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Περίληψη 
   Οι επιθέσεις στον κυβερνοχώρο έχουν επεκταθεί σημαντικά και έχουν αυξηθεί σε 

αποτελεσματικότητα τα τελευταία χρόνια. Ως αποτέλεσμα, τα τρωτά σημεία των 

στοχευμένων συστημάτων υπολογιστών και δικτύων μπορούν να αξιοποιηθούν εξ 

αποστάσεως. Πριν από την εκτέλεση μιας κυβερνοεπίθεσης, πραγματοποιείται ψηφιακή 

αναγνώριση του στόχου. Κατά τη διάρκεια αυτής της φάσης, εκτελούνται σαρώσεις του 

συστήματος, προκειμένου να βρεθούν πληροφορίες όπως το λειτουργικό σύστημα (OS) του 

στόχου, οι ανοικτές θύρες και οι υπηρεσίες. Οι σαρώσεις συστημάτων κατηγοριοποιούνται 

σε παθητικές και ενεργές . Η παρούσα πτυχιακή εργασία προτείνει δύο σύνολα δεδομένων 

σάρωσης λειτουργικού συστήματος σε δύο από τα πιο πρόσφατα πρότυπα ροής δικτύου της 

Cisco (NetFlow v9 και IPFIX), επιτρέποντας σε ένα εργαλείο παρακολούθησης δικτύου με 

μηχανική μάθηση να εντοπίζει άμεσα τη συγκεκριμένη εν εξελίξει σάρωση που υφίσταται 

ένα δίκτυο και αυτοματοποιώντας τη διαδικασία ανίχνευσης ενεργών σαρώσεων  

λειτουργικού συστήματος.  
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Abstract 
 Cyber-attacks have expanded significantly and progressed in effectiveness over the 

past few years. As a result, vulnerabilities of targeted computer and network systems can be 

exploited remotely. Before the initialization of a cyber-attack, a digital reconnaissance of the 

target is conducted. During this phase, fingerprinting scans are executed, in order to found 

information such as Operating System (OS) of the target, open ports and Services. The 

fingerprinting scans are categorized to passive and active fingerprinting scans. This thesis 

suggests two OS fingerprinting scan datasets in two of the most recent network flow 

standards from Cisco (NetFlow v9 and IPFIX), allowing a machine learning network 

monitoring tool to instantly identify the specific on-going scan that a network is undergoing 

and automating the active OS fingerprint scan detection process. 
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Chapter 1 - Introduction 
A cyber-attack [1] is the attempt to obtain unauthorized access to a computer, 

computing system, or computer network with the intention of harming them. The goal of a 

cyber-attack is to disable, disrupt, destroy, or take control of a computer system. In recent 

years, the volume of sensitive information transferred every day over the internet has 

significantly increased as a result of the rapid advancement in technology. This advancement 

is also leveraged by attackers too, as it offers the opportunity for remote attacks[2] to be 

conducted.   

In order for a cyber-attack to be conducted, attackers need first to orchestrate their 

way through before starting exploiting vulnerabilities. Firstly, a reconnaissance phase[3] 

takes place. With this procedure, an attacker can gather information about the targeted system 

or network. This information could be port status, Operating System (OS), and Services of 

the target. In order to get this information, a fingerprinting scan[4] needs to be executed. 

Fingerprinting scans are split into two (2) categories, namely: passive and active. With the 

passive fingerprinting, the captured data could be analyzed while being offline. The capturing 

process of this method is undetectable. However, the active fingerprinting is sending and 

receiving packets in real time meaning that the results are presented in real-time. However, 

this procedure is traceable because of some network-related indicators of intrusion, like slow 

network connections, or inbound traffic from unusual geographic locations. As a result, a 

cybersecurity analyst that thoroughly monitors the network may understand that a cyber-

attack is occurring. Still, this procedure is rather hard, even for experienced network analysts. 

To automate the process of active OS fingerprint scan detection, this thesis proposes 

an OS fingerprinting scan dataset in two of the most recent Cisco network flow standards 

(NetFlow v9[5] and IPFIX[6]), which enables a machine learning network monitoring tool to 

instantly identify the specific on-going scan that a network in undergoing. The datasets are 

comprised of bidirectional flows. As a result, a machine learning network monitoring 

software could successfully predict an active OS fingerprinting scan solely from the 

attacker’s inbound network traffic. 

 

This thesis is structured as demonstrated: 

• Chapter 1 showcases the Introduction, 
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• Chapter 2 represents the State of the Art, 

• Chapter 3 presents the dataset implementation 

• Chapter 4 showcases the evaluation process of the datasets, 

• Chapter 5 presents the conclusion and the future work. 

 

Chapter 2 - State of the Art 
In this section, a brief overview of the State-Of-The-Art will showcase the research 

studies that have been conducted in the Operating System (OS) fingerprinting field of study.   

A passive network flow-based framework for OS fingerprinting was proposed by 

Tomas Jirsik et al. [7]. Large network infrastructures can be inspected by the framework 

because of the nature of the flows and observation points that can be placed in the main 

network traffic hub and borders, meaning that all connected hosts can be monitored 

simultaneously.  

In [8], Rohit Tyagi et al. suggest a passive OS fingerprinting method using TCP 

packet information for unauthorized OS detection. Their method conducts a TCP header 

analysis with time-to-live (TTL), total length, window size, and option fields of the IP packet 

utilized. The algorithm implemented for the identification of the OS is a Euclidean distance 

estimation algorithm that specifies the TCP header fields and options. 

Additionally, Ahmet Aksou et al. [9] proposed a machine learning-based passive 

method of OS fingerprinting, utilizing a dataset composed of  TCP/IP protocol headers. 

Network data was collected with Wireshark from a local network connection, emulating an as 

realistic scenario as possible.  For the dataset testing, the included protocols TCP, IP, UDP, 

HTTP, DSN, ICMP, SSL, FTP and SSH were accurately classified. Several machine learning 

algorithms were used for the created dataset performance evaluation. WEKA, a machine 

learning evaluation tool, was utilized. Results showed that the protocol headers average 

classification performance accuracy was 50.94%. 

Following the passive OS fingerprinting method, Martin Lastovicka et al. [10] 

proposed a system architecture, for large network monitoring. Monitoring of the networks in 

fulfilled with the utilization of in the IPFIX network format. The collected IPFIX network 

data was stored in a database. The stored network traffic was parsed from the database to be 

processed for OS identification.   
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Continuing their research, Martin Lastovicka et al. [11] created three more passive OS 

fingerprinting methods based on HTTP User-agents parsing, which is contains information 

about the sender’s OS and browser. The network data type they utilized was IPFIX network 

flows. 

