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Abstract 

Diabetes is a chronic condition that develops when the human pancreas does not quite contain 

enough insulin or when the body cannot properly use the insulin, leading to a rise in the blood 

glucose levels. Specifically, it is a recurrent condition, which includes three different types: Type 

1 Diabetes, Type 2 Diabetes and Gestational Diabetes and involves the constant control and self-

management of the patient's blood glucose. Improper regulation of blood glucose levels in diabetic 

patients can lead to severe problems, such as kidney and heart failure, as well as stroke and 

blindness. Nowadays, the use of continuous glucose monitoring systems allows the collection of 

blood glucose level information in real time. 

Hypoglycemia is a condition that arises when blood glucose levels decrease below 60 

mg/dL. This incident can occur due to a variety of causes, such as taking additional doses of 

insulin, skipping meals, or over-exercising. Mainly, the symptoms of hypoglycemia range from 

mild dysphoria to more severe conditions, such as strokes, unconsciousness, and potentially 

permanent brain injury or even death. Hypoglycemia can be simply treated by the patient himself, 

through an oral intake of glucose, if detected on time. On the other hand, another crucial 

component of hypoglycemia detection is the changes in the patient’s heart rate. There is evidence 

that hypoglycemia, electrocardiogram, and heart rate abnormalities are interrelated. Therefore, 

such abnormal heart rate patterns combined with continuous glucose monitor data could be used 

as an improved and more reliable method for identifying hypoglycemia in real time or even for 

predicting such episodes. 

In this thesis, we examined the use of biosignals and other measurements provided by a 

wearable device along with self-assessment parameters, for the development of a hypoglycemia 

predictive model. We utilized mainstream tools, and the patient was not burdened with additional 

equipment. Glucose measurements were captured by a clinically certified continuous glucose 

monitoring sensor, while the predictive model was trained using machine learning techniques. In 

addition, a diabetes management mobile application was developed and used for the required data 

collection from the patient, i.e. finger-stick glucose measurements, insulin doses, food and 

exercise, as well as mood. The mobile application also incorporated an appropriate type 1 diabetes-

related questionnaire, which was used to calculate the patients’ diabetes distress. Heart rate 



  

measurements and glucose data were combined in a prediction algorithm that defined 

hypoglycemia as a blood glucose value below 70 mg/dL. 

The results of the hypoglycemia prediction model that was developed revealed, for patient 

with ID 575, that the 30-minute prediction curve held an RMSE score of 20.25 mg/dL and a MAE 

score of 13.26 mg/dL. On the other hand, the 60-minute prediction curve had an RMSE and a 

MAE score of 31.30 and 21.62 mg/dL, respectively. The main finding is that the inaccuracies for 

each patient gradually rise over time, which is expected since the broader the prediction window, 

the greater the overall inaccuracy. Finally, we sincerely consider that the proposed model produces 

useful and applicable outcomes for T1D patients, and we suggest that a 30-minute RMSE of 20.25 

mg/dL can provide a basis for avoiding a potentially critical, for the patient’s health, hypoglycemic 

episode. 
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1 Introduction 

Diabetes is a chronic condition that develops when the human pancreas does not quite contain 

enough insulin or when the body can't properly use the insulin, leading to a rise in blood glucose 

levels [1]. Normally, after a meal, the body breaks down the food into glucose, which is transported 

by the blood to the cells of the body. Cells utilize insulin, which is a hormone produced in the 

pancreas, in order to convert blood glucose to energy [1]. People with diabetes have trouble with 

this process, which leads to exhaustion and many other severe complications. Late diagnosis and/or 

poor treatment of diabetes can lead to several severe complications, such as eye impairment, 

kidney damage, as well as nerve damage [1]. 

Specifically, there are three types of diabetes. Firstly, there is Type 1 Diabetes (T1D), 

which results from the prevention of insulin development by the β-cells (beta cells) in the pancreas. 

These β-cells are located in the pancreas, within groups of cells known as islets, and are responsible 

for producing insulin, the hormone that regulates blood glucose. This type of diabetes is 

predominant in children and young adults and requires multiple doses of insulin a day to regulate 

the blood glucose levels. Secondly, there is Type 2 Diabetes (T2D), which is the most widespread 

form of diabetes, while it can be developed at any age [2][3]. This type of diabetes typically begins 

with insulin resistance, which gradually leads to a lack of pancreatic capacity to produce adequate 

insulin for the food intake [2]. Thirdly, the last type of diabetes is Gestational Diabetes (GD), 

which can be developed only during pregnancy. 

Diabetes is not known to be treated, but early diagnosis of this condition, accompanied by 

effective treatment, a balanced diet, and regular physical exercise can help control blood glucose 

levels and decrease the risk of complications. The main purpose for diabetic patients, as well as 

physicians, is to monitor and sustain the blood glucose levels within the normal range of 70 mg/dL 

- 120 mg/dL, while also keeping the number of hypoglycemia cases to a minimum [4][5]. 

1.1 Type 1 Diabetes (T1D) 

T1D used to be referred to as “juvenile diabetes”, since it is mostly diagnosed in children 

and teenagers1, even though it can also commence in adulthood. T1D is an autoimmune disease 

 

1 Source: https://en.wikipedia.org/wiki/Type_1_diabetes 
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that causes the pancreas to generate very little, if any, insulin [6]. Insulin is a hormone that helps 

to regulate normal glucose concentrations in the bloodstream and is essential for cells, in order for 

them to use blood glucose for energy [6]. Prior to treatment, this minimized insulin production 

causes elevated blood glucose levels in the patient's body. 

Healthcare professionals seem uncertain of what exactly causes T1D, while genes are 

thought to be involved in this process. Researchers are investigating any possible triggers for the 

disease, such as the patient's diet or a virus that the patient might had caught [7]. It can affect 

people of all races and ethnic groups, while there is a greater risk of potentially inheriting the 

disease when there is a family history. Furthermore, healthcare professionals do acknowledge that 

T1D patients have malfunctions in their immune system, which is responsible for the protection 

of the body against germs. Specifically, this malfunction damages β-cells that exist in the patient’s 

pancreas, which are responsible for the production of the insulin hormone [6]. Insulin enables 

glucose to infiltrate patient’s cells and be converted into energy, however, the body of T1D patients 

does not produce insulin [6], which leads to glucose accumulation in the patient’s bloodstream 

leading to severe health issues over time. Overall, the primary reason for the appearance of T1D 

is thought to be an autoimmune destruction of the pancreas' insulin-producing β-cells. The amount 

of glucose or glycated hemoglobin (HbA1c) in the blood is used to diagnose diabetes. Specifically, 

the existence of autoantibodies is what distinguishes T1D from T2D, while there is no established 

method of T1D prevention. Insulin treatment is needed for survival, through insulin injections 

beneath the skin or via an insulin pump. 

1.1.1 Symptomatology 

The typical symptomatology usually appears in a short period of time (weeks) [8][9] and 

usually includes most of the signs mentioned in Table 1.1. While T1D progresses gradually, as the 

insulin output declines, understanding its symptoms is important, since a delayed diagnosis can 

have severe implications. Overall, blood glucose can reach menacing high levels when insulin 

production is outpaced. Patient's symptomatology can suddenly appear, as well as be 

misdiagnosed as other diseases. This autoimmune disease has no clear cause, although it is 

presumed to be caused by an interplay between genetics and environmental factors [9][10]. Several 

of the T1D symptoms are similar to T2D symptomatology, making it difficult to determine which 

type of diabetes the patient has developed. However, it is critical to understand the distinctions and 
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determine what is causing the patient's symptoms so that the patient can receive the appropriate 

treatment. 

Table 1.1. Diabetic symptomatology 

Typical signs of diabetes [9] 

─ Excessive urination 

─ Increased appetite 

─ Increased thirst 

─ Sudden rapid and unexplained weight-loss 

─ Blurred vision 

─ Frequent skin, oral and/or genital contaminations 

─ Fatigue 

─ Emotions of irritation or frustration 

─ Slow healing of wounds 

1.1.2 Diagnosis and Treatment 

This disease can sometimes appear as a flu or dysphoria at first, therefore clinicians need 

to be alerted to the early warning signs of a potential T1D diagnosis and recommend further testing 

for the patient. Once there is a suspicion of T1D existence, a fasting blood-glucose test is often 

prescribed [7]. This is a small-sample blood test that is usually done in the morning following a 

night of fasting. Fasting allows physicians to see how the body regulates blood glucose levels 

without the influence of food. On the other hand, there is the oral glucose test, which is an 

alternative for people who have fasted and had an initial blood test, to drink a sweet beverage and 

then have their blood glucose checked over the course of two hours. This displays the baseline 

glucose without any outside influences and then tests how the body reacts to sugar consumption. 

A random glucose test is another method for checking T1D. This test essentially measures a 

patient's current blood glucose level, regardless of when or what they have consumed. Lastly, there 

is the HbA1c (glycated hemoglobin) test, which determines the average blood glucose level for 

the approximate last three months and is thought to be the most extensive method. 

The initiation of symptomatic diabetes does not necessarily occur simultaneously. People 

with T1D may experience a period of asymptomatic behavior. The asymptomatic period usually 

lasts a few months to a year after diagnosis, as a patient's existing β-cells begin to act normally 
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and produce enough insulin for blood-glucose control with the aid of some injected insulin. 

Eventually, the bulk of the pancreas' insulin-producing β-cells quit functioning, and diabetes 

symptoms revive. During the prementioned period, no matter how strong A1C or blood-glucose 

tests are, the disease is still present and killing β-cells. During this point, clinicians will use low-

dose insulin therapies to help maintain blood-glucose control, even though the remaining healthy 

cells would eventually die, necessitating an increase in insulin dosage. Overall, T1D's endocrine 

system activity, during the asymptomatic period is reasonably predictable, but each case differs 

slightly. The importance of paying careful attention to the body's response to insulin therapy, along 

with routine blood glucose monitoring, is critical to achieve an effective management. 

The treatment process of T1D patients is carried out by a combination of insulins and the 

collaboration with their healthcare professional, in order to determine the appropriate insulin 

treatment for their needs. Insulin may be administered using syringes, pens, pumps, or recent 

artificial pancreas technologies. Although, the administration, frequency, and form of insulin 

delivery differ by case and injections can be required numerous times throughout the day. It is 

possible for patients to develop prominent insulin side effects like injection site reactions, which 

involve redness, soreness, or inflammation around the injection site, while low potassium levels 

and risk of hypoglycemia are also possible. Although these side effects appear concerning, many 

people who are under these insulin treatments do not encounter any significant side effects2. 

Another critical aspect, in T1D treatment, involves supervision and lifestyle changes. Blood 

glucose levels should be checked on a regular basis, through traditional blood glucose meters and 

continuous glucose monitors (CGMs). Monitoring alerts an individual when insulin is required to 

treat high blood glucose, as well as carbohydrates are required to treat low blood glucose. 

Furthermore, the assessment of the correct insulin-to-carb ratio, by a professional, is necessary. 

This ratio represents the amount of insulin required to regulate the consumption of a certain amount 

of caloric intake, while it aids in maintaining healthy blood glucose levels after food consumption. 

In addition, a well-balanced diet is important for diabetic health. People with T1D benefit from a 

well-balanced diet that includes foods from all four food classes, with an emphasis on limiting 

empty carbs. It is important to eat healthily and exercise on a regular basis. Maintaining a healthy 

weight and ensuring adequate food intake help to reduce the impact of diabetic wear on the body. 

 

2 Source: https://www.jdrf.org/t1d-resources/about/treatment/ 
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Finally, it is important for people with T1D to consult with a team of healthcare professionals on 

a regular basis to better control diabetes and prevent its possible effects on the patient’s body. 

1.2 Hypoglycemia and Hyperglycemia 

T1D is a chronic disease where the patient's body is not able to produce enough insulin to 

regulate the blood glucose levels. This condition is treated by injecting artificial insulin into the 

body few times a day to maintain the body's blood glucose levels within the desired range. 

Nevertheless, this treatment comes with some side effects, specifically called hypoglycemia and 

hyperglycemia. 

Hypoglycemia is a condition that arises when the body’s blood glucose levels drop to 

sudden lows, specifically below 60 mg/dL. This incident can occur due to a variety of causes, such 

as taking insulin at a wrong time or injecting more than the required insulin dose, not consuming 

enough food, skipping meals, or even because of over-exercising without adequate insulin 

modification [6][9][7]. Hypoglycemia is a result of day-to-day activities and are spontaneous and 

therefore cannot be detected in advance. The medical professionals rely on daily blood glucose 

levels and a patient's day to day habits to treat the patient. Mainly, the symptoms of hypoglycemia 

range from mild dysphoria to more severe conditions, such as strokes, unconsciousness, and 

potentially permanent brain injury or even death. Although hyperglycemia is associated with long-

term consequences in diabetic patients, hypoglycemia is a constant hazard. On the other hand, it 

can be simply treated by the patient himself/herself, through an oral intake of glucose. In moderate 

to extreme hypoglycemia, autonomic α-cell (alpha) inputs are more critical to the glucagon 

stimulation process [11]. Generally, α-cells are endocrine cells found in the pancreatic islets, such 

as β-cells. These cells synthesize and release the peptide hormone glucagon that is responsible for 

the increasement in blood glucose levels, whereas β-cells generate and release the insulin hormone 

[12]. 

Recrudescent hypoglycemia can cause metabolic changes in the glucose detection regions 

of the human brain, as well as shift the threshold for compensatory activation of the sympathetic 

nervous system to reduce the glucose concentration. The prementioned state is referred to as 

hypoglycemic unawareness [13][14]. Possible sequent hypoglycemia episodes prevent the 

transmission of anti-regulatory messages to the islets and adrenal cortex, which explains the lack 

of glucagon and epinephrine release [14]. This glucagon and epinephrine release usually promotes 
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the liberation of glucose from the liver, saving the diabetic from severe hypoglycemia, coma and 

even death. In the quest for a cellular cause of hypoglycemic unawareness, several theories have 

been proposed, but no consensus has been reached. The main theories are outlined in Table 1.2 

[13][15][16]. 

