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1. Introduction 
 

Machine learning and especially neural networks (NN) is becoming a 

standard and stable technology with several applications in our everyday life. 

Every time you block an email or mention it as spam, an NN algorithm may work 

behind your account to analyze the content and classify potential future emails 

with similar features to the unwanted messages. Another very common example 

is face lock screens. These applications use NNs in order to prevent people from 

accessing the devices.  

Neural Networks (NN) are an important part of machine learning. The 

idea behind NNs is to simulate the way human brain neurons work.  After 

training with large datasets of input data, neurons are able to perform 

recognition, classification or just decision tasks by doing endless correlations 

between features of inputs.   

On the other hand Computer Graphics (CG) are here to create a better 

environment and interface for users. Nowadays their authors are aiming to 

represent the real world as realistic as possible. Laser scans as well as other 

similar machines (e.g cameras) have contributed to the easier creation of 

computer graphicsby capturing 3D data of existing objects. The evolution of 

computer graphics is remarkable and proportional to the requirements of users. 

Computer Graphics is considered as a mature technology and the applications 

has becoming more and more demanding. 

3D objects may be represented in two ways. Usually, physical objects are 

digitized through 3d scanning and consequently are delivered into point clouds. 

However synthetic graphics are created by authors and usually with CAD 

application. Cad applications deliver 3D meshes. In a later chapter we explain the 

difference between point clouds and meshes.  

Machine learning techniques are used to classify point clouds or meshes 

(geometries) by training algorithms using points or polygons trying to extract 

geometrical characteristics. 
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2. Background knowledge 
 

Before we analyze the main theme of the thesis, let's define some general and 

important knowledge. 

 

2.1. History 

 

Keywords and phrases 

The term artificial intelligence (AI) refers to intelligence functions 

performed by machines designed to reproduce the capabilities of the human 

brain through combination of algorithms. More specifically, artificial intelligence 

is what allows certain machines to perceive and respond to the environment 

around them in a way similar to human brain. This implies the ability to perform 

tasks such as learning and problem solving.  

Machine learning is a collection of algorithms and methods that improve 

the efficiency of a machine in performing “intelligent” tasks such as Pattern 

Recognition, Feature Extraction, Prediction, Regression and Clustering.  

Deep Learning is a machine learning approach in which a Neural 

Network (NN) is connected to numerous "levels" of basic processing units, one 

after the other, so that the entry into the system is successively through each of 

them. 

 

 

 

Figure 1: AI includes Machine Learning and Deep Learning is a part of Machine learning.  
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Historical evolution 

Artificial intelligence has been present for more than 50 years. However, 

the evolution of computers, the availability of innumerable data and new 

algorithms have created new fields of growth and development. Initially, AI 

research focused on issues such as problem solving and symbolic methods. For 

example, in 2003, DARPA produced intelligent personal assistants, long before 

Siri, Alexa and Cortana became popular. 

 

 

1950s - 1970s 

First steps of neural Networks 
people are impressed with “thinking” machines. 

 

1980s – 2010s 

The advancement of machine learning 

 

Today 

AI and Machine Learning explosion 

Years of experiments lead to the “explosion: of artificial inteligence and machine 

learning applications. 
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2.2. Neural networks 
 

Key words and phrases 

Learning is one of the most important functions of human intelligence. 

Nowadays, both hardware and software have evolved and optimized to simulate 

this intelligence via Machine Learning 

Segmentation is a technique in which several data are separated into categories 

based on one or more of their characteristics. During segmentation, each object 

belonging to a single class is highlighted with distinct hues to help computer 

vision recognize it. 

Classification is the process of grouping items into distinct categories according 

to some common features. 

 In a neural network, fully linked (FL) layers are those in which all of the inputs 

from one layer are connected to each activation unit of the following layer, in 

contradiction to partial connected neural networks contain a portion of the 

total number of available connections for a given model. 

 

Overview 

In order to understand neural networks, let us suppose that computers 

are like curious toddlers who are now beginning to get to know the world. So 

first we try to give them as much information as possible, that’s the input layer. 

The toddlers collect and combine the information they receive (Input layer), they 

remember more those who were given more emphasis (Hidden layer) and they 

draw conclusions (Output layer). In the rest of this chapter we further analyze 

the way that NN work.  
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Outpu Learning methods 

structured in layers are 

known as neural 

figure 2: Neural Network architecture. 
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Neurons 

Neurons are the building blocks of the network. Each such node receives 

a set of numeric inputs from different sources (either from other neurons or 

from the environment), performs a calculation based on these inputs, and 

produces an output. This output is either directed to the environment or fed as 

input to other neurons in the network. Basically, a neuron is a mathematical 

function,  

 ����, ��� = 	���+	��� 
 

known as Linear combination of weight and inputs, where Cₖ stands for the 

input number, k for the index of input and wₖ for the Weights vector . As you can 

see from this function, the weight vector is assigned to each input number to 

show the uniqueness of each neuron. The output of this function is arithmetic. 

Another useful function is the activation function. It shows the 

importance of the neuron’s input for the prediction by activating the proper 

neuron. If xₖᵢis the i-gateinput of the k neuron, wₖᵢ : the i-gate synaptic weight 

of k neuron and φ(·) is the activation functions of  the neural network , yₖ is the 

output of the k neuron as seen on the above equation : 

 �
 = ��∑ ����� �
�	
� + ������ 
 

On the k-gate neuron there is an important weight wₖ₀ named bias (is a form of 

neuron without input) or threshold with value wₖ₀ =1.  If the total sum of the 

other inputs of the neuron is bigger than this value, the neuron activated. 

The activation function can be: 

● step transfer function,  

 

���� = � 1, � ≥ 0   0, � < 0 � 
 

The step function is not considered 

useful as activation function for 

the Neural Networks because, 

according to math, it is derivative 

is infinite and that is a huge 

disadvantage.  Therefore, there is the need to create an activation function 

similar to step transfer function but, at the same time, continuous and 

producible throughout their scope. 

 

Figure 3: Sigmoid function 
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● linear transfer function,  

 ���� = �� 
 

● non-linear transfer function  

The non-linear activation function 

commonly used in neural networks is 

called the sigmoid function. (Figure 3) 

The sigmoid function formula is 

 

 

 ���� = 11 +  !" =   " " + 1 = 1 − ��−�� 
 

and it can be used to scale our values between 0 and 1. 

 

● Stochastic transfer function. 

● ReLU function (Figure 4) 

● etc 

 

The main feature of neural networks is the ability to learn. By the word 

“learn” we define the gradual improvement of the net to solve problems, such as 

the gradual approach of a function. Learning is achieved through training, an 

iterative process of gradually adjusting the network parameters (usually its 

weights) to appropriate values to solve the problem under consideration with 

sufficient success. Once a network is trained, its parameters are usually "frozen" 

at the appropriate values and from this moment onwards it is in working order.  

ReLU is also a very useful non-linear activation function. 

 $ %&��� = '�� ��, 0� 
 

ReLU stands for Rectified Linear Unit(Figure 4), it is a commonly used 

activation function when we refer to deep learning and it is preferable to the 

sigmoid function. The C value stands for the number we give as input, so if that 

number is greater than 0 we take that number, but if that number is smaller than 

0 we take 0.   

To sum up, neurons could be described from the following formula    

 ����, ��� =  '�� �0, 	���+	���� 
 

Figure 4: ReLU activation function 
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that takes one or more numbers as inputs and outputs, an activation number. 

There are three types of neurons and layers: the input neurons (on the 

input layer), the output neurons (on the output layer) and the hidden neurons 

(on the hidden layer).  

The input neurons are the combination between the environment inputs 

of the network and the hidden neurons. They do not perform any calculation. On 

the other hand, the hidden neurons multiply each input by the corresponding 

synaptic weight (which stands for the size or the durability of the connection 

between two nodes) and calculate the total sum of the products. This sum is fed 

as an argument to the chosen activation function, which is implemented 

internally by each node. The value that the function receives for this argument is 

also the output of the neuron for the current inputs and weights. Finally the 

output neurons transfer to the environment the final numerical output values of 

the network. 

