
ΕΛΛΗΝΙΚΟ ΜΕΣΟΓΕΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΑΔΡΑΣΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ
ΠΟΛΙΤΙΣΤΙΚΟΥ ΠΕΡΙΕΧΟΜΕΝΟΥ ΜΕ ΤΗ

ΧΡΗΣΗ ΥΒΡΙΔΙΚΩΝ ΤΕΧΝΟΛΟΓΙΩΝ,
ΓΕΩΓΡΑΦΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ
ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΤΕΧΝΟΛΟΓΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Εισηγητής: Χαράλαμπος, Κολοκούρης, ΤΠ4504

Επιβλέπων: Αθανάσιος, Μαλάμος, Καθηγητής

©

2022

HELLENIC MEDITERRANEAN UNIVERSITY

SCHOOL OF ENGINEERING

DEPARTMENT OF COMPUTER ENGINEERING

INTERACTIVE PRESENTATION OF
CULTURAL CONTENT USING HYBRID

TECHNOLOGIES, GEOGRAPHICAL
SYSTEMS AND THREE-DIMENSIONAL

TECHNOLOGIES

DIPLOMA THESIS

Student : Charalampos, Kolokouris, TP4504

Supervisor : Athanasios, Malamos, Professor

©

2022

Υπεύθυνη Δήλωση : Βεβαιώνω ότι είμαι συγγραφέας αυτής της πτυχιακής εργασίας

και ότι κάθε βοήθεια την οποία είχα για την προετοιμασία της, είναι πλήρως

αναγνωρισμένη και αναφέρεται στην πτυχιακή εργασία. Επίσης, έχω αναφέρει τις

όποιες πηγές από τις οποίες έκανα χρήση δεδομένων, ιδεών ή λέξεων, είτε αυτές

αναφέρονται ακριβώς είτε παραφρασμένες. Επίσης, βεβαιώνω ότι αυτή η πτυχιακή

εργασία προετοιμάστηκε από εμένα προσωπικά ειδικά για τις απαιτήσεις του

προγράμματος σπουδών του Τμήματος Μηχανικών Πληροφορικής του ΕΛ.ΜΕ.ΠΑ.

ΠΕΡΙΛΗΨΗ

Η βασική ιδέα είναι: η απεικόνιση πολιτιστικού περιεχομένου, προσεγγίζοντας
τον χρήστη στον τρισδιάστατο ψηφιακό χώρο, μέσω του χάρτη όπου απεικονίζεται
ως βασικό μέσω πλοήγησης. Η γενική πλατφόρμα συγκομιδής πληροφορίας, περί
πολιτισμικής κληρονομιάς, χρησιμοποιεί τη Διεπαφή προγραμματισμού εφαρμογών
της ΕΜΙΑΚ, σε συνεργασία με το ΙΤΕ, που έχει ως σκοπό την ψηφιοποίηση
εκκλησιαστικών κειμηλίων και Ιερών Ναών/Χώρων στην Κρήτη.

Η γενική διαχείριση της πληροφορίας πραγματοποιείται από ένα σύστημα
back-end γραμμένο σε κώδικα PHP. Η εμφάνιση της πλατφόρμας είναι γραμμένη σε
HTML και JavaScript και η οπτικοποίηση των διεπαφών χρήστη είναι υλοποιημένη με
CSS, πλαισιομένη στο Bulma framework.

Η οπτικοποίηση 3D γραφικών και της μεικτής πραγματικότητας έχει γίνει με
την χρήση THREE.js, ένα framework της Javascript βασισμένο σε WebGL και του
Model-Viewer, από την Google, για τα οποία θα γίνει περαιτέρω ανάλυση στα
επόμενα κεφάλαια, όπως και για τα λογισμικά διαχείρισης γεωγραφικών συστημάτων
MapBox και Leaflet.

Μέσα στην εργασία αυτή θα αναλυθούν οι μέθοδοι υλοποίησης,
διεκπεραίωσης όπως και τα διαγράμματα UML και διάδρασης χρήστη, αναφερόμενα
στο μοτίβο σχεδίασης που χρησιμοποιήθηκε.

Ο σκοπός είναι η δημιουργία μίας πλατφόρμας η οποία θα δώσει την ευκαιρία
σε ανθρώπους, απομακρυσμένα, να έχουν επαφή σε πολυπολιτισμικό περιεχόμενο
δωρεάν, καθώς και με πολύ μικρές προσαρμογές μπορεί να προβληθεί οτιδήποτε
μέσω της υπηρεσίας αυτής.

Λέξεις Κλειδιά : επαυξημένη πραγματικότητα, εικονική πραγματικότητα, γραφικά,
τρισδιάστατος χώρος, γεωγραφικό σύστημα, χάρτες

1

ABSTRACT

The general idea is: the visualization of cultural content, approaching the user
in the 3D digital space, through the map which is used as a basic means to navigate
throughout the main interface. The main platform for collecting information on
cultural heritage uses the EMIAK application planning interface, in collaboration with
FORTH, which aims to digitize Church relics and temples/sites in Crete.

General information management is performed by a back-end system written
in PHP code. The appearance of the platform is written in HTML and plain
JavaScript as the visualization of the user interfaces is implemented with CSS,
framed by the Bulma framework.

The visualization of 3D graphics virtual, mixed and augmented reality has
been implemented using THREE.js, a framework of Javascript for 3D graphics based
on WebGL and Model-Viewer, by Google, for which further analysis will be made in
the following chapters, as well as for the management software of MapBox and
Leaflet geographical systems.

In this thesis we will analyze the implementation methods, processing as well
as the UML diagrams and user interaction, referring to the design pattern used.

The aim is to create a platform that will give people the opportunity, remotely,
to have access to multicultural content for free, and with very small adjustments
anything can be viewed through this service.

Key Words : augmented reality, virtual reality, graphics, 3d space, geographic
system, maps

2

Contents

IMAGE LIST 5

ABBREVIATION 6

ACKNOWLEDGEMENTS 8

INTRODUCTION 1

Graphics 2
1.1 Wireframe 3
1.2 Sign Shading 3

Textures & Materials 3
Bump mapping 4
Normal mapping 4
Displacement mapping 4

1.3 Simple Sphere 4
1.4 Normal + Bump 4
1.5 All applied 4

Rendering 5
Real-Time Rendering 5

Virtual Reality 6
Augmented Reality 7

Augmented Reality vs. Virtual Reality 7
Mixed Reality 7

Geographic Information System (GIS) 11
Advantages and Disadvantages 11

Implementation 13
Web XR 14

Case studies 14
Video 15
Object/ data visualization 15
Experiences in the arts 15

Three.JS 16
2.2 Layout of a simple three.js application 16

Mapbox 18

Approach 19

3

Setting Up the Interface 19
Why SQL? 19

3.1 Main Interface 19
The Interface on first Sight 20
Bonanza 21

3.2 Example on an AR compatible device 21
3.3 The List of found Relics 22
3.3 Magnifying glass mode 22

The Map 23
3.4 3d Buildings 26

The 3D Virtual Environment 36
Setting Up the Cube 36

4.1 Results of the scenery functions 38
Creating the XR experience 38

Movement 41
Motion Sickness in Virtual Reality 42
Locomotion 43

4.1 Line illustration 43
4.2 Raycaster we made 48

On Press/ Head movement based navigation (Head Tilt Navigation) 48

BIBLIOGRAPHY 50
Α. FOREIGN 50
Β. NATIVE 51

4

IMAGE LIST

1.1 Wireframe 3
1.2 Sign Shading 3
1.3 Simple Sphere 4
1.4 Normal + Bump 4
1.5 All applied 4
2.2 Layout of a simple three.js application 16
3.1 Main Interface 19
3.3 The List of found Relics 22
3.3 Magnifying glass mode 22
3.4 3d Buildings 26
4.1 Results of the scenery functions 38
4.1 Line illustration 43
4.2 Raycaster we made 48

5

ABBREVIATION

VR _Virtual Reality

AR _Augmented Reality

MR _Mixed Reality

XR _Experience

API _Application Programming Interface

GIS _Geoographical Information System

CSS _Cascading Style Sheets

JS _JavaScript

HTML _Hyper Text Markup Language

6

3D _Three Dimensional

ΕΜΙΑΚ _Επικοινωνιακό και Μορφωτικό Ίδρυμα Ιεράσ Αρχιεπισκοπής Κρήτης

_Communication and Educational Foundation of the Holy Archdiocese of

Crete

7

ACKNOWLEDGEMENTS

I would like to express my gratitude and appreciation for my Supervisor,

professor Athanasios Malamos. Whose guidance, support and

encouragement has been invaluable throughout this study. I also wish to

thank the team in the CM Lab who have been a great source of support,

and helped throughout this project practically and mentally.

