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Abstract

With the emergence of Deep Learning nowadays, a lot of novel architectures have

been devised to perform tasks such as classification, detection, segmentation etc. In

Medical Imaging and especially in Ophthalmology, the robustness of Deep Learning is

exploited in many studies. Most of the state of art papers nowadays use UNets or Fully

Convolutional Networks (FCN) for segmentation tasks. UNets instantiate a modified

version of the acknowledged Convolutional Neural Networks. In this study we focus on

the segmentation of Diabetic retinopathy lesions. In the real world, this task is very

difficult because a good algorithm is based on a robust dataset. The special annotated

datasets for segmentation tasks are pretty rare and comprise fewer images compared to

other larger datasets. Additionally, images dedicated to segmentation are imbalanced

as far as the ratio of lesions and normal pixels are concerned. Those were the main

reasons we chose not to train a model from scratch and confront possible difficulties.

Instead we exploited transfer learning and utilized a pretrained network (MobileNetV2)

as encoder of the Unet. We segmented four kinds of Diabetic Retinopathy lesions,

surpassing the existing state of art models in the case of two lesions: Hemorrhages and

Soft Exudates. More specifically, Sensitivity in Hemorrhages reached 0.89 whilst in Soft

Exudates reached 0.97. One of the novelties of the thesis is that the algorithm could

be further easily applied on mobile phones, something that MobileNetV2 is intended

to.
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Chapter 1

Introduction

1.1 Objective of the study

The revolution of Artificial Intelligence (AI) is phenomenal nowadays. We witness the

utilities and the implementations of AI without really knowing it. Facebook, Insta-

gram, etc. for example apply AI. Many scientific disciplines exploit this novelty and

experimentally try to gain intuition about AI ‘s behavior on several tasks. On the

other hand, there are open fields in Medicine that can be improved and AI could help.

Medical Imaging is a field that asks for those improvements.

AI may not only be applied theoretically but also in practice. There are many

underdeveloped countries, in Africa for example, that do not have a decent number of

doctors at that time when children suffer and have no economical background to move

to the closest hospital. In such countries, and especially in remote areas, the lack of doc-

tors is a determinant factor for Diabetic Retinopathy evolution. Diabetic Retinopathy

(DR) is a retinal vascular disease that affects the central vision. There are early signs

of Diabetic Retinopathy. Those signs are the lesions which carry information about the

DR stage. Thus, if a patient discovers those signs early, has a bigger chance to prevent

DR evolution. In our study we segment 4 kinds of lesions: Hard Exudates, Hemor-

rhages, Microaneurysms and Soft Exudates. The work presented in this thesis has also

humanitarian motivations. These related to the fact that in underdeveloped countries,

and especially in remote areas, the lack of doctors is an important factor for Diabetic

Retinopathy evolution [1]. DL based tools provide a relative novel approach that may

substitute doctors in remote and rural areas, in addition to assisting them as decision

support systems when diagnosis is very complex and in general “. . . AI-based systems

will augment physicians and are unlikely to replace the traditional physician–patient

1



CHAPTER 1. INTRODUCTION
1.1. OBJECTIVE OF THE

STUDY

relationship”, as reported in [2]. The final algorithm we implemented can be further

applied to a mobile phone, onto which a special fundus camera can be attached as seen

in Figure 1.1.

Figure 1.1: A special fundus camera attached on a mobile phone
Image taken from https://www.d-eyecare.com/en_US/howtouse#assembly

Several techniques and architectures have been devised to boost the automation

of the previous human-based diagnosis. We instantiate an algorithm for Semantic

Segmentation [3] and more specifically we use Deep Learning (DL). DL works well

with images and is an exclusively supervised algorithm. This means that it needs

annotated data. The annotation of those data can only be executed from doctors.

Here lies the biggest problem we confronted: the small number of qualitative annotated

datasets. The annotation of experts is subjective which means that for the same

case, the annotations may differ. Another factor is that this task is fatigue and has

complexity level, depending on each case. Annotation is very time consuming and

consequently demands a high budget. On the other hand, training a DL network

demands a huge database and furthermore images with descend quality. There are

datasets with annotations of lesser lesions, fundus images of raw illumination conditions

or not precise annotation borderlines. In [4] it was proved that the quality of the dataset

influences the algorithm and the performance.

2
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CHAPTER 1. INTRODUCTION
1.1. OBJECTIVE OF THE

STUDY

The goal of our study is to semantically segment those four types of lesions. We

had to follow a safe way to avoid overfitting issues and generally bad performance. The

way we confronted this pitfall was a double plan: a robust DL architecture combined

with knowledge transferred from another gnostic domain. The only prerequisite was

to have gained the maximum information from the dataset and that was accomplished

with a good preprocessing.

UNETs [5] according to our literature review are very powerful in segmentation

tasks. So it was a challenge to manage to exploit its power. Transfer Learning is a

great solution when dealing with problematic datasets [6]. In our case the datasets

comprised very few images and additionally the imbalance of healthy tissue and lesion

was very big. So it was a requirement to exploit Transfer Learning and having a better

starting point for excellent performance of our model. We did not use a fully trained

model but instead we used MobinetV2 [7] as pretrained encoder.

The preprocessing was not based on well known Image Processing techniques ,but

instead on gathering the most informative patches of the IDRiD dataset [8]. The size

of the patches we worked, was 512x512. We increased the strength of the training by

using augmentation and thus creating synthetic patches.

We executed four experiments, each one concerning a binary problem for each

lesion. We did not confront any overfitting issues. The experiments showed that

the results are pretty decent and surpass the state of art performances for segmenting

Hemorrhages and Soft Exudates. More specifically, Sensitivity in Hemorrhages reached

0.89 whilst in Soft Exudates reached 0.97. Generally, both in pixel and lesion level

analysis Sensitivity was over 0.83 except for Hemorrhages (lesion level=0.599).

In conclusion, the objective of our study is to use transfer learning to segment

retinal lesions and achieve better performance from the existing state of art studies.

In addition, for humanitarian purposes we want to contribute to the earlier diagnosis

of DR in regions that lack doctors.

3



Chapter 2

Diabetic Retinopathy lesions —
Terminology

2.1 Diabetic Retinopathy

Insulin is secreted from pancreas to regulate blood sugar levels of the body. The disease,

either when the pancreas fails to produce a decent amount of insulin, or when insulin

is not handled correctly, is named Diabetes Mellitus or Diabetes. There are two types

of Diabetes: Type 1 and Type 2. Type 1 is also called “Insulin dependent diabetes”

and the reason is the insufficient amount of insulin produced from pancreas. Type 2, is

called “non-insulin dependent diabetes” and is due to the ineffective handling of insulin

produced in the body. According to WHO in 2000, 2.8% of the total world population

suffered from diabetes [4]. Diabetes is a cause of many diseases in the human body:

kidney failure, strokes, heart diseases and vision loss.

Diabetic Retinopathy (DR) is a retinal vascular disease that affects the central

vision. DR is expected to reach 191 million by 2030 [9]. If the disease evolves without

treatment, patients are in danger of becoming blind. Unfortunately people with DR

in early stages have no warning signs of their vision. Only when the disease worsens,

patients become aware of the situation. Those warning signs that can save many pa-

tients from blindness lie in fundus images. Non-mydriatic digital color fundus cameras

can acquire such fundus images. Those digital imaging procedures are non invasive

and friendly to patients.

4



CHAPTER 2. DIABETIC
RETINOPATHY LESIONS —
TERMINOLOGY

2.2. TYPES OF LESIONS

2.2 Types of lesions

Fundus means the base of anything. Especially in Medicine, it indicates the inner line

of an organ. Sensory Retina, Retinal Pigment Epithelium, Bruch’s Membrane and

the Choroid form the inner line of the eye, which is the ocular fundus. Such fundus

images carry information about the eye, and if any lesions occur inside. Studying

existing lesions, leads to conclusions about the disease. Consequently, it is important

to identify not only the type of the lesions but also their magnitude. There are 3 main

types of lesions: Microaneurysms (MAs), hemorrhages (HMs) and Exudates (EX)s.

Generally Microaneurysms (MAs) are the first signs that can be detected from

fundus images, indicating DR evolution. MAs are a dilation of microvasculature, as a

result of disruption of internal elastic lamina. Their size is normally less than 125µm

and they look like red spots with distinguishable borders.

When the capillaries collapse, leaking blood forms HMs. They look like MAs but

they are bigger in size and have random shapes. Splinter hemorrhage occurs in the

superficial surface layer and causes more superficial bleeding-shaped flame.

EXs are formed when capillaries collapse and leak much more blood. In contrast

with former lesions they are yellowish and have random shapes. EXs comprise of two

types: Hard exudates (HEs) and soft exudates (SEs). In terms of biology, HEs are

proteins and lipoproteins, which escape from abnormal vessels. Their color is close

to yellow or white, have distinguishable margins and form blocks or ring-like regions.

Central vision depends on macula and fovea. Consequently if the position of hard

exudates coincides with those regions, the central vision of the patient is in danger.

Detection of the position of hard exudates is very important in DL algorithms. On the

other hand, SEs have hues close to white and grey and resemble small clouds. They

are the result of the occlusion of the arteriole. Generally MAs and HMs have different

brightness from EXs. They are dark whilst EXs are brighter. Neovascularization (NV)

are new generated vessels which occur due to the failure to use glucose by existing

blood paths. Finally, Macular edema (ME) occurs when leakage of retinal capillaries

lies around the macula.

5



CHAPTER 2. DIABETIC
RETINOPATHY LESIONS —
TERMINOLOGY

2.3. CORRELATION OF
LESIONS WITH DR

In figure 2.1 we can get an idea about how the lesions look like.

Figure 2.1: An image exhibiting all lesions

2.3 Correlation of lesions with DR

The knowledge of the exact numbers of lesions a patient has, can help in DR grading.

MESSIDOR research program [10] grades DR according to the type and number of

lesions found in fundus image. Besides lesions, changes in vessel’s anatomy or new

generated vessels (neovascularizations), can reveal DR. So, in this way segmentation

of lesions can implicitly indicate in which stage a patient is. Table 2.1 shows the

correlation of DR grading with the number and the type of lesions.

Table 2.1: The correlation of DR Grading with the number and the type of lesions according
to MESSIDOR research program

DR Grade Microaneurysms Hemorrhages Neovascularization

0 0 0 0

1 <5 0 0

2 5–15 0–5 0

3 <15 <5 1

6



Chapter 3

Literature review on segmentation
of DR lesions

There are many studies which try to segment different lesions each time, following

their own strategies. In this part we will make a literature review, gathering the most

representative studies. Table 3.1 summons the main strategies found in this literature

review. With the term strategy we imply the methodology that studies tackle the

problem of retinal segmentation.

Table 3.1: The main strategies found in this literature review

Strategy Reference

Selective Sampling (SeS) [11]

Extraction of probability map [9, 12, 13, 11, 14, 15]

Class Activation Map (CAM) [16]

Transfer learning [17, 18, 19, 20]

Membrane system [21]

Fixed CNN backbones [21, 22, 23, 16, 24, 25]

Multiple cohort study [19]

Fusion of DL and handcrafted features [14]

Active learning [25]

DRU-Net [26]

Adversarial learning [27, 28]

Additional DR Grading [29, 30]

GANs as generator of synthetic data [31, 32]

Attention mechanism [33, 34, 35]

Ensemble of CNNs [20]

Reinforcement sample learning [36]

7



CHAPTER 3. LITERATURE REVIEW
ON SEGMENTATION OF DR LESIONS

Softmax as a classifier, provides the benefit to produce for every pixel a probability

ranging from zero to one. The original image can be turned into a probability map.

In [9, 12, 13, 11, 15] they created such probability maps. In order to proceed with

segmentation of the lesions, an appropriate threshold was set (this is necessary in order

to turn probability maps into binary images). Post image processing was necessary due

to problems generated by this binarization in order to have a fine result with accuracy

in the boundaries of the lesions.