 

 

 

Training 
 

Before we analyze the training methods, it is important to define the loss 

function. This function evaluates our neural network for a certain task. 

 

%��, �(� = 1) *��, �(��+
���  

 

M stands for the number of testing samples, � is the output we wish to receive 

from the network, �(  is what we actually received by running our example to the 

network and i is the index of a training data. In order to understand this function, 

let us suppose that we have a dataset of 3D chairs and 3D beds (two classes). We 

  Σ 

b 

φ(·) y 

ω1 

… 

ω2 

ωm 

χ1 

χ2 

… 

χm 
Activation 

function 

Output 

Sum 

Weights 

Inputs 

figure 5: Schematic diagram of an artificial neural network. 
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create a class map where � =0 is the label for the chairs and � =1 is the label for 

the beds, in other words the number we wish to receive from the NN. However, 

while training NN the output �(is not always the appropriate, thus we ask for a 

chair and NN replies that it is a bed! Thus, the loss function is considering how 

many bad guesses we had. 

The output value of the loss function must be as small as possible.  

 

 

 

 

 

 

 

 

 

 
 

 

 

Now it is important to define the Learning rate (lr) and the epoch. The lr 

value should be small (often between 0.0 and 1.0) because we want to train NN 

in small steps, keeping loss function to small values if possible. lr is a positive 

number that further determines the frequency we update the weights in the 

hidden layer of the network. For instance, if the lr value is too small the weights 

are updating slowly so the training has slow progress and if this value is too 

large the model may not predict anything accurately because weights and the 

corresponding outputs “jump” into totally different values of loss function. A 

suggested number could be 0.1 or 0.01. That means we apply weight 0.1 or 0.01 

to the parameters. 

The image below is an example of what happens to the gradient loss function on 

each category.  

 

 

 

 

 

 

 

 

 

 

 

 

An epoch is a machine learning term that refers to how many passes the 

machine learning algorithm has made across the full training dataset. Batches 

are commonly used to organize data collections (especially when the amount of 

  

loss 

Value of weight w 

Big learning rate Small learning rate 

 

Figure 6: gradient of loss function 

figure 7: Learning rate performance 
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data is very large). The number of epochs equals the number of iterations if the 

batch size is the whole training dataset. In the construction of various models, 

several epochs are employed. When the dataset size is d, the number of epochs is 

e, the number of iterations is i and the batch size is b, the general relationship is  

 , ∙  = � ∙ � 
 

There are many algorithms whose application aims to adjust the values of the 

weights of an Artificial Neural Network. Learning methods can be classified into 

two categories: supervised learning and unsupervised learning. 

 

The use of labeled datasets distinguishes supervised learning as a 

machine learning technique. These datasets are used to "train" or "supervise" 

algorithms so that they can effectively identify data and forecast outcomes. The 

model can track its accuracy and learn over time by using labeled inputs and 

outputs. Supervised learning is divided into two more categories: structural 

learning and temporal learning.  

Unsupervised learning: The included algorithms of this category are 

called “self-organized” and they are procedures that do not require an "external" 

teacher or supervisor to be presented. Unsupervised learning analyzes and 

clusters unlabeled data sets using machine learning methods. These algorithms 

uncover hidden patterns in data. Some examples that represent unsupervised 

learning include the Hebbian algorithm, the min-max algorithm and the 

differential Hebbian algorithm.  

Most of the training processes are offline.  

 

 

Types of neural networks 

Depending on the number of nodes on the hidden layer, neural networks 

separated into deep neural networks that are commonly used for deep learning 

and shallow or non-deep neural networks for simpler calculations.  

 

 

 

  

Hidden layer 

Output layer 
Input layer 

“Non-deep” feedforward 

neural network 
Deep neural network 

Hidden layers 
Input layer 

Output layer 

… 

… 

… 

figure 8: Deep VS Shallow Neural Networks 
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The most famous deep neural networks are the convolutional neural networks 

(ConvNet or CNN) which are commonly used to process 2D data, such as images. 

These networks work by directly extracting features from data, a method that 

automatically makes models accurate from tasks of computer vision. Their 

architecture is simple and includes one input layer, many hidden layers with 

ReLu activation function and an output layer.  

Another type of neural networks are the artificial neural networks. They are 

consisting of collections of artificial neurons inspired by the biological neural 

neural networks of human brain. Multi-layer perceptron is a type of feedforward 

artificial neural network (ANN). The name MLP is confusing, referring to 

networks built of many layers of perceptrons (with threshold activation) in some 

cases and any feedforward ANN in others. 

The main distinction between a typical ANN and a CNN is that a CNN only has 

one completely linked layer (the last layer), whereas in an ANN, each neuron is 

connected to all other neurons. 

 

 

Better accuracy and training time 

 
In the fields of classification and recognition, deep neural networks are a 

game-changer. Deep networks have allowed robots to identify pictures, sounds, 

and even play games with an accuracy that is nearly unattainable for humans. To 

attain a high degree of accuracy, these networks must be trained using a large 

amount of data and, as a result, require computer power. Thus, reducing training 

time and enhancing model accuracy is a timeless target for the research 

community. As a result, in literature appear few simple rules that may help in 

optimization in time/accuracy curve.  

 

Data Preprocessing 

The fact that your neural network is only as good as the input data used to train 

it emphasizes the need of data pre-processing. Neural networks may not be able 

to attain the necessary degree of accuracy if critical data inputs are lacking. On 

the other hand, if data are not preprocessed appropriately, it may have an impact 

on the network's accuracy and performance in the future. 

 

Data Normalization 

Normalization is the process of transforming data into a scale that is consistent 

across all dimensions. The most common technique to achieve this is to split the 

data by the standard deviation of each dimension. It makes sense only if you 

have reason to suppose that distinct input features have different scales yet are 

equally important to the learning process. 

  

Batch Normalization  

Batch normalization is a method for training very deep neural networks that 

standardizes each mini-inputs batch's to a layer. This stabilizes the learning 
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process and significantly reduces the number of training epochs needed to create 

deep networks. 

 

2.3. Computer Graphics 
 

Key words and phrases 

Vertex: a point (typically in 3D space), with features, such as coordinates, color, 

normal vector, and texture coordinates. 

Edge: a line that connects two vertices. 

Faces: a closed set of edges with three edges on a triangle face and four edges on 

a quad face. A coplanar collection of faces is known as a polygon. Polygons and 

faces are interchangeable in systems that enable multi-sided faces. A polygonal 

mesh may be thought of as an unstructured grid or undirected graph with extra 

geometry, form, and topological attributes. 

Surfaces: a combined collection of faces in order to form a flat area. 

 

 

 

 

 

 

Overview 

Inputs of computer graphics are symbolic descriptions of the optical 

scene and the outputs are digital images or videos, with or without interaction 

with the user. Computer graphics have a variety of uses, for instance: on 

graphical user interfaces (GUI), video games, virtual reality (VR), movies, 

animations, on advertising and data visualization.  Also, it is a very useful tool for 

the illustration of forms, architectural design and logos creation. The appropriate 

data can be entered into the computer via digitizing devices such as scanners, 

digital cameras, or via the keyboard and mouse. When the result is displayed on 

the screen, the user can manipulate it by moving it horizontally and vertically or 

by rotating it, editing it or extending it using a mouse or more specialized 

peripherals (such as light pen). 

As we mentioned before, computer graphics create synthetic images from 

mathematical expressions of data (model). This model can be a description of an 

imaginary or natural digitized scene with polygonal surfaces. In order to create 

  

Vertices Faces Edges 

 

  Surface 

figure 9 
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an image it is moreover important to consider the way light interacts with model 

objects. Image processing and 3D modeling softwares are used to import, create 

and edit computer graphic with the use of dots, lines, curves, etc. This process is 

known as rendering. 

 

Geometry 

Geometry is the form of math used to describe the physical world. In 

order to project a three - dimensional object it 

uses X axis for the depth, forward and back, Y for 

the horizontal, side to side, and Z for the vertical, 

up and down (figure 10: three dimensions). 

