her motives are what drive her forward and make the player feel like they are pursuing the

same goals as "Nysa" and completing the quests to reach the goal.

Figure 8 – Main character “Nysa”

The model from Figure 8 is from Synty Studio’s Polygon Series Fantasy Kingdom. Once in

the game and player has control over the character then the following actions can be performed:

• Movement: WASD or Arrow keys

• Camera rotation: Q & E keys

• Zoom in & out: Mouse scroll wheel

• Attack: Left click

• Sprint: Shift key

• Roll: Space key

• Quests: Z key

• Inventory: Tab key

• Pause Menu: ESC

By pressing the Space key, player is rolling, that is an ability that can be used every 2 seconds

and when rolling player is avoiding any attacks.

Page 24

4.2 NPCs

 Generally, non-player characters (NPCs) are used to populate the world of a game and

are usually controlled by the game's AI. NPCs can be used to advance the plot, help the player

as allies or partners, and they can serve as merchants, doctors, save points, and more. In this

project, however, NPCs are used to populate the world and make it more lively, to give quests,

or just to have a little conversation.

Also, NPCs can do 3 things: first, they can walk around or stop to make the world feel more

alive rather than static. Second, they can give quests so that the player interacts with the NPC

by having a dialogue to get a quest. The NPCs that give quests can be identified by an

exclamation point above them. Third and finally, some NPCs have work, their role as well is

to make the world feel more alive, like the NPCs that walk around, but beyond that they add

variety to the NPC population. However, these 3 types can also be combined, meaning an NPC

can have a job, but also give a quest.

4.3 Enemies & Guards

 Enemies are obstacles that must be overcome in order to reach the goal of a quest or

reach the finish point of a level. Usually, enemies try to kill or prevent the player from reaching

the goal. Also, enemies usually guard an area by standing still or walking on the path waiting

for the player to attack them. Also, enemies fight guards, and they can be set to attack NPCs.

Guards, on the other hand, have no conflicts with the player and only guard the town and hunt

enemies.

4.4 Analyzing NPC, Enemy and Guard AI

 AI behavior is easily controlled by a finite state machine. Bellow follows each AI

controller’s finite state machine (finite state machine is explained in sub-chapter 2.3.1)

controller. Controllers:

➢ NPC

• NPCAIController.cs

• FarmerController.cs

• WoodcutterController.cs

➢ Enemy

• EnemyAIController.cs

➢ Guard

• GuardController.cs

Page 25

4.4.1 Plain NPC

Let us start with the simple NPC, and as Figure 9 shows, it is the simplest.

Figure 9 – Plain NPC’s finite state machine – NPCAIController.cs

The initial state of a simple NPC is movement. These NPCs can either stand still or walk. If a

simple NPC has a quest to give, the player can interact with him at any time to get the quest,

unless he is on the run. Finally, if an enemy threatens him, he flees to a safe place.

4.4.2 Farmer NPC

Figure 10 – Farmer’s finite state machine – FarmerController.cs

The farmer's initial state is colored blue, as shown in Figure 10. It starts with the farmer

deciding whether or not to go for a walk, and this depends on his work ethic. For example, if

the farmer decides to look for crops in the area (work), then he finds one and walks to that crop.

Once he gets there, he starts harvesting. After harvesting the first crop, the farmer searches for

another crop to harvest until he has collected 4 crops. Once the 4 crops are collected, the farmer

returns the goods to a return point and then decides again. If the decision was "walk", the farmer

walks for some time before making another decision. However, if a threatening enemy appears,

the farmer will immediately flee. If the farmer is in the process of harvesting his crops when

the enemy appears, and he has collected 2 crops for example, he will drop the basket and flee

Page 26

to hide in a safe place, returning to the basket after a while to pick it up and collect the remaining

2 crops. And when the farmer gives a quest, the player only talks to him when he is not working.

4.4.3 Woodcutter NPC

Figure 11 – Woodcutter’s finite state machine – WoodcutterController.cs

Similarly, but more simply, woodcutter begins with a decision. For example, if this

NPC decides to work, he finds a nearby tree, moves to that tree and begins cutting the tree there

(harvesting), then returns the wood to a return point to decide again. However, if a threatening

enemy attacks the NPC while he is returning the wood to the return point, the woodcutter drops

the wood and flees to a point of safety. Once safe, he searches for the wood he dropped, picks

it up, and returns it to the return point. Finally, when the NPC gives a quest, the player only

talks to him when he is not working.

4.4.4 Enemy NPC

Figure 12 – Enemy’s finite state machine – EnemyAIController.cs

The enemy's initial state is guarding, by either standing still or following a path. The

player is the enemy's highest priority, then the guard, and lastly the NPC. For example, if the

enemy attacks an NPC and a guard shows up, the enemy attacks the guard, and if the player

shows up, the enemy attacks the player instead. If one of the targets disappears, the enemy

Page 27

enters the suspicion state, which means that the enemy remains in the position where it last saw

the target for a few seconds. If the target reappears in the meantime, the enemy attacks again,

if not, it enters the guard state again

.

4.4.5 Guard NPC

Figure 13 – Woodcutter’s finite state machine – GuardController.cs

Similar to the enemy, the guard's initial state is a guarding, and if the guard has a quest,

it can switch to the talk state if the player interacts with the guard. When an enemy appears,

the guard chases that enemy and when the guard has taken him down, returns to the initial

guard state.

Page 28

5. Game Development

 In this chapter I go over terrain creation, lighting and post-processing, animations, quest

and dialogue system, player, stats and health, AI, locomotion and fighter, items, projectiles,

inventory, UI scripts, some other scripts, and navigation.

5.1 Environment Creation

The environment was created using Unity's built-in terrain editor, which includes features for

creating landscapes. Multiple terrain tiles can be created, the height and appearance of the

landscape can be adjusted, and finally trees and grass can be added. At runtime, Unity optimizes

the terrain rendering for more efficiency.

Also, you can create a terrain by right-clicking in the hierarchy pane, then going to 3D Objects

and selecting Terrain, which will create a Terrain GameObject in the scene.

Figure 14 – A Terrain GameObject and it’s components.

As Figure 14 displays, Terrain component has a toolbar that provide five options:

• Create Neighbor Terrains, used to quickly create and connect Terrains next to

the selected Terrain.

• Paint Terrain, used to raise or lower the Terrain height, hides portions of the

Terrain, paints surface textures, smooths height and stamps a brush shape of the

current heightmap.

• Paint Trees, enables tree painting.

• Paint Details, paints grass and other details.

• Terrain Settings

The result of painting the Terrain (Figure 15) and the final result of the terrain with the rest of

the details, such as buildings, trees, water, etc.) (Figure 16).

Page 29

Figure 15 – A top-down view of the Terrain.

Figure 16 – A top-down view of the final result of the Scene.

Page 30

To make the environment look realistic and beautiful, a number of 20 textures were used

(Figure 17) and to create paths/roads quickly and easily, the Path Painter 2 painting system was

used. It is important to note that Paint Details was not used and for tree placement the Tree

Paint option was not used, instead trees were placed individually. Tree Paint was used to place

grasses and bushes (Figure 18). A close-up of the final result (Figure 19)

Figure 17 – Textures in Paint Texture.

Figure 18 – Bushes and grasses that were used.

Page 31

Figure 19 – Screenshot of the first village

As for Terrain Settings, it's important to enable Draw Instanced because Unity will then convert

all heavy terrain data, such as height maps and splat maps, into textures on the GPU. Instead

of constructing a separate mesh for each terrain patch on CPU. This reduces the workload of

the terrain CPU by orders of magnitude, as a few instanced draw calls potentially replace

thousands of custom mesh draws.

5.2 Lighting & Post-processing

 First off starting with Lighting window by setting the lighting mode to Baked Indirect,

after that in Hierarchy window, the scene’s Directional Light GameObject is set to Directional

type and mode set to Mixed (Figure 20 & Figure 21)

Figure 20 – Mixed Lighting in Lighting Window.

Figure 21 – Light component of Directional Light GameObject.