Eftekhari et al [15] created patches and trained a CNN to extract probability

maps. Afterwards, they passed the thresholded probability map into a CNN to create

a smoother probability map. Kushwaha and Balamurugan [29] created two binary maps

from U-Nets, instead of CNNs. Each map represented a lesion and was superimposed

with the original image. Afterwards they used Resnet-101 to classify the DR grade

corresponding to the image.

Another alternative for visualization, besides probability maps, is the Class Ac-

tivation Map (CAM). This method has a major limitation as far as the architecture

concerns: it needs a Global Average Pooling (GAP) as the final layer to work. In case

of absence, final Dense Layers are replaced by GAP. Gondal et al [16] created such

CAMs. They observed that the removal of the final Dense Layer decreased the overall

classification accuracy of the network. The extracted maps had a low resolution while

upsampling. They made modifications in order to increase the resolution.

In some studies, architectures were based on fixed CNNs such as AlexNet,

Googlenet etc. Perdomo et al [23] trained patches in LeNet CNN to segment the

exudates. The model in [24] was based on o O architecture, which ranked second in

the Kaggle Diabetic Retinopathy competition. It comprised two networks, A and B.

They also evaluated the model by comparison with AlexNet. The o O architecture

was also used in [16]. Otálora et al [25] segmented exudates using active learning. The

CNN which was used was LeNet. Xue et al [21] selected ResNet101 as the classification

network in their study.

8
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Harangi et al [20] created an ensemble of three fixed networks: AlexNet, GoogleNet

and VGGNet. Fully-connected layers were removed from each independent network

and a joint fully connected layer merged them, followed by Softmax. Besides from

image-level classification the network localized MAs. They used the weights from the

pretrained networks.

Furtado [37] tested three state of art models to segment all lesions of the IDRiD

dataset. He experimented with the famous DeepLabV3 model [38], with FCN [39]

and with a Unet. The results showed that DeepLabV3 achieved better performance

generally. The Microaneurysm’s class seems to have the worst performance. He also

tested in DeepLabV3 [40] and SegNet [41], two very popular models. DeepLabV3

seemed to segment better but both confused parts of the background as lesions.

Saha et al [22] utilized a FCN to segment all four lesions. Optic Disk was added

as a class in the same segmentation problem as lesions, so that the model was able to

distinguish exudates from Optic Disk. The proposed network differed from SegNet in

essence that in the last layer instead of a pixel wise classification layer (following the

architecture of VGG16), had a sigmoid layer to produce class probabilities for each

pixel independently in all channels. Exudates had the best performance in contrast

with the Microaneurysms.

Contrary to the common approach that Transfer Learning is useful for large

datasets, Chudzik et al [17] trained a U-Net with Microaneurysms dataset and fine

tuned it with Exudates dataset.

Khojasteh et al [19] executed an experiment with 3 cohorts to segment exudates:

1. they trained a CNN

2. they trained a Discriminative Restricted Boltzmann Machines (DRBM)

3. they used a pre trained residual network and used 3 different classifiers: Support

Vector Machine (SVM), Optimum- Path Forest (OPF), and k-Nearest Neighbors

(KNN).

9
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The results showed that the best performance was obtained when using ResNet-50

with SVM classifier. The Sensitivity was 0.99.

Another very promising approach was proposed from Xue et al [21] with accu-

racy 99.7% in detecting lesions of Microaneurysms (IDRiD dataset). They proposed a

dynamic membrane system with hybrid structure and implemented efficient CNNs to

perform pixel level multitask segmentation.

Orlando et al [14] fused Deep Learning with handcrafted features. Specifically,

they trained a CNN to extract features. Moreover they used image processing to

extract intensity based and shape based features, resulting in a combined vector. This

vector was classified by a Random Forest and a probability map was extracted.

Kou et al [26] proposed a network obtained by combining the deep residual model

and recurrent convolutional operations into U-Net. The resulting model was named

DRU-Net. The accuracy in the study was 0.9999 and outperformed existing meth-

ods such as U-Nets, FCN and ResU-Net. DRU-Net was used for segmenting Microa-

neurysms.

A trend in the literature review was to exploit the existing limited datasets with

the best way. Grinsven et al [11] presented a method to speed up the training process by

selecting more informative samples, the Selective Sampling (SeS). A dynamic weight

was assigned to each pixel and was updated in each epoch training. The training

stopped when there was saturation in updating. The result was integrated with a

probability map. The AUC reached was 0.972.

Otálora et al [25] introduced active learning in training a CNN with an algorithm

called expected gradient length(EGL) to classify between healthy and exudate patches.

They chose to train Le-Net as CNN due to its shallow architecture, in order to prevent

convergence issues. EGL was used to select and sort the most informative patches to

feed the network.
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Budak et al [36] applied Reinforcement Sample Learning for training a Deep Con-

volutional Neural Network(DCNN). This technique is applied on samples with poor

performance in the training procedure. The paper proposed a 3 stage system to detect

Microaneurysms. In the first stage they preprocessed the input images. Next followed

a selection of candidate lesions based on a spiral like algorithm. Finally, a DCNN was

used to train the system.

Generative Adversarial Networks (GANs) [42] have been characterized as “one of

the most interesting ideas in the last 10 years in Machine Learning”. The rationale

behind adversarial learning relies on GANs. A convolutional segmentation network

is trained along with an adversarial network, which discriminates segmentation maps

coming from the ground truth or from the segmentation network. Gullón [27] in her

thesis presented such a system to detect multiple lesions. The loss function was mod-

ified and the segmentation of exudates had the best performance compared to the

other lesions. Xiao et al [28] utilized Holistically-Nested Edge Detection(HED-Net) for

semantic segmentation by incorporating it in an Conditional Generative Adversarial

Network (cGAN) to enhance the results. Although HEDNEt was originally proposed to

solve edge detection for images, this study showed that it is capable of solving segmen-

tation problems as well. They also modified the loss function for better performance

and the results showed that the segmentation of exudates was the most successful

among the other lesions.

Zhang et al [33] applied a special technique called Attention Mechanism over a

DNN to detect Microaneurysms. Specifically they preprocessed the images and passed

them to the DNN which was enhanced with an attention mechanism. Finally a sec-

ondary screening was obtained by utilizing the spatial relations of MAs and vessels.

The Sensitivity obtained was 0.868.

Si et al [35] utilized a modified FCN with Attention Mechanism to segment Ex-

udates. To address the imbalance of the dataset they invented dice cross entropy loss

function. The sensitivity reached 89%
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A strategy for tackling limited datasets is creation of synthetic images generated

from GANs. Besides augmentation as described has excellent results, GANs can offer

an alternative with promising results. [31] proposed a method to segment exudates by

utilizing cGAN to generate images. The Specificity reached at 99.99%. Zheng et al [32]

proposed a method to segment Hemorrhages by feeding a U-Net with both real and

synthetic images and labels. The Sensitivity was 92.47% by utilizing both synthetic

and augmented images to train the network.

In conclusion, while earlier works for retinal lesion segmentation use traditional

image processing techniques [43], current works use mostly patch based deep learning

approaches [44, 16, 24, 14, 9, 23, 4] with CNNs as dominant architecture. For example

in [44] the CNN is trained with patches of a centered pixel. The output is an image with

every pixel’s value representing the probability of a pixel being EX. A fixed threshold

is applied for obtaining a binary image. Generally when using CNNs we cannot talk

about segmentation of lesions as the exact boundaries of the lesions are concerned. We

talk about localization of the lesions and that is because we classify the patches and

then produce probability maps.

The state-of-art models for semantic segmentation are inferentially Fully Convo-

lutional Networks (FCN) and the U-NETs. Towards more precise segmentation, novel

designs are continuously proposed. For instance dilated convolutions are introduced in

[34]. Attention mechanisms are introduced in [33, 34, 35]. The state-of-art DeeplabV3+

[37, 45] uses both dilated convolutions and spatial pyramid pooling in its contracting

path and is one of the most promising models in semantic segmentation nowadays.

Table 3.2 shows the metrics of the papers according to the literature review.

12



Table 3.2: Metrics according to the literature review

Reference Year Dataset Architecture Lesion Sensitivity Specificity Accuracy
Precision

(PPV)
AUC

[9] 2018
DIARETDB1/

Ophtha
CNN

Exudates

Hemorrhages

Microaneurysms

0.96

0.84

0.85

0.98

0.92

0.96

0.98

0.90

0.94

0.94

0.85

0.83

-

-

-

[21] 2019

IDRiD/

MESSIDOR/

e-Ophtha

Combination

Of Networks

Exudates

Microaneurysms

0.779

0.746

0.996

0.998

0.992

0.997

-

-

-

-

[17] 2018 e- Ophtha UNET Exudates 0.8458 0.9997 - - 0.967

[12] 2017
Kaggle/

e-Ophtha
CNN

Microaneurysms

Exudates
- - - -

0.94

0.95

[22] 2019 IDRiD FCN

Exudates

Hemorrhages

Microaneurysms

Soft Exudates

- - -

0.5498

(PPV vs SE)

0.0829

(PPV vs SE)

0.0059

(PPV vs SE)

0.1823

(PPV vs SE)

-

[13] 2016

ROC/

Messidor/

Diaretdb1

DNN
Microaneurysms

0.97 0.95 - 0.988

[46] 2017

CLEOPATRA/

MESSIDOR,

DIARETDB1

CNN

Exudates

Hemorrhages

Microaneurysms

0.8758

0.6257

0.4606

0.9873

0.9893

0.9799

- - -

Continued in next page
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Reference Year Dataset Architecture Lesion Sensitivity Specificity Accuracy
Precision

(PPV)
AUC

[47] 2015
STARE/ DR1/

Diaretdb1

Machine

Learning
Exudates 0.927 0.8102 0.8723 - -

[18] 2018

E-Ophtha,

ROC,

DIARETDB1

UNET Microaneurysms 0.562 - - - -

[4] 2018 IDRiD CNN Exudates 0.9829 0.4135 0.966 - -

[48] 2018

E-Ophtha,

ROC,

DIARETDB1

Multilayer

Perceptron
Exudates 0.564 0.999 0.998 - -

[11] 2016
Kaggle/

Messidor
CNN Hemorrhages - - - -

0.972

(ROC )

[49] 2016 DIARETDB1 SSAE Microaneurysms - 0.9160 0.9138 0.9157 0.9620

[50] 2017 E-Ophtha CNN Exudates 0.8885 0.96 0.9192 - -

[44] 2015 DriDB CNN Exudates 0.77 0.77 0.77 - -

[23] 2017 E-Ophtha Le-Net CNN Exudates 0.998 0.996 0.996 - -

[16] 2017
Kaggle/

DiaretDB1
CNN

Exudates

Hemorrhages

Red Small Dots

Soft Exudates

0.87

0.91

0.52

0.89

- - - -

[24] 2017

Kaggle/

DiaretDB1/

E-Optha

CNN

Exudates

Hemorrhages

Red Small Dots

Soft Exudates

0.735

0.614

0.500

0.809

- - - -

[19] 2019
DiaretDB1/

E-Optha
CNN Exudates 0.98 0.99 0.98 - -

Continued in next page
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Reference Year Dataset Architecture Lesion Sensitivity Specificity Accuracy
Precision

