HELENIC MEDITERRANEAN UNIVERSITY
DEPARTMENT OF INFORMATICS ENGINEERING

SECURITY SOLUTIONS FOR DENIAL OF SERVICE ATTACKS IN SMART VEHICLES

Author: Kypraios Eleftherios
Major Professor: Grammatikakis Miltos

01/2020

Abstract

In this thesis, we have developed an open distributed embedded platform prototype that targets traffic
monitoring across multiple CAN networks. This ecosystem interconnects multiple Raspberry Pi or
AVR devices (e.g., RPI1, RPI2) to an Odroid XU3 device which serves as a gateway node. CAN
interconnection is based a) for Raspberry Pi, on Industrial Berry’s CANberry Dual V2.1 device, and b)
for Odroid XU3, on two (incoming/outgoing) USB-to-CAN interfaces using Scantool OBD
Development Kit.

Incoming and outgoing CAN terfaces at the gateway are controlled by different threads. Our
embedded software toolchain uses a) for RPI, Linux CAN-utils tools, and b) for Odroid XU3, an
extended serial terminal that uses multithreaded code to handle incoming/outgoing connections;
configuration and CAN message send/receive functions use appropriate USB-to-serial STN2120's
ELM327 AT, and ST commands. During normal operation, RPI2 (CAN2) carries actual engine traffic
(based on an actual Korean car dataset [37]), while at the same time RPI1 packet requests related to
dashboard display (e.g. engine speed, RPM, temperature etc) departing from RPI1 (CANI1), are
received via the Gateway by RPI2 (CAN2), and answered back to RPI1 (making a round trip).

In our threat model, we consider a denial-of-service (DoS) from CAN1 and examine different metrics
that can be used to detect the attack. At gateway-level, we can detect the DoS attack by using metrics
and setting appropriate thresholds related to the Cortex-Al5 energy consumption (available from
integrated INA231 sensors), and four temperature gradients on the same chipset (available from
integrated sensors). In addition, we are able to monitor variations of round-trip time (RTT) by
monitoring the sequences of packets that originate from RPI, flow to RPI2 via Odroid XU3 and return
back to RPI, in a ping-pong pattern. Our results show tradeoffs in the accuracy and effectiveness of the
proposed metrics in detecting actual attacks. Accurate prediction of an attack results in shutting down,

throttling down, or sleeping the appropriate outgoing interface, thus safeguarding the engine ECUs.

I[TEPIAHYH

Y& gUTI) 1] EPYUCia, avamTOYONKE 10l OVOLYTI) KOTUVEUNEVT] EVOOUUTOUEVT] TAOTQOPILO TOV GTOYEVEL
oIV TapaKkorovONoN TG KuKAoQopiag oe moAlamAd diktve CAN. AVTO TO 01KOGVGTNIA O10GVVOEEL
ovokevég Raspberry P11 AVR (m.y. RPI1, RPI2) péco o cvokeuvn)g Odroid XU3 mov avaiappdavet
0V poAd g mOANG (Gateway). H dwacvvoeon CAN Paciletar o) yia to Raspberry Pi, ot cvokeon
CANberry Dual V2.1 ¢ Industrial Berry kot B) vy 1o Odroid XU3, ce 600 (ewoepyopeveg /
eCepyopeveg) dtemagéc USB-CAN ypnoypomoidvtag to Scantool Development Kit.

O s1oepydpeveg kot eEepyopeveg oemapéc CAN otnv moAn eréyyoviol amd Swpopetikd threads. To
EVOOUOTOUEVO AOYICHIKO oV ovamtulape ypnoluonotel) oto Raspberry PI, ta epyaieio Linux
CAN-utils kot B) oto Odroid XU3, o en€Ktoon pog £vOo¢ GEPOKOD TEPUATIKOD OV YP1CILOTOLEL
K®OwKa moAldv viudtev (multithread) ywo va yewpileton 1ig ewcepyopeves/eEepydpeveg cuvoéoels. H
SPOPPMOT) TV PLBNIcE®VY Kal 01 AerTovpyieg AN kot amooTtoAg unvopdtov CAN yp1noiomolovy
KatdAinieg evtoréc ELM327 (AT) xon evrodég ST tov STN2120.

Katd ™ ddpkela g xovovikng Aettovpyiog, o RPI2 (CAN2) peta@épel mpaylotiKl) KuKAogopia
unvopdTov tov Kivntipo (Baciopévn 6 Eva TPayIOTIKO GUVOAO OE00LEVAOV KOPEATIKMOV (UTOKIVIITOV
[37]), evd tavtoypova ta arthpata tokétov amd RPI1 ta omoia oyetiCovtal pe v 086vn 100 TOpTAS
ka1 ewodyovtar 6to CANI1, xoataAyovv pécw g moAng oto RPI2 (CAN2) kot omovtdvTol Ticm GTO
RPI1 (mpaypatomoidvrog éva Taidt pet' emotpoenic). Xto threat model pog, Bempovpie ™V Tepintwon
mov €yovue emifeomn apvnong eévmpémone (DoS) amd 1o CAN1 ko eEetalovjie O10QPOPETIKES
UETPNGELS Y10, TNV AVIXVEVOT) TG EMOECTC QLTIG.

Ye emineoo Gateway, umopovpie va aviyvevcovpe DoS ypnoionotdvtog HETpoEIC Kat va Kabopicove
KATOAANAQ Opla e GYECT LLE 0) TV KoTavaiwon evépyelag Tov Cortex-AlS (mov eivan dwwbEcun and
TOVG evoopoTopévovg arctntpec INA231), B) meproyég avénpévng Beppokpaciog (temperature zones)
KOl GUYVOTNTES ERQAVIONG pnvopdtov. Emmiéov, pmopodue va TapakolovdGovE TIG SOKVILAVOELS
tov round-trip time (RTT) mopakorovbdvtag Ti¢ akoiovdieg makéT®v mov mpoEpyovtol amd to RPI1,
Ta omoila. otV cuvéyewn petagépovtal 6to RPI2 pécw tov Odroid XU3 kot emoTpéPovV MO® GTO

RPI1, oe potifo mvyk-movyk.

To omoteléopotd pog Oeiyvouv OTL OAEC Ol MOPUTAV® HETPNOEIS Yo TNV OVIYVELCT] TPUYLOTIKGOV
embecemv eivar axpiPeic ko amoteleonatikes kot ypnlel mepartépm peréne. H akpiprg mpopfreyn
g emiBeonc Ba Exel OC OMOTELEGO TV OTEVEPYOTOINGT), TN HEI®GT TN KIVI|ONG, 1] TV TPOCMPIVI|

AmOdECIEVTT) TG EEEPYOLEVIIC OIEMAPI|C, TPOCTUTEVOVTOS ETCL TO GUGTI|LLO TOL KIVITIPO.

Table of Contents

L IETOAUCTION. ...ttt e e e e e et e e e e e e e e e e e e e e e e naeenns 10
2. Safety and Security in Real Time SYSteMSccovoeoiiiiie e 12
2.1 Real-Time Operating SYSteIN....... . ..ot eeeeeeemmeeeeeem e mmeenans 12
2.2 Time-Triggered Communication Protocol....................ooii e 12
2.3 Time-Triggered Ethernet...... ... 12
24 The CAN BUS ..ot e e e e e e e e e e e ae e nananns 13
2.5 Bt ATDIITATION ... nns 16

B S B) 1 11U 16
2.6.1 Data FTames ... et e e e e 16
2.6.2 RemoOte FTamE ... e e e 19
2.6.3 EIrOr Frame ... e e 19
2.6.40verload FTameooooiiiiii e 20
2.6.5 Valid FTame ..o 21

2.7 FUnctional Safetyooooie e 22
2.7.1ISO 26262-1 Standardoooiiiii e 22
2.7.2 Failure Modes Effects and Diagnostic Analysis (FMEDA)...........ooooimioeeeee e 24

PR 0. s B w8 (et 1 1 SRR SSR 24

3. Threat model and State-of-the-Art..............o e 25
3.1 POSSIDIE ATTACKS ... 25
3.1.1 Replay (or Playback) Attacko 25
3.1.2 Masquerade (or Spoofing) Attackoooiiimi i 25
3.1.3 Denial of Service Attackooooiiiii s 25

3.1.4 Distributed Denial of Service Attacko 26

3.2 Threat Model and Our SOIItIONooooiiiii e 26
B s T T 26
4. Expernmenbol PRIUOEIE. .. ooomeeins oo eee e e m e e e e 30
4.1 HArAWare DEVICESoiiiiiiiie oo e e e e e e e s e e e s e e e e e e neaean 30
v Sl I 5 T R 30
4.1.2 OBD DEVELOPMENT BOARD ..ot 31
1.3 GINEZKO ... e e e an 33
L O B 1 0 0 oy S 34
4.1.5 CanBerryDual ISO 2.1 ... e 35
4.2 Drivers and SORWATE ..o 35
4.2.1 Integration Towards Final Platform.........................oo e 35
4.2.2 Concept Validation - Energy Monitor Tool...............ooooiiiii e 37
4.2.2.1 Code snippets - Receiver Thread on Odroid XU3 Gatewayccooeevvveeeeeeeeeeeenee. 38
4.2.2.2 Code Snippets - Sender Thread on Odroid XU3 Gatewayc.cccevevemeeeeeceeeeeennee... 39
4.2.2.3 Gateway Software on Odroid XU3 ... 41
4.2.2.4 RPI Setup - RPI Sender (RPI1) & Receiver (RPI2)ccooovmmiiiiieeeeee e 42
4.3 Troubleshooting GUIAEooiiioeeee e 42
4.4 Experimental EValuationccoooooi i 43
4.4.1 Towards Deriving a DoS Metric: Example with Energy Metric...............cccooooiviiiiieeeei. 43
442 Detailed RESULLS.ooooi e 44
4421 RPISender (RPIL)ooiiiiee e e 45
4422 RPIRece1ver (RPI2) ... 46