Page 32

With Baked Indirect mode, Mixed Lights behave like Realtime Lights (Unity performs lighting

calculations once per frame, it’s useful for casting shadows on characters or moveable

geometry), with the additional benefit of baking indirect lighting into lightmaps (pre-rendered

textures that contain effects of light sources on static objects in the scene). In Directional lights

the light source will behave in many ways like the sun, directional light can be thought of as a

distant light source which exist infinitely far away. All objects in the scene are illuminated as

if the light is always from the same direction. Lastly, Lightmapping is the process of pre-

calculating the brightness of surfaces in a scene and storing the result in a texture called a

lightmap, and in this project is used the Progressive Lightmapper. The Progressive

Lightmapper is a fast path-tracing-based lightmapper system that provides baked lightmaps

and Light Probes with progressive updates in the Editor. It requires non-overlapping UVs with

small area and angle errors, and sufficient padding between the charts.

Figure 22 – Lightmapping Settings

Page 33

The following figure (Figure 23) shows how the scene looks before the lightmap data is

generated. The next figure (Figure 24) is the result of the generated lightmap data of the scene

with the settings from Figure 22.

Figure 23 – Baked lights & post process off

Figure 24 – Baked lights on & post process off

Now moving to the post-processing of the project, we must first understand what post-

processing is. Instead of rendering 3D objects directly to the screen, the scene is first rendered

to a buffer in the graphics card's memory. Pixel shaders and optionally vertex shaders are then

used to apply post-processing filters to the image buffer before it is displayed on the screen.

Page 34

Unity offers a number of post-processing effects and full screen effects. First, I created a new

layer called "Post-Processing" and added a Post-Process Layer to the Camera GameObject and

set the layer to "Post-Processing" so that post-processing would be applied to it.

Figure 25 – Camera GameObject’s Post-process Layer component

Then create an empty GameObject named Post-Processing, set the layer to "Post-Processing"

and add the Post-process Volume component to add the effects.

Figure 26 – Camera GameObject’s Post-process Layer component

Effects that were used:

• Ambient Occlusion effect, affects the areas that are not exposed to ambient

lighting and darkens them.

• Color Grading, allows to change the visual appearance by adjusting the balance

of each color.

• Bloom effect. Makes bright areas in camera view.

• Vignette effect, darkens the edges of the camera view.

Page 35

• Chromatic Aberration effect, spreads colors along the boundaries between dark

and light areas of the camera view.

• Auto Exposure effect, dynamically adjusts the exposure according to ambient

lighting.

Figure 27 – Baked Lights & post process on

5.3 Animationor Controllers

 Unity has an extensive and advanced animation system and is sometimes referred to as

"Mecanim". It provides easy workflow and animation setup for all elements of Unity,

management of complex interactions between animations with a visual programming tool,

convenient preview of animation clips, retargeting of humanoid animations, and animation of

different body parts with different logic.

The player's animator is simple (Figure 28) and includes Blend Tree called Locomotion (Figure

29), which manages motion animations for smooth transitions based on speed. For example,

when the player is moving, the animator controller is in the Locomotion state. Based on the

forwardSpeed parameter, which refers to the player's speed, the idle animation will blend with

the walking animation. When attacking, triggers the attack parameter to trigger the animation.

When the animation reaches its end time, stopAttack is triggered and the player goes back to

the Locomotion state. The roll works just like the attack, but has its own parameters (roll &

stopRoll). When the player dies, the die parameter is triggered and the player goes from any

state to the death state. For example, if the player dies while running, the transition will be from

the Locomotion to the death state.

Page 36

Figure 28 – Player’s Animator Controller

Figure 29 – Player’s “Locomotion” Blend Tree

Figure 30 – Player’s Animator Controller’s parameters

Page 37

Enemies and guards have the same animator controller because they use the same animations.

This animator is the same as the player's animator controller, meaning it works the same as the

player's, including Locomotion Blend Tree, but does not have the Roll state.

Figure 31 Enemy & Guard Animator Controller

Plain NPCs have the simplest animation controls due to their behavior. They require a

locomotion blend tree and a death state.

Figure 32 – Plain NPC Animator Controller

Page 38

The farmer NPC's animator controller has a Collect state for the harvest animation, a death

state and a Locomotion blend tree like the other animator controllers.

Figure 33 – Farmer NPC Animator Controller’s parameters

The animator controller of the woodcutter NPC works the same as the animator controller of

the farmer NPC. The only difference is that instead of the collect state, there is a chop state for

the animation of chopping wood.

Figure 34 – Woodcutter NPC Animator Controller’s parameters

Animator override controllers, which are replacing specific animations of an animator

controller to create multiple variants of that controller. In this project I use them in weapons to

replace some animations like the attack and the motion so that the “big” swords feel heavier

when attacking and walking than the “smaller” swords (More about swords at chapter 5.9).

Page 39

5.4 Quest & Dialogue System

5.4.1 Overview

 The quest system is essential for Nysa's Quest, as the player must acquire quests based

on the storyline in order to know where to go next, as planned. Thanks to this system, the player

can have dialogues with NPCs and even acquire a quest if that NPC gives one. Besides, by

pressing "Z", the player can see the accepted quests (completed and not), their information and

rewards.

Figure 35 – In game screenshot of the quest list (white color for unfinished quests & green color for

completed quests).

Figure 36 – In game screenshot of the Nysa being in dialogue with an NPC that gives quest.

Page 40

5.4.2 Code

Figure 37 – Quest & Dialogue System folder structure.

First starting with Speaker.cs, this is a scriptable object that is going to contain information of

the speaker, such as name and a sprite image.

Figure 38 – Speaker.cs

Next up is the DialogueLine.cs, this script is used to contain a single dialogue line, containing

the speaker’s information and their line. This DialogueLine class is Serializable, that means its

fields are going to be on the inspector and it is used on the next script Dialogue.cs.

Page 41

Figure 39 – DialogueLine.cs

Dialogue.cs is a scriptable object and it is used to create dialogues with multiple dialogue lines.

Figure 40 – Dialogue.cs

Page 42

Figure 41 – DialogueManager.cs part 1

Figure 42 – DialogueManager.cs part 2

Page 43

Figure 43 – DialogueManager.cs part 3

Figure 44 – DialogueManager.cs part 4

Page 44

Now moving to the quests by starting with Quest.cs, it’s a serializable class with fields that are

going to contain the information of a quest (title, description, experience reward, if its

completed and the quest goal).

Figure 45 – Quest.cs

QuestGoal.cs is a serializable script that is used to set whether the quest is about killing enemies

or collecting items and checking the progress.

Figure 46– QuestGoal.cs

Page 45

QuestType.cs is an enum used to set the quest type in QuestGoal.cs.

Figure 47 – QuestType.cs

QuestEnemy.cs is an enum used on QuestType.cs to set what enemies need to be killed for a

quest.

Figure 48 – QuestEnemy.cs

NPCQuestGiver.cs is added to the NPCs and is used so the player can identify if an NPC gives

quest or not, that means if an NPC gives quest (We are going to see how an NPC gives quest

on chapter …) there is going to be an exclamation mark image above it, else there is not.

Page 46

Figure 49 – NPCQuestGiver.cs part 1

Figure 50 – NPCQuestGiver.cs part 2

Page 47

QuestManager.cs is used to display the quests and their descriptions and show if they are

completed. Also, for performance reasons all the GameObjects of the enemies are disabled, but

when acquiring a quest then that quest’s enemies are being enabled.

Figure 51 – QuestManager.cs part 1

Page 48

Figure 52 – QuestManager.cs part 2

Page 49

Figure 53 – QuestManager.cs part 3

Page 50

Figure 54 – QuestManager.cs part 4

Figure 55 – QuestManager.cs part 5

Page 51

5.5 Player

5.5.1 Overview

 The player control consists of 3 scripts, PlayerController.cs, PlayerMovement.cs and

PlayerCombat.cs. These 3 scripts are responsible for everything the player does, i.e.

movement, combat, having the inventory opened, being on pause menu, dialogues, just about

everything. PlayerController.cs and PlayerMovement.cs also inherit from IAction and use

ActionScheduler.cs, which I'll go over at the end.