In another adaptation of passive OS fingerprinting, Martin Lastovicka et al. [12] 

introduced a methodology for OS fingerprinting based on identifying a particular 

combination of TCP/IP packet options. Data was collected from the institution’s network in 

the form of IPFIX network flows. After this procedure, three (3) specific TCP packet 

parameters were selected for the OS detection: IP Time-To-Live (TTL), Window Size, and 

the size of the first TCP SYN packet. The IPFIX dataset was evaluated with several machine 

learning algorithms. The average results of the machine learning dataset accuracy were 89%. 

In addition, Desta H. Hagos et al. [13] proposed a novel approach for boosting the 

classification performance of a passive OS fingerprinting method utilizing machine and deep 

learning techniques. The data utilized originated from a commercial database. A tool was 

created for TCP fingerprinting scan prediction, utilizing passive traffic trails. For evaluation 

purposes of their approach, they synthetically created network traffic and assessed the 

prediction performance. Results of evaluation performance revealed an improvement of up to 

94% across all scenarios of validation. 

Some drawbacks can be identified from the aforementioned studies. First of all, 

regarding the type of data they utilized, most of the proposals utilize network traffic data that 

needs to be actively processed in order to be used. Moreover, even though the network data 

gathering was executed, those data were not utilized as a defensive mean to precisely predict 

if an active OS fingerprinting scan is happening in real time. Moreover, most of the studies 

that were machine learning-evaluated their datasets, achieved an average of 77% prediction 

accuracy, which is not considered high accuracy value. Additionally, in order to utilize the 

proposed set of data or methods, you need to assume that the attacker has already access to 

the network of the target devices.  In order to mitigate those drawbacks, this thesis proposed 

two (2) datasets that: 

1. are created by capturing the network traffic of an active fingerprinting OS scan 

2. include bidirectional traffic captured during the scans 

3. enable machine learning algorithms to be trained with and precise predict an 

imminent active OS fingerprinting scan  
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4. are in the most recent Cisco standards, namely: NetFlow v9 and IPFIX 

 

Chapter 3 - Technology Enablers 
 

Virtual Box 

Oracle VM Virtual Box [14] is a cross-platform virtualization application that works 

with Intel and AMD-based computers. Furthermore, it improves the capability of your current 

computer so that it may run many OSs within multiple virtual machines at the same time. It 

was utilized in this thesis to host and virtualize every system that was part of the network 

topology, which were used in order to capture network traffic. Moreover, the systems’ 

network was isolated from the rest of the network, even without having access to the internet, 

so that the traffic generated from the various Nmap scans would not be interrupted by scan-

unrelated data. 

Kali Linux 

Kali Linux [15] is a Linux distribution that is free and open-source, and it is intended 

for advanced penetration testing a security audit. It accomplishes this by offering common 

tools, configurations, and automations that allow the user to focus on the task at hand rather 

than the surrounding activities. Kali Linux comes with numerous tools for performing a wide 

range of information security tasks, such as penetration testing, vulnerability management, 

security research, and red team testing. The specific operating system was used for the traffic 

generation and data capture, which was used for the creation of the datasets. 

 

Ubuntu 20.04 

Ubuntu [16] is a free and open-source Debian Linux distribution by Canonical, a 

popular and user-friendly operating system. In this thesis, the latest updated version of 

Ubuntu (20.04) was used as one of the targeted operating systems by various fingerprinting 

scans. The OS fingerprinting scans conducted in diverse security levels and services of 

Ubuntu. 
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Windows 10 

Windows 10[17], is the most popular and user-friendly operating system, distributed 

by Microsoft. In this thesis, Windows 10 was used as another targeted operating system by 

various fingerprinting scans. The scans were carried out various security statuses and services 

of Windows. 

Wireshark 

Wireshark[18] is a, free and open-source network analyzer and packet capture tool. 

This tool was used with Kali Linux, capturing the network traffic during the OS 

fingerprinting scans. Wireshark has a user interface that is compatible with Kali Linux, so it 

was not necessary to use Wireshark's command-line version, tcpdump. 

nProbe 

NProbe[19] is a standalone command-line software application used for the 

monitoring, collection, and conversion of network data to network flows. NetFlow is a 

network protocol system that is implemented to Cisco routers to gather IP network traffic as 

it enters or exits an interface. The NetFlow protocol is used to analyze network traffic, to 

discover its origin, destination, volume and network pathways. In this thesis, the Wireshark 

captured data was analyzed by nProbe and exported flows to NetFlow v9 and IPFIX. 

However, the nProbe exported data needed to be analyzed and pre-processed.  

 

Python Programming Language 

The Python language has a wide variety of libraries, making it easier for data analysis. 

In this thesis, we used Python extended with the Pandas library[20]. The library focuses 

specifically on data analysis. In our case, it was used for dataset creation, analysis and label 

classification using the data provided by nProbe. 

 

Weka 

 Weka[21] is a free and open-source tool that is used for dataset assessment. Weka was 

used for the datasets’ features importance assessment and dataset evaluation with machine 

learning algorithms. 

https://en.wikipedia.org/wiki/Free_and_open-source_software
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Chapter 4 - Implementation 
In this section, the creation of the dataset is showcased. The network topology, 

software used, and dataset pre-processing procedure are also presented so that other 

researchers can replicate the process. 

Network Topology 
 Ιn this thesis, three (3) Virtual Machines (VMs) were created with: Kali Linux, 

Windows 10, and Ubuntu 20.04 . The attacker VM had Kali Linux 2022.1 because of the 

already installed active fingerprinting tools that this system provides. The network traffic 

produced by the fingerprinting attacks was captured from the attackers’ system. The VMs 

that were attacked had Windows 10 Pro 21H2 and Ubuntu 20.04. These systems were 

deployed one at a time, because each OS produces different network traffic footprint when 

responding to such attacks. The targeted systems will be referred to as “benign”. The local 

network of the attacker and benign systems were isolated. The reason for the isolation of the 

network was to capture the network traffic of the reconnaissance attack packets without being 

affected by irrelevant network flow. 