5. Conclusions

0. FUUTE W OTK e e e el

References

Table of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1: Example of a network connection without and with CAN [39]cooiimiiiiieeee 13
2B phvecil and Yakh Hele BB,onmmmmmsvnsmnms s s e s 14
3: In-vehicle netWorK [40]o 13
Asstomlad Dt Feam I e s il i e s e e s e e 17
S Erlendel PRI S FA] ... i sonnssib an st as SRS s S S A S S o 19
6: Remote Frame [A1] . ..o 19
R = (o 1 L S 20
8:0verload Frame [41] 20
9: Automotive NetWOTKS ... 21
10: Odroid XU3 ...ttt 30
11: OBD development Doard................ccoooioiimieoee e 31
12: OBD Development Kit -Interface Diagram..................cccooooiiiiiiioiieeee e 32
0 R 511 T o R 33
R N T 0T g o R A (1 Tt 34
15: CanBerryDual ISO 2.1 ..o e 35
16: Initial prototype Gateway SOMtIONccoooiiiii e 36
17: Open distributed embedded platform prototypecccooooeoeemmieieee e 36
18: Energy Monitor Tool WINAOWc..ooiii e 37
19: Code for Energy Monitor Tool (I2C interface calls).................cooooiieiiiiieeee 38
20: Gateway threads receiving and sending packets..................ccooooooiiiiiiiii e 40
21: Scenario with normal traffic ... 43
22: Scenario with network under attack........................ 44
23: Experimental framework of our platform............................... 44
24: Average instant energy on Cortex-Al5 — diff. rates of malicious packets (buffer size 1).... 47
25: Average instant energy on Cortex-Al5 - diff. rates of malicious packets (buffer size 100) 48
26: Average temperature of four available thermal zones ... 48
27: Round-trip time (RPI1 to RPI2 and back in feedback loop)cccoveeiiiiiii 49

8

Acknowledgments

Firstly, I would like to thank my family for supporting me all these years for my studies and life in
general.

I would specifically like to express my gratitude to my thesis advisor Dr. Miltiadis Grammatikakis
who was there to help me every time with his knowledge and wisdom and be patient to provide me
answers for all my questions. I would like to thank Voula Piperaki for supporting me from the start.
Moreover, I am also thankful to my colleagues of Hellenic Mediterranean University. Specifically, I
would like to thank Nikos Mouzakitis and Nikos Papatheodorou that contributed to the project and
helped make it possible with their experience and knowledge. Also, I would like to mention that the
whole experience I had in the Artificial Intelligence and System Engineering Laboratory (AISE Lab)

helped me improve, practice and learn crucial knowledge for my future.

1. Introduction

Over the years, evolution of the automotive industry has brought innovations that add to the
conveniences and needs of a better driving experience. Modern cars that ensure these amenities are
connected to several different electronic devices.

A modern car able to support smart services, including preliminary autonomous driving, has more than
80 ECUs (Engine Control Units) that are made responsible for different applications such as ABS,
lights, windows etc. CAN (Controlled Area Network) is the most popular in-vehicle network. In fact,
CAN bus is the preferred bus for all types of vehicles. ECUs, sensors and actuators are all connected
with it.

CAN bus was proposed by Bosch i 1980s [38], a time that cyber security threats, attacks, and
protection mechanisms were not at all in the scope. Therefore, CAN was designed without paying
attention to security requirements. Since then different measures and solutions have been proposed that
extend CAN for a variety of security threats, but they have not been incorporated into a standard, and
hence, up to this day CAN is prone to different types of attacks.

In this context, we have developed an open distributed embedded platform prototype that targets traffic
monitoring across multiple CAN networks. This ecosystem interconnects multiple Raspberry Pi or
AVR devices (e.g., RPI1, RPI2) to an Odroid XU3 device which serves as a gateway node. CAN
interconnection is based a) for Raspberry Pi, on Industrial Berry's CANberry Dual V2.1 device, and b)
for Odroid XU3, on two (incoming/outgoing) USB-to-CAN interfaces using Scan tool OBD
Development Kit.

Incoming and outgoing CAN mterfaces at the gateway are controlled by different threads. Our
embedded software toolchain uses a) for RPI, Linux CAN-utils tools, and b) for Odroid XU3, an
extended serial terminal that uses multithreaded code to handle incoming/outgoing connections;
configuration and CAN message send/receive functions use appropriate USB-to-serial STN2120's
ELM327 AT, and ST commands. During normal operation, RPI2 (CAN2) carries actual engine traffic

(based on an actual Korean car dataset), while at the same time RPI1 packet requests related to

10

dashboard display (e.g. engine speed, RPM, temperature etc.) departing from RPI1 (CANI), are
received via the Gateway by RPI2 (CAN2) and answered back to RPI1 (making a round trip).

In our threat model, we consider a denial-of-service (DoS) from CAN1 and examine different metrics
that can be used to detect the attack. At gateway-level, we can detect the DoS attack by using metrics
and setting appropriate thresholds related to the Cortex-Al5 energy consumption (available from
mntegrated INA231 sensors), and four temperature gradients on the same chipset (available from
integrated sensors). In addition, we are able to monitor variations of round-trip time (RTT) by
monitoring the sequences of packets that originate from RPI1, flow to RPI2 via Odroid XU3 and return
back to RPI1, in a Ping-Pong pattern. Our results show tradeoffs in the accuracy and effectiveness of
the proposed metrics in detecting actual attacks. Accurate prediction of an attack results in shutting
down, throttling down, or sleeping the appropriate outgoing interface, thus safeguarding the engine
ECUs.

Next, in Chapter 2 we focus on CAN bus, as well as real-time, functional safety and security aspects.
Chapter 3 examines the threat model and state of the art. Chapter 4 develops the experimental
framework of our embedded platform and identifies key detection metrics for Denial-of-Service attacks.

Finally, Chapters 5 and 6 draws conclusions and elaborates on future work.

11

2. Safety and Security in Real Time Systems

2.1 Real-Time Operating System

Real-time Operating Systems (RTOS) are all operating systems (OS) that can process with predictable
delay [1]. Real-time applications are critical, and they are used to model safety-related tasks. Real time
systems have time constraints and they have to be executed within specific time intervals (deadlines),
otherwise the system will probably or certainly fail.

Most of the time RTOS processes a specific set of applications, for a real time OS is more important
how fast it can respond to a specific event, rather than how many tasks it can perform at the same time.
The two most common designs are the event-driven and the time-sharing the main difference between
them is that event-driven works solely with events scheduling for higher priority, while time-sharing

primarily switches tasks on a regular clocked interrupt, 1.e., it follows a round-robin scheme.

2.2 Time-Triggered Communication Protocol

Time-Triggered protocol (TTP) is a computer network protocol designed in Vienna Umniversity of
Technology as an industrial (e.g., transportation, space) application of control systems [2]. In 2011, it
was standardized as SAE AS6003 Communication Protocol. TTP is also used in aircraft and aerospace
applications, as well in railway signaling applications. TTP is a dual channel 4-25Mbit/s time-triggered
field bus. TTP has an important feature that can inform all the connected nodes of a network at the
same time if any of the nodes fails, and all the nodes update their status several times per second.

TTP in automotive is trying to replace mechanical and hydraulic parts with electronics. Such parts are
the engine, steering, braking and transmission. This technology is called by-wire and is believed to be

of low cost, higher reliability and improved performance.

2.3 Time-Triggered Ethernet

Time Triggered Ethernet (TTE) is a standard which defines a fault tolerant strategy for building and
maintaining Ethernet networks. TTE establish robust synchronization, synchronous packet-switch,
bandwidth partitioning and traffic scheduling (SAE AS6802 describes the above).

12

The TTEthernet network is used for OSI layer-2 applications and it supports IEEE 802.3 standards
which are other Ethernet networks and services. Protocol control frames (PCF) are used for
stabilization and maintenance of synchronization and have the highest priority.

Time triggered traffic: The Ethernet packets that are sent over the network are scheduled and they do
not collide with other traffic because of the precedence that they have over rate constrained traffic.[3]

2.4 The CAN Bus

CAN (Controller Area Network) is a robust serial communication bus designed for industrial and
automotive applications to perform in harsh environments [4]. It interconnects sensors, actuators and
ECUs (electronic control units), and is very popular in most vehicle models, which sometime have 7-8
bus mterconnects and 70-80 ECUs. The simple structure of the CAN based on two wires (CAN high,
CAN low) reduces cable wiring.

Bosch created and introduced CAN Bus in the 1980s to provide a low-level networking solution to
cover the needs for high-speed in-vehicle communication. Automotive industry began manufacturing it
in 1990s, it was much later in 1993 that CAN Bus was standardized (e.g. ISO 11898-1, 11898-2, and
11898-3).

Without CAN With CAN

Figure 1: Example of a nefwork connection without and with CAN [39]

As shown in Figure I, shortly after the automotive industry began to adapt the new two-wire
CAN bus, replacing the old point-to-point wired networks reduced dramatically the weight of

the car.

13

After 1996, five higher-layer automotive-specific signaling protocols, such as ISO 15765 for global on-
board diagnostics (OBD) m most US and European cars appeared. On-board diagnostics (OBD) can
help you or the technician troubleshoot problems that occur with the diagnostic and report system
making vehicle maintenance fast and simple. More recently, in 2012 CAN extensions for higher
performance were presented by Bosch for higher data transmission rates, so-called flexible data-rates,
or CAN FD.