5.5.2 Code

 Starting with PlayerController.cs. This is the most important script, because it checks

if the player is in the menu, in dialogue, in the inventory, or checking the quests or rolling, and

finally if in combat. It is important to check the above states because the player's behavior will

be adjusted based on this state.

Figure 56 – PlayerController.cs part 1

Page 52

Figure 57 – PlayerController.cs part 2

Figure 58 – PlayerController.cs part 3

Page 53

Figure 59 – PlayerController.cs part 4

Page 54

Figure 60 – PlayerController.cs part 5

Page 55

Figure 61 – PlayerController.cs part 6

Thanks to PlayerCombat.cs, player is able to perform attacks, equip weapon and alert NPCs when

fighting enemies.

Page 56

Figure 62 – PlayerCombat.cs part 1

Page 57

Figure 63 – PlayerCombat.cs part 2

Figure 64 – PlayerCombat.cs part 3

Page 58

Figure 65 – PlayerCombat.cs part 4

Page 59

Figure 66 – PlayerCombat.cs part 5

Page 60

Figure 67 – PlayerCombat.cs part 6

PlayerMovement.cs is the player's movement script, which allows the player to perform fluid

movement. For example, when the player presses the "W" key, it starts moving at a speed of 0

and then gradually increases the speed to make the movement look more fluid. It also inherits

from the IAction interface, which I will go through after PlayerMovement.cs.

Page 61

Figure 68 – PlayerMovement.cs part 1

Page 62

Figure 69 – PlayerMovement.cs part 2

Figure 70 – PlayerMovement.cs part 3

Page 63

Figure 71 – PlayerMovement.cs part 4

Now let us move on to IAction and the ActionScheduler. IAction.cs is an interface that contains

the Cancel() function. ActionScheduler.cs is used every time the player or an enemy NPC

leaves, for example walking, they are on a walk action, if they start attacking they are on combat

action and before switching, the Cancel() function is called.

Figure 72 – IAction.cs

Page 64

Figure 73 – ActionScheduler.cs

5.6 Stats & Health

5.6.1 Overview

 Stats are vital for the game because they provide the sense of progress. To improve the

stats, player has to either slay enemies or complete quests in order to level up. There are 4 kinds

of stats:

• Health, which is the amount of health points.

• Experience Reward, which is the amount of experience rewarded after dying.

• Experience to level up, which is the amount of experience needed to level up.

• Damage, which is the amount of damage inflicted on health points.

In reality the actual stats are health and damage because the other two do not directly affect the

feeling of progress.

5.6.2 Code

 Starting with the Stats, they consist of 8 scripts which some of those are responsible for

UI and others are for logic.

• Basestats.cs

• CharacterClass.cs

• Experience.cs

• ExperienceDisplay.cs

• LevelDisplay.cs

• Stats.cs

• XPDisplay.cs

Page 65

Starting with the CharacterClass.cs, this is an enum to set the classes of the player, NPCs and

enemies (there is not a class for the guards because guards and share the same class with some

enemies, that class is called ExiledKnight).

Figure 74 – CharacterClass.cs

Next is the Stat.cs which was explained earlier, it is an enum to set the stats.

Figure 75 – Stat.cs

Now moving to the Progression.cs which is really important. This is a scriptable object used

to set the values of a class for a number of levels. For instance, Figure 76 shows the progression

scriptable object of the Player class, also we can see that player’s progression uses 3 stats,

Health, Experience To Level Up and Damage. And all of those 3 stats are having values till the

level 10.

Page 66

Figure 76 – Progression of the Player

Page 67

Figure 77 – Progression.cs part 1

Page 68

Figure 78 – Progression.cs part 2

Now moving to Experience.cs, this is a script used to store the experience points and contains

a delegate that calls another function whenever player gains experience points.

Figure 79 – Experience.cs

Page 69

The last of the logic scripts is BaseStats.cs, this script is responsible for updating the level,

leveling up, getting a stat’s level and for calculating the level.

Figure 80 – BaseStats.cs part 1

Figure 81 – BaseStats.cs part 2

Page 70

Figure 82 – BaseStats.cs part 3

And before moving to the Health script, there are 3 scripts that update values for the UI as

stated earlier, those scripts are ExperienceDisplay.cs, LevelDisplay.cs and XPDisplay.cs.

• ExperienceDisplay.cs is used to display the experience on screen using a

slider.

• LevelDisplay.cs is used to display the level as text.

• XPDisplay.cs is used to display the experience as text.

Figure 83 – ExperienceDisplay.cs

Page 71

Figure 84 – LevelDisplay.cs

Figure 85 – XPDisplay.cs

Moving to the Health.cs, this script is responsible of storing the health points. Also, it contains

a few functions that apply damage, display the damage that was dealt, add or remove damage

immunity (used when player is rolling), healing and regenerating health upon leveling up.

Page 72

Figure 86 – Health.cs part 1

Figure 87 – Health.cs part 2

Page 73

Figure 88 – Health.cs part 3

Figure 89 – Health.cs part 4

Page 74

5.7 AI

5.7.1 State Machine

5.7.1.1 Overview

 As mentioned in an earlier section, the behavior of AI is controlled by a finite state

machine implemented with state design pattern. The State Design Pattern is one of twenty-

three design patterns documented by the gang of Four four that describe how to solve recurring

design problems. These problems cover the design of flexible and reusable object-oriented

software, such as objects that can be easily implemented, modified, tested, and reused.

The state pattern is set to solve two main problems:

• An object should change its behavior when its internal state changes.

• A state-specific behavior should be defined independently. That is, adding new states

would not affect the behavior of existing states.

Implementing state-specific behavior directly in a class is inflexible because it locks the class

into a specific behavior and makes it impossible to later add a new state or change the behavior

of an existing state independently of the class. For this, the pattern describes two solutions:

• Define separate objects that encapsulate state-specific behavior for each state. That is,

define an interface for performing state-specific behavior, and define classes that

implement the interface for each state.

• A class delegates state-specific behavior to its current state object instead of

implementing state-specific behavior directly.

Now moving on “how it works?”, there are StateMachine.cs, IState, State scripts and controller

scripts.

• StateMachine.cs is the logic of the state pattern.

• IState is an interface that’s inherited by the States scripts.

• IState has 3 methods:

• OnEnter, called once when entered the state.

• Tick, like Update called every frame.

• OnExit, called once when exiting the state.

• State scripts are inheriting from IState only and not from MonoBehavior.

• Controller scripts have the transitions between the states of the state scripts.

And now an example:

Page 75

Figure 90 – Example states and transitions

Suppose the current state is the Sit state, then the Tick method is called every frame, but if the

conditions for the transition from the state Sit to the state Eat are met, then before the current

state is changed, the OnExit method of the state Sit is called, then the current state is changed

to the state Eat and its OnEnter method is called once, and Tick is called every second.

5.7.1.2 Code

 There are 2 scripts I'll go through, StateMachine.cs, which is the logic of the state

pattern, and IState, which is an interface. StateMachine.cs is responsible for the functionality

of the state pattern. It contains a class called Transition, which has 2 fields:

• Funch<bool> Condition, which is the condition that needs to be satisfied to move to

the state.

• IState To, which is the state that the transition points to.

The next up, are StateMachine Class’s fields:

• IState _currentState, is used to define the current state.

• Dictionary<Type, List<Transition>> _transitions, is used to store all the transitions

between the states.

• List<Transition> _currentTransitions, is a list of transitions used to store the possible

transitions of a state.

• List<Transition> _anyTransitions, is a list of transitions used to store the transitions

from all states in a specific state.

• List<Transition> EmptyTransitions, is an empty list of transitions.

Moving to the methods:

• GetTransition, returns a transition that it’s condition returns true, starting by the

_anytransitions and then the _currentTransitions and if no condition returns true then

the function returns null.

• SetState, sets _currentState to the given state and calls the OnExit method of the

previous state if there was a previous a state and then calls the OnEnter method of the

new state.