(PPV)
AUC

[14] 2018

Diaretdb1/

E-Ophtha/

MESSIDOR

CNN
Hemorrhages

Microaneurysms

0.4883

0.4883
- - - -

[25] 2017 e-Optha Le-Net CNN
Exudates

0.99 - - - -

[31] 2018

e-Ophtha,

DiaretDB1,

HEI MED,

MESSIDOR

DCNNs
Exudates

0.9094 0.9999 0.9997 0.9472 -

[26] 2019
eOphtha/

IDRiD
DRU-NET Microaneurysms - - 0.9999 - 0.9943

[27] 2018 IDRiD UNET

Exudates

Hemorrhages

Microaneurysms

Soft Exudates

0.718

0.438

0.358

0.456

[29] 2019 IDRiD UNET
Exudates

Hemorrhages

-

-

0.9977

0.9985

0.9965

0.9977

0.7888

0.8630

-

-

[32] 2018 DRiDB UNET Hemorrhages 0.927 - - 0.80 0.912

[15] 2019 ROC/e-Ophtha CNN Microaneurysms 0.800 - - - -

[33] 2019
IDRiD/

IDRiD VOC
DCNN Microaneurysms 0.868 - - - -

[20] 2018

ROC/

e-Ophtha,

DIARETDB1/

MESSIDOR

AlexNet,

GoogleNet,

VGGNnet

Microaneurysms 0.6458 0.8800 0.6942 0.8335

Continued in next page
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Reference Year Dataset Architecture Lesion Sensitivity Specificity Accuracy
Precision

(PPV)
AUC

[36] 2017 ROC CNN Microaneurysms 0.394 - - - -

[28] 2019 IDRiD HEDNet

Exudates

Hemorrhages

Microaneurysms

Soft Exudates

- - -

0.8405

0.4812

0.4392

0.4839

-

[30] 2017 Kaggle DCNN

Exudates

Hemorrhages

Microaneurysms

- - -

0.8380

0.7445

0.5678

-

[37] 2021
IDRiD/

DIARETDB1

DeepLabV3,

FCN,

UNET

Exudates

Hemorrhages

Microaneurysms

Soft Exudates

0.94

0.87

0.48

0.875

- - - -

[45] 2016 IDRiD
DeepLabV3/

SegNet

Exudates

Hemorrhages

Microaneurysms

Soft Exudates

- - - - -

[40] 2020 Kaggle Lesion-Net 8 types of lesions - - - - -

[51] 2018 IDRiD UNET

Exudates

Hemorrhages

Microaneurysms

Soft Exudates

0.886

0.7214

0.8715

0.7791

0.999

0.9977

0.9999

0.9999

-

-

-

-

0.8268

0.5415

0.7553

0.4915

-

-

-

-

[35] 2019
e-Optha &

HEI-MED
FCN Exudates 0.89 0.99 - 0.81 -
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Chapter 4

Machine Learning

Machine Learning (ML) is a discipline of computer science, in which the main purpose

is the improvement of algorithms through experience and processing of data. ML is a

subfield of Artificial Intelligence (AI). ML has the rationale of training a part of the

available data, known as “training data”, and further using the model to predict new

unseen data without being explicitly programmed for this purpose. ML algorithms

can be applied in many fields. For example they are used in Google to predict if an

email is spam. ML algorithms can recognize human speech and translate to another

language. Computer vision is a field where ML is very useful for many tasks.In many

applications, ML can count the number of cars crossing a road,or identify the name

of a person who wants to enter a door. The part of interest for our paper is the

application in Medicine. ML can be applied in medical images ,extract useful data

and further use them for predictions. Thus ML can predict for example if a lesion is

malignant or benign. It can also segment a lesion and maybe later use its volume for

the appropriate dose of radiation. In all cases the strength and the dominance of ML

over conventional algorithms is more than obvious. In many cases it is not feasible to

create such conventional algorithms due to the nature of the task. In tasks concerning

business, ML is also known as predictive analytics.

ML has a lot of subsets such as computational statistics, data mining etc. Com-

putational statistics predicts new data by exploitation of computational power. Data

mining uses supervised learning in order to make exploratory data analysis. Mathe-

matical optimization, is a tool for helping ML not only in theory but also in practise.
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CHAPTER 4. MACHINE LEARNING 4.1. OVERVIEW OF ML

ML has a huge difference from a subfield which is called Deep Learning (DL) and

we will cover it in the next pages. ML needs human intervention to extract the most

informative data as we see in Figure 4.1. In other words, there is no automatisation

in this stage,something which is present in DL. For example, in a medical image task

where there are mammograms,there must be an image analysis to acquire the features

and afterwards decide which of them are the most important. Thus, there is a plethora

of ML algorithms and finally the best is chosen.

Figure 4.1: There is an obvious difference between ML and DL and this lies in the way that
the features are extracted. In ML a human factor determines them, whilst in DL features
are extracted automatically.
Image taken from https://quantdare.com/what-is-the-difference-between-deep-learning-

and-machine-learning/

4.1 Overview of ML

Traditional algorithms work on the basis that what worked well in the past, is likely to

continue well in the future. For example, the inference that the sun will rise tomorrow,

since it rises for the last billions of years, is more than obvious.
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4.2. HISTORICAL

RETROSPECTION OF ML

Machine learning algorithms can fulfil tasks even if they are not explicitly meant

to do so. It entails computers learning from data in order to do specific tasks. It

is possible to build algorithms that teach the machine on how to complete all steps

required to solve the problem at hand for basic jobs left to computers; no learning is

required on the computer’s behalf.

A human may find it challenging to manually create the algorithms required for

more complex occupations. In fact, rather than having human programmers explaining

each essential step, supporting the computer in designing its own algorithm can be more

productive.

There are many approaches to ML algorithms in order to choose the best and

teach the computer. This is something common where no algorithm can be satisfactory

enough to fulfil a task. When there are a large number of approaches , one option is to

mark some of the correct answers as valid. This approach with the best performance

can be used for training.

4.2 Historical Retrospection of ML

ML was invented back in 1959 by Arthur Samuel, an American programmer of Artificial

Intelligence (AI) and computer games [52]. Another synonym explaining ML rationale

was self-teaching computers. Nilsson wrote a representative book for ML during the

1960s ,where he was dealing mostly with pattern recognition [53]. In 1981 there was

a report given ,using neural networks to recognise 40 characters (26 letters, 10 digits,

and 4 special symbols) from a computer.

Tom M. Mitchell [54] gave a more widely known phrase explaining the ML ratio-

nale: “A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P if its performance at tasks in T, as measured

by P, improves with experience E.”. This sentence is rather a definition explaining the

operations during ML training , rather than a strictly compact term. On the other

hand, Alan Turing, in his paper Computing Machinery and Intelligence [55] proposed

an alternative to the common question if machines were able to think. He shifted this

question to “Can machines do what we (as thinking entities) can do?”
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4.3. ARTIFICIAL
INTELLIGENCE

Today ML tasks may have two different objectives: classification task or regression

task.In the first category the algorithm is trained to classify data. For example in the

MNIST dataset [56] the algorithm can classify the digits. In contrast, in a regression

task the objective is to predict continuous values. For example, given an annual stock

of a company, the algorithm can predict future prices.

4.3 Artificial intelligence

Ml was developed under the quest for Artificial Intelligence (AI). In the first era of

AI some scientists focused on creating algorithms that computers could learn from

data.The approaches to this problem were many including Neural Networks perceptrons

and other models which mimic the generalised models of statistics. In Medical diagnosis

probabilistic reasoning was also used [57].

However there was a gap between AI and ML. Probabilistic systems were plagued

by theoretical and practical problems of data acquisition and representation. Statistics

was losing the battle with AI. Neural networks had been abandoned. Backpropagation

theory [57] came in the 1980s and gave a boost to ML.

ML was organised again and set as an independent field back in the 1990s. The

goal of ML was reexamined and shifted its purpose from tackling solvable problems to

problems which have a practical purpose. This detachment from AI , moved ML to

models and methods that flirt with probability theory and statistics.

Many sources maintain that machine learning is still a subfield of AI [58]. The

key point of contention is whether all ML is part of AI, as this would imply that anyone

using ML might claim to be using AI. Others argue that not all ML is part of AI [59]

and that only a subset of ML that is ’intelligent’ is part of AI.

ML is trained and can predict based on data, whereas AI implies an interaction

with the environment to be trained and consequently achieve the goal [60]
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In Figure 4.2 we see that ML is a subfield of AI ,and Deep Learning (DL) which

we will analyze in the next section belongs to ML.

Figure 4.2: ML is a subfield of AI.
https://en.wikipedia.org/wiki/Machine_learning#cite_note-Definition_of_AI-35

4.4 Categories of ML

Machine learning is categorized in 4 main groups: Supervised learning, unsupervised

learning, semi-supervised learning and reinforcement learning. Each of these algorithms

are analysed in the following part.

4.4.1 Supervised learning

Supervised learning algorithms create a model with the data belonging to inputs and

outputs. These data are used for training the model and consist of samples. These

samples may have more than one input. For example, if we choose to insert the pixels

of an image, then we use many inputs. The output is the label onto which the model is

trained. This is also called supervisory signal. Tacking the mathematical aspect of the

problem, each training sample is depicted by an array or vector (feature vector) and
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the training data is depicted by a matrix. Through the inner processes of the algorithm

the trained model can further be used to predict new unseen samples. Synoptically the

model learns from scratch to predict the known data and by optimisation techniques

the accuracy is continuously improved until it reaches a saturation point. Support

Vector Machine (SVM) is a powerful supervised algorithm that uses hyperplanes to

distinguish the available labeled data. In Figure 4.3 we see the classification of black

and white dots with SVM.

Figure 4.3: A Support Vector Machine (SVM) is a supervised algorithm that is used to
classify samples. Here the black dots are separated with a hyperplane (thick line) from the
white dots.
Image taken from https://upload.wikimedia.org/wikipedia/commons/2/2a/Svm_max_sep_

hyperplane_with_margin.png

Active learning, regression and classification are supervised learning algorithms.

When the outputs are restricted to a limited set of values we are talking about classi-

fication. In contrast when the outputs have any numerical value within a range we are

referring to regression.

Another algorithm is similarity learning, which is related to both classification

and regression. Here the purpose is to train the model from samples using a similarity

function. This function measures how similar or related two objects are. Most com-

mon applications are in recommendation systems, in ranking, speaker verification, face

verification etc.
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4.4.2 Unsupervised learning

Unsupervised learning is a machine learning algorithm in which there is not any pro-

vided label for training. Algorithms who belong to the unsupervised learning field

accept only inputs. The rationale behind this algorithm is to manage to find possible

clusters or groups of the data by finding interrelationships between training data and

then try to capture such patterns in the new unseen data. Samples belonging to the

same cluster have commonalities and there is a stronger relationship between them. In

Figure 4.4 we see how the algorithm divides the data in 3 clusters.

Figure 4.4: The algorithm divides the data in 3 clusters.
Image taken from https://www.ecloudvalley.com/mlintroduction/

An application of unsupervised learning is in the field of density estimation such as

finding the probability density function. Other examples of this algorithm include clus-

tering where the algorithm divides the samples into clusters with similar features, prin-

cipal component analysis where the algorithm compresses the data. This is achieved by

identifying the most informative ones and discarding the others. In contrast supervised

learning works by providing labels for the corresponding samples.

The benefit of this algorithm lies in the minimal preprocessing of the training set,

in contrast to supervised learning where there is a huge effort of the experts to assign

labels. In this way there is much greater freedom for new patterns to be identified.

This is the trade off for this algorithm in a way that it needs more data to be effective

and more computational power to be supported.
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4.4.3 Semi-supervised learning

Semi supervised learning lies between supervised and unsupervised learning. In such

cases the training data are incomplete. Scientists have found that unlabelled data when

mixed with labeled ones can increase the performance of the model. Weakly supervised

learning [61] own data with noise or data with restricted amount. These data are easier

to acquire, ergo cheaper.

4.4.4 Reinforcement learning

Reinforcement learning is a ML algorithm in which intelligent agents [62] interact with

the environment in order to maximise the notion of cumulative reward. Reinforcement

learning does not work with label data. Instead it gains knowledge by interacting with

the environment and using it to confront new unseen conditions. Partially supervised

Reinforcement algorithms merge the benefits of Reinforcement learning and supervised

learning.