CAN protocol is based on non-synchronous, communication on two different layers of OSI. The
Physical Layer as in Figure 2 with data rates from 125 Kbit/s to 1 Mbit/s, and the Data Link Layer.
The bus consists of two wires: CAN Low & CAN High, while the maximum distance that the bus can
operate is about 40 meters (or up to 120 meters with special high-performance transceivers). More
specifically, there are two physical layer protocols: CAN high (defined in ISO 11898-2 protocol)
capable of speeds up to 1 Mb/s, and CAN low (defined i ISO 11898-3) capable of speeds up to
125KDb/s and this also gives the possibility of higher fault tolerance.

CAN Node CAN Node CAN Node

Host _ _ Host Host
I . I E = I
CAN Controller CAN Controller CAN Controller
; I _ I B j I .
| CAN Transceiver _ [| CAN Transceiver | [| CAN Transceiver |
& —e CANH +—®
Ry Ry

Fy & CANL &

CANH: CAN High line

CANL: CAN Low line

Rt Termination
T vecor

Figure 2: ECU physical and Data link layer

Safety and critical applications such as the engine or the ABS of the vehicle require higher data rates to
operate at best. The policy the CAN protocol 1s Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA). The CAN use san id priority which means even though all the nodes that are

14

connected to the bus have the right to access, only those with the higher priority (the one with the
lowest ID) are authorized by the interface (CAN controller and transceiver) to broadcast on the bus.
Thus, CAN bus gives priority on the critical (high priority CAN messages) and the non-critical (lower
priority CAN messages) are delayed. When a node with higher priority starts transmitting to the bus all

other node with lower priorities switch to the receiving state in order to listen to the broadcast message.

Navi / Car Audio
—ERg

— (0N DUS

i, —— FlexRay bus

-~—-=-— [Dashboard

FPedestrians Protecting Unit

e Rear Sensor

Curtain Airbag

nnt Sensor

)OO s
Door uspension

- Pretensioner Brake

Ry (Stay Counler
Body Computer (ECM)

Pressure Sensor

e\ - Accelerator L. Passenger Seat Sensor

Figure 3: In-vehicle network [40]

Functions of the car are controlled and monitored by the ECUs. ECUs send messages and
exchange information among them, as shown in Figure 3. ECUs have different roles the can
control non critical functions like the windows roll up/down or they can operate functions
such as ABS system that are more critical for the safety of passengers. Nodes interact with

the physical layer of the CAN via a transceiver that all ECUs provide, enabling a two-wire

15

analog data connection, one for the low CAN and the other wire for the high CAN. The data link layer
(ISO 11898-1) is implemented by the CAN controller, which 1s responsible to send packets (known as

frames) to CAN network or receive from it.

2.5 Bit Arbitration

CAN nodes that want to send messages to another node do not use direct pomt-to-point
communication. Instead, they send the message over the bus that all the connected nodes have access.
If a node then reacts to the message, it means is interested. CAN bus is based on a bitwise arbitration
protocol so that no collisions may occur from concurrent access to the CAN bus. The IDs CAN uses for
communication purpose are specific, but some automotive companies may have added extra ones for
specific tasks. The CAN priority defined as the node with the lowest ID number is the highest priority
on the bus (ID 0 has the highest), so if multiple nodes transmit repeatedly at the same time only the
nodes with the highest priority will send the message, and only one node can send at the time. Lower
priority nodes will send therr messages as soon as the network is not busy. Thus, all nodes will send
their messages eventually after some delay, but it is ensured that the highest priority messages will be
transmitted on time for real time communication.

For mstance, we have three nodes, node 1 with ID 0001, node 2 with ID 0010, and a node with ID
0100. In this way, if they try to broadcast all together at the same time the node 1 will send first and
the other two will wait and listen until the network is not busy, then node 2 will send second and,

finally node 3.

2.6 Frames
CAN bus messages, called CAN frames, are of four different types [6].
2.6.1 Data Frames

Data frames have two different types, the standard frame or base frame with 11 identifier bits, and the

extended frame version with 29 identifier bits.

16

Data Frame (number of bits = 44 + 8N)

- 12 6 8N (D=N<8) 16 T
® Artitration Field Control Data Field CRC Field
E Field o End-of-
- 4 @_| E
5 1 8 - 8 15 338 rame
52 zwcs g CRC a9«
Plo 8 8g&¥a 3 _ B3¢ IFS
0 olelol [TT[TTTTTTTITS TITTTTTT T T T T DDl sl
— Identifier —| | F| Data
= § Length
Message g| Code
Filtening &

Stored in Transmit/Receive Buffers

Stored in Buffers

Bit-siuffing

Figure 4: Standard Data Frame [41]

A CAN data frame is split in two versions the layout differences are small, but the size is different. The
Standard Data Frame (see i Figure 4) (CAN 2.0A), and the Extended Data Frame (see Figure 5)
(CAN 2.0B).

* The first bit of CAN 2.0A and 2.0B is zero to indicate that a transmission began, as the

inter-frame state of the CAN bus is logical one.

* The next 11 bits form the identifier.

* The Remote Transmission Request (RTR) is a bit whose value is zero in case of a Data

Frame and one in case of a Remote Frame.

* The next part of this is the Identifier Extension (IDE) bit that is zero in case of a standard

frame.

* The following bit Reserved Bit Zero (RBO) is also zero.

* After that comes a four-bit representation of the size of the data field named Data Length

17

Code (DLC).

* Data Length that can be up to 8 bytes and are the data transmitted.

* Cyclic Redundancy Check (CRC) of 15 bits used to identify errors that may occur during

broadcast phase.

* CRC Delimiter that always has the value of one.

* Acknowledgment Slot (ACK Slot) bit that has the value one when a node receives a Data

Frame without mistakes. The ACK Slot takes the value zero if there are any errors.

* At the end of the frame there are 7 logical one bits.

>Extended vs Standard Data Frame

The main difference between the Extended (Figure 4) and the Standard Data Frame (Figure 5)
version is their size. The Extended version has 20 bits more than the other and most of them
are in CAN ID part as it is 29 instead of 11 bits. The idea for this is the need of the
automotive companies to have a vast set of universally unique identifiers for their products,
even if there are not very unique at their function. So, in the Extended Frame the arbitration
field has 32 bits compared with 12 bits of the Standard Frame. The 11-bit (basic) Identifier
exists in both versions. The Extended version uses the Substitute Remote Request (SRR) bit
that has the value of one.

IDE comes next as logical one. At the end, we have the 18-bit part of the Extended Identifier.

18

Data Frame (number of bits = 64 + BN}

' 2 8 8N (0<N<8) 16 fe— 7—
! } Arb"rl'ra‘tlmFleId . _ E—;dm' Data r-am CF::F-eId Sk End-m
I : s g
o ([T LA T TLITLT oo [T T TITT [T R
Identifier—e Extended Identifi 5 |Data
HES
é
&
Bit-stuffing

2.6.2 Remote Frame

Figure 5: Extended Data Frame [41]

The purpose of the remote frame shown in Figure 6 is to seek permission for the transmission of data
from another node. The remote frame and date frame are similar. The two differences they have is that

this type of message is marked as remote frame in the arbitration field, and it doesn't have any data.

Remote Frame with Extended Identifier

2.6.3 Error Frame

Mo data field

Figure 6: Remote Frame [41]

19

32 “——g—= 16 e 7
2 Arbitration Field 2911:01 CRC Field —_
o 11 - 18 < R 15 _E—. F?ar;e
: ~ 1l e < CRC 388
E g g S£s50 3 258
ol LLLELTLC DL EOLL LT LLET T folefol T ELTTLLLLLTTLL L [[ofafafolofofe[efs]s
le—— Identifier - Extended Identifier——»| 3 E::.agth
‘E Code
2
&

As shown in Figure 7, when an error is spotted on the bus all the other nodes send an Error Frame. If
there are 5 bits or more set in a row (that do return to zero), then the other nodes begin to send an Error

Frame with 8 zeros in the field of Error Flag and after that bus transmission stops. Multiple consecutive

errors result to error passive mode (slower transmission rate), and eventually after an 8-bit counter

expires, bus off.

Interrupted Data Frame -
i 12 L} BN (0sNsB) ———
ol Arbitration Field Cantral Data Field
§ Field
uw 4
6‘4—11 - B — e [
s ™ o
§ e 3 8
e 3 ghuEz 3 .
of [TTTTTT LT {elelol TTT[TTTITTITLS, THTTT]
~—— Identifier — Data

&l Length

Tl Code

c

»

€

[¢—— EmorFrame —————»
Bit-stuffing (R £6 8
Data Frame or
Remote Frame Error Echo Error frkar-Frame Space or
Flag Error Deli Overload Frame_
Flag
olalle] - T[T io
Figure 7: Ervor Frame [41]
2.6.4 Overload Frame

Overload Frames are like Error Frames. They are transmitted during the Inter-Frame phase to introduce

additional delay between Data and Remote Frames, but unlike Error Frames they do not stop

transmission (see Figure §).

Remetn Fraime (namber of bis = 44)

12
5 Atttration Flekd Contral
= Fiekl
b |t
]

CRC Field

; i i | g Frame
o CRC
Ble e 9 [El
(ol LOLELT IO felefal ELTL DL ETERLETT Tl fafslelefelefsls
Cwedond Fraene
End-olFrame or
Emor Delmiter o 88—
Overioad Delimiter

g —=f

Dabmeter

Inder-Frame Space or

Erms Frameo

Ovebsd [—

Figure 8: Overload Frame [41]

20

2.6.5 Valid Frame

If the last bit of the EOF field is received in an error free state, then this message is considered as error-
free. The transmission will begin again by the transmitter if in the EOF field there exist a dominant bit.
In automotive, there are three other important in-vehicle network technologies differing in the protocol

and baud rate. These are used in different configurations as identified in Figure 9.

