
Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 1

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, ΕΛ.ΜΕ.ΠΑ. Κρήτης

Ελληνικό Μεσογειακό Πανεπιστήμιο

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πρόγραμμα Σπουδών Μηχανικών Πληροφορικής ΤΕ

Τίτλος:

Δημιουργία Συνόλου Δικτυακών Δεδομένων με Σκοπό την

Εκπαίδευση Αλγορίθμων Μηχανικής Μάθησης

Title:

Machine Learning-based Active Operating System Fingerprinting

Dataset

{Νίκας Ευάγγελος-Πολυνίκης(4258)}

Επιβλέπων εκπαιδευτικός : Μαρκάκης Ευάγγελος

Επιτροπή Αξιολόγησης :

● Μαρκάκης Ευάγγελος

● Παπαδάκης Νικόλαος

● Παναγιωτάκης Σπυρίδων

Ημερομηνία παρουσίασης: 26/9/2022

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 2

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 3

Ευχαριστίες

 Ευχαριστώ θερμά τον καθηγητή μου, Δρ. Ευάγγελο Μαρκάκη, για την ευκαιρία να

πραγματοποιήσω την πτυχιακή μου εργασία μαζί του.

 Επίσης, ευχαριστώ θερμά τον Research Associate, Στυλιανό Κλάδο, για την πολύτιμη

βοήθεια του κατά τη διάρκεια των πειραμάτων καθώς και για τις διορθώσεις της

συγκεκριμένης πτυχιακής.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 4

Περίληψη
 Οι επιθέσεις στον κυβερνοχώρο έχουν επεκταθεί σημαντικά και έχουν αυξηθεί σε

αποτελεσματικότητα τα τελευταία χρόνια. Ως αποτέλεσμα, τα τρωτά σημεία των

στοχευμένων συστημάτων υπολογιστών και δικτύων μπορούν να αξιοποιηθούν εξ

αποστάσεως. Πριν από την εκτέλεση μιας κυβερνοεπίθεσης, πραγματοποιείται ψηφιακή

αναγνώριση του στόχου. Κατά τη διάρκεια αυτής της φάσης, εκτελούνται σαρώσεις του

συστήματος, προκειμένου να βρεθούν πληροφορίες όπως το λειτουργικό σύστημα (OS) του

στόχου, οι ανοικτές θύρες και οι υπηρεσίες. Οι σαρώσεις συστημάτων κατηγοριοποιούνται

σε παθητικές και ενεργές . Η παρούσα πτυχιακή εργασία προτείνει δύο σύνολα δεδομένων

σάρωσης λειτουργικού συστήματος σε δύο από τα πιο πρόσφατα πρότυπα ροής δικτύου της

Cisco (NetFlow v9 και IPFIX), επιτρέποντας σε ένα εργαλείο παρακολούθησης δικτύου με

μηχανική μάθηση να εντοπίζει άμεσα τη συγκεκριμένη εν εξελίξει σάρωση που υφίσταται

ένα δίκτυο και αυτοματοποιώντας τη διαδικασία ανίχνευσης ενεργών σαρώσεων

λειτουργικού συστήματος.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 5

Abstract
 Cyber-attacks have expanded significantly and progressed in effectiveness over the

past few years. As a result, vulnerabilities of targeted computer and network systems can be

exploited remotely. Before the initialization of a cyber-attack, a digital reconnaissance of the

target is conducted. During this phase, fingerprinting scans are executed, in order to found

information such as Operating System (OS) of the target, open ports and Services. The

fingerprinting scans are categorized to passive and active fingerprinting scans. This thesis

suggests two OS fingerprinting scan datasets in two of the most recent network flow

standards from Cisco (NetFlow v9 and IPFIX), allowing a machine learning network

monitoring tool to instantly identify the specific on-going scan that a network is undergoing

and automating the active OS fingerprint scan detection process.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 6

Table of Contents

Περίληψη .. 4

Abstract ... 5

Table of Contents .. 6

List of Figures .. 7

List of Tables ... 8

Chapter 1 - Introduction ... 9

Chapter 2 - State of the Art ... 10

Chapter 3 - Technology Enablers .. 12

Chapter 4 - Implementation ... 14

Network Topology ... 14

Tools and method for data collection ... 14

Data collection .. 16

Network Data .. 17

Chapter 5 - Evaluation... 24

Aim of the Experiment .. 24

Method ... 24

Variables ... 25

Dependent Variables... 25

Independent Variables .. 26

Fixed Variables .. 26

Prediction .. 26

Results ... 26

Discussion.. 31

Chapter 6 - Conclusion .. 32

Future Work .. 32

Bibliography .. 33

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 7

List of Figures
Figure 1. Network Topology.. 14

Figure 2. Pre-process Procedure .. 17

Figure 3. Evaluation ... 24

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 8

List of Tables
Table 1. Type of scans ... 16

Table 2. Removed Netflow and IPFIX features ... 17

Table 3. IPFIX Feature Importance score .. 18

Table 4. Netflow V9 Feature Importance Score .. 19

Table 5. IPFIX and NetFlow v9 removed irrelevant affect features .. 21

Table 6. IPFIX Dataset Average Scores .. 27

Table 7. NetFlow v9 Dataset Average Scores ... 27

Table 8. Naïve Bayes IPFIX dataset metrics ... 27

Table 9.Naïve Bayes IPFIX dataset confusion matrix ... 27

Table 10. Ada Boost IPFIX dataset metrics... 28

Table 11. Ada Boost IPFIX confusion matrix ... 28

Table 12. Cost Sensitive IPFIX dataset Metrics .. 28

Table 13. Cost Sensitive IPFIX dataset confusion matrix ... 29

Table 14. Naïve Bayes NetFlow v9 dataset Metrics .. 29

Table 15. Naïve Bayes NetFlow v9 dataset confusion matrix ... 29

Table 16. AdaBoost NetFlow v9 dataset metrics... 30

Table 17. AdaBoost NetFlow v9 dataset confusion matrix ... 30

Table 18. Cost Sensitive NetFlow v9 dataset metrics.. 30

Table 19. Cost sensitive NetFlow v9 dataset confusion matrix ... 31

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 9

Chapter 1 - Introduction
A cyber-attack [1] is the attempt to obtain unauthorized access to a computer,

computing system, or computer network with the intention of harming them. The goal of a

cyber-attack is to disable, disrupt, destroy, or take control of a computer system. In recent

years, the volume of sensitive information transferred every day over the internet has

significantly increased as a result of the rapid advancement in technology. This advancement

is also leveraged by attackers too, as it offers the opportunity for remote attacks[2] to be

conducted.

In order for a cyber-attack to be conducted, attackers need first to orchestrate their

way through before starting exploiting vulnerabilities. Firstly, a reconnaissance phase[3]

takes place. With this procedure, an attacker can gather information about the targeted system

or network. This information could be port status, Operating System (OS), and Services of

the target. In order to get this information, a fingerprinting scan[4] needs to be executed.