The generality of this algorithm makes it possible to be applied in many fields

such as gaming, operation research, control theory, information theory ,statistics and

genetic algorithms.In practise Reinforcement learning is used in autonomous vehicles

or in learning to play a game against a human opponent. In Figure 4.5 we see an

example of using reinforcement learning in gaming.

Figure 4.5: Reinforcement learning in gaming.The image illustrates how an intelligent agent
works, by guiding a state to the best decision.
Image taken from https://wiki.pathmind.com/deep-reinforcement-learning
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4.5 Deep Learning

Deep Learning (DL) is a subfield of ML ,which is mainly based on artificial neural

networks. DL uses multiple layers which automatically extract features. In deeper

layers the algorithm extracts higher-level features. The term “Deep” refers to this

multiplicity of layers, DL.

The performance of a DL depends on its architecture. Examples of DL archi-

tectures are deep neural networks (DNNs), Deep Belief Networks, Recurrent Neural

Networks (RNNs), Convolutional Neural Networks (CNNs), UNETs, Fully Convolu-

tional Networks (FCNs) etc. Applications of DL can be found in Computer Vision,

Natural Language Processing (NLP), medical imaging, bioinformatics, drug designing

etc. The results of using DL networks in many cases surpass human experts.

The inspiration of Artificial Neural Networks (ANNs) lies in the way that infor-

mation is processed and distributed in neurons. On the other hand, ANNs differ from

human brains in a way that ANNs tend to be static in contrast with the human brains

which are analogue [63].

DL is a contemporary variation in which an unlimited number of layers can be

used. Theoretically DL may have a universality under no extreme conditions and thus

be used in many applications. Heterogeneity of DL layers is allowed, and layers may

deviate from biological models. This is due to the fact that DL models have to be

trainable, understandable and efficient. Applications of DL are speech recognition, im-

age recognition, visual art processing, natural language processing, drug discovery and

toxicology, recommendation systems, bioinformatics, medical image analysis, military

etc.

4.5.1 Overview of DL

ANNs and more specifically Convolutional Neural Networks (CNNs) form the basis of

most DL models. In DL, each layer transforms the input data into a more conceptual

and mixed depiction. For example, in a classification task with the image of some
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persons as inputs, the first layer may capture the edges, the second layer may encode

arrangement of edges, the third layer may capture the nose and the eyes of a person and

the next layer may capture holistically the existence of a face. A DL algorithm can learn

the placement of the features to the appropriate level on its own. This does not exclude

human intervention and this is necessary in fine tuning of the hyperparameters of the

model. For example a human must determine the number of layers, the architecture

of the model, the learning rate, the loss function etc.

DL systems have an ample credit assignment path (CAP) depth. The CAP is the

path of transformations from input to output. CAPs depict conceivably connections

among input and output. A feedforward neural network has depth of the CAPs equal

to the network and is the number of hidden layers plus one output layer. The majority

of experts think that DL necessitates a CAP depth greater than 2. In the sense

that it can simulate any function, CAP of depth 2 has been proved to be a universal

approximator [64]. More layers, on the other hand, do not improve the network’s

function approximator ability. Extra layers help in learning the features successfully

since deep models (CAP > 2) can extract better features than shallow models. A

greedy layer-by-layer method is used to build DL architectures.

In supervised learning tasks there is elimination of feature engineering .This is

achieved by translating the data into compact representations related to principal com-

ponents. Thus redundancy is avoided.

Unsupervised learning tasks can benefit from deep learning algorithms. This is

a significant advantage because unlabelled data is more plentiful than labeled data.

Neural history compressors and deep belief networks [65] are two examples of deep

structures that can be trained in unsupervised manner.

4.5.2 Interpretations

Deep Neural Networks are explained with probabilistic inference or the universal ap-

proximation theorem. The capacity of feedforward neural networks with a single hidden

layer simulates continuous functions. George Cybenko published the first evidence for
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sigmoid activation functions in 1989 [66], and Kurt Hornik generalised it to feed-forward

multilayer architectures in 1991 [67]. The capacity of networks with bounded width

but the depth is allowed to grow according to the universal approximation theorem for

deep neural networks. In [68] Lu et al suggested that if the depth of the deep neural

network ,using RELU as activation function, is larger than the dimensions of the input

then any Lebesgue integrable function may approach the network. In the opposite

case, with a depth of the network smaller than the dimensions of the input, the deep

neural network does not account for an universal approximator.

Machine learning gives a probabilistic explanation. It presents inference, as well

as the training and testing optimisation methods, which are connected to fitting and

generalisation. The probabilistic explanation takes the activation nonlinearity into

account as a cumulative distribution function. This probabilistic aspect resulted in the

appearance of dropout as regularizer. Hopfield [69], Widrow [70] and Narendra [71]

were the first to talk about probabilistic interpretation as a concept.

4.5.3 History of DL

The first signs of DL rationale can be found in 1943. Walter Pitts and Warren Mc-

Culloch invented a computer model which mimicked the human brain, with the help

of neural networks [72]. ”Threshold logic” was a mixture of algorithms which tried to

capture the process of human thinking. DL has been evolving with steady steps since

that time.

Back Propagation Model was developed by Henry J. Kelley in 1960, who gave a

boost to DL evolution [73]. A simpler version based on the chain rule was invented by

Stuart Dreyfus [74]. Many factors make it inefficient for the Back Propagation Model

to be applied until 1985, although the theory existed since 1960, as mentioned earlier.

Alexey Grigoryevich Ivakhnenko and Valentin Grigor’evich Lapa, authors of Cy-

bernetics and Forecasting Techniques [75], were the first to make efforts in developing

DL algorithms back in 1965. The activation functions they used in their models were

polynomials. Models were analysed statistically for each layer and the best statistically

chosen features were passed to the next layer. This was a manual and slow process.
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The first AI winter began in the 1970s, as a result of promises that could not be

kept. The lack of funding had a negative impact on both DL and AI development.

Fortunately, there were others who continued the research even if they didn’t have

any money. Kunihiko Fukushima was the first to use Convolutional Neural Networks

(CNNs) [76].

Fukushima created numerous pooling and convolutional layers in his neural net-

works. He created the Neocognitron artificial neural network in 1979, which featured a

hierarchical, multilayered design. The computer was able to ”learn” to recognise visual

patterns thanks to this architecture. The networks had similarities with contemporary

versions, although they were trained with reinforcement strategy, something that was

evolving during the upcoming years.

Back propagation evolved during the 1970s and its theory concerned the exploita-

tion of errors for further correction of the performance. Seppo Linnainmaa used FOR-

TRAN language to code for backpropagation [77]. Until 1985 backpropagation was not

applied as a concept. Rumelhart, Williams, and Hinton proved that backpropagation

could have interesting results [78]. From a philosophical aspect, this evolution of back-

propagation enlightened the question if human understanding is based on distributed

representations (connectionism) or symbolic logic (computationalism) . Yann LeCun in

1989 demonstrated the practical aspect of backpropagation in computer terminals.He

used backpropagation in his CNNs to classify handwritten digits [79].

1999 was the year where a major evolutionary step for DL was accomplished.

The computational power was growing because of the appearance of GPU (graphics

processing units). This was a novel and determinant step for the evolution of DL.GPUs

could process images really faster and generally the computational speed increased by

1000 times over a 10 year period [80]. During this period Support Vectors Machines

(SVMs) competed with neural networks. While a neural network is slower than a

support vector machine, it produces better results when working with the same data.

The advantage of neural networks is that they improve as more training data is added.
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The “Vanishing Gradient Problem” appeared around 2000 [81]. In this case, fea-

tures learned in lower layers could not be passed to the upper layers due to the vanishing

of the signal. This wasn’t a problem with all neural networks.Instead, it was only with

those that used gradient-based learning methods. Certain activation functions were

found to be the root of the problem. A number of activation functions compressed

their input, resulting in a fairly chaotic reduction in output range. As a result, enor-

mous amounts of input were mapped over a very limited range. A substantial change in

the input will be reduced to a small change in the output for certain areas, resulting in

a vanishing gradient. Layer-by-layer pre-training and the formation of long short-term

memory were two ways utilized to tackle this challenge.

ImageNet was founded in 2009 by Fei-Fei Li, an AI professor at Stanford, who

collected a free database of over 14 million tagged photos [82]. There are a lot of

unlabeled photographs on the Internet. To “train” neural nets, labeled images are

required.

The 2009 NIPS Workshop on Deep Learning for Speech Recognition [65] was

prompted by the constraints of deep generative models of speech and the prospect

that deep neural nets (DNN) could become practical given more capable hardware and

large-scale data sets. It was thought that pre-training DNNs using generative models

of deep belief networks (DBN) would solve the neural nets’ fundamental problems [83].

In 2010, researchers used extensive output layers of the DNN based on context-

dependent HMM states created by decision trees to expand deep learning from

TIMIT [84] to large vocabulary speech recognition [85].

By 2011, GPUs had substantially improved in speed, allowing convolutional neu-

ral networks to be trained ”without” layer-by-layer pre-training. With the increased

computing speed, it became evident that DL had considerable efficiency and speed

advantages. AlexNet, a convolutional neural network, won multiple international com-

petitions in 2012 due to its architecture [86]. To improve the speed and dropout,

rectified linear units were utilised.
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Google Brain also published the results of an interesting experiment called The

Cat Experiment in 2012 [87]. The informal project looked into the limitations of

”unsupervised learning.”. DL employs ”supervised learning”, which entails training

the convolutional neural network using labeled data. A convolutional neural network

(CNN) is given unlabelled data as input and asked to look for recurring patterns

through unsupervised learning. The “Cat Experiment” used a neural network that

was distributed over 1,000 computers. The training software was allowed to run after

ten million ”unlabelled” images were randomly selected from YouTube and given to

the system. One neuron in the top layer was shown to respond strongly to images of

cats at the end of the training.In the discipline of DL, unsupervised learning remains

a major priority. In terms of processing unlabelled images, the “Cat Experiment”

performs about 70% better than its predecessors. However, it only detected only 16%

of the objects used in training, and it performed significantly worse when the objects

were rotated or moved.

In 2012, a team led by George E. Dahl won the ”Merck Molecular Activity Chal-

lenge” by predicting the biomolecular target of one drug using multi-task deep neural

networks [88].

DL is being used in both the processing of Big Data and the advancement of

Artificial Intelligence. DL is still growing, and is in search of novel ideas.

4.6 Transfer Learning

Stevo Bozinovski and Ante Fulgosi back in 1976 published a paper introducing transfer

learning in the training stage of a neural network [89]. This work gives a mathematical

model of transfer learning. Lorien Pratt in 1993 presented the discriminability-based

transfer (DBT) algorithm in a paper in ML field [90]. Cognitive science was a field for

transfer learning application, as Pratt edited an issue of Connection Science, having to

do with the use of transfer learning in neural networks [91].
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One of the most novel potentials of Deep Learning is that a model may not be

trained from scratch in some demanding situations. Instead it can inherit knowledge

from another relevant gnostic domain, as seen in Figure 4.6, ImageNet consists of over

14 million real life images, such as trees, cars, food, people, machines etc. Medical

images and especially annotationed from doctors, are very difficult to acquire as pre-

viously mentioned and in many studies transfer learning is used when the dataset is

poor [6, 92].

The main benefit when using transfer learning is that the algorithm converges

faster and by this way the whole training lasts significantly shorter than training from

scratch. Moreover the accuracy of a model increases compared to a trained model

from scratch. In conclusion, in circumstances when the available dataset is problematic

both in quantity and in quality, transfer learning is an excellent remedy. In our study

we exploited a pretrained network (MobileNetV2) which is trained on ImageNet, to

overcome the problems of our available dataset.