• Tick, tries to get a transition and if it does then sets state to that transition’s state and

calls itself again.

• AddTransition, adds a transition from a state to another state with the given condition.

• AddAnyTransition, adds transitions from all states to a specific state with the given

condition.

Page 76

Figure 91 – StateMachine.cs part 1

Page 77

Figure 92 – StateMachine.cs part 2

As was stated in this chapter, IState is an interface containing 3 methods.

Figure 93 – IState.cs

Page 78

5.7.2 Enemy AI Controller & States

5.7.2.1 Overview

 Enemies are controlled by a controller that contains the transitions between the states

that define the behavior. Specific those scripts are:

• EnemyAIController.cs

• State scripts:

• EnemyAttackNPC.cs, defines the Attack NPC State.

• EnemyAttackGuard.cs, defines the Attack Guard State.

• EnemyAttackPlayer.cs, defines the Attack Player State.

• EnemySuspicion.cs, defines the Suspicion State.

• EnemyGuarding.cs, defines the Guarding State.

Looking back at Figure 12 – Enemy’s finite state machine – EnemyAIController.cs

Enemy’s behavior is based on Figure 12 and in chapter 4.4.4 that behavior was analyzed and

explained.

5.7.2.2 Code

 Let us start with the enemy controller. This script contains some useful methods and is

responsible for setting up the transitions and logic between states. Also, Figure 95 shows the

Awake method, where some variables are initialized, but most importantly, the transitions are

set up exactly as in Figure 12. Figure 96 shows the logic of all the transitions shown in Figure

95, and Figure 97 shows the Update where it makes sure to Tick as long as the enemy is alive.

The remaining methods are useful for the logic of the transitions and the states.

Page 79

Figure 94 – EnemyAIController.cs part 1

Figure 95 – EnemyAIController.cs part 2

Page 80

Figure 96 – EnemyAIController.cs part 3

Figure 97 – EnemyAIController.cs part 4

Page 81

Figure 98 – EnemyAIController.cs part 5

Now moving on to the State scripts and beginning with the EnemyAttackNPC.cs (Figure 99)

which is the AttackNPC State. In this state OnEnter and OnExit does nothing, but Tick is

making the enemy to attack the closest NPC whilst triggering the closest NPC’ alert because

of the attack.

Page 82

Figure 99 – EnemyAttackNPC.cs

Next state is Attack Guard state which is the EnemyAttackGuard.cs (Figure 100). OnEnter and

OnExit methods does nothing, but Tick is triggering enemy’s attacks to the closest guard and

if any NPCs are a round are being alerted because of that fight.

Page 83

Figure 100 – EnemyAttackGuard.cs

Attack Player state follows, which is the EnemyAttackPlayer.cs (Figure 101 & 102). OnEnter

resets the enemy’s alert and OnExit does nothing, but Tick is triggering enemy’s attacks to the

player, calls AlertEnemyNPCsAround method and checks if there are NPCs round, to be alerted

because of that fight. AlertEnemyNPCsAround method, alerts the enemies that are close to the

enemy who alerted, making them to join the fight.

Page 84

Figure 101 – EnemyAttackPlayer.cs part 1

Figure 102 – EnemyAttackPlayer.cs part 2

Page 85

Next state is the Suspicion state which is the EnemySuspicion.cs (Figure 103). OnEnter resets

the timer since last saw target and initializes the mover script, and OnExit resets the

gotHitByBow. Tick cancels the current action, and the enemy is just waiting to the point he last

saw the player.

Figure 103 – EnemySuspicion.cs

The last state is the Guarding state which is the EnemyGuarding.cs (Figure 104 & 105).

OnEnter and OnExit methods does nothing. Tick uses a waypoint system where enemy goes

through a few waypoints and waits sometime before starts moving (which I will go through in

the upcoming chapters) but if not, then the enemy is guarding his standing position.

Page 86

Figure 104 – EnemyGuarding.cs part 1

Figure 105 – EnemyGuarding.cs part 2

Page 87

5.7.3 Guard AI Controller & States

5.7.3.1 Overview

Guard controller works in a similar way like the enemy’s controller. Its controller contains

the transitions between the states that define the behavior. Specific those scripts are:

• GuardAIController.cs

• State scripts:

• GuardAttackEnemy.cs, defines the Attack Enemy State.

• GuardGuarding.cs, defines the Guard State.

• GuardSuspicion.cs, defines the Suspicion State.

• GuardTalk.cs, defines the Talk State.

Looking back at Figure 13 – Guard’s finite state machine – GuardAIController.cs

Guard’s behavior is based on Figure 13 and in chapter 4.4.5 that behavior was analyzed and

explained. Its important to note that in GuardAIController.cs the class inherits from the

DialogueNPC to be able to have a dialogue, which will be analyzed on the next section.

5.7.3.2 Code

The guard controller script contains some useful methods and is responsible for setting

up the transitions and logic between states. Starting in Figure 107, the variables are initialised

and the transitions are set up. If the guard has a dialogue, the talk state and transitions are also

added. Figures 108 and 109 contain functions used in the logic of the transitions and in the

guard's states.

Page 88

Figure 106 – GuardAIController.cs part 1

Figure 107 – GuardAIController.cs part 2

Page 89

Figure 108 – GuardAIController.cs part 3

Figure 109 – GuardAIController.cs part 4

Page 90

Moving to the guard’s states and starting from the GuardAttack.cs script, in Tick method, guard

is attacking the enemy and alerting the closest NPC. OnEnter method is alerting the closest

NPC around and if the previous state was the Talk state, then the dialogue stops. OnExit method

does nothing.

Figure 110 – GuardAttackEnemy.cs part 1

Page 91

Figure 111 – GuardAttackEnemy.cs part 2

Next is the guarding state in GuardGuarding.cs script, OnEnter and OnExit methods does

nothing, Tick is repeating the patrol behavior where if the guard has a waypoint path, then is

guarding that path, else guards it’s standing position.

Figure 112 – GuardGuarding.cs part 1

Page 92

Figure 113 – GuardGuarding.cs part 2

Guard’s Suspicion state in GuardSuspicion.cs is simple as OnExit method does nothing,

OnEnter resets the timer since last saw a target, resets the target, and stops the navMeshAgent.

And Tick is only cancelling the guard’s action.

Page 93

Figure 114 – GuardSuspicion.cs

The last state is the talk state, in GuardTalk.cs. It’s OnEnter method is cancelling the guard’s

and players current action and makes them look at each other and starts the dialogue. OnExit

resets the wantsToTalk boolean and Tick does nothing.

Figure 115 – GuardTalk.cs

Page 94

5.7.4 NPC AI

5.7.4.1 DialogueNPC and NPCs

5.7.4.1.1 Overview

 NPCs and guards can have dialogues and player can talk with them, to achieve that I

used inheritance.

• DialogueNPC (Parent Class)

• GuardAIController.cs

• NPCAIController

• FarmerAIController

• WoodcutterAIController

Instead of repeating the same piece of code for the 3 NPC types and the guard. DialogueNPC.cs

stores information about the speaker, the dialogue and a boolean property for if the NPC wants

to talk or not.

When NPCs are on Flee state, they are running towards a safe point where they hiding from

the enemies for some time. This can be achieved thanks to Safe.cs, NPCs that are on alert can

hide in a spot.

5.7.4.1.2 Code

Figure 116 – DialogueNPC.cs

5.7.4.2 NPC AI Controller & States

5.7.4.2.1 Overview

 Simple/Plain NPCs are controlled from NPCAIController.cs that controller sets up

transitions between the states and their logic. Simple NPC’s scripts are:

Page 95

• NPCAIController.cs

• State scripts:

• Talk.cs, defines the Talk State.

• Motion.cs, defines the Motion State.

• Flee.cs, defines the Flee State.

Looking back at Figure 9 – Simple NPC’s finite state machine – NPCAIController.cs

NPC’s behavior is based on Figure 9 and in chapter 4.4.1 that behavior was analyzed and

explained.