Fingerprinting scans are split into two (2) categories, namely: passive and active. With the

passive fingerprinting, the captured data could be analyzed while being offline. The capturing

process of this method is undetectable. However, the active fingerprinting is sending and

receiving packets in real time meaning that the results are presented in real-time. However,

this procedure is traceable because of some network-related indicators of intrusion, like slow

network connections, or inbound traffic from unusual geographic locations. As a result, a

cybersecurity analyst that thoroughly monitors the network may understand that a cyber-

attack is occurring. Still, this procedure is rather hard, even for experienced network analysts.

To automate the process of active OS fingerprint scan detection, this thesis proposes

an OS fingerprinting scan dataset in two of the most recent Cisco network flow standards

(NetFlow v9[5] and IPFIX[6]), which enables a machine learning network monitoring tool to

instantly identify the specific on-going scan that a network in undergoing. The datasets are

comprised of bidirectional flows. As a result, a machine learning network monitoring

software could successfully predict an active OS fingerprinting scan solely from the

attacker’s inbound network traffic.

This thesis is structured as demonstrated:

• Chapter 1 showcases the Introduction,

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 10

• Chapter 2 represents the State of the Art,

• Chapter 3 presents the dataset implementation

• Chapter 4 showcases the evaluation process of the datasets,

• Chapter 5 presents the conclusion and the future work.

Chapter 2 - State of the Art
In this section, a brief overview of the State-Of-The-Art will showcase the research

studies that have been conducted in the Operating System (OS) fingerprinting field of study.

A passive network flow-based framework for OS fingerprinting was proposed by

Tomas Jirsik et al. [7]. Large network infrastructures can be inspected by the framework

because of the nature of the flows and observation points that can be placed in the main

network traffic hub and borders, meaning that all connected hosts can be monitored

simultaneously.

In [8], Rohit Tyagi et al. suggest a passive OS fingerprinting method using TCP

packet information for unauthorized OS detection. Their method conducts a TCP header

analysis with time-to-live (TTL), total length, window size, and option fields of the IP packet

utilized. The algorithm implemented for the identification of the OS is a Euclidean distance

estimation algorithm that specifies the TCP header fields and options.

Additionally, Ahmet Aksou et al. [9] proposed a machine learning-based passive

method of OS fingerprinting, utilizing a dataset composed of TCP/IP protocol headers.

Network data was collected with Wireshark from a local network connection, emulating an as

realistic scenario as possible. For the dataset testing, the included protocols TCP, IP, UDP,

HTTP, DSN, ICMP, SSL, FTP and SSH were accurately classified. Several machine learning

algorithms were used for the created dataset performance evaluation. WEKA, a machine

learning evaluation tool, was utilized. Results showed that the protocol headers average

classification performance accuracy was 50.94%.

Following the passive OS fingerprinting method, Martin Lastovicka et al. [10]

proposed a system architecture, for large network monitoring. Monitoring of the networks in

fulfilled with the utilization of in the IPFIX network format. The collected IPFIX network

data was stored in a database. The stored network traffic was parsed from the database to be

processed for OS identification.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 11

Continuing their research, Martin Lastovicka et al. [11] created three more passive OS

fingerprinting methods based on HTTP User-agents parsing, which is contains information

about the sender’s OS and browser. The network data type they utilized was IPFIX network

flows.

In another adaptation of passive OS fingerprinting, Martin Lastovicka et al. [12]

introduced a methodology for OS fingerprinting based on identifying a particular

combination of TCP/IP packet options. Data was collected from the institution’s network in

the form of IPFIX network flows. After this procedure, three (3) specific TCP packet

parameters were selected for the OS detection: IP Time-To-Live (TTL), Window Size, and

the size of the first TCP SYN packet. The IPFIX dataset was evaluated with several machine

learning algorithms. The average results of the machine learning dataset accuracy were 89%.

In addition, Desta H. Hagos et al. [13] proposed a novel approach for boosting the

classification performance of a passive OS fingerprinting method utilizing machine and deep

learning techniques. The data utilized originated from a commercial database. A tool was

created for TCP fingerprinting scan prediction, utilizing passive traffic trails. For evaluation

purposes of their approach, they synthetically created network traffic and assessed the

prediction performance. Results of evaluation performance revealed an improvement of up to

94% across all scenarios of validation.

Some drawbacks can be identified from the aforementioned studies. First of all,

regarding the type of data they utilized, most of the proposals utilize network traffic data that

needs to be actively processed in order to be used. Moreover, even though the network data

gathering was executed, those data were not utilized as a defensive mean to precisely predict

if an active OS fingerprinting scan is happening in real time. Moreover, most of the studies

that were machine learning-evaluated their datasets, achieved an average of 77% prediction

accuracy, which is not considered high accuracy value. Additionally, in order to utilize the

proposed set of data or methods, you need to assume that the attacker has already access to

the network of the target devices. In order to mitigate those drawbacks, this thesis proposed

two (2) datasets that:

1. are created by capturing the network traffic of an active fingerprinting OS scan

2. include bidirectional traffic captured during the scans

3. enable machine learning algorithms to be trained with and precise predict an

imminent active OS fingerprinting scan

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 12

4. are in the most recent Cisco standards, namely: NetFlow v9 and IPFIX

Chapter 3 - Technology Enablers

Virtual Box

Oracle VM Virtual Box [14] is a cross-platform virtualization application that works

with Intel and AMD-based computers. Furthermore, it improves the capability of your current

computer so that it may run many OSs within multiple virtual machines at the same time. It

was utilized in this thesis to host and virtualize every system that was part of the network

topology, which were used in order to capture network traffic. Moreover, the systems’

network was isolated from the rest of the network, even without having access to the internet,

so that the traffic generated from the various Nmap scans would not be interrupted by scan-

unrelated data.

Kali Linux

Kali Linux [15] is a Linux distribution that is free and open-source, and it is intended

for advanced penetration testing a security audit. It accomplishes this by offering common

tools, configurations, and automations that allow the user to focus on the task at hand rather

than the surrounding activities. Kali Linux comes with numerous tools for performing a wide

range of information security tasks, such as penetration testing, vulnerability management,

security research, and red team testing. The specific operating system was used for the traffic

generation and data capture, which was used for the creation of the datasets.

Ubuntu 20.04

Ubuntu [16] is a free and open-source Debian Linux distribution by Canonical, a

popular and user-friendly operating system. In this thesis, the latest updated version of

Ubuntu (20.04) was used as one of the targeted operating systems by various fingerprinting

scans. The OS fingerprinting scans conducted in diverse security levels and services of

Ubuntu.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 13

Windows 10

Windows 10[17], is the most popular and user-friendly operating system, distributed

by Microsoft. In this thesis, Windows 10 was used as another targeted operating system by

various fingerprinting scans. The scans were carried out various security statuses and services

of Windows.