Figure 1. Network Topology 

 

 

Tools and method for data collection 
Kali Linux provides an open-source tool called Nmap, which offers a variety of 

functions, such as network and operating system scans. In this study, Nmap was utilized for 

its capability of OS scans, to gather active OS fingerprinting network traffic.  
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Nmap scans are separated into four (4) types of scans. These types of scans are: OS 

scan, TCP SYN - Stealth scan, ACK scan, and Aggressive scan. The three (3) last scan types 

were conducted in combination with the OS scan. When the OS scan is executed, Nmap 

sends TCP and UDP packets to the victim and examines every response thoroughly. Nmap 

compares the responses with its OS database of known operating systems and provides a 

possible OS estimation. The TCP SYN-Stealth scan can be conducted swiftly, probing 

thousands of ports free from obtrusive firewalls because it never completes the TCP 

connection, making its operation undetectable, and provides a consistent distinction between 

open, closed, and filtered states. The ACK scan is used for organizing firewall rules sets, 

identifying which ports are filtered and whether or not they are stateful. When the Aggressive 

scan is executed, it conducts simultaneous port scanning, OS fingerprinting scanning, script 

scanning, and traceroute. Script scanning is a Nmap service mechanism which find 

vulnerabilities and malware, and gather data from databases and other network services. 

Additionally, traceroute service is an enhanced traceroute implementation of Nmap.  

There are two (2) categories of firewall operations, stateful and stateless. Stateful 

firewalls are monitoring all angles of network traffic, focusing on the communication 

channels, characteristics, and all elements of the traffic. Stateless firewalls are utilizing the 

source, destination, and other information in a data packet to evaluate if the data represents a 

threat. The stateless firewall protocol will analyze the threat and then constrain or block the 

data containing it if a data packet deviates from the firewall's accepted boundaries. These 

firewalls have the ability to incorporate encryption or tunnels, recognize TCP connection 

phases, packet state, and other crucial status updates. 

In this thesis, the purpose of the reconnaissance phase was to collect the network 

traffic produced by an active fingerprinting OS scan. To be as realistic as possible, the benign 

systems were up-to-date before the reconnaissance attacks were conducted. For the OS 

fingerprinting attacks, the aforementioned four (4) types of scans were utilized. Also, a 

variety of firewall and service states were applied during the fingerprinting scans. These 

states were separated into four (4) different categories, namely: firewall enabled, firewall 

disabled, SSH[22] port opened, and SSH port closed. These categories, and every possible 

combination of them, were chosen to record their different responses produced by the scans. 

One convenient way to check the response differences was the status of the firewall. When a 

firewall is active, it blocks malicious network traffic, in our case, the OS fingerprinting 

packets. Another, again, convenient way to check the response difference was the Service 
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status. That’s why SSH was chosen. Secure Shell is a cryptographic network protocol that 

allows the secure operation of network services over a non-secure network. Besides the fact, 

that it is easy to use, it was also chosen for its popularity. These four (4) categories were 

tested in all possible combinations during the fingerprinting. 

 

Table 1. Type of scans 

Type of Scan Dataset Labels 

Operating System scan 

 

Ubuntu_O 

Windows10_O 

TCP SYN and OS scan 

 

 

Ubuntu_sS_O 

Windows10_sS_O 

TCP ACK and OS scan 

 

Ubuntu_sA_O 

Windows10_sA_O 

Aggressive scan 

 

Ubuntu_Agg_O 

Windows10_Agg_O 

 

Data collection 
To compose an as realistic and complete dataset as possible, the network traffic 

capture process occurred at the side of the attacker. Consequently, both the active 

fingerprinting OS scan, as well as the target’s responses were captured, resulting a 

bidirectional network traffic capture. Wireshark was utilized for the network traffic capture 

during the scans. 
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Network Data 

 The captured network data was converted to NetFlow v9 and IPFIX network flows 

with nProbe. The NetFlow v9 dataset contained 194 network-related features, whereas the 

IPFIX dataset contained 182. Afterwards, each record in this dataset was given a label as an 

extra feature. Each fingerprinting scan that was conducted received a unique label. Both 

datasets had 8 labels, according to the OS and the type of active OS fingerprinting scan. 

Table 1 displays these labels and the fingerprinting scans that are linked to. The steps that 

were performed to construct the datasets final versions are detailed below and shown as a 

flow diagram in Figure 2.   

Figure 2. Pre-process Procedure 

 

 

 After the datasets’ creation, the feature importance was calculated- which is a score. 

Assigned to each of the input features and signifies their importance[23].  A higher score 

indicates that the particular characteristic will have a larger impact when used on a machine 

learning algorithm. The Info Gain Attribute evaluator [24], which is one of the most well-

known and effective methods for attribute evaluation, was used to evaluate the datasets 

features. According to the evaluation's conclusion, 26 out of 194 features from the NetFlow 

v9 dataset and 26 out of 182 features from the IPFIX dataset had negative influence on the 

datasets and were therefore excluded. Table displays the features that were removed.  

Table 2. Removed Netflow and IPFIX features 

Removed Netflow and IPFIX Features 

IN_SRC_MAC BITTORRENT_HASH 

OUT_DST_MAC FLOW_SERVER_NAME 

IN_DST_MAC PLUGIN_NAME 

OUT_SRC_MAC UNTUNNELED_IPV6_SRC_ADDR 

INTERFACE_NAME UNTUNNELED_IPV6_DST_ADDR 
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IPV6_SRC_ADDR IN_SRC_OSI_SAP 

IPV6_DST_ADDR OUT_DST_OSI_SAP 

IPV6_NEXT_HOP SRC_AS_MAP 

APPLICATION_NAME DST_AS_MAP 

FLOW_END_REASON DST_TO_SRC_SECOND_BYTES 

UNTUNNELED_IPV4_SRC_ADDR TLS_CIPHER 

L7_INFO TLS_UNSAFE_CIPHER 

TLS_SERVER_NAME PAYLOAD_HASH 

 

 Furthermore, by removing the features that were negatively impacting the dataset, the 

features that only produced the value zero (0) were removed, since they do not provide any 

kind of information. The number of the features that remained were 58 network-related 

features for the IPFIX dataset and 62 network-related features for the NetFlowV9 dataset. 

Both datasets feature importance scores are presented in Table 3 and Table 4, and their 

removed features are presented in Table 2 and Table 5. 