Table 1.2. Hypoglycemic unfamiliarity mechanisms 
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Increased stores of glycogen in astrocytes may contribute to supplemental 

glycosyl units for metabolism, neutralizing the central nervous system's 

perception of hypoglycemia. 
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Modified glucose transport and increased metabolic efficiency in recurrent 

hypoglycemia can relieve oxidative stress that could trigger the sympathetic 

response. 
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Reduced dependence on glucose, astrocyte lactate supplementation, or 

ketones can satisfy metabolic demands while reducing brain stress. 

On the other hand, hyperglycemia events occur when less insulin than needed is injected, 

causing blood glucose levels to rise above the target range (>180 mg/dL). In the first year after 

diagnosis, postprandial glucagon secretion levels can increase up to 37%, while c-peptide levels 

(indicative of islet-derived insulin) can decrease by up to 45% [17]. Insulin output continues to 

decrease as the immune system follows the gradual destruction of beta-cells, and islet-derived 

insulin will be replaced by exogenous insulin therapy for the foreseeable future [17]. At the same 

time, there is an observable α-cell hypertrophy and hyperplasia, resulting in an oversized α-cell 

mass and along with the failure of β-cell insulin secretion, it clarifies the rise in glucagon levels 

that leads to a hyperglycemic event [18]. The primary theory for the cause of post-marketing 

hyperglycemia indicates that exogenous insulin therapy is inadequate to replace the lost 
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intracranial signaling in α-cells that was previously regulated by insulin-derived pulsed cell 

secretion [19][20]. Therefore, intensive insulin therapy seeks to replicate the natural insulin 

secretion profiles through exogenous insulin infusions [21]. 

1.3 Blood Glucose Self-Monitoring 

Predominantly, blood glucose self-monitoring requires a blood sample to be collected on 

many instances throughout the day (Figure 1.1). Nowadays, the use of CGM systems allows the 

collection of blood glucose level information in real time [1][22]. CGMs monitor the glucose 

concentration in the interstitial fluid, and not in the bloodstream, thus their measurements typically 

remain behind the capillary blood glucose levels by 8 to 10 minutes [22]. Therefore, there must be 

calibration through finger-stick glucose meter several times a day [2][22]. 

 

Figure 1.1 Blood glucose self-monitoring through finger-stick blood sample 

1.3.1 Continuous Glucose Monitoring Systems 

Patients with T1D need to perform regular glucose measurements during their day-to-day 

life. This is currently done through two invasive methods: a) by using a blood glucose meter or b) 

through a CGM. A glucose meter is a device used to manually measure the patient’s blood glucose 

levels. On the other hand, CGM is an automated device designed to measure glucose in interstitial 

tissue throughout the day. CGMs offer a method for monitoring glucose levels throughout the day 

and night, by taking glucose measurements at regular intervals, and translating readings into 
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dynamic data, generating glucose direction and rate of change. CGM requires three basic parts: a) 

a sensor, b) a transmitter and c) a smartphone application, monitor and/or pump. 

 

Figure 1.2 Continuous glucose monitoring system (Ipro2, Medtronic) [23] 

In CGM systems, measurements are made by a subcutaneously implanted sensor 

containing glucose-oxidase. Specifically, the sensor is placed directly on the skin (Figure 1.2) and 

a catheter is implanted under the skin to capture the concentration of glucose present in interstitial 

fluids3. Furthermore, the sensor measures electrical current in relation to the interstitial glucose 

concentration, while this value is used as a proxy for actual blood glucose concentration. Then, the 

measured value is stored on device or is wirelessly transmitted to a monitor, through a transmitter 

which is placed on top of the sensor.  

The monitor (or the smartphone application, receiver and/or insulin pump) displays real-

time glucose number, trend, and history, while the most current CGMs offer specific smartphone 

applications for viewing data. CGMs are used to have a finer grain representation of the patient’s 

glucose level and can also be used along with an insulin pump to evaluate the adequacy of the 

insulin program or to study glucose levels overnight. Some CGM devices can also send the glucose 

value to an insulin pump, including a growing number that can automate insulin delivery 

accordingly. However, CGM needs to be calibrated by using a standard glucose meter several 

times per day. 

 

3 Source: https://en.wikipedia.org/wiki/Continuous_glucose_monitor 
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This type of monitoring system has been found to help users to actively manage high and 

low blood glucose levels and in addition gives insights into the effects that one's meal, exercise, 

mood or even illness can have on the blood glucose levels [24]. Table 1.3 presents three well-

known companies that offer CGM technologies and some of their key features are compared. 

Pricing varies based on the insurance coverage of the patient and can be provided by the company 

upon communication. Overall, the evolution of CGM technologies during the last decade has 

enabled the collection of multi-parametric data (medical, activity, lifestyle and diet) from diabetic 

patients [25]. 

Table 1.3 Continuous Glucose Monitoring (CGM) system kits 

 Dexcom G6 4 FreeStyle Libre 5 Medtronic Guardian 

Connect 6 

Kit DEXCOM G6 - Starter 

Kit  

FreeStyle Libre Flash 

Glucose Monitoring - 

System Starter Kit 

Guardian Connect 

CGM - Complete 

Subscription 

Components ─ G6 Transmitter 

─ G6 Sensor x 3 (30 

days) 

─ FreeStyle Libre 

Sensor x 2 

─ FreeStyle Libre 

Reader x 1 

─ Sensors x 60 (10 

sensors delivered 

every other month) 

─ Transmitter 

─ Option to receive 6 

months-worth of i-

Port Advance 

injection ports 

FDA Approved For 

ages 

Age 2+ Age 18+ Ages 14-75 

Calibration Required? No, but can calibrate if 

sensor is off-track 

No, and not possible Yes, 3-4 x daily 

Sensor Life 10 days 14 days 6 days 

Warmup time (New 

Sensor) 

2 hours 12 hours 2 hours 

Transmitter Lasts 3 months, no 

recharging 

Fresh Transmitter 

connected to each 

sensor 

Must recharge weekly 

(New transmitter sent 

every 12 months) 

Display options ─ Smart phone ─ Handheld scanner ─ Smart phone 

 

4 Source: https://store.ca.dexcom.com/en-CA/dexcom-g6/g6-starter-kit/CASTARTERKITG6.html 

5 Source: https://www.freestylelibre.gr/products.html 

6 Source: https://pharmeddirect.com/uk-en/# 
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─ Smart watch (via 

phone BT 

connection), 

─ Tandem X2 pump 

─ Handheld receiver 

─ Smart watch (via 

phone connection) 

Hi/Low Alerts Yes, customizable None Yes, customizable, 

including extended 

predictive alerts 

Live Data Sharing Yes, high/low alerts 

and current glucose 

level/trend 

None Yes, high/low alerts 

App/System ─ Dexcom G6 app 

(mobile) 

─ Dexcom STUDIO 

─ Dexcom G6 app 

(mobile) 

─ FreeStyle 

LibreLink app 

(mobile) 

─ LibreView, the 

cloud-based 

diabetes 

management 

system 

─ FreeStyle Libre 

Desktop software 

─ Sugar.IQ app 

(mobile) 

─ Guardian™ 

Connect App 

(mobile) 

─ CareLink Personal 

system 

Downloading/Data 

Analysis 

─ Automatic upload 

to Clarity software. 

─ Compatible with 

most midware 

programs for 

merging data with 

other devices 

(Diasend, Glooko, 

Tidepool) 

─ Freestyle Libre 

software 

─ Tidepool 

(midware) 

─ Automatic upload 

to Carelink 

Software 

─ Sugar IQ program 

for analyzing data 

Data format .txt .pdf .pdf 

1.3.2 Diabetes Management Applications 

The usage of health-related mobile applications could further motivate individuals 

by facilitating and enabling patients in better self-managing of long-term conditions, such as 

diabetes [26]. In terms of diabetes control, evidence-based diabetes recommendations promote 

lifestyle management, such as healthy eating and physical activity [4][27]. Patients who regularly 

participate in their own treatment during clinical checkups are more likely to succeed in controlling 

their diabetes, through using diabetes management applications with glucose 

level tracking features and insulin dosage calculators [27]. 

Diabetes applications concentrate on different diabetes self-management activities such as 

glycemic control, insulin dosage, diabetes-related psychological support, as well as diet and 
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physical exercise tracking. The incorporation of data sharing functionality in diabetes management 

applications could provide additional insight into a patient's glycemic control by enabling health 

care providers to efficiently identify patterns and advise prescription modifications. The majority 

of diabetes applications are neither supervised nor approved by appropriate government agencies 

[28]. Currently, there are no specific clinical recommendations for patients to use concrete diabetes 

applications, nor there are mandatory or preferable characteristics in terms of the development of 

these applications [29]. Finally, Table 1.4 presents some widely used diabetes management 

applications, along with their main features. 

Table 1.4 Overview of the main features of diabetes management mobile applications  

Application Main Features Data Records 

M
y
S

u
g
r 

(h
tt

p
s:

//
w

w
w

.m
ys

u
g

r.
co

m
/e

n
/)

 

▪ Personalized logging screen 

▪ Clear blood glucose graphs 

▪ Private data safe backup (encrypted 

user information) 

▪ Smart search of patterns 

▪ Estimated HBA1c 

▪ Insulin dose estimation 

▪ Time of the day 

▪ Blood glucose 

▪ Carbohydrates 

▪ Insulin intake (food 

consumption) 

▪ Insulin intake (blood glucose 

correction) 

▪ Activity 

▪ Type of food consumed 

▪ A1c 
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▪ Clean logbook 

▪ Food database (portion and quantity 

selection) 

▪ Caloric intake counting and insulin 

dose calculator 

▪ Detailed graph of blood glucose 

tests, boluses, basal insulin, activity 

chart and more 

▪ Analytical charts and diagrams of 

the collected data 

▪ Various reports, log entries and 

charts for sharing with diabetes 

specialists for review 

▪ Data import/export from other 

diabetes management systems 

▪ Reminder system 

▪ Date and time 

▪ Blood glucose 

▪ Carbohydrates 

▪ Fast-acting insulin type and units 

▪ Long-acting insulin type and 

units 

▪ Medications 

▪ Reminders 

▪ Blood pressure 

▪ Physical activity 

▪ Weight 

▪ Ketones 
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 ▪ SmartLIGHT target range indicator 

immediately identifies if blood 

glucose readings are above, below 

or within target range, giving 

patients instant feedback 

▪ Second-chance sampling allows 

patients up to 60 seconds to reapply 

more blood which may help prevent 

wasted strips while still 

demonstrating a high degree of 

accuracy 

▪ Seamlessly connect via Bluetooth 

technology 

▪ Date and time 

▪ Blood glucose 

▪ Food intake 

▪ Carbohydrates 

▪ Activity (duration and intensity) 

▪ Fast/Long-acting insulin intake 

▪ Notes 

O
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▪ Blood glucose patterns 

▪ Medication schedule 

▪ Meal planning 

▪ Exercise routine 

▪ Automated decision support (food 

and activity suggestions based on 

future blood glucose estimations) 

▪ Report sharing 

▪ Weight 

▪ Blood pressure 

▪ Activity 

▪ Food intake 

▪ Medication 

▪ A1c 

▪ Blood glucose 

1.3.2.1 MySugr 

The mySugr mobile application was released in 2012 and is available in 14 different 

languages, in over 60 countries around the world [30]. This application is intended to assist 

diabetic patients with diabetes self-management, primarily in the areas of healthy eating, exercise, 

health tracking, medication, risk mitigation and possible problem resolution. Through mySugr, it 

is feasible to automatically transfer glucose data to mySugar from a CGM device or a finger-stick 

glucose meter, via Bluetooth.  Additionally, it can be synchronized with devices through a cloud-

based service, while the insulin records can be submitted manually by the user. This application 

can also contain information about the patient's meals and nutrients, physical activity, as well as 

medication. The initial user registration and data collection steps are presented in Figure 1.3. All 

the application data can be accessed and downloaded in different types of file formats, such as 

comma-separated values (CSV), Excel spreadsheet (XLS), or portable document format (PDF). 

These data can provide patients and clinicians with an accurate care summary that includes 

extensive detailed records and patient’s glycemic patterns (Figure 1.4). Another feature of mySugr 

is the instant access to certified diabetes educators (CDE), when required. CDEs recognize and 

track patients at risk, aided by algorithms that detect problematic glucose patterns, and 
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communicate with them through the application, with individual glycemic-related advice. Lastly, 

more algorithms are used in the application, in order to identify personalized patterns and to 

identify patient’s weak points that are in need of optimization. 

 

Figure 1.3 MySugr App - Initial User Registration and Information Collection Steps 

 

Figure 1.4 MySugr App - Homepage, User’s New Entries and Blood Glucose Reports 
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1.3.2.2 Diabetes:M 

Diabetes:M refers to a smartphone application designed for people with diabetes or pre-

diabetes to help them monitor and treat their condition [31]. Its aim is towards reducing the risks 

of complications, by significantly improving the patient's self-monitoring and self-management 

skills, as well as providing the patient and the medical professionals with a tool that aids in making 

fast and educated therapy decisions. This application involves a Logbook screen, where the 

patients can enter their glucose readings, insulin injections, caloric intake and also monitor their 

weight, ketones, HbA1c, cholesterol levels, blood pressure, pulse, and physical activity. In 

addition, it includes a Bolus Advisor panel that allows patients to measure their insulin units for a 

meal based on carbohydrate, fat, and protein intake, as well as select items and foods from a 

categorized list (Figure 1.5). Furthermore, there is the possibility of personalized notifications 

about when the patient should consume more carbohydrates or whether he/she should postpone 

his/her meal, due to high blood glucose levels. Another feature of this application is the insulin 

dosage calculator, where patients can record their blood glucose level and the calculator can 

estimate the appropriate insulin dose for their needs. Diabetes:M can display all the available blood 

glucose entries in a timeline graph, while it includes several charts to aid data presentation in a 

variety of ways. Lastly, it offers the generation of comprehensive reports, available in PDF, hyper-

text markup language (HTML), and XLS formats, for distribution with patient’s clinicians. 