" ms [oan | reaw | wost

Low level Hard Real Time
Application communication :d:::: ione Systems (X - by - Multimedia
Systems - Wire)
Engine, Powertrain, ! Multimedia,
- Chassis i, S Telematics
A thiactise Single Master Multi Master Multi Master up to Multi Master up to
typ 2...10slaves typ 10..40 nodes 64 nodes 64 nodes
polling CSMA/CA TDMA/FTDMA TDM CSMA/CS
Topology Bus Bus Bus/Star Ring/Star
Message Synchronous & Synchronous &
Transmission Synchronous Asynchronous Asynchronous Asynchronous
Msg Ide ntification Identifier Identifier Time Slot
Data Rate 20 Kbps 1 Mbps 10 Mbps 24 Mbps
SEDYIr P Oto8 Oto8 0to 254 0o 60
frame
Electrical - Single Dual wire -
Physical layer e .Electrical ~ Dual wire Optical/Electrical Optical fiber

Figure 9: Automotive networks

* Local Interconnect Network (LIN) [7] is a single-wire bus that is low cost, good for
interconnecting low bandwidth sensors and actuators. LIN is a single master — slave bus and
each master 1s responsible for up to 16 slaves. The speed of LIN is limited to 19.2 Kb/s.

» Flexray is designed to cover fast networks [8]. It is a dual-wire bus with high priority. It
offers speeds up to 10Mbp/s, and implements a multi-master with up to 64 nodes, but due to
the high cost is only available on few high end models.

* Media Oriented Systems Transport (MOST) [5] mainly used for multimedia transmission

such as audio, video and navigation is an optical fiber bus that offers bandwidth up to

21

24Mbp/s. Automotive companies that use MOST bus are Audi, BMW, General Motors, Honda,
Hyundai, Jaguar, Land Rover, Porsche, Toyota, Volkswagen, SKODA, and Volvo.
Even though there are options, in this thesis, we focus on CAN bus, by far the most common

in-vehicle network in the automotive industry.

2.7 Functional safety

Functional safety is an important subject in all areas of automation industry. With the passing years
challenges for safety have increased. Nowadays we have more autonomous machines that are able to
perform tasks without supervision. Examples of autonomous machines are new smart cars aid the
driver, aiming towards safer self-driven vehicles. In this direction, new requirements for safety
measures in transportation systems take into account automated control in a framework that ensures

correctness by design and functional safety. [9]
2.7.11S0O 26262-1 standard

The ISO 26262-1 is a standard for “Road Vehicles Functional Safety” in automotive industry. This
scheme 1s typically used to integrate necessary functional safety concepts in the design for different
circumstances. ISO 26262-1 sets functional safety standards that are caused by non-reasonable risks
due to errors that are produced by malfunctioning behavior of electrical and electronic (E/E) systems.
Fault tolerance is not explicit defined in 26262. Instead the protocol handles four different Automotive
Safety Integrity Levels (ASIL) that concentrate on defining safety requirements based on any non-
reasonable risk of an item or component. Non reasonable risk is a risk that is caused by an unacceptable
reason according the moral concepts of the society. An item is described as a system or a set of systems
for implementing functions at vehicle level, compared to a component that is described as a system or
part of it which includes software, hardware part and software units.

For every misadventure event that occurs an ASIL is appraised for the identification of an item. It is
defined by combining misadventure analysis and risk appraisal. With the ratio of misadventure events
that may occur, estimation of severity, probability and control-ability can be calculated. Based on the
above estimations the ASIL type is selected, the most strict one is ASIL D while ASIL A is the least
strict. For ISO 26262-1 to be applicable, the design must obey to the following criteria.

22

e All safety related systems with one or more E/E systems are passenger vehicles with

no more than 3.500kg of weight.

e Possible hazards on E/E safety-related systems are caused by malfunction or

interaction of the.
The ISO 26262-1 cannot support the following.

e E/E system that have specific purpose such as vehicles that are designed for passengers

with disabilities.

e Systems, software units, hardware or components in production before the publication

date of ISO 26262.

e The nominal performance of E/E systems, even if standards for functional performance

exist.

e Risk factors that are related with the natural elements such as fire, water, radiation,

exposure to sun, etc.

The ISO 26262-1 standard strictly requires all product life-cycle phases, such as idea, concept
phase, development phase, validation phase, etc to be tested and approved. The ISO 26262 is
the ideal standard that is globally accepted as the main standard to cover functional safety in
the automotive industry. [10]

2.7.2 Cybersecurity standards

Cybersecurity standards are used for cyber protection of materials and include techniques that

protect environments of a user or organizations. They reduce risks and prevent cyber-attacks.

They consist of several tools, policies, safeguards etc. The cybersecurity standards have
existed for several years and have been considered in many domestic and international forums

to provide the best results.
The IEC-62443 cyber security standards are known to be used for cyber security protection in
different industries, including automotive. Cyber security certification programs for the IEC-
62443 1s globally offered by exida, TUV Nord, TUV Sud etc [11]. Standards such as ISA/IEC
62443 or even ISO 27001 form a starting point for controlling cyber security threats.

23

2.7.2 Failure Modes Effects and Diagnostic Analysis (FMEDA)

Failure Modes Effects and Diagnostic Analysis (FMEDA) is a systematic analysis technique that was
developed between late 1980s and early 1990s [12]. FMEDA is an upgraded FMEA. It involves two
extra concepts: probability of failure-detection and quantity of failure data.

For FMEDA to be adapted to electronic device level we need certain prerequisites. Few of them are
Schematics, Standards, Data Libraries, Layouts, PCB reports, (component types, ratings, etc.).

FMEDA is commonly used in functional-safety tests of under-development products in order to verify
if they meet the conditions and requirements. Even though FMEDA is a great way to test the integrity

of safety measures, it is insufficient for a full evaluation.

2.8 Mixed criticality

Mixed criticality systems were designed to offer a solution for balancing the priority between real-time
or safety critical with non-real-time or non-safety critical situations [13]. The cost of a mixed criticality
system depends on the assurance and safety it provides.

A mixed criticality system must be tested and certified before it 1s used, this way it is ensured that it is
safe, and it will not fail if a problem occurs. Mixed criticality varies depending on the scenario or
application domain. In some cases, critical safety is fundamental, e.g. in engine control, while in other
cases, such as i infotainment, safety is not critical. Even though most mixed criticality applications
can be isolated in space by mapping them, separately from non-critical components, to predictable
systems, e.g. a real-time network or operating system, there are a lot of challenges involving the use of

mixed critical multicore systems that at the same time can reduce costs.

24

3. Threat model and State-of-the-Art

3.1 Possible Attacks

There are several types attacks on in-vehicle automotive networks, such as eavesdropping, fabrication,
modification, replay, masquerade, and denial of service. While the former three types simply refer to
listening to packets, and inserting a new or modifying an existing message, the remaining types are

defined below.

3.1.1 Replay (or Playback) Attack

A replay attack occurs when a device connected to the network duplicates prior data though re-
transmission [14]. The data are obtained by a third-party node which is assumed trustworthy. In this
way older valid messages can be retransmitted at random times and afflict the network with unwanted
data. With this threat model, messages seem to originate from a reliably node, and thus affect critical

network functionalities, including causing serious system malfunction.
3.1.2 Masquerade (or Spoofing) Attack

Masquerade attacks occur when the attacker uses a fake identity to impersonate a legitimate node of the
network. The purpose of that act is to gam access to the system and obtain information. There are
several types of spoofing attacks in different settings, such as ID spoofing, GPS spoofing, referer
spoofing etc [15]. The masquerade/spoofing attack on CAN bus can cause different issues, from

malfunctions of a system UI to vehicle safety.
3.1.3 Denial of Service Attack

A Denial of Service (DoS) attack refers to making a computer or a service unavailable to accept other
connections, this way any future client may not be accepted [16]. The DoS term is common for web
services but is not limited to this field only. Within CAN bus network, the attacker sends a lot of high
priority messages, e.g. with ID 0, flooding the bus so that the system cannot accept legitimate traffic.
The DoS attack in an automotive system is critical, since if a component goes out of service, a serious

accident may result.

25

Although our embedded automotive platform creates an ecosystem on which different threats can be
examined, such as fabrication, modification, replay or masquerade, within this thesis, we only focus on

detecting and countering DoS attack.
3.1.4 Distributed Denial of Service Attack

Distributed Denial of Service (DDoS) attack is similar to the DoS attack that we have focused, with the
only difference being that the attack vector does not originate from a single source, but from multiple
sources transmitting simultaneously [17]. This kind of attack is more powerful and has a better chance

to flood the CAN network. In fact, multiple components can be attacked at once.

3.2 Threat Model and Our Solution

A DoS attack on CAN can make critical automotive subsystems, e.g. engine, throttle, ABS, unavailable
by sending a lot of high priority messages. The simplicity and importance of DoS attacks are important

reasons measures for detection and countering.

Within this scope, assuming as our threat model a DoS or DDoS attack on CAN, we examine and
evaluate methods to secure CAN bus. For this reason, we develop an embedded platform targeting real
automotive systems. The platform is equipped with a gateway component that connects to two CAN
buses (CAN1, CAN2). Using this platform, we can develop, test and evaluate different DoS detection

methods on our embedded platform.

3.3 Related Work

In this part we examine related work to gateway/firewall protection in-vehicle communication and
intrusion detection on CAN Bus. To the best of our knowledge, previous work has focused on a
different threat model, do not present any quantitative results, or propose the use of a new detection
technique (usually frequency-based or derivatives, e.g. FFT) without comparisons with other existing
techniques.