Wireshark

Wireshark[18] is a, free and open-source network analyzer and packet capture tool.

This tool was used with Kali Linux, capturing the network traffic during the OS

fingerprinting scans. Wireshark has a user interface that is compatible with Kali Linux, so it

was not necessary to use Wireshark's command-line version, tcpdump.

nProbe

NProbe[19] is a standalone command-line software application used for the

monitoring, collection, and conversion of network data to network flows. NetFlow is a

network protocol system that is implemented to Cisco routers to gather IP network traffic as

it enters or exits an interface. The NetFlow protocol is used to analyze network traffic, to

discover its origin, destination, volume and network pathways. In this thesis, the Wireshark

captured data was analyzed by nProbe and exported flows to NetFlow v9 and IPFIX.

However, the nProbe exported data needed to be analyzed and pre-processed.

Python Programming Language

The Python language has a wide variety of libraries, making it easier for data analysis.

In this thesis, we used Python extended with the Pandas library[20]. The library focuses

specifically on data analysis. In our case, it was used for dataset creation, analysis and label

classification using the data provided by nProbe.

Weka

 Weka[21] is a free and open-source tool that is used for dataset assessment. Weka was

used for the datasets’ features importance assessment and dataset evaluation with machine

learning algorithms.

https://en.wikipedia.org/wiki/Free_and_open-source_software

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 14

Chapter 4 - Implementation
In this section, the creation of the dataset is showcased. The network topology,

software used, and dataset pre-processing procedure are also presented so that other

researchers can replicate the process.

Network Topology
 Ιn this thesis, three (3) Virtual Machines (VMs) were created with: Kali Linux,

Windows 10, and Ubuntu 20.04 . The attacker VM had Kali Linux 2022.1 because of the

already installed active fingerprinting tools that this system provides. The network traffic

produced by the fingerprinting attacks was captured from the attackers’ system. The VMs

that were attacked had Windows 10 Pro 21H2 and Ubuntu 20.04. These systems were

deployed one at a time, because each OS produces different network traffic footprint when

responding to such attacks. The targeted systems will be referred to as “benign”. The local

network of the attacker and benign systems were isolated. The reason for the isolation of the

network was to capture the network traffic of the reconnaissance attack packets without being

affected by irrelevant network flow.

Figure 1. Network Topology

Tools and method for data collection
Kali Linux provides an open-source tool called Nmap, which offers a variety of

functions, such as network and operating system scans. In this study, Nmap was utilized for

its capability of OS scans, to gather active OS fingerprinting network traffic.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 15

Nmap scans are separated into four (4) types of scans. These types of scans are: OS

scan, TCP SYN - Stealth scan, ACK scan, and Aggressive scan. The three (3) last scan types

were conducted in combination with the OS scan. When the OS scan is executed, Nmap

sends TCP and UDP packets to the victim and examines every response thoroughly. Nmap

compares the responses with its OS database of known operating systems and provides a

possible OS estimation. The TCP SYN-Stealth scan can be conducted swiftly, probing

thousands of ports free from obtrusive firewalls because it never completes the TCP

connection, making its operation undetectable, and provides a consistent distinction between

open, closed, and filtered states. The ACK scan is used for organizing firewall rules sets,

identifying which ports are filtered and whether or not they are stateful. When the Aggressive

scan is executed, it conducts simultaneous port scanning, OS fingerprinting scanning, script

scanning, and traceroute. Script scanning is a Nmap service mechanism which find

vulnerabilities and malware, and gather data from databases and other network services.

Additionally, traceroute service is an enhanced traceroute implementation of Nmap.

There are two (2) categories of firewall operations, stateful and stateless. Stateful

firewalls are monitoring all angles of network traffic, focusing on the communication

channels, characteristics, and all elements of the traffic. Stateless firewalls are utilizing the

source, destination, and other information in a data packet to evaluate if the data represents a

threat. The stateless firewall protocol will analyze the threat and then constrain or block the

data containing it if a data packet deviates from the firewall's accepted boundaries. These

firewalls have the ability to incorporate encryption or tunnels, recognize TCP connection

phases, packet state, and other crucial status updates.

In this thesis, the purpose of the reconnaissance phase was to collect the network

traffic produced by an active fingerprinting OS scan. To be as realistic as possible, the benign

systems were up-to-date before the reconnaissance attacks were conducted. For the OS

fingerprinting attacks, the aforementioned four (4) types of scans were utilized. Also, a

variety of firewall and service states were applied during the fingerprinting scans. These

states were separated into four (4) different categories, namely: firewall enabled, firewall

disabled, SSH[22] port opened, and SSH port closed. These categories, and every possible

combination of them, were chosen to record their different responses produced by the scans.

One convenient way to check the response differences was the status of the firewall. When a

firewall is active, it blocks malicious network traffic, in our case, the OS fingerprinting

packets. Another, again, convenient way to check the response difference was the Service

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 16

status. That’s why SSH was chosen. Secure Shell is a cryptographic network protocol that

allows the secure operation of network services over a non-secure network. Besides the fact,

that it is easy to use, it was also chosen for its popularity. These four (4) categories were

tested in all possible combinations during the fingerprinting.

Table 1. Type of scans

Type of Scan Dataset Labels

Operating System scan

Ubuntu_O

Windows10_O

TCP SYN and OS scan

Ubuntu_sS_O

Windows10_sS_O

TCP ACK and OS scan

Ubuntu_sA_O

Windows10_sA_O

Aggressive scan

Ubuntu_Agg_O

Windows10_Agg_O

Data collection
To compose an as realistic and complete dataset as possible, the network traffic

capture process occurred at the side of the attacker. Consequently, both the active

fingerprinting OS scan, as well as the target’s responses were captured, resulting a

bidirectional network traffic capture. Wireshark was utilized for the network traffic capture

during the scans.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 17

Network Data

 The captured network data was converted to NetFlow v9 and IPFIX network flows

with nProbe. The NetFlow v9 dataset contained 194 network-related features, whereas the

IPFIX dataset contained 182. Afterwards, each record in this dataset was given a label as an

extra feature. Each fingerprinting scan that was conducted received a unique label. Both

datasets had 8 labels, according to the OS and the type of active OS fingerprinting scan.

Table 1 displays these labels and the fingerprinting scans that are linked to. The steps that

were performed to construct the datasets final versions are detailed below and shown as a

flow diagram in Figure 2.

Figure 2. Pre-process Procedure

 After the datasets’ creation, the feature importance was calculated- which is a score.

Assigned to each of the input features and signifies their importance[23]. A higher score

indicates that the particular characteristic will have a larger impact when used on a machine

learning algorithm. The Info Gain Attribute evaluator [24], which is one of the most well-

known and effective methods for attribute evaluation, was used to evaluate the datasets

features. According to the evaluation's conclusion, 26 out of 194 features from the NetFlow

v9 dataset and 26 out of 182 features from the IPFIX dataset had negative influence on the

datasets and were therefore excluded. Table displays the features that were removed.