 

Figure 1.5 Diabetes:M App - Homepage and User Log Entries  

1.3.2.3 Contour 
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Contour is a cloud-enabled mobile application, which has the ability to sync with the 

Contour Next One glucose meter7 through Bluetooth Low Energy (BLE) wireless technology for 

blood glucose monitoring. Individuals with insulin and non-insulin treated diabetes, as well as 

their caregivers, can use the Contour application to save, view and share glucose meter’s readings. 

Other associated health indicators that may be gathered and shown on a mobile device in a printed 

report and graphical format for patients, are also available, in order to help with diabetes 

management. The Contour One system, which is consisted of a Contour Next One glucose meter 

and the Contour mobile application, employs color to indicate whether a blood glucose is either in 

or out of the recommended range (Figure 1.6). Specifically, the blood glucose reading button in 

the application is colored and when a reading is taken with the glucose meter, the test strip port 

shows a colored indicator. Green represents values that are within target, orange represents values 

that are above target, and red represents values that are below target. Additionally, patients can 

record events such as nutrition, activity, and medicine, as well as add images, notes, or voice 

recordings to further contextualize their results (Figure 1.7). Seamlessly acquired blood glucose 

measurements are utilized to generate unique patterns and trends, allowing patients to observe how 

their daily activities affect their blood glucose readings. Finally, data from the application can be 

exported as a simple logbook referred to as the “Blood Sugar Diary”, or as a raw data report in 

CSV format. 

 

Figure 1.6 Contour App - Homepage and Presentation of User’s Log Entries 

 

7 Source: https://www.contournextone.com/ 
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Figure 1.7 Contour App - User Blood Glucose Log Entry 

1.3.2.4 One Drop 

One Drop is a diabetes management mobile application for diabetic patients to register a 

range of daily information, such as their blood glucose measurements, food, activity, and insulin 

dosages, as seen in Figure 1.8. Moreover, patients can anonymously share that information with a 

community of users, and the application can also provide them with actionable insights based on 

their data. The One Drop application allows patients to easily save and manage their diabetic 

information, examine trends, and share their overall health state with a healthcare team. One Drop 

users can also upload and review their records, including measurements, such as glucose, insulin, 

caloric intake, and weight (Figure 1.9). It is also possible to link One Drop application with the 

One Drop glucose meter, and the data from the glucose meter can automatically sync with the 

application anytime the two devices are in range and the glucose meter is switched on. Finally, the 

application displays long-term trends and daily blood glucose averages, while comprehensive 

reports are available for exportation in PDF and CSV formats. 
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Figure 1.8 One Drop App - User Registration and User Blood Glucose Log Entry 

 

Figure 1.9 Entry One Drop App - User Medication, Food and Activity Log Entry 

1.4 Heart Rate 

Heart rate, often known as pulse, refers to the heart beats every minute, and it is a useful 

prognostic indicator of the heart's condition. The average heart rate can differ from individual to 

individual, while the parameters for evaluation include the rhythm, volume, amplitude, and rate of 

growth of the heartbeat [32]. The usual adult heartbeat ranges between 60-100 beats/minute, while 

above and below these points it is characterized as tachycardia and bradycardia, respectively [32]. 

Variations in the pace and regularity of the heartbeats can occur over time and could 

possibly indicate a heart disease or another physiological/pathological condition that might need 

to be detected and resolved. 
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Inadequate blood glucose levels that approach the hypoglycemic state can result in a faster 

and more noticeable heartbeat (palpitations). Hypoglycemia can induce hemodynamic alterations, 

such as an increase in the cardiac output and the peripheral systolic blood pressure, a decrease in 

the blood pressure and a decreased peripheral vascular resistance [33]. Specifically, hypoglycemic 

events lengthen the cardiac repolarization, which is the mechanism by which the heart gets 

ready for synchronized contraction throughout the diastole phase of the cardiac cycle, and in which 

irregularities in other situations might raise the likelihood of heart arrhythmia (irregular heartbeats) 

[33][34]. 

1.4.1 Heart Rate Variability (HRV) 

HRV is defined as the variation in the time interval between consecutive heartbeats in 

milliseconds and is primarily reliant on the extrinsic heart rate [35]. These time intervals between 

heartbeats are known as RR intervals and are measured in milliseconds (ms). RMSSD stands for 

the root mean square of successive differences between normal heartbeats and the initial 

calculation process of it involves the measurement of each successive time difference between 

heartbeats [36]. These measurements are then squared, and the outcome is averaged before 

calculating the square root of the sum [36]. 

Several different approaches can be used to assess variations in heart rate, while the 

simplest approach is through time domain measurements [35][36]. These approaches can 

define the heart rate at any moment in time, as well as the intervals between the successive QRS 

complexes [37]. Each QRS complex is recognized in a continuous electrocardiographic (ECG) 

record, and the normal-to-normal (NN) intervals or the momentary heart rate is computed (Figure 

1.10). The mean NN interval, mean heart rate, difference between longest and shortest NN 

intervals, the difference between night and day heart rates, etc. are some examples of simple time 

domain variables that can be measured. Since numerous commercial devices now allow automated 

HRV monitoring, it is considered a very useful tool for both research and clinical monitoring of 

patients. However, the importance and interpretation of the many distinct HRV measurements are 

more complicated than is often recognized, and there is a risk of inaccurate findings and 

unwarranted extrapolation [35][36]. 
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Figure 1.10 An ECG graph displaying a sequence of QRS complexes, where RR intervals 

fluctuate naturally from beat to beat, and HRV is expressed through an analysis of this variation 

A reduced HRV measurement usually occurs when the heart begins to beat quicker and 

implies a kind of negative overall stress. The constant stimulation of the sympathetic nervous 

system is a typical cause of a lower measurement [38]. Normally, HRV is higher during calming 

activities, when the parasympathetic nervous system takes over and while the heart is beating 

slowly. On the other hand, a high HRV measurement is not always a positive indicator, because 

HRV can also be caused by pathological conditions. When there are cardiac conduction disorders, 

which increase HRV measurements, then it is highly associated with an increased risk of mortality, 

especially among the elderly. In this case, an analysis of the morphology of an ECG can indicate 

whether the elevated HRV readings are caused by health disorders. 

 

Figure 1.11 An HRV graph (RMSSD in ms) demonstrates how HRV reduces during 

exercise/stress and increases during sleep/meditation 

In autonomic diabetic neuropathy defined by changes in tiny nerve fibers, a decrease in 

time domain parameters of HRV appears to not only have a poor predictive value, but also to 

anticipate the clinical manifestation of autonomic neuropathy. Diabetic patients can be 

distinguished from healthy controls by a decrease in HRV [39]. Furthermore, there is evidence that 

hypoglycemia, ECG, and heart rate abnormalities are interrelated. HRV is thought to demonstrate 
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the heart's ability to adjust to changing situations by identifying and reacting rapidly to unexpected 

stimuli, while HRV analysis can be used to determine the general health of the heart and the state 

of the autonomic nervous system (ANS), which is responsible for the control of the cardiac activity 

[35]. Specifically, HRV is found to be linked to hypoglycemia due to the stimulation of the 

sympathetic nervous system and is among the observable signs for the early detection of 

hypoglycemia [40]. Therefore, HRV patterns combined with CGM data could be used as an 

improved and more reliable technique to identify hypoglycemia in real time and even predict such 

episodes. 

1.5 Hypoglycemia Prediction 

The primary goal of diabetes management is to rectify hyperglycemia while preventing 

hypoglycemia, particularly in T1D and T2D insulin-depended patients. The concern of 

hypoglycemia is a barrier to a successful hyperglycemic control, since it encourages insulin 

underdosing. Methods to reduce hypoglycemia occurrences include instruction and counseling to 

increase hypoglycemia recognition in time, as well as the development of predictive technological 

approaches that could reduce the occurrences of hypoglycemia. These predictive technologies 

would be particularly beneficial to patients with decreased hypoglycemia consciousness. 

Furthermore, considering that hypoglycemia is linked to changes in vitals, an ECG and/or heart 

rate continuous monitoring could be utilized in the process of identifying hypoglycemia. 

In this thesis, we will investigate the use of biosignals and other measurements, provided 

by a wearable device, e.g. heart rate, daily HRV and SpO2, temperature, exercise, steps, and sleep 

quality, in combination with parameters provided by the user herself/himself, e.g. meals during 

the day, insulin type and dose, and psychoemotional status, captured through a user-filled 

questionnaire, for the development of a hypoglycemia prediction model. The blood glucose 

readings are collected using a clinically approved CGM sensor, and the prediction model is 

developed using Machine Learning (ML) techniques. In addition, we explore the combination of 

heart rate data obtained from a smartwatch, that enables continuous heart rate monitoring, with 

CGM data obtained from T1D patients. Eventually, heart rate readings and CGM data will be 

integrated into a hypoglycemia prediction algorithm that will define the hypoglycemic state as a 

blood glucose value < 70 mg/dL.  This combination of parameters is meant to be utilized as an 

improved and more reliable technique/tool for detecting hypoglycemic episodes in the early stages. 
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Finally, a diabetes management mobile app will be created as a future supporting tool for the 

patient to collect data, such as finger-stick glucose readings, insulin dosages, meals and exercise, 

and mood. The mobile app will also include a relevant questionnaire produced by the Behavioral 

Diabetes Institute8, which is used to calculate the diabetes distress of the patient. Diabetes distress 

is a state of unpleasant emotions caused by diabetes and the difficulty of constant self-management 

over the patient's lifetime. It is linked to poor diabetes self-management, a higher HbA1c, and 

a negative mental state, while it is frequently confused with depression. Diabetes distress is rather 

prevalent and it is critical that each session with the healthcare professional provides the ability 

for the patients to express their emotions regarding their daily life with the disease [41].

 

8 Source: https://behavioraldiabetes.org/ 
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2 Systematic Literature Review 

Diabetes is a recurrent condition that involves constant control and self-management of the 

patient's blood glucose. Improper regulation of blood glucose levels in diabetic patients can lead 

to severe problems, such as kidney and heart failure, as well as stroke and blindness. On the other 

hand, through the appropriate care of diabetes a patient can live a prosperous life. Nevertheless, a 

stricter glycemic control can raise the likelihood of developing hypoglycemia, a rapid decrease in 

blood glucose levels that may lead to coma and potentially death, if proper care is not taken 

immediately. 

The concern of hypoglycemia is a barrier to a successful hyperglycemic control since it 

encourages insulin underdoing. Methods to reduce hypoglycemia occurrences include instruction 

and counseling to increase hypoglycemia recognition in time, as well as the development of 

predictive technological approaches that could reduce the occurrences of hypoglycemia. Blood 

glucose self-monitoring requires a blood sample to be collected on many occasions throughout the 

day. Nowadays, the use of CGM systems allows the collection of blood glucose level information 

in real time. 

Artificial intelligence algorithms have been widely used to predict diabetes or as diagnostic 

tools especially for type 2 diabetes [42]. Unlike glucose prediction, hypoglycemia prediction has 

received limited research attention. ML models have been used to predict the near future of blood 

glucose levels and inform patients to take appropriate actions in advance in order to avoid a hypo 

or hyperglycemic episode [43]. An accurate predictor could improve the quality of life of diabetic 

patients. 

This section presents a review on emerging detection methods and approaches for the 

identification and prevention of hypoglycemia episodes. Specifically, we investigate the methods 

used or invented to improve blood glucose monitoring and increase its effectiveness, in order to 

estimate future glucose levels, which could contribute to the prediction process of future episodes 

of hypoglycemia. Lastly, we discuss prediction approaches aimed at the early identification and 

prevention of nocturnal hypoglycemia episodes, which could lead to “dead-in-bed” syndrome, if 

not identified early. These approaches are categorized, as mentioned above, while their proposed 

techniques are being discussed. 

2.1 Search Strategy

A systematic literature search following the PRISMA guidelines [44] was performed. For 

the research we used “PUBMED”, “Google Scholar”, “IEEE Xplore” and “ACM” digital libraries 



23 

 

to find articles about technologies related to hypoglycemia detection and prevention in T1D 

patients. After exploring and combining many search terms to ensure having the broadest results, 

we used the following terms: “hypoglycemia”, “prediction”, “detection”, “continuous glucose 

monitoring”, “CGM”, “type 1 diabetes”, “T1D”, “HRV”, “heart rate variability”, “machine 

learning” and “deep learning”. 

The search was performed in June 2021 and was restricted to articles from 2005 onward. 

In parallel, an alert was set to avoid missing articles. References of the selected articles were 

analyzed to extract other related articles, and a complementary search in Google Scholar was used 

to find further information when necessary and to complete the review with original works on each 

subtopic identified. Articles reporting on new glucose sensors, that exhibit a linear detection range 

wide enough for blood or interstitial measurement, were eligible. For prediction algorithms, the 

eligible articles had to report methods for glucose prediction and present details on the datasets 

used, methodology and performance metrics. We included algorithms that predicted glucose 

values in a defined prediction horizon, as well as those that specifically predicted hypoglycemic 

events up to a maximum of 24h in the future. To be eligible, a study had to focus on hypoglycemia 

or include hypoglycemia prediction/detection techniques based on patient data. The patient group 

had to have T1D, while the trials had to have a control group. We excluded trials that focused on 

the primary prevention of diabetes, those targeting gestational diabetes, those pertaining to a 

closed-loop or artificial pancreas system, and those which primarily focus on T2D. 