I would also like to express my gratitude to the Communication and

Educational Foundation of the Holy Archdiocese of Crete and Cyprus that

generously provided this kind of information and gave access to all these datasets,

so that we can advance this thesis to a whole project in the future.

8

INTRODUCTION

Progressing to the main body of this thesis, I would like to introduce you to the

thought process that will be followed throughout its entirety, from the first chapter to

the last.

Beginning our journey we will be introduced to some fundamental definitions in

graphics and the basis of the technologies used to complete our tasks, such as GIS

definition and WebXR or Flutter and web-based 3D Frameworks.

For the time being some of the aspects of the project are not fully developed,

because of the lack of resources available, but the usage of state-of-the-art

technologies was crucial for the user experience and of course the functionality of

this project’s entirety.

All technologies used for the implementation will be pictured and analysed in

detail. Some of the maths required in certain situations will be explained and pictures

will hopefully illuminate the practical vision of certain technologies such as AR, VR or

even the three-dimensional representation of the Map.

1

Graphics

Computer graphics handles -as a definition - almost everything on a computer

that is not referred to as text or music. Nearly every computer nowadays can

generate a fair amount of decent graphics, and users have come to desire to be

able to handle their computers via the use of icons and images instead of typing.

When we refer to computer graphics, we think about illustrating visuals on

computers, commonly known as rendering. Drawings, photographs, movies, and

simulations can all be used to generate things that do not exist yet or may never

exist. Alternatively, they could be photos from locations we cannot see, such as

medical snapshots from the inside of your body.

Humanity worked hard to improve computer graphics' ability to emulate

real-world conditions. We want computer graphics to be more naturalistic in terms

of lighting, colouring, and the build of various materials, not simply in terms of

appearance.

An assemblage of geometric objects may be displayed, or rendered, on a

computer. A lusterless surface having three or more distinct edges is considered

on each side of an object. The computer is used to determine how each item

appears in perspective view before drawing the silhouettes on the screen.

The following image was constructed in wireframe mode as if the structure

were assembled of straight wires.

2

1.1 Wireframe 1.2 Sign Shading

Only the domains of the borders visible to the viewer are formed using a

process known as "hidden line removal". By reducing overlapping lines and

causing items to appear solid, the effect assists in the comprehension of arcane

situations.

"Sing shading" on revealed item surfaces enhances our understanding of their

shapes and locations.

Textures & Materials
Textures and Materials are the apparatus that the rendering engine uses to

generate the model. You can designate materials for your model and notify the

rendering engine on how to manage the light when it irradiates the surface.

Textures are used to add colouring to a material utilizing a colour or an "albedo"

mapping, or sometimes to add colour to a surface feature using a bump map or

normal map. It can also be used to transform the model itself using a

displacement map.

3

Bump mapping
These are textures that hold the vehemence, which is the proximate height of

the pixels as seen by the camera. The pixels seem to be shifted towards the

surface normals by the necessary distance. (A "bump" is just an expulsion along

the existing unaffected normal vector of the face.) You can use a greyscale image

or an RGB texture intensity value.

Normal mapping
These are pictures that keep the direction and normal direction directly to the

RGB values ​​of the picture. It's much more precise because you can simulate

pixels shifting in any direction, rather than affecting pixels moving along a line

out from the face. However, The downside of normal maps is that unlike bump

maps, which are easily drawn by hand, you are usually required to generate a

normal map from the geometry that has a higher resolution than the geometry on

which you apply the map.

Displacement mapping

Displacement mapping permits you to utilize the position of vertices on the

geometry developed by the texture input. Unlike standard mappings and bump

mappings that deform shading to construct the illusion of bumps, displacement

maps create real bumps, creases, etc. on the actual model, itself. Therefore,

mesh deformations can cast shadows, mask other objects, and alter everything

you can change in the actual geometry.

1.3 Simple Sphere 1.4 Normal + Bump 1.5 All applied

4

Rendering
Three-dimensional rendering is a 3D computer graphics procedure that

transforms a 3D mesh into a 2D image on your monitor output. 3D rendering

may contain photorealistic or non-photorealistic styles.

Rendering is the definitive process of creating a true two-dimensional image

or animation from the set scene. This can be analogized to taking a photo or

setting a scene after the actual formation is finished. An assortment of special

rendering methods has been conceived throughout the years. These scope from

the admiringly unrealistic wireframe rendering to more refined techniques such

as scan line rendering, polygon-based rendering, ray tracing, and radiosity.

Rendering can take from several days to split seconds for a single

image/frame to be generated completely. Normally, we use different methods for

real-time rendering or photorealistic.

Real-Time Rendering

Real-time rendering is a branch of computer graphics that focuses on creating

and analyzing pictures in real time. The word was mostly usually applied to

immersive 3D computer graphics created using a graphics card (GPU). A video

game that speedily produces shifting 3D scenes to create the sensation of

motion is one version of this notion.

Throughout their inception, computer systems have been capable of

producing 2D visuals such as basic pictures, polygons, and lines in real-time.

Nonetheless, for conventional Von Neumann architecture-based systems,

drawing complicated three - dimensional objects fast remains a formidable

undertaking. Icons (2D pictures) which might imitate 3d computer graphics were

an early solution for this problem.

There are also additional visualization approaches available now, including

such as ray tracing and B. Screening.

5

Computer systems nowadays can construct graphics quickly enough to

provide the sensation of motion whilst also collecting human input using such

approaches and improved technology. This means that viewers may reply to the

generated image in real time, creating an immersive experience.

Virtual Reality

A three-dimensional picture or environment which is generated by digital

means to simulate a type of reality that may be interacted with in a seemingly real or

material way by a person wearing the characteristic electronic equipment, such as a

helmet with a screen inside or gloves with detectors, is called a VR experience.

Virtual reality (VR) is an experience comparable to or different from reality.

Applications for virtual reality enclose entertainment, education, and business.

Currently, traditional virtual reality systems employ virtual reality headsets or

multi-projected environments to give realistic sights, sounds, and other sensations

that simulate a user's physical presence.

A virtual reality user may see the virtual world, move everywhere permitted inside it,

and interact with virtual objects or products.

One method of experiencing virtual reality is through simulation. Driving

simulators, for instance, can provide the onboard operator the idea that he or she is

steering a real automobile by mimicking automobile motion caused by user

involvement and supplying visual, motion, as well as audio and visual inputs.

Avatar image-based vr technology allows individuals to participate in the

simulated environment through the use of genuine video together with an avatar. To

participate in the 3D networked virtual environment, a regular avatar or a video can

be utilized. Users can select the amount of engagement they desire depending on

the system's capabilities.

6

One method of experiencing virtual reality is through simulation.To participate

in the 3D distributed virtual environment, a regular avatar or a video can be utilized.

Users can select the amount of engagement they desire based on the system's

capabilities.

Augmented Reality

A technique that superimposes a computer-generated picture over a user's

viewpoint of the factual world, resulting in a synthesized view.

Augmented reality (AR) is a type of experience in which designers supplement

features of users' physical surroundings with computer-generated input.

Designers create digital inputs that respond in real-time to changes in the

user's environment, frequently through movement, ranging from music to video,

graphics to GPS overlays, and more.

Augmented Reality vs. Virtual Reality

On the other hand, virtual reality engages individuals in a whole different

environment, one created and illustrated by computers. Users may be immersed in

an animated set or a picture of a real-world place entrenched in virtual reality

software. Using a virtual reality viewer, users may look up, down, or in any other

direction as if they were genuinely there.

AUGMENTED REALITY VIRTUAL REALITY

Layers on top of real-world elements. An Immersive experience that alters
your perception to make you feel like
you are in another world.

Enhances what you see with
computer-generated images or graphics
to your view.

Provides a fully digital environment with
no real elements.

7

Requires AR-Compatible device. Requires a VR headset or/and
additional equipment.

Users can interact and change their
perception of the world in real-time,
while they can easily distinguish reality
from virtual enhancement.

Users might experience mobility
problems while remaining fully
immersed in the virtual environment.

