

THIMEL-CONTENT: AN INCLUSIVE CONTENT CREATION, GAME CUSTOMIZATION

AND GAMEPLAY PERSONALIZATION TOOL

by

KRISTOFER ANASTASIOS BARIANOS

Informatics Engineer, Technological Education Institute of Crete, 2018

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SCHOOL OF ENGINEERING

HELLENIC MEDITERRANEAN UNIVERSITY

2021

Approved by:

Major Professor

Nikolaos Vidakis

Copyright

KRISTOFER ANASTASIOS BARIANOS

2021

Abstract

In an educational context, offered information is of uttermost importance. School books

have been meticulously designed for years before publishing. However necessary, the result is

static, often outdated, information, that limits the possibilities and the educational value. The

case is even more complex for Serious Games, where teams comprised of multiple professions

and backgrounds collaborate to produce a single game, but the result must be published in a

matter of months, not years, in order to be relevant. Concurrently, the gaming industry is

experiencing unprecedented technological and conceptual changes, while the educational field is

also transforming to include new, innovative, pedagogical views and respond to the modern

reality. Nevertheless, educational games often fall a few steps behind in both fields. While

dynamic content for games has long been a reality, and quite a popular feature of commercial

games, educational games have not yet incorporated such features in large scales. Thus, Serious

Games can and should provide a canvas for dynamic education content, attracting the interest of

pupils and elevating the educational process. Yet, even in commercial games with immense

funding, there are usually no customization tools provided with the game, thus the content is

simply a selection of predefined possibilities, not truly dynamic. In this endeavor, we have

reviewed the current state of dynamic content and systems for content creation, storage, and

management. Through this exploration we uncovered valuable and relevant knowledge and

experience in the field, allowing us to better understand the current shortcomings and needs. As a

result of this insight, we have designed a proposed framework to elevate the educational value of

serious games, through the active inclusion of educators in content creation, game customization

and gameplay personalization. Additionally, we created a pilot implementation, proving the

possibilities this framework would unravel.

iv

Contents

Copyright .. ii

Abstract .. iii

Table of Contents ... Error! Bookmark not defined.

List of Figures .. vi

List of Tables .. vii

Acknowledgements .. viii

Chapter 1 - Introduction .. 1

Chapter 2 - Background .. 4

Reusability & Learning Objects ... 4

Dynamic Content .. 6

Existing Work ... 7

3D Repo .. 7

DynaMus ... 8

Comparison ... 9

System Analysis .. 12

Functional and Non-Functional Requirements ... 12

User Roles ... 18

Use Cases .. 19

Architecture .. 23

Chapter 3 - Implementation .. 24

Technologies Used .. 26

ThimelEdu ... 26

Unity3D ... 27

NodeJS .. 27

ReactJS .. 28

MongoDB ... 28

Implemented Components .. 29

UnityWebRequest ... 29

Making UnityWebRequest Async .. 30

v

Trilib Library .. 31

Rest API & Database .. 33

ReactJS Front-End .. 35

Chapter 4 - Pilot Use Case .. 37

Representative scenario .. 37

Content Customization .. 38

Gameplay Differentiation ... 41

Chapter 5 - Conclusion and Future Work ... 47

vi

List of Figures

Figure 2.1 - 3D Assets exchange without and with 3D Repo [42] ... 8

Figure 2.2 - DynaMus Architecture[46] ... 8

Figure 3.1 - System Overview .. 11

Figure 3.2 - IOLAOS Functional Requirements ... 12

Figure 3.3 - Content Editor Functional Requirements .. 13

Figure 3.4 - Data Storage Functional Requirements ... 13

Figure 3.5 - Technologies Non-Functional Requirements .. 16

Figure 3.6 - Performance Non-Functional Requirements ... 17

Figure 3.7 - Storage Non-Functional Requirements ... 17

Figure 3.8 - System Overview Use Case .. 19

Figure 3.9 - Define Content Structure Use Case... 20

Figure 3.10 CRUD Content Use Case .. 21

Figure 3.11 - Initialize Game Use Case .. 22

Figure 3.12 - Proposed Component Diagram ... 23

Figure 4.1 - Generalized Architecture .. 24

Figure 4.2 - Architecture for Unity Implementation ... 25

Figure 4.3.1. Asynchronous Web Request Class Diagram ... 32

Figure 4.4.2 - Models Import Subsystem Class Diagram ... 35

Figure 5.1 - Landing Page ... 38

Figure 5.2 - Game Options Modal .. 39

Figure 5.3 - Customization Options .. 39

Figure 5.4 - Providing information and media.. 40

Figure 5.5 - Game Created Message ... 41

Figure 5.6 - Cothurnus and Sandal ... 42

Figure 5.7 - Cothurnus in-game interaction .. 43

Figure 5.8 - Sandal in-game interaction .. 44

Figure 5.9 - Thimele Default Content ... 46

Figure 5.10 - Thimele Teacher Defined Content .. 46

vii

List of Tables

Table 2.1 - Existing Work Comparison .. 9

Table 3.1 - Functional Requirements .. 14

Table 3.2 - Non-Functional Requirements.. 15

Table 3.3 - User Roles .. 18

viii

Acknowledgements

I would like to express my sincere gratitude to Dr. Nikolaos Vidakis, my supervisor, for

his valuable guidance, trust and understanding during the long procedure of writing this thesis. I

would also like to warmly thank all team members from NILE Lab for their help and

collaboration, and especially Alexis Papadakis, Sekellaris Sfakiotakis and Spyros

Bartokaymenos. Lastly, I thank my family and close friends for providing perspective,

encouragement, and constant moral support.

1

Chapter 1 - Introduction

The term Serious Games was first introduced by Clark Abt in 1970[1]. Despite the

colossal growth of the field, especially during the last couple of decades, the definition provided

by Abt is still accepted as the core of serious games [2], [3]. According to this definition, a

serious game is specified by a decisive educational goal that is absent in games where

entertainment is the only priority and sole purpose. Despite the initial criticism video games

received as a new medium, scientists and educators has reach a consensus on the potential and

value serious games carry as an educational tool, supported by evidence of the contribution to

education [4], [5], [6]. This has shifted the acceptance balance in favor of educational games,

creating a colossal wave of development and utilization. Designing and developing digital games

however is an intricate procedure where many professionals are involved, and this is only

amplified when education is an added expectation [7], [8], [9]. Thus, in this rising industry, the

need for specifications and frameworks was realized rather quickly. Many frameworks have

emerged in recent years, in an attempt to solve various problems and to create roadmaps for

successful education through gaming. Hanes and Stone [10], divide frameworks into two

subgroups, those that are conceptual, such as [9], [11], aiming to include pedagogical foundation

in the games developed, and those that are directed towards the implementation, in the sense of

techniques for design and evaluation of serious games [12], [11], mechanics within games [4],

[13], or even learning analytics [14] and other highly specific techniques utilized in serious

games and learning. Apart from all these frameworks, authoring tools and environments have

become popular with numerous options available. Such platforms enable educators, and other

professionals, to create their own simple games, or other interactive media, for their students

without the need for technical knowledge and background [15]. The problem with authoring

tools is that educators work alone. They do create quality educational content, but unfortunately

within a very limited frame, compared to what a team of educators, game designers and

developers could contribute to the learning process [9].

Serious games have grown and expanded to a point where features are rich within

individual games and highly varied across different ones, candidly affecting the learning

experience. The significance of the elements within a game and the way in which they affect the

experience must therefore be understood, if we wish to create better circumstances for learning

2

efficiency [4]. However, as already understood, serious games are first and foremost concerned

with educational goals. While game constituents significantly influence the results, the main

element of any educational game is the educational content and learning components, in any

form they exist and interweave with the gameplay. The challenge with serious games is to have

gameplay and learning coincide seamlessly [16]. However most proposed frameworks, as well as

released serious games, heavily lean towards one end, neglecting the other, possibly due to the

difficulty of unifying said ends, limited timeframes and lack of specialization [17], [18]. In this

context, serious games design and development is highly fragmented, with eminently diversified

ambitions and pursuits. In some perspectives, this is a privilege, since it creates broader research

that will result in better comprehension in the long run. Yet, this situation is unfavorable for

present time developments, as the far-reaching spectrum cannot be adequately met. Additionally,

resources are spent on recurring tasks and solving problems already solved in other contexts,

hindering the progression of serious games and incorporation of new ideas, for instance the

incorporation of emotional elements to facilitate recollection, as proposed by Malliarakis et all

[11]. This results in a focus on highly abstracted goals, in detriment of tangible elements,

considered non-challenging. Educational content often falls within this range of unremarkable

elements. Consequently, it is given low priority within game design and development and is

often approached from an inadequate perspective or is simply overlooked. However, it can be

argued that content is one of the most important elements within an educational game. Thus,

more attention must be put towards creation of meaningful educational content, as well as the

fusion of educational material and game constituents, for any and every produced serious game.

Additionally, the education fields is growingly incorporating new techniques of adaptive

learning in an attempt to create personalized learning [19]. Those techniques are applied to

eLearning platforms, adjusting elements such as content presentation or navigation. Thus, a

situation arises where learners in the same class doesn’t follow a preset learning path, but get to

experience a unique educational situation [20]. It is shown that this approach motivates students

to raise their engagement and better absorb information, leading to higher levels of learning [21].

In many cases, the gaming industry has employed techniques for personalization of the

gameplay, even though with different goals. Despite some research and attempts done in serious

games, those endevors generally explore possibilities and edge-cases while trying to utilize

techniques, such as fuzzy logic [22], in new ways. However, those ventures have not resulted in

3

actual application, while serious games and game based learning are still very sparingly used in

official educational context [23], [24]. Thus, the opportunity arises to utilize current technologies

to create serious games that can adapt to students. The goal here should be to facilitate the

incorporation of serious games into official educational structures, such as classrooms.

Based on the above observations, we propose a framework that will hopefully solve some

crucial issues and facilitate the creation and utilization of educational games with increased

educational value. This framework is based on a three-fold of principles, asynchronous multi-

discipline collaboration, reusability and adaptive content. Following this model, professionals

from the gaming industry and pedagogical fields should collaborate towards making games with

unlimited potential. Additionally, games should be reusable, maximizing the time spent playing

per time spent creating for each game and finally, educational content must be adaptable and of

central importance for those games. Through this three-fold, educators can modify the

educational content of games, making them reusable and customized to their students’ needs,

thus achieving all three goals. It brings power to educators, in a similar way to authoring tools,

while keeping designers and developers in the loop. Thus, produced games are of higher quality,

technologically relevant and more attractive to students who can enjoy the learning procedure

and gain additional education value from it.

4

Chapter 2 - Background

Despite the fact that other industries often overlook and disregard video games due to

their playful nature, they are one of the most sophisticated products in the modern marketplace.

To create games a long list of interdisciplinary professionals is required and a multitude of

separate technologies are utilized. When it comes to serious games, the list grows even more,

with additional professions, technologies and tools that bring the educational/training element to

the effort. This interdisciplinary state brings a lot of terms to the table, often relevant only to one

of the contributing fields. However, in many cases these concepts can be utilized in other fields

as well and bring innovation.