Table 2. Removed Netflow and IPFIX features

Removed Netflow and IPFIX Features

IN_SRC_MAC BITTORRENT_HASH

OUT_DST_MAC FLOW_SERVER_NAME

IN_DST_MAC PLUGIN_NAME

OUT_SRC_MAC UNTUNNELED_IPV6_SRC_ADDR

INTERFACE_NAME UNTUNNELED_IPV6_DST_ADDR

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 18

IPV6_SRC_ADDR IN_SRC_OSI_SAP

IPV6_DST_ADDR OUT_DST_OSI_SAP

IPV6_NEXT_HOP SRC_AS_MAP

APPLICATION_NAME DST_AS_MAP

FLOW_END_REASON DST_TO_SRC_SECOND_BYTES

UNTUNNELED_IPV4_SRC_ADDR TLS_CIPHER

L7_INFO TLS_UNSAFE_CIPHER

TLS_SERVER_NAME PAYLOAD_HASH

 Furthermore, by removing the features that were negatively impacting the dataset, the

features that only produced the value zero (0) were removed, since they do not provide any

kind of information. The number of the features that remained were 58 network-related

features for the IPFIX dataset and 62 network-related features for the NetFlowV9 dataset.

Both datasets feature importance scores are presented in Table 3 and Table 4, and their

removed features are presented in Table 2 and Table 5.