5.7.4.2.2 Code

 Starting from the Talk state, OnEnter method cancels the player’s and the NPC’s

actions and then makes them look at each other before starting the dialogue. OnExit method

resets the wantsToTalk boolean and Tick does nothing.

Figure 117 – Talk.cs

Page 96

When in Motion state, OnEnter and OnExit methods do nothing, but Tick method calls

MotionBehaviour function that is responsible for making the NPC go through the waypoints or

stand still in a position.

Figure 118 – Motion.cs part 1

Page 97

Figure 119 – Motion.cs part 2

The Flee state OnEnter checks if the NPC was in dialogue and if so then stops the dialogue,

OnExit method does nothing. Tick is calling FleeAndAlert method which is responsible for

moving the NPC to its safe point and alerting other NPCs around.

Page 98

Figure 120 – Flee.cs part 1

Figure 121 – Flee.cs part 2

Page 99

5.7.4.3 Farmer AI Controller & States

5.7.4.3.1 Overview

Farmer’s controller is the FarmerController.cs script, that controller sets up transitions

between the states and their logic. But also contains a few useful functions like,

InitWalkingCoroutine which starts the Walking coroutine, some animation events for

calculations and sounds, and setters and getters, all these functions can be seen in Figures 123-

127. Simple NPC’s scripts are:

• FarmerController.cs

• State scripts:

• FarmerInitialDecision.cs, defines the Decide State.

• FarmerSearchResource.cs, defines the Search State.

• FarmerMoveToResource.cs, defines the Go To State.

• FarmerHarvest.cs, defines the Harvest State.

• FarmerReturnGood.cs, defines the Return State.

• FarmerFlee.cs, defines the Flee State.

• FarmerWalk.cs, defines the Walk State.

• FarmerTalk.cs, defines the Talk State.

Looking back at Figure 10 – Farmer’s finite state machine – FarmerController.cs

NPC’s behavior is based on Figure 9 and in chapter 4.4.2 that behavior was analyzed and

explained.

The resource that farmers harvest is a GatherableResource from the GatherableResource.cs

script. Woodcutters also harvest GatherableResource and in order to sort those resources,

farmers got their resources on a layer called “FarmResource” and woodcutters on

“WoodResource”.

Page 100

5.7.4.3.1 Code

 First starting with the GatherableResource.cs and it is added on every resource

GameObject for the farmers to harvest.

Figure 122 – GatherableResource.cs

Moving to the FarmerController.cs, in this script is where all the states, the transitions and the

logic behind them are being setted up.

Figure 123 – FarmerController.cs part 1

Page 101

Figure 124 – FarmerController.cs part 2

Page 102

Figure 125 – FarmerController.cs part 3

Page 103

Figure 126 – FarmerController.cs part 4

Figure 127 – FarmerController.cs part 5

Page 104

The first state is the Decision state from FarmerInitialDecision.cs and is Tick, OnEnter and

OnExit methods do nothing. There is a method called WorkDecision that based on the work

ethic of the farmer it is getting a random number between 0 and 100, if work ethic is greater

than that random number then the farmer decides to work, if not then decides to walk.

Figure 128 – FarmerInitialDecision.cs

Search state in FarmerSearchResource.cs and it is responsible for finding a resource. OnEnter

and OnExit methods do nothing, but Tick is calling FindResourceNear that locates a resource

on “FarmResource” layer, and checks if that resource is occupied by another farmer, if it is

then searches for another resource, else it doesn’t.

Page 105

Figure 129 – FarmerSearchResource.cs

Go To state from FarmerMoveToResource.cs, is moving the farmer close to the resource.

OnEnter is checking if the farmer has dropped the basket (the farmer has dropped the basket

of goods if was chased by an enemy) to move to the basket’s position, else if has a resource

then goes to that resource, enables the animator and changes the animations using am override

controller. OnExit assigns the main animation controller again, and Tick method is doing

nothing. There is a method used on the transition’s logic, called

CheckIfArrivedAtResourceToHarvest that checks if the farmer is close to the resource.

Page 106

Figure 130 – FarmerMoveToResource.cs part 1

Figure 131 – FarmerMoveToResource.cs part 2

Harvest state from FarmerHarvest.cs is making the farmer to chop the tree every two seconds

till reaches a specific number of hits. OnEnter resets the hit counter, stops the navMesh, makes

the farmer look at the resource and enables the animator, OnExit resets timers, the hit counter

and the resource target, disables the animator and un-occupies the resource target. Tick method

is making the farmer trigger the chopping animation every 2 seconds.

Page 107

Figure 132 – FarmerHarvest.cs part 1

Figure 133 – FarmerHarvest.cs part 2

Page 108

Return state from FarmerReturnGoods.cs is responsible for moving the farmer to the point that

returns the harvested goods. OnEnter method is moving the farmer to the goods return point

and changes the animator to the override controller. OnExit is assigning the animator controller

again and Tick method is checking if the farmer is at the return point of the goods.

Figure 134 – FarmerReturnGoods.cs

Flee state from the FarmerFlee.cs script is responsible for making the farmer to drop the basket

of goods if having one and moving to the safe point while trying to alert other NPCs. OnEnter

is checking if farmer is in dialogue to stop it, reenables the animator, resets the resource target

and if the farmer carried a basket with collected goods, then drops the basket down. OnExit

method does nothing, and Tick is calling FleeAndAlert method where moves the farmer to the

safe point and notifies any NPCs that are near.

Page 109

Figure 135 – FarmerFlee.cs part 1

Page 110

Figure 136 – FarmerFlee.cs part 2

Lastly the Talk state from the FarmerTalk.cs is setting up the farmer and the player before starting the

dialogue. OnEnter stops the farmer’s walking coroutine, cancels the player’s and farmer’s action, makes

them face each other and starts the dialogue. OnExit resets the wantsToTalk boolean and Tick does

nothing.

Figure 137 – FarmerTalk.cs

Page 111

5.7.4.4 Woodcutter AI Controller & States

5.7.4.4.1 Overview

Woodcutter is controlled by the WoodcutterController.cs script, that controller sets up

transitions between the states and their logic. But also contains a few useful functions like,

InitWalkingCoroutine which starts the Walking coroutine, some animation events for

calculations and sounds, and setters and getters, all these functions can be seen in Figures 123-

127. Simple NPC’s scripts are:

• WoodcutterController.cs

• State scripts:

• WoodcutterInitialDecision.cs, defines the Decide State.

• WoodcutterSearchResource.cs, defines the Search State.

• WoodcutterMoveToResource.cs, defines the Go To State.

• WoodcutterHarvest.cs, defines the Harvest State.

• WoodcutterReturnWood.cs, defines the Return State.

• WoodcutterFlee.cs, defines the Flee State.

• WoodcutterWalk.cs, defines the Walk State.

• WoodcutterTalk.cs, defines the Talk State.

Looking back at Figure 11 – Woodcutter’s finite state machine – WoodcutterController.cs

NPC’s behavior is based on Figure 11 and in chapter 4.4.3 that behavior was analyzed and

explained.

The resource that woodcutter harvests is a GatherableResource from the

GatherableResource.cs script attached on the tree GameObjects and with setted Layer on

“WoodResource”.

Page 112

5.7.4.4.2 Code

Starting with the WoodcutterController.cs, in this script is where all the states, the

transitions and the logic behind them are being setted up.

Figure 138 – WoodcutterController.cs part 1

Page 113

Figure 139 – WoodcutterController.cs part 2

Page 114

Figure 140 – WoodcutterController.cs part 3

Page 115

Figure 141 – WoodcutterController.cs part 4

Figure 142 – WoodcutterController.cs part 5

Page 116

Identical to the farmer, starting with the Decision state from the WoodcutterInitialDecision.cs

script which is responsible for returning a true or false based on the work ethic of the

woodcutter. Specifically, OnEnter makes the tool (axe) appear on the belt and makes sure the

tool or wood isn’t on hand. OnExit methods does nothing. There is a method called

WorkDecision that based on the work ethic of the farmer it is getting a random number between

0 and 100, if work ethic is greater than that random number then the farmer decides to work, if

not then decides to walk.