Euclidean Space is the first Mathematical Space 

that was used to "house" the Geometric Shapes. 

In modern Mathematics, it is common to 

determine Euclidean Space by using Cartesian 

Coordinates and the theory of Analytic Geometry.  

There are two basic transformations. 

1. Translation, which means shifting the plane so that each of its 

points shifts in the same direction and at the same distance. 

For instance, to perform a translation of a point from position (x, y) 

to another (x₁, y₁) we add the shift vector (Tx, Ty), that represents 

the distance, to the original coordinates.  

 ./ = . + 0. 1/ = 1 + 01 

 
To perform a translation in tree-dimensions from (x, y, z) to position 

(x₁, y₁, z₁) we add the shift vector (Tx, Ty, Tz) 

 ./ = . + 0. 1/ = 1 + 01 2/ = 2 + 02 

 

2. Rotation, in which each point on the plane rotates around a fixed 

point at the same angle. 

The matrix that represents the rotation around a 2D plane is shown 

below. 

 $3 = 4cos8 −sin8��;8 <=�8 > 
 

figure 10: three dimensions 
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And the rotation of a 2D vector in a plane is done as follows: 

 4�?y?> = A<=�B −��;B��;B <=�B C A�yC 
 

The above matrix can be generalized in order to be useful for a 3D 

world by adding a third coordinate.  So if we would like to rotate a 

point about z-axis we use the following matrix, 

 

$3,D = E<=�8 −��;8 0��;8 <=�8 00 0 1F 

 

From the other hand, if we wish to perform the same rotation to x-

axis it is preferable to use the above one 

 

 

$3," = G1 0 00 <=�8 −��;80 ��;8 <=�8 H 

 

and, for our last case, to perform a rotation around y-axis we use the 

above formula  

 

$3,I = G <=�8 0 ��;80 1 0−��;8 0 <=�8H 
 

Rigid transformation includes the above two transformations. It doesn't change 

the size or form of an input object. 
 

Color 
 

Another feature of graphics is the color. When light falls on a surface, it is 

either reflected or absorbed depending on the color and the surface reflectivity. 

White surfaces reflect the full spectrum of colored light, while black surfaces 

reflect nothing and absorb light. On the other hand, a shiny surface fully reflects 

while dull surfaces absorb mostly. These actions are perceived by the human eye 

and the brain as the color of the object.  

 

Additive Color Model (RGB Model) describes a template that uses the 

three basic colors (where R stands for red, G for green and B for blue) which are 

visible because of the transmission of light. 
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Subtractive Color Model (CMYK Model) uses the reflection of light in 

order to describe object colors that are magenta (M), cyan (C), yellow (y) or one 

of their derivatives. 

 

 

 

figure 11: Additive color VS Subtractive color 

 

Direct Coding is the process used to apply color on a certain pixel by 

using a fixed amount of memory storage space. For example, if we use one bit for 

each main color then one pixel has 3 bits. Each bit can be equal to 0 (off) or 1 

(on) , so , to create the color magenta we set the first bit (red) and the third bit 

(blue) equal to 1 and the second bit (green) equal to 0. 

Color depth is the number of bits used to describe the color of each pixel 

(or area in the vector graphics).The current standard is 24-bit color depth for 

screens and 32-bit for prints (screen and printing are using different color 

patterns). Also, there are graphics with greater color depth, intended for special 

uses, as the human eye cannot distinguish more than 16.7 million color 

gradients. For the internet applications Bitmap Graphics are preferable because 

vector graphics are not supported by older versions of browsers that are still 

used by a relatively large percentage of internet users. 

 

 

figure 12: Color Depth. The first image is an example of an 8 bit.png with 256 colors, the second is a 4 bit.png 

with 16 colors and the last one is a 2 bit.png with 4 colors. 
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Types of computer graphics 

There are four types of computer graphics: 

2D computer graphics (figure 13: 2D scene from the game “Super Mario”.) are 

used to create graphical user interfaces (GUI), but also for illustrations of books, 

magazines and other publications. After their composition, they are stored in 

digital image files and their further processing is a part of digital image 

processing. Two-dimensional graphics can be divided into Vector Graphics and 

Bitmap Graphics.  

The type of graphics is usually recognized by the extension of the file name in 

which they are stored (the part of the name to the right of the dot that separates 

the name of a file). The most common types are: “.svg”, “.cdr”, “.ai” (for Vector 

Graphics) and “.tif”,  “.bmp”, “.jpg”, “.gif”, “.png” (for Bitmap Graphics). 

3D computer graphics (figure 14: 3D scene from the game “Detroit Become 

Human”.) are an attempt to display three-dimensional graphics on a two-

dimensional screen of a digital device. Their function is based on the spatial 

description of three-dimensional objects through points and mathematical 

formulas in a coordinate system, and then displays the coordinates of their 

points in two dimensions during the performance phase. Such graphics are 

commonly used by programs such as computer games and virtual worlds.3D 

graphics are also used in cinema to compose scenes from virtual worlds and to 

create special effects using modern digital technology (instead of mechanical or 

additional effects).  

 

 

Static computer graphics are budgeted and pre-processed graphic 

objects (coordinates of points and surfaces, their colors, lighting and 

textures)which are not rendered at the time they are displayed, but have been 

rendered once when created. Then they are stored and played as a video file, so 

they cannot be interactive. An example of such graphics are small videos, which 

are displayed in video games, and which have been "shot" once and each time we 

watch them remain the same. To create them we use a suitable program for 

creating graphics and animation, such as 3D Studio Max, Maya, Lightwave, 

Blender, Cinema4D, etc. 

figure 13: 2D scene from the game “Super Mario”. figure 14: 3D scene from the game “Detroit Become Human”. 
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Real time computer graphics are graphic objects (coordinates of points 

and surfaces, colors, lights, and textures) that are rendered visually when a 

computer program is running, whenever that happens, by re-executing the 

appropriate commands / calculations by the processor. Displaying them requires 

a real-time graphics engine, such as Ogre3D, Crystal Space and game machines. 

Also, real-time graphics can be interactive, with the graphics machine 

responding appropriately to user inputs (from peripherals such as a mouse or 

keyboard), but this is not necessary. There are several standard libraries for 

programming them, such as OpenGL and Direct3D.  

 

Mesh 

Polygon meshes are a big part of computer graphics (particularly 3D 

computer graphics) and geometric modeling. Different polygon mesh 

representations are utilized for various purposes and aims. Boolean logic 

(Constructive solid geometry), smoothing, simplification, and many more 

operations may be done on meshes. Also, there are several algorithms for Ray 

tracing, collision detection, and rigid-body dynamics with polygon models.  

A polygon mesh is a collection of vertices, edges, and faces that 

determines the geometry of a polyhedral object in 3D computer graphics. The 

rendering becomes easier with triangle faces (triangle mesh), quadrilaterals 

(quads), or other basic convex polygons (n-gons) but meshes can also be made 

up of concave polygons or even polygons with holes. The simplest mesh 

representation consists of a vertex list and a polygon list. Triangular elements 

are frequently used to define polygons. Triangles are useful in a variety of 

geometrical computations, including point inclusion checks, area and normal 

calculations, and interpolation of vertex characteristics, because they are always 

both planar and convex. 

The three-dimensional coordinates of the mesh vertices defined in an 

appropriate coordinate frame are stored in the vertex list, while the polygon list 

includes integer values that index into the vertex list. The front facing side of 

each polygon is usually indicated by an anticlockwise arrangement of vertices 

with respect to the outward face normal direction. In lighting computations and 

culling processes, the distinction between the front and rear sides of a polygon 

becomes crucial. If the polygon list represents a set of linked triangles can be 

employed a triangular strip which represents a more efficient and compact data 

structure. The first triangle is identified by the first three indices in a triangle 

strip. Along with the previous two indices, the fourth index reflects. 

In contrast to polygon meshes, volumetric meshes openly represent both 

the surface and volume of a structure, whereas polygon meshes only clearly 

represent the surface (the volume is implicit). 

