
Department of Informatics Engineering

APPLICATIONS OF MACHINE LEARNING AND

OBJECT RECOGNITION IN VIRTUAL WORLDS

Hellenic Mediterranean University
Department of Informatics Engineering

APPLICATIONS OF MACHINE LEARNING AND

OBJECT RECOGNITION IN VIRTUAL WORLDS

Thesis

Tzermia Chrysoula tp4702

Thesis advisor: Athanasios Malamos

1/12/2021

APPLICATIONS OF MACHINE LEARNING AND

OBJECT RECOGNITION IN VIRTUAL WORLDS

2

Content

Content 2

1. Introduction 3

2. Background knowledge 4

2.1. History 4

2.2. Neural networks 6

2.3. Computer Graphics 13

3. Application 23

3.1. Theoretical analysis 23

3.2. Implementation 29

3.2.1. Data preprocessing 34

3.2.2. Data processing 39

3.2.3 PointNet 43

3.2.4. Training 49

4. Results 51

4.1. Dataset (1) 51

4.2. Dataset (2) 53

4.3. Dataset (3) 54

4.4. Dataset (4) 55

4.5. Dataset (5) 56

4.6. Bonus category! 59

5. Conclusion 62

6. Bibliography 63

7. Figures 64

3

1. Introduction

Machine learning and especially neural networks (NN) is becoming a

standard and stable technology with several applications in our everyday life.

Every time you block an email or mention it as spam, an NN algorithm may work

behind your account to analyze the content and classify potential future emails

with similar features to the unwanted messages. Another very common example

is face lock screens. These applications use NNs in order to prevent people from

accessing the devices.

Neural Networks (NN) are an important part of machine learning. The

idea behind NNs is to simulate the way human brain neurons work. After

training with large datasets of input data, neurons are able to perform

recognition, classification or just decision tasks by doing endless correlations

between features of inputs.

On the other hand Computer Graphics (CG) are here to create a better

environment and interface for users. Nowadays their authors are aiming to

represent the real world as realistic as possible. Laser scans as well as other

similar machines (e.g cameras) have contributed to the easier creation of

computer graphicsby capturing 3D data of existing objects. The evolution of

computer graphics is remarkable and proportional to the requirements of users.

Computer Graphics is considered as a mature technology and the applications

has becoming more and more demanding.

3D objects may be represented in two ways. Usually, physical objects are

digitized through 3d scanning and consequently are delivered into point clouds.

However synthetic graphics are created by authors and usually with CAD

application. Cad applications deliver 3D meshes. In a later chapter we explain the

difference between point clouds and meshes.

Machine learning techniques are used to classify point clouds or meshes

(geometries) by training algorithms using points or polygons trying to extract

geometrical characteristics.

4

2. Background knowledge

Before we analyze the main theme of the thesis, let's define some general and

important knowledge.

2.1. History

Keywords and phrases

The term artificial intelligence (AI) refers to intelligence functions

performed by machines designed to reproduce the capabilities of the human

brain through combination of algorithms. More specifically, artificial intelligence

is what allows certain machines to perceive and respond to the environment

around them in a way similar to human brain. This implies the ability to perform

tasks such as learning and problem solving.

Machine learning is a collection of algorithms and methods that improve

the efficiency of a machine in performing “intelligent” tasks such as Pattern

Recognition, Feature Extraction, Prediction, Regression and Clustering.

Deep Learning is a machine learning approach in which a Neural

Network (NN) is connected to numerous "levels" of basic processing units, one

after the other, so that the entry into the system is successively through each of

them.

Figure 1: AI includes Machine Learning and Deep Learning is a part of Machine learning.

5

Historical evolution

Artificial intelligence has been present for more than 50 years. However,

the evolution of computers, the availability of innumerable data and new

algorithms have created new fields of growth and development. Initially, AI

research focused on issues such as problem solving and symbolic methods. For

example, in 2003, DARPA produced intelligent personal assistants, long before

Siri, Alexa and Cortana became popular.

1950s - 1970s

First steps of neural Networks
people are impressed with “thinking” machines.

1980s – 2010s

The advancement of machine learning

Today

AI and Machine Learning explosion

Years of experiments lead to the “explosion: of artificial inteligence and machine

learning applications.

6

2.2. Neural networks

Key words and phrases

Learning is one of the most important functions of human intelligence.

Nowadays, both hardware and software have evolved and optimized to simulate

this intelligence via Machine Learning

Segmentation is a technique in which several data are separated into categories

based on one or more of their characteristics. During segmentation, each object

belonging to a single class is highlighted with distinct hues to help computer

vision recognize it.

Classification is the process of grouping items into distinct categories according

to some common features.

 In a neural network, fully linked (FL) layers are those in which all of the inputs

from one layer are connected to each activation unit of the following layer, in

contradiction to partial connected neural networks contain a portion of the

total number of available connections for a given model.

Overview

In order to understand neural networks, let us suppose that computers

are like curious toddlers who are now beginning to get to know the world. So

first we try to give them as much information as possible, that’s the input layer.

The toddlers collect and combine the information they receive (Input layer), they

remember more those who were given more emphasis (Hidden layer) and they

draw conclusions (Output layer). In the rest of this chapter we further analyze

the way that NN work.

Inpu

Hidde

Outpu Learning methods

structured in layers are

known as neural

figure 2: Neural Network architecture.

7

Neurons

Neurons are the building blocks of the network. Each such node receives

a set of numeric inputs from different sources (either from other neurons or

from the environment), performs a calculation based on these inputs, and

produces an output. This output is either directed to the environment or fed as

input to other neurons in the network. Basically, a neuron is a mathematical

function,

 ����, ��� = 	���+	���

known as Linear combination of weight and inputs, where Cₖ stands for the

input number, k for the index of input and wₖ for the Weights vector . As you can

see from this function, the weight vector is assigned to each input number to

show the uniqueness of each neuron. The output of this function is arithmetic.

Another useful function is the activation function. It shows the

importance of the neuron’s input for the prediction by activating the proper

neuron. If xₖᵢis the i-gateinput of the k neuron, wₖᵢ : the i-gate synaptic weight

of k neuron and φ(·) is the activation functions of the neural network , yₖ is the

output of the k neuron as seen on the above equation :

 �
 = ��∑ ����� �
�	
� + ������

On the k-gate neuron there is an important weight wₖ₀ named bias (is a form of

neuron without input) or threshold with value wₖ₀ =1. If the total sum of the

other inputs of the neuron is bigger than this value, the neuron activated.

The activation function can be:

● step transfer function,

���� = � 1, � ≥ 0 0, � < 0 �

The step function is not considered

useful as activation function for

the Neural Networks because,

according to math, it is derivative

is infinite and that is a huge

disadvantage. Therefore, there is the need to create an activation function

similar to step transfer function but, at the same time, continuous and

producible throughout their scope.

Figure 3: Sigmoid function

8

● linear transfer function,

 ���� = ��

● non-linear transfer function

The non-linear activation function

commonly used in neural networks is

called the sigmoid function. (Figure 3)

The sigmoid function formula is

 ���� = 11 + !" = " " + 1 = 1 − ��−��

and it can be used to scale our values between 0 and 1.

● Stochastic transfer function.

● ReLU function (Figure 4)

● etc

The main feature of neural networks is the ability to learn. By the word

“learn” we define the gradual improvement of the net to solve problems, such as

the gradual approach of a function. Learning is achieved through training, an

iterative process of gradually adjusting the network parameters (usually its

weights) to appropriate values to solve the problem under consideration with

sufficient success. Once a network is trained, its parameters are usually "frozen"

at the appropriate values and from this moment onwards it is in working order.

ReLU is also a very useful non-linear activation function.

 $ %&��� = '�� ��, 0�

ReLU stands for Rectified Linear Unit(Figure 4), it is a commonly used

activation function when we refer to deep learning and it is preferable to the

sigmoid function. The C value stands for the number we give as input, so if that

number is greater than 0 we take that number, but if that number is smaller than

0 we take 0.

To sum up, neurons could be described from the following formula

 ����, ��� = '�� �0, 	���+	����

Figure 4: ReLU activation function

9

that takes one or more numbers as inputs and outputs, an activation number.

There are three types of neurons and layers: the input neurons (on the

input layer), the output neurons (on the output layer) and the hidden neurons

(on the hidden layer).

The input neurons are the combination between the environment inputs

of the network and the hidden neurons. They do not perform any calculation. On

the other hand, the hidden neurons multiply each input by the corresponding

synaptic weight (which stands for the size or the durability of the connection

between two nodes) and calculate the total sum of the products. This sum is fed

as an argument to the chosen activation function, which is implemented

internally by each node. The value that the function receives for this argument is

also the output of the neuron for the current inputs and weights. Finally the

output neurons transfer to the environment the final numerical output values of

the network.

Training

Before we analyze the training methods, it is important to define the loss

function. This function evaluates our neural network for a certain task.