Figure 143 – WoodcutterInitialDecision.cs

Next up is the Search state from WoodcutterSearchResource.cs, this state finds a resource.

OnEnter resets the carryingWood boolean, makes sure that the tool is on the belt and nothing

on hand. OnExit method does nothing. Tick is calling FindResourceNear which locates a

resource in the resource search distance, and makes sure that resource is un-occupied, unless

searches again.

Page 117

Figure 144 – WoodcutterSearchResource.cs part 1

Figure 145 – WoodcutterSearchResource.cs part 2

Go To state from WoodcutterMoveToResource.cs is responsible for moving the woodcutter to

the resource. OnEnter checks if the woodcutter has dropped wood (if was fleeing when carrying

Page 118

wood then there is wood dropped down), if so then moves to that wood, goes to the resource,

and makes sure the tool is on the belt while there is no tool on hand or wood. OnExit and Tick

do nothing. CheckIfArrivedAtResourceToHarvest is used by the transitions logic to check if

woodcutter is close to the resource before starting chopping/harvesting the tree.

Figure 146 – WoodcutterMoveToResource.cs

Harvest state from WoodcutterHarvest.cs is responsible for triggering the woodcutter’s

chopping animation every 2 seconds and count the hits till it reaches the resource’s hit limit.

OnEnter makes sure the tool is on hand and not on belt, stops the navMesh, enables the

animator and resets the hit counter. OnExit un-occupies the resource target, and resets the

resource target, the animator, the hit counter and the chop timer. Tick method makes sure the

chop animations are being triggered every 2 seconds.

Page 119

Figure 147 – WoodcutterHarvest.cs part 1

Figure 148 – WoodcutterHarvest.cs part 2

Page 120

Return state from WoodcutterReturnWood.cs, moves the woodcutter to the return point of

wood, while holding the wood and it is in OnEnter method, as well removing the tool from the

hand, enabling it on the belt and enabling the wood on hands (so it seems the woodcutter is

carrying the wood back). OnExit resets the animator controller to the main animator. Tick

checks if woodcutter is at return point.

Figure 149 – WoodcutterReturnWood.cs

Flee state from WoodcutterFlee.cs is responsible for making the woodcutter run to a safe point

while alerting other NPCs. OnEnter checks if the woodcutter is in dialogue, if so then stops the

dialogue, then checks if carried wood, if yes then drops it down and makes sure the tool is on

belt and carries no wood on hands. OnExit does nothing and Tick method calls FleeAndAlert

which makes the NPC go to the safe point while alerting any other close NPCs.

Page 121

Figure 150 – WoodcutterFlee.cs part 1

Figure 151 – WoodcutterFlee.cs part 2

Walk state from WoodcutterWalk.cs is like all the Walk states, OnEnter makes sure the tool is

on belt and starts the walking coroutine. OnExit resets the doneWalking boolean which means

Page 122

that the woodcutter is no longer walking. Tick calls MotionBehaviour which is responsible for

making the NPC to follow the waypoint path but if it doesn’t have one then stands still.

Figure 152 – WoodcutterWalk.cs part 1

Figure 153 – WoodcutterWalk.cs part 2

Page 123

Lastly the Talk state from WoodcutterTalk.cs. OnEnter cancels the woodcutter’s and player’s

action and makes them look at each other and starts the dialogue. OnExit resets the

wantsToTalk boolean and Tick does nothing.

Figure 154 – WoodcutterTalk.cs

5.8 Mover & Fighter

5.8.1 Overview

As it was seen on previous chapters, NPCs (friendly and enemies) are using a few

methods, like MoveTo and Attack, which are responsible for moving the NPC to a given

Transform and to set target for combat, those methods are in Mover.cs and Fighter.cs.

Moreover, Mover.cs contains useful methods that are related to an NPCs movement and the

update of speed for motion animations, while Fighter.cs is responsible for combat stuff, like

attacking, attacking animations and more.

Specifically, some important methods in Mover.cs are:

• MoveTo, which moves the NPC to a transform

• UpdateAnimator, is updating the parameter “forwardSpeed” of the animator of the

agent with the agent’s speed to have to correct motion animation based on the

Locomotion blend tree.

Some important methods in Fighter.cs are:

• Attack, which sets the given target as target

Page 124

• CanAttack, which checks if the agent can attack the given target.

Every important method has comments for what it is responsible for, for Mover.cs are figures

155 & 156 and for Fighter.cs are figures 157-160.

5.8.2 Code

Figure 155 – Mover.cs part 1

Page 125

Figure 156 – Mover.cs part 2

Page 126

Figure 157 – Fighter.cs part 1

Figure 158 – Fighter.cs part 2

Page 127

Figure 159 – Fighter.cs part 3

Page 128

Figure 160 – Fighter.cs part 4

5.9 Items, Weapon items & Consumables

5.9.1 Overview

 Items are divided into 2 categories, weapon items and consumable items. Also, items

(weapon items and consumable items) are scriptable objects that can be easily created and

manipulated. That is, the player can obtain a new weapon by picking it up. This can be achieved

through the Pickup.cs and the scriptable object weapon item. For each sword, there is a

GameObject that contains the Pickup.cs and the Weapon Item scriptable object and is placed

in the world for the player to find and pick up. After picking it up, the player equips the weapon

(and adds it to the inventory, but that's chapter 5.11) and it's ready to use. Exactly the same is

true for consumable items (i.e. for each consumable item there are GameObjects to pick up).

Weapons can be found around the scene or can be dropped for the player to pick them up.

These are the weapons:

• Unarmed, deals 2 damage and 0 extra damage percentage.

• Arming Sword, deals 25 damage and 30% extra damage percentage.

• Epilogue Sword, deals 200 damage and 90% extra damage percentage.

• Fury Sword, deals 40 damage and 50% extra damage percentage.

Page 129

• Heavy Fall Sword, deals 45 damage and 40% extra damage percentage.

• Roar Sword, deals 25 damage and 20% extra damage percentage.

• Short Sword 1, deals 20 damage and 20% extra damage percentage.

• Short Sword 2, deals 10 damage and 20% extra damage percentage.

• The Lost Crusader Sword, deals 250 damage and 70% extra damage percentage.

• Bow, deals 15 damage and 20% extra damage percentage.

• Magic, deals 40 damage and 50% extra damage percentage.

Each weapon has damage and damage percentage, as player, guards and enemies have a base

damage based on their level. When player attacks an enemy, the damage output gets

calculated by the following formula:

 𝑏𝑎𝑠𝑒 𝑑𝑎𝑚𝑎𝑔𝑒 + ((𝑏𝑎𝑠𝑒 𝑑𝑎𝑚𝑎𝑔𝑒 ∗ 𝑤𝑒𝑎𝑝𝑜𝑛′𝑠 𝑒𝑥𝑡𝑟𝑎 𝑑𝑎𝑚𝑎𝑔𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) + 𝑤𝑒𝑎𝑝𝑜𝑛 𝑑𝑎𝑚𝑎𝑔𝑒)

Consumable items are used to restore health and are placed around the scene for the player to

pick them up and use them when in need. These are the consumable items:

• Apple, restores 50 health points.

• Honey, restores 100 health points.

• Lesser Health Potion, restores 150 health points.

• Health Potion, restores 200 health points.

Scripts of this chapter:

• Item.cs, which is a scriptable object containing information.

• WeaponItem.cs, is a scriptable object inheriting from Item and having more

specific information, like damage amount.

• ConsumableItem.cs, is a scriptable object inheriting from Item and having more

specific information like, health restoration amount.

• Pickup.cs, is attached to pickup GameObjects and upon colliding with the player,

considering the pickup gives a WeaponItem or a ConsumableItem. Also, a dialogue can

be added for when player picks it up, the dialogue starts.

• DropItem.cs, is used by the Farmer and the Woodcutter on the Flee state to drop the

basket and the wood.

• ItemPickUp.cs, is used by the farmer and the Woodcutter to pick-up the dropped wood

and basket of goods, after they dropped it because of Flee state.