 Reusability & Learning Objects

Software developers have been reusing existing software, and knowledge, to develop new

solutions since the dawn of computer programming [25]. It has always been a goal to use

existing work and experience to avoid spending time and resources on tasks and problems

already solved, but also to ensure better software quality [26]. In today’s software industry, that

is overflowing with frameworks and nimble projects, software reuse is highly practiced. In the

gaming industry aside from code reuse, such as inheritance and frameworks, there are complete

game engines that offer a large amount of groundwork for reuse. Additionally, numerous shops

offer game assets for sale, including 3D models, implementations for specific tasks, media, user

interface graphics and complete packs including any combination of solutions [18], [27]. Serious

games are generally created using such game engines and utilize shared assets when suitable.

However, serious games also include elements specific to education purposes, such as

assessment modules, learning metrics and the education content, that are not commonly shared in

this manner. This is a problem recognized in the community of serious games. As a fact, the

Games and Learning Alliance [28] identified reusability, and many aspects of it, as a prominent

research and development challenge, thus deciding to include many of those aspect in its

roadmap for non-leisure games. On the education side, Dawnes [29] realized the need for

reusable blocks of educational material he named Learning Objects, and proposed them in 2001.

Dawnes foresaw the digitization of learning and recommended reusability of elements common

5

through curricula. In his vision, instead of spending resources to produce numerous versions of

the same material we could reuse the existing versions saving time and achieving better quality

on each individual piece of material. The term has since been abandoned to a large extend, but

his idea is partially put to practice through open resource, creative commons and other sharing

protocols and structures.

For the technical aspect, there have been attempts, with various levels of results, to create

structures for sharing, locating, reusing and customizing elements. However, most of them are

proposed reference systems, with no or little concern for the entirety of the creation and

reusability process. Most prominent are the efforts of the RAGE project [30] and the Serious

Games Society [31]. RAGE aims to create assimilative, reusable and portable assets specific to

serious games. It relies on latest technology, hoping to decrease investments and development

time required by small studios, while increasing the quality of produced serious games [27]. The

Serious Game Society has produced a number of tools and systems aiming to facilitate serious

games creation, including a catalogue of web services which is now abandoned, a framework for

learning analytics, called GLEANER, and a reference system for the identification of assets

shared in the community [32]. GLEANER has been incorporated and further developed by

RAGE project, becoming RAGE Analytics [33]. The latter of the societies efforts, namely

Serious Games Reusability Point of Reference [34], is an effort towards the reusability of assets

for serious games, where educational content could also be shared if properly modeled.

However, it is simply a catalogue of assets provided by members, with no quality, portability or

any other guarantees, without any means to assist developers adopt the available assets and

without an established specification for the creation and submission of assets. For those reasons

it never gained much traction. We can safely assume that RAGE is arguably the most unified and

complete proposal for meaningful reusability within serious games. For that reason, it is also the

framework that has made the largest contribution to the field. However, while the framework

offers solutions to complex developmental problems, it completely excludes the most

fundamental thing about serious games, knowledge. Educational material is in no way

considered an asset by the RAGE framework, possibly because producing content is not a task of

technical nature, however reusability criteria do apply and such an inclusion would offer new

possibilities to serious game developers.

6

 Dynamic Content

The fact that each student learns in a different way [35], has led to numerus techniques

for personalized learning. Adaptive Hypermedia has been identified since the early stages of

internet to be a powerful educational tool that can provide personalized learning paths. The

content is thus selected among available elements, dependent on selections that express the

personal preferences and background of each student [36]. Therefore, the process respects

diversity between students and supports the concept of inclusive learning [37]. Following this

path, the next challenge is to create adaptive educational games. Techniques based on those of

Adaptive Hypermedia have been experimented with in educational games. ALIGN was a quite

successful attempt to introduce the adaptive nature to games. Despite its positive effect, ALIGN

has a complex architecture that did not facilitate adoption by serious game developers, thus

discouraging use. As a result, the creators concluded that accomplishing adaptive educational

games through the Adaptive Hypermedia logic would require substantial financial and technical

resources, thus impeding advances in the field [38]. As a result, further efforts are limited, and

alternative techniques were introduced. One interesting approach is that of the IOLAOS platform

[39]. In an attempt to minimize technical difficulties and offer portability, IOLAOS offers a

number of web services, from which developers can retrieve specific information about the

current player. Such information can include age, preferred learning style, possible learning

difficulties, etc. It is then up to the design and development team of the game to decide to which

extent the game will be adaptable and how this information is going to affect gameplay and

narrative [9], [23]. This level of freedom is supported by other factors in the platform and is

justified on the premise of portability and creative flexibility. Nevertheless, despite the multitude

of offered services, no tools or specifications are offered to assist developers and educators

create and manage reusable educational content. Once again, developers need to design content

management systems and seek collaborators to device educational content for their games.

Additionally, a problem shared throughout techniques, is that content is not truly dynamic. It can

be adaptive, usually based on “dynamic” content chains [40], however those chains are

dynamically constructed, but with a predefined, limited selection of links that cannot be enriched

without the active participation of the development team and the release of a update.

7

 Existing Work

 3D Repo

3D Repo [41], [42] is a version control solution for building information modeling.

Version control, by definition, being a collaboration tool, 3D Repo enables multiple stakeholders

to share a single repository and work on the same 3D asset, having a unique source of truth and

simplifying the exchange of versions and 3D data. As depicted in Figure 2.1 - 3D Assets

exchange without and with 3D Repo [42], there are multiple transactions regarding information

between different professions involved in the process of building construction, maintenance and

demolition. However, with 3D Repo, all those exchanges are replaced by a single centralized

source that each profession uses individually. Additionally, the system has integrated a REST

API, facilitating interaction with the servers and allowing a multitude of integrated solutions to

be created, and support for X3DOM [43], a HTLM based 3D integration. 3D Repo is available as

a Software as A Service through 3drepo.io [44]. Along many more additions and features 3D

Repo has released, is a library for Unity3D [45], that allows unity to load assets from the 3D

Repo servers into the Unity3D engine at runtime. This is particularly useful in the constructions

industry, as many representations utilize Unity3D. This particular library is implemented using

.NET, not Unity itself, with the intent of reuse in other circumstances. However, some specifics,

like the difficulties in asynchronous loading in Unity, and the way 3D models are rendered,

makes a big part of the library specific to Unity. The result is quite interesting, the models are

gradually imported, mesh by mesh and later textures are applied. However, there are difficulties

in manipulating the created GameObject, as each mesh is imported as a child game object. In the

context of construction industry, 3D Repo is an excellent solution that solved a multitude of

issues, but unfortunately it is quite unfit for other fields due to its high-level of specialization and

overhead. However, being opensource, parts of it could be extracted and repurposed for other

more general frameworks, or even frameworks specific to other usages.

8

Figure 2.1 - 3D Assets exchange without and with 3D Repo [42]

 DynaMus

DynaMus [46] is a dynamic 3D and 2D virtual museum framework, built with Unity3D

real-time engine. In many ways, the framework can be considered as a 3D content management

system. It allows users to browse museums created by other users, and build their own, either in

2D or 3D format. The framework is built using a server-client architecture, as illustrated in

Figure 2.2 - DynaMus Architecture[46], where the client is the museum created with Unity3D,

and the server is an application built in PHP that can locate images and 3D objects from URLs.

Communication between the two is achieved with JSON data-interchange format. What is

interesting is that the data is usually not stored on system servers, instead the Europeana web

services and Google web services are utilized.

Figure 2.2 - DynaMus Architecture[46]

9

 Comparison

Though quite different, both presented platforms provide the technical ability to import

material into pre-compiled environments. DynaMus allows users to import images and 3D

objects into a precompiled virtual museum, effectively changing what is displayed in the

museum, while 3D repo offers, among other services, the infrastructure to import 3D objects into

Unity3D projects, with the goal of showcasing and studying BIM data in a virtual 3D space. In

this regard, DynaMus is useful to educators that wish to present virtual material in a suitable pre-

defined environment to their pupils, while 3D Repo is useful to virtual environment developers

who can create environments in which 3D buildings can be loaded post-compile. Neither of these

is a complete solution, that can allow game creators to build customizable games, and allow

educators, with no technical knowledge, to modify the games and create an experience suitable

for their students. In further analysis, Table 2.1 - Existing Work Comparison offers some

insight. The only common trait is that both technologies utilize a web architecture to store and

retrieve the content. 3D Repo additionally doubles as a version control system for BIM data,

while DynaMus does not offer any collaboration capabilities. 3D repo also provides a Unity3D

Plugin to utilize BIM data stored on their servers through Unity3D engine. Both provide tools to

change 3D models, but DynaMus offers the same capability for images and descriptions as well.

The main usage of 3D Repo is commercial, building industry, creating showcases and

environments for technical collaboration, while DynaMus targets education, creating a virtual

museum environment. Lastly, though both have technical innovations useful in serious games

customization, neither of them is developed in a way that could be applied to serious games,

instead only parts of their systems can be repurposed towards such a goal.

Table 2.1 - Existing Work Comparison

Traits 3D Repo DynaMus

Web Architecture Yes Yes

Version Control Yes No

Unity3D Plugin Yes No

Content Modified 3D Models (BIM data) Images, Description, 3D Models

Main Usage Commercial Educational

Virtual Education Environment No Yes

Applies to serious games No No

10

Our Proposal

Our research of the field led us to the understanding that serious game content is

underrepresented in research and developmental efforts. The technological reality of the day has

lots to offer towards quality content, improved methods for creation, management and

collaboration, but also elevated levels of freedom to each professional involved in serious

gaming. What we propose, as a means to assist in the investigation of the research question and

as groundwork for future endeavors, is a framework to facilitate dynamic educational material

management and utilization within serious games. This framework will hopefully bring truly

dynamic content to serious games and will improve material through a different approach to

creation, that is detached from the initial design and development of the game. To analyze, we

share the aforementioned assumption by Vidakis and Charitakis [9] that each professional has

highly specialized skills that cannot be overlooked or replaced. Authoring Tools, though great

means for educators to create interactive material, create very limited experiences compared to

games with the level of attraction that gaming studios publish, while at the same time, gaming

studios cannot create and include educational material of quality, personalized to the last class

and student, even with tight collaboration with educators, educational experts and authors [9].

However, it is obvious that such collaborations, as all collaborations, are time and resource

demanding. In the age of computer-supported collaborations, any interdisciplinary field should

effectively utilize technology to create better circumstances of collaboration that demand less

from all parties while delivering superior results. Additionally, it is critical that content should be

able to be enriched and modified without involving the developer and creating updates and new,

specific, releases. Thus, what we envision is educational content that includes suitability

metadata, complemented by various specifications and infrastructures to cater to the needs of all

stakeholders. In support of this, a framework will specify rules and offer assets for integration

into games, so that content can be dynamically coupled to the game, at run time. This coupling

will depend upon game and player criteria, selecting only content that is suited to the game

narrative and theme but also accords to the current player’s needs. It will then be modularly

added and displayed in game. This selection and retrieval process will be realized by web

services communicating with a content repository. Additionally, infrastructure must be in place

for educators to submit educational material in the form of game content and limit available

content, or choose specifics, for their learning sessions with their students. This will be realized

11

through a web site, similar in functionality to modern Content Management Systems. A Problem

that must be foreseen and addressed during development is that the web services make gaming

sessions dependent on internet connectivity. This can be solved through “educational packets”

that can be saved into a specified local folder that can be used when an internet connection is not

available.