The literature search gave in total 397 results. Complimentary alerts helped to add 3 more 

articles. 382 records were screened after the removal of 15 duplicates. 348 articles were excluded 

because they did not meet our eligibility criteria. After reading the full-text of the remaining 34 

articles, we included 19 eligible articles. Figure 2.1 presents the PRISMA flow diagram [44], 

illustrating the search and screening procedure of this review. 
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Figure 2.1 The PRISMA flow diagram [44], which presents the search and screening strategy 

followed in the systematic review 

2.2 Hypoglycemia Prediction Algorithms 

Prediction algorithms aid toward further enhancing the quality of life of diabetics and their 

ability to avoid hypoglycemia. They enable patients to intervene early and successfully in the 

prevention of hypoglycemia episodes. Several of the approaches introduce novel algorithms for 

predicting hypoglycemia. However, just a few of them have sought to assess their clinical efficacy 

and advantages in real-life settings. In the presented approaches, several different evaluation 

metrics were used, such as Relative Error (RE), which refers to the percentage value of the 

model's prediction error, and Area Under the ROC Curve (AUC-ROC), that is used as a 

performance evaluation metric for classification tasks. The details about each reviewed study are 

presented in Table 2.1. 
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Table 2.1 Summary of the reviewed hypoglycemia prediction approaches 

Ref Year Dataset Technique Result 

[45] 2017 

11 Virtual Adults 

through UVA-Padova 

T1D Simulator 

K-Nearest Neighbors 

(KNN) 
Accuracy: 83.64 % 

[46] 2015 

6 Patients from 

Diabetes Research in 

Children Network 

(DirecNet)  

Linear Autoregressive 

(AR) Models of 

Higher and Lower 

Orders 

State Space Model 

Relative Error (Higher AR): -7% 

Relative Error (Lower AR): -24% 

Relative Error (State Space): -12% 

[47] 2013 10 Male T1D Patients 
Support Vector 

Machine (SVM) 

Area Under the ROC 

Curve (AUC-ROC): 0.962 

Sample-based Sensitivity: 81% 

Sample-based Specificity: 93% 

Event-based Sensitivity: 100% 

[48] 2008 

Multiparameter 

Intelligent 

Monitoring in 

Intensive Care 

Database II (MIMIC 

II)  

Classification Tree 
Accuracy: 86% 

Sensitivity: 89.87% 

[49] 2020 112 T1D Patients 

Logistic Regression 

(LR) 

Random Forests (RF) 

Sensitivity (LR): 91.85 % 

Specificity (LR): 96.25% 

Sensitivity (RF): 94.20% 

Specificity (RF): 96.67% 

[50] 2010 54 T1D Patients 

Absolute Predicted 

Glucose Values 

Cumulative-Sum 

(CUSUM) 

Exponentially 

Weighted Moving 

Average (EWMA) 

Sensitivity: 89%, 87.5%, 89% 

Specificity: 67%, 74%, 78% 

[51] 2010 40 T1D Patients 

Linear Projection 

Kalman Filtering 

Hybrid Infinite 

Impulse 

Statistical Prediction 

Numerical Logical 

Algorithm 

Sensitivity: 84% 

[52] 2013 19 T1D Patients Kalman Filtering 

Area Under Curve (AUC): 

Algorithm 1: 71% 

Algorithm 2: 90% 

Algorithm 3: 89% 
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[53] 2013 15 T1D Patients 
Support Vector for 

Regression (SVR) 

Sensitivity (30-min horizon): 92% 

Sensitivity (60-min horizon): 96% 

 

[54] 
2018 10 T1D Patients 

Support Vector 

Machine (SVM) 

Sensitivity: 78.75% 

Specificity: 82.15% 

[55] 2018 93 T1D Patients 

Random Forest 

Regressor 

MLP (Neural 

Networks) Regressor 

Mean Absolute Percentage Error 

(MAPE): 

Random Forest Regressor: 27.9% 

MLP Regressor: 29.6% 

[56] 2020 1 T1D Patient 

Gradient Boosting 

Decision Tree 

(GBDT) 

Accuracy: 82.7% 

Sensitivity: 76.7% 

Specificity: 84.2% 

[57] 2016 15 T1D Children 

Deep Belief Neural 

Network (DBN) 

Restricted Boltzmann 

Machines (RBM) 

Sensitivity: 80% 

Specificity: 50% 

[58] 2021 
12 T1D Patients from 

OhioT1DM Dataset 

Deep Neural Networks 

(DNNs) 

Long Short-Term 

Memory (LSTM) 

Artificial Recurrent 

Neural Network 

(RNN) 

30-min Prediction Horizon (mg/dL): 

Root Mean Square Error (RMSE):19.10 

Mean Absolute Error (MAE): 13.59 

Glucose RMSE (gRMSE): 22.08 

60-min Prediction Horizon (mg/dL): 

Root Mean Square Error (RMSE):32.61 

Mean Absolute Error (MAE): 24.25 

Glucose RMSE (gRMSE): 38.04 

[59] 2020 

10 Virtual Adults 

through UVA-Padova 

T1D Simulator 

& 6 T1D Patients 

from OhioT1DM 

Dataset 

Dilated Recurrent 

Neural Network 

(DRNN) 

Transfer Learning 

Root Mean Square Error (RMSE): 20.1 

mg/dL 

[60] 2019 

10 Virtual Adults and 

10 Virtual Children 

through UVA-Padova 

T1D Simulator 

Deep Reinforcement 

Learning (RL) 

Double Dilated 

Recurrent Neural 

Network (RNN) 

Adults: 

Glucose Time in Target Range (TIR): 

93% 

Children: 

Glucose Time in Target Range (TIR): 

83% 

[61] 2020 

40 Virtual Adults 

through AIDA 

Diabetes Software & 

9 T1D Patients 

D1NAMO Open 

Dataset 

Long Short-Term 

Memory (LSTM) 

Recurrent Neural 

Network (RNN) 

Virtual Patients: 

Root Mean Square Error (RMSE): < 5 

mg/dL 

Real Patients: 

Root Mean Square Error (RMSE): <10 

mg/dL 

[62] 2016 1 T1D Patient Decision Tree 
Model validation is in progress, due to 

the lack of patient data variety 

[63] 2014 10 T1D Patients 

Forward Selection 

Linear Logistic 

Regression 

Accuracy: 99% 

Sensitivity: 79% 
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In a study by Mordvanyuk et al. [45], authors examined 11 diabetic patient profiles using 

the UVA-Padova type 1 diabetes simulator. In their method, they presented the use of k-nearest 

neighbor on patient data, along with details relevant to a sequence of meals, to be able to forecast 

a possible hypoglycemic/hyperglycemic episode. Their findings indicate that the use of 

consecutive data can dramatically improve the results of the prediction, especially when estimates 

determine the type of meal, i.e., breakfast, snack, lunch, etc. Their approach obtained a sensitivity 

of 88%, when taking into account only carbohydrate intake, fast-acting insulin dose and pre-meal 

blood glucose. 

In terms of blood glucose prediction, the algorithms used in these studies include linear 

autoregressive (AR) and state space time series models, classification algorithms like the Support 

Vector Machine (SVM), classification trees, logistic regression (LR) and random forests (RF) 

[46][47][48][49]. Paul et al. [46] studied the use of generalized autoregressive conditional 

heteroscedasticity models (GARCH) on CGMS profiles of young T1D children. They aimed to 

analyze glucose time series and variability, as well as the feasibility of credible blood glucose level 

prediction. The forecasting capabilities of the GARCH methodology were compared to those of 

other existing modeling techniques, such as lower and higher order AR models and state space 

models, where the GARCH method proved to be efficient in recognizing the variability of the 

glucose profiles and in providing a more credible prediction of short-term future blood glucose 

levels. 

All the research was conducted specifically on T1D patients, who have the greatest need 

for this kind of prediction algorithm, as they are more complex for algorithms to implement due 

to their high sensitivity to exogenous factors and their increased blood glucose variability. In an 

experiment by Jensen et al. [47], they established a pattern classification approach to enhance real-

time hypoglycemia identification. They examined data from 10 T1D patients, who suffered 17 

insulin-induced hypoglycemic episodes.  These episodes were then analyzed to extract 

characteristics, including the recent insulin intake time and the linear regression of the CGM 

signal, along with other measures (kurtosis and skewness), at different periods of time. The various 

combinations of features were employed in an SVM model, and its performance was measured, 

resulting to the detection of 17/17 hypoglycemic incidents with one false positive and a lead time 

of 14 minutes. 
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Another team [48] employed a classification learning technique to forecast hypoglycemic 

events during a one-hour time span. A classification tree was created with the use of a data mining 

tool, while the input data consisted of blood glucose measurements and insulin injection frequency. 

The accuracy and specificity for hypoglycemia prediction of the classification tree was 86% and 

89%, respectively. 

Dave et al. [49] investigated two different approaches to effectively detect hypoglycemic 

episodes. These approaches consisted of Logistic Regression (LR) and Random Forests (RF). In 

their ML-based hypoglycemia detection method, they used data from 112 T1D patients and relied 

on an extensive feature extraction process to identify any possible glucose patterns. Their final 

model was developed by considering linear and nonlinear models and combining the collected 

features. The proposed method correctly forecasted hypoglycemic episodes and achieved high 

sensitivities close to 95% and 94%, and specificities around 97% and 95%, for prediction horizons 

of 0-15 and 15-30 minutes. 

Clinical studies of such algorithms are projected to rise in the future years, as prediction 

approaches are integrated into CGM systems and other devices. The advantages for diabetic 

patients are evident, as they are empowered to make preventative decisions before their blood 

glucose levels reach critical points. Nevertheless, like with any new equipment, education will be 

required, in order to avoid the negative side effects of overreactions. 

A few studies [50][51] incorporated different algorithms to improve the performance of 

their models, and take advantage of the unique qualities of each algorithm. 

One specific team [50] examined three different time series-based methodologies for 

hypoglycemia forecasting on a dataset of 54 T1D patients. Their approach involved an 

exponentially weighted moving-average and a cumulative-sum control chart, as well as the 

absolute values of the forecasted blood glucose. Each patient was fitted with a Medtronic 

CGM device, which obtained blood glucose readings every 5 minutes. They merged the 

CGM's integrated alert with the estimated hypoglycemia alert, through each one of the three 

prementioned methodologies. They utilized a 30-minute prediction horizon, where the 

methodologies scored a sensitivity of 89%, 87.5% and 89%, respectively. 

Some prediction algorithms used in these studies used linear regressions or Kalman filters, 

which are computational approaches that use prior data to make short-term predictions and can 

also be integrated into a monitoring equipment. According to the Diabetes Control and 
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Complications Trial (DCCT) [64], 55% of the hypoglycemic events occur during sleep, hence 

some of the studies [51][52] addressed the issue of nocturnal hypoglycemia in T1D and argued 

that CGM alerts may be ineffective while the patient is sleeping [51][52]. 

In [51] they tracked 40 patients who wore GlucoWatch CGM during the nighttime and they 

discovered that 71% of the patients did not react to the alert throughout the night. They proposed 

that when hypoglycemia is expected, the CGM sensor sends a signal to the pump to cease injecting 

insulin. In order to anticipate hypoglycemia, they utilized a mathematical model, which 

employed a system that included specific prediction algorithms. These algorithms were linear 

projection, Kalman filtering, hybrid infinite impulse, statistical prediction, and numerical logical 

algorithm. When three algorithms were utilized to prompt the insulin pump suspending, nocturnal 

hypoglycemia was avoided, with a sensitivity of 60% while by utilizing just two of the algorithms 

the sensitivity raised to 84% and authors discovered that when the voting threshold increases, the 

prediction rate drops. The purpose of their study was to create a balanced ratio between nocturnal 

hypoglycemia forecasting and the probability of false alarms. 

Three prediction algorithm variants were examined in a 21-night randomized study, using 

a Kalman filter-based model [52],. The study comprised 19 adult T1D patients, who were already 

using the MiniMed Paradigm REAL-Time insulin pump and the Medtronic Sof-sensor blood 

glucose sensor. Pump suspension events happened on 53% of the intervention nights using the 

final algorithm. Preliminary effectiveness results indicated that their final algorithm reduced 

nighttime hypoglycemia by approximetely 50%. 

2.3 Algorithmic Inputs, Process, and Outputs 

Through the increasing availability of equipment such as CGMs, insulin pumps and 

physical activity trackers, along with the counting of carbohydrates by diabetics, a wide variety of 

data can be collected that can be used to predict blood glucose. Depending on the data gathered, 

their complexities, and the ultimate objective of the algorithm, a variety of methodologies were 

used in some of the studies, with one or two supplementary data inputs, which were typically 

the insulin doses, the caloric intake, or even both. The aforementioned input data are conveniently 

available, since they are usually captured in sensor enhanced pump trials and offer sufficient 

precision for modelling purposes. These two additional data inputs are processed by physiological 

models, in many of the evaluated studies [53][54][62][63], in order to derive additional 
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characteristics to determine the effects and dynamics of insulin action or meals, for a better 

interpretation by the prediction algorithms. 

There is evidence that inclusion of insulin and carbohydrate data in prediction models often 

increases the performance of the algorithm, even by a very small amount. However, apart from 

clinical trials, in which patients are deliberately selected based on their compliance with 

instructions and their ability (e.g., to count carbohydrates), such an input into a real-life 

environment seems unlikely. Table 2.2 presents the features that were considered and analyzed in 

each reviewed study. 

Table 2.2 Features/Characteristics considered in the reviewed approaches 
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In a study by Georga et al. [53], authors utilized data from a recent patient profile to provide 

their support vector regression (SVR) model for predicting hypoglycemia incidents during sleep, 

as well as in the daytime, over 30-minute and 60-minute time spans. With a hypoglycemia 

threshold of 70 mg/dL, the patient profile included glucose readings, meals, insulin dosage and 

physical activity, along with additional elements to account for recurrent nocturnal hypoglycemia 

caused by previous hypoglycemia, exercise, and sleep. Their model was developed based on a 

dataset of 15 T1D patients in an unrestricted environment. Nocturnal hypoglycemia predictions 

had a sensitivity of 94% and time delays of 5.43 and 4.57 minutes, respectively. When physical 

activities were not considered, the sensitivity for non-nocturnal events was 92% and 96% for a 30-

minute and 60-minute horizon, respectively, with both time delays being under 5 minutes. 