%��, �(� = 1) *��, �(��+
���

M stands for the number of testing samples, � is the output we wish to receive

from the network, �(is what we actually received by running our example to the

network and i is the index of a training data. In order to understand this function,

let us suppose that we have a dataset of 3D chairs and 3D beds (two classes). We

 Σ

b

φ(·) y

ω1

…

ω2

ωm

χ1

χ2

…

χm
Activation

function

Output

Sum

Weights

Inputs

figure 5: Schematic diagram of an artificial neural network.

10

create a class map where � =0 is the label for the chairs and � =1 is the label for

the beds, in other words the number we wish to receive from the NN. However,

while training NN the output �(is not always the appropriate, thus we ask for a

chair and NN replies that it is a bed! Thus, the loss function is considering how

many bad guesses we had.

The output value of the loss function must be as small as possible.

Now it is important to define the Learning rate (lr) and the epoch. The lr

value should be small (often between 0.0 and 1.0) because we want to train NN

in small steps, keeping loss function to small values if possible. lr is a positive

number that further determines the frequency we update the weights in the

hidden layer of the network. For instance, if the lr value is too small the weights

are updating slowly so the training has slow progress and if this value is too

large the model may not predict anything accurately because weights and the

corresponding outputs “jump” into totally different values of loss function. A

suggested number could be 0.1 or 0.01. That means we apply weight 0.1 or 0.01

to the parameters.

The image below is an example of what happens to the gradient loss function on

each category.

An epoch is a machine learning term that refers to how many passes the

machine learning algorithm has made across the full training dataset. Batches

are commonly used to organize data collections (especially when the amount of

loss

Value of weight w

Big learning rate Small learning rate

Figure 6: gradient of loss function

figure 7: Learning rate performance

11

data is very large). The number of epochs equals the number of iterations if the

batch size is the whole training dataset. In the construction of various models,

several epochs are employed. When the dataset size is d, the number of epochs is

e, the number of iterations is i and the batch size is b, the general relationship is

 , ∙ = � ∙ �

There are many algorithms whose application aims to adjust the values of the

weights of an Artificial Neural Network. Learning methods can be classified into

two categories: supervised learning and unsupervised learning.

The use of labeled datasets distinguishes supervised learning as a

machine learning technique. These datasets are used to "train" or "supervise"

algorithms so that they can effectively identify data and forecast outcomes. The

model can track its accuracy and learn over time by using labeled inputs and

outputs. Supervised learning is divided into two more categories: structural

learning and temporal learning.

Unsupervised learning: The included algorithms of this category are

called “self-organized” and they are procedures that do not require an "external"

teacher or supervisor to be presented. Unsupervised learning analyzes and

clusters unlabeled data sets using machine learning methods. These algorithms

uncover hidden patterns in data. Some examples that represent unsupervised

learning include the Hebbian algorithm, the min-max algorithm and the

differential Hebbian algorithm.

Most of the training processes are offline.

Types of neural networks

Depending on the number of nodes on the hidden layer, neural networks

separated into deep neural networks that are commonly used for deep learning

and shallow or non-deep neural networks for simpler calculations.

Hidden layer

Output layer
Input layer

“Non-deep” feedforward

neural network
Deep neural network

Hidden layers
Input layer

Output layer

…

…

…

figure 8: Deep VS Shallow Neural Networks

12

The most famous deep neural networks are the convolutional neural networks

(ConvNet or CNN) which are commonly used to process 2D data, such as images.

These networks work by directly extracting features from data, a method that

automatically makes models accurate from tasks of computer vision. Their

architecture is simple and includes one input layer, many hidden layers with

ReLu activation function and an output layer.

Another type of neural networks are the artificial neural networks. They are

consisting of collections of artificial neurons inspired by the biological neural

neural networks of human brain. Multi-layer perceptron is a type of feedforward

artificial neural network (ANN). The name MLP is confusing, referring to

networks built of many layers of perceptrons (with threshold activation) in some

cases and any feedforward ANN in others.

The main distinction between a typical ANN and a CNN is that a CNN only has

one completely linked layer (the last layer), whereas in an ANN, each neuron is

connected to all other neurons.

Better accuracy and training time

In the fields of classification and recognition, deep neural networks are a

game-changer. Deep networks have allowed robots to identify pictures, sounds,

and even play games with an accuracy that is nearly unattainable for humans. To

attain a high degree of accuracy, these networks must be trained using a large

amount of data and, as a result, require computer power. Thus, reducing training

time and enhancing model accuracy is a timeless target for the research

community. As a result, in literature appear few simple rules that may help in

optimization in time/accuracy curve.

Data Preprocessing

The fact that your neural network is only as good as the input data used to train

it emphasizes the need of data pre-processing. Neural networks may not be able

to attain the necessary degree of accuracy if critical data inputs are lacking. On

the other hand, if data are not preprocessed appropriately, it may have an impact

on the network's accuracy and performance in the future.

Data Normalization

Normalization is the process of transforming data into a scale that is consistent

across all dimensions. The most common technique to achieve this is to split the

data by the standard deviation of each dimension. It makes sense only if you

have reason to suppose that distinct input features have different scales yet are

equally important to the learning process.

Batch Normalization

Batch normalization is a method for training very deep neural networks that

standardizes each mini-inputs batch's to a layer. This stabilizes the learning

13

process and significantly reduces the number of training epochs needed to create

deep networks.

2.3. Computer Graphics

Key words and phrases

Vertex: a point (typically in 3D space), with features, such as coordinates, color,

normal vector, and texture coordinates.

Edge: a line that connects two vertices.

Faces: a closed set of edges with three edges on a triangle face and four edges on

a quad face. A coplanar collection of faces is known as a polygon. Polygons and

faces are interchangeable in systems that enable multi-sided faces. A polygonal

mesh may be thought of as an unstructured grid or undirected graph with extra

geometry, form, and topological attributes.

Surfaces: a combined collection of faces in order to form a flat area.

Overview

Inputs of computer graphics are symbolic descriptions of the optical

scene and the outputs are digital images or videos, with or without interaction

with the user. Computer graphics have a variety of uses, for instance: on

graphical user interfaces (GUI), video games, virtual reality (VR), movies,

animations, on advertising and data visualization. Also, it is a very useful tool for

the illustration of forms, architectural design and logos creation. The appropriate

data can be entered into the computer via digitizing devices such as scanners,

digital cameras, or via the keyboard and mouse. When the result is displayed on

the screen, the user can manipulate it by moving it horizontally and vertically or

by rotating it, editing it or extending it using a mouse or more specialized

peripherals (such as light pen).

As we mentioned before, computer graphics create synthetic images from

mathematical expressions of data (model). This model can be a description of an

imaginary or natural digitized scene with polygonal surfaces. In order to create

Vertices Faces Edges

 Surface

figure 9

14

an image it is moreover important to consider the way light interacts with model

objects. Image processing and 3D modeling softwares are used to import, create

and edit computer graphic with the use of dots, lines, curves, etc. This process is

known as rendering.

Geometry

Geometry is the form of math used to describe the physical world. In

order to project a three - dimensional object it

uses X axis for the depth, forward and back, Y for

the horizontal, side to side, and Z for the vertical,

up and down (figure 10: three dimensions).

Euclidean Space is the first Mathematical Space

that was used to "house" the Geometric Shapes.

In modern Mathematics, it is common to

determine Euclidean Space by using Cartesian

Coordinates and the theory of Analytic Geometry.

There are two basic transformations.

1. Translation, which means shifting the plane so that each of its

points shifts in the same direction and at the same distance.

For instance, to perform a translation of a point from position (x, y)

to another (x₁, y₁) we add the shift vector (Tx, Ty), that represents

the distance, to the original coordinates.

 ./ = . + 0. 1/ = 1 + 01

To perform a translation in tree-dimensions from (x, y, z) to position

(x₁, y₁, z₁) we add the shift vector (Tx, Ty, Tz)

 ./ = . + 0. 1/ = 1 + 01 2/ = 2 + 02

2. Rotation, in which each point on the plane rotates around a fixed

point at the same angle.

The matrix that represents the rotation around a 2D plane is shown

below.

 $3 = 4cos8 −sin8��;8 <=�8 >

figure 10: three dimensions

15

And the rotation of a 2D vector in a plane is done as follows:

 4�?y?> = A<=�B −��;B��;B <=�B C A�yC

The above matrix can be generalized in order to be useful for a 3D

world by adding a third coordinate. So if we would like to rotate a

point about z-axis we use the following matrix,

$3,D = E<=�8 −��;8 0��;8 <=�8 00 0 1F

From the other hand, if we wish to perform the same rotation to x-

axis it is preferable to use the above one

$3," = G1 0 00 <=�8 −��;80 ��;8 <=�8 H

and, for our last case, to perform a rotation around y-axis we use the

above formula

$3,I = G <=�8 0 ��;80 1 0−��;8 0 <=�8H

Rigid transformation includes the above two transformations. It doesn't change

the size or form of an input object.