Table 3. IPFIX Feature Importance score 

Feature Feature Importance Score 

FLOW_START_MILLISECONDS 4.9206534      

LAST_SWITCHED 4.9206534      

FLOW_END_SEC 4.9206534      

FLOW_START_SEC 4.9206534      

FLOW_END_MILLISECONDS 4.9206534      

FLOW_START_MICROSECONDS 4.9206534      

FLOW_END_MICROSECONDS 4.9206534      

FIRST_SWITCHED 4.9206534      

ENGINE_ID 4.878642       

L4_SRC_PORT 3.5996226       

L4_DST_PORT 1.5599703      

L4_SRV_PORT 1.3341943      

DST_TO_SRC_AVG_THROUGHPUT 1.2151887     

SERVER_TCP_FLAGS 1.1739528     

OUT_BYTES 1.1379104      

MIN_IP_PKT_LEN 1.1342636      

TCP_FLAGS 1.0628229       

CLIENT_TCP_FLAGS 1.0619841     

TCP_WIN_MIN_OUT 0.8802321 

TCP_WIN_MAX_OUT 0.8801647 

NUM_PKTS_UP_TO_128_BYTES 0.8628888 

OUT_PKTS 0.8626444 

TCP_WIN_MSS_OUT 0.7783296 

SRC_TO_DST_AVG_THROUGHPUT 0.6329838 

LONGEST_FLOW_PKT 0.5033947 

MAX_IP_PKT_LEN 0.5033947 

IN_BYTES 0.5032326 
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OCTET_TOTAL 0.5032326 

SRC_TO_DST_SECOND_BYTES 0.5032326 

TCP_WIN_MSS_IN 0.5023772 

SHORTEST_FLOW_PKT 0.5009578 

NUM_PKTS_TTL_96_128 0.3068354 

NUM_PKTS_TTL_32_64 0.3064899 

FLOW_ID 0.2579624 

TOTAL_FLOWS_EXP 0.2579624 

TCP_WIN_MAX_IN 0.2479909 

TCP_WIN_MIN_IN 0.2479909 

TLS_VERSION 0.1897217 

FLOW_DURATION_MICROSECONDS 0.1804083 

FLOW_DURATION_MILLISECONDS 0.1804083 

L7_PROTO_NAME 0.0009097 

L7_PROTO 0.0008841 

application_id 0.0008841 

L7_PROTO_CATEGORY 0.0007187 

TCP_WIN_SCALE_OUT 0.0004868 

L7_CONFIDENCE 0.0003919 

TCP_WIN_SCALE_IN 0.0003452 

DST_TO_SRC_MIN_THROUGHPUT 0.0002951 

DST_TO_SRC_MAX_THROUGHPUT 0.0002951 

DURATION_OUT 0.0002018 

NUM_PKTS_TTL_EQ_1 0.0000765 

PROTOCOL_MAP 0.0000717 

PROTOCOL 0.0000717 

L4_DST_PORT_MAP 0.0000647 

L4_SRV_PORT_MAP 0.0000647 

L4_SRC_PORT_MAP 0.0000647 

SEQ_PLEN_HASH 0.0000555 

NUM_PKTS_1024_TO_1514_BYTES 0.0000238 

 

Table 4. Netflow V9 Feature Importance Score 

Features Feature Importance Score 

FLOW_END_MILLISECONDS 4.9230382 

FLOW_END_MICROSECONDS 4.9230382 

FLOW_START_MICROSECONDS 4.9230382 

FLOW_START_MILLISECONDS 4.9230382 

FLOW_END_SEC 4.9230382 

FIRST_SWITCHED 4.9230382 

FLOW_START_SEC 4.9230382 

LAST_SWITCHED 4.9230382 

L4_SRC_PORT 4.9225145 

ENGINE_ID 4.7224902 

TCP_FLAGS 1.6826871 

L4_SRV_PORT 1.3518739 

SERVER_TCP_FLAGS 1.1446056 
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IPV4_DST_ADDR 0.9999305 

SHORTEST_FLOW_PKT 0.9599949 

NUM_PKTS_UP_TO_128_BYTES 0.8771052 

DST_TO_SRC_AVG_THROUGHPUT 0.87678 

OUT_BYTES 0.8767699 

OUT_PKTS 0.8746178 

MIN_IP_PKT_LEN 0.8742214 

SRC_TO_DST_AVG_THROUGHPUT 0.8085139 

OCTET_TOTAL 0.8084765 

SRC_TO_DST_SECOND_BYTES 0.8084765 

IN_BYTES 0.8084765 

CLIENT_TCP_FLAGS 0.8082988 

MAX_IP_PKT_LEN 0.8081082 

LONGEST_FLOW_PKT 0.8081082 

TCP_WIN_MSS_IN 0.806602 

TOTAL_FLOWS_EXP 0.2491907 

FLOW_ID 0.2491907 

TCP_WIN_MIN_OUT 0.000807 

TCP_WIN_MAX_OUT 0.000807 

NUM_PKTS_TTL_32_64 0.000701 

IN_PKTS 0.0006011 

PACKET_TOTAL 0.0006011 

TCP_WIN_MSS_OUT 0.0005516 

TCP_WIN_SCALE_OUT 0.0005156 

MAX_TTL 0.0004944 

TCP_WIN_SCALE_IN 0.000493 

MIN_TTL 0.0004775 

TCP_WIN_MIN_IN 0.0004773 

TCP_WIN_MAX_IN 0.0004773 

L7_PROTO_NAME 0.0003538 

L4_DST_PORT 0.0002926 

SEQ_PLEN 0.0002249 

L7_CONFIDENCE 0.000162 

SEQ_TDIFF 0.0001462 

NUM_PKTS_128_TO_256_BYTES 0.0001167 

TLS_VERSION 0.0000795 

SEQ_TDIFF_HASH 0.0000745 

NUM_PKTS_TTL_EQ_1 0.0000692 

SEQ_PLEN_HASH 0.000057 

IPV4_SRC_ADDR 0.0000521 

IP_PROTOCOL_VERSION 0.0000379 

FLOW_DURATION_MILLISECONDS 0.0000284 

FLOW_DURATION_MICROSECONDS 0.0000284 

SRC_TO_DST_IAT_MIN 0.0000231 

NUM_PKTS_1024_TO_1514_BYTES 0.0000231 

DURATION_IN 0.0000221 
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Table 5. IPFIX and NetFlow v9 removed irrelevant affect features 