Nevertheless, when physical activities were considered, the diurnal sensitivity reduced by 8% and 

3%, in each time span. In conclusion, they suggest that their method is reliable and both nocturnal 

and daytime predictions had a high precision, over 90%. 

2.3.1 Activity Wearables 

Another important factor influencing blood glucose levels is physical exercise. One study 

examined the usage of physical activity monitors to gather data on heart rate, energy expenditure 

and the number of steps taken, in order to improve the prediction ability of their model [54]. In 

particular, the authors investigated the prediction of nocturnal hypoglycemia in T1D adults, 



32 

 

through a FreeStyle Libre CGM device and a physical activity monitor (Fitbit Alta HR; Fitbit). In 

their 12-week study, 10 T1D adults were examined under free-living conditions at home, while 

details about the management of T1D, CGM and the physical activity tracker were obtained. 

Supervised machine-learning algorithms were applied to the data, and prediction models were 

developed to predict the occurrence of nocturnal hypoglycemia. Authors conclude that more than 

70% of the nocturnal hypoglycemia could be prevented using their approach. Specifically, the 

prediction of the SVM model produced the highest scores, with a sensitivity of 78.75% and a 

specificity of 82.15%. 

Overall, the inclusion of a patient activity signal alerting the algorithm can improve its 

predictability, which in practice indicates that many widely available systems are accurate enough 

to be used for this task. The possible issue might be more technical, in terms of merging a variety 

of models and considering the variability of data formats in each system. Other relevant 

information, such as stress, medical treatment, and daily events in the patient's life, can be 

considered as potential inputs, which could be useful in differentiating these prediction models. 

In another study, Vahedi et al. [55] investigated the adaption of an ML based model that 

predicts continuous glucose levels and aims to prevent hypoglycemia, through using 

physiological and physical exercise data. They used the Medtronic MiniMed 530G insulin delivery 

device, along with Enlite sensor, to collect 4 months of physiological measures, physical activity, 

and nutrition data from 93 T1D individuals. Overall, their findings indicated that the 

model's projected glucose levels were very close to the glucose values as measured with the Enlite 

sensor. 

Another ML model was developed in the context of an ongoing research study by 

Maritsch et al. [56], whose objective is to identify hypoglycemia by utilizing physiological 

data collected from a wearable sensor. Specifically, one T1D patient participated in a one-

week study, wearing an Empatica E4 smartwatch to collect physiological data and a FreeStyle 

Libre CGM to gather patient's glucose data. The results reported indicate that physiological 

data can indeed be used to infer hypoglycemic phases, but frequent false positive results were 

observed due to the model’s high sensitivity.The authors report that they intent to employ AI-

based techniques to make the classification output comprehensible for patients, as well as 

to incorporate their model into wearables to alert about impending hypoglycemic episodes. 
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Finally, the ability to connect CGM, insulin pumps and activity trackers to a mobile device 

can allow for the application of multiple variant algorithms and complex cloud-based estimations. 

One of the primary aspects in common among many of the prementioned prediction algorithms is 

that using carbohydrate consumption, insulin dosages and activity tracking data can improve 

the accuracy over a forecast period. Furthermore, integrating several models could allow for 

different kinds of hypoglycemia alerts, each one designed for a certain context (activity, sleep, 

type of meal). 

2.3.2 Electrocardiogram‐based Hypoglycemia Detection 

In recent years, researchers have examined the effect of low blood glucose levels on the 

electrical activity of the heart. During hypoglycemia, studies revealed a lengthening of the QT 

interval (the time elapsed between the onset of the Q wave and the conclusion of the T wave), a 

rise in HRV and alterations in the cardiac repolarization. Thus, monitoring ECG alterations to 

detect the beginning of hypoglycemia can be a noninvasive method. The emergence of novel ECG 

wearables permitted the effortless collection of cardiac signals and paved the path for 

hypoglycemia identification through ECG data and using deep learning techniques. 

In a study by San et al. [57], a Deep Belief Network (DBN) was used to build a deep 

learning system for detecting the initiation of hypoglycemia based on patient’s ECG signal. 

According to the authors, the probability of hypoglycemia in diabetic individuals is most impacted 

by QT interval prolongation, although an increase in heart rate can also influence the status of the 

hypoglycemic event. Specifically, their suggested DBN delivers high classification performance 

with feature transformation. Through the efficiency testing of the system, 15 T1D 

children participated and were monitored overnight, while their findings revealed that the 

suggested DBN excelled and produced higher classification performance when compared to 

other current methods, with a sensitivity and specificity score of 80% and 50%. 

Another deep learning framework for predicting blood glucose levels was recently 

developed and was reported in [58], which utilized edge inference on a microcontroller unit 

(MCU). The performance of their models was evaluated, based on a clinical dataset acquired from 

12 T1D patients and their glucose data from a CGM, as well as through a Long Short-Term 

Memory (LSTM) artificial recurrent neural network. Such a system could significantly aid in 



34 

 

diabetic care and eventually be used in various diabetes management wearables, such as insulin 

pumps and CGMs. 

Generally, ML and deep learning approaches have demonstrated significant possibilities in 

terms of data analysis and prediction, while they concentrate on automatically learning behaviors 

and extracting characteristics from large-scale data. A deep learning model based on a Dilated 

Recurrent Neural Network (DRNN) that can anticipate future glucose levels for 30 minutes, was 

reported in [59],. The DRNN model acquired a considerably wider receptive field of neurons when 

dilation was used, with the goal of capturing long-term relationships, while they also used a 

transfer learning approach to take advantage of data from various patients. 

One specific team [60] suggested a dual-hormone delivery approach for T1D patients using 

deep reinforcement learning (RL), and based on data from the UVA/Padova simulator [65]. In 

terms of the hormone delivery strategy, they used double dilated recurrent neural networks, 

while input data were blood glucose and carbohydrates, and output was the insulin and 

glucagon distribution. Overall, their findings revealed that deep RL appeared to be helpful in 

developing customized hormone delivery strategies for patients with T1D. 

In another deep learning-based hybrid model, reported in [61], authors attempt to imitate 

the metabolic behavior of physiological blood glucose techniques, based on both virtual and actual 

patient data. Furthermore, they simulated a set of differential equations for insulin and 

carbohydrate intake through a LSTM recurrent neural network. Results demonstrated that their 

model performs better for virtual patients, due to the intricacy of the insulin and carbohydrate 

intake dependence in blood glucose levels, which is restricted to a specific cluster of parameters. 

In a non-invasive approach by Ranvier et al. [62] aiming to detect hypoglycemic events 

based on the continuous collection of sensed data from an off-the-shelf sensor belt, they base their 

method on two distinct models. The first one leverages a physiological consequence of 

hypoglycemia, namely an alteration of the user ECG’s features. They additionally use the 

accelerometer and breathing sensor of the belt to infer the energy expenditure of the T1D patient, 

correlated with the food intake to estimate the blood glucose level. Then, they combined these two 

models to improve the accuracy of their prediction. 

Cichosz et al. [63] proposed a novel algorithm for hypoglycemia prediction, where they 

obtained data from 10 T1D patients, who were observed during insulin-induced hypoglycemia, 

while the collected blood glucose samples were used as a reference. Their equipment involved the 
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calculation of ECG, through lead II, and a Minimed Guardian RT CGM, which generated a reading 

every 5 min. The extracted HRV patterns were incorporated into a mathematical prediction 

algorithm, along with the CGM data. Cichosz et al. [63] treated the early prediction as a pattern 

recognition problem based on a fixed hypoglycemia level (3.9 mmol/L). Thus, measuring blood 

glucose from each patient was used as a reference to categorize each 5-minute reading into 2 

groups, normal blood glucose (Cn) or hypoglycemia (Chy). Features obtained from HRV and 

CGM, prior to each blood glucose measurement, were used to assess if that point in time was 

below the hypoglycemic threshold of 3.9 mmol/L. As a result, a total of 903 samples were 

evaluated using their proposed algorithm with a sensitivity of 79% and an accuracy of 99%. The 

algorithm was able to predict 16/16 hypoglycemic events with no false positives and had a lead 

time of 22 minutes relatively to the CGM device. 

These studies indicate that ECG could be utilized in a free-living environment to assist 

patients in detecting hypoglycemic episodes. Upgraded equipment and optimized algorithms could 

make certain methods more precise and simpler to deploy in practice. Although T1D patients might 

not be the first to benefit from these technological approaches, other non-diabetic patients suffering 

from hypoglycemic episodes arising from other conditions, such as endocrine, hepatic, or cardiac 

disorders, etc. could be positively impacted by these ECG-based algorithms. 

2.4 Open issues and outcomes 

In the context of diabetic hypoglycemia risk management, several hypoglycemia/blood 

glucose level prediction approaches were assessed in this review. Each of these approaches 

included different techniques and tools that were used for the blood glucose level prediction. In 

general, hypoglycemia prediction algorithms can offer a valuable alternative to T1D patients, in 

order to prevent possible episodes, since there are many patients that suffer from asymptomatic 

hypoglycemic episodes. 

Several of the approaches reviewed have already been incorporated in commercially 

available systems, i.e. the approach proposed by Bertachi et al. [54] using a FreeStyle Libre CGM 

device and a Fitbit Alta HR physical activity monitor, and have been shown to effectively decrease 

hypoglycemic episodes. A common key aspect in several of the evaluated studies is that the 

inclusion of carbohydrate consumption data, insulin dosages, and/or exercise data can enhance 

the accuracy of the algorithm, in the context of a defined (medium or long term) forecast horizon. 
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Furthermore, integrating various models could allow for several stages of hypoglycemia alerts, 

each of which could be tailored for a unique scenario, such as a post-meal, post-activity, or during 

sleep prediction [66]. 

It is evident that CGM can improve the glucose control in diabetes [67] and can provide 

real time data for the creation of predictive models. The challenge is to use mainstream noninvasive 

sensors such as wristbands and smartwatches in order to build reliable predictive models for hypo- 

and hyper- glycemia. Clinical studies of such algorithms are projected to rise in the future, as 

prediction approaches are integrated into CGM systems and other devices. Furthermore, the 

evolution of deep learning algorithms that are trained using streaming data already provide 

promising results for glycose prediction [59]. The advantages for diabetic patients are evident, as 

they are empowered to make preventative decisions before their blood glucose levels reach critical 

points [68]. Nevertheless, like with any new equipment, education will be required, in order to 

avoid the negative side effects of overreactions. 

Among the most encouraging techniques is the use of ECG in the process of detecting 

hypoglycemia. Several ECG products seem to be available nowadays and are often used to treat 

people suffering from cardiac conditions [69]. As a result, there is the anticipation that sensor 

companies will be able to add new functionality, such as hypoglycemia detection, soon. The main 

motivation for such predictive models is that CGM products have a limited lifespan and 

consumable expenses may make them unaffordable for life-long tracking. 

Nevertheless, there can be significant variations in accuracy when predicting blood 

glucose. It highly depends on the type of diabetes, the patient’s lifestyle [70], as well as on the 

existence of any other chronic disease. Some of the underlying mechanisms, such as age, gender, 

intestinal microbiota, psychological factors, and genetic traits, may also contribute to variations in 

the outcomes [71]. 

In this systematic review we included a wide range of hypoglycemia prediction 

algorithms and systems, some of which utilized specific medical and/or activity devices. Our 

research was conducted specifically on T1D patients, who have the greatest need for this kind of 

prediction algorithm, as they are more complex due to their high sensitivity to exogenous factors 

and their increased blood glucose variability. The main outcome of our review is that the evolution 

of ML and DL algorithms already provide promising results for glycose prediction. The 
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advantages for diabetic patients are evident, as they are empowered to make preventative decisions 

before their blood glucose levels reach critical points. 

Many studies indicate that ECG could be utilized in a free-living environment to assist 

patients in detecting hypoglycemic episodes. Upgraded equipment and optimized algorithms could 

make certain methods more precise and simpler to deploy in practice. Although T1D patients might 

not be the first to benefit from these technological approaches, non-diabetic patients suffering from 

hypoglycemic episodes arising from other conditions, such as endocrine, hepatic, or cardiac 

disorders, etc. could be positively impacted from ECG-based algorithms. 

Nevertheless, these approaches cannot be recommended to patients on their own, they 

must be supported by a comprehensive plan, to be effective for supporting medical care. 

Specifically, prior to deploying the right equipment or technology to aid a diabetic patient, 

education and medication management are required to decrease the probability of developing 

hypoglycemia. 
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3 Methodological Approaches for the Development of Blood 

Glucose Prediction Models 

Generally, ML is an aspect of the rapidly rising discipline of data science 

and concentrates on the use of structured data and algorithms to emulate the human learning 

process, while progressively enhancing its accuracy [72]. Algorithms are trained to generate 

classifications/predictions using statistical approaches, revealing valuable information in data 

mining initiatives. This information is then utilized to drive decision-making in applications and 

enterprises, with the goal of influencing important key performance indicators [72]. Through 

learning and extracting patterns in data, ML enables intelligent systems to develop pertinent 

models, while these models can establish mappings from the input data interpretation to the 

rendition of the output data [73]. The performance of traditional machine learning techniques, such 

as logistic regression, k-nearest neighbors [74], and support vector regression [75], is largely 

dependent on the data rendition. Predominantly, the information contained in the data rendition 

(the features) are constructed using previous knowledge and statistical features (such as mean, 

standard deviation, variance, etc.) [76], principal component analysis (PCA) [77], or linear 

discriminant analysis [78]. 

3.1 Computational Models for Blood Glucose Prediction

There are numerous computational models that can be utilized to forecast blood glucose 

levels in patients with T1D. Several of the most prominent computational models for blood 

glucose prediction are described in this section [22][59][73][75][79]. 