The mesh geometry is specified by the model definition files, which 

contain information on vertices, polygons, color values, texture coordinates, and 

perhaps many more vertex and face related properties. The topology of the mesh 

is defined by the adjacency and incidence connections between mesh 

components, which are widely employed by numerous mesh processing 

techniques.  
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The assumption that the provided mesh is a polygonal manifold is 

prevalent in the development of mesh data structures and associated algorithms. 

A polygonal manifold is a mesh that meets two criteria: no edge is shared by 

more than two faces, and faces sharing a vertex may be sorted so that their 

vertices excluding the shared vertex form a simple chain. 

A non-manifold mesh can include edges shared by more than two 

polygons or vertices with several chains of neighboring vertices. Many mesh 

processing methods struggle to conduct local alterations around a vertex in a 

non manifold mesh because the neighborhood of that vertex may not be 

topologically equivalent to a disc. The methods in this article presume that the 

provided mesh meets the polygonal manifold criteria. 

Mesh data is stored and shared in graphics applications using a variety of 

file formats. A variety of such file formats save values in binary and compressed 

formats to save space. 

 

Off file format is a geometry definition file format that contains the 

description of a geometric object's constituent polygons. It can hold 2D or 3D 

objects, and it can also represent higher-dimensional things with simple 

additions. The basic standard was initially established for Geomview, a geometry 

visualization software, but it has since been adopted by other softwares. The 

structure of this format is shown above. 

 

 

figure 15: view of an object in “off” file format  

 

The header keyword OFF should be on the first line. Optional remark lines 

beginning with the character # can be added after this line. The entire number of 

vertices, faces, and edges should be represented by three integer values nv, nf, 

and one on the first non-comment line. The number of edges (ne) is never more 

than zero. The vertex list comes after the line above. The list's number of vertices 

must equal the number nv. The index 0 is assigned to the initial vertex, while the 

index nv—1 is assigned to the last vertex. 
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figure 16 

The face list comes after the vertex list. Each line has a collection of integers n, i1, 

i2,...,in, where n is the number of vertices of that face and the remaining 

numerals are the face indices. Color values can be added to each face as 3 or 4 

integer values in the range [0, 255] or floating-point values in the range [0, 1] in 

either RGB or RGBA notation.  

 

Point Cloud 

A point cloud is a large collection of small individual points plotted in 

three dimensions. Each virtual point on a wall, window or any other surface the 

laser beam comes into touch with would represent a real point. 

The scanner automatically calculates a 3D X, Y, Z coordinate location for 

each point using the vertical and horizontal 

angles formed by the laser beam to provide a 

set of 3D coordinate measurements that 

frequently include the color value recorded in 

RGB and intensity. These characteristics can 

then be converted into a digital 3D model that 

provides more information. 

The more points in the representation, 

the more detailed it is, allowing minor features 

and texture details to be specified more clearly 

and accurately.  

The method of aligning point clouds 

with 3D models or other point clouds is known as point set registration. The 

point cloud of a product can be matched to an existing model and examined to 

check for changes in industrial metrology or inspection using industrial 

computed tomography. The point cloud may also be used to obtain geometric 

measurements and tolerances. 

While point clouds may be viewed and studied directly, they are 

frequently transformed to polygon mesh or triangle mesh models, or CAD 

models via a process known as surface reconstruction. 

Converting a point cloud to a 3D surface may be done in a variety of ways. 

Some methods, such as Delaunay triangulation, alpha forms, and ball pivoting 

generate a network of triangles over the point cloud's existing vertices, whilst 

others transform the point cloud to a volumetric distance field and rebuild the 

implicit surface by using a marching cubes technique. 

 

figure 17: point cloud of a chair 

included in ModelNet10 
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Scanners generate raw data in a variety of forms. For 3D modeling, there 

are hundreds of file types to choose from.  Some of these file types are 

compatible with different processing applications, and each piece of software has 

varied exporting capabilities. 

What you intend to do with the data and who requires it is also related to 

output formats. If you want to keep the data, you should save it as an ASCII file, 

which saves the point cloud as a simple, generic collection of XYZ coordinates 

that you may even open in a text document as a last option. However, keep in 

mind that ASCII eliminates any color or vector. 

 

 

 

 

 

 

figure 18: Point cloud converted to triangles and then mesh 

 

 

XYZ files are ASCII or binary database files with a separator character 

between each column in a row. Within a point cloud, each row represents a 

point. Each column represents one of the point's component points.  

By convention, these files have filename extensions of “.xyz” , “.csv”, or 

“.txt”, although the Point Cloud XYZ may read and write files with any extension. 

 

 

Voxel 

The terms volumetric and pixel are combined to form the word voxel. In 

three-dimensional space, a voxel may be thought of as a 3D pixel. It represents a 

three-dimensional picture (or several slices of two-dimensional images) that 

shows a volume, similar to how a pixel is an element of a two-dimensional image. 

A voxel is a single sample, or data point, on a three-dimensional grid with 

uniform spacing. This data point can be made up of a single item of information, 

such as opacity, or many pieces of information, such as color and opacity. 

The space between each voxel is not recorded in a voxel-based dataset; 

each voxel represents only a single point on this grid, not 
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a volume. This missing information may be rebuilt and/or 

estimated, e.g. via interpolation, depending on the kind of 

data and the dataset's intended application. 

A three-dimensional shape in the form of a mesh 

can be represented as a possible distribution of binary 

values in a three-dimensional grid. We define the inside of 

a grid surface using a voxel value = 1 and the outside (or 

empty space) = 0.  

Voxels are commonly employed in medical and 

scientific data visualization and analysis.  

 

Rendering 

Rendering is called the process in which there is a realistic display of 

models and environments, using colors, textures, lighting and shading. The time 

required to complete the model-space is proportional to its complexity. The 

program used for this process is called renderer. The production process of the 

final photorealistic depicted scene is a complex process because there are many 

parameters that must be taken into account in order to produce a result that is 

close to reality. The rendering process can last fractions of a second or up to a 

whole day to produce a single image per frame. 

The rendering formula  

%₀K�, 	₀, L, MN = %OK�, 	₀, L, MN + P �QK�, 	�, 	₀, L, MN%���, 	�, L, M��	� ∙ ;�,	�R  
 

Where n stands for the normal surface, wᵢ · n = cosθᵢ, L₀ stands for the output 

light, Lₑ is the emitted light and Lᵢ stands for the incoming light. So L₀(x, w₀, λ, t) 

describes the outward directed total spectral radiance of λ wavelength for x 

position to w₀ direction at t time (= output spectral radiance).  

The sampling problem is a challenge that any rendering system must cope with. 

Essentially, the rendering process uses a finite number of pixels to portray a 

continuous function from picture space to colors. Any spatial waveform that may 

be exhibited must have at least two pixels, which is proportional to picture 

resolution, according to the Nyquist–Shannon sampling theorem (or Kotelnikov 

theorem). In basic words, this means that an image cannot contain 

characteristics, such as color or intensity peaks or troughs, that are smaller than 

one pixel. 

High frequencies in the picture function will generate unpleasant aliasing in the 

final image if a naïve rendering technique is applied without any filtering. 

Aliasing is most commonly seen as jaggies, or jagged edges on objects with 

visible pixel grids. All rendering algorithms (if they are to generate good-looking 

images) must employ some form of low-pass filter on the image function to 

eliminate high frequencies, a process known as antialiasing, in order to remove 

aliasing. 

  

figure 19: Voxel grid 
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3. Application 

 

Keywords and phrases 

The fully connected FC layers of the network are used to identify certain global 

configurations of the characteristics observed by the lower levels. They are 

commonly found at the top of the network architecture, after the input has been 

condensed to a compact representation of features (by the previous, usually 

convolutional layers). Each node in the FC layer learns its own set of weights 

from the nodes below it. 

Dropout layers are crucial in CNN training because they prevent the training 

data from being overfit. 

Overfitting is a term used in data science to describe when a statistical model 

although  fits its training data perfectly, we still training. 

Support-vector machines (SVM) are supervised learning models that examine 

data for classification and regression analysis, along with accompanying learning 

algorithms. 