Color

Another feature of graphics is the color. When light falls on a surface, it is

either reflected or absorbed depending on the color and the surface reflectivity.

White surfaces reflect the full spectrum of colored light, while black surfaces

reflect nothing and absorb light. On the other hand, a shiny surface fully reflects

while dull surfaces absorb mostly. These actions are perceived by the human eye

and the brain as the color of the object.

Additive Color Model (RGB Model) describes a template that uses the

three basic colors (where R stands for red, G for green and B for blue) which are

visible because of the transmission of light.

16

Subtractive Color Model (CMYK Model) uses the reflection of light in

order to describe object colors that are magenta (M), cyan (C), yellow (y) or one

of their derivatives.

figure 11: Additive color VS Subtractive color

Direct Coding is the process used to apply color on a certain pixel by

using a fixed amount of memory storage space. For example, if we use one bit for

each main color then one pixel has 3 bits. Each bit can be equal to 0 (off) or 1

(on) , so , to create the color magenta we set the first bit (red) and the third bit

(blue) equal to 1 and the second bit (green) equal to 0.

Color depth is the number of bits used to describe the color of each pixel

(or area in the vector graphics).The current standard is 24-bit color depth for

screens and 32-bit for prints (screen and printing are using different color

patterns). Also, there are graphics with greater color depth, intended for special

uses, as the human eye cannot distinguish more than 16.7 million color

gradients. For the internet applications Bitmap Graphics are preferable because

vector graphics are not supported by older versions of browsers that are still

used by a relatively large percentage of internet users.

figure 12: Color Depth. The first image is an example of an 8 bit.png with 256 colors, the second is a 4 bit.png

with 16 colors and the last one is a 2 bit.png with 4 colors.

17

Types of computer graphics

There are four types of computer graphics:

2D computer graphics (figure 13: 2D scene from the game “Super Mario”.) are

used to create graphical user interfaces (GUI), but also for illustrations of books,

magazines and other publications. After their composition, they are stored in

digital image files and their further processing is a part of digital image

processing. Two-dimensional graphics can be divided into Vector Graphics and

Bitmap Graphics.

The type of graphics is usually recognized by the extension of the file name in

which they are stored (the part of the name to the right of the dot that separates

the name of a file). The most common types are: “.svg”, “.cdr”, “.ai” (for Vector

Graphics) and “.tif”, “.bmp”, “.jpg”, “.gif”, “.png” (for Bitmap Graphics).

3D computer graphics (figure 14: 3D scene from the game “Detroit Become

Human”.) are an attempt to display three-dimensional graphics on a two-

dimensional screen of a digital device. Their function is based on the spatial

description of three-dimensional objects through points and mathematical

formulas in a coordinate system, and then displays the coordinates of their

points in two dimensions during the performance phase. Such graphics are

commonly used by programs such as computer games and virtual worlds.3D

graphics are also used in cinema to compose scenes from virtual worlds and to

create special effects using modern digital technology (instead of mechanical or

additional effects).

Static computer graphics are budgeted and pre-processed graphic

objects (coordinates of points and surfaces, their colors, lighting and

textures)which are not rendered at the time they are displayed, but have been

rendered once when created. Then they are stored and played as a video file, so

they cannot be interactive. An example of such graphics are small videos, which

are displayed in video games, and which have been "shot" once and each time we

watch them remain the same. To create them we use a suitable program for

creating graphics and animation, such as 3D Studio Max, Maya, Lightwave,

Blender, Cinema4D, etc.

figure 13: 2D scene from the game “Super Mario”. figure 14: 3D scene from the game “Detroit Become Human”.

18

Real time computer graphics are graphic objects (coordinates of points

and surfaces, colors, lights, and textures) that are rendered visually when a

computer program is running, whenever that happens, by re-executing the

appropriate commands / calculations by the processor. Displaying them requires

a real-time graphics engine, such as Ogre3D, Crystal Space and game machines.

Also, real-time graphics can be interactive, with the graphics machine

responding appropriately to user inputs (from peripherals such as a mouse or

keyboard), but this is not necessary. There are several standard libraries for

programming them, such as OpenGL and Direct3D.

Mesh

Polygon meshes are a big part of computer graphics (particularly 3D

computer graphics) and geometric modeling. Different polygon mesh

representations are utilized for various purposes and aims. Boolean logic

(Constructive solid geometry), smoothing, simplification, and many more

operations may be done on meshes. Also, there are several algorithms for Ray

tracing, collision detection, and rigid-body dynamics with polygon models.

A polygon mesh is a collection of vertices, edges, and faces that

determines the geometry of a polyhedral object in 3D computer graphics. The

rendering becomes easier with triangle faces (triangle mesh), quadrilaterals

(quads), or other basic convex polygons (n-gons) but meshes can also be made

up of concave polygons or even polygons with holes. The simplest mesh

representation consists of a vertex list and a polygon list. Triangular elements

are frequently used to define polygons. Triangles are useful in a variety of

geometrical computations, including point inclusion checks, area and normal

calculations, and interpolation of vertex characteristics, because they are always

both planar and convex.

The three-dimensional coordinates of the mesh vertices defined in an

appropriate coordinate frame are stored in the vertex list, while the polygon list

includes integer values that index into the vertex list. The front facing side of

each polygon is usually indicated by an anticlockwise arrangement of vertices

with respect to the outward face normal direction. In lighting computations and

culling processes, the distinction between the front and rear sides of a polygon

becomes crucial. If the polygon list represents a set of linked triangles can be

employed a triangular strip which represents a more efficient and compact data

structure. The first triangle is identified by the first three indices in a triangle

strip. Along with the previous two indices, the fourth index reflects.

In contrast to polygon meshes, volumetric meshes openly represent both

the surface and volume of a structure, whereas polygon meshes only clearly

represent the surface (the volume is implicit).

The mesh geometry is specified by the model definition files, which

contain information on vertices, polygons, color values, texture coordinates, and

perhaps many more vertex and face related properties. The topology of the mesh

is defined by the adjacency and incidence connections between mesh

components, which are widely employed by numerous mesh processing

techniques.

19

The assumption that the provided mesh is a polygonal manifold is

prevalent in the development of mesh data structures and associated algorithms.

A polygonal manifold is a mesh that meets two criteria: no edge is shared by

more than two faces, and faces sharing a vertex may be sorted so that their

vertices excluding the shared vertex form a simple chain.

A non-manifold mesh can include edges shared by more than two

polygons or vertices with several chains of neighboring vertices. Many mesh

processing methods struggle to conduct local alterations around a vertex in a

non manifold mesh because the neighborhood of that vertex may not be

topologically equivalent to a disc. The methods in this article presume that the

provided mesh meets the polygonal manifold criteria.

Mesh data is stored and shared in graphics applications using a variety of

file formats. A variety of such file formats save values in binary and compressed

formats to save space.

Off file format is a geometry definition file format that contains the

description of a geometric object's constituent polygons. It can hold 2D or 3D

objects, and it can also represent higher-dimensional things with simple

additions. The basic standard was initially established for Geomview, a geometry

visualization software, but it has since been adopted by other softwares. The

structure of this format is shown above.

figure 15: view of an object in “off” file format

The header keyword OFF should be on the first line. Optional remark lines

beginning with the character # can be added after this line. The entire number of

vertices, faces, and edges should be represented by three integer values nv, nf,

and one on the first non-comment line. The number of edges (ne) is never more

than zero. The vertex list comes after the line above. The list's number of vertices

must equal the number nv. The index 0 is assigned to the initial vertex, while the

index nv—1 is assigned to the last vertex.

20

figure 16

The face list comes after the vertex list. Each line has a collection of integers n, i1,

i2,...,in, where n is the number of vertices of that face and the remaining

numerals are the face indices. Color values can be added to each face as 3 or 4

integer values in the range [0, 255] or floating-point values in the range [0, 1] in

either RGB or RGBA notation.

Point Cloud

A point cloud is a large collection of small individual points plotted in

three dimensions. Each virtual point on a wall, window or any other surface the

laser beam comes into touch with would represent a real point.

The scanner automatically calculates a 3D X, Y, Z coordinate location for

each point using the vertical and horizontal

angles formed by the laser beam to provide a

set of 3D coordinate measurements that

frequently include the color value recorded in

RGB and intensity. These characteristics can

then be converted into a digital 3D model that

provides more information.

The more points in the representation,

the more detailed it is, allowing minor features

and texture details to be specified more clearly

and accurately.

The method of aligning point clouds

with 3D models or other point clouds is known as point set registration. The

point cloud of a product can be matched to an existing model and examined to

check for changes in industrial metrology or inspection using industrial

computed tomography. The point cloud may also be used to obtain geometric

measurements and tolerances.

While point clouds may be viewed and studied directly, they are

frequently transformed to polygon mesh or triangle mesh models, or CAD

models via a process known as surface reconstruction.

Converting a point cloud to a 3D surface may be done in a variety of ways.