3.1.1 Autoregressive Model  

Autoregressive models, in general, work on the assumption that previous values have an 

impact on the current values. Therefore, an autoregressive model is a regression model that 

predicts the future value based on its own prior values. For instance, we could utilize the last three 

blood glucose measurements to forecast the glucose concentration in a period of 60 minutes [80] 

through the use of a weighted sum formula (1), as following: 

𝑦60 = 𝑎 ∙ 𝑥−30 + 𝑏 ∙ 𝑥−15 + 𝑐 ∙ 𝑥0 (1) 
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In the above formula, 𝑦𝑡 represents the forecasted blood glucose and 𝑥𝑡 represents the 

previous blood glucose measurement, each at time 𝑡. The best parameters for 𝑎, 𝑏 and 𝑐 can be 

identified, through error reduction among the current and the forecasted blood glucose values for 

all the accessible points of data. The number of past values, used as an input to the autoregressive 

model, is a crucial decision, while training the model. In general, the most recent known value is 

strongly correlated with the value that must be forecasted, and this interdependence declines as 

values are pushed further back in time. This process indicates that the performance advantages 

decrease, the more past values are provided as supplementary input. 

3.1.2 Support Vector Regression  

Support Vector Regression (SVR) is based on the same premise as Support Vector 

Machines (SVM), but it is used to solve regression problems. In general, SVM is a classification 

model that uses the maximum potential margin between the support vectors and a hyperplane 

(Figure 3.1), in order to separate two classes. 

 

Figure 3.1 In the graphic9, H2 and H3 are two acceptable linear separations between the two 

classes. H1 is not a good separation; it classifies 5 instances of the black class as white. H3 is the 

optimal separation because the margin between the line and the two classes is maximum. 

 

 

 

9 Source: https://nl.wikipedia.org/wiki/Support_vector_machine# 
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While SVR is similar to SVM, it is a regression algorithm, therefore it can be used to 

for continuous values rather than classification. This regression algorithm allows for the 

determination of how much error is permissible in the model and proceeds to fit the data with an 

appropriate hyperplane or line (depends on the dimensions).  

In order to handle data that is not inherently linearly separable, a kernel function can 

be employed to transform the data into polar coordinates. In that way, data is linearly separable in 

the form of polar coordinates (Figure 3.2). 

 

Figure 3.2 Transformation of non-linearly separable data into polar coordinates10 

The same concept applies to the operation of SVR, with the main difference being that it 

generates a real number, rather than a binary classification. In addition, a kernel function is 

employed and the data instead of being linearly separable, is converted into linearly predictable 

[81][82] (Figure 3.3). 

 

Figure 3.3 Data is linearly predictable through the use of a kernel function [82] 

 

10 Source: https://www.ic.unicamp.br/~rocha/teaching/2011s2/mc906/aulas/lect3.pdf 
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Then, the cost is minimized through the following formula: 

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

 (2) 

In the above equation (2), 𝑤 represents the linear function's weights and 𝜉 represents the 

distance between the error margin and the points outside of it [−∈, +∈]11. Furthermore, there is a 

hyperparameter that defines how much weight will be from the algorithm on the cost minimization 

and it is represented with 𝐶. 

3.1.3 Artificial Neural Networks 

An Artificial Neural Network (ANN) is a computational model that is approximately based 

on how neurons operate in biological brain functioning. When neuron dendrites send signals to the 

neuron and these signals meet a specific threshold, then a signal fires through the neuron's axon, 

branching into dendrites of several neurons (Figure 3.4). Generally, neurons can learn by adjusting 

the weight they assign to other neurons' various inputs. 

 

Figure 3.4 An approximate illustration of a biological neuron 

In the mathematical model, there are the inputs of each artificial neuron and their weights, 

added with the bias. Then, there is the application of a non-linearity (or activation) function, 

which is applied to this value, and is equivalent to a predetermined threshold for the neuron 

 

11 Source: https://www.saedsayad.com/support_vector_machine_reg.htm 
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firing (Figure 3.5). Overall, optimizing these weights and biases for each neuron is what training 

an artificial neural network implies. 

 

Figure 3.5 The mathematical model of a neuron 

3.1.3.1 Regression Neural Network 

 A neural network is commonly represented as a graph (Figure 3.6), with each node 

indicating a neuron and the interactions between neurons expressing the weights. In Figure 3.6, 

there is a graph representation of a regular neural network. The fully-connected layer is the most 

pervasive layer type in these types of neural networks, with neurons in adjacent layers being fully 

pairwise associated, while neurons within a single layer do not share any type of connectivity. 

 

Figure 3.6 Graph of a 2-layer neural network, one hidden layer of 3 neurons and one output 

layer with 2 neurons, and three inputs12 

 

12 Source: https://www.wikiwand.com/simple/Deep_learning 
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Since neural networks are adaptable, they can be utilized for classification, as well as 

regression. In general, regression facilitates the correlation between a dependent and an 

independent variable (or more than one). In order for the regression model to perform successfully, 

the regression equation needs to fairly match the data, while this is a rare case for most of the 

regression models. Despite neural networks being complicated and computationally costly, 

they can dynamically select the optimal form of regression, and if that is insufficient, 

supplementary hidden layers can be included to enhance the prediction. Nowadays, neural 

networks are being studied extensively in the field of diabetes management [73]. Nevertheless, in 

the literature, neural networks are typically developed with fewer than three layers, limiting their 

learning potential due to the complexity of the model [73]. 

A specific output can be derived through feeding input data into the neural network, from 

the left side to the right side, which can be evaluated and contrasted to the expected output through 

a cost function, such as Mean Squared Error (MSE). MSE is the sum of the squared discrepancies 

between the prediction and the true value, while the result is a single number that represents the 

cost. The mathematical formula of MSE is presented as following: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑥𝑖 − 𝑥̂𝑖)

2

𝑁

𝑖=1

 (3) 

In the above equation, 𝑁  is the number of data points, while 𝑥𝑖 denotes the true value of 

data point 𝑖. In addition, 
1

𝑁
∑  𝑁

𝑖=1 is the mean and 𝑥̂𝑖 is the predicted value of data point 𝑖. The 

evaluation of this cost derivative is performed considering the weights and biases of the model, in 

order to determine the way that these parameters should change to reduce the cost. Model 

improvements can be accomplished, through continuously feeding series of data into the network 

and adjusting the weights and biases, depending on the estimated derivatives. Overfitting is a 

typical issue with neural networks, which indicates that the network has become overly acclimated 

to the noise in the training data, and as a result, it will not perform well on new data. Weight 

regularization is one technique to overcome this problem that involves assigning a cost to the 

weight parameters, prompting the network to maintain lower weights. 

3.1.3.2 Recurrent Neural Network 



44 

 

 A further concern with regular ANNs is that they are unsuitable for use in sequential data. 

For example, assuming the goal is to use neural networks to predict the upcoming word in a phrase, 

this process would require knowledge of the previous words. In this case, the previous five words 

in the phrase can be fed to the network as input and observe whether the network can predict the 

next word. Nevertheless, it is likely that more information from several past phrases might be 

needed to figure out the following word. A recurrent neural network (RNN) architecture to tackle 

this problem. In the structure of the RNN presented in Figure 3.7, the neurons in the hidden 

layer can obtain further input from their prior state, which is also linked by weights. These weights 

are learnt by backward propagation of errors (supervised learning algorithm). In this manner, 

knowledge about previous inputs can be retained, while feeding data into the neural network for 

one time-step. 

 

Figure 3.7 The structure of an RNN is displayed as several copies of the network, in which 

every copy is passing a message to the following13  

The vanishing gradient problem is a frequent issue with RNNs, which can make the 

learning of large data sequences difficult. The cost function’s gradient is computed in the RNN, 

based on a previous input, and it holds information utilized in the RNN weights update (). As the 

computing takes place on inputs from many time-steps ago, the gradient vanishes and the weight 

updates are minimized, implying that no actual learning occurs. This difficulty of long-term 

dependencies learning is due to the large number of calculation steps between a preceding input 

and the output. 

 

13 Source: https://towardsdatascience.com/introduction-to-recurrent-neural-network-27202c3945f3 
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Figure 3.8 The problem of vanishing gradients in RNNs14 

3.1.3.2.1 Long Short-Term Memory (LSTM) Network 

To address the prementioned problem of vanishing gradients and improve the learning 

of long-term dependencies in RNNs, Hochreiter et al. [83] presented an artificial recurrent network 

architecture called Long Short-Term Memory (LSTM). 

The basic architecture of an LSTM network extends the conventional sequential RNN by 

adding three gates to the hidden layer: a) the input gate, b) the forget gate and c) the output gate, 

as presented in Figure 3.9.  They are essentially just additional weight parameters that the network 

utilizes to decide what information to discard and what to preserve. Specifically, these gates 

regulate what information is accepted in the input gate, what information is discarded based on 

low importance (forget gate), and what information is allowed to influence the output at the current 

time-step (output gate). 

 

14 Source: https://towardsdatascience.com/introduction-to-recurrent-neural-network-27202c3945f3 
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Figure 3.9 LSTM network architecture with the three additional gates (input, forget and 

output)15 

In summary, LSTM is a type of recurrent network that can learn long-term dependencies. 

In comparison to RNNs, an LSTM has the privilege of being able to retain information stored in 

the memory for a longer time period. The learning process occurs through LSTM cells, as they 

have memory that can preserve past time-step data. In addition, this type of recurrent network is 

an appropriate solution for the classification, analysis, and prediction processes for time-series 

with uncertain time lags. Finally, through LSTMs learning process, models can be trained with 

hundreds of time-step series, which an RNN typically has difficulty coping with. 

 

15 Source: https://builtin.com/data-science/recurrent-neural-networks-and-lstm 
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4 Implementation 

In this thesis, we developed a deep learning strategy for hypoglycemia prediction in T1D 

patients, based on a multi-layer convolutional recurrent neural network (CRNN) architecture 

established and reported in [73]. Furthermore, a supporting T1D management mobile application, 

named “T1D Diary”, was also developed as a future patient data collection method and diabetes 

management system, which is presented in chapter 4.2. 

Multi-step predictions, a regression model using blood glucose level data for each patient 

every 5 minutes, and the incorporation of other training data like basal insulin, bolus insulin, and 

heart rate are all part of our proposed hypoglycemia prediction model. The use of a CRNN 

architecture (Figure 4.1) serves two purposes. First, convolutional layers perform as filters, 

learning to recognize and forecast the features of interest in an automatic way. They are also 

effective for evaluating time series that do not require a lot of signal processing. Second, recurrent 

neural networks (RNNs) are widely known for their ability to learn long-term correlations among 

various values [60]. For example, the neural network needs to be able to detect a relationship 

between the current insulin ingestion and a shift in glucose levels in the near term. The objective 

of this thesis is to forecast blood glucose levels in T1D patients and highlight the 

possible hypoglycemic incidents, in order to avoid them, as well as other possibly severe health 

consequences that could occur as a result of these events. Thus, we present an approach that is able 

to forecast hypoglycemic incidents in T1D patients, while MAE and RMSE metrics were used for 

the evaluation and accuracy measurement of the model. 

 

Figure 4.1 Convolutional Recurrent Neural Network (CRNN) architecture 
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4.1 Dataset Description 

For the purpose of this thesis a dataset was used, namely, OhioT1DM (2018) [84]. The 

OhioT1DM dataset contains data from 6 T1D patients with the following identification numbers 

(IDs): 559, 563, 570, 575, 588, and 591, who were monitored for 8 weeks. All of the data patients 

were between the ages of 40-60 years old and there were two males and four females in the group. 

Throughout the parse of the 8-week period, all of them wore a CGM and an insulin pump. 

Specifically, they used Medtronic 530G insulin pumps and Medtronic Enlite CGM sensors. They 

also contributed physiological data through the Basis Peak physical activity monitor, as well as 

blood glucose, insulin, and other life event data via a tailored smartphone application. 

OhioT1DM dataset consists of 5-minute aggregations of CGM blood glucose levels, basal 

and bolus insulin units, meal’s caloric intake, exercise, sleep, work, stress, and illness. 

Furthermore, it contains physiological data from various physical activity trackers, such as heart 

rate every 5-minutes, galvanic skin response (GSR), skin (thermal homeostasis) and air 

temperature, as well as step count. The prementioned data were all formed into extensible markup 

language (XML) files, divided into testing and training data for each patient’s data, resulting to 

two files for each participant (12 in total). 

The training and testing examples for each participant are presented in Table 4.1. 

Since OhioT1DM data are obtained from various devices and some of the data are manually 

reported by patients, they tend to be unsynchronized, while in the data collected from the CGM 

blood glucose sensor and the Basis Peak activity tracker there are cases of missing data. Every 

XML file in OhioT1DM dataset contains specific data fields [84], presented in Table 4.2. 

Table 4.1 OhioT1DM test and training examples for each patient 

Patient ID Testing Examples Training Examples 

559 2514 10796 

563 2570 12124 

570 2745 10982 

575 2590 11866 

588 2791 12640 

591 2760 10847 
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Table 4.2 Data fields contained in the OhioT1DM dataset 

Field Description 

patient The patient's identification number and their insulin brand. 

glucose level Blood glucose data from CGM, taken every 5 minutes. 

fingerstick 
Blood glucose measurements collected by the individual 

through finger-sticks. 

basal 

The basal rate at which basal insulin is administered on a 

continual basis, and starts when the period of time is defined, 

while it continues until another basal rate is specified. 

temp basal 
A temporary basal insulin rate that takes precedence over the 

patient's regular rate. 

bolus 
Type of insulin that is administered to patients, usually before 

a meal or when the patient's glucose levels are too high. 

meal 
The patient's carbohydrate estimation for the meal, as well as 

the meal's self-reported timing. 

sleep 
The patient's subjective rating of sleep quality and times: 1 for 

poor, 2 for fair, and 3 for good. 

work 

Times of getting to and from work, as stated by the employee. 