IPFIX NetFlow v9 

DOT1Q_DST_VLAN BIFLOW_DIRECTION 

MPLS_LABEL_8 POST_NAT_SRC_IPV4_ADDR 

DOT1Q_SRC_VLAN MPLS_LABEL_2 

EXPORTER_IPV4_ADDRESS MPLS_LABEL_1 

FORWARDING_STATUS MPLS_LABEL_7 

EXPORTER_IPV6_ADDRESS DIRECTION 

IP_PROTOCOL_VERSION MPLS_LABEL_8 

MPLS_LABEL_6 EXPORTER_IPV6_ADDRESS 

MPLS_LABEL_9 EXPORTER_IPV4_ADDRESS 

MPLS_LABEL_5 MPLS_LABEL_5 

DIRECTION MPLS_LABEL_6 

MPLS_LABEL_10 MPLS_LABEL_9 

MPLS_LABEL_4 MPLS_LABEL_4 

MPLS_LABEL_3 MPLS_LABEL_3 

MPLS_LABEL_2 SAMPLED_PACKET_ID 

MPLS_LABEL_1 BIFLOW_DIRECTION 

MPLS_LABEL_7 PACKET_SECTION_OFFSET 

SAMPLING_INTERVAL APPLICATION_ID 

PACKET_TOTAL MPLS_LABEL_10 

SRC_AS SAMPLED_PACKET_SIZE 

IPV4_NEXT_HOP FLOW_ACTIVE_TIMEOUT 

DST_AS DOT1Q_DST_VLAN 

IPV4_DST_MASK BGP_NEXT_ADJACENT_ASN 

BGP_PREV_ADJACENT_ASN IPV4_DST_MASK 

OUTPUT_SNMP OUTPUT_SNMP 

IPV4_DST_ADDR IPV4_NEXT_HOP 

DST_VLAN SRC_AS 

SRC_TOS DST_AS 

IN_PKTS L4_SRV_PORT_MAP 

IPV4_SRC_ADDR L4_DST_PORT_MAP 

INPUT_SNMP INPUT_SNMP 

IPV4_SRC_MASK PROTOCOL_MAP 

BGP_NEXT_ADJACENT_ASN PROTOCOL 

IPV4_BGP_NEXT_HOP SRC_TOS 

IPV6_SRC_MASK IPV4_SRC_MASK 

MIN_TTL L4_SRC_PORT_MAP 

TOTAL_PKTS_EXP BGP_PREV_ADJACENT_ASN 

MAX_TTL IPV4_BGP_NEXT_HOP 

IPV6_DST_MASK DOT1Q_SRC_VLAN 

SRC_VLAN IPV6_SRC_MASK 

TOTAL_BYTES_EXP TOTAL_PKTS_EXP 

ENGINE_TYPE DST_TOS 

FLOW_INACTIVE_TIMEOUT SRC_VLAN 

FLOW_ACTIVE_TIMEOUT DST_VLAN 

ICMP_TYPE FORWARDING_STATUS 

POST_NAT_SRC_IPV4_ADDR TOTAL_BYTES_EXP 
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SAMPLING_ALGORITHM ENGINE_TYPE 

biflow_direction FLOW_INACTIVE_TIMEOUT 

DST_HOST_LABEL ICMP_TYPE 

POST_NAT_DST_IPV4_ADDR IPV6_DST_MASK 

DOWNSTREAM_TUNNEL_ID SAMPLING_INTERVAL 

UNTUNNELED_IPV4_DST_ADDR POST_NAPT_SRC_TRANSPORT_PORT 

UNTUNNELED_L4_DST_PORT SAMPLING_ALGORITHM 

DOWNSTREAM_SESSION_ID POST_NAT_DST_IPV4_ADDR 

NUM_PKTS_TTL_128_160 DST_TO_SRC_IAT_STDDEV 

NUM_PKTS_TTL_2_5 POST_NAPT_DST_TRANSPORT_PORT 

NUM_PKTS_TTL_5_32 NUM_PKTS_TTL_2_5 

UNTUNNELED_L4_SRC_PORT DOWNSTREAM_SESSION_ID 

UNTUNNELED_PROTOCOL NAT_ORIGINATING_ADDRESS_REALM 

OOORDER_OUT_PKTS NUM_PKTS_TTL_5_32 

OOORDER_IN_PKTS NUM_PKTS_TTL_64_96 

UPSTREAM_SESSION_ID NUM_PKTS_TTL_96_128 

RETRANSMITTED_IN_BYTES NUM_PKTS_TTL_128_160 

RETRANSMITTED_IN_PKTS NUM_PKTS_TTL_160_192 

RETRANSMITTED_OUT_BYTES DOWNSTREAM_TUNNEL_ID 

RETRANSMITTED_OUT_PKTS L7_PROTO_CATEGORY 

NUM_PKTS_TTL_64_96 L7_PROTO 

NUM_PKTS_TTL_160_192 OOORDER_OUT_PKTS 

POST_NAPT_SRC_TRANSPORT_PORT RETRANSMITTED_OUT_PKTS 

L7_PROTO_RISK_NAME OOORDER_IN_PKTS 

ENTROPY_SERVER_BYTES UNTUNNELED_PROTOCOL 

L7_PROTO_RISK UNTUNNELED_L4_DST_PORT 

L7_RISK_SCORE UNTUNNELED_L4_SRC_PORT 

NUM_PKTS_TTL_192_224 UNTUNNELED_IPV4_DST_ADDR 

L7_ERROR_CODE NUM_PKTS_TTL_192_224 

FLOW_VERDICT NUM_PKTS_TTL_224_255 

ENTROPY_CLIENT_BYTES DURATION_OUT 

HASSH_SERVER SRC_TO_DST_IAT_AVG 

HASSH_CLIENT DST_HOST_LABEL 

PKT_VECTOR SRC_TO_DST_IAT_MAX 

NUM_PKTS_TTL_224_255 SRC_TO_DST_IAT_STDDEV 

DURATION_IN FLOW_VERDICT 

SEQ_PLEN DST_TO_SRC_IAT_MIN 

SEQ_TDIFF DST_TO_SRC_IAT_MAX 

SEQ_TDIFF_HASH SRC_HOST_LABEL 

UPSTREAM_TUNNEL_ID L7_ERROR_CODE 

FLOW_PROTO_PORT PKT_VECTOR 

CUMULATIVE_ICMP_TYPE ENTROPY_CLIENT_BYTES 

SRC_HOST_LABEL HASSH_CLIENT 

IPFIX_SAMPLING_ALGORITHM HASSH_SERVER 

SAMPLING_SIZE ENTROPY_SERVER_BYTES 

FRAME_LENGTH L7_RISK_SCORE 

NUM_PKTS_OVER_1514_BYTES L7_PROTO_RISK 

PACKETS_OBSERVED L7_PROTO_RISK_NAME 
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PACKETS_SELECTED RETRANSMITTED_OUT_BYTES 