Some methods, such as Delaunay triangulation, alpha forms, and ball pivoting

generate a network of triangles over the point cloud's existing vertices, whilst

others transform the point cloud to a volumetric distance field and rebuild the

implicit surface by using a marching cubes technique.

figure 17: point cloud of a chair

included in ModelNet10

21

Scanners generate raw data in a variety of forms. For 3D modeling, there

are hundreds of file types to choose from. Some of these file types are

compatible with different processing applications, and each piece of software has

varied exporting capabilities.

What you intend to do with the data and who requires it is also related to

output formats. If you want to keep the data, you should save it as an ASCII file,

which saves the point cloud as a simple, generic collection of XYZ coordinates

that you may even open in a text document as a last option. However, keep in

mind that ASCII eliminates any color or vector.

figure 18: Point cloud converted to triangles and then mesh

XYZ files are ASCII or binary database files with a separator character

between each column in a row. Within a point cloud, each row represents a

point. Each column represents one of the point's component points.

By convention, these files have filename extensions of “.xyz” , “.csv”, or

“.txt”, although the Point Cloud XYZ may read and write files with any extension.

Voxel

The terms volumetric and pixel are combined to form the word voxel. In

three-dimensional space, a voxel may be thought of as a 3D pixel. It represents a

three-dimensional picture (or several slices of two-dimensional images) that

shows a volume, similar to how a pixel is an element of a two-dimensional image.

A voxel is a single sample, or data point, on a three-dimensional grid with

uniform spacing. This data point can be made up of a single item of information,

such as opacity, or many pieces of information, such as color and opacity.

The space between each voxel is not recorded in a voxel-based dataset;

each voxel represents only a single point on this grid, not

22

a volume. This missing information may be rebuilt and/or

estimated, e.g. via interpolation, depending on the kind of

data and the dataset's intended application.

A three-dimensional shape in the form of a mesh

can be represented as a possible distribution of binary

values in a three-dimensional grid. We define the inside of

a grid surface using a voxel value = 1 and the outside (or

empty space) = 0.

Voxels are commonly employed in medical and

scientific data visualization and analysis.

Rendering

Rendering is called the process in which there is a realistic display of

models and environments, using colors, textures, lighting and shading. The time

required to complete the model-space is proportional to its complexity. The

program used for this process is called renderer. The production process of the

final photorealistic depicted scene is a complex process because there are many

parameters that must be taken into account in order to produce a result that is

close to reality. The rendering process can last fractions of a second or up to a

whole day to produce a single image per frame.

The rendering formula

%₀K�, 	₀, L, MN = %OK�, 	₀, L, MN + P �QK�, 	�, 	₀, L, MN%���, 	�, L, M��	� ∙ ;�,	�R

Where n stands for the normal surface, wᵢ · n = cosθᵢ, L₀ stands for the output

light, Lₑ is the emitted light and Lᵢ stands for the incoming light. So L₀(x, w₀, λ, t)

describes the outward directed total spectral radiance of λ wavelength for x

position to w₀ direction at t time (= output spectral radiance).

The sampling problem is a challenge that any rendering system must cope with.

Essentially, the rendering process uses a finite number of pixels to portray a

continuous function from picture space to colors. Any spatial waveform that may

be exhibited must have at least two pixels, which is proportional to picture

resolution, according to the Nyquist–Shannon sampling theorem (or Kotelnikov

theorem). In basic words, this means that an image cannot contain

characteristics, such as color or intensity peaks or troughs, that are smaller than

one pixel.

High frequencies in the picture function will generate unpleasant aliasing in the

final image if a naïve rendering technique is applied without any filtering.

Aliasing is most commonly seen as jaggies, or jagged edges on objects with

visible pixel grids. All rendering algorithms (if they are to generate good-looking

images) must employ some form of low-pass filter on the image function to

eliminate high frequencies, a process known as antialiasing, in order to remove

aliasing.

figure 19: Voxel grid

23

3. Application

Keywords and phrases

The fully connected FC layers of the network are used to identify certain global

configurations of the characteristics observed by the lower levels. They are

commonly found at the top of the network architecture, after the input has been

condensed to a compact representation of features (by the previous, usually

convolutional layers). Each node in the FC layer learns its own set of weights

from the nodes below it.

Dropout layers are crucial in CNN training because they prevent the training

data from being overfit.

Overfitting is a term used in data science to describe when a statistical model

although fits its training data perfectly, we still training.

Support-vector machines (SVM) are supervised learning models that examine

data for classification and regression analysis, along with accompanying learning

algorithms.

Cross-validation is a resampling approach that tests and trains a model on

different iterations using different sections of the data.

Softmax is an activation function that outputs the probability for each class

summing up to 1.

TensorFlow: open-source library included in Python supported by Google

Brains.

Keras: sub library included in TensorFlow. Proper for Deep learning.

3.1. Theoretical analysis

APIs and datasets

The main idea of this thesis is the 3D object detection, via cloud of points.

To perform this task we use deep learning algorithms implemented in a python

library developed by the Google team of artificial intelligence (Google Brain),

called Tensorflow.

Keras is a simple, flexible and powerful application programming

interface included in Tensorflow library. It is an open-source software ideal for

deep neural networks and designed to enable fast calculations.

For the implementation it was necessary to use a large dataset with 3D

objects. So after some research we find the ModelNet10, a dataset created for

24

computer vision research tasks, computer graphics, and robots. It includes a

comprehensive collection of 3D object in “.off” file format.

figure 20: “.off” file format objects included in ModelNet

ModelNet10 is a dataset with 10 categories (classes). Each of them

includes a large amount of data splitted into train and test files. There is also a

bigger dataset named ModelNet40 that includes the objects from ModelNet10

and 30 more categories.

Max - pooling / pooling

Max pooling is a discretization method based on samples. The goal is to

reduce the dimensionality of an input representation (image, hidden-layer

output matrix, etc.) based on assumptions that could be made from features

included in the binned sub-regions. It aims to reduce overfitting by offering a

simplified version of the representation. It also minimizes the computational cost

by lowering the number of parameters in the learning process, as well as

providing basic translation invariance to the internal representation.

12 20 30 0

8 12 2 0

34 70 37 4

112 100 25 12

20 30

112 37

figure 21: max-pooling example

2 x 2 Max-Pool

25

PointNet

PointNet is an innovative, highly efficient net that uses neural networks to
detect 3D objects without rendering. It was created by the team of Stanford
University (PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation) to provide several applications for scene semantic parsing to
objects classification. It is appropriate for unordered input sets because it uses a
simple symmetric structure. It is a unified architecture that learns both global
and local point characteristics, allowing it to perform a variety of 3D recognition
tasks in a simple, quick, and effective manner.

The network effectively learns a set of optimization functions/criterion
that selects critical points (also mentioned as interesting or informative) in the
point cloud and encodes the rationale for their selection. The network's last fully
connected layers combine these ideal critical points into a global descriptor for
the entire form (shape classification) or forecast per point labels (shape
segmentation). Since each point may be transformed individually by affine
transformations it is required that points be preprocessed before inserting them
to the algorithm. This preprocessing tries to canonicalize the input and makes it
independent to potential rotation or translation of the initial model before the
PointNet analyzes it.

There are three important modules of the PointNet. The max pooling
layer, which uses a symmetric function to aggregate data from all points, a local
and global information combination structure, and two joint alignment networks
to align both input points and point characteristics. In this approach a
symmetric function takes n vectors as input and returns a new vector that is
invariant to the order of the input vectors. The +, for example, is symmetric
binary function. The basic idea is to use a symmetric function on altered items in
the set to approximate a generic function defined on a point set:

��S��, … , �UV� ≈ X�ℎ����, … , ℎ��U��

They estimate h using a multi-layer perceptron network, and g using a

combination of a single variable function and a max pooling function. We can

learn a number of f’s from a collection of h’s to capture distinct aspects of the set.

The result of the previous part is a vector [f1, f2,....fn], which is the input set's

global signature. This will now function perfectly because the SVM can be simply

trained to produce a classifier output. However, we need a combination of local

and global information for point segmentation. After computing the global

feature vector, we feed it back to the point feature by concatenating global

features with per point features to get the desired outcome. This approach can

anticipate per-point quantities by relying on both global and local semantics.

If a point cloud is subjected to geometric modifications the semantic labeling
must remain invariant. As a result, we anticipate our point set's learned

26

representation to be invariant to these alterations.

A mini-network (T-net) predicts an affine transformation matrix, which
we then apply directly to the coordinates of input points. The mini-network is
made up of core modules such as point independent feature extraction,
maximum pooling, completely linked layers, and it mimics the huge network. The
T-net is discussed in further depth in the appendix. The goal of T-net is to use its
own small network to learn an affine transformation matrix. The T-net is utilized
twice in this architecture. The first time the input features (n, 3) are transformed
into a canonical representation. The second is an affine transformation for
feature space alignment (n, 3). They confine the transformation to be near to an
orthogonal matrix as in the original study.