Figure 2.3 - System Overview

The overview is simplified and depicted in Figure 2.3 - System Overview as follows.

Educators interact with a content editor to author new educational material or select material for

an upcoming learning session. The content editor communicates with the RESTfull API to

authenticate the educator and access/modify learning session data, through the IOLAOS API. It

also communicates with the content repository to retrieve the available material and to save any

new material submitted. Finally, the students access the game, which has personalization tools

included, that will communicate with the REST API to authenticate students and retrieve the

appropriate material for each student from the content Repository. Determining which material

to retrieve will be an elaborate process, that will combine user profile (such as age and learning

preferences) and learning session.

12

 System Analysis

 Functional and Non-Functional Requirements

From the goals stated above we can identify the requirements of the system, which were

analyzed and composed into Table 2.2 - Functional Requirements and Table 2.3 - Non-

Functional Requirements. The Functional requirements are grouped into 3 groups depending

on what aspect they address, IOLAOS, Editor or Data Storage. These groups are also expressed

through the ID names, where FI is Functional-IOLAOS, FE is Functional-Editor and FS is

Functional-Storage.

Figure 2.4 - IOLAOS Functional Requirements

Functional requirements regarding IOLAOS comprise the first group, depicted in Figure

2.4 - IOLAOS Functional Requirements, specifically there are 2 requirements to make the

platform compatible with IOLAOS. Users shall be authorized through IOLAOS with the

provided API (FI1), and user roles dictated by IOLAOS must thus also be followed (FI2). The

second group is related to the Content Editor we aim to create. These requirements are illustrated

in Figure 2.5 - Content Editor Functional Requirements in detail. A web page must be

created that will be the Content Editor (FE1). Through this website, any existing content will we

accessible for educators to view, however there will be access limitations (FE2). Additionally,

the content editor will allow material creation (FE3) and editing (FE4). Additionally, game

developers will be provided with the ability to register their game to the system (FE5) and will

define the content structure for their games (FE6), in order to allow authors to create educational

material for the game. Content will be accessible to the creator and his/her pupils through a token

(FE7), while the official content (Content that is available to all users) cannot be deleted, instead,

it can be archived (FE8). Lastly, the content editor must be multilingual, and as a minimum the

initial version shall support Greek and English (FE9).

13

Figure 2.5 - Content Editor Functional Requirements

The third group, Data Storage is portrayed in Error! Reference source not found.. This g

roup is concerned with data management. Specifically, the requirements of this group are four.

Content shall be stored in remote servers (FS1), all data shall be retrievable from those servers

by the editor and any games, with appropriate filters applied (FS2), media types stored on the

servers shall include Text, Audio, Video, Images, and 3D models (FS3).

Figure 2.6 - Data Storage Functional Requirements

14

Table 2.2 - Functional Requirements

Functional Requirements

ID Title Description

FI11 User Auth User shall be authenticated by IOLAOS through available API.

FI2 User Roles User Roles dictated by IOLAOS shall be followed.

FE21 Web Page A web page shall be created to host a Content Editor.

FE2 Content review Any existing content shall be viewable through the Editor, user

permissions apply

FE3 Content Creation The Content Editor will allow material creation

FE4 Content Editing Personal created material shall be editable.

FE5 Game

Registration

Game developers can register their game to the system, to be available

for content change

FE6 Define Content

Structure

Game developers can define structure of content for their games

FE7 Content

availability

Unofficial content is accessible only by the creator and his/her pupils

(through token)

FE8 Official Content Official content cannot be deleted. Instead, content that is no longer

relevant can be archived.

FE9 Multilingual The editor must support Greek and English

FS31 Content Storage Content shall be stored in remote servers

FS2 Data Retrieval All data shall be retrievable by the editor and games, with different

filters applied

FS3 Media Types Media types shall include Text, Audio, Video, Images, 3D models

1 FI = Funcional Requirements regarding IOLAOS

2 FE = Functioal Requirements regarding the Editor

3 FS = Functional Requirements regarding data Storage

15

Table 2.3 - Non-Functional Requirements

Non-functional Requirements

ID Title Description

NT14 Front-End The website shall be created with ReactJS

NT2 API The API shall be created with Node.js

NT3 API key The API shall share API keys with IOLAOS for game

authentication

NT4 Database The Database shall be a MongoDB

NT5 Game Engines The system shall include the tools necessary for usage with

Unity3D game engine.

NP15 Data Delivery

Times

Data delivery time between parts of the system shall be kept under

1 second

NP2 Data

Processing

Data processing and response preparation shall be kept under 0.5

seconds.

NP3 Simultaneous

Requests

The system shall be able to handle at least 1000 simultaneous

requests from any part of the system (games, editor).

NS61 Text & Files

Storage

Various forms of media content shall be stored in remote servers

in NoSQL format.

NS2 Meta-data All content data will be supported by meta-data

NS3 Secure File

types

File types shall only be supported if security against viruses can be

assured

4 nFRs regarding technologies to be used

5 nFRs regarding performance

6 nFRs regarding Storage

16

Non-functional Requirements are grouped into three groups as well, Technologies, Performance,

and Storage. Technologies Non-Functional Requirements (nFR) are portrayed in Figure 2.7 -

Technologies Non-Functional Requirements, and include the need for a ReactJS front-end

website (NT1), an API built with Node.js (NT2) that will act as the middle-man between the

games, the website and the database, a common API key with IOLAOS (NT3) for game

authentication, and, lastly, a MongoDB database(NT4) where all content will be stored.

Figure 2.7 - Technologies Non-Functional Requirements

The second nFR group, performance, is depicted in Figure 2.8 - Performance Non-

Functional Requirements and is concerned with performance and stability of the system.

Specifically, this group defines the need for fast response times though two requirements, Data

Delivery Times, which must be faster than one second (NP1) and Data Processing, which must

be faster than 0.5 seconds (NP2). Additionally, this group defines the need stable infrastructure

than can handle at least 1000 simultaneous requests (NP3), so that the system doesn’t fail if

multiple classes are trying to play games concurrently. The final nFR group, Storage, depicted in

Figure 2.9 - Storage Non-Functional Requirements, defines the needs regarding data storage.

Storage format shall be NoSQL in the remote servers (NS1), all data must be supported by meta-

data (NS2) and lastly, only file types that can assure security shall be allowed (NS3).

17

Figure 2.8 - Performance Non-Functional Requirements

Figure 2.9 - Storage Non-Functional Requirements

18

 User Roles

Table 2.4 - User Roles

User/Role Example Frequency

of Use

Security/Access,

Features Used

Access to

Game

Developer

Game

Developer of

ThimelEdu

Rare or

Occasional

1. Game
Registration

2. Content
Structure
Definition

3. Content
Publishing

Editor

&

Game

Educator History

Teacher

Frequent 1. Content Creation
2. Assign content

to student/class

Editor

&

Game

Learner Student/ end

game user

Frequent No direct features Game

Educational

Expert

Special

Education

Specialist

Inactive No direct features Game

Game Tester Inactive Inactive No access Game

Administrator Admin Frequent Full Access Editor

As described by the Functional Requirements stated above, the system will follow the

user roles defined by IOLAOS. However, IOLAOS is a platform that covers a broader spectrum

of educational needs compared to the proposed system, and as such has more roles than needed

in this case. Therefore, some of the IOLAOS user roles will be inactive in the proposed platform,

meaning that there will be no features designed for them. As already analyzed above, Game

developers will be able to register their game with the platform, define the content structure and

publish new content. Educators can use the platform to author new educational material or select

custom material for their learning sessions. The last group already mentioned are the learners,

who will access the platform indirectly, through the game, retrieving material that will customize

their game and experience. The last role that will be able to use the platform is the administrator,

who of course is a bureaucratic role, included only for maintenance needs, with no impact on the

educational services of the platform. IOLAOS has two additional roles, Game Tester and

19

Educational Expert. Game Testers test games for compliance with “IOLAOS Maturity Levels”,

which is irrelevant for this platform as the games will already be included in the IOLAOS

platform, otherwise they can’t register with this platform. Additionally, even though IOLAOS

might decide to make “Dynamic Content” an additional “Maturity Level”, this platform is only

concerned with the management of educational material and the tools to bring personalization

into games, testing for compliance is beyond our interest and scope.

 Use Cases

Figure 2.10 - System Overview Use Case

The requirements analyzed in section Functional and Non-Functional Requirements

allow us to identify the use cases for each role involved in the process and better realize what

actions are implied. Below, we will analyze the most important use cases of the system, namely:

• System Overview, Figure 2.10

• Define Content Structure, Figure 2.11

• Create-Read-Update-Delete (CRUD) Content, Figure 2.12

• Initialize Game, Figure 2.13

20

For the system overview, we have four actors, the three user roles that are actively engaged with

the system, plus the games themselves. The chain of events starts with the Game Developers,

who register their game with the system and define the content structure. After that, both

developers and educators can use the editor to Create, Read, Update or Delete content. Educators

can additionally assign specific content to learning sessions they teach, to specific learners.

Lastly, games can retrieve content from the API, and make adjustments using the personalization

tools, replacing the default content with material retrieved through the system. This brief

overview is depicted in Figure 2.10 - System Overview Use Case. Further analyzing elements

of this use case, we can identify the definition of content structure and the CRUD procedure as

additional use cases. In Figure 2.11 - Define Content Structure Use Case we have illustrated

the use case of creating the content definition for a game. To elaborate, the game developer will

add elements, such as text, videos and images, and define the sequence in which they are to be

expected.

Figure 2.11 - Define Content Structure Use Case

Depicted in Figure 2.12 CRUD Content Use Case, we have game developers and

educators as actors, but both roles can be seen as a single actor, an Author. This Author can

21

choose a game, for which the existing content will be displayed. The actor can now select of the

available content packages, to either delete or edit, or to create content. Editing will imply

editing texts and/or uploading media. Deleting will remove the entire content package from the

remote server. Creating implies the authoring of texts and upload of new media. In either case,

saving the changes is a necessary last step.

Figure 2.12 CRUD Content Use Case

Finally, the last use case we will analyze is depicted in Figure 2.13 - Initialize Game Use Case.

For this situation, our actors are two, the Player and the game itself. The player, in this situation,

might be a student but it is not certain. The educator might also join a game, and the games are

also open to guests that are treated as simple players. Thus, in our use case we have chosen the

most general depiction of the user. The player opens the game, from there he/she can either go

on to play the game with the default settings, or login through IOLAOS to get a personalized

22

experience. Regardles of wheather the player will login, the game will do an initialization with

default settings and content. Logging in will trigger two additional events, the game will retrieve

session data, if there are, and the personal player preferences of the player. If session data is

found, they are retrieved from the server and the applied to the game, updating the game content.