Cross-validation is a resampling approach that tests and trains a model on 

different iterations using different sections of the data. 

Softmax is an activation function that outputs the probability for each class 

summing up to 1. 

TensorFlow: open-source library included in Python supported by Google 

Brains.  

Keras:  sub library included in TensorFlow. Proper for Deep learning.  

 

3.1. Theoretical analysis  
 

APIs and datasets 

The main idea of this thesis is the 3D object detection, via cloud of points. 

To perform this task we use deep learning algorithms implemented in a python 

library developed by the Google team of artificial intelligence (Google Brain), 

called Tensorflow.  

Keras is a simple, flexible and powerful application programming 

interface included in Tensorflow library. It is an open-source software ideal for 

deep neural networks and designed to enable fast calculations.  

For the implementation it was necessary to use a large dataset with 3D 

objects. So after some research we find the ModelNet10, a dataset created for 



24 
 

computer vision research tasks, computer graphics, and robots. It includes a 

comprehensive collection of 3D object in “.off” file format. 

 

 

 

figure 20: “.off” file format objects included in ModelNet 

 

ModelNet10 is a dataset with 10 categories (classes). Each of them 

includes a large amount of data splitted into train and test files. There is also a 

bigger dataset named ModelNet40 that includes the objects from ModelNet10 

and 30 more categories.  

 

Max - pooling / pooling 

Max pooling is a discretization method based on samples. The goal is to 

reduce the dimensionality of an input representation (image, hidden-layer 

output matrix, etc.) based on assumptions that could be made from features 

included in the binned sub-regions. It aims to reduce overfitting by offering a 

simplified version of the representation. It also minimizes the computational cost 

by lowering the number of parameters in the learning process, as well as 

providing basic translation invariance to the internal representation. 

 

 

 

 

 

 

  

12 20 30 0 

8 12 2 0 

34 70 37 4 

112 100 25 12 

20 30 

112 37 

figure 21: max-pooling example   

2 x 2 Max-Pool 
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PointNet 

PointNet is an innovative, highly efficient net that uses neural networks to 
detect 3D objects without rendering. It was created by the team of Stanford 
University (PointNet: Deep Learning on Point Sets for 3D Classification and 
Segmentation) to provide several applications for scene semantic parsing to 
objects classification. It is appropriate for unordered input sets because it uses a 
simple symmetric structure. It is a unified architecture that learns both global 
and local point characteristics, allowing it to perform a variety of 3D recognition 
tasks in a simple, quick, and effective manner. 
 

The network effectively learns a set of optimization functions/criterion 
that selects critical points (also mentioned as interesting or informative ) in the 
point cloud and encodes the rationale for their selection. The network's last fully 
connected layers combine these ideal critical points into a global descriptor for 
the entire form (shape classification) or forecast per point labels (shape 
segmentation). Since each point may be transformed individually by affine 
transformations it is required that points be preprocessed before inserting them 
to the algorithm. This preprocessing tries to canonicalize the input and makes it 
independent to potential rotation or translation of the initial model before the 
PointNet analyzes it. 
 

There are three important modules of the PointNet. The max pooling 
layer, which uses a symmetric function to aggregate data from all points, a local 
and global information combination structure, and two joint alignment networks 
to align both input points and point characteristics. In this approach a 
symmetric function takes n vectors as input and returns a new vector that is 
invariant to the order of the input vectors. The +, for example, is symmetric 
binary function. The basic idea is to use a symmetric function on altered items in 
the set to approximate a generic function defined on a point set: 

 

��S��, … , �UV� ≈ X�ℎ����, … , ℎ��U�� 
 

They estimate h using a multi-layer perceptron network, and g using a 

combination of a single variable function and a max pooling function. We can 

learn a number of f’s from a collection of h’s to capture distinct aspects of the set. 

The result of the previous part is a vector [f1, f2,....fn], which is the input set's 

global signature. This will now function perfectly because the SVM can be simply 

trained to produce a classifier output. However, we need a combination of local 

and global information for point segmentation. After computing the global 

feature vector, we feed it back to the point feature by concatenating global 

features with per point features to get the desired outcome. This approach can 

anticipate per-point quantities by relying on both global and local semantics. 

 

If a point cloud is subjected to geometric modifications the semantic labeling 
must remain invariant. As a result, we anticipate our point set's learned 
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representation to be invariant to these alterations.  
 

A mini-network (T-net) predicts an affine transformation matrix, which 
we then apply directly to the coordinates of input points. The mini-network is 
made up of core modules such as point independent feature extraction, 
maximum pooling, completely linked layers, and it mimics the huge network. The 
T-net is discussed in further depth in the appendix. The goal of T-net is to use its 
own small network to learn an affine transformation matrix. The T-net is utilized 
twice in this architecture. The first time the input features (n, 3) are transformed 
into a canonical representation. The second is an affine transformation for 
feature space alignment (n, 3). They confine the transformation to be near to an 
orthogonal matrix as in the original study. 
 

To align features from distinct input point clouds, we may use another 

alignment network on point features and predict a feature transformation 

matrix. The transformation matrix in the feature space, on the other hand, has 

a far larger dimension than the spatial transform matrix, making optimization 

much more challenging. As a result, we include a regularization term in the 

softmax training loss (Softmax Activation + Cross-Entropy Loss). The feature 

transformation matrix is constrained to be close to an orthogonal matrix: 

 

 

%QOZ = ||\ − ]]^||�   
where A is the feature alignment matrix predicted by a mini-network. As a result, 
an orthogonal transformation is preferred since it does not lose information in 
the input. By including the regularization term in the optimization, the 
optimization becomes more stable, and the model performs better.  
 

The below diagram represents the architecture of PointNet (figure 22: 

PointNet architecture). The classification network receives n points as input, 

executes input and feature transformations, and then uses max pooling to 

aggregate point features. The result is a classification score for each of the k 

classes. It combines global and local characteristics and generates point scores. 

The letters “mlp” stand for multi-layer perceptron (MLP), while the numbers in 

parentheses represent the layer sizes of the perceptron. For example, “mlp(64, 

64)” means that we have 2 hidden layers with size 64 (number of neurons) on 

each. In a classification net, dropout layers are employed for the last mlp. With 

ReLU, batch normalization is utilized for all layers. 

 

 

 

 



27 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

More specifically the classification network maps each of the n points 

from 3 dimensions to 64 dimensions by using a shared multi-layer perceptron. It 

is critical that each of the n points has its own multi-layer perceptron (A on 

diagram). Similarly, each n point is transferred from 64 to 1024 dimensions in 

the following layer (B on diagram). Α max pooling is further used to construct a 

global feature vector in $���_ (C on diagram). Finally, the global feature vector is 

mapped to k output classification scores using a three-layer fully connected 

network (FCN) (D on diagram).   

Each of the n input points in the segmentation network must be 

allocated to one of k segmentation classes. Because segmentation relies on both 

local and global features, the points in the 64-dimensional embedding space 
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figure 22: PointNet architecture 
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(local point features) are concatenated with the global feature vector (global 

point features) to produce a per-point vector in $��``.  In other words, after 

computing the global feature vector, the algorithm feeds it back to the point 

feature by concatenating global features with per point features to get the 

desired outcome. This approach can anticipate per-point quantities by relying on 

both global and local semantics. MLPs are used on the n points to reduce the 

dimensionality from 1088 to 128 and subsequently to m, resulting in an array of 

n x m. 