To align features from distinct input point clouds, we may use another

alignment network on point features and predict a feature transformation

matrix. The transformation matrix in the feature space, on the other hand, has

a far larger dimension than the spatial transform matrix, making optimization

much more challenging. As a result, we include a regularization term in the

softmax training loss (Softmax Activation + Cross-Entropy Loss). The feature

transformation matrix is constrained to be close to an orthogonal matrix:

%QOZ = ||\ −]]^||�
where A is the feature alignment matrix predicted by a mini-network. As a result,
an orthogonal transformation is preferred since it does not lose information in
the input. By including the regularization term in the optimization, the
optimization becomes more stable, and the model performs better.

The below diagram represents the architecture of PointNet (figure 22:

PointNet architecture). The classification network receives n points as input,

executes input and feature transformations, and then uses max pooling to

aggregate point features. The result is a classification score for each of the k

classes. It combines global and local characteristics and generates point scores.

The letters “mlp” stand for multi-layer perceptron (MLP), while the numbers in

parentheses represent the layer sizes of the perceptron. For example, “mlp(64,

64)” means that we have 2 hidden layers with size 64 (number of neurons) on

each. In a classification net, dropout layers are employed for the last mlp. With

ReLU, batch normalization is utilized for all layers.

27

More specifically the classification network maps each of the n points

from 3 dimensions to 64 dimensions by using a shared multi-layer perceptron. It

is critical that each of the n points has its own multi-layer perceptron (A on

diagram). Similarly, each n point is transferred from 64 to 1024 dimensions in

the following layer (B on diagram). Α max pooling is further used to construct a

global feature vector in $���_ (C on diagram). Finally, the global feature vector is

mapped to k output classification scores using a three-layer fully connected

network (FCN) (D on diagram).

Each of the n input points in the segmentation network must be

allocated to one of k segmentation classes. Because segmentation relies on both

local and global features, the points in the 64-dimensional embedding space

3x3

transform
64x64

transform

nx1088
mlp(512,256)

Point features

nx128

mlp(128,m)

nxm

output scores

Segmentation network

T-Net

Matrix

multiply

T-Net

Matrix

multiply

figure 22: PointNet architecture

28

(local point features) are concatenated with the global feature vector (global

point features) to produce a per-point vector in $��``. In other words, after

computing the global feature vector, the algorithm feeds it back to the point

feature by concatenating global features with per point features to get the

desired outcome. This approach can anticipate per-point quantities by relying on

both global and local semantics. MLPs are used on the n points to reduce the

dimensionality from 1088 to 128 and subsequently to m, resulting in an array of

n x m.

figure 23: stages of PointNet architecture

The higher-level design of PointNet motivates the activities that make up

the T-Net (figure 24: T-Net architecture). MLPs (or fully connected layers) are used

to translate the input points to a higher-dimensional space independently and

identically: max pooling is employed to encode a global feature vector, which is

subsequently reduced to $�ab with FC layers. The final FC layer's input-

dependent features are then merged with globally trainable weights and biases

to produce a 3-by-3 transformation matrix.

T-Net

nx3 nx64 nx128 nx1024 1024

512 256
Matrix

mult
1x9

Trainable weights

256x9
Trainable bias

1x9

Reshape

3x3

FC

FC

shared

mlp(64)

shared

mlp(128)

shared

mlp(1024)

Max pool

+

figure 24: T-Net architecture

29

The global feature vector may be used to derive a significant amount of

intuition. To begin, as previously stated, the dimensionality of the vector,

referred to as the bottleneck dimension and denoted by K, is directly related to

the expressiveness of the model. Naturally, a higher K value leads to a more

complicated — and, more importantly, correct — model, and vice versa. K=1024,

for example, is used in the design of PointNet. Also keep in mind that the feature

vector was the outcome of a well-thought-out symmetric function (for

permutation invariance). PointNet employs maximum pooling. The output of

max pooling compresses the n points in the input point cloud to a subset of

points, similar to how the max operator compresses numerous real-valued

inputs to a single value. In reality, the global feature vector can be contributed to

by no more than K points. The critical point set is made up of points that

contribute to and define the global feature vector, and it encodes the input with a

sparse collection of key points.

More intriguingly, the network

learns to summarize an input

point cloud using a sparse

collection of important points,

which closely matches to the

skeleton of objects according

to visualization (figure 25:

visualization of objects).

3.2. Implementation

The team from the web page of Keras made a program based in the

architecture of PointNet. In this approach they used ModelNet10 dataset thus the

application is built to read objects in “.off” file format and process a sample of

their vertices.

This thesis deals with the idea of using the program developed by Keras

and convert it to read and process raw data in xyz file format.

Off file format to xyz

figure 25: visualization of objects

30

To convert the elements included in “ModelNet10” form “.off” file format to “.xyz”

we follow the below steps.

First of all, we define the file that contains our dataset. For this purpose we use

the “Path()” command with the name of the file in quotation marks as shown

below.

path = Path("ModelData2")

Then we read the “.off” data from the file with the command

“glob.glob(os.path.join(,))”. The “glob.glob(*pathname(sting)*)” is a method that

returns a list of path names that matches the input parameter. The use of

“os.path.join(,)” as shown below allows us to have access to the included files of

“path” .

folders = glob.glob(os.path.join(path, "[!README]*"))

In order to have access to each value included in “folders” element we use a

simple “for” loop. First, we only process the data included in categories “bed” and

“chair” (second and third) because the point clouds of these two classes can be

characterized as similar. For this purpose, we make two “if” statements to

delimit the datasets we get. In the first one we rule out the possibility of reading

the files included in “bathtub” which is the forth category. The second “if” ends

the process when it’s time to read data from third class, named “desk”. Finally,

we use the “train_set” list to append the values of “train” files included in “bed”

and “chair” classes and the “test_set” list to append the elements of the “test”

files.

31

figure 26: code to access the data of a specific folder

Both “train_set” and “test_set” includes trimesh objects from both “chair” and

“bed” classes.

The following figure shows the output of the “train_set” list. As you can see each

trimesh object has vertices and faces. For example, the shape of vertices in the

first object is 689 rows and 3 columns.

figure 27: values included in “train_set” list

In order to save our dataset as point clouds we create two new lists to append

the vertices of each trimesh. From the above output results we can see that each

trimesh has different shapes, so we need to save each object with fixed number

of points based on the shape of vertices.

The command “a, k = test_set[i].vertices.shape” outputs two values. The “a” value

refers to vertices and represents the number of the i-gate trimesh’s rows of the

“test_set” list. The second value represents the number of columns of the same

list and trimesh. So, in our case the first value is more useful.

The following code includes the above methodology and exports two lists

(train_set, test_set) with point cloud elements in groups.

32

figure 28: code for storing different point clouds

Output

figure 29: values included in “train_data” list

The last part is to save our data to “xyz” file format for further use. So, we create

files with the name “p.xyz” for each list included in “train_set” and append the

values in three columns.

figure 30: “xyz” files for training set

33

The output files are saved in the same path as the python code.

figure 31: View of a “xyz” file included in train set

We follow the same methodology for the “test_set” and create files with the name

“ptest.xyz”.

figure 32: “xyz” files for test set

The output results are shown below.

34

figure 33: View of a “xyz” file included in test set

The last step is to transfer all the “xyz” data to a new file (named “New”) divided

into two categories with names “bed” and “chair”. Each of these categories

includes two subfiles called “train” and “test”.

3.2.1. Data preprocessing

Before building the net, it is important to preprocess our data. The first step is to

read the new file with “.xyz” objects by using the following command.

Path = Path(“New”)

We use the ready-made code about PointNet from Keras web page and change it

to read xyz files. For this purpose we replace the “samples(*integer*)” command

to “vertices.view()” with “np.ndarray” as an input. The whole implementation is

done in a function called “setsAndlabels()” and the outputs of this function is 4

array lists and a class map that shows the labels of each category (“bed” and

“chair”).

35

figure 34: function for storing “.xyz” data

From the output result of “CLASS_MAP” we can see that label “0” is assigned to

class “bed” and label “1” is assigned to “chair”. So, after training, the computer

must detect beds as “0” and chairs as “1”.

figure 35: “CLASS_MAP” value output

So, the values included in “train_labels” and “test_labels” must be “0” and “1”

depending on the category they represent.

36

figure 36: “train_labels” and “test_labels” outputs

“Train_set” includes data from paths “bed/train” and “chair/train” (where “train”

is a subfile of the file “chair”).

figure 37: “train_set” output

“Test_set” includes data from “chair/test” and “bed/test” (where “test” is a

subfile of the file bed).

figure 38: “test_set” output

By using the commands “len(train_set)” and “len(test_set)”

we can see the actual number of elements included in

“train_set” and “test_set” lists. For example, “train_set” is a

list of 1404 elements (figure 39).
figure 39: elements

included in “train_set”.