This would also mean that our player falls in the category of student. The second action that is

triggered is the retrieval of the player preferences stored in the user profile, that will in turn

update the game settings to match this profile. Both of those updates will happen seamlessly,

before the actual game play has stared. Lastly, the player gets to play the game, in whatever form

is the final, either the default initialization, or the personalized version.

Figure 2.13 - Initialize Game Use Case

23

 Architecture

From the analysis conducted above, we have arrived to the architecture of the proposed

system and designed a component diagram, illustrated in Figure 2.14 - Proposed Component

Diagram. Beginning from bottom right, we have a Data Storage, that will consist of a NoSQL

database that will hold the content structure, texts, metadata and the locations of files, a File

Server that will host the files needed for the content structure, and a Content module, that will be

able to compose information from the database and file server into singe Content Objects. On the

Upper Right, we have an API, the REST API will accept requests, the Data Filter will formulate

the filters according to the specifications set by the request and the Data Manager will formulate

queries to retrieve content or create and write into the Data Storage. On the upper left we have

the content editor, a web site, which will include editing tools for authors to create or edit their

material and will be able to visualize the content through its graphical interface. In the middle,

we have the Dynamic Games, that will be able to request content through the API and

personalize the game. Finally, on the bottom left, IOLAOS framework will accept request from

the games and the content editor, to authenticate users, find learning sessions and classes, etc.

Figure 2.14 - Proposed Component Diagram

24

Chapter 3 - Implementation

For this thesis, we created a pilot implementation, with a portion of the architecture

proposed above. We focused mostly on the techniques involved in making games adaptable at

runtime and any inextricable modules. Thus, we identified the game adaptation engine, a

database and file store, and the communication between them as the crucial parts for our pilot

implementation. Creating a game adaptation engine is a very challenging task, as each game is

different, and can be built upon a number of available game engines, a custom engine created by

the developer, or even without a game engine, something that often happens with simpler web-

based or mobile games, where a game engine would introduce a multitude of unnecessary

features that have a cost in size and performance. Therefore, we have created an abstract

architecture to guide all implementations, illustrated in Figure 3.1 - Generalized Architecture.

Figure 3.1 - Generalized Architecture

According to these guidelines, we expect a game engine core. This might represent

something different for each game, as some will utilize their rendering engine to know what to

render next, while others might have custom solutions to feed information to the rendering

engine. In any case, in regards to this diagram, this represents any logic beyond the scope of our

solution, be it game engine modules or customized code by game developers. Our Content

Adaptation Module communicates with this core, getting insight as to what parts of the game

need to be customized. Having this information, the Content Adaptation Module uses the Web

Request Handler, which in many cases might be part of the game engine, to communicate with

the outside world, in order to find the appropriate material for each adaptable element in game.

25

To support this, we need our Remote Resources, a REST API that can accept request, find the

information needed and reply. The information will be stored either in a NoSQL database, or a

file server, depending on the type of material and information.

For our implementation, we decided to realize the above architecture for one of the most

popular game engines. Unity3D was selected, due to its popularity and previous experience of

the author. Additionally, a serious game, ThimelEdu, was chosen to showcase the results in a

real environment. This game was chosen as it already is IOLAOS certified, and the author is the

lead developer of the game. Knowing that we will work with Unity3D real-time engine, we

particularized the previous abstract architecture into a more specific component diagram,

illustrated in Figure 3.2 - Architecture for Unity Implementation. In this case, the Web

Request Module and the Content Adaptation Module, become part of the game engine core, as

we wish to develop it within Unity, not as an external library. The only significant change is the

addition of TriLib Library, due to the challenges of importing 3D models at run time. This is

further elaborated bellow.

Figure 3.2 - Architecture for Unity Implementation

26

 Technologies Used

 ThimelEdu

To test and illustrate our implementation we used the interactive 3D serious game

ThimelEdu [23]. ThimelEdu was designed and developed as an exploratory learning alternative,

through which learners can discover and study educational material about the architectural

elements and tools utilized in ancient Greek theatre. The specific topic is challenging for both

teachers and pupils. For the former, recreating ancient environments and situations, in a manner

that will trigger interest is a task with disproportionate difficulty compared to the time devoted to

the topic in school syllabus. For the latter, studying such a unique topic from the static context of

books and images is tiresome. Additionally, visits to such ancient sites, that would be the ideal

teaching setting, is impossible in most cases, and difficult in the best cases. Therefore, the game

aims to facilitate learning about the topic, as a complementary tool within the school

environment [47]. In the game, a 3D representation of an ancient theater site is presented to

players, who can navigate freely, in third person, through every part and discover architectural

elements and tools. Players can interact with those 3D objects, and through them discover

educational material, such as texts and images and answer quizzes. Scoring, rewards and other

gamification elements are also included, to enhance players awareness, interest and performance

[23]. The play sessions can also offer assessment, through the scores and quizzes though

Learning Analytics [47]–[49][23]. Additionally, the game offers accessibility by adapting

educational material and game settings, according to the current player. This is achieved through

interoperability with the IOLAOS platform [9], ensuring the best possible learning environment

and conditions for each and every student [50]. During gameplay, players are tasked with

locating and identifying artefacts of ancient theater positioned throughout the 3D environment,

interact with them in a pursuit of educational information. Additionally, after this interaction,

quizzes appear to the player, offering real-time assessment and better retention of knowledge.

By Default, ThimelEdu comes with a selection of educational material. This material is

characterized to be shown to the appropriate learners by language, age, and school type(as

identified by IOLAOS). The entire selection is codified in JSON format in the Streaming Assets

folder, so that it can easily be updated, even without the intervention of the game developer. In

our case however, we do not wish to update the default game content, but to dynamically change

27

the educational material for other resources available on a remote location. Therefore, the default

system will be kept intact for use cases where there is no personalization, or when there are

technical issues that do not allow communication with the remote resources.

 Unity3D

Unity 3D Real-time Development Platform [51] is used in many industries for creation of

interactive environments, in 3D or 2D. It launched in 2005 as a game engine [52] and quickly

became vastly popular with game developers. By 2018, almost half the games published on

itch.io [53], a web gaming platform where independent developers publish games, was created

with Unity, while 13.2% of games published on Steam [54], a digital distribution service with the

largest market share, also used Unity3D as their engine [55]. Gradually, other industries started

to utilize Unity as well, such as real estate development and even artists, [52] and Unity

Technologies, the company behind Unity, welcomed and endorsed this, creating additional tools

and renaming the game engine into real-time development platform. One of the biggest

contributors to its popularity is the cross-platform capabilities it adopted since very early,

supporting almost any platform current available, including cutting edge technologies.

Additional contributors to its success are its beginner-friendly interface, the competence in

professional needs, the effectiveness of the workflow and the ever-growing community, library

of assets and library of tutorials that can cover any part of the engine or development process. All

of the mentioned perks are provided for free, and additional premium features are available to

professionals through subscription plans. For this endeavor we chose Unity3D due to all the

aforementioned benefits, as well as the apprehension that, compared with other popular game

engines, it is more likely to suit the needs of educational game developers.

 NodeJS

NodeJS [56] is a runtime environment for Javascript. It is built utilizing the V8 Engine,

an open source WebAssembly engine, published by google [57]. NodeJS is created as a way to

write JavaScript for server-side programming. This locates NodeJS in a unique position, as it

doesn’t only bring JavaScript, a language created, and traditionally used, for UI elements of

dynamic web pages, but it also creates a single-threaded server, in contrast to most, if not all,

other server-side languages, who follow a multi-threaded paradigm. It has become prominent in

the web development circles, due to the benefits of using the same language for the server and

28

the client side, such as code reuse, the Node Package Manager, a built-in feature that allows

developers to find and quickly import modules into their own application and it’s simplicity for

smaller projects. However, as expected, NodeJS is not a panacea, it is well suited for some

scenarios, but for other there might be better alternatives. It is commonly preferred for

application where incoming request are not CPU intensive and there are numerous concurrent

connections to the server [58]. For our needs, NodeJS was selected for our RESTful API over

other server-side solutions, as it provides simple integration with MongodDB, described below,

and suits the needs of the application.

 ReactJS

ReactJS [59] is a popular free and open-source JavaScript library, used for building

interactive interfaces. Its architecture allows the production of single-page applications where

data is dynamically updated through a virtual DOM. ReactJS is often compared to Vue.js and

Angular, however the three are very different, as ReactJS is a library, Vue.js is a framework and

Angular is a front-end platform [60]. They all utilize Javascript, but they shouldn’t be compared

as they are different in nature and goals. In our case ReactJS was chosen due to the smaller range

of the pilot implementation. Not to be confused, ReactJS is a very good solution for massive web

apps, but it is also very suitable for small projects, while Angular and Vue.js might be a little to

much, as they are an entire platform and framework respectively.

 MongoDB

MongoDB [61] is an open-source database system that uses JSON documents to store

data, without the restriction of relational databases. Schemas are optional, and when they do exits

it is up to the developer to decide how the relations will be expressed. It is very popular due to

the fact that it stores data as JavaScript objects, readily available for web application written in

JavaScript. Additionally, being NoSQL, it is a schemaless solution, providing flexibility that is

impossible with relational databases. Naturally, these benefits do not come without drawbacks.

The flexibility comes with an impact on consistency, and it is not the most optimized solution,

especially when many aggregations are present [58]. MongoDB will generally be more suitable,

compared to a relational database, when a flexible model is needed to store large amounts of

denormalized data[62]. Therefore, it is selected for this implementation, as we need the

29

flexibility for the many kinds of content structure, for each game, that will result in a very large

database, with numerous denormalized data.

 Implemented Components

 UnityWebRequest

Unity3D includes a toolbox for networking that offers techniques for connecting,

downloading, uploading, etc. One of the classes in the toolbox is UnityWebRequest, which

handles HTTP communication with web servers [63]. Communication employs the standard

HTTP methods and UnityWebRequests utilizes additional classes, such as DownloadHander and

UploadHandler, to send or receive data during the communication with web servers. Being a

higher-level tool for HTTP communication, UnityWebRequest has methods and properties that

arrange the appropriate communication format, stage HTTP headers etc. Yet, in our experience,

communication with some web servers did not get established as expected. Various errors arose,

and the functionality of UnityWebRequest did not allow for the proper customization. The most

prevalent complication was the fact that the web server would only accept request in JSON

format, while Unity will send XML format by default. This setting can be changed, through

accessing the UploadHandler of the UnityWebRequest, and setting the contentType property.

However, this introduces new complications and unpredictability, as there are cases where the

setting will be overridden by defaults. Thus, to overcome this unpredictability, we created an

extension class, presented in Figure 3.3.1. Asynchronous Web Request Class Diagram as

NileUnityWebRequest and elaborated bellow, with the specific settings for the IOLAOS system

[9], [64] with which we overcame the difficulties. Hence, creating an object with predefined

communication format and headers, compatible with IOLAOS, with less parameters compared to

the original class. Of course, this particular object will be compatible with any other web servers

that communicate with the same format, namely JSON communication both in the request and

the reply, but we have only tested it with IOLAOS. Additionally, through arguments, it can be

utilized with other formats as well, but we have not tested this in practice either. As a result, it is

easier for the developer to create a request, as they only need to instantiate the predefined object

and provide the appropriate HTTP method, the service URL and any data that need to

accompany the request.