 

 

figure 23: stages of PointNet architecture 

 

The higher-level design of PointNet motivates the activities that make up 

the T-Net (figure 24: T-Net architecture). MLPs (or fully connected layers) are used 

to translate the input points to a higher-dimensional space independently and 

identically: max pooling is employed to encode a global feature vector, which is 

subsequently reduced to $�ab with FC layers. The final FC layer's input-

dependent features are then merged with globally trainable weights and biases 

to produce a 3-by-3 transformation matrix. 
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figure 24: T-Net architecture 
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The global feature vector may be used to derive a significant amount of 

intuition. To begin, as previously stated, the dimensionality of the vector, 

referred to as the bottleneck dimension and denoted by K, is directly related to 

the expressiveness of the model. Naturally, a higher K value leads to a more 

complicated — and, more importantly, correct — model, and vice versa. K=1024, 

for example, is used in the design of PointNet.  Also keep in mind that the feature 

vector was the outcome of a well-thought-out symmetric function (for 

permutation invariance). PointNet employs maximum pooling. The output of 

max pooling compresses the n points in the input point cloud to a subset of 

points, similar to how the max operator compresses numerous real-valued 

inputs to a single value. In reality, the global feature vector can be contributed to 

by no more than K points. The critical point set is made up of points that 

contribute to and define the global feature vector, and it encodes the input with a 

sparse collection of key points. 

 

 

 

More intriguingly, the network 

learns to summarize an input 

point cloud using a sparse 

collection of important points, 

which closely matches to the 

skeleton of objects according 

to visualization (figure 25: 

visualization of objects). 

 

 

3.2. Implementation 

 
The team from the web page of Keras made a program based in the 

architecture of PointNet. In this approach they used ModelNet10 dataset thus the 

application is built to read objects in “.off” file format and process a sample of 

their vertices.  

This thesis deals with the idea of using the program developed by Keras 

and convert it to read and process raw data in xyz file format. 

 

Off file format to xyz 

 

 

figure 25: visualization of objects 
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To convert the elements included in “ModelNet10” form “.off” file format to “.xyz” 

we follow the below steps.   

 

First of all, we define the file that contains our dataset. For this purpose we use 

the “Path()” command with the name of the file in quotation marks as shown 

below. 

path = Path("ModelData2") 

Then we read the “.off” data from the file with the command 

“glob.glob(os.path.join(,))”. The “glob.glob(*pathname(sting)*)” is a method that 

returns a list of path names that matches the input parameter. The use of 

“os.path.join(,)” as shown below allows us to have access to the included files of 

“path” . 

folders = glob.glob(os.path.join(path, "[!README]*")) 

In order to have access to each value included in “folders” element we use a 

simple “for” loop. First, we only process the data included in categories “bed” and 

“chair” (second and third) because the point clouds of these two classes can be 

characterized as similar. For this purpose, we make two “if” statements to 

delimit the datasets we get. In the first one we rule out the possibility of reading 

the files included in “bathtub” which is the forth category. The second “if” ends 

the process when it’s time to read data from third class, named “desk”. Finally, 

we use the “train_set” list to append the values of “train” files included in “bed” 

and “chair” classes and the “test_set” list to append the elements of the “test” 

files. 
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figure 26: code to access the data of a specific folder 

 

Both “train_set” and “test_set” includes trimesh objects from both “chair” and 

“bed” classes. 

The following figure shows the output of the “train_set” list. As you can see each 

trimesh object has vertices and faces. For example, the shape of vertices in the 

first object is 689 rows and 3 columns. 

 

 

figure 27: values included in “train_set” list 

In order to save our dataset as point clouds we create two new lists to append 

the vertices of each trimesh. From the above output results we can see that each 

trimesh has different shapes, so we need to save each object with fixed number 

of points based on the shape of vertices.   

 

The command “a, k = test_set[i].vertices.shape” outputs two values. The “a” value 

refers to vertices and represents the number of the i-gate trimesh’s rows of the 

“test_set” list. The second value represents the number of columns of the same 

list and trimesh. So, in our case the first value is more useful. 

The following code includes the above methodology and exports two lists 

(train_set, test_set) with point cloud elements in groups. 
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figure 28: code for storing different point clouds  

 

 

 

Output  

 

figure 29: values included in “train_data” list 

 

The last part is to save our data to “xyz” file format for further use. So, we create 

files with the name “p.xyz” for each list included in “train_set” and append the 

values in three columns.  

 

 

 

figure 30: “xyz” files for training set  
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The output files are saved in the same path as the python code. 

 

figure 31: View of a “xyz” file included in train set 

 

We follow the same methodology for the “test_set” and create files with the name 

“ptest.xyz”.  

 

figure 32: “xyz” files for test set  

 

The output results are shown below. 
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figure 33: View of a “xyz” file included in test set 

 

The last step is to transfer all the “xyz” data to a new file (named “New”) divided 

into two categories with names “bed” and “chair”. Each of these categories 

includes two subfiles called “train” and “test”. 

 

3.2.1. Data preprocessing 

 

Before building the net, it is important to preprocess our data. The first step is to 

read the new file with “.xyz” objects by using the following command.  

 

Path = Path(“New”) 

 

We use the ready-made code about PointNet from Keras web page and change it 

to read xyz files. For this purpose we replace the “samples(*integer*)” command 

to “vertices.view()” with “np.ndarray” as an input. The whole implementation is 

done in a function called “setsAndlabels()” and the outputs of this function is 4 

array lists and a class map that shows the labels of each category (“bed” and 

“chair”). 
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figure 34: function for storing “.xyz” data 

From the output result of “CLASS_MAP” we can see that label “0” is assigned to 

class “bed” and label “1” is assigned to “chair”. So, after training, the computer 

must detect beds as “0” and chairs as “1”.  

 

 

figure 35: “CLASS_MAP” value output  

 

So, the values included in “train_labels” and “test_labels” must be “0” and “1” 

depending on the category they represent. 
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figure 36: “train_labels” and “test_labels” outputs  

 

“Train_set” includes data from paths “bed/train” and “chair/train” (where “train” 

is a subfile of the file “chair”).  

 

figure 37: “train_set” output 

 

“Test_set” includes data from “chair/test” and “bed/test” (where “test” is a 

subfile of the file bed). 

 

figure 38: “test_set” output 

 

By using the commands “len(train_set)” and “len(test_set)” 

we can see the actual number of elements included in 

“train_set” and “test_set” lists. For example, “train_set” is a 

list of 1404 elements (figure 39).  
figure 39: elements 

included in “train_set”. 
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With the use of the same command, we can see the number of points included in 

one element. For instance the element ”0” of “train_set” (train_set[0]) has 689 

points and the element ‘1’ of the same set (train_set[1]) has 16394 points. 

 

figure 40: number of points included in one element of a list. 

As we mentioned before, each list element has different number of points. The 

architecture of PointNet requires the same number of points for every element 

included in “training_set” and “test_set”. For this purpose, we create two list 

arrays to save our new datasets with “target” number of points for each element 

included. So, by using a “for” loop, we read the elements of test_set one by one.  

If the number of points of one element is greater than the “target” value the 

program asks for a random number (by using the command “random.choice()”) 

between the bounds of this element . This number represents a row of “test_list”, 

so since we work with “xyz” files this row includes the  coordinates of a point. 

This process is repeated until the number of inputs included in “list1” are equal 

to “target” value. In this way we achieve the random reduction of the number of 

points for one element without changing its original form.  

In case we want to increase the number of points in random positions we again 

ask for a random number between the element’s bounds to detect a certain point 

from “test_set” list .Then by adding the value 0.09 to each axis of the detected 

point we create a new vertex. Finally we append the new point to “list1” and 

repeat the prosses until the number of “target” points is achieved.   

For elements with equal number of points to “target” value we save them as they 

are. Finally we append the “list1” to “te_list” for later use as a new test set.  

 

figure 41: code for generating sub clouds from “test_set” 
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We follow the same methodology for “train_set”. 

 

 

figure 42: code for generating sub clouds from “train_set” 

 

For reasons of further data processing is useful to save the new data to “.txt” 

files. So, before the above program, we create a number of “txt” files (with the 

name “points.txt”) equal to the summary of the elements included in “train_set” 

list and “test_set” list to save the datasets before exiting the “for” loops. 

 

figure 43: code for generating multiple ”.txt” files.  
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The output of the above commands are shown to figure 44 

where “{‘target’:10000}” is the number of points we wish 

for each element of our datasets, the numbers “5126”, 

“11302” and “163” are the actual numbers of points for 

each element and the indications “smaller”, “bigger” means 

that the actual numbers of points are smaller or bigger 

than “target” number of points.  