8

Mixed Reality
Mixed Reality is the merging of the physical and virtual worlds to create new

habitats and depictions in which actual and computer generated elements live and

interact together in real time. Cyberspace is sometimes described as a connected

virtual reality. Simulated reality is a potential virtual reality that is as totally immersing

as real life, enabling for a close-to-lifelike experience or maybe virtual eternity.

A mixed reality environment is built utilizing a range of digital technologies,

whereas Mixed Reality refers to the high-level interweaving of the physical and

virtual environment. They can be anything from small portable devices to whole

rooms, and each has a distinct set of uses in a variety of disciplines.

● Cave Automatic Virtual Environment

○ It is a tiny space within a larger outer room where people are

encircled by projected panels above, below, and around them.

Surround sound and 3D glasses are used in conjunction with the

projections to provide the user with a feeling of perspective that

is intended to mimic the existing reality. CAVE systems were

being used by engineers building and testing prototype products

since their beginning. Following the launch of the CAVE, this

very same researcher developed the CAVE2, which improves on

the original CAVE's inadequacies. The original projections have

been changed with 37 megapixels 3D LCD screens, network

connections have been fitted to connect the CAVE2 to the

internet, as well as a more precise camera system which allows

the environment to alter as the user wanders around it.

● Head-up display

○ A head-up display (HUD) is a display that is displayed into a

user's field of vision and gives extra information without

disturbing or forcing them to look away from the area in front of

them. A common HUD contains three parts: a projector for

overlaying the HUD's visuals, a combiner for displaying the

9

graphics, and a computer for combining the two additional

components and doing any real-time computations or

alterations. HUD concepts were primarily applied in military

applications to aid fighter pilots in combat, but they were later

made to help in all areas of flying, not just fighting. Pioneer's

Heads-up system, which replaces the driver-side mirror, was

one of the earliest implementations of HUD in automobile

transport. Pioneer's Heads-up system, which substitutes the

driver-side window shade with a display that projected

navigation data onto the route in front of the operator, was one

of the pioneering usages of HUD in vehicle transportation. Since

then, auto manufacturers such as GM, Toyota, Audi, and BMW

have added some type of head-up display to their products.

● Head-mounted display

○ A head-mounted display (HMD), which may be worn over the

entire head or in front of the eyes, is a device that projects a

picture right in front of the user's eyes using one or two lenses.

Its uses include medical, entertainment, aviation, and

engineering, and it provides a level of visual immersion that

standard displays do not. Consumers in the entertainment

business want head-mounted displays, and major technology

firms are creating HMDs to complement their existing offerings.

These head-mounted displays, however, are virtual reality

displays that do not incorporate the physical environment.

Popular augmented reality HMDs, on the other hand, are more

suitable for business situations.

● Mobile devices

○ Mobile devices, especially smartphones and tablets, have

gradually improved in terms of CPU power and mobility. While

initial smartphones displayed a computer-generated interface on

10

an LED screen, recent smartphones have quite a toolset for

making augmented reality apps. These capabilities encourage

developers to combine multiple computer images over footage

of the physical world. Pokémon GO, which was introduced in

2016 and has 800 million downloads, was the first massively

acclaimed augmented-reality smartphone game. Google Maps

has been updated with AR navigation directions superimposed

into the streets in front of the user, as well as an expansion of

their translation program to overlay translated text over actual

lettering in over 20 different languages.

11

Geographic Information System (GIS)
GIS or Geographic Information System is a widespread technology that is

actually pretty popular for many parts of scientific or engineering culture of research
and developing. It is a digital system that creates, stores, interprets, and maps
different kinds of information about anything contained along with meta-data about
its location. GIS links information to maps by combining location with other sources
of distinguishing data.

This lays the framework for analysis and mapping, which are used in research
and almost every other industry. Users may utilize GIS to better grasp patterns,
linkages, and geographical context. Among some of the benefits of employing these
sorts of technologies are effective communication and efficiency, which leads to
better organization.

Advantages and Disadvantages

There is a variety of data that can be viewed and inventoried using GIS or a
geographic information system.
From

● natural resources,
● wildlife,
● cultural resources,
● wells,
● springs,
● water pipes,
● facets,
● roads,
● streams,
● and homes.

You can view and calculate the quantity, or density, of a particular item in a particular
area. However, there is still much you can do with GIS technology.

Here are a few advantages of utilizing Geographical information systems:
● They are capable of enhancing organizational cohesiveness. In order

to collect, analyse, organize, and display all sorts of spatially relevant
data, GIS incorporates hardware, software and even data.

● With the use of GIS, you can also explore, query, visualize,
comprehend, and analyse data in a variety of ways to identify trends,
connections, and patterns that may then be represented in the form of
globes, graphs, maps, and reports.

● By presenting data in a style that can be swiftly and readily shared, the
geographic information system hopes to assist in providing answers to
queries and solving issues.

12

● GIS technology can also be integrated into any enterprise information
system framework.

● And there will be countless job opportunities.
These are some of the benefits that can be achieved by using GIS technology. Given
the use of the above techniques, this can be seen as a major decision.
On the other hand, there are some drawbacks that can occur with the use of GIS
technology. And a few of these negatives are:

● GIS software can be considered quite expensive.
● In order to do several other activities effectively, you are also required to enter

a lot more data.
● Because the Earth is spherical, geographical inaccuracy increases with

increasing scale.
● The GIS layer costs a lot more when logical errors occur when it comes to

realtors trying to understand an engineer's design for a GIS map or GIS utility.
● You also may fail to start or start additional efforts to fully implement GIS.

These are one of the pitfalls of using GIS technology and may or may not occur in
some cases. The above disadvantages can be considered on a case-by-case basis,
depending on how efficiently GIS technology is being used.

In general, it is true that GIS technology has the ability to offer both strengths
and weaknesses to everyone. Apart from the advantages and disadvantages
mentioned above, there are definitely many possibilities when using GIS technology,
except for a few drawbacks.

2.1 Representation of a GIS

13

Implementation

In this project, we try to make distant visits to monuments more accessible to
the public by only having a laptop, a smartphone or a tablet. To achieve this we are
using a big variety of technologies to produce our front-end and back-end as well.
The initialisation started by thinking about how would users first interact with our
application. Is it going to be Web Based or Mobile Based? The truth is that both the
user Experiences should be accessible because some of the users' devices might
not have the capacity to achieve such heavy-duty as 3D and VR or AR immersions,
in the first place.

Web VR is not new to the world but the amount of clever and useful
frameworks does not, at least not yet, really cover the needs of the developing
demands.
In testing and early development, I started creating 3D worlds in various ways that
seemed fitting by that time being.

Secondary came the user interface and the CSS implementation. In contrast
to the common approach of HTML interfaces, I did not choose to use Bootstrap or
React as my main course for UI production. As time goes by, people tend to use their
smartphones more than their regular personal computers. The capacity of a website
or an application, being able to change its appearance to the most efficient and
functional way for the users’ experience, is essential. Further beyond we will discuss
the CSS framework I chose to be the most convenient and functional in manners of
complexity and adaptability.

Additionally, addressing the problem of mobile devices and compatibility I also
made a distinction between PC use and mobile devices, by programming, almost the
same App for Android and iOS. Cross-platform applications are the state of the art in
programming. Different frameworks have been developed throughout the previous
decade. For our implementation of this task, we chose Flutter as our main
framework of concept.

Addressing the previous considerations and making my way through the
project, I took advantage of the main concept of Geolocation systems and I made it
so that everything is around or on a map in the middle of the page. Users will be able
to navigate through a map, which we will combine with the 3D concept. Information
on the subject such as geographical location is acquired by using an API developed
by EMIAK. The map was provided after several trials and errors on different systems
by Mapbox, which will be extensively described as a tool later on.

In conclusion, 3D worlds - as mentioned before - are considered to be
developed in three.JS, for convenience. Further applications of 3D frameworks were
discussed to be used, but most of them couldn’t fit the level of workability for further
exploration and development in terms of evolution.

14

Web XR
There are a lot of "Reality" words floating around these days, considering the

3D World. Even though there are many commonalities among them, it might be
impossible to keep track of Virtual, Augmented, and Mixed Reality. This exact API
seeks to offer the building blocks for everything mentioned. And, because they do
not want to be confined to one aspect of virtual and augmented reality, they use "X"
which represents "Your Reality Here," not as part of a boring acronym.