SELECTOR_ID RETRANSMITTED_IN_PKTS 

OBSERVATION_POINT_ID RETRANSMITTED_IN_BYTES 

OBSERVATION_POINT_TYPE PACKETS_SELECTED 

ICMP_IPV4_CODE FRAME_LENGTH 

POST_NAPT_DST_TRANSPORT_PORT DST_TO_SRC_IAT_AVG 

NAT_ORIGINATING_ADDRESS_REALM INGRESS_VRFID 

NAT_EVENT SAMPLING_SIZE 

FIREWALL_EVENT EGRESS_VRFID 

ICMP_IPV4_TYPE SELECTOR_NAME 

INGRESS_VRFID SAMPLING_POPULATION 

EGRESS_VRFID IPFIX_SAMPLING_ALGORITHM 

SELECTOR_NAME PORT_RANGE_END 

SRC_TO_DST_MAX_THROUGHPUT ICMP_IPV4_TYPE 

SRC_TO_DST_MAX_EST_THROUGHPU

T 

NAT_EVENT 

DST_TO_SRC_MAX_EST_THROUGHPU

T 

FIREWALL_EVENT 

NUM_PKTS_128_TO_256_BYTES ICMP_IPV4_CODE 

NUM_PKTS_256_TO_512_BYTES SELECTOR_ID 

NUM_PKTS_512_TO_1024_BYTES OBSERVATION_POINT_TYPE 

SRC_TO_DST_MIN_THROUGHPUT OBSERVATION_POINT_ID 

NPROBE_IPV4_ADDRESS PORT_RANGE_START 

PORT_RANGE_START SRC_FRAGMENTS 

APPL_LATENCY_MS UPSTREAM_SESSION_ID 

PORT_RANGE_END NUM_PKTS_OVER_1514_BYTES 

SRC_FRAGMENTS NUM_PKTS_256_TO_512_BYTES 

DST_FRAGMENTS NUM_PKTS_512_TO_1024_BYTES 

CLIENT_NW_LATENCY_MS CUMULATIVE_ICMP_TYPE 

SERVER_NW_LATENCY_MS SRC_TO_DST_MAX_EST_THROUGHPU

T 

SAMPLING_POPULATION FLOW_PROTO_PORT 

 UPSTREAM_TUNNEL_ID 

 DST_TO_SRC_MAX_EST_THROUGHPU

T 

 DST_TO_SRC_MIN_THROUGHPUT 

 DST_FRAGMENTS 

 APPL_LATENCY_MS 

 CLIENT_NW_LATENCY_MS 

 SERVER_NW_LATENCY_MS 

 NPROBE_IPV4_ADDRESS 

 DST_TO_SRC_MAX_THROUGHPUT 

 SRC_TO_DST_MAX_THROUGHPUT 

 SRC_TO_DST_MIN_THROUGHPUT 

 PACKETS_OBSERVED 
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Chapter 5 - Evaluation 

 

Aim of the Experiment 
According to the literature, evaluating datasets with machine learning algorithms is 

the most common and realistic way of evaluation [25]. The objective of this evaluation is to 

show that both datasets, when used as a training dataset for machine learning algorithms, 

provide high accuracy results. Figure 3 presents how the evaluation process progressed. The 

already pre-processed datasets were used in this evaluation.  

Figure 3. Evaluation 

 

Method 
The initial stage of the datasets’ evaluation was to train machine learning algorithms 

with both datasets. The machine learning algorithms that were chosen were Naïve Bayes 

[26], Adaptive Boosting (AdaBoost) with Naïve Bayes classifier [27], and Cost Sensitive 

with Naïve Bayes classifier [28]. Weka’s machine learning algorithm implementations were 

utilized. 

 Due to datasets’ large size, the machine learning algorithms need to be configured 

accordingly. For this reason, both datasets were trained with the percentage split option 

enabled. Every time a dataset is analyzed, the percentage split option randomly divides the 

dataset into training and testing segments, estimating the performance rapidly. The IPFIX 

dataset was trained with an 85% percentage split and the NetFlow v9 dataset with 25%. The 

results can be showcased in the Results section below. 

 

 



Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης 

 

Σελίδα. 25 

 

Variables 
 

Dependent Variables 
The variables that include an evaluation's results are known as dependent variables. 

The most common machine learning metrics were utilized in this study to assess each 

dataset performance. The performance of machine learning models can be evaluated based on 

interpretable validation and training accuracy values. They provide the prediction accuracy of 

the models at the time of training. On the other hand, the total of the errors that happen 

throughout the training stage represents the validation and training loss values. Better 

performance is shown by lower loss numbers and higher accuracy values [29]. 

The following four machine learning metrics were used in order to compare and 

evaluate how well the trained machine learning models performed following the training: 

• Accuracy: is the machine learning evaluation percentage of correctly predicted 

outcomes 

• Precision: presents the percentage of the correctly classification of datasets 

• Recall: presents the percentage of the true positives found 

• F-measure: presents the percentage of models’ accuracy on a dataset 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positive + False Positive
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positive + False Negative
 

 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

Precision + Recall
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

True Positive + True Negative + False Positive + False Negative
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Independent Variables 

 The variables that are continuously changing to track changes in the dependent 

variables are known as independent variables. The datasets and the machine learning models 

are the independent variables in this experiment because adjustments to at least one of them 

resulted in different values for the training accuracy and loss, as well as the validation 

accuracy and loss values. The dataset that is given to the machine learning models after their 

training in to evaluate their performance is also an independent variable because its features 

were altered to enable each model to use it, leading to diverse outcomes for the dependent 

variables accuracy, precision, recall, and f-measure score. 

 

Fixed Variables 

Fixed variables are those that remain the same over the course of an experiment. The 

network architecture, attacker and benign systems, fingerprinting scans, and machine learning 

techniques are all kept the same during the evaluation phase. 

 

Prediction  

First, prior to evaluating the datasets with machine learning algorithms, the results of 

the OS scans of benign systems were obtained using Nmap, so there is a tough estimation of 

expected results. Nmap has an OS database, where it compares the target’s OS fingerprint 

with the database's fingerprint. However, this procedure is not always successful and is not 

working properly because of the first-match mechanism, where the OS detection tool chooses 

the first OS fingerprint that matches from its OS database and return faulty guesses. For 

example, if two (2) fingerprints match with the target fingerprint, it will choose the one that is 

first in the OS database stack. Secondly, for the machine learning part, high accuracy on 

Windows labels is expected. The reason is that Windows responded with more packets during 

the scans and needed more time for a scan to complete than the Linux OS.  