Table 3. IPFIX Feature Importance score

Feature Feature Importance Score

FLOW_START_MILLISECONDS 4.9206534

LAST_SWITCHED 4.9206534

FLOW_END_SEC 4.9206534

FLOW_START_SEC 4.9206534

FLOW_END_MILLISECONDS 4.9206534

FLOW_START_MICROSECONDS 4.9206534

FLOW_END_MICROSECONDS 4.9206534

FIRST_SWITCHED 4.9206534

ENGINE_ID 4.878642

L4_SRC_PORT 3.5996226

L4_DST_PORT 1.5599703

L4_SRV_PORT 1.3341943

DST_TO_SRC_AVG_THROUGHPUT 1.2151887

SERVER_TCP_FLAGS 1.1739528

OUT_BYTES 1.1379104

MIN_IP_PKT_LEN 1.1342636

TCP_FLAGS 1.0628229

CLIENT_TCP_FLAGS 1.0619841

TCP_WIN_MIN_OUT 0.8802321

TCP_WIN_MAX_OUT 0.8801647

NUM_PKTS_UP_TO_128_BYTES 0.8628888

OUT_PKTS 0.8626444

TCP_WIN_MSS_OUT 0.7783296

SRC_TO_DST_AVG_THROUGHPUT 0.6329838

LONGEST_FLOW_PKT 0.5033947

MAX_IP_PKT_LEN 0.5033947

IN_BYTES 0.5032326

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 19

OCTET_TOTAL 0.5032326

SRC_TO_DST_SECOND_BYTES 0.5032326

TCP_WIN_MSS_IN 0.5023772

SHORTEST_FLOW_PKT 0.5009578

NUM_PKTS_TTL_96_128 0.3068354

NUM_PKTS_TTL_32_64 0.3064899

FLOW_ID 0.2579624

TOTAL_FLOWS_EXP 0.2579624

TCP_WIN_MAX_IN 0.2479909

TCP_WIN_MIN_IN 0.2479909

TLS_VERSION 0.1897217

FLOW_DURATION_MICROSECONDS 0.1804083

FLOW_DURATION_MILLISECONDS 0.1804083

L7_PROTO_NAME 0.0009097

L7_PROTO 0.0008841

application_id 0.0008841

L7_PROTO_CATEGORY 0.0007187

TCP_WIN_SCALE_OUT 0.0004868

L7_CONFIDENCE 0.0003919

TCP_WIN_SCALE_IN 0.0003452

DST_TO_SRC_MIN_THROUGHPUT 0.0002951

DST_TO_SRC_MAX_THROUGHPUT 0.0002951

DURATION_OUT 0.0002018

NUM_PKTS_TTL_EQ_1 0.0000765

PROTOCOL_MAP 0.0000717

PROTOCOL 0.0000717

L4_DST_PORT_MAP 0.0000647

L4_SRV_PORT_MAP 0.0000647

L4_SRC_PORT_MAP 0.0000647

SEQ_PLEN_HASH 0.0000555

NUM_PKTS_1024_TO_1514_BYTES 0.0000238

Table 4. Netflow V9 Feature Importance Score

Features Feature Importance Score

FLOW_END_MILLISECONDS 4.9230382

FLOW_END_MICROSECONDS 4.9230382

FLOW_START_MICROSECONDS 4.9230382

FLOW_START_MILLISECONDS 4.9230382

FLOW_END_SEC 4.9230382

FIRST_SWITCHED 4.9230382

FLOW_START_SEC 4.9230382

LAST_SWITCHED 4.9230382

L4_SRC_PORT 4.9225145

ENGINE_ID 4.7224902

TCP_FLAGS 1.6826871

L4_SRV_PORT 1.3518739

SERVER_TCP_FLAGS 1.1446056

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 20

IPV4_DST_ADDR 0.9999305

SHORTEST_FLOW_PKT 0.9599949

NUM_PKTS_UP_TO_128_BYTES 0.8771052

DST_TO_SRC_AVG_THROUGHPUT 0.87678

OUT_BYTES 0.8767699

OUT_PKTS 0.8746178

MIN_IP_PKT_LEN 0.8742214

SRC_TO_DST_AVG_THROUGHPUT 0.8085139

OCTET_TOTAL 0.8084765

SRC_TO_DST_SECOND_BYTES 0.8084765

IN_BYTES 0.8084765

CLIENT_TCP_FLAGS 0.8082988

MAX_IP_PKT_LEN 0.8081082

LONGEST_FLOW_PKT 0.8081082

TCP_WIN_MSS_IN 0.806602

TOTAL_FLOWS_EXP 0.2491907

FLOW_ID 0.2491907

TCP_WIN_MIN_OUT 0.000807

TCP_WIN_MAX_OUT 0.000807

NUM_PKTS_TTL_32_64 0.000701

IN_PKTS 0.0006011

PACKET_TOTAL 0.0006011

TCP_WIN_MSS_OUT 0.0005516

TCP_WIN_SCALE_OUT 0.0005156

MAX_TTL 0.0004944

TCP_WIN_SCALE_IN 0.000493

MIN_TTL 0.0004775

TCP_WIN_MIN_IN 0.0004773

TCP_WIN_MAX_IN 0.0004773

L7_PROTO_NAME 0.0003538

L4_DST_PORT 0.0002926

SEQ_PLEN 0.0002249

L7_CONFIDENCE 0.000162

SEQ_TDIFF 0.0001462

NUM_PKTS_128_TO_256_BYTES 0.0001167

TLS_VERSION 0.0000795

SEQ_TDIFF_HASH 0.0000745

NUM_PKTS_TTL_EQ_1 0.0000692

SEQ_PLEN_HASH 0.000057

IPV4_SRC_ADDR 0.0000521

IP_PROTOCOL_VERSION 0.0000379

FLOW_DURATION_MILLISECONDS 0.0000284

FLOW_DURATION_MICROSECONDS 0.0000284

SRC_TO_DST_IAT_MIN 0.0000231

NUM_PKTS_1024_TO_1514_BYTES 0.0000231

DURATION_IN 0.0000221

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 21

Table 5. IPFIX and NetFlow v9 removed irrelevant affect features

IPFIX NetFlow v9

DOT1Q_DST_VLAN BIFLOW_DIRECTION

MPLS_LABEL_8 POST_NAT_SRC_IPV4_ADDR

DOT1Q_SRC_VLAN MPLS_LABEL_2

EXPORTER_IPV4_ADDRESS MPLS_LABEL_1

FORWARDING_STATUS MPLS_LABEL_7

EXPORTER_IPV6_ADDRESS DIRECTION

IP_PROTOCOL_VERSION MPLS_LABEL_8

MPLS_LABEL_6 EXPORTER_IPV6_ADDRESS

MPLS_LABEL_9 EXPORTER_IPV4_ADDRESS

MPLS_LABEL_5 MPLS_LABEL_5

DIRECTION MPLS_LABEL_6

MPLS_LABEL_10 MPLS_LABEL_9

MPLS_LABEL_4 MPLS_LABEL_4

MPLS_LABEL_3 MPLS_LABEL_3

MPLS_LABEL_2 SAMPLED_PACKET_ID

MPLS_LABEL_1 BIFLOW_DIRECTION

MPLS_LABEL_7 PACKET_SECTION_OFFSET

SAMPLING_INTERVAL APPLICATION_ID

PACKET_TOTAL MPLS_LABEL_10

SRC_AS SAMPLED_PACKET_SIZE

IPV4_NEXT_HOP FLOW_ACTIVE_TIMEOUT

DST_AS DOT1Q_DST_VLAN

IPV4_DST_MASK BGP_NEXT_ADJACENT_ASN

BGP_PREV_ADJACENT_ASN IPV4_DST_MASK

OUTPUT_SNMP OUTPUT_SNMP

IPV4_DST_ADDR IPV4_NEXT_HOP

DST_VLAN SRC_AS

SRC_TOS DST_AS

IN_PKTS L4_SRV_PORT_MAP

IPV4_SRC_ADDR L4_DST_PORT_MAP

INPUT_SNMP INPUT_SNMP

IPV4_SRC_MASK PROTOCOL_MAP

BGP_NEXT_ADJACENT_ASN PROTOCOL

IPV4_BGP_NEXT_HOP SRC_TOS

IPV6_SRC_MASK IPV4_SRC_MASK

MIN_TTL L4_SRC_PORT_MAP

TOTAL_PKTS_EXP BGP_PREV_ADJACENT_ASN

MAX_TTL IPV4_BGP_NEXT_HOP

IPV6_DST_MASK DOT1Q_SRC_VLAN

SRC_VLAN IPV6_SRC_MASK

TOTAL_BYTES_EXP TOTAL_PKTS_EXP

ENGINE_TYPE DST_TOS

FLOW_INACTIVE_TIMEOUT SRC_VLAN

FLOW_ACTIVE_TIMEOUT DST_VLAN

ICMP_TYPE FORWARDING_STATUS

POST_NAT_SRC_IPV4_ADDR TOTAL_BYTES_EXP

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 22

SAMPLING_ALGORITHM ENGINE_TYPE

biflow_direction FLOW_INACTIVE_TIMEOUT

DST_HOST_LABEL ICMP_TYPE

POST_NAT_DST_IPV4_ADDR IPV6_DST_MASK

DOWNSTREAM_TUNNEL_ID SAMPLING_INTERVAL

UNTUNNELED_IPV4_DST_ADDR POST_NAPT_SRC_TRANSPORT_PORT

UNTUNNELED_L4_DST_PORT SAMPLING_ALGORITHM

DOWNSTREAM_SESSION_ID POST_NAT_DST_IPV4_ADDR

NUM_PKTS_TTL_128_160 DST_TO_SRC_IAT_STDDEV

NUM_PKTS_TTL_2_5 POST_NAPT_DST_TRANSPORT_PORT

NUM_PKTS_TTL_5_32 NUM_PKTS_TTL_2_5

UNTUNNELED_L4_SRC_PORT DOWNSTREAM_SESSION_ID

UNTUNNELED_PROTOCOL NAT_ORIGINATING_ADDRESS_REALM

OOORDER_OUT_PKTS NUM_PKTS_TTL_5_32

OOORDER_IN_PKTS NUM_PKTS_TTL_64_96

UPSTREAM_SESSION_ID NUM_PKTS_TTL_96_128

RETRANSMITTED_IN_BYTES NUM_PKTS_TTL_128_160

RETRANSMITTED_IN_PKTS NUM_PKTS_TTL_160_192

RETRANSMITTED_OUT_BYTES DOWNSTREAM_TUNNEL_ID

RETRANSMITTED_OUT_PKTS L7_PROTO_CATEGORY

NUM_PKTS_TTL_64_96 L7_PROTO

NUM_PKTS_TTL_160_192 OOORDER_OUT_PKTS

POST_NAPT_SRC_TRANSPORT_PORT RETRANSMITTED_OUT_PKTS

L7_PROTO_RISK_NAME OOORDER_IN_PKTS

ENTROPY_SERVER_BYTES UNTUNNELED_PROTOCOL

L7_PROTO_RISK UNTUNNELED_L4_DST_PORT

L7_RISK_SCORE UNTUNNELED_L4_SRC_PORT

NUM_PKTS_TTL_192_224 UNTUNNELED_IPV4_DST_ADDR

L7_ERROR_CODE NUM_PKTS_TTL_192_224

FLOW_VERDICT NUM_PKTS_TTL_224_255

ENTROPY_CLIENT_BYTES DURATION_OUT

HASSH_SERVER SRC_TO_DST_IAT_AVG

HASSH_CLIENT DST_HOST_LABEL

PKT_VECTOR SRC_TO_DST_IAT_MAX

NUM_PKTS_TTL_224_255 SRC_TO_DST_IAT_STDDEV

DURATION_IN FLOW_VERDICT

SEQ_PLEN DST_TO_SRC_IAT_MIN

SEQ_TDIFF DST_TO_SRC_IAT_MAX

SEQ_TDIFF_HASH SRC_HOST_LABEL

UPSTREAM_TUNNEL_ID L7_ERROR_CODE

FLOW_PROTO_PORT PKT_VECTOR

CUMULATIVE_ICMP_TYPE ENTROPY_CLIENT_BYTES

SRC_HOST_LABEL HASSH_CLIENT

IPFIX_SAMPLING_ALGORITHM HASSH_SERVER