30

 Making UnityWebRequest Async

The Unity3D Manual suggests using coroutines when working with UnityWebRequest.

Coroutines are a special kind of functions within Unity3D. They can only return one specific

type, IEnumerator which is quite restrictive, but their benefit is that they can be used for

calculations that need to span multiple frames, returning the control of program flow to where

they have been called from, but continuing to execute themselves for as many frames as needed

[63]. However, when it comes to asynchronous web requests, coroutines are not idea. The main

problems that arise are (a) as coroutines can only return IEnumerator, any data fetched through

the request cannot be returned. Instead, depending on the scope, global, private or reference

variables are used, or all logic is included in the coroutine creating massive monolithic blocks of

code (b) the architecture is compatible with game logic, but not web request, thus making the

flow synchronous, while waiting for the response, (c) handling errors add additional

complications, as we need to use a synchronous (try-catch) paradigm to inspect the asynchronous

response. Web-based applications usually employ a different approach. All the above drawbacks

can result in a game that has frozen while expecting a response from some server. Usually, such

communications are rapid and users can not notice the delay, nonetheless network

communications can be capricious, users might have a slow connection, the server might be

overloaded, or a number of other complications might occur. Ergo, a different approach is

needed.

In C# asynchronous programming for web requests is implemented using three keywords,

async, await and task. This way a function, declared as async, pauses its own execution, when

command identified by await is encountered, and releases its thread, allowing the execution of

the program to continue, while waiting on specific events to occur. An incomplete task is

returned to the caller of the method, who continues execution of the program. The async method

will continue executing when the expected event has occurred (in this case, the response from the

server has been received) [65]. By default, Unity3D (version 2019.4.17.f1) uses an older version

of .NET, namely .NET Standard 2.0, were async/await/task was not yet included, but this can be

modified, and .NET 4 can be used instead, allowing these keywords to be used within Unity

scripts. Still, UnityWebRequest, and its methods, are not created with async/await in mind and

are thus not compatible, i.e. we can’t use SendWebRequest method with await, as there is no

GetAwaiter() to call. So, we created another extension, to make the SendWebRequest compatible

31

with await. This way, we have an asynchronous call to the web server, execution of the game

continues while we wait for the response to be fetched, and when the response is received, it is

returned to the central thread of the game logic to be checked for errors, evaluated and acted

upon. The additions implemented are illustrated in the class diagram of Error! Reference s

ource not found.. NileUnityWebRequest, the class described in the previous subsection, inherits

UnityWebRequest and creates a web request with particular formatting. By default,

UnityWebRequest will utilize a UnityWebRequestAsyncOperation, but due to the flow of

coroutines described above, the program flow will not be asynchronous. To solve this, we have

to both call the SendStatement method of UnityWebRequest as an awaitable task, but we also

have to make SendStatement and awaitable task to be able to do this. Therefore, we have created

the AsyncOperationAwaiter class, which provides the GetAwaiter method that is the requisite for

an operation to be asynchronous. Finally, WebRequestProgressNotifier and ProgressUpdater are

additional classes that provide the necessary insight into the state of the asynchronous operation

and notify the main flow of execution when the task is completed. As a result, we have achieved

to both simplify the procedure of writing web request, and made them function in a truly

asynchronous manner, feeing up the main thread for the rest of the game to continue execution.

 Trilib Library

Unity3D has four mechanisms for importing assets, such as textures, audio and prefabs,

at runtime. Namely, the Resources Folder, the Streaming Assets folder, the Asset Bundles and

the Addressable Asset System. Each has their benefits and drawbacks and deciding which

approach to utilize depends on the unique circumstances of each project and problem to be

solved. However, when it comes to 3D models, all the aforementioned techniques have one

common major drawback. Though it is possible to import 3D models through these tools, all

methods require the model to be imported in a specific way as an Asset, to then be utilized by

said methods. In other words, importing 3D models with any of these techniques requires a

developer to prepare each and every 3D model as an asset, in a Unity proprietary format, before

it can be used as a dynamic resource. In our case, we wish to detach the procedure from the game

developer, therefore 3D models found on the web or created by anyone interested, should be able

to be utilized, without the extra workflows and technicalities implied by the need for the creation

of a unity asset before it can be utilized by educators and other stakeholders. Thus, TriLib was

32

selected as a tool that would help us in creating a dynamic loading system for 3D models from

the world wide web.

Figure 3.3.1. Asynchronous Web Request Class Diagram

33

Trilib [66] is a package for Unity3D real-time engine, available through the Unity Asset

Store. Using TriLib allows us to import 3D models at runtime, which is not possible with the

built-in capabilities of the engine. TriLib supports cross-platform development, including the

major desktop and mobile operating systems, a wide selection of 3D formats, such as FBX, OBJ,

3MF and others. Additionally, zip files that include the 3D model along with the textures and

animations are supported, which is very helpful for the procedure of uploading and managing

complex assets.

Even though TriLib is a plug-and play library, effectively employing it calls for some

additional infrastructure to accommodate the flow of events and handle the amount of models

that need to be loaded from remote locations and the resulting assets. Figure 3.4.2 - Models

Import Subsystem Class Diagram illustrates the class diagram of the Model Loader subsystem

we developed. Following the guidelines of Trilib documentation and sample code we created the

ModelImporter class, that has all the methods need to load models from remote resources.

Additionally, we included attributes and methods to instantiate models in the game scene. As

part of the procedure to instantiate GameObject, their tag is set to a value, “TrilibImported”, so

that they can be identified through usual practices. In most cases, references to these

GameObjects will be saved, and they might be modified in many ways, including the tag, but we

felt that this was a necessary detail for generalizing the solution and providing safety nets. Web

requests for fetching the models are done through the NileUnityWebRequest, described above.

Finally, ScenePersonalizer is the class that knows what objects can be exchanged for others, and

where they should be placed in the scene. These objects are represented by a

PersonalizebleModel class. The ScenePersonalizer is the mediator between the core of the game

and this subsystem and can either be used as a default procedure to load all models, or be

expecting specific requests, depending on what would be best for each game and scene.

 Rest API & Database

This part of the system was created in collaboration with other members of NILE Lab

[67], in an attempt to keep a generalized path that would serve this project as well as other,

future, endeavors. As mentioned above, the server-side application is developed with NodeJS

and MongoDB is both the database and the file server from the architecture described in Figure

3.1 - Generalized Architecture. The main goal of this module is to receive requests from the

34

games, utilize the data provided with the request to locate the corresponding material in the

database and reply with the appropriate format and content. The data provided will be a learning

session ID, which will be bound to a specific game and personalized educational material. Thus,

the API is game-agnostic and handles the content as part of a learning session. For the moment,

the learning session is expressed as a unique Token, which servers the goal of cross-utilization

between this platform and any other potential usage of the API. Even though it might seem

simpler to request content based on the game, the learning session is more appropriate, as each

learning session will only have one game and specific personalized content, while a game might

have a multitude of personalized content from various learning sessions. Thus, if this approach

was followed, there would be a need for additional levels of filtering and querying, resulting in

longer wait times and wasted CPU cycles. Admittedly, the API is quite small for the moment, as

the pilot implementation calls for a small scale. This API will grow when the editor is further

developed, resulting in needs for multiple services to write material to the database, retrieve data

with sophisticated filters, utilize authentication, etc.

For our pilot implementation, and the requirements set forth by the utilization of

ThimelEdu, the data that are stored in the database includes informational texts, informational

pictures and a 3D model. Specifically, for each informational text we record an id, the associated

interest point, title, the text itself, the school type for which the text is appropriate and the

language in which it is expressed. Additionally, for each image, we hold the image itself and

some metadata, specifically, associated interest point, title and appropriate school type. Finally,

for the 3D model we only hold the model itself, as there is no use for any metadata within the

game. However, this structure will depend on any game that will utilize the framework in the

future, creating different context.

35

Figure 3.4.2 - Models Import Subsystem Class Diagram

 ReactJS Front-End

The front end refers to the web site where educators can create and edit content for

personalized playing sessions. This part of the system was also developed as a joint effort with

other members of NILE Lab [67], under the instructions of the author. Like the Rest API and

Database, this also serves as a double project, offering game hosting and customization tools. For

this thesis, only the customization tools are relevant and will be examined. This website is

accessible by educators and game developers.

Game developers can add a game to the system. To do so, they will have to provide a

name, URL where the game can be found by interested educators, a poster to be showcased, and

36

a description of the game. Additionally, they can select a category (serious game, puzzle, mind

games are available for the time being). Lastly, they must express their game content structure in

JSON format, following the guidelines provided (see JSON Format Guidelines). This will

dynamically create a webpage where content can be created and edited, following the structure

provided.

Educators can select a game they are interested in, see details about it and if they wish to

do so, they will be able to create a custom game session. The page dynamically created in

accordance to the content structure will be presented to the educator, who can add a Title to the

game session and will be presented with any buttons and input fields needed to create their

custom game experience.

Types available for the content structure include, but are not limited to, strings, numbers,

arrays, enums, colors, choice (radio buttons, checkboxes) objects and images. Extensions must

be done to properly support 3D models, audio, video and other media types, but even with the

current available data types every need can be satisfied, through proper utilization of arrays and

objects. Adding the support would make it more apparent to educators and is thus a user

experience upgrade, but not a technical necessity.

37

Chapter 4 - Pilot Use Case

The pilot implementation described above has confirmed the potential of the proposed

system and provides good ground for future developments and expansions. To further prove the

strengths of the proposed system and explore any overlooked issues, we created a representative

scenario of use with ThimelEdu, the game modified. Unfortunately, working on a game that did

not include this extensive level of personalization in its initial design is not ideal to showcase the

possibilities that our proposed framework offer. Nonetheless, even at the restricted degree

possible with this game, the technical prospects are clearly distinguishable. Future serious

games, designed to employ the framework and create the best possible result, will be much better

fitted and show new grades of dynamic content that might be unthinkable to the author at the

moment of writing.

 Representative scenario

To showcase the results of the implemented portion of our proposed framework, we

considered a specific scenario through which we could observe the differences in game. As we

expect from the scenario described in Exhibit 1, our player, Maria, should be presented with

different educational content throughout two distinct educational sessions.

Exhibit 1: Learner Maria is a student in the 4th grade. Her teacher in history,

John, decided to use ThimelEdu as an assisting tool for teaching the topic of

ancient Greek theatre. By playing the game, Maria and her classmates get

familiar with the architecture of the ancient Greek theater, and the tools used

during plays, through the educational material provided with the game. The next

day, John asks his pupils to play the game again, only this time he has used

IOLAOS and our framework to create a learning session and create personalized

content for his pupils. Maria and her classmates join the game again, only to find

different information.

38

 Content Customization

Firstly, we will examine the procedure John, the Teacher followed to customize the

content for the second learning session. For this, we assume he is already familiar with the game

and has an IOLAOS account. His next step is to visit the front end webpage of our platform and

login using his IOLAOS account. He is then presented with the landing page shown in Figure 4.1

- Landing Page. In this case, the game John is interested in is promoted on the landing page. In

case the game he was interested in was not located on this page, he could select the game

category from the left lateral bar and browse a more extensive list of available games.