Results 
 

In Table 6 Error! Reference source not found.and Table 7  the average results of 

every machine learning algorithm is presented, for both datasets. 
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Table 6. IPFIX Dataset Average Scores 

IPFIX Dataset Average 

Scores 

Accuracy Precision Recall F-measure 

Naïve Bayes 0.849 0.889 0.849 0.837 

AdaBoost 0.915 0.915 0.915 0.912 

Cost Sensitive 0.849 0.889 0.849 0.837 

 

Table 7. NetFlow v9 Dataset Average Scores 

NetFlow v9 Dataset Average Scores Accuracy Precision Recall F-measure 

Naïve Bayes 0.958 0.968 0.958 0.957 

AdaBoost 0.997 0.998 0.998 0.998 

Cost Sensitive 0.958 0.968 0.958 0.957 

 

In Table 8 and Table 9 are presented the details of the Naïve Bayes accuracy and 

confusion matrix results of the IPFIX dataset.  

 

Table 8. Naïve Bayes IPFIX dataset metrics 

Labels Precision Recall F-measure 

Ubuntu_Agg_O 0.599       0.999     0.749       

Ubuntu_O 0.794       0.976     0.876       

Ubuntu_sA_O 0.982       0.999     0.991       

Ubuntu_sS_O 0.942       0.826     0.880       

Windows10_Agg_O 0.991       0.314     0.476       

Windows10_O 0.968       0.742     0.840       

Windows10_sA_O 1.000       0.999     1.000       

Windows10_sS_O 0.834       0.929     0.879       

Average 0.889       0.849     0.837       

 

Table 9.Naïve Bayes IPFIX dataset confusion matrix 

a b c d e f g h Classified 

58903 0 0 0 75 0 0 0 a= ubuntu_Agg_O 

1 53765 0 0 3 1387 0 0 b = Ubuntu_O 

3 0 58991 0 12 0 26 0 c = Ubuntu_sA_O 

1 0 0 48763 26 0 0 10266 d = Ubuntu_sS_O 

39370 0 0 0 18221 1 0 513 e = Windows10_Agg_O 

0 14856 0 1 2 42635 0 0 f = Windows10_O 

0 0 1 0 21 0 59191 11 g = Windows10_sA_O 

2 0 1050 3020 34 0 0 54025 h = Windows10_sS_O 



Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης 

 

Σελίδα. 28 

 

 

 

In Table 10 and Table 11 are presented the details of the Ada Boost accuracy and 

confusion matrix results of the IPFIX dataset.  

Table 10. Ada Boost IPFIX dataset metrics 

Labels Precision Recall F-measure 

Ubuntu_Agg_O 0.815 0.581 0.678 

Ubuntu_O 0.993 0.999 0.996 

Ubuntu_sA_O 0.947 0.999 0.972 

Ubuntu_sS_O 0.999 0.999 0.999 

Windows10_Agg_O 0.785 0.813 0.799 

Windows10_O 0.999 0.993 0.996 

Windows10_sA_O 0.790 0.957 0.866 

Windows10_sS_O 0.995 0.979 0.987 

Average 0.915 0.915 0.912 

 

Table 11. Ada Boost IPFIX confusion matrix 

a b c d e f g h Classified 

34166 0 745 18 12901 5 10951 32 a= ubuntu_Agg_O 

0 58833 0 1 0 28 1 0 b = Ubuntu_O 

0 0 58822 0 0 0 57 0 c = Ubuntu_sA_O 

1 0 6 58979 0 31 5 21 d = Ubuntu_sS_O 

7765 0 1 13 47065 10 2823 195 e = Windows10_Agg_O 

1 384 0 4 0 57498 1 3 f = Windows10_O 

4 1 2527 0 0 0 56561 14 g = Windows10_sA_O 

0 0 2 34 0 5 1161 57101 h = Windows10_sS_O 

 

In Table 12 and Table 13 are presented the details of the Cost Sensitive accuracy and 

confusion matrix results of the IPFIX dataset. 

Table 12. Cost Sensitive IPFIX dataset Metrics 

Labels Precision Recall F-measure 

Ubuntu_Agg_O 0.599 0.999 0.749 

Ubuntu_O 0.794 0.976 0.876 

Ubuntu_sA_O 0.982 0.999 0.991 

Ubuntu_sS_O 0.942 0.826 0.880 

Windows10_Agg_O 0.991 0.314 0.476 

Windows10_O 0.968 0.742 0.840 

Windows10_sA_O 1.000 0.999 1.000 

Windows10_sS_O 0.834 0.929 0.879 

Average 0.889 0.849 0.837 
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Table 13. Cost Sensitive IPFIX dataset confusion matrix  

a b c d e f g h Classified 

58903 0 0 0 75 0 0 0 a= ubuntu_Agg_O 

1 57365 0 0 3 1387 0 0 b = Ubuntu_O 

3 0 58991 0 12 0 26 0 c = Ubuntu_sA_O 

1 0 0 48763 26 0 0 10266 d = Ubuntu_sS_O 

39370 0 0 0 18221 1 0 513 e = Windows10_Agg_O 

0 14856 0 1 2 42635 0 0 f = Windows10_O 

0 0 1 0 21 0 59191 11 g = Windows10_sA_O 

2 0 1050 3020 34 0 0 54025 h = Windows10_sS_O 

 

 

In Table 14 and Table 15 are presented the details of the Naïve Bayes accuracy and 

confusion matrix results of the NetFlow v9 dataset. 

 

Table 14. Naïve Bayes NetFlow v9 dataset Metrics 

Labels Precision Recall F-measure 

Ubuntu_Agg_O 1.000 0.999 1.000 

Ubuntu_O 1.000 0.666 0.800 

Ubuntu_sA_O 0.999 1.000 1.000 

Ubuntu_sS_O 1.000 1.000 1.000 

Windows10_Agg_O 0.999 0.999 0.999 

Windows10_O 0.754 1.000 0.859 

Windows10_sA_O 1.000 1.000 1.000 

Windows10_sS_O 0.999 1.000 0.999 

Average 0.968 0.958 0.957 

 

Table 15. Naïve Bayes NetFlow v9 dataset confusion matrix 

a b c d e f g h Classified 

294972 0 13 0 158 0 11 4 a= ubuntu_Agg_O 

0 196629 28 0 0 98567 0 7 b = Ubuntu_O 

0 0 295018 0 0 0 67 6 c = Ubuntu_sA_O 

0 0 21 294919 0 0 2 69 d = Ubuntu_sS_O 

1 0 13 0 302042 0 27 158 e = Windows10_Agg_O 

1 1 28 0 0 301341 3 17 f = Windows10_O 

12 0 23 0 1 0 294493 28 g = Windows10_sA_O 

1 0 24 0 0 0 6 301341 h = Windows10_sS_O 
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In Table 16 and Table 17 are presented the details of the Ada Boost accuracy and 

confusion matrix results of the NetFlow v9 dataset. 