• DropItemOnDeath.cs, drops the pickup GameObject that was given upon death, it is

used for the storyline for the player to get specific weapon.

Page 130

Figure 161 – The “Fury” WeaponItem scriptable object.

Figure 162 – The “Health Potion” ConsumableItem scriptable object.

Figure 163 – The “Fury” sword pickup and its components.

Figure 164 – The “Fury” sword that is used when it’s on an agent’s hands.

5.9.2 Code

Page 131

Figure 165 – Item.cs

Figure 166 – ConsumableItem.cs

Figure 167 – WeaponItem.cs part 1

Page 132

Figure 168 – WeaponItem.cs part 2

Figure 169 – WeaponItem.cs part 3

Page 133

Figure 170 – Pickup.cs part 1

Figure 171 – Pickup.cs part 2

Page 134

Figure 172 – DropItemOnDeath.cs

Figure 173 – ItemPickUp.cs

Page 135

Figure 174 – DropItem.cs

5.10 Projectiles

5.10.1 Overview

 Other that the sword weapons there is another weapon for the player to use, that weapon

is the bow. Bows are shooting arrow projectiles, so when player or the enemy shoots with the

bow it needs to instantiate an arrow GameObject from the weapon to the position where player

clicked or for the location of a target if it’s the enemy who is using the bow, this can be achieved

thanks to the Projectile.cs.

Page 136

Figure 175 – The arrow projectile GameObject and its components.

As seen in figure 180, the GameObject has the Projectile.cs attached, as well as a Rigidbody to

control the projectile GameObject’s position through physics and a Box Collider so it can

collide with objects.

Figure 176 – The arrow hit effect GameObject and its components.

Lastly in figure 181, when the projectile GameObject collides with an object that has a Particle

System attached that is instantiated when the projectile collides with an object. That

GameObject has the DestroyAfterEffect.cs which is either destroys the GameObject when

particle system stops or after a given time.

5.10.2 Code

Page 137

Figure 177 – DestroyAfterEffect.cs

Figure 178 – Projectile.cs part 1

Page 138

Figure 179 – Projectile.cs part 2

Figure 180 – Projectile.cs part 3

5.11 Inventory

5.11.1 Overview

 The player needs a place to store the useful items he needs in times of need. This is

where the inventory system plays an important role. For example, in this project, the player

needs a place to store the weapons and consumables, items that he needs when picking up or

later. The inventory does not have an infinite amount of space, which means that the player

will have to discard some items to make room for other items. The inventory consists of a grid

Page 139

of 5 x 5 slots, so it has 25 slots for storing items. The inventory can be opened and closed by

pressing TAB. Clicking on a sword item will equip that sword, and clicking on a consumable

item will consume that item. There are also three other functions: First, the slots that contain

items have a red button in the top right, if you click on it, the item will be placed in front of the

player. The UNEQUIP button in the top left of the inventory will un-equip the currently

equipped weapon and the player will be able to fight with their fists. Finally, hovering the

mouse over the boxes that contain items will bring up a tooltip window with the useful

information about that item.

Figure 181 – A screenshot of the inventory

5.11.2 Code

 The Inventory system is in the Inventory.cs script, where all the methods are

Page 140

Figure 182 – Inventory.cs part 1

Page 141

Figure 183 – Inventory.cs part 2

Page 142

Figure 184 – Inventory.cs part 3

Page 143

Figure 185 – Inventory.cs part 4

Page 144

Figure 186 – Inventory.cs part 5

Figure 187 – Inventory.cs part 6

Page 145

Figure 188 – Inventory.cs part 7

5.12 UI Scripts

5.12.1 Overview

 At any moment player has to know useful information like the current health, the

enemy’s health, the experience and the level. I created an empty GameObject where I added

other GameObjects that contain some useful information and not only, for example the

Inventory, the Quest window and the Escape menu.

Page 146

Figure 189 – The HUD GameObject.

• Health Bar GameObject, uses the PlayerHealthDisplay.cs which displays the health

using a slider and a TMP (TextMeshPro) component.

• Roll Ability Bar, uses PlayerAbilityDisplay.cs which displays when the ability is ready

to be used again using a slider.

• Player XP Bar:

• Uses ExperienceDisplay.cs to display the experience using a slider.

• Uses LevelDisplay.cs displays the level using a TMP component.

• Uses XPDisplay.cs to display the experience using a TMP component.

• Inventory, displays the inventory as seen in a previous chapter.

• DialogueBox, which displays the dialogues as seen in a previous chapter

• QuestBox, which displays the quests window as seen in a previous chapter

• PauseMenu, uses EscapeMenu.cs do display a menu with settings and the option to go

to the main menu.

To control the audio and the graphic settings I created a separate GameObject that:

• Uses SetVolume.cs to control the sounds and music volume using 2 different mixers for

each one and sliders.

• Uses GraphicSettings.cs to select a graphic setting using a dropdown component.

Another important thing is that player needs to know about the enemy’s health and the damage

that is being dealt by every attack. These 2 features are provided by EnemyHealthDisplay.cs

and PopupText.cs using UI elements.

Figure 190 – Enemy’s health bar and damage display.

Page 147

5.12.2 Code

Figure 191 – PlayerHealthDisplay.cs

Figure 192 – PlayerAbilityDisplay.cs

Page 148

Figure 193 – ExperienceDisplay.cs

Figure 194 – LevelDisplay.cs

Page 149

Figure 195 – XPDisplay.cs

Figure 196 – EscapeMenu.cs

Page 150

Figure 197 – SetVolume.cs

Page 151

Figure 198 – GraphicSettings.cs part 1

Figure 199 – GraphicSettings.cs part 2

Page 152

Figure 200 – EnemyHealthDisplay.cs part 1

Figure 201 – PopupText.cs

Page 153

5.13 Other Scripts

5.13.1 SmartRenderer.cs

The NPCs throughout the scene "run" and do what they are supposed to do, but that

means they are enabled even when the camera is not rendering them, and that leads to increased

CPU consumption, e.g. the CPU time to process a frame was 8.3 miliseconds and the render

time was 121 FPS (Frames Per Second). However, using SmartRenderer.cs attached to each

NPC, guard and enemy ensures that they are not activated and rendered unless they are within

a certain distance of the player. The result is that CPU took 5.2 miliseconds and 192 FPS to

process one frame, which is an improvement.

Figure 202 – SmartRenderer.cs part 1

Figure 203 – SmartRenderer.cs part 2

Page 154

5.13.2 WaypointPath.cs

 Basic NPCs, farmers, woodcutters, enemies, and guards use a waypoint path system

to move around the map. More specifically, it is an empty GameObject that has the

WaypointPath.cs script attached to it and has empty GameObject children, where these child

GameObjects are the waypoints. For example, in Figure 204, the GameObject containing the

WaypointPath.cs script has 19 waypoints. It can be a cycle path and a non-cycle path, which

means that either the last waypoint can be connected to the first or not.

Figure 204 – Waypoint path example.

Figure 205 – WaypointPath.cs part 1

Page 155

Figure 206 – WaypointPath.cs part 2

5.13.3 Safe.cs

 When all NPCs (Plain, Farmers, Woodcutters) are on alert because of a fight or because

an enemy is trying to attack them, they enter the Flee state. When fleeing, the NPCs stop what

they were doing and hide in a safe place. This safe place is an empty GameObject to which the

Safe.cs script is attached, and a Box Collider (so that the script can identify the NPCs in

collisions). Example in Figure 207.

Page 156

Figure 207 – Safe point example.

Figure 208 – Safe.cs part 1

Page 157

Figure 209 – Safe.cs part 2

5.13.4 MainMenuManager.cs

 When player first starts the game, the main menu scene is loaded and shows the game

logo with a fade out effect while the camera moving downwards. When fade out is over then

the main menu buttons are coming into the camera view and player has the options:

• Start game, which starts the game.

• How to play, shows a panel with instructions.

• About, shows a panel with the quick view on the storyline.

• Settings, shows a panel with graphics and audio settings.

• Exit game, closes the game.