Figure 4.1 - Landing Page

John selects ThimelEdu and is presented with the modal shown in Figure 4.2 - Game

Options Modal. The available option in this is to Play the game, which would forward John to

the link related to the game, to create a custom game or to give a token and play a customized

version of the game. John wants to create a custom experience for his students, so he chooses to

customize the game. From there he is presented with the available options that are created from

the JSON provided by the game developer, specifically “Add Informative Text”, “Add

Informative Picture” and “Add 3D Object of Interest”, as shown in Figure 4.3 - Customization

Options. Additionally, John must select a game title for his personalized gameplay.

39

Figure 4.2 - Game Options Modal

Figure 4.3 - Customization Options

40

By extending each selection he is presented with the exact information and media required for

each of the selection. With this in mind, he fills all the inputs with the information he wants his

pupils to study, as shown in Figure 4.4 - Providing information and media. In this specific

screenshot we can discern that he has decided to teach his pupils about the sandals. How this

affects the game and the learning process will be better showcased bellow, but here we can see

that he has decided to create an informational text, add images and even a 3D object of a sandal,

providing the essential media but also metadata, like a title (“Sandals”), targeted school type,

language of text, etc.

Figure 4.4 - Providing information and media

41

He continues to add all other educational elements he wants to add to his session. When he is

finished, he pushes submit and is present with a Token, shown in Figure 4.5 - Game Created

Message, that will enable access to the game for his pupils. So, a few days later, when it’s time

for his students to play the customized version of the game, he will share this token and his

students will be presented with a different version of the, already familiar, game.

Figure 4.5 - Game Created Message

 Gameplay Differentiation

As defined by our scenario, Johns class will play ThimelEdu in two learning sessions.

During the first they will experience the game as it was created and shipped by the developers,

while the second time they will play the modified version that their teacher has created. Among

other adjustments, John has decided to generalize the topic of cothurnus, a shoe used during

ancient tragedy plays, into the sandals, of which cothurnus are a specific kind. Above we

examined the procedure John followed to add the sandals into the game, now let’s see the

differences that Maria, one of his students, will experience.

42

As shown in Figure 4.6 - Cothurnus and Sandal, the default in game artefact for user

interaction is a cothurnus, which is replaced by a sandal that John provided. Let us note that

functionality doesn’t change, i.e., interacting with the object will trigger related information to

appear, just as it would with any other default or modified object.

Figure 4.6 - Cothurnus and Sandal

Following the scenario, and what Maria experiences each day, at first the cothurnus is the

artefact that she will discover in the game, as dictated by the default content that the game

developers have authored the game with. In Figure 4.7 - Cothurnus in-game interaction, the flow

of events is illustrated, first Maria locates an artefact, the cothurnus, and when interacting with

the object an informational screen appears. In this case we can distinguish 3 drawings of

cothurnus, and a text that reads “The Cothurnus were shoes used by tragic actors. They were

Tall, had soles that made the actors look taller and were usually built from wood.”. From this,

we can deduct, that during the first day the class learns about the cothurnus, their structural

details, that they were used by tragic actors, and why. The next day, Maria once again plays the

game, but this time within a IOLAOS learning session, with educational material provided by her

teacher. Today the cothurnus object is replaced by a different, yet similar, type of shoe, a sandal.

This draws Marias attention, and the same chain of actions as above is followed, and illustrated

in Figure 4.8 - Sandal in-game interaction. Upon interaction with the new artifact that is located

in the same place as the cothurnus was yesterday, Maria is now presented with a different set of

information. The title of the informational screen is the same as yesterday, Cothurnus, but the

pictures presented are different and so is the provided text. There are two pictures of actual

sandals, and one of a sandal on an ancient sculpture. The new text reads “Sandals of the ancient

time were distinguished into two kinds, baxea and cothurnus. The first was simpler sandals,

43

made from willow leaves and twigs, usually worn in comedy plays. The later was more like a

boot, with thick soles to add to the stature and was usually worn in tragedy plays.”.

Through this second learning session, Maria and her classmates has learned a little more

about ancient footwear, about the sandals in general, and how there is a difference between the

shoes used in comedy to those used in tragedy.

Figure 4.7 - Cothurnus in-game interaction

To further illustrate how the framework works we will examine another modification

made by the teacher. In Figure 4.9 - Thimele Default Content we can see a snapshot from

44

Marias interaction with a second artefact during the first day of gameplay. Maria has found the

Thimele, and altar to the god Dionysus, and interacted with it, thus being presented with a

selection of educational texts and pictures about the Thimele. As we can see, she is presented

with three pictures and only one text of a simple couple of sentences. The text mentions “At the

center of the orchestra was the altar of Dionysus, the Thimele. Behind it stood the piper and the

prompter” However, we can also see arrow buttons (bow with arrow icon) to the left and the

right of both elements. This signifies that there is additional content that the player can scroll

through to get additional information. Maria continues to explore the game and finds the other

artefacts, always being presented with the default content prepared by the game developers.

Figure 4.8 - Sandal in-game interaction

45

The next day, Maria once again plays the game, where cothurnus is not the only updated

artefact. In Figure 4.10 - Thimele Teacher Defined Content we can observe another difference

Maria is presented with, compared to the previous day. She is presented with 3 pictures, of which

only one was part of the previous days’ selection. The teacher apparently wanted to reuse this

particular picture for some educational reason and decided to include it in her selection. He could

just as well have used only new pictures, or only the pictures provided by the game, or any

amount of new and default pictures. The same principle applies of course to any other type of

content that teachers wish to personalize. Additionally, we can see that the text Maria is

presented with is different from last days, as the teacher decided to only add his own texts for

this learning session. The text teaches a detail not mentioned in the previous session material,

specifically “Thimeles history goes as far back as the 7th century BC and was always an altar to

Dionysus. Its shape could vary but was usually either square or cylindrical”. Lastly, we notice

that the arrow buttons are not present anymore. This happened because there are only 3 pictures

and one text available for the thimele artefact. In other words, for this specific case, the educator

wished to stress one particular point, that the thimele could have a box or a cylindrical shape, and

thus only wrote one text emphasizing this information, and provided a picture her pupils would

be familiar with from the previous learning session, and two new pictures illustrating the

alternative shape. It should be clarified that the buttons for scrolling through pictures and texts

are automatically enabled or disables from the game, depending on the number or materials

available for each artefact, it has not been modified by the educator. Additionally, one element

that should be dynamic, but as we saw in Figure 4.8 - Sandal in-game interaction is the title of

the informational screen. This was a detailed overlooked when modifying the game to be

dynamic. From the above we safely state that our Unity3D adaptation system works as expected

and the framework provides the grounds for adaptable learning sessions in serious games.

46

Figure 4.9 - Thimele Default Content

Figure 4.10 - Thimele Teacher Defined Content

47

Chapter 5 - Conclusion and Future Work

Education is rapidly evolving and catching up with the booming advances in technology.

Game-based learning is all the more present in official and unofficial learning settings and

serious games are gaining ground daily. Nonetheless, serious games have yet to be defined in a

conceptual manner. Research and conversations are conducted at large, postulating and testing

ideas that drive the field forwards. Through all this research we are usually hunting noble goals

that are just beyond reach, often bringing them slightly closer to reality. However, in this

procedure, we often neglect goals much more attainable that have immediate impact. Game

development, and especially educational game development, depends on a wide collaboration of

professionals and fields. Additionally, designing a game adaptive enough to be effective for

every learner, with any background and under all circumstances is a challenging goal. Through

this thesis we located a shortcoming of the serious games industry in utilizing current

technologies to create adaptable games at runtime and through this insight we created an abstract

idea on which we build the requirements and design of an innovative project that addresses the

aforementioned issue. Additionally, we developed a pilot implementation, partially fulfilling the

idea into a tangible project that can serve as an initial foundation for future expansions that will

realize the entire framework. We hope that the proposed framework will elevate the learning

procedure and the benefits for students, while also greatly assisting collaboration of educators

and developers. Additionally, we expect this framework to serve as a guideline for content

design and game development that will reduce time and finances invested in recurring tasks and

thus facilitate the creation of better games offering more interesting experiences.

In future work, our priority is to extend the Content Editor and REST API, realizing the

entire framework. Additionally, we wish to create the necessary infrastructure for more popular

game engines and for web-based serious games that don’t utilize a game engine. Additionally,

we wish to improve the current implementation, by refactoring the procedures that load the

remote object into Async procedures, moving the entire solution into an asynchronous paradigm,

and further optimizing the architecture. Lastly, we aim to utilize semantic notation with the data

handled by the framework, so that there can be further future developments in automating and

tracking.

48

References

[1] C. C. Abt, “Serious Games.” 1970, doi: 10.1109/VS-GAMES.2009.8.

[2] M. Ulicsak, “Games in Education: Serious Games,” A Futur. Lit. Rev., p. 139, 2010,

[Online]. Available: http://www.futurelab.org.uk/projects/games-in-education.

[3] M. Zyda, “From visual simulation to virtual reality to games,” Computer (Long. Beach.

Calif)., vol. 38, no. 9, pp. 25–32, 2005, doi: 10.1109/MC.2005.297.

[4] S. Arnab et al., “Mapping learning and game mechanics for serious games analysis,” Br.

J. Educ. Technol., vol. 46, no. 2, pp. 391–411, 2015, doi: 10.1111/bjet.12113.

[5] T. M. Connolly, E. A. Boyle, E. Macarthur, T. Hainey, and J. M. Boyle, “A systematic

literature review of empirical evidence on computer games and serious games,” Comput.

Educ., vol. 59, no. 2, pp. 661–686, 2012, doi: 10.1016/j.compedu.2012.03.004.

[6] F. Bellotti, B. Kapralos, K. Lee, P. Moreno-Ger, and R. Berta, “Assessment in and of

serious games: An overview,” Adv. Human-Computer Interact., vol. 2013, 2013, doi:

10.1155/2013/136864.

[7] J. Breuer and G. Bente, “Why so serious? On the relation of serious games and learning,”

Eludamos. J. Comput. Game Cult., vol. 4, no. 1, pp. 7–24, 2010.

[8] R. Daconceicao, C. Locke, K. Cooper, and C. S. Longstreet, “Semi-automated serious

educational game generation: A component-based game engineering approach,” Proc.

CGAMES 2013 USA - 18th Int. Conf. Comput. Games AI, Animat. Mobile, Interact.

Multimedia, Educ. Serious Games, pp. 222–227, 2013, doi:

10.1109/CGames.2013.6632637.

[9] N. Vidakis and S. Charitakis, “Designing the Learning Process,” in Proceedings of the

10th International Conference on Subject-Oriented Business Process Management - S-

BPM One ’18, 2018, pp. 1–11, doi: 10.1145/3178248.3178254.

[10] L. Hanes and R. Stone, “A model of heritage content to support the design and analysis of

video games for history education,” J. Comput. Educ., vol. 2, 2018, doi: 10.1007/s40692-

018-0120-2.