The WebXR Device API gives you the ability to input (pose info from headsets
and control systems) and output (hardware projection) features that are often related
to Augmented Reality and Virtual Reality devices. It enables you to create and host
VR and AR experiences on the web.

The advantages of performing XR on the web include instant deployment to
any XR platform using a WebXR-enabled Web Browser.

● Future-proof applications should remain available on devices without
requiring the deployment of new code, as new VR and AR technologies
are often introduced.

● An engagement may support portable and head-mounted VR and AR
devices with a single release. Just a few small changes to the code are
needed to support AR and VR concurrently.

● There is no need for the use of big downloads orapp stores; visitors
may enjoy your experience without leaving your website.

● Because WebGL, that has been available since 2011, handles the
processing, you have accessibility to its comprehensive ecosystem of
tools as well as its sizable and vibrant developer community.

At this certain point a lot of groundbreaking technologies benefit from Web XR such
as

● A-Frame
● Babylon.js
● model-viewer
● p5.xr
● PlayCanvas
● React-XR
● Sumerian
● Three.js
● Unity
● Verge3D
● Wonderland Engine

Case studies
Some might assume that this API will be primarily used for game development

given the promotion of early XR devices to gamers. Although there will probably be a
lot more "long tail"-style material than big-budget games given the history of the
WebGL API, which is extremely equivalent. The majority of XR content will likely be
available online in regions that don't cleanly fit into the app-store models of all of the

15

https://immersiveweb.dev/#a-frame
https://immersiveweb.dev/#babylon.js
https://immersiveweb.dev/#model-viewer
https://immersiveweb.dev/#p5.xr
https://immersiveweb.dev/#playcanvas
https://immersiveweb.dev/#react-xr
https://immersiveweb.dev/#sumerian
https://immersiveweb.dev/#three.js
https://immersiveweb.dev/#unity
https://immersiveweb.dev/#verge3d
https://immersiveweb.dev/#wonderland%20engine

major VR/AR hardware vendors are using as their primary distribution methods, or
where the material itself is not authorized by the store restrictions.

Video
The web has already demonstrated to be a wonderfully effective platform for

the delivery of video, and Three-Sixty Degrees and 3D video are both quite popular.
Similar to the "Full screen" buttons present in current video players, a "View in VR"
button will be visible when an XR-enabled video player detects the presence of XR
equipment. When the user touches the button, a film that mimics natural head
movement shows in the headset. A more immersive experience may be achieved by
displaying standard 2D video in the headset as though the user were seated in front
of a theatre sized screen.

Object/ data visualization
Simple 3D visualizations can be delivered on websites using WebXR, often as

a progressive improvement to their more traditional representations. A more realistic
feeling of scale may be achieved while viewing 3D architectural pre-visualizations,
maps, medical imaging, models, and basic data visualization in VR and AR. When
internet information is readily available with only a link or click, few people would
even think about installing a native software for such use scenarios.
Demos for shopping applications do incredibly well. Depending on the gear and
software, websites might be anything from a simple photo carousel to an interactive
3D model that lets users experience a walkthrough in virtual reality, giving users the
impression that they are actually in the property.
Giving customers a low-friction experience avoids the need to persuade people to
install a huge (and potentially hazardous) executable, which is advantageous for
both users and developers.

Experiences in the arts
For creatives interested in exploring the possibilities of a different medium, VR

presents an exciting canvas. Shorter, hazier, and more imaginative experiences are
frequently inappropriate for an app-store strategy since the perceived effort required
to download and install a native executable may be excessive compared to the
content provided. These kinds of apps are much more appealing since they provide
a seamless way to view the experience because the web is fleeting. Additionally, by
using a single code base, designers may target the greatest number of devices and
platforms, which makes it simpler to attract viewers to the content.

16

Three.JS
Three.js is a 3D framework that aims to create exhibiting 3D material on a

browser as simple as possible.
Three.js is sometimes misguided with WebGL since it frequently, but not always,
utilises WebGL for drawing 3D. WebGL is a very low-level method for generating
simply lines, points, and triangles. You'll want a significant amount of code to execute
anything fascinating with WebGL, and three.js can help with that. If you utilised
WebGL explicitly, you would have to write each of the features it offers, such as
reflections, scenes, lighting, materials, texturing, and 3D maths.

A three.js program necessitates the establishment of several elements and
their interconnectivity. Here's a layout of a simple three.js application.

2.2 Layout of a simple three.js application

What to look for in the diagram above.
● A renderer is present. Undoubtedly, this is three.js's main objective. A

2D image of the portion of the 3D scene that lies within the camera's

17

frustum is rendered to the canvas using the Renderer, Camera, and
Scene that you supply.

● Several elements, including several Mesh objects, a Scene object,
Group, Light objects, Object3D, and Camera objects, are included in a
scene graph, which is a structure that resembles a tree. A Scene object
defines the basis of the scene graph and includes details like the colour
of the background and the presence of fog. These elements provide us
a parent-child tree-like hierarchical arrangement and show us where as
well as how events happen. In respect to their parents, children are
positioned and oriented.

● Mesh objects offer the ability to draw a certain Geometry using a
specific Material. Both Geometry and Material elements may be
combined using multiple mesh objects. We could need two mesh
objects to specify the position and orientation of each blue cube, for
example, if we wanted to generate two blue cubes in two different
places. We would only require one Geometry and one Material to
describe the colour blue in order to keep the vertex information for a
cube. The same Geometry and Material objects may be related to both
mesh objects.

● Vertex data of a geometric object are represented by geometry objects
such as a dog, cube, plane, sphere, cat, person, tree, building, and so
on. Three.js has a wide range of geometric primitives. You may also
import geometry from files and generate your own geometry.

● Surface parameters are constituted by Material objects so that
geometry to be created, such as the colour to use and the shine. One
or more texture objects may also be referred to as Materials; they may
be used, for instance, to wrap an image around the surface of a
geometry.

● Texture objects are used to be pictures that are imported from picture
files, which are produced by a canvas element, or generated from
another scene.

● Many types of lightning are represented by Light objects.

*Take note that the camera is in the scene is split in and out of the scene graph in
the diagram. This is to show that, unlike the other objects in three.js, a Camera does
not need to be in the scene graph to operate. A Camera, like everything in the
scene, will be oriented and moved relative to its parental object, just like any other
object.

18

Mapbox

Mapbox GL JS is a JavaScript client-side framework for creating online maps and
web apps using Mapbox's cutting-edge technology. Mapbox GL JS allows you to
show Mapbox layouts in either a internet browser or mobile, add user interaction,
and personalize the map interface in any project.

Mapbox GL JS applications include:

● Geospatial data visualization and animation.
● Real - time data queries and filtration map elements.
● Using a Mapbox style to place your data within layers.
● Customized client-side data is dynamically displayed and styled on a map.
● Sequences and representations of 3D data.
● Algorithmically inserting pop-ups and markers to maps.

The "GL" in Mapbox GL JS relates to Mapbox GL, a graphics framework that uses
OpenGL to generate two-dimensional and three-dimensional Mapbox maps as
dynamic visualizations in any suitable internet browser.

Client-side processing is used by Mapbox GL JS. Mapbox GL JS maps are
dynamically drawn in the computer instead of on a server by mixing vector tiles with
rules and guidelines, allowing the maps' style and presented data to vary in response
to the user activity.

Mapbox GL JS maps may be made up of many layers that contain both visual
components and map information. Each layer specifies how the renderer may depict
particular information in the user's computer, and the renderer employs several
layers to display the map on the display.

The addLayer Mapbox GL JS function adds a Mapbox style layer to the map's style.
The only argument necessary for addLayer is a Mapbox style layer entity. It also
supports an explicit before argument, which specifies the ID of an existing layer that
should be inserted before the new layer. If this option is omitted, the renderer will
create the layer upon the map's surface.

19

Approach
Setting Up the Interface

Considering the use case scenarios of a user navigating through a map, there has to
be easy and instant access to the users’ demand just by being redirected to the
page.

The first things first were to decide if the CSS layout for the main interface and the
easiest way to integrate an API with functions and new endpoints for the page. The
first idea was to use Node.JS for the back-end operations and the Ejs framework to
manage JSON data with JavaScript.

Considering that in future integration, there will be a user-related system for
up-loadable content by users, I chose to frame it with PHP, so I can use SQL for the
main interface, as long as the entity relations are not that complex.

Why SQL?