37

With the use of the same command, we can see the number of points included in

one element. For instance the element ”0” of “train_set” (train_set[0]) has 689

points and the element ‘1’ of the same set (train_set[1]) has 16394 points.

figure 40: number of points included in one element of a list.

As we mentioned before, each list element has different number of points. The

architecture of PointNet requires the same number of points for every element

included in “training_set” and “test_set”. For this purpose, we create two list

arrays to save our new datasets with “target” number of points for each element

included. So, by using a “for” loop, we read the elements of test_set one by one.

If the number of points of one element is greater than the “target” value the

program asks for a random number (by using the command “random.choice()”)

between the bounds of this element . This number represents a row of “test_list”,

so since we work with “xyz” files this row includes the coordinates of a point.

This process is repeated until the number of inputs included in “list1” are equal

to “target” value. In this way we achieve the random reduction of the number of

points for one element without changing its original form.

In case we want to increase the number of points in random positions we again

ask for a random number between the element’s bounds to detect a certain point

from “test_set” list .Then by adding the value 0.09 to each axis of the detected

point we create a new vertex. Finally we append the new point to “list1” and

repeat the prosses until the number of “target” points is achieved.

For elements with equal number of points to “target” value we save them as they

are. Finally we append the “list1” to “te_list” for later use as a new test set.

figure 41: code for generating sub clouds from “test_set”

38

We follow the same methodology for “train_set”.

figure 42: code for generating sub clouds from “train_set”

For reasons of further data processing is useful to save the new data to “.txt”

files. So, before the above program, we create a number of “txt” files (with the

name “points.txt”) equal to the summary of the elements included in “train_set”

list and “test_set” list to save the datasets before exiting the “for” loops.

figure 43: code for generating multiple ”.txt” files.

39

The output of the above commands are shown to figure 44

where “{‘target’:10000}” is the number of points we wish

for each element of our datasets, the numbers “5126”,

“11302” and “163” are the actual numbers of points for

each element and the indications “smaller”, “bigger” means

that the actual numbers of points are smaller or bigger

than “target” number of points.

The images below shows the output of the above methodology. The left one

shows a case of random reduction points and the right one represents a case of

increasing the number of points in random positions.

figure 45: output of subclouds.

3.2.2. Data processing

The next step is to normalize the device coordinates between -1 and 1 for

each element of our new array lists (tr_list, te_list). For this purpose, we use the

following function to normalize our feature x in range 0 and 1.

�? = � − '�;�'��� − '�;�

And then, to normalize it in range -1 and 1 we use the function

�?? = 2 � − '�;�'��� − '�;� − 1

figure 44

40

In general, to get a normalized value between “a” and “b” we use the

following function.

�??? = �� − �� � − '�;�'��� − '�;� + �

All the above calculations where done in a function called “scale_numpy_array”

for each element of “tr_list” and “te_list”. The results are saved in lists, “v” and

“v2”, and assigned to “tr_list” and “te_list” respectively.

figure 46: normalization code

To make sure that the calculations are done correctly we assign an item from

each list in a “txt” file and check the values in CloudCompare program.

41

figure 47: code for “.txt” examples of point clouds

Before normalization

figure 48: non-normalized point cloud

After normalization

figure 49: normalized point cloud

42

As you can see the values are normalized without effecting the shape of the

object.

The shuffle buffer size is set to the total size of the dataset since the data was

previously organized by class. To random jitter and shuffle train dataset, the

team of Keras developed an augmentation function. The new datasets are called

“train_dataset” and “test_dataset”.

The command “tf.random.uniform(shape, minval = 0, maxval= None,
None,dtype=tf.float32, seed=None, name=None)” produces a tensor of the

provided shape filled with values from a uniform distribution in the range minval

to axval, with the lower limit included but not the higher bound.

figure 50: code for shuffle and jitter

The batch size represents groups of data. In our case, batch size is equal to 32

(bach(32)). This means that during training the algorithm takes the first 32

samples from “tr_list” and trains the network. Then it takes the next 32 samples

and trains again the network.

In case you want a view of your data you can use the following commands

Output

43

figure 51: view of point clouds

3.2.3 PointNet

In the “General information” section we do a theoretical analysis about

PointNet architecture. So, for the code part, the network is built as shown below.

The authors use the smaller 2 classes of ModelNet10 dataset and duplicate the

network design presented in the original research, but with half the number of

weights on each layer.

The below code shows the architecture of the main net.

figure 52: main architecture of PointNet

“keras.Input()” command creates a keras tensor which represents the input of a

keras object. In our case, the input value has “target” number of rows and 3

columns.

44

The next command is “tnet()”, a function that describes the transformer

network. It has similar architecture with the main net.

figure 53: architecture of T-net

“Keras.initilization.Constant()” command is a Tensor initializer that creates

constant values tensors

“np.eye()” command returns a two-dimensional numpy array, like a matrix,

with zeros everywhere except from diagonal which has ones.

In Python, we may flatten a matrix to one dimension by using the

“ndarray.flatten()” method.

All the above commands are useful for the creation of bias value. In order to

create the “reg” value “OrthogonalRegularizer()” function is used.

figure 54: regularization code

The command “keras.regularizers.Regularizer” allow us to apply penalties during

optimization on layer parameters or layer activity. These penalties are added

together in the network's loss function. This “OrthogonalRegularizer()” function

includes two subfuctions called __init__() and __call__().

45

The functions below are referred in many places of model’s architecture.

figure 55: code for applying a convolution layer

“layers.Conv1D()” applies an 1D convolution layer, “layers.Dense()” represents

a regular densly-connected neural network layer, “layers.BatchNormalization()”

is a layer that normalizes the data it receives and “layers.Activation()” with

“relu” as input applies ReLU activation function to “x” output.

There is also another command that we use to take the largest value to down

sample the input representation and it is called “layers.GlobalMaxPooling1D()”.

The last two command that are used in “tnet()” are the “layers.Reshape()” and

the “layers.Dot()”. The first one represents a layer that reshapes the input into a

given target shape and the second command computes a dot product between

samples in two tensors.

The steps Convolution / Dense -> Batch Normalization ->ReLU Activation

Function make up each convolution and fully-connected layer (with the

exception of end layers).

So going back to the main architecture of PointNet we can see that, except from

the commands that are already defined above, there is also the

“layers.Dropout()” line in which dropout is applied to the input.

Finally by using “keras.Model()” we create a model with inputs , outputs and the

title “pointnet”.

The summary of our model (“model.summary()”) is shown above.

46

figure 56: model summary 1

47

figure 57: model summary 2

48

figure 58: model summary 3

As you can see the net has a value of 748.979 total parameters of which the

742.899 are trainable and the rest 6.080 are non-trainable.

The value of trainable parameters is adjusted/modified during training

according to their gradient. Non-trainable parameters are those whose value is

not optimized as a function of their gradient during training.

49

3.2.4. Training

Once the model has been defined, it may be trained by using “compile()”and

“it()” functions, just like any other conventional classification model.

figure 59: code for training a model

The code for training a PointNet is shown above. This particular one is scheduled

to compare the “train_dataset” with “test_dataset” for 20 epochs and learning

rate equal to 0.001. The indication “categorical_crossentropy” refers to a loss

function used in multi-class classification models with two or more output labels.

A single category encoding value of 0s and 1s is applied to the output label.

The images below shows the training progress of the net.

figure 60: training process

The above output shows us that for the 20th epoch loss equals to 1.3018,

“val_loss” is 143266944.0000, “sparse_categorical_accurancy” is 94.87% and

“val_sparse_categorical_accurancy” is 96%.

The only difference between “sparse_categorical_accurancy” and

“val_sparse_categorical_accurancy” is that the first one is based on our training

dataset, whereas the metric prefixed with “val” is based on our test dataset. We

are overfitting our model on our training dataset if the metric on our test dataset

stays the same or decreases while it increases on our training dataset. This means

the model is trying to fit on noise in the training dataset, leading our model to

perform worse on out-of-sample data.

50

The value of our cross-validation data's cost function is “val_loss”, whereas the

value of our training data's cost function is “loss”.

To test the above accuracy, the team of Keras used the below code and had the

following results.

Output

figure 61: results of training

51

4. Results
All the below training processes have stable learning rate equal to 0.001 and

batch size equal to 32.

4.1. Dataset (1)
First we use a dataset that includes 2 classes with 1404 training samples

(889 chair data, 515 bed data) and 200 test samples (100 on each of the two

classes).

By following the above code, we train the net for two cases. In our first case we

use non-normalized data .The results are shown in the matrix below where

“Points” represents the number of points included on each testing and training

element of the dataset, “Epoch” stands for the number of training epochs and

“Accuracy (Acc)” is the values of “Val_categorical_acc”.