[11] C. Malliarakis, F. Tomos, O. Shabalina, and P. Mozelius, “Andragogy and

49

E.M.O.T.I.O.N.: 7 Key Factors of Successful Serious Games,” in European Conference

on Games Based Learning, 2018, no. October, p. pp.371-378.

[12] S. De Freitas and M. Oliver, “How can exploratory learning with games and simulations

within the curriculum be most effectively evaluated?,” Comput. Educ., vol. 46, no. 3, pp.

249–264, 2006, doi: 10.1016/j.compedu.2005.11.007.

[13] N. Suttie et al., “In persuit of a ’serious games mechanics’ : A theoretical framework to

analyse relationships between ‘game’ and ‘pedagogical aspects’ of serious games,”

Procedia Comput. Sci., vol. 15, pp. 314–315, 2012, doi: 10.1016/j.procs.2012.10.091.

[14] Rustici Software, “Experience API.” https://xapi.com/overview/ (accessed Jan. 26, 2018).

[15] M. Paulsen, “Online Education Systems : Discussion and Definition of Terms,” NKI

Distance Educ., pp. 1–8, 2002, [Online]. Available:

https://www.edutubebd.com/file_resource/1368197236online education system.pdf.

[16] B. Huynh-kim-bang, J. Wisdom, and J. Labat, “Design Patterns in Serious Games : A

Blue Print for Combining Fun and Learning Introduction : Making Learning Fun,” J.

Comput. Game Cult., pp. 1–18, 2010, doi: 10.1080/0142569880090306.

[17] J. Stewart et al., The Potential of Digital Games for Empowerment and Social Inclusion of

Groups at Risk of Social and Economic Exclusion : Evidence and Opportunity for Policy.

2013.

[18] W. van der Vegt, W. Westera, E. Nyamsuren, A. Georgiev, and I. M. Ortiz, “RAGE

Architecture for Reusable Serious Gaming Technology Components,” Int. J. Comput.

Games Technol., vol. 2016, pp. 1–10, 2016, doi: 10.1155/2016/5680526.

[19] C. Hurtado, G. Licea, and M. Garcia-Valdez, “Integrating Learning Styles in an Adaptive

Hypermedia System with Adaptive Resources,” Stud. Syst. Decis. Control, vol. 143, pp.

49–67, 2018, doi: 10.1007/978-3-319-74060-7_3.

[20] P. Brusilovsky, “Adaptive hypermedia for education and training,” Adapt. Technol. Train.

Educ., pp. 46–66, 2012, doi: 10.1017/CBO9781139049580.006.

[21] M. Alshammari, R. Anane, and R. J. Hendle, “An E-learning investigation into learning

style adaptivity,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2015-March, pp. 11–20,

2015, doi: 10.1109/HICSS.2015.13.

[22] C. Troussas, A. Krouska, and C. Sgouropoulou, “Collaboration and fuzzy-modeled

personalization for mobile game-based learning in higher education,” Comput. Educ., vol.

50

144, p. 103698, Jan. 2020, doi: 10.1016/j.compedu.2019.103698.

[23] N. Vidakis, A. Barianos, G. Xanthopoulos, and A. Stamatakis, “Cultural Inheritance

Education Environment: The Ancient Theater Game ThimelEdu,” in 12th European

Conference on Games Based Learning, ECGBL 2018, 2018, pp. 730–740.

[24] S. Papadakis, M. Kalogiannakis, and N. Zaranis, “Educational apps from the Android

Google Play for Greek preschoolers: A systematic review,” Comput. Educ., vol. 116, pp.

139–160, Jan. 2018, doi: 10.1016/j.compedu.2017.09.007.

[25] W. B. Frakes and K. Kang, “Software reuse research: Status and future,” IEEE Trans.

Softw. Eng., vol. 31, no. 7, pp. 529–536, 2005, doi: 10.1109/TSE.2005.85.

[26] W. Frakes and C. Terry, “Software reuse: metrics and models,” ACM Comput. Surv., vol.

28, no. 2, pp. 415–435, 1996, doi: 10.1145/234528.234531.

[27] W. van der Vegt, E. Nyamsuren, and W. Westera, “RAGE Reusable Game Software

Components and Their Integration into Serious Game Engines,” 2016, pp. 165–180.

[28] GALA, “Roadmap on Serious Games,” pp. 1–33, 2014.

[29] S. Downes, “Learning Objects : Resources For Distance Educa- tion Worldwide The Need

for and Nature of Learning Objects,” Int. Rev. Res. Open Distance Learn., vol. 2, no. 1,

pp. 1–35, 2001, doi: 10.19173/irrodl.v2i1.32.

[30] RAGE project, “RAGE project,” [Online]. Available: http://rageproject.eu/.

[31] Serious Game Society, “Serious Game Society.” https://seriousgamessociety.org/about/

(accessed Jan. 25, 2019).

[32] F. M. Dagnino, M. Ott, F. Pozzi, and E. Yilmaz, “Serious Games Design: Reflections

from an Experience in the Field of Intangible Heritage Education,” 11th Int. Sci. Conf.

eLearning Softw. Educ., vol. 2015, pp. 57–64, 2015, doi: 10.12753/2066-026X-13-131.

[33] Serious Game Society, “GLEANER.” https://e-ucm.github.io/gleaner/ (accessed Jan. 27,

2018).

[34] Serious Game Society, “SGREF.” http://www.sgref.com/ (accessed Jan. 27, 2019).

[35] B. Akkoyunlu and M. Y. Soylu, “A study of student’s perceptions in a blended learning

environment based on different learning styles,” Educ. Technol. Soc., vol. 11, no. 1, pp.

183–193, 2008, doi: 10.1007/s00217-010-1351-2.

[36] C. Mulwa, S. Lawless, M. Sharp, I. Arnedillo-Sanchez, and V. Wade, “Adaptive

educational hypermedia systems in technology enhanced learning,” Proc. 2010 ACM

51

Conf. Inf. Technol. Educ. - SIGITE ’10, p. 73, 2010, doi: 10.1145/1867651.1867672.

[37] M. Ainscow, “Developing inclusive education systems: what are the levers for change?,”

J. Educ. Chang., vol. 6, no. 2, pp. 109–124, Jun. 2005, doi: 10.1007/s10833-005-1298-4.

[38] N. Peirce, O. Conlan, and V. Wade, “Adaptive educational games: Providing non-invasive

personalised learning experiences,” Proc. - 2nd IEEE Int. Conf. Digit. Game Intell. Toy

Enhanc. Learn. Digit. 2008, pp. 28–35, 2008, doi: 10.1109/DIGITEL.2008.30.

[39] “IOLAOS.” https://seriousgame.teicrete.gr/ (accessed Jan. 25, 2019).

[40] C. Karagiannidis, D. Sampson, and F. Cardinali, “Integrating adaptive educational content

into different courses and curricula,” Educ. Technol. Soc., vol. 4, no. 3, pp. 37–44, 2001.

[41] J. Doboš and A. Steed, “3D revision control framework,” in Proceedings of the 17th

International Conference on 3D Web Technology - Web3D ’12, 2012, p. 121, doi:

10.1145/2338714.2338736.

[42] J. Doboš, “3D Repo: Version Controlled Repository,” p. 6, [Online]. Available:

http://3drepo.org/wp-content/uploads/2015/03/3drepo-poster-portrait-aag.pdf.

[43] J. Behr, P. Eschler, Y. Jung, and M. Zöllner, “X3DOM,” in Proceedings of the 14th

International Conference on 3D Web Technology - Web3D ’09, 2009, p. 127, doi:

10.1145/1559764.1559784.

[44] 3D Repo, “3Drepo.io.” https://www.3drepo.io (accessed May 06, 2021).

[45] S. Friston, C. Fan, J. Doboš, T. Scully, and A. Steed, “3DRepo4Unity,” in Proceedings of

the 22nd International Conference on 3D Web Technology, Jun. 2017, pp. 1–9, doi:

10.1145/3055624.3075941.

[46] C. Kiourt, A. Koutsoudis, and G. Pavlidis, “DynaMus: A fully dynamic 3D virtual

museum framework,” J. Cult. Herit., vol. 22, pp. 984–991, Nov. 2016, doi:

10.1016/j.culher.2016.06.007.

[47] N. Vidakis, A. Barianos, A. Trampas, S. Papadakis, M. Kalogiannakis, and K. Vassilakis,

“Generating Education in-Game Data: The Case of an Ancient Theatre Serious Game,” in

Proceedings of the 11th International Conference on Computer Supported Education,

2019, pp. 36–43, doi: 10.5220/0007810800360043.

[48] N. Vidakis, A. K. Barianos, A. M. Trampas, S. Papadakis, M. Kalogiannakis, and K.

Vassilakis, “in-Game Raw Data Collection and Visualization in the Context of the

‘ThimelEdu’ Educational Game,” 2020, pp. 629–646.

52

[49] S. Papadakis, A. Trampas, A. Barianos, M. Kalogiannakis, and N. Vidakis, “Evaluating

the Learning Process: The ‘ThimelEdu’ Educational Game Case Study,” in Proceedings of

the 12th International Conference on Computer Supported Education, 2020, pp. 290–298,

doi: 10.5220/0009379902900298.

[50] N. Vidakis, E. Syntychakis, K. Kalafatis, E. Christinaki, and G. Triantafyllidis, “Ludic

Educational Game Creation Tool: Teaching Schoolers Road Safety,” in Universal Access

in Human-Computer Interaction. Access to Learning, Health and WellBeing, Springer I.,

M. Antona and C. Stephanidis, Eds. 2015, pp. 565–576.

[51] U. Technologies, “Unity 3D Real-Time Development Platform.” https://unity.com/

(accessed May 16, 2020).

[52] J. K. Haas, “A History of the Unity Game Engine,” Worcester, 2014. [Online]. Available:

https://core.ac.uk/download/pdf/212986458.pdf.

[53] “itch.io.” https://itch.io/ (accessed May 24, 2021).

[54] Valve, “Steam Store.” https://store.steampowered.com/ (accessed May 24, 2021).

[55] M. Toftedahl and H. Engström, “A Taxonomy of Game Engines and the Tools that Drive

the Industry,” 2019.

[56] “NodeJS.” https://nodejs.org/ (accessed Apr. 13, 2021).

[57] Google, “V8 Engine.” .

[58] M. Satheesh, B. J. Dmellon, and J. Kron, Web Development with MongoDB and NodeJS -

Second Edition: Build an interactive and full-featured web application from scratch using

Node.js and MongoDB, Second. Birminghan: Packt Publishing Ltd, 2015.

[59] “ReactJS.” https://reactjs.org/ (accessed Jul. 15, 2021).

[60] A. Paudyal, “Developing Video Chat Application with ReactJs And WebRTC,” no. April,

2021.

[61] MongoDB, “MongoDB.” https://www.mongodb.com/ (accessed Apr. 13, 2021).

[62] C. Gyorodi, R. Gyorodi, G. Pecherle, and A. Olah, “A comparative study: MongoDB vs.

MySQL,” in 2015 13th International Conference on Engineering of Modern Electric

Systems (EMES), Jun. 2015, pp. 1–6, doi: 10.1109/EMES.2015.7158433.