MongoDB and SQL databases are on different ends of the backend spectrum. The
former works with large unconstructed datasets that are chaotic, whilst the latter
works with structured data that is orderly. Both worlds have benefits and
weaknesses, and they are intended for distinct sorts of use cases. In this post, we
will compare MongoDB to SQL databases (specifically, the MySQL database), as
well as discuss how we can do MongoDB analytics with the same ease that we can
with SQL databases.

3.1 Main Interface

20

The Interface on first Sight

The main functions that are integrated
into the Users’ interface are defined with
simple buttons and icons, so it is made
clear what they do, and the solution is a
mostly simple design which makes the
use cases more accessible to different
ages or levels of comprehension.

In each tile of the monuments we will find
four buttons considering Map navigation
and page redirections:

● Navigate: Redirects us to the 3D
generated space and AR/VR immersion
page

● Info: Reveals a sidebar with information about the monument and certain
pictures from it.

● Relics: Redirects us to the page of the monument for us to see the relics that
were found inside.

● Go to (Pin): Triggers the goTo(x,y), which brings the pin of a certain
monument to the centre of the Map View.

function goTo(x, y) {map.setCenter([x, y]);}

That is all considering the right part of the screen and the main Functionalities that
are accessible in a blink of an eye.

As we mentioned before, most modern users use
their smartphones to browse the internet, so we
made sure that can be used with the same
efficiency in both portrait and landscape mode.

By using columns and rows from the CSS
framework, we control the position of every HTML
element with ease and make it possible to change
to a horizontal view as well as use the
responsiveness of the Map that comes integrated
with the MapBox API, without destroying the main
interface’s appearance or functionality.

Buttons have the same responsiveness, but the
float state is disabled because of the touchscreen
usage.

21

Bonanza

If a user decides to press on the relics button, then he will be
redirected to the page dedicated to the monuments’ relics,
that are found until our present time.

On the left side of the page, the user will be viewing a 3D
model of the monument which is turnable, 360º available for
viewing, and it is also zoomable. We achieve that by using
Google’s model-viewer, and by using this plugin, and also if
our device is capable of doing so, we can view the monument
in our own phone via AR camera.

Throughout the AR camera, we can place the model
wherever we want on a flat surface and adjust it’s size so that

we can view it as we like to.

3.2 Example on an AR compatible device

After this, on the left side of the page we can see a list of the relics that were found
with every and each one of the names and Identification code given.

22

We retrieve this kind of information via the API that we mentioned earlier, and we
arrange them with simple PHP code, which makes a single tile for every element of
the JSON we get.

3.3 The List of found Relics

And to top it off we added a magnifying glass that’s working with plane CSS and
javascript.

3.3 Magnifying glass mode

23

The Map
On the right side of the screen we can see a Map. This Component is brought by
MapBox.
We initialize the map with this simple piece of JavaScript code:

const map = new mapboxgl.Map({

container: 'map',

style: 'mapbox://styles/mapbox/satellite-streets-v11',

zoom: 18,

center: [25.134144396166306, 35.34073423355571],

pitch: 50,

antialias: true // create the gl context with MSAA antialiasing, so

custom layers are antialiased

});

We define the ID of the canvas component in our HTML markup how much
zoomed we want it to be, as well as the pitch of angle on the map view.
The style argument refers to the image that will be used. For this project, I chose that
the satellite view is well-fitted, and I centred it in the centre of Heraklion, keeping in
mind that the coordinates are inversely proportional to the ones on Google Maps.

A Mapbox style is a document that defines the visual look of a map, including
what data to show, how to represent it, and then how to design the info when
rendering it. A style document is a JSON object containing nested and root-level
attributes. These attributes are defined and described in this standard.

Layers in Mapbox GL JS are asynchronous since they are remote. As a result,
code that connects to Mapbox GL JS frequently uses event binding to alter the map
at the appropriate moment.

We separate the layers from the map in a list element, so we can add new
features as layers one above the other with lists’ functions, such as push and pop.
Most of the layers load on the map once it is declared during the loading session
with map.on(‘load’).

To call map, use map.on('load', function() in this sample code. After the map's
resources, including the style, have been loaded, addLayer is called. If you ran
map.addLayer immediately away, it would throw an error because the style to which
you want to add a layer does not yet exist.

24

map.on('load', () => {

// Insert the layer beneath any symbol layer.

const layers = map.getStyle().layers;

const labelLayerId = layers.find(

(layer) => layer.type === 'symbol' && layer.layout['text-field']

).id;

The Mapbox Streets layer titled "building." Data on building heights from
OpenStreetMap is included in the vector tileset.

map.addLayer(

{

'id': 'add-3d-buildings',

'source': 'composite',

'source-layer': 'building',

'filter': ['==', 'extrude', 'true'],

'type': 'fill-extrusion',

'minzoom': 15,

'paint': {

'fill-extrusion-color': '#aaa',

// 'fill-extrusion-pattern': 'raster',

As the user zooms in, provide a seamless transition effect to the buildings by using a
"interpolate" phrase.

'fill-extrusion-height': [

'interpolate',

['linear'],

25

['zoom'],

16,

0,

16.06,

['get', 'height']

],

'fill-extrusion-base': [

'interpolate',

['linear'],

['zoom'],

16,

0,

16.06,

['get', 'min_height']

],

'fill-extrusion-opacity': 0.7

}

},

labelLayerId

);

});

map.addControl(new mapboxgl.NavigationControl());

We use addLayer to add a fill-extrusion layer that displays building heights in
3D.

26

A fill-extrusion style layer creates a map with one or more filled (and optionally
stroked) extruded (3D) polygons. A fill-extrusion layer can be used to customize the
extrusion and visual appearance of polygon or multipolygon features.

The data provided for the polygons to be made are provided by the Mapbox
API, and they give us a number of polygons which later are converted to 3D by
adding height vectors and creating faces from the points created.

And we add Navigation controls so we can change our view by rotating our
compass.The compass and the Zoom buttons can be found on a NavigationControl
control.

3.4 3d Buildings

We can actually represent the Map class in a class diagram, in which we can see the
Attributes and Structures that are affected by the Methods of our parent class, the
Map.

● Map options: affect the appearance of the map.
● MapTypeControl: Affects Controls that navigate you throughout the terrain.

27

● MapTypeId: The type of the Map that is used to display the data or the Map
Tile that is displayed.

● PanControlOptions: Position of the options’ control panel about the point of
view.

● RotateControlOptions: Position of the options’ control panel about the rotation
on the map.

● ScaleControlOptions: Position of the options’ control panel about the scale of
the map.

● StreetControlOptions: Position of the options’ control panel of the map’s
location display.

● ZoomControlOptions: Position of the options’ control panel about the zoom
in/out.

The whole representation process is actually represented by markers on the map
loaded by a function that manages the data that is coming from the API.

A Marker is another component that we use to represent a location on the Map, and
its constructor looks like this.

28

new Marker(options: Object?, legacyOptions: Options?);

Name Description

options.anchor
String
default: 'centre'

a string describing which area of the
Marker should be placed closest to the
coordinates specified by
Marker#setLongLat.

options.clickTolerance
Number
default: 0

The most pixels a user's mouse cursor
can move when they click a marker for
it to be recognized as a legitimate click
(as opposed to a marker drag). The
default is to take the click from the
map. The capacity for clickTolerance.

options.color
String
default: '#3FB1CE'

If options.element is omitted, the
default marker's color will be used. By
default, light blue is used.

options.draggable
Boolean
default: false

a boolean value indicating if dragging
a marker to a different spot on the map
is possible.

options.element
HTMLElement?

Marker DOM element to utilize.

options.offset
PointLike?

The distance in pixels that a PointLike
object should be displaced from the
center of the element by. Negatives
point up and to the left.

options.pitchAlignment
String
default: 'auto'

Map centers the Marker on the map's
plane. The Marker is aligned to the
viewport's plane. Auto automatically
equates to rotationAlignment's value.

options.rotation
Number
default: 0

The marker's angle of rotation with
relation to the selected
rotationAlignment, determined in
degrees. The marker will turn

29

Name Description

clockwise if the positive value is
present.

options.rotationAlignment
String
default: 'auto'

In order to keep a bearing when the
map rotates, the map aligns the
Marker's rotation with respect to it.
Regardless of map rotations, viewport
aligns the marker's rotation with
respect to the viewport. Viewport is
identical to auto.

options.scale
Number
default: 1

The scale that will be applied to the
default marker, if any. No element is
offered. The usual scale translates to a
width and height of 27 and 41 pixels,
respectively.