More specifically, K. Han and K.G. Shin proposed an external gateway-based monitoring mechanism
Error! Reference source not found.. Their work focuses on providing additional security for data that

1s transferred among internal ECUs (via CAN, LIN, or FlexRay) and external networks (e.g. 3G/4G,

26

Bluetooth) in an automotive system. Their protocols provide data protection, assuming a bogus
gateway problem. For instance, they examine if a message is genuine when it arrives to the receiver
and if a message finally arrives to the receiver.

K. Daimi et al. focus on the design and implementation of secure group communications on in-vehicle
bus-based networking systems using public key cryptography Error! Reference source not found..
The proposed scheme consists of 4 ECU groups, where each group has a MECU (Master ECU) while
all MECUs are controlled from a Super MECU. Moreover, they examined and compared the use of
Symmetric, Elliptic Curve Cryptography and Stream ciphers. The SMECU is the only component
connected to the outsight world. Notice, that no actual implementation exists.

M. Wolf et al. have analyzed different bus protocols (e.g. LIN, CAN, FlexRay, MOST, Bluetooth etc.)
examining possible malicious actions on the m-vehicle system Error! Reference source not found..
Theoretical practices proposed for secure Bus commination include sender authentication,
cryptographic mechanisms and a gateway firewall mechanism that works as an authorization party.
Again, no quantitative results are presented.

X. Guoqi et al. analyze the delay (upper bound delay) in in-vehicle networks when a CAN gateway is
implemented for secure communicationError! Reference source not found.. Their scheme
implements the discrete channel gateway architecture for real-time communication to analyze upper
bound delay when higher priority messages be in the CAN Network. Notice, their scheme shows upper
bound delay in reasonable time when high network traffic.

In Error! Reference source not found. a dedicated CAN router based on TTNoC (Time Triggered
NoC) is implemented on CAN bus to protect the CAN system from malicious actions. The system
implements a trust model which analyzes and prevents specific attacks is happening in CAN Bus such
as: removal, DoS, eavesdropping, fabrications (fake message) and man-in-the-middle attacks. Notice,
that respectively tests take place for each attack. However, the communication between two nodes isn’t
secure if the CAN messages not transmitting via the router.

Hoppe et al. Error! Reference source not found. gives an overview of mtrusion detection techniques
and attacks that are happening in CAN Bus and propose an IDs to alarm the CAN system when attacks

occurred. Their work focuses on two things. In the first, they show a prototypical way to detect

27

anomalies in the automotive network and their technical aspects. The second thing, focus to inform the
driver about the attack through the already installed technologies system like multimedia, screen, etc. in
the best way possible.

OBD_Secure Alert is an alert anomaly CAN detection system based on Hidden Markov Model Error!
Reference source not found.. While the automotive is m operation, the designed system examines
different ECUs states (normal or abnormal) and it uses alert messages if needed. Notice that OBD
Secure Alert is only alert system and non-preventive.

In addition, Weber et al, proposed an efficient hybrid intrusion detection system, that improves security
in various ECU vehicle networks. Their method is based on experiments based on existing anomaly
detection and machine learning algorithms. For instance, their scheme examines LODA algorithm,
which reduces anomalies in vehicle Error! Reference source not found.. They showed a different
way of anomaly detection with LODA in time series and this particular protocol is not based in
previous threat patterns but in run time threats.

Moreover, an anomaly detection algorithm presented in Error! Reference source not found. analyzes
the sequences of messages without knowledge of syntax and semantic of CAN messages. Different
attacks are examined as replay attacks, bad injections, mixed injections; where corresponding
experiments take place. Therr results show that performance is improved in all scenarios while
injection rates were different from each attack. Proposed an algorithm that can detect anomalies in the
CAN system by analyzing the sequence of packets. This i1s very efficient because it uses the pre-
installed hardware like ECUSs to be noticed that they had a really good and evaluated results.

In 0 observe how CAN version 2.0 & CANopen application layer draft standard 3.01 detects anomalies
in the system. With this technique they figured how ECUs and protocols communicate and evaluate a
set of attacks.

The 0 i1s a survey on connected cars with emphasis on the security of in-vehicle network. They
conclude that even though there are a lot of suggestions almost all of them aim to detect the attack, but
do not propose a full solution.

Zhou and Fei examined different attacks that happen on CAN bus and proposed a three-layer anomaly

detection system in order to protect it, according to the severity of the attack Error! Reference source

28

not found.. ECU traffic passes via gateway, where a detection component is placed. An alert message
corresponds to three main levels based on automotive severity: 1) non-critical level (like window up
and down, infotainment system), 2) critical level (actions to the wheel, acceleration of speed etc.), and
3) severe danger level (on-road vehicle — in high velocity).

Taylor et al. presented a frequency-based anomaly detection system which identifies overt and subtle
attacks, that occur in wireless or wired network automotive CAN bus Error! Reference source not
found.. The protocol examines the rate of data packets and especially the time sequence of CAN IDs,
in order to understand the anomalies that happen in CAN ftraffic (high-rate corresponds to malicious
action). To arrange data statistics (called flows), they compare the same information to an OCSVM
(one class support vector machine). However, they have analyzed only non-periodic CAN messages

and have insufficient data to validate their algorithm.

29

4. Experimental Platform

4.1 Hardware Devices

Focusing on the experimental, several different devices have been used. In fact, different configurations
of the experimental platform have involved Arduino, Raspberry PI, Odroid XU3/4, Gingko nodes.

4.1.1 Odroid XU3

We chose ODROID-XU3 Error! Reference source not found. as our CAN gateway. This device,
shown m Figure 10, 1s a relatively new computing device with nice open-source Linux-based
capabilities. The most important factor in our choice is that this device has four integrated TI INA231
current-shunt and power sensors for A15, A7, memory and GPU (with a common I2C interface). The
INA231 Linux driver exposes new power data on the sysfs file system. Using file operations, we can
simply integrate power data analysis within our CAN gateway controller. Moreover, we are able to
view power data using the power analysis tool (energy monitor).

The board provides:

e A Samsung Exynos 5422 chipset with Big-Little CPU architecture (Cortex A15 quadcore and
second smaller Cortex A7 quadcore)

e 2Gbyte DDR3 RAM 933MHZ with bandwidth of 14.9GB/s

30

e eMMCS5.0 HS400 Flash Storage
e 4USB 2.0 ports, 1 USB 3.0 port and 1 USB 3.0 OTG port
e AHDMI 1.4 and a DisplayPort1.1 for display

e Integrated power consumption monitoring tool

4.1.2 OBD DEVELOPMENT BOARD

~
Figure 11: OBD development board

The OBD development kit, shown in Figure 11 and Figure 12, supports a USB-to-CAN interface with
ELM327 and STN2120 software capabilities related to sending and receiving CAN messages [32].
CAN mterfaces at different layers (DB15, RX/TX, and two High/Low) are featured, this is beneficial
for evaluation, verification and prototyping of new automotive products. Another key factor that made
OBD development kit important for our platform is the multiple sleep/wake-up mechanisms that are
important for suspending attacks.

Features:
e UART and USB interfaces
e Power Module
e 16- pin OBD breakout header
e Compatible with ELM327 AT command set for configuration and message transport

e Additional ST commands for configuration and message transport

31

e Sleep and Wakeup mode

User Interface Diagram

|
0BD Interconnect

Development Board
C) 1814 DHO Solutions

1) @
1-0BD interpreter module (STN1170) 8 - OBD breakout
2 - 0BD transceiver module 9-0BD port
3 - Power module 10 - USB port
4 -Test points 11 - UART activity LEDs
5 - Power switch 12 - Reset button
6 - “Power”LED 13 - UART breakout
7 - Power jack (12VDCQ)

Figure 12: OBD Development Kit -Interface Diagram

For our platform needs, we used the ELM 327 commands. For the configuration of the OBD
development kit we used the following commands.

e STP31and STP 33

sending RAW or 15765 (OBD-based) CAN protocol
e STPRS

checking the protocol
e STSBR 2000000

setting the baud rate, In this case 2Mb/s (required for a 500Kbits/sec CAN speed)
e STI

For checking communication with a new baud rate.

32

e STWBR
For saving the new baud rate.
e ATSTFF

sef receive timeout max

e ATMA

receive a message (set flow control, pass and block filters, the old filters are restored when the
command terminates)

e ATSH

change the header for a CAN message to be transmitted

e BD
empty the buffer
e STSLU

UART inactivity trigger (on/of switch)

4.1.3 Gingko

Figure 13: Gingko

The Ginkgo USB-to-CAN (see Figure 13) 1s used as an interface adapter for bidirectional data
transmission. It is a small device that supports a USB 2.0 mterface and a 2-channel CAN

33

mterface. Ginkgo 1s a powerful tool for validation in laboratory tests or in industrial automotive

applications [33].
It can used for data collection or data prepossessing which can later be analyzed.

We chose Ginkgo USB CAN for our platform to send/sniff test packets, analyze and evaluate

results.

Main features of this board:
e Support Linux (x86 64), Linux (ARMv7/8, e.g. RP1), MAC OS, Windows, Android
e USB bus power supply 5V and 3.3V output
e SPI Host/Master and slave mode

e Supports USB-to-UART

4.1.4 Raspberry Pi3

Figure 14: Rasberry Pi 3 device

Raspberry Pi 3 (see Figure 14) is a single board computer, that supports wireless LAN and Bluetooth
connectivity. Due of its small size and low-cost, Raspberry offers a good solution for an embedded
Linux platform [34]. We chose to include Raspberry for our platform, as it can support up to four CAN
channels connection using the CanberryDual Shield (see Figure 15).