Each row represents a training occasion. For example on the first case we test the

net for 20 epochs, with 2000 points on each element of the dataset, the accuracy

level was less than 90% and the loss value equals to 1.2995.

figure 62: results of non normalized dataset (1)

Example of 500 points

52

Seeing the above accuracy results we can say that the network performs

well when using many elements for training. Also, in some cases, the accuracy

levels are decreasing during epoch progress.

In our second training case we use normalized coordinate values between

-1 and 1. The results are shown in the matrix below.

Normalization applies identical weights to all the data variables to avoid

the guidance of model’s performance in one way just because of bigger models in

dataset. It is not necessary to normalize every dataset for machine learning. It is

only necessary when the ranges of characteristics are different.

The table above shows the improvement of loss values and accuracy levels

comparing to the previews matrix where non-normalized coordinates had been

used.

figure 63: results of normalized dataset (1)

Example of 500 points

53

4.2. Dataset (2)
Seeing the results of training with Dataset(1) we wonder how the system

reacts after training with less values in 2 classes. For this purpose we create a

dataset with 200 training samples (100 on each class) and 20 test samples (10 on

each class) that we choose randomly from the original dataset.

Again we train PointNet for two cases.

The matrix above represents the results of training with non-normalized

coordinate values. Comparing with the accuracy and loss values of “Dataset (1)”

we can see that PointNet has a lower accuracy level and the “loss” value is bigger

after training with smaller dataset and non-normalized coordinates.

The table above represents the training with normalized coordinates and shows

54

the improvement of accuracy and loss levels.

4.3. Dataset (3)

Finally we create an even smaller dataset with 100 random training samples (50

on each category/class), 20 random test samples and train again the net with

normalized and non-normalized coordinates.

The last matrix contains the results of the training with normalized

coordinate values and, as we can see, they are improved.

All the above results lead as to the conclusion that no matter the dataset size we

can achieve a better accuracy by using normalized coordinate values.

55

4.4. Dataset (4)

After all the above results, we made sure that the network works

properly. So we create a new test set, irrelevant to ModelNet10, with only one

bed and one chair. For this purpose, we download two new objects in “.obj” file

format. By using Meshlab we change them to “.off” and then convert them to

“.xyz” file format in the same way as the previous datasets. Finally, we train the

net again with the train set included in “ModelNet10” dataset and use our new

test set to see whether the objects will be recognized correctly.

figure 64: : “.obj” data included in the new test set with their point clouds.

The network successfully recognized the objects after using the training set

included to “ModelNet10” for “bed” and “chair” categories. The training was

100% accurate for 1000 points, 20 epochs and normalized coordinate values.

The results are shown bellow.

56

figure 65: training outputs

It is worth mentioning that the accuracy results are likely to differ from those

reported above because each time we train a network the weights are updated

differently.

4.5. Dataset (5)

Finally, we use the whole “ModelNet10” dataset to compare the accuracy

results after training with normalized and non normalized data.

As we mentioned before “ModelNet10” includes 10 deferent categories

with data in “.off” file format. Each of them contains a number of train and test

data spitted into two subfiles with corresponding names. The first class is

“bathtub” and includes 50 data for test and 106 data for training. The next class,

“bed”, includes 100 test data and 515 train data. The category “chair” has 889

data for training and 100 for test. “desk”, “dresser” and “night_stand” categories

includes 86 test and 200 train elements on each. The class named “monitor”

includes 100 data for testing and 465 data for training. The category “sofa” has

100 test data and 680 train data. “table” class includes 100 test data and 392 train

data. Finally the last category, “toilet” has 100 data for testing and 344 for

training.

57

figure 66: ModelNet10 objects

To change the data format from “.off” to “.xyz” we follow the same preprocess

methodology as described before but this time for all classes.

figure 67: code to access a file

58

figure 68: code for creating “.txt” files

Then we split all the new data in 2 subfiles on each of the 10 categories

without changing the original number of included objects.

By following the same methodology we train our data with non -

normalized coordinates. The following matrix shows the results of training. Each

row represents a case.

points epochs Sparse_categorical_acc Val_categorical_acc loss

3000 20 80% 77% 1.6830

2400 20 85% 88% 1.5425

2400 30 87% 90% 1.4609

1000 20 76% 83% 1.5968

800 20 81% 59% 1.6892

800 30 86% 89% 1.4981

500 20 85% 83% 1.5548

As we can see the accuracy results are

training with normalized

matrix shows improved accuracy levels and the loss value is lower.

Αs a general conclusion

more classes and normalized or non

number of classes and data they contain does not affect the per

network when training with normalized coordinates.

4.6. Bonus category
In addition of a project undertaken by the MC lab of Hellenic

Mediterranean University we

churches. In this case we create a dataset

data. The first class has churches without dome and too

The second category includes

“Basilica_with_dome”. Both the two names are based on the architectural

rhythm of the churches.

figure

points epochs Sparse_categorical_acc

3000 20 93%

2400 20 96%

1000 20 96%

800 20 95%

800 30 97%

500 20 96%

500 30 97%

As we can see the accuracy results are good but not satisfactory

training with normalized coordinates these results are way better. The bel

improved accuracy levels and the loss value is lower.

s a general conclusion from all the above results, after training with 2 or

classes and normalized or non–normalized data, we notice that

of classes and data they contain does not affect the performance of the

work when training with normalized coordinates.

Bonus category!
In addition of a project undertaken by the MC lab of Hellenic

Mediterranean University we had in our disposal 20 clouds of points from

churches. In this case we create a dataset with 2 categories and we split

churches without dome and took the name “Basilica”.

includes churches with dome and took the name

ome”. Both the two names are based on the architectural

figure 69: point cloud of a church with dome.

Sparse_categorical_acc Val_categorical_acc

93% 96%

96% 93%

96% 95%

95% 88%

97% 94%

96% 93%

97% 96%

59

good but not satisfactory. After

results are way better. The below

improved accuracy levels and the loss value is lower.

after training with 2 or

normalized data, we notice that the

formance of the

In addition of a project undertaken by the MC lab of Hellenic

20 clouds of points from

with 2 categories and we split our

the name “Basilica”.

churches with dome and took the name

ome”. Both the two names are based on the architectural

loss

1.1946

1.2089

1.1932

1.2377

1.1721

1.1969

1.1927

60

The data preprocessing and processing was the same as the above

datasets. Training achieved really fast because of the small amount of

elements included in train and test set.

The blue matrix represents the results of training with non-

normalized data and the green one with normalized coordinate values.

The accuracy results for normalized coordinate data shows that the network

works better in fewer points when training with small datasets.

61

figure 70: Accuracy results

800 points 2400 points

62

5. Conclusion

A point cloud is a form of data structure used to store geometric shape

data. Because of its unstructured format, it's frequently converted into normal

3D voxel grids or collections of photos before being employed in deep learning

systems.

Most of the times classifications are done in natural models that come

directly from digitalization (laser scanning or photogrammetry) thus they are

always in a point cloud format. For this purpose it is more efficient to use

algorithms that do not required post processing of raw data. In this way we

reduce computation requirements and human involvement in the process. In this

thesis we deal with PointNet algorithms that consume raw data (cloud of points)

instead of processed data (mesh).

In PointNet, the basic idea for classification and segmentation in point

clouds is to calculate the distance between points. This allows us to condense

points that are close into a single point by grouping them in small “boxes”. This

method may be used to summarize geometric information and eventually name

the complete point cloud. A contribution of our thesis is that we increased

affiance of the algorithm by normalizing the coordinates of the points expressing

all different models inside the same normalized coordination system.

In general, normalization is a data preparation method that is frequently used in

machine learning. The goal is to convert the values of numeric columns in a

dataset to a similar scale without distorting the ranges of values. It is frequently

used to reduce training time and achieve better results.

In our experiments, the accuracy levels shows that no matter the dataset

size, the detection levels are improved by using normalized coordinate values.

Also the network works better with low number of points on each element for

both training and test set. The combination of these two, makes PointNet a fast

and effective network.