Seeing the Map Component without its function makes it seem less useful, but in any
case, this is the main mean of navigation throughout the map and webpage as well.

loadMarker() is a custom function that we made to serve the purposes of the project.
In our function you will notice that we are using setLang(), addTo() and setPopup()
which are methods() of the Marker Class. In the end, we set a new Pop-up
component on the marker which is another class that is bound to our Marker anew.

Name Description

options.anchor
string?

a string set by Popup#setLngLat that
designates the area of the popup that
needs to be located closest to the
location.

options.className
string?

CSS class values divided by
whitespace to add to a popup frame.

options.closeButton
boolean
default: true

If true, a close button will show up
inside the popup's upper-right corner.

30

options.closeOnClick
boolean
default: true

If true, popup closes when the map is
to be clicked.

options.closeOnMove
boolean
default: false

If true, the pop-up will close when the
map moves.

options.focusAfterOpen
boolean
default: true

If true, the pop-up tries to focus the
first shown focusable element in the
pop-up’s internal.

options.maxWidth
string
default: '240px'

A string (for instance, "300px") that
specifies the popup's maximum width
as a CSS attribute. Set this parameter
to "none" to guarantee that the popup
will resize to suit its content. For a list
of the possible values, go to the MDN
documentation.

options.offset
(number | PointLike | Object)?

the popup's position defined as a pixel
offset which is applied as

● an individual number
indicating the distance to the
popup's location

● a PointLike specifying a
constant offset

● a Points object specifying an
offset for each anchor
position.

Negative offsets indicate up and left.

We are using the function setHTML() from the set of methods that this class carries.

setHTML(HTML){
Sets the pop-up's content to the HTML provided as a string.

This method does not perform HTML filtering or sanitization and must be used only
with trusted content.

Parameters

31

HTML(string)A string representing HTML content for the pop-up.

Returns

Popup: Returns itself to allow for method chaining.

}

function loadMarker(x, y, URL, id, fldname) {

var marker = new mapboxgl.Marker().setLngLat([x, y]).addTo(map);

marker.setPopup(new mapboxgl.Popup().setHTML(

'<div class="colums is-centered">' +

'<div class="column">' +

'' + fldname +
'' +

'</div>' +

'<div class="column is-centered">' +

'<a href="/OpenWorld/php/views/3dXdom/model-view.php?modelId=' +
id + '" target="_blank" class="is-centered" rel="noopener noreferrer">'
+

'<button class="button is-link is-centered" value="' + id +
'">Navigate</button>' +

'' +

'<button class="button is-outlined mx-2 model-info-button"
onclick="openNav(this)" ' +

'value=' + id + '><i class="fas fa-question mx-2"></i>
info</button>' +

'<a href="/OpenWorld/php/views/bonanza.php?modelId=' + fldname +
'" target="_blank" class="is-centered" rel="noopener noreferrer">' +

'<button class="button is-warning is-centered" value="' + id +
'">Relics</button>' +

'' +

'</div>' +

'</div>').setMaxWidth("330px"));

}

32

One of the most important features of our interface is the 3D Elements! For the Map
interior, we created an extra Tile on which 3d models are established.

We firstly need the exact location of the model to load on the map and the origin of
the model on the system, or an online file URL. We set the altitude on the tile which
is always 0 and the rotation degree on the map.

function loadModel(x, y, url, id) {

const modelOrigin = [x, y];

const modelAltitude = 0;

const modelRotate = [Math.PI / 2, 0, 0];

const modelAsMercatorCoordinate =

mapboxgl.MercatorCoordinate.fromLngLat(

modelOrigin,

modelAltitude

);

Settings for positioning, rotating, and scaling the 3D object on the map

const modelTransform = {

translateX: modelAsMercatorCoordinate.x,

translateY: modelAsMercatorCoordinate.y,

translateZ: modelAsMercatorCoordinate.z,

rotateX: modelRotate[0],

rotateY: modelRotate[1],

rotateZ: modelRotate[2],

/*

Since the CustomLayerInterface requires units to be in MercatorCoordinates and the
3D model is in actual world meters, a scale conversion must be used.

33

*/

scale: modelAsMercatorCoordinate.meterInMercatorCoordinateUnits()

};

const THREE = window.THREE;

Setting up a 3D model's custom layer according to the CustomLayerInterface

const customLayer = {

id: '3d-model'+id,

type: 'custom',

renderingMode: '3d',

onAdd: function (map, gl) {

this.camera = new THREE.Camera();

this.scene = new THREE.Scene();

Create two three.js lights in the scene for illuminating the model

const directionalLight = new THREE.DirectionalLight(0xffffff);

directionalLight.position.set(0, x, y).normalize();

this.scene.add(directionalLight);

const directionalLight2 = new THREE.DirectionalLight(0xffffff);

directionalLight2.position.set(0, 70, 100).normalize();

this.scene.add(directionalLight2);

Use the three.js GLTF loader to add the 3D model to the three.js scene

const loader = new THREE.GLTFLoader();

loader.load(

34

url,

(gltf) => {

this.scene.add(gltf.scene);

}

);

this.map = map;

// use the Mapbox GL JS map canvas for three.js

this.renderer = new THREE.WebGLRenderer({

canvas: map.getCanvas(),

context: gl,

antialias: true

});

this.renderer.autoClear = false;

},

render: function (gl, matrix) {

const rotationX = new THREE.Matrix4().makeRotationAxis(

new THREE.Vector3(1, 0, 0),

modelTransform.rotateX

);

const rotationY = new THREE.Matrix4().makeRotationAxis(

new THREE.Vector3(0, 1, 0),

modelTransform.rotateY

);

35

const rotationZ = new THREE.Matrix4().makeRotationAxis(

new THREE.Vector3(0, 0, 1),

modelTransform.rotateZ

);

const m = new THREE.Matrix4().fromArray(matrix);

const l = new THREE.Matrix4()

.makeTranslation(

modelTransform.translateX,

modelTransform.translateY,

modelTransform.translateZ

)

.scale(

new THREE.Vector3(

modelTransform.scale,

-modelTransform.scale,

modelTransform.scale

)

)

.multiply(rotationX)

.multiply(rotationY)

.multiply(rotationZ);

this.camera.projectionMatrix = m.multiply(l);

36

this.renderer.resetState();

this.renderer.render(this.scene, this.camera);

this.map.triggerRepaint();

}

};

map.on('style.load', () => {

map.addLayer(customLayer, 'waterway-label');

});

}

The 3D Virtual Environment

Setting Up the Cube
We made a function that create a Plane Geometry of 10000x10000 tiles on which we
assign a picture for each tile.

function addGround() {

var groundTexture = new

THREE.TextureLoader().load('/OpenWorld/assets/images/floor.png');

groundTexture.wrapS = groundTexture.wrapT = THREE.RepeatWrapping;

groundTexture.repeat.set(10000, 10000);

groundTexture.anisotropy = 16;

groundTexture.encoding = THREE.sRGBEncoding;

var groundMaterial = new THREE.MeshStandardMaterial({

map: groundTexture

});

mesh = new THREE.Mesh(new THREE.PlaneBufferGeometry(10000, 10000),

groundMaterial);

mesh.position.y = 0.0;

37

mesh.rotation.x = -Math.PI / 2;

mesh.receiveShadow = true;

mesh.name = 'floor'

scene.add(mesh);

}

Following the same principal for the we create acube that include everything inside it
and we assign a larger picture for each side of it.

function createCube() {

const loader = new THREE.CubeTextureLoader();

const texture = loader.load([

'https://threejsfundamentals.org/threejs/resources/images/grid-1024.png

',

'https://threejsfundamentals.org/threejs/resources/images/grid-1024.png

',

'https://threejsfundamentals.org/threejs/resources/images/grid-1024.png

',

'https://threejsfundamentals.org/threejs/resources/images/grid-1024.png

',

'https://threejsfundamentals.org/threejs/resources/images/grid-1024.png

',

'https://threejsfundamentals.org/threejs/resources/images/grid-1024.png

',

]);

scene.background = texture;

}

38

4.1 Results of the scenery functions

Creating the XR experience
Than we make a function about when we have to enable the XR renderer and
enable the VR button so we can access the immersion through the glasses or any
immersive device.
VRButton. createButton() performs two critical functions: It generates a button
indicating id your device is VR compatible. Furthermore, when the user presses the
button, it starts a VR experience.

function enableXR() {

renderer.xr.enabled = true;

document.body.appendChild(VRButton.createButton(renderer));

document.getElementById('VRButton').style.background = 'rgb(0, 0,

0) none repeat scroll 0% 0%'

}

A big part of our VR experience is that we can interact with several things inside it, in
the process of experiencing anything, we have to create the concept of hands in our
3D Scene. We cannot have real hands in the virtual world, that is why we have to
create them anew. For this reasons, we will project our controllers in the scene.