Page 158

Figure 210 – Main menu scene GameObjects.

Figure 211 – Camera – MainMenu Manager GameObject.

Page 159

Figure 212 – MainMenuManager.cs part 1

Figure 213 – MainMenuManager.cs part 2

Page 160

5.13.5 SceneLoader.cs

 When player clicks the start game from the main menu or returning from the game

scene to the main menu scene, the SceneLoader.cs is used. It is responsible for loading the

scene asynchronously in the background and showing random tips about the game.

Figure 214 – SceneLoader.cs

Page 161

5.13.6 DiscordController.cs

 First what is Discord? It is a popular online communication platform that lets you

communicate with your friends directly via text, voice or video and join servers where small

and large communities interact together. I added the Discord’s rich presence integration so the

player can show to others on Discord, what game is currently playing and what is doing.

Figure 215 – Discord’s rich presence.

After following the Discord’s developers portal, I downloaded the SDK for Unity (Csharp) and

installed it in the Plugins folder of the Project. Created an application on the Discord Developer

portal and provided a game name and a logo and lastly, I created the DiscordController.cs.

Page 162

Figure 216 – DiscordController.cs

The red mark in figure 216 is used to hide the application’s client id.

5.14 Navigation

 Unity provides a navigation system that allows the creation of intelligent characters that

can move around the game world, using navigation meshes that were created automatically

from the scene’s geometry and dynamic obstacles allow you to alter the navigation of the

characters at runtime. The following pieces are part of the navigation system:

• NavMesh, is a data structure which describes the walkable surfaces of the game world

and allows to find path from one walkable location to another. The data structure is

built, or baked, automatically from the level’s geometry.

• NavMesh Agent component helps to define characters that avoid each other when

moving in the scene.

Page 163

• Off-Mesh Link component allows to create navigation shortcuts between two locations.

• NavMesh Obstacle is a component that allows you to describe moving obstacles for the

agents to avoid when moving in the scene.

In this project, for player and NPC navigation, I first marked the terrain and some other surfaces

as Navigation Static to include them in the NavMesh baking process. I also added the NavMesh

obstacle component to trees, NPCs, and other buildings. On the Agents tab of the navigation

window, I left the settings unchanged because they fit my characters (player and NPCs). On

the Bake tab, I adjusted the settings as I did with the Humanoid agent and baked the navigation.

Figure 215 – Navigation, Agents tab

Figure 218 – Navigation, Bake tab

Page 164

Figure 219 – NavMesh area of a part of the scene

Page 165

6. Epilogue

6.1 Conclusion

 In this action RPG project, Nysa's Quest, I designed and created a small 3D world

populated with many friendly entities such as simple NPCs, farmers, woodcutters, and many

aggressive enemies. For all entities, both friendly and aggressive, I created finite-state machine

controllers to control their actions. The result is a living world where friendly entities can go

from doing their chores or going for a walk, to fleeing from aggressive entities or from a fight

that is happening. The animations are simple and the transitions between them are as smooth

as I could make them with my current assets. Another great addition was the dialogue and quest

system, which gives the player the ability to receive and follow quests from the NPCs or just

talk to some of them. The stats and items make the player feel like they are progressing and

getting stronger. Another point is the UI of the game. It is simply designed, but contains

everything the player needs to know. Lastly, the game's storyline is a small one, consisting of

4 quests and 3 additional side quests that do not clash with the storyline and give the player a

quick but fun experience.

6.2 Difficulties

 There were a few difficulties that got in the way while developing Nysa's Quest, but

after study and research I was always able to solve them. When creating the inventory system,

I found it difficult to implement the tooltip feature, and I spent some time looking in Unity's

scripting documentation and on the Unity forums. Next, it was a matter of creating the AI.

Initially I created a simple controller that controlled both the NPCs and the enemies, but when

I started creating the finite state machines for the NPCs, the guard, and the enemy, while it was

easy to create the states, I found it difficult to create the logic of the transitions, meaning I had

to test, tweak, and iterate some of the transitions several times, which took a lot of time to get

to the current state of the AI behavior.

6.3 Future Improvements

 To improve the game, I think adding new maps/areas to explore and new quests will

make the game significantly longer, more intriguing, and more fun. Next, improvements can

be made to the game's audio, where I think it still lacks. More and better music tracks, sound

effects, and ambient sounds can help control emotions and set the tone of a situation or story.

Another thing that needs to be improved is the game's combat, as the current combat is simple

and for an action RPG game it would be nice to have more attacks and complex attack combos.

Adding equipment and new types of items would also be a must, because the player will spend

a lot of time collecting better equipment to have a nice cosmetic look and items to help them

in the fights with the enemies. There can be more improvements of course, but these 4

improvements I mentioned are the ones that are most needed at the current state of the game.

Page 166

7. Bibliography

1. https://en.wikipedia.org/wiki/Unity_(game_engine)

2. https://www.freecodecamp.org/news/unity-game-engine-guide-how-to-get-started-

with-the-most-popular-game-engine-out-there/

3. https://en.wikipedia.org/wiki/Game_engine

4. https://en.wikipedia.org/wiki/Action_role-playing_game

5. https://en.wikipedia.org/wiki/Artificial_intelligence

6. https://en.wikipedia.org/wiki/Artificial_intelligence_in_video_games

7. http://gameaibook.org/book.pdf

8. https://docs.unity3d.com/ScriptReference/GameObject.html

9. https://docs.unity3d.com/Manual/Components.html

10. https://docs.unity3d.com/Manual/Prefabs.html

11. https://docs.unity3d.com/Manual/class-ScriptableObject.html

12. https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity3.ht

ml

13. https://docs.unity3d.com/Manual/UsingTheEditor.html

14. https://docs.unity3d.com/Manual/Toolbar.html

15. https://docs.unity3d.com/Manual/Hierarchy.html

16. https://docs.unity3d.com/Manual/UsingTheSceneView.html

17. https://docs.unity3d.com/Manual/GameView.html

18. https://docs.unity3d.com/Manual/UsingTheInspector.html

19. https://docs.unity3d.com/Manual/ProjectView.html

20. https://gamedevbeginner.com/coroutines-in-unity-when-and-how-to-use-them/

21. https://docs.unity3d.com/Manual/LightingInUnity.html

22. https://docs.unity3d.com/Manual/AnimatorControllers.html

23. https://docs.unity3d.com/Manual/AnimatorOverrideController.html

24. https://www.youtube.com/watch?v=mhEiJ_-jyTs

25. https://www.youtube.com/watch?v=V75hgcsCGOM

26. https://docs.unity3d.com/Manual/Navigation.html

https://en.wikipedia.org/wiki/Unity_(game_engine)
https://www.freecodecamp.org/news/unity-game-engine-guide-how-to-get-started-with-the-most-popular-game-engine-out-there/
https://www.freecodecamp.org/news/unity-game-engine-guide-how-to-get-started-with-the-most-popular-game-engine-out-there/
https://en.wikipedia.org/wiki/Game_engine
https://en.wikipedia.org/wiki/Action_role-playing_game
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence_in_video_games
http://gameaibook.org/book.pdf
https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/Manual/Components.html
https://docs.unity3d.com/Manual/Prefabs.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity3.html
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity3.html
https://docs.unity3d.com/Manual/UsingTheEditor.html
https://docs.unity3d.com/Manual/Toolbar.html
https://docs.unity3d.com/Manual/Hierarchy.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/GameView.html
https://docs.unity3d.com/Manual/UsingTheInspector.html
https://docs.unity3d.com/Manual/ProjectView.html
https://gamedevbeginner.com/coroutines-in-unity-when-and-how-to-use-them/
https://docs.unity3d.com/Manual/LightingInUnity.html
https://docs.unity3d.com/Manual/AnimatorControllers.html
https://docs.unity3d.com/Manual/AnimatorOverrideController.html
https://www.youtube.com/watch?v=mhEiJ_-jyTs
https://www.youtube.com/watch?v=V75hgcsCGOM
https://docs.unity3d.com/Manual/Navigation.html