Figure 4.6: Knowledge acquired from training in task 1 with dataset 1 is exploited for
training in task 2 with another dataset 2.
Image taken from https://towardsdatascience.com/a-comprehensive-hands-on-guide-to-

transfer-learning-with-real-world-applications-in-deep-learning-212bf3b2f27a
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Chapter 5

Most used architectures in semantic
segmentation

5.1 Semantic Segmentation

Image segmentation is an important part of Computer Vision. Nowadays, Computer

Vision has many applications in the Automotive Industry, Disaster Relief and Emer-

gency Situations, Agriculture, Healthcare, Security, Finance, Retail and Inventory

Management, Advertising.

Semantic segmentation is the task of decomposing images into classes. With the

term ‘class’ we mean each individual entity of an homogeneous ensemble.

Segmentation is useful because it converts an image into something that is more

meaningful and easier to analyse. More precisely, semantic segmentation is the as-

signment of a label to every pixel of an image. Thus each individual class contains

pixels with the same characteristics such as colour, intensity, or texture. It differs from

image classification, where one or more labels are assigned to the whole image. When

applied to a stack of images, for example in Magnetic Resonance Imaging (MRI), the

subsequent contours after image segmentation may be used to reconstruct 3D images.

There is also a more informative way to segment images and is called Instance

segmentation. This type of segmentation carries more information because it segments

and can distinct objects belonging to the same class.

Binary segmentation is the simplest category of semantic segmentations. In this

case the pixels may belong either to one (positive) label or to the other (negative)

label. In cases where the classes are more than two, we are talking about a multi-class

segmentation problem. In our study we will utilise binary segmentation and will repeat

the experiment as many times as the number of the lesions we examine.
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5.2 Convolutional Neural Networks (CNNs)

The term “convolution” implies the existence of a mathematical operation. A Convo-

lutional Neural Network is an artificial neural network. The major usage and appli-

cations concern feeding the network with images as input. Their alternative name is

also shift invariant or space invariant artificial neural networks (SIANN). This name

is based on the feature maps or translation equivariant responses that the networks

provide, based on the sliding convolution kernels. Thus most CNNs are equivariant,

in contrast to invariant, to translation.Their applications are many: image and video

recognition, image classification, recommender systems, financial time series, natural

language processing, medical image analysis, image segmentation and many others.

CNNs are versions of multilayer perceptrons with regularisation. Multilayer per-

ceptrons are fully connected networks where each neuron is connected to all neurons of

the next layer. The advantage they have against overfitting lies in the fully connected

layer that they have in the final levels of their architecture. Traditional remedies against

overfitting are regularisation methods such as penalty of parameters (weight decay),

skipping connections or dropout. CNNs tackle overfitting with an alternative remedy

:they exploit the hierarchical patterns of data, constructing more complex patterns

with the use of filters.

CNNs were created in a way that they mimic biological processes [93]. Animal’s

visual cortex has an infrastructure which the CNNs try to mimic with the connectivity

between the neurons. Individual cortical neurons can only respond to stimuli in a small

area of the visual field called the receptive field. By covering the whole optic field ,the

receptive fields of different neurons may overlap. The major advantage compared to

traditional ML is that the features are extracted automatically and not by human

intervention.

If CNNs are used in image level, they cannot reveal where a candidate lesion is

hidden. Probability maps come into play, by giving an intuition about “where” does

the model detect the class (lesion) which searchers for. Many studies [9, 12, 11, 50, 44,

23, 16, 14, 25, 15, 36], create probability maps and often fuse them with the original

image to get an integrated visualization.
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5.2.1 Architecture of CNNs

In traditional neural networks , neurons accept signals from specific regions of the

prior layer. In contrast, in CNNS there is a limited area from which neurons accept the

signals of the previous layer. This area is the neuron’s receptive field. The shape of the

area is normally a square. In a fully connected layer ,the area is the whole prior layer.

As a result, each neuron in each convolutional layer accepts input from a greater region

in the input than in prior levels. This is due to the repeated use of the convolution,

which considers the value of a pixel as well as its surrounding pixels. The number of

pixels in the receptive field remains constant while utilizing dilated layers, but the field

becomes increasingly sparsely populated as the dimensions of the field increase.

A CNN comprises an input layer, the middle hidden layers and the final output

layer. They are called hidden because the activation function and the convolution

masks the input and the output. The convolutions are executed in the hidden layers.

After passing the input image the hidden layers perform a dot product of the kernel

with the image. Frobenius inner product is the terminology for this product and the

activation function used is the RELU. The convolution kernel passes over the input

image and simultaneously feature maps are created through this step. This feature

map is the input for the next layers. The following layers are pooling layers and fully

connected layers.

In a CNN the way that the network accepts the inputs is in the form of a tensor

with shape equal to (number of inputs × input height × input width × input channels).

The convolutional layer shifts the image in a conceptual way, by forming the feature

maps with shape equal to (number of inputs × feature map height × feature map

width × feature map channels). Convolutional layers perform the convolution praxis

and pass the feature map to the next layers. This resembles the response of a neuron to

a stimulus [94]. Despite the fact that fully connected feedforward neural networks can

classify data, they are not appropriate for images with high resolution. Practically it

would require a very huge number of neurons, no matter if the architecture is shallow.

For example a relatively small image of size 100 x 100 has 10,000 weights for every
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neuron in the second layer. In contrast convolution minimizes the parameters in a

way that the network can increase in depth [95]. With the use of regularized weights ,

problems such as the vanishing gradient and exploding gradient disappear unlike in the

backpropagation stage of classic neural networks. Additionally , CNNs are appropriate

for data distributed in grid-like form such as images , as they take into consideration

the spatial connections of features.

In Figure 5.1 we see an original image on the left and the 3×3 kernel in the middle.

After the convolution the resulting feature map is on the right.The blue region on the

image is finally converted to the blue region on the feature map.

Figure 5.1: The convolution process of an image on the left with a 3×3 kernel results in
the feature map on the right.
Image taken from https://anhreynolds.com/blogs/cnn.html

Pooling layers may follow the convolutional layers in many architectures. The

rationale behind using these layers is the dimensionality reduction. This is achieved

by combining the output of neuron clusters into a single neuron in the following layer.

There are 2 common categories of pooling layers: Max Pooling and Average Pooling.

Max Pooling layers finds the maximum value of each local group of neurons, whilst

Average Pooling finds the average value.
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In Figure 5.2 we see the effect of using a 2×2 kernel in a Max Pooling layer. The

result is a smaller image keeping the same characteristics of the original image.

Figure 5.2: The effect of the Max Pooling Layers on an image using a 2×2 kernel. The
reduction of the image size is obvious, keeping though the characteristics of the original image.
Image taken from https://ai.plainenglish.io/pooling-layer-beginner-to-intermediate-fa

0dbdce80eb

The final layer is the Fully Connected Layer. Every neuron of a previous layer

is connected with all the neurons of the following layer. After this stage, the feature

matrix is shifted to a one dimensional vector and can be classified as seen in Figure

5.3. SoftMax function is usually applied at this phase (most used in CNNs multi-class

tasks) providing a list of probabilities for the candidate classes.

Figure 5.3: A fully connected layer.
Image taken from https://www.oreilly.com/library/view/tensorflow-for-deep/

9781491980446/ch04.html
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In Figure 5.4 we see all the layers described earlier as part of the architecture.

In this example of DR lesion classification, the input image is passed through the

layers and the result is a probability for each type of lesion. More precisely the lesion

is predicted to be Hemorrhages as results with the highest probability amongst the

others.

Figure 5.4: Classification of a fundus image with a CNN.
Modified Image from https://www.analyticsvidhya.com/blog/2021/05/20-questions-to-test

yourskills-on-cnn-convolutional-neural-networks

5.3 UNETs

U-Nets were developed at the Computer Science Department of the University of

Freiburg, Germany. They are a modification of a CNN which was initially targeted

in image segmentation of biomedical images. The architecture of a UNET comprises

two paths: the first path is the contracting path or the encoder or the path which is

responsible for the analysis. It is exactly the same as CNN, providing information for

classification. The other path is an expansion path or decoder or the path which is

responsible for synthesis. It comprises up-convolution layers and also concatenations

which arrive from the encoder, containing features. The decoder allows the network to

access the spatial information lost from the encoding stage. Moreover the resolution

of the output is increased due to the expansion path. The resulting output passes to
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a convolution layer to construct the segmented image. The architecture of the net-

work is practically symmetric ,resembling the “U” letter. The objective of most CNNs

is to perform an image level classification. On the other hand, they cannot provide

pixel level classification, something determinant for medical imaging analysis. Histori-

cally speaking there were previous attempts for segmentation tasks, but Ronneberger et

al. [96] made huge improvements in medical image segmentation tasks. The inspiration

of UNET was based on previous works of Long et al. [39] who used fully convolutional

networks. The performance of their networks surpassed the previous best on ISBI 2012

challenge.

The importance of UNETs lies in the fact that they can be trained with a very lim-

ited number of images and despite this fact they can create very detailed segmentation

maps. This is extremely important in medical imaging due to the rarity of annotated

datasets. This unique characteristic is accomplished by random elastic deformation of

the training data [96]. If two instances of the same class have touching borders, then

the segmentation is achieved by applying a weighted loss function that penalises the

model in case of wrong separation of two instances. Moreover UNET has training time

much faster compared to other segmentation models due to its methodology based on

learning of the context.

Since the development of UNETs in 2015,there has been an outbreak in the medi-

cal community. New methods and approaches have been developed ,as it was expected,

to enforce the power of their predecessors. In [26, 27, 29, 31, 32], they use U-nets or

combinations for segmenting the lesions.

5.3.1 UNET architecture

UNET networks have two parts as mentioned earlier. The first one is the encoder or

contracting which resembles a CNN architecture. We can see the architecture in Figure

5.5. Every single block in the encoder comprises two 3×3 convolution layers, a RELU

activation function and a max-pooling layer. This motif is repeated 4 times. Something

that makes UNETs unique is that the feature map after passing to the decoder is
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upsampled with the help of a 2×2 convolution layer. The corresponding feature map

of the encoder is cropped and concatenated to the previous upsampled feature map

of the decoder. Two 3×3 convolutional layers and a RELU activation function follow

up. The last phase of the architecture has an 1×1 convolutional layer which is applied

to the feature map for dimensionality reduction and thus the segmentation image is

feasible. The reason for cropping is that the edges of the feature map include the least

contextual information and need to be avoided. The whole architecture of the UNET

looks like the “U” letter as mentioned earlier.

Figure 5.5: The architecture of a UNET.
Modified Image from https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

The energy function for the network is given by the following equation:

E =
∑

w(x) log (pk(x)), (5.1)

where pk is the pixel-wise SoftMax function applied over the final feature map,

pk =
eak(x)

k∑
k′=1

eak′ (x)

(5.2)

and ak(x) denotes the activation in channel k.
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5.4 FCNs

A Fully Convolutional Network (FCN) is a modified CNN where FC layers have been

removed and deconvolution layers are added to undo the effect of down-sampling and

get an output map of the same size as input image.

A difference between UNet and FCN relies on upsampling. In FCNs, a downsam-

pling feature map of the same level and an upsampled feature map are simply added

and upsampled. In contrast, in UNets, they are concatenated and then go through

some convolutional layers for further processing. Figure 5.6 shows an FCN.

Figure 5.6: A Fully Convolutional Network.
Image taken from: http://www.kafftjishqi.com/blog/fully-convolutional-neural-networks/
index.html

5.5 Stacked autoencoders

Stacked Autoencoders (SAEs) comprise of blocks. Each block is called “Autoen-

coder(AE)” and is simply a neural network with a single hidden layer with the same

input and output. The training of a SAE has 2 phases: pre-training and fine tun-

ing. The pre-training phase is achieved with unsupervised algorithms followed with

supervised ones in the second phase.

There are two types of AE: sparse autoencoders and denoising autoencoders

(DAE)s. The first category is used to extract sparse features from raw data whilst

the second is used for recovering inputs (images) with noise.
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5.6 Generative Adversarial Networks (GANs)

In 2014 Ian Goodfellow devised Generative Adversarial Networks (GANs) which belong

to the ML field [42]. The philosophy behind the design lies in a contest amongst two

networks,the generator and the discriminator , with one trying to deceive the other.