Specifications

34

e quadcore 1.2GHz 64-bit processor
e 1 GBRAM

e 4 USB-2.0 ports

e Supports HDMI

¢ 40-pm extended GPIO

e Micro SD port for customized operating system and data storage

Figure 15: CanBerryDual ISO 2.1

4.1.5 CanBerryDual ISO 2.1

To make Raspberry Pi compatible with our platform we require a CAN BUS shield. In our case we
took advantage of CanBerryDual ISO 2.1 which includes an onboard real time clock. Another
important benefit is that it provides more than four CAN channels, so it is useful for implementing
cross-connections of large CAN networks[35].

4.2 Drivers and Software

4.2.1 Integration Towards Final Platform

35

i
PP =z
g

T

GATEWAY

<
S
N

f

Sender Receiver

Figure 16: Inifial prototype Gateway solution

The platform went through several phases of integration and testing, replacing certain CAN nodes with
others, before reaching its final form. For example, in our first tests, we used Gingko as shown in
Figure 16 and Arduino, but later replaced them with Raspberry PI 3. Figure 17 below shows our final
platform.

Figure 17: Open distributed embedded plaiform prototype

For better understanding of Linux CAN utilities (can-utils), we have used Raspberry with

Canberry dual shield to import traffic in our platform. The Canberry shield also integrates a real time
clock that enables correct timing operation in cases of power failure.

Our software code on the Odroid XU3 gateway transmits messages from one CAN to the other, while
also enabling the measurement of three different metrics, more specifically energy consumption,

36

temperature, and frequency of messages on the gateway. Another, fourth metric, round trip-time, is also
measured on the packet’s return path.

By averaging values for these metrics within fixed sliding windows, appropriate thresholds can be
established for detecting DoS. Based on these metrics, we hope to detect when the system is under
normal circumstances and when it is under DoS attack.

4.2.2 Concept Validation - Energy Monitor Tool

Concentrating on energy, we are able to demonstrate normal system behavior, as well as behavior
during a DoS attack. Energy Monitor tool (and driver code) provides a great way for viewing (or
registering) power consumption values. In our platform, we made power consumption tests to evaluate
thresholds related to our threat model.

e Energy Monitor ~

Ubuntu : 18.04

A1S AT GPU MEM
Kernel:4.14.111-158 : n gn 1 nnn
e Volt | | lﬂﬂl |u9u[]| | l.uuu|| i ﬂﬂl
cPu [eoo) Mz | 49)°C ampre [1 1] [0.030] [0.06 1] [0.0G2)
A15 CPUS MHz 52| *C w_._..[i .,.I nn -1| In 0k .I In |tl|
ST L v p.uc yg.ug e, v
CPU6 MHz 51
cPuU? MHz | 56 *C Watt Graph
PUSB MH 53 C
A7 cPUY MHz
f MEM
CPU2 MH
CPU3 MH
CPU4 MHz
Energy Monitor 1.3

Figure 18: Energy Monitor Tool window

Figure 18 shows the UI of the Energy monitor tool. A15 is the big high-performance CPU, while A7 is
the smaller, low-power one.

The energy consumption is measured in three different ways Volts, Ampere and Watts. The code that
updates the outputs is listed in Figure 19. We have used similar code to register values in our gateway

data structures. The situation 1s similar for temperature zones, which are also read via I2C driver.

37

void Displaysysinfo::float2string()

{
aasvolt.sprintf("%.3f", getNode->armuv);
alsampere.sprintf(“%.3f", getnode->armuA);
alswatt.sprintf(“%.3f", getNode->armuw);

a7volt.sprintf("%.3f", getMode->kfcuv);

a7ampere.sprintf("%.3f", getNode->kfcua);
a7watt.sprintf("%.3f", getNode->kfcuw);
gpuvolt.sprintf("%.3f", getNode->g3duv);

gpuAmpere.sprintf("%.3f", getNode->g3duA);
gpuWatt.sprintf("%.3f", getNode->g3duw);

memvolt.sprintf("%.3f", getnNode->memuVv);
memAmpere.sprintf(“%.2f", gethode->memuA);

memWatt.sprintf("%.3f", getNode->memuw);

1
i

Figure 19: Code for Energy Monitor Tool (I2C interface calls)
4.2.2.1 Code snippets - Receiver Thread on Odroid XU3 Gateway
e datalOfcandata_index0].id = check _rid;
The id is stored as integer
e if ((indx0 > 0) && (c ="\1"))
checks indx0 when CAN msg is received through UART
e if((indx0 == 19) || (indx0 = 30))
indx0 is 19 when CAN message received successfully (3 hex ID, and 16 hex body)
e if(data0[candata_index0].id = 0x123)
receiving counters are incremented
e data0[candata_index0].chid[0] = tmpbuf[0];
dataO[candata_index0].chid[1] = tmpbuf[1];
dataO[candata_index0].chid[2] = tmpbuf]2];
ID is stored m a character form
e candata_index0 = (candata_index0 + 1) % BUFF_SIZE_RECV0;
candata_index0_allH+;

index is increased for storing the next CAN message in the circular queue

38

for(i = 0; 1 < 16; i++) {
data@[candata_index@].payload[i] = tmpbuf[3+i];
input[i] = tmpbuf[3+i];

}

hex_binary(input, res);

storing the Data pavload.

4.2.2.2 Code Snippets - Sender Thread on Odroid XU3 Gateway

char oldid[3], newid[3];
stores new CAN ID to send to second bus
char instb[50];
used for sending AT and ST configuration commands, e.g. ATMA
char rawp|[17];
16 hex (4bits) plus "\r' plus "\n".
char atsh[9] = {'A",'T",'S",'H","","0","\0","\0","\r""};
change header of transmitted CAN message
sem_wait(&go_sendl);
waiting for sender thread to receive signal (producer/consumer)

strepy(instb, "ATMA\r");
do_write(3, sfd, instb, S);

configuration command for receiving new messages
i = candata_index1;
The candata_indexl shows where the sender pointer is inserted in the circular queue

for(j = 0; j <3; j++)
oldid[j] = dataO[i].chid[j]-48;

This loop gives the id for the sender, the number 48 is the offset for character ‘0’ (conversion)

39

e atsh[S] = newid[0];
atsh[6] = newid[1];
atsh[7] = newid|2];
ATSH is used to change the header of the packet that will be sent via OBD development kit to
Raspberry2
e get_raw_data(data0[i].payload, rawp);
rawp gets the payload of the message.
e sem_post(&go_recvl);

Figure 20 shows the gateway when the gateway code runs and messages received from CANI and
sent to CAN2. Notice that

e AlS5:: energy consumption of the processor A15
. energy consumption of the processor A7
e T0,T1, T2, T3:: thermal zone 0, thermal zone 1, thermal zone 2, thermal zone 3.

In addition, candata index all prints the number of messages that have been sent.

Figure 20: Gateway threads receiving and sending packets

40

4.2.2.3 Gateway Software on Odroid XU3

The gateway embedded software (approximately 3K lines of C code) initiates two POSIX threads: a)
receiver acting as producer of CAN messages, and b) sender acting as consumer in the classical
producer-consumer Operating Systems problem. These threads receive (or send CAN messages) from
CANI (resp. to CAN2) and require two POSIX semaphores (initialized in the main) in order to manage
a shared circular queue (bounded buffer) that stores messages. The receiver fills and the sender empties
this queue concurrently.

In addition, the main program must configure the two serial USB-to-CAN interfaces implemented with
the two OBD development kits. These interfaces pomt towards the RPI1 sender on CAN1 and RPI2
receiver on CAN2.

Serial programming is performed using TTY commands, e.g. termios cf and tc commands, such as
tcgetattr and tcsetatt; this code builds upon a simplified version of an open source serial terminal,
cf[36]

After configuring the serial port, including baud rate, the STN2120 device on each OBD Development
Kit (USBO, USB1 corresponding to file descriptors s£do, sfd1) must be programmed using appropriate
AT (ELM 327) and ST commands in the right order; Notice that the RPI2 receiver device, which
receives messages from CAN2 and sends towards the return path via CANO, must be configured first;
interface programming is indicated by blinking LEDs that identify the CAN messages packets arriving.

static void init config L(int sfd)

{

char * instb = (char *) malloc (50 * sizeof (char)):
//strcpy(instb, "STP 33\xr"); // CAN std 15765 (predefined IDs, e.g. 7DF)
strcpy (instb, "STP 31\r"); // raw CAN protocol

do write (4, sfd, instb, 7):;

strcpy (instb, "STPRS\r"); // checking protocol

do write (4, sfd, instb, 6);

strcpy (instb, "STSBR 2000000\xr"™); // setting serial baud rate

do write(5, sfd, instb, 14);

41

}

strcpy(instb, "ATSO0\r"); // spaces off

do write (4, sfd, instb, 5);

strcpy(instb, "ATHI1\x"); // print headers

do write (4, sfd, instb, 5):

strcpy (instb, "ATAL 00\r"); // no long messages (above 8 byte)
do write(4, sfd, instb, 8);

strcpy (instb, "STCMM1\r"); // continuous monitoring

do write (4, sfd, instb, 7):;

strcpy (instb, "ATMAN\r"); // waiting to receive

do write (4, sfd, instb, 5);

4.2.2.4 RPI Setup - RPI Sender (RPI1) & Receiver (RP12)

The following commands configure the Raspberry P1 Can0 and Canl interfaces on both RPIl and

RPI2.

sudo
sudo
sudo

sudo

ip link set canO up type can bitrate 500000
ip link set canl up type can bitrate 500000
ifconfig can0 txqueuelen 1000000

ifconfig canl txqueuelen 100000

4.3 Troubleshooting Guide

The following troubleshooting guide is a short, very incomplete list of useful signs and symptoms that

help us indicate what is wrong and why. (A full list 1s also available from the author.)