SAMPLING_SIZE ENTROPY_SERVER_BYTES

FRAME_LENGTH L7_RISK_SCORE

NUM_PKTS_OVER_1514_BYTES L7_PROTO_RISK

PACKETS_OBSERVED L7_PROTO_RISK_NAME

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 23

PACKETS_SELECTED RETRANSMITTED_OUT_BYTES

SELECTOR_ID RETRANSMITTED_IN_PKTS

OBSERVATION_POINT_ID RETRANSMITTED_IN_BYTES

OBSERVATION_POINT_TYPE PACKETS_SELECTED

ICMP_IPV4_CODE FRAME_LENGTH

POST_NAPT_DST_TRANSPORT_PORT DST_TO_SRC_IAT_AVG

NAT_ORIGINATING_ADDRESS_REALM INGRESS_VRFID

NAT_EVENT SAMPLING_SIZE

FIREWALL_EVENT EGRESS_VRFID

ICMP_IPV4_TYPE SELECTOR_NAME

INGRESS_VRFID SAMPLING_POPULATION

EGRESS_VRFID IPFIX_SAMPLING_ALGORITHM

SELECTOR_NAME PORT_RANGE_END

SRC_TO_DST_MAX_THROUGHPUT ICMP_IPV4_TYPE

SRC_TO_DST_MAX_EST_THROUGHPU

T

NAT_EVENT

DST_TO_SRC_MAX_EST_THROUGHPU

T

FIREWALL_EVENT

NUM_PKTS_128_TO_256_BYTES ICMP_IPV4_CODE

NUM_PKTS_256_TO_512_BYTES SELECTOR_ID

NUM_PKTS_512_TO_1024_BYTES OBSERVATION_POINT_TYPE

SRC_TO_DST_MIN_THROUGHPUT OBSERVATION_POINT_ID

NPROBE_IPV4_ADDRESS PORT_RANGE_START

PORT_RANGE_START SRC_FRAGMENTS

APPL_LATENCY_MS UPSTREAM_SESSION_ID

PORT_RANGE_END NUM_PKTS_OVER_1514_BYTES

SRC_FRAGMENTS NUM_PKTS_256_TO_512_BYTES

DST_FRAGMENTS NUM_PKTS_512_TO_1024_BYTES

CLIENT_NW_LATENCY_MS CUMULATIVE_ICMP_TYPE

SERVER_NW_LATENCY_MS SRC_TO_DST_MAX_EST_THROUGHPU

T

SAMPLING_POPULATION FLOW_PROTO_PORT

 UPSTREAM_TUNNEL_ID

 DST_TO_SRC_MAX_EST_THROUGHPU

T

 DST_TO_SRC_MIN_THROUGHPUT

 DST_FRAGMENTS

 APPL_LATENCY_MS

 CLIENT_NW_LATENCY_MS

 SERVER_NW_LATENCY_MS

 NPROBE_IPV4_ADDRESS

 DST_TO_SRC_MAX_THROUGHPUT

 SRC_TO_DST_MAX_THROUGHPUT

 SRC_TO_DST_MIN_THROUGHPUT

 PACKETS_OBSERVED

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 24

Chapter 5 - Evaluation

Aim of the Experiment
According to the literature, evaluating datasets with machine learning algorithms is

the most common and realistic way of evaluation [25]. The objective of this evaluation is to

show that both datasets, when used as a training dataset for machine learning algorithms,

provide high accuracy results. Figure 3 presents how the evaluation process progressed. The

already pre-processed datasets were used in this evaluation.

Figure 3. Evaluation

Method
The initial stage of the datasets’ evaluation was to train machine learning algorithms

with both datasets. The machine learning algorithms that were chosen were Naïve Bayes

[26], Adaptive Boosting (AdaBoost) with Naïve Bayes classifier [27], and Cost Sensitive

with Naïve Bayes classifier [28]. Weka’s machine learning algorithm implementations were

utilized.

 Due to datasets’ large size, the machine learning algorithms need to be configured

accordingly. For this reason, both datasets were trained with the percentage split option

enabled. Every time a dataset is analyzed, the percentage split option randomly divides the

dataset into training and testing segments, estimating the performance rapidly. The IPFIX

dataset was trained with an 85% percentage split and the NetFlow v9 dataset with 25%. The

results can be showcased in the Results section below.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 25

Variables

Dependent Variables
The variables that include an evaluation's results are known as dependent variables.

The most common machine learning metrics were utilized in this study to assess each

dataset performance. The performance of machine learning models can be evaluated based on

interpretable validation and training accuracy values. They provide the prediction accuracy of

the models at the time of training. On the other hand, the total of the errors that happen

throughout the training stage represents the validation and training loss values. Better

performance is shown by lower loss numbers and higher accuracy values [29].

The following four machine learning metrics were used in order to compare and

evaluate how well the trained machine learning models performed following the training:

• Accuracy: is the machine learning evaluation percentage of correctly predicted

outcomes

• Precision: presents the percentage of the correctly classification of datasets

• Recall: presents the percentage of the true positives found

• F-measure: presents the percentage of models’ accuracy on a dataset

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positive + False Positive

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

True Positive + False Negative

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

Precision + Recall

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

True Positive + True Negative + False Positive + False Negative

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 26

Independent Variables

 The variables that are continuously changing to track changes in the dependent

variables are known as independent variables. The datasets and the machine learning models

are the independent variables in this experiment because adjustments to at least one of them

resulted in different values for the training accuracy and loss, as well as the validation

accuracy and loss values. The dataset that is given to the machine learning models after their

training in to evaluate their performance is also an independent variable because its features

were altered to enable each model to use it, leading to diverse outcomes for the dependent

variables accuracy, precision, recall, and f-measure score.

Fixed Variables

Fixed variables are those that remain the same over the course of an experiment. The

network architecture, attacker and benign systems, fingerprinting scans, and machine learning

techniques are all kept the same during the evaluation phase.

Prediction

First, prior to evaluating the datasets with machine learning algorithms, the results of

the OS scans of benign systems were obtained using Nmap, so there is a tough estimation of

expected results. Nmap has an OS database, where it compares the target’s OS fingerprint

with the database's fingerprint. However, this procedure is not always successful and is not

working properly because of the first-match mechanism, where the OS detection tool chooses

the first OS fingerprint that matches from its OS database and return faulty guesses. For

example, if two (2) fingerprints match with the target fingerprint, it will choose the one that is

first in the OS database stack. Secondly, for the machine learning part, high accuracy on

Windows labels is expected. The reason is that Windows responded with more packets during

the scans and needed more time for a scan to complete than the Linux OS.

Results

In Table 6 Error! Reference source not found.and Table 7 the average results of

every machine learning algorithm is presented, for both datasets.