Synthetic data are generated given a training set. If a GAN for instance is trained on

MRI images ,it can generate MRI ,at least plausible to the human eye taking advantage

of the many pragmatic elements. Although GANs had been initially proposed for

unsupervised learning tasks ,they are also powerful for supervised, semi-supervised

and reinforcement learning tasks.

The main concept of GANs is that the generator instead of trying to minimise the

loss function, it contrarily tries to fool the discriminator as shown in Figure 5.7. This

kind of training is unsupervised learning.

Figure 5.7: The discriminator tries to find out if the input image is real or synthetically
generated from the generator.
Image taken from https://link.springer.com/chapter/10.1007/978-1-4842-3679-6_8

The generator generates fake or synthetic images whilst the discriminator checks

them. The network which constitutes the generator is trained to correspond from a la-

tent space to a data distribution similar to the original. The network which constitutes

the discriminator, in contrast, identifies the source of the input, thus distinguishing

whether it is real or synthetic. The role of the generator is to increase the error rate

of the discriminator, in other words to fool the discriminator.
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The discriminator is initially trained on a known dataset until it reaches the high-

est accuracy. On the other hand the training of the generator is based on the success

of deceiving the discriminator. The training of the generator begins with random noise

sampled from a predefined latent space. Afterwards, the candidate images are checked

by the discriminator. Backpropagation algorithm is applied to both networks. Thus,

the generator learns to produce more realistic data, whilst the discriminator learns to

recognise the synthetic data better. In cases where GANs deal with images, a decon-

volution network comprises the generator while a CNN the discriminator.

A limitation that GANS have is the “mode collapse”, as they don’t generalise

properly and miss whole modes from the input. For instance, a GAN trained to

classify 10 digits may not include a digit to its output. There are some theories about

this problem, concerning the selection of loss function and others the poor training of

the discriminator who fails to notice the omission of one digit. This problem is yet

unsolved [97].

Table 5.1 below shows some of the architectures used according to previous liter-

ature review.

Table 5.1: Architectures used according to Literature Review

Architecture Reference

CNN [9, 12, 11, 50, 44, 23, 16, 14, 25, 15, 36]

FCN [17, 18, 31, 22, 35, 37]

UNet [31, 26, 27, 29, 32, 37, 51]

Stacked Sparse
Auto-encoder (SSAE)

[49]

Generative Adversarial
Networks (GANs)

[27, 28]

Discriminative Restricted
Boltzmann Machines

(DRBM)
[19]

DeepLabV3 [37, 45]

SegNet [45]
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High performance in Deep Learning depends on the available datasets [98]. The net-

works are “data hungry” and the doubt of decent performance of the model arises

due to the limited medical datasets. There are several reasons for this issue. First

of all, the privacy of the patient’s data renders the access very difficult. Only with

the patient’s consent, data can be accessed. Second, the annotation is very time con-

suming and expensive. Physicians must determine the exact boundaries of the lesions,

something harder than an image based annotation. The problem of limited dataset

leads to “overfitting”. Generally this means that although the algorithm may have

high accuracy in train set, it cannot generalize in new unseen images. There are many

remedies to tackle this difficult problem such as augmentation, use of Dropout layer,

use of synthetic images, use of regularization in loss function etc.

Another limitation is the problem of imbalanced datasets both in image and pixel

level. The images with lesions are much less than the normal in a dataset. And

this happens clearly due to statistical reasons. In pixel level, the imbalance appears

because the lesions occupy much less pixels compared to the whole image. In all cases

the imbalanced datasets lead to biased weights, and thus to lower performances. [15]

tackles this problem with a two stage approach of passing a probability map to a

CNN. [31] tackles the same problem with the use of conditional adversarial networks

(cGANs).

Finally, a common problem amongst the most datasets is their quality both in

image as well as in annotation level.

Fundus images are acquired under “conditions of a real world”. This means that

many of them do not have the appropriate conditions for descent acquisition. [11]

proved that the quality of the image influences the algorithm and thus the performance

depends on it.
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These limitations make segmentation tasks very challenging because they demand

the devise of new techniques based on the rarity of annotated datasets. Table 6.1 is a

synaptic table with the most common public datasets that are used.

Table 6.1: The most common public datasets used

Name Number
of

images

Resolution Annotation Task

MESSIDOR 1200 Varying Image level DR grading

MESSIDOR 2 1748 Varying Image level DR grading

IDRiD 516 4288x2848
Image &
pixel level

DR grading
HE, MA, SE, HM

detection

e-Optha 463 Varying Pixel level EX, MA detection

DRiDB 50 Varying Pixel level
MA, HM, HE, SE, Optic

disc detection

STARE 400 605x700 Pixel level
Vessel segmentation,

Optic nerve detection, 13
retinal diseases

DRIVE 40 768x584 Pixel level Vessel segmentation

Eye-PACS 88702 Varying Image level DR grading

DIARETDB1 89 1500X1152 Pixel level
HE, HM, SE, red small

dots

Kaggle 80,000 Varying Image level DR grading

CHASE 28 1280X960 Pixel level Vessels segmentation

DRISHTI-GS 101 2896x1944 Pixel level
Optic disc, Optic Cup

segmentation

ARIA 167 768X576 Pixel level
Optic disc, fovea, vessel

segmentation

DRIONS-DB 110 600x400 Pixel level Optic disc segmentation

ORIGA 650 720X576 Pixel level
Optic disc, Optic Cup

segmentation

REVIEW 16 Varying Pixel level Vessel segmentation

SEED-DB 235 3504X2336 Pixel level
Optic disc, Optic Cup

segmentation

RIM ONE 169 - Pixel level Optic nerve segmentation

HRF 45 3504x2336 Pixel level Vessel segmentation
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Dataset preprocessing

7.1 Preprocessing techniques

In the pipeline to implement a segmentation task, there are some stages which are

crucial for the outcome. The retinal camera works as a fountain of images where there

are several factors which determine their quality. In all cases bad quality of fundus

images may hide some lesions and important information may be lost. In Figure 7.1

we can see images with several technical problems.

Figure 7.1: Several technical problems that are present in real world datasets.
Images taken from: https://www.kaggle.com/c/diabetic-retinopathy-detection

Generally with the term ‘noise’ we describe any cause which leads to loss of high

frequency information and thus a rough appeal of the image. Noise may come from

several reasons such as dust, bad quality of the camera, bad camera settings, bad

pose of the subject, movement of the eye and generally not professional conditions of

acquiring images. Thus, many artifacts due to unpredictable reasons may appear. In

the real world, a small portion of an acquired dataset with such images is probable to

be extracted and must be tackled as best as possible.

A common issue of problematic images is the lack of sufficient illumination. In

such cases dark regions appear in images and generally there is an heterogeneity in

pixel’s intensity. In some other cases the opposite happens where the images seem

“burned” and there are regions overexposed to light.
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7.1. PREPROCESSING
TECHNIQUES

Many studies [17, 18, 99, 100, 49, 101, 50, 102, 14, 31, 29, 33, 36] begin the

preprocessing by extracting the green channel because it provides the highest contrast.

There are several ways to get rid of the noise. In [28] they apply Non-local Means

Denoising algorithm to reduce it as a starting point. In other cases [18] they use

morphological operators.

Contrast enhancement (CE) [9, 101, 31] is used to enhance the contrast between

the lesions and the background and is produced by subtracting the Gaussian filtered

image from the original image while adding a baseline factor over the grayscale (γ).

Contrast Limited Adaptive Histogram Equalization (CLAHE) [103, 33, 28] is a

technique used for contrast enhancement and affects small regions instead of the whole

image. This leads to better results compared to normal CE.

In some cases [99, 50, 32] some studies believe that some false positives have to do

with the existence of vessels close to lesions with similar characteristics so they remove

the vessels. This is achieved with Image processing techniques such as morphological

operators and in some other cases [33], Otsu’s threshold was used to divide the image

in binary regions for further processing.

Besides the issues having to do with Image Processing in many cases the processing

comprises stages having to do with configuration of images. The main reason is because

the models work better with some manipulations. For example in [101] they scaled the

pixel intensities between zero and one. In [16] they standardized the pixel’s intensities

by subtracting mean and dividing by standard deviation.

Almost in all cases the most common step is to resize the images or patches to fit

to the input of the upcoming network [99, 100, 11, 16, 24, 26].

The most common public datasets have a very small number of images and this

is addressed in many ways. This problem is analyzed in the next section. But in

some cases [9, 17, 12, 18, 4, 48] patches are created as a starting point. They may be

augmented to address overfitting [14], or balanced by removing patches which create

bias to the model [15].
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7.2. AUGMENTATION

We worked with IDRiD dataset, which is a very a qualitative dataset. In our

study we did not apply any Image Processing technique because the images were very

decent, except from scaling the data between zero and one and creating patches to

increase the number of images. The only additional step as it will be later explained

is that we did not use all the available patches but instead we set up a threshold to

maintain the most informative ones. Those patches were further used in augmentation

algorithm.

7.2 Augmentation

The most common problem in Deep Learning is overfitting. By this term we mean that

the model may have a great performance in the train set but fails to generalize in new

unseen data. In the next sketch we can see 3 different types of fitting the data. The

first one shows the ideal fit of the data, in contrast with the next ones. The second

sketch appeals overfitting whilst the third appeals underfitting. It is obvious that in

case of overfitting the model tries to capture all possible training data. The result is the

poor performance on test data. In underfitting case, the model has a bad performance

on training dataset. Figure 7.2 depicts these types of data fitting.

Figure 7.2: Types of data fitting: Left image shows an ideal fitting, the middle image has
overfitting problem and the right one has underfitting problem

There are several reasons which lead to this bad performance and thus many ways

to tackle it. In Deep Learning and especially in Medical Imaging the major problem
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is the lack of enough datasets. There are only a few datasets and they provide a small

number of annotated images. So the model has not enough data to be trained and

without addressing this issue with some techniques, this leads to poor performance.

The most common ways to confront these problems are augmentation, Drop Out,

cross validation, regularization and early stopping.

By the term ‘augmentation’ we mean that we augment or increase the amount of

data in order to reduce “overfitting”. There are two ways to do this: By exploiting the

existing data and altering them, and the second way is to create new synthetic data

from scratch.

In [31, 32] they create synthetic data with Generative Adversarial Networks

(GANs). GANs comprise two networks which cooperate in order to generate synthetic

images as mentioned in 5.6.

There is a simpler way to avoid creating a whole network to tackle overfitting.

Augmentation may be applied to already created patches or to the whole image. In

Python (specifically Keras) there are functions (eg. ImageDataGeneretor) which can

alter and distort the existing images. On the other hand, many studies create their own

custom functions. The rationale behind this is that a model must learn to recognize a

lesion no matter the pose it has.

In [9, 12, 22, 13, 11, 44, 16, 24, 14, 25, 29, 15, 36] they apply this technique. There

are several ways to alter an image: An image can be cropped, zoomed in and out [12],

mirrored [44] and the most common is to flip horizontal, vertical, 180, 270 degrees the

image [9, 22, 47, etc.]. There are also cases that change the colors of the image for

further augmentation.
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Metrics to evaluate the
performance of a model

There are several metrics used to evaluate the performance of a model. Some of them

are dedicated for image segmentation and others for general classification tasks.

The deviation of the prediction from ground truth helps in precise evaluation of

the model. By knowing the ground truth, predictions are classified as following: When

a true lesion has been classified correctly then it is a true positive (TP). In case the

model believes that it is a lesion but in reality it is not, we are talking about a false

positive (FP). On the other side, when a region has been predicted not to indicate a

lesion, correctly, we are talking about a true negative (TN), and in case the model fails

to detect a lesion in a region, we are talking about a false negative (FN).