Setting up Devices (OBD Dev Kit, Odroid XU3/4, RPI)

1.

AR

Power OBD Dev Kit - Switch button to get power externally.
Odroid XU3 using Ubuntu 18.04.1 (20181203), kernel 4.14.1.
RPI using 2019-04-08-raspbian, kernel 4.9, update kernel support for SPIL.
No changes to bit timing, all default values for CNF1, CNF2, CNF3 registers
For baud rate
e set baud rate on OBD dev kit via Minicom to 2M (STP33, STPRS, STSBR 2000000)

42

e set same rate for serial (Minicom)
e check by pressing enter
e exit via CTRL-A SHIFT-Z Q (quit no reset)
6. Issues with our Serial Code (sc.c). Interfaces must be configured the right way, check leds,

first receiver must blink, then transmitter
4.4 Experimental Evaluation

4.4.1 Towards Deriving a DoS Metric: Example with Energy Metric

Initially, for concept validation, we operate the Odroid XU3 gateway with increasing traffic. We have
observed that with increasing injection rate, power consumption and energy levels rise (compare Figure
21, Figure 22). This convinces us that deriving an energy metric for detecting DoS attack could be

beneficial.

e Energy Monitor

Ubuntu : 18.04 A15 A7 PU MEM

G
Kernel: 4.14.111-158 n gnnl |0 gnn | N N
vott | 39000 (D900 | *.000) | 1200

GP 5 .
v [_e00] Mz | 46 0454 [0.0627] [D.0RD| [0 RO

o
(g

Ampare

A1S CPUS MHz | 49| °c N nn nrenl Moo
wate (11 YGP1 10 [i2Y| (O.ORE| (.02
CPU6 MHz | 48
CPU7 MHz | 53] °C Watt Graph
CPUS MHz | 49| °C
AT CPU1 MHz
CPU2 MHz
CPU3 MHz &
0O 20 40 60 80 100
cPU4 MHz sec

Energy Monitor 1.3

Figure 21: Scenario with normal traffic

43

* Energy Monitor - oc.

Ubuntu : 18.04 A15 A7 GPU MEM
Kernel: 4.14.111-158 Vohl IEEE' |BEEH| | :DDDH | o
v o] miz [48] ¢ ampure [EG Y] [0.031] [0.050] [.05H]
o
o et] = =
CPU6 MHz | 52| °C
CPU7 MHz | 59 °C Watt Graph
5+
cPUB MHz | 59 °C 4l
AT CPU1 MHz -
224
cPU2 MHz 1 1;
0=
cPu3 MHz
CPU4 MHz
Energy Monitor 1.3

Figure 22: Scenario with network under attack

4.4.2 Detailed Results

ET: CANO Ee_

Cranberry y Cranberry CANO
CAND CAN shield m x

CAN shield
- TR

i oGy (R
:< 3
HEE oEE
SENDER'S OBD RECEIVER'S OBD ' ‘
UsSeE -2 - CAN USB -2 - CAN RPI2 '
] n
. : L]
. ' H
! n
@ED - =
DASHBOARD @ j;‘ -
A
: ENERGY TEMPERATURE FREQUENCY
KOREAN ENGINE
g DATASET

DOS DETECTION

Figure 23: Experimental framework of our platform
Figure 23 describes our experimental framework consisting of a distributed embedded platform
prototype that targets traffic monitoring across multiple CAN networks. This ecosystem interconnects
multiple Raspberry P1 devices (e.g., RPI1, RPI2) to an Odroid XU3 device which serves as a gateway
node between two CAN networks (CAN1 and CAN2).

44

CAN interconnection is based a) for Raspberry Pi, on IndustrialBerry's CANberry Dual V2.1 device,
and b) for Odroid XU3, on two (incoming/outgoing) USB-to-CAN mterfaces using Scantool OBD
Development Kit.

Incoming and outgoing CAN mterfaces at the gateway are controlled by different threads. Our
embedded software toolchain uses a) for Odroid XU3, an extended serial terminal that uses
multithreaded code to handle incoming/outgoing connections; configuration and CAN message
send/receive functions use appropriate USB-to-serial STN2120's ELM327 AT, and ST commands, and
b) for RPI, code based on Linux CAN-utils tools that is described below, separately for the RPI sender

and RPI receiver.

4.4.2.1 RPI Sender (RPI1)

During normal operation, RPI2 (CAN2) carries actual engine traffic (based on an actual Korean car
dataset), while at the same time RPI1 packet requests related to dashboard (e.g. engine speed, RPM,
temperature etc.) departing from RPI1 (CANI1), are received via the Gateway by RPI2 (CAN2), and
answered back to RPI1 (making a round trip). In accordance with our threat model, we consider a
denial-of-service (DoS) from CANI (by modifying the parameter no malicious in our script) and
examine different metrics that can be used to detect the attack.

The following bash script injects malicious and legitimate traffic from RPI1 on CANI1 (towards the

gateway).
#123 is legitimate -> becomes 7df at gateway
#007 is malicious -> stays same at gateway
echo "test all engine and maliciou"
no malicious=128
sleeptime="bc <<< "scale=6; 0.5/%no malicious™’
echo S$sleeptime
c=1; while [$5c -1le 60] ; do

let c=Sc+l;

#send malicious

iteration=1

while [$iteration -le $no malicious]; do

45

cansend canl 0074#08.08.08.08.08.08.08.08;
sleep S$sleeptime;
let iteration=$iteration+l

done

#send legitimate

cansend canl 123#08.01.01.01.01.01.01.01;

sleep 0.25;

cansend canl 123#08.01.01.01.01.01.01.01;

sleep 0.25;

done

At the same time, RPI1 listens for response messages on CANO, with timing enabled via the command,

This enables computing the round-trip time of messages sent to (and received) from the engine.

candump can0 -t

4.4.2.2 RPI Receiver (RPI2)

RPI2 listens for request messages on CANO, with specified ID and sends responses on another CAN ID
(we use raw CAN ID 123).

echo "Start"

c=1;
i=0;
while [$c -le 100000000]
do
let c=Sc+l;
candump canl, 7DF:FFF -n 1 -t a
cansend canO 123#080105i0105i0101051
let i=S5i+1
if [$i -eq 10 1 ; then
let i=0
fi
done
exit

The above script creates a ping-pong between RPI1 and RPI2, however packets making the round-trip
from (RPI1 to RPI2 and back to RPI1) are delayed not only due to malicious packets arriving on the

46

gateway, but also due to actual engine traffic (Korean attack-free automotive dataset from Hyundai’ s

YF Sonata, c.f. emulated on CAN2). This traffic is injected to CAN2 via an independent interface of
the OBD Development Kit. The exact timing logs of 988,987 packets make this emulation very
realistic.

At gateway-level, we can detect the DoS attack by using metrics and setting appropriate thresholds
related to the Cortex-Al5 energy consumption (available from integrated INA231 sensors), and four
temperature gradients on the same chipset (available from integrated sensors). Notice that our gateway
code (process and threads) runs solely on Cortex-Al5. The corresponding energy for A7 remains steady
between 27-30 uW. Figure 24 and Figure 25 show results (averaged over multiple runs) for two
different buffer sizes of the circular queue (buffer 1 and 100). These results show that for both buffer
sizes, average instant energy on Cortex-AlS5 sharply increases between the rates of 1-10 malicious
messages/sec. Hence, this metric can be used as a metric for detecting denial of service, provided that
the correct threshold within this range of malicious message rates is set. This threshold must be before
the energy saturation point which defines our system limits before messages arrive too fast and cannot

further be accepted by the UART-to-CAN interface.

A15 évavTi Malicious rate

2.000.000

1.500.000
© 1,000,000
<

500.000

0 25 50 75 100 125

Malicious rate

Figure 24: Average instant energy on Cortex-A15 — diff. rates of malicious packets (buffer size 1)

47

A15 évavT Malicious rate

A5

2.000.000

1.500.000

1.000.000

500.000

Malicious rate

Figure 25: Average instant energy on Cortex-A15 - diff. rates of malicious packets (buffer size 100)

TO, T1, T2 ket T3

- T == T1 T2 == T3

60.000

55.000

50.000

45,000
0 25 50 75 100 125

Malicious rate

Figure 26: Average temperature of four available thermal zones

In Figure 26, we inspect the average temperature of four available thermal zones versus increasing rate
of receiving messages. We monitor an abruptly increase of temperature in thermal zones 2 and 3, in the
range of 1-10 malicious messages/sec. Hence, this metric can be used as a metric for detecting denial of
service, provided that the correct threshold within this range of malicious message rates is set. In fact,
this metric should be used in conjunction with the energy metric to provide more reliable results

Finally, we examine variations of round-trip time (RTT) by monitoring delays of sequences of packets

that originate from RPI1 (a.k.a. dashboard), flow to RPI2 (a.k.a. engine) via Odroid XU3 (ak.a.

48

gateway) and return back to RPI1 in a feedback loop. Hence, in Figure 27, we show the round-trip
time (RTT) of messages arriving at RPI1 versus the injection rate of malicious messages. We observe
an increasing latency proportional to the malicious messages for both buffer sizes. This indicates that
RTT metric can be used with a sliding window approach to detect DoS attack at the CANO injection
point, hence possibly throttling down traffic, and thus alleviating the gateway from handling enormous

traffic.

Buf 100 and Buf_1

== Buf 100 == Buf 1

1.000.000

900.000

800.000

700.000

600.000

0 25 50 75 100 125

Inj.Rt{mal)

Figure 27: Round-trip time (RPI1 to RPI2 and back in feedback loop)

49

5. Conclusions

Vehicles have come a long way and evolving with fast pace since they were discovered. However,
even advanced modern vehicles are still prone to several attacks and the CAN philosophy does not
offer a security solution. The attacker can easily manipulate and gain control over a system or can make
the system unavailable by simply adding enormous high priority traffic to the real-time network.