 

The images below shows the output of the above methodology. The left one 

shows a case of random reduction points and the right one represents a case of 

increasing the number of points in random positions. 

 

 

 

figure 45: output of subclouds. 

     

3.2.2. Data processing 
 

The next step is to normalize the device coordinates between -1 and 1 for 

each element of our new array lists (tr_list, te_list). For this purpose, we use the 

following function to normalize our feature x in range 0 and 1. 

 

�? = � − '�;�'��� − '�;� 
 

And then, to normalize it in range -1 and 1 we use the function 

 

�?? = 2 � − '�;�'��� − '�;� − 1 

figure 44  
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In general, to get a normalized value between “a” and “b” we use the 

following function. 

 

�??? = �� − �� � − '�;�'��� − '�;� + � 
 

All the above calculations where done in a function called “scale_numpy_array” 

for each element of “tr_list” and “te_list”. The results are saved in lists, “v” and 

“v2”, and assigned to “tr_list” and “te_list” respectively. 

 

 

 

figure 46: normalization code 

 

 

To make sure that the calculations are done correctly we assign an item from 

each list in a “txt” file and check the values in CloudCompare program. 

 



41 
 

 

figure 47: code for “.txt” examples of point clouds 

 

Before normalization 

 

figure 48: non-normalized point cloud  

 

After normalization 

 

figure 49: normalized point cloud 
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As you can see the values are normalized without effecting the shape of the 

object.  

The shuffle buffer size is set to the total size of the dataset since the data was 

previously organized by class. To random jitter and shuffle train dataset, the 

team of Keras developed an augmentation function. The new datasets are called 

“train_dataset” and “test_dataset”. 

The command “tf.random.uniform(shape, minval = 0, maxval= None, 
None,dtype=tf.float32, seed=None,  name=None)” produces a tensor of the 

provided shape filled with values from a uniform distribution in the range minval 

to axval, with the lower limit included but not the higher bound.  

 

 

figure 50: code for shuffle and jitter  

 

The batch size represents groups of data. In our case, batch size is equal to 32 

(bach(32)). This means that during training the algorithm takes the first 32 

samples from “tr_list” and trains the network. Then it takes the next 32 samples 

and trains again the network.  

In case you want a view of your data you can use the following commands 

 

 
 

Output    
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figure 51: view of point clouds 

 

3.2.3 PointNet 
 

In the “General information” section we do a theoretical analysis about 

PointNet architecture. So, for the code part, the network is built as shown below.  

The authors use the smaller 2 classes of ModelNet10 dataset and duplicate the 

network design presented in the original research, but with half the number of 

weights on each layer. 

The below code shows the architecture of the main net. 

 

figure 52: main architecture of PointNet  

 

“keras.Input( )” command  creates a keras tensor which represents the input of a 

keras object. In our case, the input value has “target” number of rows and 3 

columns. 
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The next command is “tnet( )”, a function that describes the transformer 

network. It has similar architecture with the main net. 

 

figure 53: architecture of T-net  

 

“Keras.initilization.Constant()” command is a Tensor initializer that creates 

constant values tensors  

“np.eye( )” command returns  a two-dimensional numpy array,  like a matrix, 

with zeros everywhere  except from diagonal which has ones.   

In Python, we may flatten a matrix to one dimension by using the 

“ndarray.flatten( )” method. 

All the above commands are useful for the creation of bias value. In order to 

create the “reg” value “OrthogonalRegularizer( )” function is used. 

 

figure 54: regularization code 

The command “keras.regularizers.Regularizer” allow us to apply penalties during 

optimization on layer parameters or layer activity. These penalties are added 

together in the network's loss function. This “OrthogonalRegularizer( )” function 

includes two subfuctions called __init__( ) and __call__( ). 
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The functions below are referred in many places of model’s architecture.  

 

figure 55: code for applying a convolution layer 

 

“layers.Conv1D( )” applies an 1D convolution layer, “layers.Dense( )” represents 

a regular densly-connected neural network  layer, “layers.BatchNormalization( )” 

is a layer that normalizes the data it receives and “layers.Activation( )” with 

“relu” as input applies ReLU activation function to “x” output. 

 

There is also another command that we use to take the largest value to down 

sample the input representation and it is called “layers.GlobalMaxPooling1D( )”. 

The last two command that are used in “tnet( )” are the “layers.Reshape( )” and 

the “layers.Dot( )”. The first one represents a layer that reshapes the input into a 

given target shape and the second command computes a dot product between 

samples in two tensors.  

The steps Convolution / Dense -> Batch Normalization ->ReLU Activation 

Function make up each convolution and fully-connected layer (with the 

exception of end layers). 

So going back to the main architecture of PointNet we can see that, except from 

the commands that are already defined above, there is also the 

“layers.Dropout()” line in which dropout is applied to the input.  

Finally by using “keras.Model( )” we create a model with inputs , outputs and the 

title “pointnet”.  

 

The summary of our model (“model.summary( )” ) is shown above.  
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figure 56: model summary 1 
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figure 57: model summary 2 
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figure 58: model summary 3 

 

As you can see the net has a value of 748.979 total parameters of which the 

742.899 are trainable and the rest 6.080 are non-trainable.  

The value of trainable parameters is adjusted/modified during training 

according to their gradient. Non-trainable parameters are those whose value is 

not optimized as a function of their gradient during training. 
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3.2.4. Training 
 

Once the model has been defined, it may be trained by using “compile()”and  

“it()” functions, just like any other conventional classification model. 

 

figure 59: code for training a model 

The code for training a PointNet is shown above. This particular one is scheduled 

to compare the “train_dataset” with “test_dataset” for 20 epochs and learning 

rate equal to 0.001. The indication “categorical_crossentropy” refers to a loss 

function used in multi-class classification models with two or more output labels. 

A single category encoding value of 0s and 1s is applied to the output label. 

The images below shows the training progress of the net. 

 

 
figure 60: training process  

 

The above output shows us that for the 20th epoch loss equals to 1.3018, 

“val_loss” is 143266944.0000, “sparse_categorical_accurancy” is 94.87% and 

“val_sparse_categorical_accurancy” is 96%.  

The only difference between “sparse_categorical_accurancy” and 

“val_sparse_categorical_accurancy” is that the first one is based on our training 

dataset, whereas the metric prefixed with “val” is based on our test dataset. We 

are overfitting our model on our training dataset if the metric on our test dataset 

stays the same or decreases while it increases on our training dataset. This means 

the model is trying to fit on noise in the training dataset, leading our model to 

perform worse on out-of-sample data. 
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The value of our cross-validation data's cost function is “val_loss”, whereas the 

value of our training data's cost function is “loss”. 

To test the above accuracy, the team of Keras used the below code and had the 

following results.  

 
 

Output  
 

 
 

 

figure 61: results of training  
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4. Results 
All the below training processes have stable learning rate equal to 0.001 and 

batch size equal to 32. 

4.1. Dataset (1)  
First we use a dataset that includes 2 classes with 1404 training samples 

(889 chair data, 515 bed data) and 200 test samples (100 on each of the two 

classes).  

 

By following the above code, we train the net for two cases. In our first case we 

use non-normalized data .The results are shown in the matrix  below where 

“Points” represents the number of points included on each testing and training 

element of the dataset, “Epoch” stands for the number of training epochs and 

“Accuracy (Acc)” is the values of “Val_categorical_acc”. 

 

 
 

Each row represents a training occasion. For example on the first case we test the 

net for 20 epochs, with 2000 points on each element of the dataset, the accuracy 

level was less than 90% and the loss value equals to 1.2995.  

 
 

figure 62: results of non normalized dataset (1) 

Example of 500 points  



52 
 

Seeing the above accuracy results we can say that the network performs 

well when using many elements for training. Also, in some cases, the accuracy 

levels are decreasing during epoch progress.  

 

In our second training case we use normalized coordinate values between 

-1 and 1. The results are shown in the matrix  below. 

 

 
 

Normalization applies identical weights to all the data variables to avoid 

the guidance of model’s performance in one way just because of bigger models in 

dataset. It is not necessary to normalize every dataset for machine learning. It is 

only necessary when the ranges of characteristics are different.  