On a scale of 1 to 10, with 10 being the most physically active, 

intensity is the patient's subjective rating of physical activity. 

stressors Self-reported stress periods. 

hypo event Time of the hypoglycemic episode. 

illness Time of self-reported illness. 

exercise 

Self-reported workout time and duration in minutes. On a scale 

of 1 to 10, with 10 being the most physically active, intensity 

is the patient's subjective rating of physical activity. 

basis heartrate 5-minute heart rate measurements. 

basis gsr 5-minute galvanic skin response measurements. 

basis skin temperature 
5-minute measurements of skin temperature in degrees 

Fahrenheit. 

basis air temperature 
The air temperature accumulated in degrees Fahrenheit, every 

5 minutes. 

basis steps The total number of steps tallied every 5 minutes. 
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basis sleep 
The times that Basis Peak fitness band reported that the 

individual was sleeping, as well as its sleep quality estimate. 

Furthermore, we extended the aforementioned dataset, by including an additional T1D 

patient’s data (blood glucose level, bolus and basal insulin and heart rate) collected over a one-

week period under free-living conditions. For the collection of the patient data, we used Medtronic 

Minimed Envision Pro blinded CGM system and a physical activity monitor, Fitbit Sense, tracking 

the patient’s heart rate.  
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Figure 4.2 Medtronic Envision Pro blinded CGM system patient data 

The CGM system included an Envision glucose sensor, an Envision recorder, and a one-

press serter, used in the course of the data collection week. Through this blinded CGM evaluation, 

the patient self-reported periodic finger-sticks, as well as insulin units (basal and bolus) and meal 

information (Figure 4.2). The heart rate data were measured throughout the data collection week, 

and a daily report was available at the end of it, along with weekly heart rate variability (HRV) 

and resting heart rate (RHR) averages, as seen in Figure 4.3 and Figure 4.4. 

 

Figure 4.3 Average weekly HRV (ms) of the 

additional patient 

 

Figure 4.4 Average weekly RHR (bpm) of the 

additional patient

The previously mentioned data were reported by the patient through Medtronic’s Envision 

Pro mobile application and the Fitbit mobile application. Specifically, the data acquired from 

Envision Pro mobile application involved the time and day of the event, 5-minute aggregations of 

CGM blood glucose measurements, step count from the CGM device, basal and bolus insulin 

information (time of the day and units), self-monitoring glucose levels, as well as meal’s 

carbohydrate count (g) (Figure 4.5). In this way, the T1D patient kept track of every action 



52 

 

throughout the day, even though the CGM system that was used was blinded and didn’t offer 

her/his blood glucose information. The specific blinded CGM system was particularly chosen, in 

order to assure that we will have a clear view of the patient’s hypoglycemic events, without any 

distractions. On the other hand, Fitbit mobile application provided real-time heart rate data, as well 

as resting heart rate, blood oxygen saturation (SpO2) and daily averages of HRV. Specifically, the 

heart rate data acquired from Fitbit were then combined with Medtronic’s CGM readings into 5-

minute aggregations, based on the time and date of the events, in order to follow the data structure 

of the OhioT1DM dataset.  

 

Figure 4.5 Self-reported patient data in Envision Pro mobile application 
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Final patient data added to the pre-existing OhioT1DM dataset included the following 

fields: the patient's 5-minute CGM blood glucose readings, basal insulin doses, insulin bolus doses, 

and heart rate measurements every 5 minutes (paired with the time and date of the CGM reading). 

4.2 T1D Management Mobile Application  

Nowadays, smartphone technologies are fast evolving, particularly in terms of connection, 

information processing, architecture, functionality, and networking. At the same time, diabetes 

monitoring and treatment technologies are also quickly expanding, and can interact with relevant 

applications. Diabetes, and especially T1D, is highly suitable for smartphone-based assistance due 

to the difficulties associated with the overall disease management [85]. As a result, various 

diabetes management applications strive to deliver patient data parameters, such as carbohydrate 

consumption, exercise, blood glucose monitoring, which can be evaluated and utilized by the 

application for patient decision guidance. 

A supporting T1D management mobile application, named “T1D Diary”, was also 

developed in this thesis as a future patient data collection method and diabetes management 

system. In this mobile application the user can keep records of T1D-related parameters including 

finger-stick glucose measurements, basal and bolus insulin doses, carbohydrates count, exercise, 

and mood. Self-monitoring blood glucose measurements are registered in mg/dL units, insulin 

doses are recorded in units/mL and caloric intake is calculated in carbohydrate grams (g). 

The aforementioned smartphone application was built using React Native16 and Firebase 

Realtime database17. React Native is based on the React framework and provides an open-source 

mobile application framework that enables cross-platform development, as well as native platform 

capabilities18. On the other hand, the Firebase Realtime Database is a cloud-based database that 

stores data in JSON format. In addition, the database instance is synchronized in real-time across 

all the connected clients and is updated with the most recent data. With every user data submission, 

the collected data and the questionnaire responses are all forwarded to the personalized space in 

 

16 Source: https://reactnative.dev/ 

17 Source: https://firebase.google.com/docs/database 

18 Source: https://github.com/facebook/react-native 
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the Firebase Realtime database. Data are stored based on their type, and the date and time of 

submission, as seen in Figure 4.6. 

 

Figure 4.6 T1D Diary - Realtime Database structure 

In terms of the user interface (UI), “T1D Diary” is easy to access, understand and use. The 

main functionalities and components of the application are maintained in a simple form to avoid 

adding unnecessary complexity that could detract from the user experience (UX). Specifically, the 

developed mobile application includes several navigation, notification, and database 

communication components (Figure 4.7), such as the home screen, the login and the sign-up 

screen, and more. Figure 4.8 presents the main menu items of the application, which are the patient 

profile, the patient records (glucose and insulin, activity/exercise, carbohydrates) and a T1D-

related questionnaire. 
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Figure 4.7 T1D Diary Components 

 

Figure 4.8 T1D Diary menu items and notifications 

“T1D Diary” incorporates an appropriate T1D-related questionnaire, which was used to 

calculate the patients’ diabetes distress once a week (Figure 4.9 and Figure 4.10). The particular 

questionnaire was extracted from Behavioral Diabetes Institute (BDI)19 and measures Diabetes 

Distress Scales for adults with T1D (T1-DDS). T1-DDS is a clinical tool and useful outcome 

 

19 Source: https://behavioraldiabetes.org/ 
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measure for studies, that was published in 2015. This self-report scale involves 28 questions 

concerning seven distress dimensions. Particularly, these dimensions are powerlessness, 

management distress, hypoglycemia-related distress, negative social attitudes, eating distress, 

physician distress, and friends/family distress [41]. It was first published in 2015 and has swiftly 

gained popularity as a clinical tool for initiating talks with T1D patients as well as a key outcome 

measure in upcoming studies. In addition, a reminder is established for the application to notify 

the patient that the questionnaire is available. 

 

Figure 4.9 A sample of the questions contained in the T1-DDS questionnaire20 concerning the 

patient’s level of distress (1) 

 

20 Source: https://behavioraldiabetes.org/scales-and-measures/#1448434304201-ce67e63c-8e90 
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Figure 4.10 A sample of the questions contained in the T1-DDS questionnaire21 concerning the 

patient’s level of distress (2) 

4.3 Hypoglycemia Prediction Model 

4.3.1 Data Importation and Preprocessing 

Importing data entails importing, integrating, and aligning values from several sources 

throughout the same time frame. Patient glucose levels, basal and bolus insulin, and heart rate were 

chosen as features. These features must all have sampling values carried over at the same moment 

during the preprocessing step. This necessitates the employment of subsampling or oversampling 

techniques, as well as the definition of imputing methods as a consequence. To resample the time 

series at a frequency of 5 minutes, linear interpolation is employed on the blood glucose levels 

in the training dataset. Due to their relatively deficient nature, the insulin (basal and bolus) and 

heart rate features might be substituted with null values, when this is necessary. A summary of the 

series of preprocessing steps followed at this stage is presented in Table 4.3. 

Table 4.3 A summary of the steps followed in the preprocessing stage 

Preprocessing Steps 

i. Save the timestamps indexes where the blood glucose levels are available. 

 

21 Source: https://behavioraldiabetes.org/scales-and-measures/#1448434304201-ce67e63c-8e90 
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ii. Resample the features’ timeseries to a 1-second delta time. 

iii. Use the most recent available data, to fill the missing data in advance. 

iv. Use 0 to fill in the remaining missing data. 

v. Resample the features to a 5-second time delta. 

vi. In a window comprising the preceding 2-hours’ worth of data values, we use a 1D Gaussian 

smoothing filter with a smoothing degree of 𝑠𝑡𝑑 = 1 (standard deviation) on every feature. 

The stored timestamps from the first preprocessing step (i) are then used to obtain the 

outcomes at the same points in time. The missing data are imputed using linear interpolation during 

the training phase and this increases the number of data points on which the model may be trained. 

Nevertheless, linear interpolation is not suitable for large gaps in missing data, and it is not utilized 

during testing since it could result in a data peek. As a result, future data would contaminate the 

forecasts. Equation (4) is used to calculate the target values for the CRNN model. 

𝑥𝑡+𝐿 = 𝑏𝑡+𝐿 − 𝑏𝑡, 𝑓𝑜𝑟 𝐿 = 1,2, … ,12 (4) 

In the above equation, 𝑏𝑡 is the blood glucose level at time 𝑡, and 𝐿 is the lag value in time-

steps for the horizon. Furthermore, 𝑥 is the label to predict (the differentiated blood glucose value). 

The proposed model does not forecast the blood glucose level directly, but it calculates the 

difference from the previous established value. For example, if the current blood glucose level is 

95 mg/dL and in the following 30-minutes the blood glucose level drops at 65 mg/dL, then the 

label for a 30-minute forecast horizon at the current time would be -30 mg/dL. The following 

equation (5) yields the forecasted blood glucose level: 

𝑏̂𝑡+𝐿 = 𝑏𝑡 + 𝑥̂𝑡+𝐿 , 𝑓𝑜𝑟 𝐿 = 1,2, … ,12 (5) 

In the above equation 𝑏𝑡 is the blood glucose value at time 𝑡 and 𝑏̂𝑡+𝐿 is the forecasted 

blood glucose level at time 𝑡 + 𝐿. In addition, 𝑥 is the label to predict, 𝐿 is the lag value in time-

steps and 𝑥̂𝑡+𝐿 is the predicted blood glucose level difference at time 𝑡 with lag 𝐿. 

4.3.2 Implementation of the CRNN Prediction Model 

4.3.2.1 Training, testing, and tuning on selected features 

After preprocessing, the multi-dimensional timeseries observed at successive time points 

(blood glucose, basal and bolus insulin, and heart rate data) are supplied to the CRNN for training. 
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The proposed CRNN model is trained end-to-end (E2E)22 and consists of two basic layers. The 

first layer is a multilayer convolutional neural network that uses convolution and pooling to extract 

data features. The second one, is an RNN layer including LSTM cells and fully linked layers. A 

1D Gaussian kernel filter is employed in the convolutional layer to accomplish temporal 

convolution, while pooling layers are used to reduce the set of features. Considering that LSTMs 

perform well in predicting timeseries with extensive temporal dependencies, a variation of it is 

used, and the fully linked layers produce a regression output as the end result. 

The CRNN model is implemented using the open-source software package 

TensorFlow23. TensorFlow is an open-source end-to-end machine learning platform that has a 

broad and versatile set of tools, libraries, and community resources that allow state-of-the-art 

advances in machine learning and a quick deployment of machine learning applications. The 

CRNN only outputs the values 𝑥̂𝑡 + 𝐿, which is essential to keep in mind. The model can provide 

predictions for each 5-minutes forecast horizon up to 1 hour (5, 10, 15, 20, ..., 55, 60-minutes). 

This ability may provide useful information to T1D patients, allowing them to better manage their 

blood glucose levels. The implemented CRNN's architecture is represented in Figure 4.11. 

 

Figure 4.11 A multi-layer CRNN composed of convolutional layers, pooling layers, an RNN 

network and a dense neural network based on [73] 

 

22 Source: http://proceedings.mlr.press/v77/glasmachers17a/glasmachers17a.pdf 

23 https://www.tensorflow.org/ 
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The preprocessing output contains the four main patient data: i) blood glucose data from 

CGM, ii) heart rate from physical activity monitors, and iii) manually registered basal and bolus 

insulin doses and time of injection. The algorithm's input is a timeseries of signals from these data, 

which is given to the CNN to identify and retrieve relational features. The CNN is comprised of 

three convolutional layers, with the feature map acquired from the preceding convolutional layer 

downsampled using max pooling (signal sampling at a lower rate). The pooling layers' objective 

is to progressively decrease the spatial dimension, while only including the highest values in the 

pooling window. In order to reduce the size of the representation and the computation, it is a typical 

move to insert a pooling layer in between subsequent convolutional layers, which can also act as 

a shield against overfitting. 

Backpropagation (BP) and the stochastic gradient descent method (SGD) are used to train 

the CNN during the training stage. Generally, BP calculates the loss function's gradient with 

respect to the network's weights, whereas SGD is an iterative approach for optimizing an objective 

function with sufficient smoothness attributes. In this case, the initiatory weights of the CNN are 

randomly selected. Then, the final convolutional layer feeds directly into the following component, 

which is the recurrent layer. 

An RNN layer is used to represent the relationships over time, while a dense neural network 

is employed as the final layer for the regression of the intended target. The CNN output is fed into 

the RNN, as multi-dimensional timeseries data that represent the concatenation of the initial 

signals' features. Then, the RNN's output is a 30-minute/60-minute prediction of the patient's blood 

glucose level, whereas hidden states are inherited and updated continually within the RNN 

component. Considering that every individual glucose reaction is distinctive, then a single-

population approach does not appear to be appropriate. Therefore, one model is trained for every 

patient. The detailed architecture of the model is presented in Table 4.4. 