Within this context, we design, implement and validate an open, distributed embedded platform
prototype which consists of a Gateway that can isolate one or more critical in-vehicle networks (e.g.
CAN bus) in case of a Denial-of-Service (DoS) attack.

In detail, the platform includes: an ODROID XU3 used as the Gateway (with two UART-to-CAN OBD
Development Kits), and two Raspberry Pi (RPI) devices (with CANberry CAN interfaces). In prior
platform incarnations we have used Gingko USB-to-CAN devices and multiple Arduino devices (with
DFRobot CAN shield), however these initial platforms were used for concept validation, since they do
not support multiple CAN interfaces.

In our experimental framework, we consider DoS attack scenarios towards a system that emulates
actual engine traffic (RPI2) and define different metrics for detecting a DoS attack. The attack
originates from another node (RPI1) which emulates a dashboard device requesting for engine data.
Our metrics are based on evaluating energy, temperature, or frequency profiles on the gateway, or
alternatively measuring round-trip times on the receiver node (in a feedback loop). Extensive
experimental results indicate that it is possible to use our metrics: a) gateway profiles for energy AlS,
temperature zones, frequency by counting messages, and b) round-trip time at RPI1 to shut down,

throttle down, or sleep a CAN interface under attack.

50

6. Future Work

Further work relates to evaluating tradeoffs in the accuracy and effectiveness of the proposed metrics in
detecting actual attacks. Accurate prediction of an attack results in shutting down, throttling down, or
sleeping the appropriate outgoing interface, thus safeguarding the engine ECUs. In addition, we hope to
secure our experimental platform from other types of threats, such as spoofing and replay.

It is also interesting to experiment with multiple CAN interfaces (beyond two) and provide faster
implementations of our gateway using concurrent lock-free queues. These implementations extend our
producer consumer philosophy used by the two threads that control reception and transmission of

messages in different CAN buses

References

[1]. Real-time operating system, Wikipedia. (Sept 26, 2019) [Online]. Available:
https://en.wikipedia.org/wiki/Real-time_operating_system

[2]- Time trigger protocol, Wikipedia. (Feb 18, 2019) [Online]. Available:
https://en. wikipedia.org/wiki/Time-Triggered Protocol

[3]- Time trigger Ethernet, Wikipedia. (Feb 16, 2018) [Online]. Available:
https://en. wikipedia.org/wiki/TTEthernet

[4]- CAN bus, Wikipedia. (Jan 5, 2019) [Online]. Available:
https://en.-wikipedia.org/wiki/CAN_bus

[5]- Most, Wikipedia. (Dec 3, 2018) [Online]. Available:
https://en. wikipedia.org/wiki/MOST_ Bus

[6]. CAN bus#Frames, Wikipedia. (Feb 3, 2018) [Online]. Available:
https://en. wikipedia.org/wiki/CAN_bus#Frames

[7]- Local Interconnect Network, Wikipedia. (Aug 15, 2018) [Online]. Available:

https://en.wikipedia.org/wiki/T.ocal Interconnect Network
[8]- Flex Ray, Wikipedia. (Oct 27, 2028) [Online]. Available:
https://en.wikipedia.org/wiki/FlexRay
[9]- Functional safety, Wikipedia. (Jan 18, 2019) [Online]. Available:
https://en. wikipedia.org/wiki/Functional safetvy
[10]. ISO 26262, Wikipedia. (Oct 22, 2018) [Online]. Available:
https://en. wikipedia.org/wiki/ISO_ 26262
[11]. Cyber security standards, Wikipedia. (Aug 5, 2019) [Online]. Available:
https://en. wikipedia.org/wiki/Cyber_security_standards
[12]. Failure modes_effects, and diagnostic analysis, Wikipedia. (Feb 12, 2018) [Online]. Available:

https://en.wikipedia.org/wiki/Failure modes. effects. and diagnostic analysis

[13]. Mixed criticality, Wikipedia. (Dec 15, 2019) [Online]. Available:
https://en. wikipedia.org/wiki/Mixed_criticality

[14]. Replay_attack, Wikipedia. (Aug 9, 2019) [Online]. Available:
https://en.-wikipedia.org/wiki/Replay_attack

[15]. Spoofing attack, Wikipedia. (Feb 11, 2018) [Online]. Available:

52

https://en.wikipedia.org/wiki/Spoofing_attack

[16]. Denial-of-service_attack, Wikipedia. (Jan 2, 2019) [Online]. Available:
https://en.wikipedia.org/wiki/Denial-of-service_attack

| 17]. Denial-of-service_attack#Distributed DoS, Wikipedia. (Jan 2, 2019) [Online]. Available:
https://en. wikipedia.org/wiki/Denial-of-service_attack#Distributed DoS

[18]. Rola, N. Japkowicz, and S. Leblanc, “Prevention of Information Mis-translation by a Malicious Gateway in
Connected Vehicles,” in Proc. 14th Int. Conference on Privacy, Security and Trust (PST 2016), Dec. 2016.

[19]. K. Daimi, M. Saed, S. Bone, and J. Robb, “Securing Vehicle’s Electronic Control Units”, in 12th
International Conference on Networking and Services (ICNS, 2016), June 26-30, Lisbon, Portugal.

[20]. M. Wolf, A. Weimerskirch, and C. Paar, “Security in automotive bus systems,” 2004.

[21]. G. Xie, G. Zeng, R. Kurachi, H. Takada, R. Li, “Gateway modeling and Response time analysis on CAN
clusters of automobiles”, in 17th EEE International Conference on High Performance Computing and
Communications, Aug 2015, New York, USA.

[22]. R. Kammerer, B. Fromel, and A. Wasicek, “Enhancing security in can systems using a star coupling
router,” in 7th IEEE International Symposium on Industrial Embedded Systems (SIES’12), June 2012

[23]. T. Hoppe, S. Kiltz, J. Dittmann, “Applying Intrusion Detection to Automotive IT — Early Insights and
Remaining Challenges™ (JTIAS) Journal of Information Assurance and Security 4, Jan 2009

[24]. S.N Narayanan, S. Mittal and A. J. Taylor, “OBD SecureAlert: An Anomaly Detection System for
Vehicles”, in Proc. of the 1th IEEE on Smart Service Systems (SmartSys 2016). IEEE, May. 2016

[25]. M. Weber, S. Klug, E. Sax, and B. Zimmer, “Embedded Hybrid Anomaly Detection for Automotive CAN
Communication”, in Proc. of the 9th European congress on Embedded Real Time software and systems
(ERTS 2018). Jan 2018, Toulouse, France

[26]. M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages through analysis of ID sequences”
in IEEE Intelligent Vehicles Symposium (IV). IEEE, June. 2017, Los Angeles, CA.

[27]. UIf E. Larson, Dennis K. Nilsson, E. Jonsson, “An Approach to Specification-based Attack Detection for

In-Vehicle Networks”, in IEEE Symposium on Intelligent vehicle, June 2008

[28]. P. Kleberger, T. Olovsson, and E. Jonsson, “Security Aspects of the In-Vehicle Network in the Connected
Car” in IEEE International Conference on Intelligent vehicle, June 2011

[29]. Zhou Qin and Fei LiAn “An intrusion defense approach for vehicle electronic control system” Conference:

International Conference on Communication and Electronic Information Engineering, 2016

53

[30]. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly detection for the automotive CAN bus,”
in Proc. 2015 World Congress on Industrial Control
[31]. Odroid, Wikipedia. (Feb 14, 2018) [Online]. Available:
https://en. wikipedia.org/wiki’‘ODROID
[32]. OBD-development-kit, Scantool. Available:

https://www.scantool.net/obd-development-kit/

[33]. Ginkgo-usb-can, Viewtool. Available:
http://www.viewtool.com/index.php/en/27-2016-07-29-02-13-53/44-ginkgo-usb-can-9

[34]. Raspberry Pi, Wikipedia. (Aug 1, 2019) [Online]. Available:
https://en. wikipedia.org/wiki/Raspberry_Pi
[35]. CanberryDual isolated, Industrialberry. Available:

http://www.industrialberrv.com/canberry-v-2-1-isolated/

[36]. Serial Console, Sourceforce. [Online]. Available:
https://sourceforge.net/projects/serialconsole/files/serialconsole.

[37]. Car-Hacking Dataset, HCRL. [Online]. Available:
https://sites.google.com/a’/hksecurity.net/ocslab/Datasets/C AN-intrusion-dataset

[38]. R Buu R. Buttigieg, M. Farrugia, and C. Meli, " Security Issues in Controller Area Networks in
Automobiles," in Proc. 18th International Conference on Sciences and techniques of Automatic Control and
Computer engineering (STA). IEE 2017. Conf., Monastir, Tunisia, 2017.,

[39]. Controller Area Network (CAN) Overview , National Instruments.(Mar, 5, 2019), [Online]. Available:

https://www.ni.com/en-us/innovations/white-papers/06/controller-area-network--can--

overview.html

[40]. CAN bus (Controller Area Network), EMC-EV.(Sept, 8, 2015), [Online]. Available:
http://www.flexautomotive.net/ EMCFLEXBILOG/post/2015/09/08/can-bus-for-controller-area-

network

[41]. Jiannis Vougioukalos,"An embedded platform for developing data protection protocols on smart
vehicles” , Thesis, Dept. of Informatics Engineering , HMU, Heraklion, 2018. [Online]. Available:
https://apothesis.lib.teicrete. gr/bitstream/handle/11713/9024/Vougioukalosloannis2018.pdf?se

uence=1&isAllowed=y