The table above shows the improvement of loss values and accuracy levels 

comparing to the previews matrix where non-normalized coordinates had been 

used.  

 

 
 

figure 63: results of normalized dataset (1) 

Example of 500 points 



53 
 

4.2. Dataset (2)  
Seeing the results of training with Dataset(1) we wonder how the system 

reacts after training with less values in 2 classes. For this purpose we create a 

dataset with 200 training samples (100 on each class) and 20 test samples (10 on 

each class) that we choose randomly from the original dataset.  

Again we train PointNet for two cases.  

 

 
 

The matrix above represents the results of training with non-normalized 

coordinate values. Comparing with the accuracy and loss values of “Dataset (1)” 

we can see that PointNet has a lower accuracy level and the “loss” value is bigger 

after training with smaller dataset and non-normalized coordinates.  

 
 

The table above represents the training with normalized coordinates and shows 
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the improvement of accuracy and loss levels. 

 

4.3. Dataset (3) 

Finally we create an even smaller dataset with 100 random training samples (50 

on each category/class), 20 random test samples and train again the net with 

normalized and non-normalized coordinates. 

 

 

 

 

The last matrix contains the results of the training with normalized 

coordinate values and, as we can see, they are improved.  

All the above results lead as to the conclusion that no matter the dataset size we 

can achieve a better accuracy by using normalized coordinate values. 
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4.4. Dataset (4) 

After all the above results, we made sure that the network works 

properly. So we create a new test set, irrelevant to ModelNet10, with only one 

bed and one chair. For this purpose, we download two new objects in “.obj” file 

format. By using Meshlab we change them to “.off” and then convert them to 

“.xyz” file format in the same way as the previous datasets. Finally, we train the 

net again with the train set included in “ModelNet10” dataset and use our new 

test set to see whether the objects will be recognized correctly.  

 

 
figure 64: : “.obj” data included in the new test set with their point clouds. 

 

The network successfully recognized the objects after using the training set 

included to “ModelNet10”  for “bed” and “chair” categories. The training was 

100% accurate for 1000 points, 20 epochs and normalized coordinate values. 

 

 

The results are shown bellow. 
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figure 65: training outputs  

 

It is worth mentioning that the accuracy results are likely to differ from those 

reported above because each time we train a network the weights are updated 

differently. 

 

4.5. Dataset (5) 

 
Finally, we use the whole “ModelNet10” dataset to compare the accuracy 

results after training with normalized and non normalized data. 

As we mentioned before “ModelNet10” includes 10 deferent categories 

with data in “.off” file format. Each of them contains a number of train and test 

data spitted into two subfiles with corresponding names. The first class is 

“bathtub” and includes 50 data for test and 106 data for training. The next class, 

“bed”, includes 100 test data and 515 train data. The category “chair” has 889 

data for training and 100 for test. “desk”, “dresser” and “night_stand” categories 

includes 86 test and 200 train elements on each. The class named “monitor” 

includes 100 data for testing and 465 data for training. The category “sofa” has 

100 test data and 680 train data. “table” class includes 100 test data and 392 train 

data. Finally the last category, “toilet” has 100 data for testing and 344 for 

training. 
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figure 66: ModelNet10 objects 

 

To change the data format from “.off” to “.xyz” we follow the same preprocess 

methodology as described before but this time for all classes. 

 

figure 67: code to access a file  
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figure 68: code for creating “.txt” files 

Then we split all the new data in 2 subfiles on each of the 10 categories 

without changing the original number of included objects.  

By following the same methodology we train our data with non - 

normalized coordinates.  The following matrix shows the results of training. Each 

row represents a case.  

 

 

 

 

 

 

 

 

points epochs Sparse_categorical_acc Val_categorical_acc loss 

3000 20 80% 77% 1.6830 

2400 20 85% 88% 1.5425 

2400 30 87% 90% 1.4609 

1000 20 76% 83% 1.5968 

800 20 81% 59% 1.6892 

800 30 86% 89% 1.4981 

500 20 85% 83% 1.5548 



 

As we can see the accuracy results are 

training with normalized 

matrix shows improved accuracy levels and the loss value is lower. 

Αs a general conclusion 

more classes and normalized or non

number of classes and data they contain does not affect the per

network when training with normalized coordinates. 

4.6. Bonus category
In addition of a project undertaken by the MC lab of Hellenic 

Mediterranean University we 

churches. In this case we create a dataset

data. The first class has churches without dome and too

The second category includes

“Basilica_with_dome”. Both the two names are based on the architectural 

rhythm of the churches. 

 

figure 

points epochs Sparse_categorical_acc

3000 20 93%

2400 20 96%

1000 20 96%

800 20 95%

800 30 97%

500 20 96%

500 30 97%

As we can see the accuracy results are good but not satisfactory

training with normalized coordinates these results are way better. The bel

improved accuracy levels and the loss value is lower. 

s a general conclusion from all the above results, after training with 2 or 

classes and normalized or non–normalized data, we notice that 

of classes and data they contain does not affect the performance of the

work when training with normalized coordinates.  

Bonus category!  
In addition of a project undertaken by the MC lab of Hellenic 

Mediterranean University we had in our disposal 20 clouds of points from 

churches. In this case we create a dataset with 2 categories and we split

churches without dome and took the name “Basilica”. 

includes churches with dome and took the name 

ome”. Both the two names are based on the architectural 

 

figure 69: point cloud of a church with dome. 

Sparse_categorical_acc Val_categorical_acc 

93% 96% 

96% 93% 

96% 95% 

95% 88% 

97% 94% 

96% 93% 

97% 96% 

59 

good but not satisfactory. After 

results are way better. The below 

improved accuracy levels and the loss value is lower.  

 

 

 

 

 

 

 
 

after training with 2 or 

normalized data, we notice that the 

formance of the 

In addition of a project undertaken by the MC lab of Hellenic 

20 clouds of points from 

with 2 categories and we split our 

the name “Basilica”. 

churches with dome and took the name 

ome”. Both the two names are based on the architectural 

 

loss 

1.1946 

1.2089 

1.1932 

1.2377 

1.1721 

1.1969 

1.1927 
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The data preprocessing and processing was the same as the above 

datasets. Training achieved really fast because of the small amount of 

elements included in train and test set.  

The blue matrix represents the results of training with non-

normalized data and the green one with normalized coordinate values.  

 

 

 

 

The accuracy results for normalized coordinate data shows that the network 

works better in fewer points when training with small datasets. 
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figure 70: Accuracy results  

 

 

 

 

 

 

 

 

                           

 

 

 

 

 

 

 

 

800 points 2400 points 
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5. Conclusion 
 

A point cloud is a form of data structure used to store geometric shape 

data. Because of its unstructured format, it's frequently converted into normal 

3D voxel grids or collections of photos before being employed in deep learning 

systems.  

Most of the times classifications are done in natural models that come 

directly from digitalization (laser scanning or photogrammetry) thus they are 

always in a point cloud format. For this purpose it is more efficient to use 

algorithms that do not required post processing of raw data. In this way we 

reduce computation requirements and human involvement in the process. In this 

thesis we deal with PointNet algorithms that consume raw data (cloud of points) 

instead of processed data (mesh).  

In PointNet, the basic idea for classification and segmentation in point 

clouds is to calculate the distance between points. This allows us to condense 

points that are close into a single point by grouping them in small “boxes”. This 

method may be used to summarize geometric information and eventually name 

the complete point cloud. A contribution of our thesis is that we increased 

affiance of the algorithm by normalizing the coordinates of the points expressing 

all different models inside the same normalized coordination system.  

In general, normalization is a data preparation method that is frequently used in 

machine learning. The goal is to convert the values of numeric columns in a 

dataset to a similar scale without distorting the ranges of values. It is frequently 

used to reduce training time and achieve better results.  

In our experiments, the accuracy levels shows that no matter the dataset 

size, the detection levels are improved by using normalized coordinate values. 

Also the network works better with low number of points on each element for 

both training and test set. The combination of these two, makes PointNet a fast 

and effective network.  
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