To build the Controllers, we have to access the XRControllerModelFactory to
recognize the 3D model for the controller model that have to be loaded for hands.

39

And following the API call, than we have to take these steps to add “our hands” to
the scene:

● Assign the controllers an entity.
● We push the model on the entity.
● We give it an ID.
● Furthermore, we create the grip.
● Add it on the Dolly.
● And following repaint the Dolly on the scene.

function buildControllers() {

const controllerModelFactory = new XRControllerModelFactory();

const geometry = new THREE.BufferGeometry().setFromPoints([new

THREE.Vector3(0, 0, 0), new THREE.Vector3(0, 0, -1)]);

const line = new THREE.Line(geometry);

line.name = 'line';

line.scale.z = 0;

const controllers = [];

for (let i = 0; i < 2; i++) {

const controller = renderer.xr.getController(i);

controller.add(line.clone());

controller.userData.selectPressed = false;

scene.add(controller);

controllers.push(controller);

controller.name = "controller-" + i;

const grip = renderer.xr.getControllerGrip(i);

grip.add(controllerModelFactory.createControllerModel(grip));

dolly.add(grip);

dolly.add(controller);

scene.add(dolly);

40

}

return controllers;

}

When the controllers have been built then we have to assign functions, in order to
flag some of the states of the controller, for later use upon user’s input insertions
such as Select and Squeeze. The point of the flags is to realize if the user is
continuously pressing the select button or squeezes the trigger.

const controllers = buildControllers();

function onSelectStart() {

this.userData.selectedPressed = true;

}

function onSelectEnd() {

this.userData.selectedPressed = false;

}

function onSqueezStart() {

this.userData.squeezePressed = true;

}

function onSqueezEnd() {

this.userData.squeezePressed = false;

}

controllers.forEach((controller) => {

controller.addEventListener("selectstart", onSelectStart);

controller.addEventListener("selectend", onSelectEnd);

controller.addEventListener("squeezestart", onSqueezStart);

controller.addEventListener("squeezeend", onSqueezEnd);

41

});

Movement
As we mentioned above, to make ourselves interact with the environment
surrounding us in the VR session we needed hands, and we made clear that we
have two inputs for sure on any controller:

● Squeeze and
● Select

For the computer to understand if the user is giving any input at all is simple, it just
as simply checks if a button is pressed, but what if the user gives a continuous
input?

The XR renderer shares the same frame rate as our immersion Device and
refreshes our picture at this specific rate in time. That’s why we made a function that
keeps track of the select and squeeze flags, that we mentioned earlier, so we can
configure the input's duration and continuity for each controller.

● controller: the controller we are seeing.
● delta: the time fractal.

function handleController(controller, delta) {

if (controller.userData.squeezePressed) {...}else{...}

if (controller.userData.selectedPressed){...}else{...}

}

But before any further elaboration on the movement subject, I would like to state
some facts about movement and senses in the VR world, as I myself had some
trouble getting accustomed to the testes and giving myself quite a number of nausea
episodes.

Motion Sickness in Virtual Reality
Many users have stated that, even if they don't normally have motion sickness, they

might feel unbearably uncomfortable after only a brief session upon trying out the
groundbreaking technology for the first time.

What causes motion sickness, you ask? When you play a virtual reality game,
your eyes register the motions generated around you. These can range from
meteors zipping past in virtual space to riding on the back of a galloping horse. The
inner ears may also detect virtual activity all around oneself.

Regardless of what is displayed in your Virtual reality headset, your joints and
muscles perceive that you are still seated and not moving. These confusing

42

messages are sent to your brain by your eyes, inner ears, and body all at the same
time. When you have motion sickness, your brain gets disoriented and confused.

The goal of VR game creators is to generate an occurrence known as presence.
While engaging in a game, presence refers to both the physical and conceptual
experiences of "being there" rather than where you are. It is the presence of the user
that makes well-designed virtual reality sessions strong and lifelike. However, it is
also what causes VR motion sickness to appear similar to motion sickness caused
by physical movements. The sole distinction between VR and other kinds of motion
sickness is that there is no genuine motion happening throughout a VR game.

So, avoiding motion sickness in our virtual immersion, I decided to move quite
differently than the orthodox way of VR games. Most of the time we are introducing
users in moving a body along with the camera, which is their head.
In our project, we move the head along with a body, but we actually decide where
this body will go.
We, first, make the Camera and then add it to a 3D object we called Dolly, which will
be our vehicle for the whole session.

var scene = new THREE.Scene();

const fov = 75;

const aspect = 2; // the canvas default

const near = 0.1;

const far = 50;

var camera = new THREE.PerspectiveCamera(fov, aspect, near, far)

const dolly = new THREE.Object3D();

dolly.position.z = 0.1;

dolly.add(camera);

var dummyCam = new THREE.Object3D();

camera.add(dummyCam);

Locomotion
Making a straight line from the controller and moving in the direction it suggests
would be an easy way to navigate.
This is not ideal since you must constantly point the joystick downward, which is
annoying, and you may move infinitely far by aiming towards the horizon, which
doesn't feel natural.
In this method, the controller tosses a ball, and we teleport to the location where the
ball lands. You've undoubtedly seen this kind of VR movement before if you've ever
worn a VR headset.

const lineSegs=10;

const lineGeo = new BufferGeometry();

43

const lineGeoVertices = new Float32Array((lineSegs +1) * 3);

lineGeometryVertices.fill(0);

lineGeometry.setAttribute('position', new

BufferAttribute(lineGeoVertices, 3));

const lineMat = new LineBasicMaterial({ color: 0x888888, blending:

AdditiveBlending });

const guideline = new Line(lineGeo, lineMat);

4.1 Line illustration

To make the line in the 3D world, we need to figure out the line geometry:
Since we don't have the curvature of the line, we've set all of its vertices to zero for
the time being.
Then we have to conduct some arithmetic to figure out precisely where it lands. We
realize a few small details: we're operating under typical gravitational acceleration,
which is approximately 10m/s or 9.8m/s down; we in addition know the speed,
orientation, and also the beginning location of the bullet.
We may deduce that the velocity changes relatively to time as the original velocity +
gravity is compounded by time, as well.

𝑉(𝑡) = 𝑉𝑜 + 𝐺𝑡

44

You can derive location from velocity by integrating it to time, which is what we'll do
next.

𝑃(𝑡) = ∫ 𝑉(𝑡)𝑑𝑡 = ∫ 𝑉𝑜 + 𝐺𝑡 = 𝑉𝑜 * 𝑡 + 𝐺𝑡2

2 + 𝐶

In this scenario, the residual constant from the integration (c) tends to work into
being our first starting point. So that we get the correct position formula, which
happens to be a quadratic equation:

𝑃(𝑡) = 0. 5 * 𝐺𝑡² + 𝑉𝑡 + 𝑃

This method may be used to calculate the location at any moment in time. This may
be used to form the arc.
For convenience, the result is saved to the vectors inVec in THREE.js vector terms
such as this:

function positionAtT(inVec,t,p,v,g) {

inVec.copy(p);

inVec.addScaledVector(v,t);

inVec.addScaledVector(g,0.5*t**2);

return inVec;

}

Because our line has ten vertices, we must determine the location of the ball at each
of those ten points until it reaches the ground. To do so, we must determine the
value of whenever it hits the ground.𝑡

To determine where the line ends, calculate the preceding equation, where y = 0.