63

6. Bibliography

Deep Learning

1. https://el1.warbletoncouncil.org/inteligencia-artificial-2346

2. https://en.wikipedia.org/wiki/Artificial_intelligence

3. https://isqlplus.com/big-data-analytics/data-analytics-vs-ai-vs-machine-deep-

learning/

4. https://en.wikipedia.org/wiki/Deep_learning

5. https://en.wikipedia.org/wiki/Machine_learning

Neural Networks

1. https://towardsdatascience.com/how-do-we-train-neural-networks-

edd985562b73

2. https://www.mathworks.com/discovery/deep-learning.html

3. https://en.wikipedia.org/wiki/Artificial_neural_network

4. https://towardsdatascience.com/training-deep-neural-networks-

9fdb1964b964

5. https://en.wikipedia.org/wiki/Multilayer_perceptron

6. https://en.wikipedia.org/wiki/Backpropagation

7. https://www.sciencedirect.com/science/article/pii/S2666351121000358

8. Artificial Networks, Konstantinos Diamantaras

9. Deep Learning with Python, Francois Chollet

10. Geometric Deep Learning, Jonathan Masci, Emanuele Rodolà, Davide Boscaini,

Michael M. Bronstein, Hao Li

Computer graphics

1. Graphics: Principles and algorithms, TheocharisTheocharis, Alexandros Bem

2. https://el.wikipedia.org/wiki/%CE%93%CF%81%CE%B1%CF%86%CE%B9%

CE%BA%CE%AC_%CF%85%CF%80%CE%BF%CE%BB%CE%BF%CE%B3%CE

%B9%CF%83%CF%84%CF%8E%CE%BD

3. https://en.wikipedia.org/wiki/Rendering_(computer_graphics)

4. https://www.haroldserrano.com/blog/rotations-in-computer-graphics

5. https://www.javatpoint.com/computer-graphics-translation

6. https://en.wikipedia.org/wiki/Voxel

7. https://en.wikipedia.org/wiki/Polygon_mesh

8. http://what-when-how.com/advanced-methods-in-computer-graphics/mesh-

processing-advanced-methods-in-computer-graphics-part-1/

9. https://geoslam.com/point-clouds/

10. https://info.vercator.com/blog/what-are-point-clouds-5-easy-facts-that-

explain-point-clouds

Application

1. http://stanford.edu/~rqi/pointnet/

2. https://www.geeksforgeeks.org/pointnet-deep-learning/

64

3. https://www.tensorflow.org/

4. https://keras.io/examples/vision/pointnet/

5. https://keras.io/examples/vision/pointnet_segmentation/

6. Deep Learning with Python, Francois Chollet

7. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation,

Charles R. Qi*, Hao Su*, Kaichun Mo, Leonidas J. Guibas, Stanford University

8. PointNetLK: Robust & Efficient Point Cloud Registration using PointNet,

Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan,Simon Lucey,

Carnegie Mellon University, Fujitsu Laboratories Ltd, Argo AI

9. PCRNet: Point Cloud Registration Network using PointNet Encoding, Vinit

Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki, Rangaprasad Arun Srivatsan,

Simon Lucey, Howie Choset, Carnegie Mellon University, Fujitsu Laboratories

Ltd., Argo AI, Apple

10. OINTNET FOR THE AUTOMATIC CLASSIFICATION OF AERIAL POINT CLOUDS,

M. Soilán, R. Lindenbergh, B. Riveiro, A. Sánchez-Rodríguez

11. Voxel-Based 3D Point Cloud Semantic Segmentation: Unsupervised Geometric

and Relationship Featuring vs Deep Learning Methods, Florent Poux * and

Roland Billen

12. Hands-on Graph Neural Networks with PyTorch&PyTorch Geometric, Steeve

Huang

7. Figures

1. Figure 1: AI includes Machine Learning and Deep Learning is a part of Machine

learning. , Created with Microsoft World

2. figure 2: Neural Network architecture. , Created with Microsoft World

3. Figure 3: Sigmoid function, image from Wikipedia

https://en.wikipedia.org/wiki/Sigmoid_function

4. Figure 4: ReLU activation function , image from Machine Learning Mastery

https://machinelearningmastery.com/rectified-linear-activation-function-

for-deep-learning-neural-networks/

5. figure 5: Schematic diagram of an artificial neural network., Created with

Microsoft World

6. Figure 6: gradient of loss function, Created with Microsoft World

7. figure 7: Learning rate performance, Created with Microsoft World

8. figure 8: Deep VS Shallow Neural Networks, Created with Microsoft World

9. figure 9, Created in Microsoft World

10. figure 10: three dimensions, Created with Adobe Photoshop CC 2019

11. figure 11: Additive color VS Subtractive color, Created with Adobe Photoshop CC

2019

12. figure 12: Color Depth. The first image is an example of an 8 bit.png with 256

colors, the second is a 4 bit.png with 16 colors and the last one is a 2 bit.png with

4 colors., Image from Wikipedia https://en.wikipedia.org/wiki/Color_depth

13. figure 13: 2D scene from the game “Super Mario”., image from pixabaysel

https://pixabay.com/fr/images/search/2d%20game/

65

14. figure 14: 3D scene from the game “Detroit Become Human”., Screenshot from

game “Detroit Become Human”

15. figure 15: view of an object in “off” file format, Screenshot from Visual Studio

Code

16. figure 16, Screenshot from Visual Studio Code

17. figure 17: point cloud of a chair included in ModelNet10, Screenshot from Jupyter

Notebook

18. figure 18: Point cloud converted to triangles and then mesh, image from core77

https://www.core77.com/posts/15315/unbelievable-software-turns-

average-webcam-into-3d-scanner-15315

19. figure 19: Voxel grid, Created with Microsoft World

20. figure 20: “.off” file format objects included in ModelNet, Screenshot from

Jupyter Notebook

21. figure 21: max-pooling example, Created with Microsoft World

22. figure 22: PointNet architecture, Created with Adobe Photoshop CC 2019

23. figure 23: stages of PointNet architecture, image from “PointNet: Deep Learning

on Point Sets for 3D Classification and Segmentation”

http://stanford.edu/~rqi/pointnet/

24. figure 24: T-Net architecture, Created with Microsoft World

25. figure 25: visualization of objects, , image from “PointNet: Deep Learning on Point

Sets for 3D Classification and Segmentation” http://stanford.edu/~rqi/pointnet/

26. figure 26: code to access the data of a specific folder, Screenshot from Jupyter

Notebook

27. figure 27: values included in “train_set” list, Screenshot from Jupyter Notebook

28. figure 28: code for storing different point clouds, Screenshot from Jupyter

Notebook

29. figure 29: values included in “train_data” list, Screenshot from Jupyter Notebook

30. figure 30: “xyz” files for training set, Screenshot from Jupyter Notebook

31. figure 31: View of a “xyz” file included in train set, Created with Adobe

Photoshop CC 2019

32. figure 32: “xyz” files for test set,

33. figure 33: View of a “xyz” file included in test set, Created with Adobe

Photoshop CC 2019

34. figure 34: function for storing “.xyz” data, Screenshot from Jupyter Notebook

35. figure 35: “CLASS_MAP” value output, Screenshot from Jupyter Notebook

36. figure 36: “train_labels” and “test_labels” outputs, Screenshot from Jupyter

Notebook

37. figure 37: “train_set” output, Screenshot from Jupyter Notebook

38. figure 38: “test_set” output, Screenshot from Jupyter Notebook

39. figure 39: elements included in “train_set”., Screenshot from Jupyter Notebook

40. figure 40: number of points included in one element of a list., Screenshot from

Jupyter Notebook

41. figure 41: code for generating sub clouds from “test_set”, Created with Adobe

Photoshop CC 2019

42. figure 42: code for generating sub clouds from “train_set”, Screenshot from

Jupyter Notebook

43. figure 43: code for generating multiple ”.txt” files., Screenshot from Jupyter

Notebook

44. figure 44, Screenshot from Jupyter Notebook

45. figure 45: output of subclouds., Screenshot from CloudCompare

66

46. figure 46: normalization code, Screenshot from Jupyter Notebook

47. figure 47: code for “.txt” examples of point clouds, Screenshot from Jupyter

Notebook

48. figure 48: non-normalized point cloud, Created with Adobe Photoshop CC 2019

49. figure 49: normalized point cloud, Created with Adobe Photoshop CC 2019

50. figure 50: code for shuffle and jitter, Screenshot from Jupyter Notebook

51. figure 51: view of point clouds, Screenshot from Jupyter Notebook

52. figure 52: main architecture of PointNet, Screenshot from Jupyter Notebook

53. figure 53: architecture of T-net, Screenshot from Jupyter Notebook

54. figure 54: regularization code, Screenshot from Jupyter Notebook

55. figure 55: code for applying a convolution layer, Screenshot from Jupyter

Notebook

56. figure 56: model summary 1, Screenshot from Jupyter Notebook

57. figure 57: model summary 2, Screenshot from Jupyter Notebook

58. figure 58: model summary 3, Screenshot from Jupyter Notebook

59. figure 59: code for training a model, Screenshot from Jupyter Notebook

60. figure 60: training process, Screenshot from Jupyter Notebook

61. figure 61: results of training, Screenshot from Jupyter Notebook

62. figure 62: results of non normalized dataset (1), Created with Adobe Photoshop

CC 2019

63. figure 63: results of normalized dataset (1), Created with Adobe Photoshop CC

2019

64. figure 64: : “.obj” data included in the new test set with their point clouds.,

Created with Adobe Photoshop CC 2019

65. figure 65: training outputs, Screenshot from Jupyter Notebook

66. figure 66: ModelNet10 objects, Created with Adobe Photoshop CC 2019

67. figure 67: code to access a file, Screenshot from Jupyter Notebook

68. figure 68: code for creating “.txt” files, Screenshot from Jupyter Notebook

69. figure 69: point cloud of a church with dome., Screenshot from CloudCompare

70.

figure 70: Accuracy results, Created with Adobe Photoshop CC 2019