Table 16. AdaBoost NetFlow v9 dataset metrics  

Labels Precision Recall F-measure 

Ubuntu_Agg_O 1.000 0.999 1.000 

Ubuntu_O 0.983 1.000 0.992 

Ubuntu_sA_O 1.000 1.000 1.000 

Ubuntu_sS_O 1.000 1.000 1.000 

Windows10_Agg_O 0.999 1.000 1.000 

Windows10_O 1.000 0.983 0.992 

Windows10_sA_O 1.000 1.000 1.000 

Windows10_sS_O 1.000 1.000 1.000 

Average 0.998 0.998 0.998 

 

 Table 17. AdaBoost NetFlow v9 dataset confusion matrix 

a b c d e f g h Classified 

294983 0 2 0 158 0 13 2 a= ubuntu_Agg_O 

0 295180 9 0 0 36 3 3 b = Ubuntu_O 

0 0 295078 0 0 0 7 6 c = Ubuntu_sA_O 

0 0 4 294996 0 0 1 10 d = Ubuntu_sS_O 

2 0 1 0 302184 0 44 10 e = Windows10_Agg_O 

0 4963 5 2 0 296400 9 12 f = Windows10_O 

0 0 31 0 1 0 294511 14 g = Windows10_sA_O 

0 0 17 16 0 0 10 301329 h = Windows10_sS_O 

 

 

 

In Table 18 and Table 19 are presented the details of the Cost Sensitive accuracy and 

confusion matrix results of the NetFlow v9 dataset. 

Table 18. Cost Sensitive NetFlow v9 dataset metrics 

Labels Precision Recall F-measure 

Ubuntu_Agg_O 1.000 0.999 1.000 

Ubuntu_O 1.000 0.666 0.800 

Ubuntu_sA_O 0.999 1.000 1.000 

Ubuntu_sS_O 1.000 1.000 1.000 

Windows10_Agg_O 0.999 0.999 0.999 

Windows10_O 0.754 1.000  0.859 

Windows10_sA_O 1.000 1.000  1.000 

Windows10_sS_O 0.999 1.000 0.999 

Average 0.968 0.958  0.957 
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Table 19. Cost sensitive NetFlow v9 dataset confusion matrix 

a b c d e f g h Classified 

294972 0 13 0 158 0 11 4 a= ubuntu_Agg_O 

0 196629 28 0 0 98567 0 7 b = Ubuntu_O 

0 0 295018 0 0 0 67 6 c = Ubuntu_sA_O 

0 0 21 294919 0 0 2 69 d = Ubuntu_sS_O 

1 0 13 0 302042 0 27 158 e = Windows10_Agg_O 

1 1 28 0 0 301341 3 17 f = Windows10_O 

12 0 23 0 1 0 294493 28 g = Windows10_sA_O 

1 0 24 0 0 0 6 301341 h = Windows10_sS_O 

 

Discussion 
 In this section, the machine learning training and testing evaluation results of the 

datasets are showcased in the tables above. 

 The average machine learning scores for the IPFIX datasets are showcased in Table 6, 

with the performance results for Naïve Bayes, Ada Boost, and Cost Sensitive algorithms 

being 84.9%, 91.5%, and 84.6%, respectively. Table 8 presents the Naïve Bayes results of the 

IPFIX dataset, with the average score of  label classification for Ubuntu and Windows to be 

82.9 % and 94.8 %, respectively. Table 10 presents the Ada Boost  results of the IPFIX 

dataset, with the average score of  label classification for Ubuntu and Windows to be 93.8 % 

and 89.2 %, respectively. Table 12 presents the Cost Sensitive results of IPFIX dataset, with 

the average score of  label classification for Ubuntu and Windows to be 82.9 % and 94.8 %, 

respectively. 

The average machine learning scores for the Netflow v9  datasets are showcased in 

Table 7 with the performance results for Naïve Bayes, Ada Boost, and Cost Sensitive 

algorithms being 95.8 %, 99.7%, and 95.8%, respectively. Table 14 presents the Naïve Bayes 

results of Netflow v9 dataset, with the average score of  label classification for Ubuntu and 

Windows to be 99.7 % and 93.3 %, respectively. Table 16 presents the Ada Boost results of 

Netflow v9 dataset, with the average score of  label classification for Ubuntu and Windows to 

be 99.5 % and 99.7 %, respectively. Table 18 presents the Cost Sensitive results of Netflow 

v9 dataset, with the average score of  label classification for Ubuntu and Windows to be 99.7 

% and 93.3 %, respectively. 

Both datasets have high accuracy results with all three (3) machine learning 

evaluation algorithms. However, as mentioned in the prediction section , it was expected that 
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the Ubuntu label percentages would be lower because of the constrained responses but their 

results was also highly performed. 

Chapter 6 - Conclusion 

In this thesis, we present the creation and assessment procedures of two OS 

fingerprinting datasets, that assisted in the automated and precise active OS fingerprinting 

scan detection. The raw captured data was captured and converted to NetFlow v9 and IPFIX 

network flow versions, with the creation of two (2) datasets. Prior to the machine learning 

evaluation, pre-processing of the datasets was conducted. The raw captured data was 

analyzed and converted to NetFlow v9 and IPFIX network flow versions, creating two (2) 

datasets. Prior to the machine learning evaluation, pre-processing was conducted with the 

utilization of the Info Gain Attribute evaluator, a Feature Importance Ranking measure. 

Following the feature ranking, the machine learning evaluation was conducted. For the 

training and evaluation of the datasets, three (3) algorithms were utilized: Naive Bayes, 

AdaBoost, and CostSensitive algorithms. For the IPFIX dataset, the results showcased 84.9%, 

91.5%, and 84.9% accuracy, respectively. As for the NetFlow v9 dataset, the results 

showcased 95.8%, 99.7%, and 95.8% accuracy, respectively. 

 

Future Work 
 Regarding the future steps of this thesis, a machine learning-based network 

monitoring software could be built, in order to utilize this dataset, for precise active OS 

fingerprinting scan detection, and even mitigation. This software could be utilizing the 

nProbe software, since it provides real-time conversion of network traffic to Cisco’s latest 

network flow standards, NetFlow v9 and IPFIX. Furthermore, the chance of adding more 

diverse data, instead of only network-related, is considered as a next step procedure. 

Moreover, more network traffic could be added to the dataset to support the detection of more 

OSs (IOs, MacOS, Windows 11, etc).   
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