0 = 0. 5 * 𝐺𝑡² + 𝑉𝑡 + 𝑃

The general solution, fortunately, is known as yielding:

𝑡 = −𝑉𝑜𝑦 ± 𝑉𝑜𝑦2−2 * 𝑃𝑜𝑦 * 𝐺𝑦
𝐺𝑦

45

There will be two solutions to this problem: one in the future and another in the past.
We only care about the future one, so we can ignore the other, which then in
JavaScript is:

Controller starting position

const p = guidingController.getWorldPosition(tempVecP);

Set Vector V to the direction of the controller.

const v = guidingController.getWorldDirection(tempVecV);

Set the initial velocity to 6m/s

v.multiplyScalar(6);

Calculate t
const t = (-v.y + Math.sqrt(v.y**2 - 2*p.y*g.y))/g.y;

Given our updated settings, we could now alter each arc geometry vertex to
represent it in three dimensions. This is something we do every frame, so I included
it in the loop that creates the animation.

const vertex = tempVec.set(0,0,0);

for (let i=1; i<=lineSegs; i++) {

Set vertex to current position

positionAtT(vertex,i*t/lineSegs,p,v,g);

Copy to the Array Buffer

vertex.toArray(lineGeoVer,i*3);

}

guideline.geometry.attributes.position.needsUpdate = true;

And that is how we create the arced vertex.

There are two ways to collect user input in WebXR. First, each WebXRInputSource
is associated with a gamepad object that performs similarly to the Gamepad API.
Since this system depends on polling, you need to check it every frame to determine
which keys are being pressed. Because different equipment has different button and
movement mappings, using it might be challenging.

46

The select and squeeze actions on the session are the best approach to do it. Such
events are triggered by whatever the VR system chooses and/or the corresponding
squeeze/grab button if one is provided.
In THREE.js, these events are available on the controller objects. You may listen for
them as follows:

const controller1 = renderer.xr.getController(0);

controller1.addEventListener('selectstart', onSelectStart);

controller1.addEventListener('selectend', onSelectEnd);

There are several methods for changing the user's location. We nest the camera and
controllers in a single cluster and move the said cluster along.
This implies that we control a variety of 3D spaces relevant to the user:

● Our setting: This is the interactive virtual environment.
● Camera:This group is for devices that should remain relative to the user, such

as interfaces and cameras.
● Use with caution because the user will not be able to gaze at or away from

them.
All elements relevant to the user, such like controllers or local interfaces, move also
with the camera group.
Three steps to teleportation:

● The user chooses a teleportation point.
● Determine the vector from the user's legs to the spot in question.
● That vector should be used to offset the cameraGroupPosition.

const feetPos = renderer.xr

.getCamera(camera)

.getWorldPosition(tempVec);

feetPos.y = 0;

const p = guidingController.getWorldPosition(tempVecP);

const v = guidingController.getWorldDirection(tempVecV);

v.multiplyScalar(6);

const t = (-v.y + Math.sqrt(v.y**2 - 2*p.y*g.y))/g.y;

const cursorPos = positionAtT(tempVec1,t,p,v,g);

// Offset

const offset = cursorPos.addScaledVector(feetPos ,-1);

Upon simplifying the method above. We made this locomotion alternative method
with a straight line, when we receive a select input from the user.

if (controller.userData.selectedPressed) {

47

controller.children[0].scale.z = 10;

tempMatrix.identity().extractRotation(controller.matrixWorld);

raycaster.ray.origin.setFromMatrixPosition(controller.matrixWorld);

raycaster.ray.direction.set(0, 0, -1).applyMatrix4(tempMatrix);

intersects = raycaster.intersectObjects(scene.children, false);

if (intersects.length > 0) {

controller.children[0].scale.z = intersects[0].distance;

}

} else {

controller.children[0].scale.z = 0;

}

function onSelectEnd() {

if(point!=null){

dolly.position.x=point.x;

dolly.position.y=point.y;

dolly.position.z=point.z;

}

point=null;

this.userData.selectedPressed = false;

}

48

4.2 Raycaster we made

On Press/ Head movement based navigation (Head Tilt Navigation)
The other way of moving in our character is by moving the dolly corresponding to our
head’s position and turning according to time.

Once we squeeze the trigger, Dolly will start to move slowly, taking us with it and will
mimic our head movement on the x-axis, so it will turn each time we move our head
on an angle.

if (controller.userData.squeezePressed) {

const speed = 1;

dummyCam.updateMatrixWorld();

const quaternion = dolly.quaternion.clone();

dummyCam.matrixWorld.decompose(

dummyCam.position,

dolly.quaternion,

dummyCam.scale

);

49

dolly.translateZ(-delta * speed);

dolly.position.y = 0;

dolly.quaternion.copy(quaternion);

}

50

BIBLIOGRAPHY

Α. FOREIGN

1. What is Computer Graphics?, Cornell University Program of Computer Graphics. Last

updated 04/15/98. Accessed November 17, 2009.

2. Blender Docs, Bump and Normal Maps

3. Blender Docs, Displacement Maps

4. Balder, Norman I. "3D Object Modeling Lecture Series" (PDF). University of North

Carolina at Chapel Hill. Archived (PDF) from the original on 2013-03-19.

5. "Fundamentals of Rendering - Reflectance Functions" (PDF). Ohio State University.

Archived (PDF) from the original on 2017-06-11.

6. Malhotra, Priya (July 2002). Issues involved in Real-Time Rendering of Virtual

Environments (Master's). Blacksburg, VA: Virginia Tech. Pp. 20–31. Retrieved 31 January

2007.

7. Haines, Eric (1 February 2007). "Real-Time Rendering Resources". Retrieved 12 Feb

2007.

8. Chang, Kang-tsung (2016). Introduction to Geographic Information Systems (9th ed.).

McGraw-Hill. p. 2. ISBN 978-1-259-92964-9.

9. Milgram, Paul & Kishino, Fumio. (1994). A Taxonomy of Mixed Reality Visual Displays.

IEICE Trans. Information Systems. vol. E77-D, no. 12. 1321-1329.

10. Tor Bernhardsen (2002).Geographic Information Systems: An Introduction, John Wiley &

Sons

11. Three.JS Fundaments. https://threejs.org/manual/#en/fundamentals

12. WebXR Device API Explained.

https://github.com/immersive-web/webxr/blob/master/explainer.md#whats-the-x-in-xr-mea

n

13. What causes motion sickness in VR and what can you do to avoid it?

https://www.livescience.com/what-causes-motion-sickness-in-vr

14. Using VR controllers and locomotion in THREE.js

https://ada.is/blog/2020/05/18/using-vr-controllers-and-locomotion-in-threejs/

51

http://www.graphics.cornell.edu/online/tutorial/
https://web.archive.org/web/20160827174956/https://www.blender.org/manual/render/blender_render/textures/influence/material/bump_and_normal.html
https://archive.blender.org/wiki/index.php/Manual/Displacement_Maps/
http://gamma.cs.unc.edu/courses/graphics-s09/LECTURES/3DModels_SurveyPaper.pdf
https://en.wikipedia.org/wiki/PDF
https://en.wikipedia.org/wiki/University_of_North_Carolina_at_Chapel_Hill
https://en.wikipedia.org/wiki/University_of_North_Carolina_at_Chapel_Hill
https://web.archive.org/web/20130319004839/http://gamma.cs.unc.edu:80/courses/graphics-s09/LECTURES/3DModels_SurveyPaper.pdf
http://web.cse.ohio-state.edu/~parent.1/classes/782/Lectures/05_Reflectance_Handout.pdf
https://en.wikipedia.org/wiki/PDF
https://en.wikipedia.org/wiki/Ohio_State_University
https://web.archive.org/web/20170611022136/http://web.cse.ohio-state.edu:80/~parent.1/classes/782/Lectures/05_Reflectance_Handout.pdf
https://web.archive.org/web/20170611022136/http://web.cse.ohio-state.edu:80/~parent.1/classes/782/Lectures/05_Reflectance_Handout.pdf
http://hdl.handle.net/10919/35382
http://hdl.handle.net/10919/35382
https://en.wikipedia.org/wiki/Eric_Haines
http://www.realtimerendering.com/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-259-92964-9
https://www.google.gr/search?hl=el&tbo=p&tbm=bks&q=inauthor:%22Tor+Bernhardsen%22
https://threejs.org/manual/#en/fundamentals
https://github.com/immersive-web/webxr/blob/master/explainer.md#whats-the-x-in-xr-mean
https://github.com/immersive-web/webxr/blob/master/explainer.md#whats-the-x-in-xr-mean
https://www.livescience.com/what-causes-motion-sickness-in-vr
https://ada.is/blog/2020/05/18/using-vr-controllers-and-locomotion-in-threejs/

Β. NATIVE

52

APPENDIX Α

ROCK MODEL https://polyhaven.com/a/river_small_rocks

53

APPENDIX Β

54