Having in mind those definitions, we define as:

Sensitivity, recall, True positive rate (TPR) =
TP

FN + TP
(8.1)

Specificity, true negative rate (TNR) =
TN

FP + TN
(8.2)

Precision, positive predictive value (PPV ) =
TP

FP + TP
(8.3)

Accuracy =
TP + TN

TP + TN + FP + FN
(8.4)

Those metrics are most used in more general classification tasks but they can also

be used to evaluate the detection of lesions. Most studies don’t rely on one metric but

use several to have a better understanding about the model.
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More dedicated to segmentation metrics are:

The Intersection-over-Union (IoU), reflects the degree of coincidence between the

predicted values (P) and the original ground truth (G):

IoU =
P ∩G

P ∪G
(8.5)

The dice coefficient is a measure of similarity that takes into account the overlap

between the predicted values (P) and the ground truth (G). It is commonly used to

assess segmentation performances

Dice coefficient, F1 score =
2 ∗ |P ∩G|
|P |+ |G|

=
2 ∗ TP

2 ∗ TP + FP + FN

(8.6)

Besides the values provided by metrics, special curves can be plotted in order to

have an intuition and visualization about how well the model works.

The ROC curve is created by plotting the true positive rate (TPR) against the false

positive rate (FPR = 1− TNR) at various threshold settings. “Area Under the ROC

Curve” (AUC) provides an intuition about how well the model classifies. Specifically

AUC estimates the probability that the model ranks a random positive example more

highly than a random negative example. The AUC values range from zero to one, with

zero and 100% accuracy respectively.

There special curves which are deserved for segmentation tasks: A Free-response

Receiver Operating Characteristic (FROC) curve is a tool for characterizing the perfor-

mance of a free-response system at all decision thresholds simultaneously. It displays

the possible tradeoff between the sensitivity against the average number of false positive

detection per image.
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Organizing our Experiment

The model in Deep Learning tasks, is trained on annotated data and predicts new

unseen images. In our case we will follow the pipeline shown in Figure 9.1.

Figure 9.1: The pipeline we will follow to predict the lesions

We started by preparing our dataset.This is a crucial part of the experiment and

dedicated the most time compared to the rest of the procedure..Afterwards as shown

in Figure 9.1 we trained our model and we were able to predict the lesions.

9.1 Data preprocessing

9.1.1 IDRiD dataset

IDRiD dataset [8] is one of the best public datasets concerning annotations of DR.

The fundus images come from an ophthalmologist at an Eye Clinic located in Nanded,

Maharashtra, India. From all the acquired images only 516 were chosen as the best

and most informative to be included in the dataset.

Images were acquired using a Kowa VX-10 alpha digital fundus camera with 50-

degree field of view (FOV), and all are centered near to the macula. The images have

a resolution of 4288 × 2848 pixels and are stored in jpg file format. The size of each

image is about 800 KB.
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The pixel level annotated data include 81 color fundus images which appear at

least one DR lesion. A binary mask shows with pixel level accuracy the precise lesion.

The annotation is executed for all four lesions and resulted in : 81 images for microa-

neurysms (MA), 40 images for soft exudates (SE), 81 images for hard exudates (EX)

and 80 images for hemorrhages (HE), totally 282 images.

9.1.2 Rationale behind preprocessing

The main concern in our experiment was to achieve a good performance. One of the

things we had to pay attention in preprocessing stage was the overfitting problem. We

had to begin with the available 282 images. The size of the images (4288 × 2848)

would not fit to the memory though. As mentioned in previous chapter UNETS are

ideal to work with a limited number of training images. Nevertheless, we decided to

increase the number of images synthetically, by creating patches ,taking as base those

282 images.

Moreover the patches were created from sliding windows so that the final number

of images increased dramatically. We decided to work with 512×512 size of each patch,

according to [51]. The sliding step was 64 pixels in all datasets except for SE which

we reduced to 32 to have an equal number of final patches in each lesion.

According to this plan we ended up with 140,000 patches of EX, 140,000 patches

of HM, 140,000 patches of MA and 142,000 patches of SE. From all those patches we

set a threshold for each lesion to keep the most informative patches and discard the

redundant ones. So for:

• Exudates (EX) the threshold was set to keep 5 % and more of the lesions in

images. Thus the final number of informative EX patches was reduced to 17,016.

• Hemorrhages (HM) the threshold was set to keep 5 % and more of the lesions in

images. Thus the final number of informative HM patches was reduced to 19,536.

• Microaneurysms (MA) the threshold was set to keep 1 % and more of the lesions

in images. Thus the final number of informative MA patches was reduced to

17,168.
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• Soft Exudates (SE) the threshold was set to keep 1 % and more of the lesions in

images. Thus the final number of informative SE patches was reduced to 12,944.

Figure 9.2 shows an example on how the results we expect to get.

Figure 9.2: We can see an example of what kind of images we feed the network. The left
one is the original fundus image, while the right one is the groundtruth corresponding to
exudates.

So as an example we can see two patches from Exudates dataset. The left one is

the image and the right one is the binary mask corresponding to exudates.

We split each individual dataset with a ratio of 80% training and 20% testing.

As mentioned in the previous section we did not apply any special Image Processing

technique. This was due to the fact that IDRiD was a qualitative dataset compared

to the other publicly available datasets both in image as well as annotation level. The

only additional step was to scale the data by dividing each pixel by 255.

9.2 Training the model

9.2.1 MobileNETV2

MobileNetV2 [7] is an architecture most used in mobile devices. It surpasses the state

of the art performance of benchmarks and mobile models on multiple tasks.
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In this model there are 2 types of blocks: residual blocks with stride of 1 and

another block with stride of 2. There are three layers for these blocks. The first layer

is a 1× 1 convolution, the second is the depthwise convolution and the last is another

1× 1 convolution without nonlinearity, as seen in Table 9.1.

Table 9.1: The architecture of the MobileNetV2, where t is the expansion factor, c is the
number of the output channels, n is the repeating number and s is the stride.
Image taken from https://medium.com/@luis_gonzales/a-look-at-mobilenetv2-inverted-

residuals-and-linear-bottlenecks-d49f85c12423

Input Operator t c n s

2242 × 3 conv2d − 32 1 2

1122 × 32 bottleneck 1 16 1 1

1122 × 16 bottleneck 6 24 2 2

562 × 24 bottleneck 6 32 3 2

282 × 32 bottleneck 6 64 4 2

142 × 64 bottleneck 6 96 3 1

142 × 96 bottleneck 6 160 3 2

72 × 160 bottleneck 6 320 1 1

72 × 320 conv2d 1× 1 − 1280 1 1

72 × 1280 avgpool 7× 7 − − 1 −
1× 1× 1280 conv2d 1× 1 − k −

Figure 9.3 shows the MobileNetV2 full architecture with all layers.

Figure 9.3: MobileNetV2 full architecture with all layers
Image taken from https://www.mdpi.com/1424-8220/20/14/3856
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Generally MobileNetV2 is less time consuming to train because it has less param-

eters to train and thus the model converges faster and with higher accuracy compared

with a model trained from scratch.

9.2.2 Architecture and hyper parameters

The model we use, as previously mentioned, is based on a Unet with the difference

that the encoder is replaced with MobileNetV2 architecture, omitting the last Fully

Connected Layer. Additionally the encoder is pretrained on ImageNet. Figure 9.4

shows the philosophy of our architecture.

Figure 9.4: The philosophy of our architecture. The whole left part is which corresponds
to the encoder of the U-Net, is replaced by MobiletV2

Except for the architecture, there are other hyperparameters which have been

tuned to improve the performance.

Loss function measures the discrepancy of the predicted labels from the ground

truth and it is used during training of the model. In every backpropagation the weights

are updated and after the appropriate epochs, training stops because there is conver-

gence of the loss function. We used binary cross entropy as a loss function which has

the formula of the equation (9.1).
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Binary cross entropy = − 1

N

N∑
i=1

ŷi + (1− yi) log(1− ŷi) (9.1)

where ŷi is the i-th scalar value in the model output, yi is the corresponding target

value, and output size is the number of scalar values in the model output.

As previously explained to prevent overfitting we used the augmentation technique

but only for training set. Specifically we used the ImageDataGenerator class from Keras

and set the following parameters: rescale = 1/255 to scale the data, shear range = 0.2

(to create sheared images), zoom range = 0.2 (to create images with zoom effect) and

horizontal flips = True (to create horizontally flipped images).

The learning rate was set to 0.0001 for all the experiments. For the optimization

of the loss function we used Adam optimizer with the default settings: β1 = 0.9 and

β2 = 0.999. The batch size we chose was set to 8 for all our experiments. The epochs

we used differed for each experiment and did not use early stopping, to the contrary

to reach the best possible accuracy. So in Ex the epochs were 70, in HM there were

50, in MA 100 and in SE 50.
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Results

The whole study consists of 4 experiments, each one concerning a lesion. In the fol-

lowing section we have gathered all the results and we present them synoptically.

10.1 Pixel level-Metrics

Table 10.1 shows the metrics from each experiment. A thing worth mentioning is that

the specificity is high due to the imbalance of the dataset. Thus, it correctly predicts

most of the negative class (normal tissue) in all test sets. Note that all the experiments

are executed in the IDRiD test set.

Table 10.1: The metrics from each experiment.

Metric Exudates Hemorrhages Microaneurysms Soft Exudates

Dice coefficient 0.83 0.85 0.85 0.95

Recall 0.85 0.89 0.84 0.97

Precision 0.90 0.91 0.95 0.96

Sensitivity 0.86 0.89 0.844 0.97

Specificity 0.99 0.99 0.999 0.99

10.2 Pixel level -Confusion Matrices

The next tables show the confusion matrix in pixel level for each lesion. If we sum all

the TP, TN, FP, FN, the result represents the total number of pixels of the test set.

Tables 10.2–10.5 show the confusion matrices of each experiment
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Table 10.2: Confusion Matrix of Exudates experiment

Exudates
Confusion Matrix

Actually Positives Actually Negatives

Predicted Positives
True Positives=

58,951,560
False Positives=

5,894,475

Predicted Negatives
False Negatives=

9,734,064
True Negatives=

816,708,992

Table 10.3: Confusion Matrix of Hemorrhages experiment

Hemorrhages
Confusion Matrix

Actually Positives Actually Negatives

Predicted Positives
True Positives=

61,104,796
False Positives=

5,422,910

Predicted Negatives
False Negatives=

7,014,877
True Negatives=

951,964,864

Table 10.4: Confusion Matrix of Microaneurysms experiment

Microaneurysms
Confusion Matrix

Actually Positives Actually Negatives

Predicted Positives
True Positives=

4,661,535
False Positives=

226,894

Predicted Negatives
False Negatives=

857,627
True Negatives=

869,029,504

Table 10.5: Confusion Matrix of Soft Exudates experiment

Soft Exudates
Confusion Matrix

Actually Positives Actually Negatives

Predicted Positives
True Positives=

27,799,908
False Positives=

1,123,113

Predicted Negatives
False Negatives=

744,409
True Negatives=

649,809,728
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10.3 Lesion level- Metrics

In our opinion it would be more informative to know how well the model predicts on

lesion level and not on every single pixel. To this end, we set the threshold to 0.5. This

means that if the model predicts more than 50 % of the pixels of a lesion, then we count

as one lesion. In the opposite case we do not accept it as a lesion. So, we measure how

many lesions the model has predicted (predicted labels) and how many of them are

indeed lesions (true labels). Further we measure how many of the predicted lesions are

indeed lesions (true positives), how many of the predicted lesions are indeed healthy

tissues (false positives), how many of the lesions are not predicted (false negatives) and

finally we measure the mean Intersection over Union (IoU) for all the test set.