[63] Unity3D, “Unity Scripting Reference.”

https://docs.unity3d.com/ScriptReference/index.html (accessed May 18, 2021).

[64] “Iolaos.” https://iolaos.nile.hmu.gr/ (accessed May 18, 2021).

53

[65] G. Bierman, C. Russo, G. Mainland, E. Meijer, and M. Torgersen, “Pause ’n’ Play:

Formalizing Asynchronous C $^\sharp$,” 2012, pp. 233–257.

[66] R. Reis, “TriLib 2.” https://ricardoreis.net/trilib-2/.

[67] NILE LAB, “NILE Lab.” https://nile.hmu.gr/en/home/ (accessed Sep. 01, 2021).

54

Appendix A - JSON Format Guidelines

 General Format

For a game to be customizable, a JSON must be provided along with the game that will

conform to the following general format. All JSON files applied must include a “fields” array

where all fields needed for the form will be included. Settings is the second field, which a child

named “levels enables”. This is a boolean that allows you to indicate that the game has different

levels.

{

 Available Fields

The following fields can be used to generate the form

String

Name Type Required Description

Name String Yes The name of the field

Type String Yes The type for the fields, should have the value “string”

Title String Yes The title of the field that will be presented to the user

Default String No The default value of the field

{

"fields": [],

"settings": {

"levelsEnabled": false

}

}

55

Number

Name Type Required Description

Name String Yes The name of the field

Type String Yes The type for the fields, should have the value “number”

Title String Yes The title of the field that will be presented to the user

Default number No The default value of the field

Color

Name Type Required Description

Name String Yes The name of the field

Type String Yes The type for the fields, should have the value “number”

Title String Yes The title of the field that will be presented to the user

Default String No The default value of the field

{

"name": "numSteps",

"type": "number",

"title": "Number of steps",

"default": 10

}

{

"name": "country",

"type": "string",

"title": "Country",

"default": "Greece"

}

56

Enum

Presents the user with a dropdown menu, from which he/she can select from the

predefined values.

Name Type Required Description

Name String Yes The name of the field

Type String Yes The type for the fields, should have the value “enum”

Title String Yes The title of the field that will be presented to the user

Default Array<Item> No The default value of the field

The Item used in the Array has the following structure

Name Type Required Description

title String Yes The title of the field that will be presented to the user

value String Yes The value the field will assume if the user makes this selection.

{

"name": "hex",

"type": "color",

"title": "Color",

"default": "#ff0000"

}

57

Choice

Allows the user to select a value from a predefined list. Will show checkboxes when

multiple selections are possible and radio buttons when the selection is exclusive.

Name Type Required Description

Name String Yes The name of the field

Type String Yes The type for the fields, should have the value “choice”

Title String Yes The title of the field that will be presented to the user

multiple boolean Yes Defines if selection is exclusive or multiple

Options Array<Options> Yes The possible selections

{

"name": "car",

"type": "enum",

"title": "Car",

"items": [

{

"title": "First car",

"value": "car-1"

},

{

"title": "Second car",

"value": "car-2"

},

{

"title": "Third car",

"value": "car-3"

}

]

}

58

The options have the following structure

Name Type Required Description

Title String Yes The title of the field that will be presented to the user

value String YEs The value of the field

Selected Boolean No Indicates whether this option is selected by the user

{

"name": "foods",

"type": "choice",

"title": "Favorite foods",

"options": [

{

"title": "First food",

"value": "food-1",

"selected": true

},

{

"title": "Second food",

"value": "food-2",

"selected": false

},

{

"title": "Third food",

"value": "food-3",

"selected": true

}

],

"multiple": true

}

59

Image, Asset

Allows the user to upload images to our server.

Name Type Required Description

Name String Yes The name of the field

Type String Yes The type for the fields, should have the value “image”

Title String Yes The title of the field that will be presented to the user

multiple boolean Yes Defines if multiple images can be uploaded

addItemPrompt String No A prompt to be shown to users.

helpMessage HelpMessage No A message that will be displayed to users, informing

them about the file to be uploaded

Object

Allows combinations of other available fields, creating more complex objects.

Name Type Required Description

Name String Yes The name of the field

Type String Yes The type for the fields, should have the value

“image”

Title String Yes The title of the field that will be presented to the

user

properties Array<Field> Yes Array of fields included in the object

{

"name": "images",

"type": "image",

"title": "Images",

"multiple": true,

"addItemPrompt": "Add Image"

}

60

Array

Allows multiple fields of the same type to be bundled

Name Type Required Description

Name String Yes The name of the field

Type String Yes The type for the fields, should have the value “image”

Title String Yes The title of the field that will be presented to the user

items Field Yes One of the available field types

additemPrompt String No A prompt to be shown to users.

Default Array No An array of default values, based on array type

{

"name": "color",

"type": "object",

"properties": [

{

"name": "hex",

"type": "color",

"title": "HEX",

"default": "#0000ff"

},

{

"name": "colorName",

"type": "string",

"title": "Color Name",

"default": "Blue"

}

]

}

61

{

"name": "names",

"type": "array",

"title": "Names",

"items": {

"type": "string",

"title": "Name"

},

"default": ["John", "Jane"],

"addItemPrompt": "Add Name"

}

62

Appendix B - JSON file for ThimelEdu

In order to utilize ThimelEdu from the front-end website and employ all functionality

within the game, we had to create the JSON File from witch the dynamic form for content

creation would be generated. This is the JSON created:

{

 "fields": [

 {

 "name": "texts",

 "type": "array",

 "title": "Texts",

 "items": {

 "name": "infoText",

 "type": "object",

 "properties": [

 {

 "name": "interestPoint",

 "type": "enum",

 "title": "Interest Point",

 "items": [

 {

 "title": "Thimeli",

 "value": "1"

 },

 {

 "title": "Ekkyklima",

 "value": "2"

 },

 {

 "title": "Mechani",

 "value": "3"

 },

63

 {

 "title": "Periaktos",

 "value": "4"

 },

 {

 "title": "Vrontio",

 "value": "5"

 },

 {

 "title": "Architecture",

 "value": "8"

 },

 {

 "title": "Skene",

 "value": "9"

 },

 {

 "title": "Proskenio",

 "value": "10"

 },

 {

 "title": "Logio",

 "value": "13"

 },

 {

 "title": "Orchestra",

 "value": "14"

 },

 {

 "title": "Evripos",

 "value": "15"

 },

64

 {

 "title": "Kilon",

 "value": "17"

 },

 {

 "title": "Diazoma",

 "value": "18"

 },

 {

 "title": "Klimakes",

 "value": "19"

 },

 {

 "title": "Kerkides",

 "value": "20"

 },

 {

 "title": "Edolia",

 "value": "21"

 }

]

 },

 {

 "name": "infoTTitle",

 "type": "string",

 "title": "Informational Title",

 "default": "Θυμέλη"

 },

 {

 "name": "infoTText",

 "type": "string",

 "title": "Informational Text",

65

 "default": "An informative piece of information"

 },

 {

 "name": "infoTSchType",

 "type": "enum",

 "title": "School Type",

 "items": [

 {

 "title": "Mainstream School",

 "value": "1"

 },

 {

 "title": "Special School",

 "value": "2"

 }

]

 },

 {

 "name": "infoTLang",

 "type": "enum",

 "title": "Language",

 "items": [

 {

 "title": "English",

 "value": "1"

 },

 {

 "title": "Greek",

 "value": "2"

 }

]

 }

66

]

 },

 "addItemPrompt": "Add Informative Text"

 },

 {

 "name": "pictures",

 "type": "array",

 "title": "Pictures",

 "items": {

 "name": "infoPic",

 "type": "object",

 "properties": [

 {

 "name": "interestPoint",

 "type": "enum",

 "title": "Interest Point",

 "items": [

 {

 "title": "Thimeli",

 "value": "1"

 },

 {

 "title": "Ekkyklima",

 "value": "2"

 },

 {

 "title": "Mechani",

 "value": "3"

 },

 {

 "title": "Periaktos",

 "value": "4"

67

 },

 {

 "title": "Vrontio",

 "value": "5"

 },

 {

 "title": "Architecture",

 "value": "8"

 },

 {

 "title": "Skene",

 "value": "9"

 },

 {

 "title": "Proskenio",

 "value": "10"

 },

 {

 "title": "Logio",

 "value": "13"

 },

 {

 "title": "Orchestra",

 "value": "14"

 },

 {

 "title": "Evripos",

 "value": "15"

 },

 {

 "title": "Kilon",

 "value": "17"

68

 },

 {

 "title": "Diazoma",

 "value": "18"

 },

 {

 "title": "Klimakes",

 "value": "19"

 },

 {

 "title": "Kerkides",

 "value": "20"

 },

 {

 "title": "Edolia",

 "value": "21"

 }

]

 },

 {

 "name": "infoPTitle",

 "type": "string",

 "title": "Informational Title",

 "default": "Thimele"

 },

 {

 "name": "infoPicture",

 "type": "image",

 "title": "Image",

 "multiple": false,

 "addItemPrompt": "Add Image"

 },

69

 {

 "name": "infoTSchType",

 "type": "enum",

 "title": "School Type",

 "items": [

 {

 "title": "Mainstream School",

 "value": "1"

 },

 {

 "title": "Special School",

 "value": "2"

 }

]

 },

 {

 "name": "infoTLang",

 "type": "enum",

 "title": "Language",

 "items": [

 {

 "title": "English",

 "value": "1"

 },

 {

 "title": "Greek",

 "value": "2"

 }

]

 }

]

 },

70

 "addItemPrompt": "Add Informative Picture"

 },

 {

 "name": "3D Objects",

 "type": "array",

 "title": "3D Objects",

 "items": {

 "name": "interestObject",

 "type": "object",

 "properties": [

 {

 "name": "interestPoint",

 "type": "enum",

 "title": "Interest Point",

 "items": [

 {

 "title": "Thimeli",

 "value": "1"

 },

 {

 "title": "Ekkyklima",

 "value": "2"

 },

 {

 "title": "Mechani",

 "value": "3"

 },

 {

 "title": "Periaktos",

 "value": "4"

 },

 {

71

 "title": "Vrontio",

 "value": "5"

 },

 {

 "title": "Architecture",

 "value": "8"

 },

 {

 "title": "Skene",

 "value": "9"

 },

 {

 "title": "Proskenio",

 "value": "10"

 },

 {

 "title": "Logio",

 "value": "13"

 },

 {

 "title": "Orchestra",

 "value": "14"

 },

 {

 "title": "Evripos",

 "value": "15"

 },

 {

 "title": "Kilon",

 "value": "17"

 },

 {

72

 "title": "Diazoma",

 "value": "18"

 },

 {

 "title": "Klimakes",

 "value": "19"

 },

 {

 "title": "Kerkides",

 "value": "20"

 },

 {

 "title": "Edolia",

 "value": "21"

 }

]

 },

 {

 "name": "interestObject",

 "type": "asset",

 "title": "Asset",

 "multiple": false,

 "addItemPrompt": "Add 3D Object"

 }

]

 },

 "addItemPrompt": "Add 3D Object of Interest"

 }

],

 "settings": {

 "levelsEnabled": false

 }

73

}

74