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 27

Table 6. IPFIX Dataset Average Scores

IPFIX Dataset Average

Scores

Accuracy Precision Recall F-measure

Naïve Bayes 0.849 0.889 0.849 0.837

AdaBoost 0.915 0.915 0.915 0.912

Cost Sensitive 0.849 0.889 0.849 0.837

Table 7. NetFlow v9 Dataset Average Scores

NetFlow v9 Dataset Average Scores Accuracy Precision Recall F-measure

Naïve Bayes 0.958 0.968 0.958 0.957

AdaBoost 0.997 0.998 0.998 0.998

Cost Sensitive 0.958 0.968 0.958 0.957

In Table 8 and Table 9 are presented the details of the Naïve Bayes accuracy and

confusion matrix results of the IPFIX dataset.

Table 8. Naïve Bayes IPFIX dataset metrics

Labels Precision Recall F-measure

Ubuntu_Agg_O 0.599 0.999 0.749

Ubuntu_O 0.794 0.976 0.876

Ubuntu_sA_O 0.982 0.999 0.991

Ubuntu_sS_O 0.942 0.826 0.880

Windows10_Agg_O 0.991 0.314 0.476

Windows10_O 0.968 0.742 0.840

Windows10_sA_O 1.000 0.999 1.000

Windows10_sS_O 0.834 0.929 0.879

Average 0.889 0.849 0.837

Table 9.Naïve Bayes IPFIX dataset confusion matrix

a b c d e f g h Classified

58903 0 0 0 75 0 0 0 a= ubuntu_Agg_O

1 53765 0 0 3 1387 0 0 b = Ubuntu_O

3 0 58991 0 12 0 26 0 c = Ubuntu_sA_O

1 0 0 48763 26 0 0 10266 d = Ubuntu_sS_O

39370 0 0 0 18221 1 0 513 e = Windows10_Agg_O

0 14856 0 1 2 42635 0 0 f = Windows10_O

0 0 1 0 21 0 59191 11 g = Windows10_sA_O

2 0 1050 3020 34 0 0 54025 h = Windows10_sS_O

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 28

In Table 10 and Table 11 are presented the details of the Ada Boost accuracy and

confusion matrix results of the IPFIX dataset.

Table 10. Ada Boost IPFIX dataset metrics

Labels Precision Recall F-measure

Ubuntu_Agg_O 0.815 0.581 0.678

Ubuntu_O 0.993 0.999 0.996

Ubuntu_sA_O 0.947 0.999 0.972

Ubuntu_sS_O 0.999 0.999 0.999

Windows10_Agg_O 0.785 0.813 0.799

Windows10_O 0.999 0.993 0.996

Windows10_sA_O 0.790 0.957 0.866

Windows10_sS_O 0.995 0.979 0.987

Average 0.915 0.915 0.912

Table 11. Ada Boost IPFIX confusion matrix

a b c d e f g h Classified

34166 0 745 18 12901 5 10951 32 a= ubuntu_Agg_O

0 58833 0 1 0 28 1 0 b = Ubuntu_O

0 0 58822 0 0 0 57 0 c = Ubuntu_sA_O

1 0 6 58979 0 31 5 21 d = Ubuntu_sS_O

7765 0 1 13 47065 10 2823 195 e = Windows10_Agg_O

1 384 0 4 0 57498 1 3 f = Windows10_O

4 1 2527 0 0 0 56561 14 g = Windows10_sA_O

0 0 2 34 0 5 1161 57101 h = Windows10_sS_O

In Table 12 and Table 13 are presented the details of the Cost Sensitive accuracy and

confusion matrix results of the IPFIX dataset.

Table 12. Cost Sensitive IPFIX dataset Metrics

Labels Precision Recall F-measure

Ubuntu_Agg_O 0.599 0.999 0.749

Ubuntu_O 0.794 0.976 0.876

Ubuntu_sA_O 0.982 0.999 0.991

Ubuntu_sS_O 0.942 0.826 0.880

Windows10_Agg_O 0.991 0.314 0.476

Windows10_O 0.968 0.742 0.840

Windows10_sA_O 1.000 0.999 1.000

Windows10_sS_O 0.834 0.929 0.879

Average 0.889 0.849 0.837

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 29

Table 13. Cost Sensitive IPFIX dataset confusion matrix

a b c d e f g h Classified

58903 0 0 0 75 0 0 0 a= ubuntu_Agg_O

1 57365 0 0 3 1387 0 0 b = Ubuntu_O

3 0 58991 0 12 0 26 0 c = Ubuntu_sA_O

1 0 0 48763 26 0 0 10266 d = Ubuntu_sS_O

39370 0 0 0 18221 1 0 513 e = Windows10_Agg_O

0 14856 0 1 2 42635 0 0 f = Windows10_O

0 0 1 0 21 0 59191 11 g = Windows10_sA_O

2 0 1050 3020 34 0 0 54025 h = Windows10_sS_O

In Table 14 and Table 15 are presented the details of the Naïve Bayes accuracy and

confusion matrix results of the NetFlow v9 dataset.

Table 14. Naïve Bayes NetFlow v9 dataset Metrics

Labels Precision Recall F-measure

Ubuntu_Agg_O 1.000 0.999 1.000

Ubuntu_O 1.000 0.666 0.800

Ubuntu_sA_O 0.999 1.000 1.000

Ubuntu_sS_O 1.000 1.000 1.000

Windows10_Agg_O 0.999 0.999 0.999

Windows10_O 0.754 1.000 0.859

Windows10_sA_O 1.000 1.000 1.000

Windows10_sS_O 0.999 1.000 0.999

Average 0.968 0.958 0.957

Table 15. Naïve Bayes NetFlow v9 dataset confusion matrix

a b c d e f g h Classified

294972 0 13 0 158 0 11 4 a= ubuntu_Agg_O

0 196629 28 0 0 98567 0 7 b = Ubuntu_O

0 0 295018 0 0 0 67 6 c = Ubuntu_sA_O

0 0 21 294919 0 0 2 69 d = Ubuntu_sS_O

1 0 13 0 302042 0 27 158 e = Windows10_Agg_O

1 1 28 0 0 301341 3 17 f = Windows10_O

12 0 23 0 1 0 294493 28 g = Windows10_sA_O

1 0 24 0 0 0 6 301341 h = Windows10_sS_O

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 30

In Table 16 and Table 17 are presented the details of the Ada Boost accuracy and

confusion matrix results of the NetFlow v9 dataset.