Table 4.4 CRNN model architecture 

Neural Network Layers 
Output Shape (batch_size, 

downsampled_steps, features) 

Conv1D (batch_size, 24, 8) 

MaxPooling1D (batch_size, 12, 8) 

Conv1D (batch_size, 12,16) 

MaxPooling1D (batch_size, 6, 16) 
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Conv1D (batch_size, 6, 32) 

MaxPooling1D (batch_size, 3, 32) 

LSTM (batch_size, 64) 

Dense (batch_size, 256) 

Dense (batch_size, 32) 

Dense (batch_size, 12) 

A Root Mean Square Propagation (RMSProp) optimizer is used to pretrain the model over 

1000 epochs, with a 1024 batch size. In neural network training, RMSprop is a gradient-based 

optimization strategy, which normally keeps a moving average of gradient squares and divides 

gradient by the root of that average [86]. This normalization equalizes the step size (momentum), 

lowering it for high gradients to prevent exploding and raising it for minor gradients to avoid 

disappearing. The RMSprop's update rule is described by the following equation24: 

𝑣𝑑𝑤 = 𝛽 ∙ 𝑣𝑑𝑤 + (1 − 𝛽) ∙ 𝑑𝑤2 

𝑣𝑑𝑏 = 𝛽 ∙ 𝑣𝑑𝑤 + (1 − 𝛽) ∙ 𝑑𝑏2 

𝑊 = 𝑊 − 𝑎 ∙
𝑑𝑤

√𝑣𝑑𝑤 + 𝜀
 

𝑏 = 𝑏 − 𝛼 ∙
𝑑𝑏

√𝑣𝑑𝑏 + 𝜀
 

(6) 

When the model does not progress after three epochs, the learning rate is set to 0.001 and 

then reduced by a factor of 0.1. Generally, the training is more efficient and accurate with a lower 

learning rate, but optimization can take a long time since the steps towards the loss function's 

minimum are very small. To regularize the model, early stopping is utilized in a similar way with 

a 50 epochs patience. Subsequently, the weights of the last model with the least validation loss are 

rehabilitated. The pretrained model is loaded and trained like the pretraining step for each patient’s 

data in the final dataset (containing OhioT1DM dataset and one supplementary patient data). The 

main difference is that the learning rate is decreased with a 15 epochs patience and each patient's 

model is saved separately. 

 

24 Source: https://medium.com/analytics-vidhya/a-complete-guide-to-adam-and-rmsprop-optimizer-75f4502d83be 
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4.3.3 Model Evaluation 

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are commonly used 

for evaluation, in order to assess the difference between predicted values and actual values. RMSE 

is a quadratic evaluation method that determines the error's average size [87][88]. The difference 

between the predicted and the analogous true values are squared and then averaged over the 

sample, and then, the average's square root is calculated. Because the errors are squared before 

being averaged, the RMSE gives large emphasis to errors with great significance. As a result, the 

RMSE scoring rule is mostly appropriate when significant errors are not desired. On the other 

hand, MAE is a linear scoring rule that assesses the mean magnitude of errors in a group of 

predictions, without taking into consideration their direction, while it assesses the precision of 

continuous data [87][88]. Specifically, the average of the square of the difference between the true 

and forecasted data values is used in the MAE calculation process, and it is a suitable method to 

evaluate the performance of a model [87]. 

MAE and RMSE can be combined to assess the error variation in a series of predictions. 

RMSE scores are typically greater than or equal to MAE, while when they are equal then all the 

errors have the same magnitude. Otherwise, the larger the difference between the two scores, the 

larger the variance in the errors in the sample. In general, the lower the scores, the more efficient 

the model. 

Specifically, when it comes to T1D hypoglycemia prediction, the main benefit for a patient 

is the ability to make decisions at any moment, based on the forecast of future values, perhaps 

avoiding hypoglycemic occurrences while using the least intrusive means possible. In our model’s 

evaluation process, RMSE and MAE scores were calculated for all of the patients using the 

following equations [87][88]: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥̂𝑖 − 𝑥𝑖)2

𝑛

𝑖=1

 (7) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑥̂𝑖 − 𝑥𝑖|

𝑛

𝑖=1

 (8) 
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Where 𝑥̂𝑖 are the predicted variable values, 𝑥𝑖 refers to the observations (true values) and 

𝑛 is the number of the observations/rows. 

4.3.4 Results 

From the evaluation process of our model, we notice that the smaller the prediction 

window is, such as 5-minutes and 15-minutes, the closer the prediction curves come to the actual 

blood glucose level values and to the identification of most of the hypoglycemic episodes.  

 

Figure 4.12 Actual and 5-minute predicted hypoglycemic events noted in red (Patient 575) 
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For example, for patient 575, we observe that the 5-minute prediction window leads to the 

detection of most of the hypoglycemic episodes (<70 mg / dL incidents marked with red dots), as 

seen in in Figure 4.12. In this case, there are small differences in the predicted blood glucose values 

compared to the actual blood glucose values (Table 4.5). 

Table 4.5 Comparison of actual and 5-minute predicted hypoglycemia values over a 2-hours 

period (Patient 575) 

Time Actual blood glucose Predicted blood glucose 

 04:30 67 67.67033 

 04:35 66 66.64014 

 04:40 65 65.65437 

 04:45 65 64.66782 

 04:50 65 64.75912 

 04:55 64 64.9151 

 05:00 62 64.02937 

 05:05 60 62.05135 

 05:10 59 59.99266 

 05:15 59 58.9657 

 05:20 59 59.10684 

 05:25 58 59.36786 

 05:30 58 58.62356 

 05:35 57 58.9336 

 05:40 55 58.21251 

 05:45 54 56.31018 

 05:50 54 55.39118 

 05:55 53 55.57805 

 06:00 53 54.73113 

 06:05 54 54.88534 

 06:10 53 56.12573 

 06:15 54 55.24182 

 06:20 56 56.37534 

 06:25 55 58.58047 

 06:30 55 57.64726 
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In addition, in Figure 4.13 where the 15-minute prediction is presented for patient 575, we 

note that many of the actual hypoglycemic episodes were detected and predicted, but with a lower 

accuracy than the 5-minute prediction. The comparison between the actual and the 15-minute 

predicted blood glucose values is presented in Table 4.6. 

 

Figure 4.13 Actual and 15-minute predicted hypoglycemic events noted in red (Patient 575) 
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Table 4.6 Comparison of actual and 15-minute predicted hypoglycemia values over a 2-hours 

period (Patient 575) 

Time Actual blood glucose Predicted blood glucose 

 04:30 67 70.56069 

 04:35 66 69.55949 

 04:40 65 68.69939 

 04:45 65 67.83501 

 04:50 65 67.18814 

 04:55 64 66.73238 

 05:00 62 67.18218 

 05:05 60 67.37998 

 05:10 59 66.30801 

 05:15 59 64.30154 

 05:20 59 62.74737 

 05:25 58 62.47922 

 05:30 58 63.18813 

 05:35 57 64.05988 

 05:40 55 63.87657 

 05:45 54 64.20983 

 05:50 54 63.50606 

 05:55 53 62.07985 

 06:00 53 61.55693 

 06:05 54 62.02432 

 06:10 53 61.65446 

 06:15 54 61.95936 

 06:20 56 63.32908 

 06:25 55 62.89374 

 06:30 55 64.07625 

 

Regarding the blood glucose curves, we can see that there are not many deviations between 

the curves presented in the following plots (Figure 4.14 and Figure 4.15), where we compare the 

actual blood glucose level and the predicted blood glucose level at each time-step. In this case also, 

the prediction of 5-minutes outperforms the 15-minute prediction in accuracy. 
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Figure 4.14 Actual and 5-minute predicted blood glucose levels (Patient 575) 

 

Figure 4.15 Actual and 15-minute predicted blood glucose levels (Patient 575) 

Consequently, we conclude that the smaller the prediction window, the more the actual and 

predicted values agree with each other. Specifically, the 5-minute and 15-minute predictions 

scored an RMSE of 6.37 with a MAE of 3.47 mg/dL, and an RMSE of 14.48 with a MAE of 8.50 

mg/dL, respectively (Table 4.7). On the other hand, as we proceed to larger prediction windows, 

we notice that the deviations between the curves of the actual and the prediction values become 

more frequent and noticeable. 
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Table 4.7 RMSE and MAE (Patient 575) 

Prediction Minutes RMSE Score MAE Score 

5 6.373965 3.478169 

10 11.12169 6.282281 

15 14.48338 8.506673 

20 16.89985 10.34936 

25 18.98019 12.17489 

30 20.25772 13.26722 

35 21.65472 14.44646 

40 22.80271 15.39568 

45 25.36908 17.39454 

50 27.07653 18.5508 

55 29.23947 20.12504 

60 31.30821 21.62753 

Moving forward we will focus on the 30-minute and 60-minute predictions of the CRNN 

model, since the ultimate goal would be to predict hypoglycemia events as soon as they can be 

predicted. The earlier the prediction, the sooner the T1D patient will be able to act on the 

hypoglycemic episode and avoid a potentially more severe condition, such as a stroke, 

unconsciousness, a permanent brain injury or death. As seen in the following figures for patient 

575 (Figure 4.16 and Figure 4.17), the detection rate of hypoglycemic events decreases as the 

prediction window expands. 
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Figure 4.16 Actual and 30-minute predicted blood glucose levels, and hypoglycemic events 

noted in red (Patient 575) 
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Figure 4.17 Actual and 60-minute predicted blood glucose levels, and hypoglycemic events 

noted in red (Patient 575) 
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The main finding is that the inaccuracies for each patient gradually rise over time. As 

previously stated, it is expected that the broader the prediction window, the greater the overall 

inaccuracy. An analysis of all the patients was also undertaken, where it is noteworthy that the 30-

minute curve follows the 60-minute prediction curve (Figure 4.18 and Figure 4.19). In particular, 

patient 575 has a 30-minute curve with RMSE = 20.25 and MAE = 13.26 mg/dL, and a 60-minute 

prediction curve with RMSE = 31.30 and MAE = 21.62 mg/dL. Overall, we sincerely consider that 

the proposed model produces useful and applicable outcomes for T1D patients, following the 

notion that hypoglycemic events occur with blood glucose below 70 mg/dL, based on [89][90]. 

Finally, we suggest that a 30-minute RMSE of 20.25 mg/dL can provide a basis from which actions 

could be taken to avert possible severe hypoglycemia, based on patient data and the model’s 

outcomes. 

 

Figure 4.18 RMSE scores of 30-minute and 60-minute predictions of all the patients 

(individually and the mean of the total) 
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Figure 4.19 MAE scores of 30-minute and 60-minute predictions of all the patients (individually 

and the mean of the total) 

Despite the fact that the CRNN has reached a substantial prediction accuracy, it still faces 

some concerns. For example, as we extend the prediction window, the performance in predicting 

hypoglycemia decreases significantly faster. This situation can occur based on the exclusion of 

other features that can also affect the patient's blood glucose levels, such as exercise, meal 

carbohydrate count and emotional state based on physiological models. Therefore, in order to 

achieve a better model performance, a future inclusion of the prementioned relevant parameters 

that affect blood glucose levels could possibly be incorporated into the proposed approach. 
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5 Conclusion and Future Work 

In this thesis, we presented a hypoglycemia prediction model focused on patients with T1D. 

The main reason for distinguishing T1D from the general population with diabetes mellitus was 

that this autoimmune disease is very common at young ages up to 40 years old and cannot be 

avoided if a predisposition exists. Even though diabetes mellitus is just as serious as T1D and has 

the same number of potential complications if left untreated, T1D, which is more common in 

children and adolescents, requires a tighter control and attention from both the patients and their 

families. 

For that purpose, a CRNN approach was presented, which has the benefit of obtaining only 

four distinct signals (CGM blood glucose, basal insulin, bolus insulin and heart rate) and requiring 

minimal signal processing. This small number of signals required for the blood glucose prediction 

process, makes the model more patient-friendly, as it does not require the simultaneous use of 

various devices (medical or non-medical) to record multiple different types of data. The evaluation 

process was carried out on various data providers, through using RMSE and MAE performance 

measures. Despite the complexity of glucose prediction, the findings demonstrate low error rates 

that could potentially be deemed for real-life application. Specifically, we evaluated the outputted 

blood glucose values of the model based on the actual blood glucose values provided by the T1D 

patients. The 5-minute prediction horizon held substantial performance outcomes, with an RMSE 

of 6.37 mg/dL and a MAE of 3.47 mg/dL (patient 575). Thus, a 5-minute prediction is not adequate 

for the hypoglycemic prevention from the patient since the needed glucose intake may not act in 

this period of time [91]. The 15-minute prediction could be a more efficient timeline for the glucose 

intake acting, with an RMSE of 14.48 mg/dL and a MAE of 8.50 mg/dL (patient 575). On the 

other hand, it depends on how each patient's body will react to the glucose intake to prevent the 

hypoglycemic episode [89][90]. In this case, we suggest that the 30-minute prediction window 

with an RMSE curve of 20.25 mg/dL and a MAE of 13.26 mg/dL, which was extracted from the 

evaluation of patient 575, is sufficient enough and could provide a foundation for the avoidance of 

possible severe hypoglycemic episodes in the average population of T1D patients. Despite the fact 

that CRNN has reached high prediction performance, it still faces significant provocations. As we 

mentioned in chapter 4.3.4, as the prediction window lengthens, the performance in predicting 

hypoglycemia decreases significantly faster. This could be associated with an additional fast-
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acting calorie intake or an intense exercise occurrence. Therefore, these occurrences may need to 

be considered over longer prediction windows, in order to enhance the model's performance. 

A simple T1D management mobile application was also developed as a part of this thesis, 

in order to serve as a future patient data collection method and diabetes management system. In a 

future version of this smartphone application, it could potentially be updated to analyze additional 

patient-related data and cater to more features, such as medical contact, daily well-being advice, 

mood assessments, etc. 

Nevertheless, many research paths are yet to be pursued, such as testing extra factors that 

could affect the patient’s blood glucose levels. These factors could refer to stress levels and mood, 

or to other coexisting pathological conditions. Another future consideration could be the use of 

signal processing techniques to obtain various characteristics from the already provided signals 

and design domain-specific imputation techniques. These imputation techniques could be related 

to the carbohydrate absorption or to the basal/bolus insulin effect, over time. 
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