So we with this rationale we have the following results shown in table 10.6:

Table 10.6: Metrics of the experiments in lesion level

Results
Exudates

(3400 patches)

Hemorrhages

(3912 patches)

Microaneurysms

(3440 patches)

Soft Exudates
(2592 patches)

Predicted labels 82,973 12,763 17,686 3,290

True labels 77,493 19,424 17,234 3,904

True positives 55,125 8,069 15,867 3,091

False positives 20,627 3,145 842 131

False negatives 4,392 5,391 424 592

Sensitivity 0.9262 0.5994 0.9739 0.8392

Precision 0.7277 0.7195 0.9513 0.9593

Mean IoU 0.7463 0.7794 0.7539 0.9269

10.4 Comparison of pixel and lesion level analysis

Comparing the pixel and lesion level analysis we can see that the results mainly con-

verge in Precision metric : SEs and MAs have the best performance. In contrast in

Sensitivity metric the results do not converge: In pixel level SEs have the best perfor-

mance and MAs the worst. In contrast in lesion level MAs have the best performance.
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This will be explained directly in the next paragraph. Finally dice coefficient and IoU

mainly converge in both pixel and lesion analysis with SE having the best performance

and EXs the worst.

The results in pixel and lesion level do not agree, in our opinion, due to the

following reason.

Figure 10.1 shows two circles: A and B. Circle A is a lesion with the red area

predicted which covers the 25% of the lesion. The dotted line shows the threshold of

50% of the area. Circle B is the groundtruth of the lesion, which covers 100% of the

area as we see. In this case we have TP = 25, TN = 0, FN = 75, FP = 0.

A B

Figure 10.1: Circle A is a lesion with the red color showing the predicted area. Circle B is
the groundtruth

In pixel level the sensitivity according to (8.1) is 0.25 while Precision, according

to (8.3), is also 1.

In lesion level if we set the threshold to 50% then there is no lesion predicted, thus

the Sensitivity is zero and Precision does not have any meaning. So if we have a large

lesion it is difficult to predict more than 50 %, compared to a smaller lesion area.

Returning to our previous question why Sensitivity is better in smaller lesions, in

lesion level, we can clearly understand now the answer. The areas in MAs are clearly

smaller compared to other lesions, so the threshold does not affect Sensitivity so much.

In contrast in larger lesions like HMs the threshold makes things harder.
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10.5 Curves of the performances

Finally we can see the performance of the model during the whole training. The left

figures show the dice coefficient, and the right show the model loss. As we can infer from

all figures there is no overfitting during our training. Another phenomenon which is

present in all our experiments is the sudden drops of the performance, which happened

several times during training. The known “Black Box” issue which characterizes Deep

Learning, does not let us have an intuition about the reason for this strange behaviour.

Figures 10.2, 10.3, 10.4 and 10.5 shows the performance in EX, HM, MA, SE ex-

periment respectively. The left image shows the dice loss progress through the epochs,

and the right show the loss in each experiment.

Figure 10.2: Exudates experiment

Figure 10.3: Hemorrhages experiment
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Figure 10.4: Microaneurysm experiment

Figure 10.5: Soft Exudayes experiment

10.6 Visual representation of predictions

The performance of the dataset is examined visually in two datasets. The first one is the

known test set IDRiD and the second is DIARETDB1, a dataset that the algorithm

has never seen before. We will also see how the algorithm predicts both individual

patches as well as whole images.
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Figure 10.6 shows how the algorithm predicts patches of the known IDRiD dataset.

The first image on the left is the image which will be passed to the algorithm, the second

image is the predicted image and the last image is the ground truth. We can infer that

the good performance of the model is also reflected on the visualization.

Figure 10.6: Visualization of our results: The image on the left is the fundus image, the
second image is the predicted image and the last image is the ground truth. Note that the
testing images belong to IDRiD, a dataset which our algorithm has already seen
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Figure 10.7 shows the predictions on a new unseen dataset (DIARETDB1). The

groundtruth is not with the same accuracy as the IDRiD dataset. There are not exact

borders of the lesion but instead area which surrounds the lesion. Despite this fact, we

can understand visually that out model has a good accuracy.

Figure 10.7: Visualization of our results in unseen dataset: The image on the left is the
fundus image, the second image is the predicted image and the last image is the ground truth.
The testing images belong to DIARETDB1 which our algorithm has never seen before. One
can notice the weird groundtruth of this dataset, but our predictions belong to the area of
groundtruth
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Figure 10.8 shows the predictions holistically and not on single patches. The

lesions we predict are the exudates of an entire image.

Figure 10.8: Predictions of Exudates in whole images instead of using patches

Finally we have combined all lesions and given a pseudo color for better visualiza-

tion. Exudates are colored magenta, Hemorrhages cyan, Microaneurysms blue and Soft

Exudates yellow. Final result emerges from this combination. It is important to note

that this is not multiclass segmentation, where each pixel corresponds to one lesion

only. It is just a visual representation of the whole experiment as seen in Figure 10.9.

Figure 10.9: Visual representation of the results, combining all lesions in one image, using
pseudocolors
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10.7 Compare to state of art

Finally we compare our results with the results of our literature review. The comparison

is in pixel level and not in lesion level. The inferences of our literature review, as

earlier mentioned, showed that Unets and FCN are very robust models. Except from

these models, some of the older ones based on traditional CNN architectures, showed

very good performances too. So we did a comparison taking into account all those

parameters. Table 10.7 shows that the Sensitivities of Hemorrhages and Soft Exudates

of our model surpass the existing state of art models. More specifically, Sensitivity

in HMs reached 0.89 whilst in SEs reached 0.97. In contrast, our Sensitivity in EXs

(0.86) could not reach the 0.99 of [23], as well as in MAs our Sensitivity (0.844) could

not surpass the 0.87 of [51].
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Table 10.7: Metrics in the state-of-art papers according to our literature review. Red color indicates the highest sensitivity in each lesion

AUTHOR YEAR
EXUDATES

SENSITIVITY
HEMORRHAGES
SENSITIVITY

MICROANEYRISMS
SENSITIVITY

SOFT
EXUDATES

SENSITIVITY
ARCHITECTURE

OURS 2021 0.86 0.89 0.844 0.97
UNET WITH
PRETRAINED
ENCODER

[37] 2021 0.94 0.87 0.48 0.87

DEEPLABV3,
FCN,

UNET

[31] 2018 0.94 - - - UNET + cGAN

[32] 2018 0.92 - - - UNETs

[23] 2017 0.99 - - - CNN(Le-Net)

[9] 2018 0.96 0.84 0.85 - CNN

[17] 2018 0.84 - - - UNET

[35] 2019 0.89 - - - FCN

[51] 2018 0.88 0.72 0.87 0.77 UNET
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To the best of our knowledge, it is the first time that a pretrained network replaces

the encoder of a UNET for semantic segmentation of DR lesions. The main goal of

this study was to use state of art techniques and tackle a retinal lesions segmentation

problem. This problem was substantially an automatisation of DR diagnosis.With the

emergence of AI many human based tasks were substituted and in some cases like in

countries where there is lack of doctors, AI can be beneficial. The algorithm we had to

create could be further applied in mobile phones which have a special attached camera.

Semantic segmentation was our target, which means that we had to create an

algorithm which could find and segment each type of four lesions. The problem was

binary and this means that each time we can segment only one lesion. Such tasks are

tackled with DL algorithms and more specifically we used UNETs which showed very

promising results according to our literature review.

The major problem in many cases is the available datasets.In our case we were

based on the IDRiD dataset,which is a public dataset. This dataset has qualitative

images although it is imbalanced. We made a preprocessing step, based on most

informative patches and used augmentation to be sure that we had a plethora of images.

Moreover due the peculiarity of our dataset we had to take it a step further and

not train the model from scratch. Thus ,we used transfer learning but not in the whole

part of the UNET. We used MobileNetV2 as the pretrained part of the UNET encoder.

The results of the experiment were very promising. The curves showed that there

was no overfitting. This was achieved due to the correct preprocessing in our opin-

ion.Confusion Matrices of all experiments showed that the model had generally very

few FP or FN ( FP in Exudates experiment were about 0.06% of the total pixels).
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The Dice coefficient was over 0.83 in all lesions and in Soft Exudates was 0.95.

Sensitivity is a metric which helps us understand how many of the pixels with true

lesions were correctly labeled. And this is the most informative metric in our opinion.

As far as Sensitivity concerns all lesions were over 0.844 and the best score was achieved

in Soft Exudates (0.97).

Compared to the other state of art studies , in two lesions (SE,HM) we overpassed

the existing best scores.In conclusion, gathering all the positive feedback the experiment

showed that the algorithm was robust according to the comparison.

On the other hand, the results of the experiment could not be representative of

the real world. The comparison between our experiment and the others was done based

on different datasets in several cases. This means that this comparison may seem real

but it is based upon wrong assumptions. Another problem is that the testing set

is relatively small and not very representative. Finally, images acquired from fundus

cameras have deficient illumination and bad image quality. So it is not obvious that our

performance could be kept on testing with such mobile phones which acquire fundus

images. To be more precise, in order to train an algorithm to be proficient on such

image qualities, the training set must be based on such images and not on IDRiD,

which contains qualitative image analysis.

Generally there is room for future improvements.If the case is to build exclusively

a mobile application for semantic segmentation of DR lesions, then there is need for

an appropriate dataset. Plenty of images must be acquired and skilled doctor must

delineate the lesions and properly characterise them.

Exudates and Microaneurysm segmentation’s performance could be further im-

proved. A possible remedy is to use transfer learning from one lesion segmentation.

In [17] they use knowledge from Microaneurysms and apply it in Exudates segmenta-

tion. In our case we could use transfer learning from Soft Exudates with very good

metrics and train the model for segmenting Exudates or Microaneurysms.Another idea

to improve the metrics would be to use other pretrained models besides MobilenetV2.

Keras offers many pretrained models in the following table. We should choose models

with as few parameters as possible in order to be light enough for further usage in
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mobile phones. MobileNetV2 has 3,538,984 parameters according to Table 11.1. So

two candidate models could be NASNetMobile with 5,326,716 parameters and Effi-

cientNetB0 with 5,330,571 parameters.

Table 11.1: Available mobels in keras Table taken from Keras documentation

Model Size
Top-1

Accuracy

Top-5

Accuracy
Parameters Depth

Xception 88 MB 0.790 0.945 22,910,480 126

VGG16 528 MB 0.713 0.901 138,357,544 23

VGG19 549 MB 0.713 0.900 143,667,240 26

ResNet50 98 MB 0.749 0.921 25,636,712 -

ResNet101 171 MB 0.764 0.928 44,707,176 -

ResNet152 232 MB 0.766 0.931 60,419,944 -

ResNet50V2 98 MB 0.760 0.930 25,613,800 -

ResNet101V2 171MB 0.772 0.938 44,675,560 -

ResNet152V2 232 MB 0.780 0.942 60,380,648 -

lnceptionV3 92 MB 0.779 0.937 23,851,784 159

lnceptionResNetV2 215 MB 0.803 0.953 55,873,736 572

MobileNet 16 MB 0.704 0.895 4,253,864 88

MobileNetV2 14 MB 0.713 0.901 3,538,984 88

DenseNet121 33 MB 0.750 0.923 8,062,504 121

DenseNet169 57 MB 0.762 0.932 14,307,880 169

DenseNet201 80 MB 0.773 0.936 20,242,984 201

NASNetMobile 23 MB 0.744 0.919 5,326,716 -

NASNetLarge 343 MB 0.825 0.960 88,949,818 -

EfficientNetB0 29 MB - - 5,330,571 -

EfficientNetB1 31 MB - - 7,856,239 -

EfficientNetB2 36 MB - - 9,177,569 -

EfficientNetB3 48 MB - - 12,320,535 -

EfficientNetB4 75 MB - - 19,466,823 -

EfficientNetB5 118 MB - - 30,562,527 -

EfficientNetB6 166 MB - - 43,265,143 -

EfficientNetB7 256 MB - - 66,658,687 -
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