Table 16. AdaBoost NetFlow v9 dataset metrics

Labels Precision Recall F-measure

Ubuntu_Agg_O 1.000 0.999 1.000

Ubuntu_O 0.983 1.000 0.992

Ubuntu_sA_O 1.000 1.000 1.000

Ubuntu_sS_O 1.000 1.000 1.000

Windows10_Agg_O 0.999 1.000 1.000

Windows10_O 1.000 0.983 0.992

Windows10_sA_O 1.000 1.000 1.000

Windows10_sS_O 1.000 1.000 1.000

Average 0.998 0.998 0.998

 Table 17. AdaBoost NetFlow v9 dataset confusion matrix

a b c d e f g h Classified

294983 0 2 0 158 0 13 2 a= ubuntu_Agg_O

0 295180 9 0 0 36 3 3 b = Ubuntu_O

0 0 295078 0 0 0 7 6 c = Ubuntu_sA_O

0 0 4 294996 0 0 1 10 d = Ubuntu_sS_O

2 0 1 0 302184 0 44 10 e = Windows10_Agg_O

0 4963 5 2 0 296400 9 12 f = Windows10_O

0 0 31 0 1 0 294511 14 g = Windows10_sA_O

0 0 17 16 0 0 10 301329 h = Windows10_sS_O

In Table 18 and Table 19 are presented the details of the Cost Sensitive accuracy and

confusion matrix results of the NetFlow v9 dataset.

Table 18. Cost Sensitive NetFlow v9 dataset metrics

Labels Precision Recall F-measure

Ubuntu_Agg_O 1.000 0.999 1.000

Ubuntu_O 1.000 0.666 0.800

Ubuntu_sA_O 0.999 1.000 1.000

Ubuntu_sS_O 1.000 1.000 1.000

Windows10_Agg_O 0.999 0.999 0.999

Windows10_O 0.754 1.000 0.859

Windows10_sA_O 1.000 1.000 1.000

Windows10_sS_O 0.999 1.000 0.999

Average 0.968 0.958 0.957

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 31

Table 19. Cost sensitive NetFlow v9 dataset confusion matrix

a b c d e f g h Classified

294972 0 13 0 158 0 11 4 a= ubuntu_Agg_O

0 196629 28 0 0 98567 0 7 b = Ubuntu_O

0 0 295018 0 0 0 67 6 c = Ubuntu_sA_O

0 0 21 294919 0 0 2 69 d = Ubuntu_sS_O

1 0 13 0 302042 0 27 158 e = Windows10_Agg_O

1 1 28 0 0 301341 3 17 f = Windows10_O

12 0 23 0 1 0 294493 28 g = Windows10_sA_O

1 0 24 0 0 0 6 301341 h = Windows10_sS_O

Discussion
 In this section, the machine learning training and testing evaluation results of the

datasets are showcased in the tables above.

 The average machine learning scores for the IPFIX datasets are showcased in Table 6,

with the performance results for Naïve Bayes, Ada Boost, and Cost Sensitive algorithms

being 84.9%, 91.5%, and 84.6%, respectively. Table 8 presents the Naïve Bayes results of the

IPFIX dataset, with the average score of label classification for Ubuntu and Windows to be

82.9 % and 94.8 %, respectively. Table 10 presents the Ada Boost results of the IPFIX

dataset, with the average score of label classification for Ubuntu and Windows to be 93.8 %

and 89.2 %, respectively. Table 12 presents the Cost Sensitive results of IPFIX dataset, with

the average score of label classification for Ubuntu and Windows to be 82.9 % and 94.8 %,

respectively.

The average machine learning scores for the Netflow v9 datasets are showcased in

Table 7 with the performance results for Naïve Bayes, Ada Boost, and Cost Sensitive

algorithms being 95.8 %, 99.7%, and 95.8%, respectively. Table 14 presents the Naïve Bayes

results of Netflow v9 dataset, with the average score of label classification for Ubuntu and

Windows to be 99.7 % and 93.3 %, respectively. Table 16 presents the Ada Boost results of

Netflow v9 dataset, with the average score of label classification for Ubuntu and Windows to

be 99.5 % and 99.7 %, respectively. Table 18 presents the Cost Sensitive results of Netflow

v9 dataset, with the average score of label classification for Ubuntu and Windows to be 99.7

% and 93.3 %, respectively.

Both datasets have high accuracy results with all three (3) machine learning

evaluation algorithms. However, as mentioned in the prediction section , it was expected that

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 32

the Ubuntu label percentages would be lower because of the constrained responses but their

results was also highly performed.

Chapter 6 - Conclusion

In this thesis, we present the creation and assessment procedures of two OS

fingerprinting datasets, that assisted in the automated and precise active OS fingerprinting

scan detection. The raw captured data was captured and converted to NetFlow v9 and IPFIX

network flow versions, with the creation of two (2) datasets. Prior to the machine learning

evaluation, pre-processing of the datasets was conducted. The raw captured data was

analyzed and converted to NetFlow v9 and IPFIX network flow versions, creating two (2)

datasets. Prior to the machine learning evaluation, pre-processing was conducted with the

utilization of the Info Gain Attribute evaluator, a Feature Importance Ranking measure.

Following the feature ranking, the machine learning evaluation was conducted. For the

training and evaluation of the datasets, three (3) algorithms were utilized: Naive Bayes,

AdaBoost, and CostSensitive algorithms. For the IPFIX dataset, the results showcased 84.9%,

91.5%, and 84.9% accuracy, respectively. As for the NetFlow v9 dataset, the results

showcased 95.8%, 99.7%, and 95.8% accuracy, respectively.

Future Work
 Regarding the future steps of this thesis, a machine learning-based network

monitoring software could be built, in order to utilize this dataset, for precise active OS

fingerprinting scan detection, and even mitigation. This software could be utilizing the

nProbe software, since it provides real-time conversion of network traffic to Cisco’s latest

network flow standards, NetFlow v9 and IPFIX. Furthermore, the chance of adding more

diverse data, instead of only network-related, is considered as a next step procedure.

Moreover, more network traffic could be added to the dataset to support the detection of more

OSs (IOs, MacOS, Windows 11, etc).

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 33

Bibliography
[1] “Common cyber attacks.” https://www.cisco.com/c/en/us/products/security/common-

cyberattacks.html

[2] “Types of remote attacks.” https://support.eset.com/en/kb2907-types-of-remote-attacks

[3] “Reconnaissance.”

https://www.usna.edu/Users/cs/wcbrown/courses/si110AY13S/lec/l32/lec.html

[4] “OS fingerprinting.” https://resources.infosecinstitute.com/topic/must-know-os-

fingerprinting/

[5] “Netflow v9.”

https://www.cisco.com/en/US/technologies/tk648/tk362/technologies_white_paper091

86a00800a3db9.html

[6] “IPFIX.” https://www.ciscopress.com/articles/article.asp?p=2812391&seqNum=4

[7] T. Jirsík and P. P. Pavelčeleda, “Identifying Operating System Using Flow-based

Traffic Fingerprinting.” [Online]. Available: http://is.muni.cz/th/359565/fi_b

[8] R. Tyagi, T. Paul, B. S. Manoj, and B. Thanudas, “Packet Inspection for Unauthorized

OS Detection in Enterprises,” IEEE Secur. Priv., vol. 13, no. 4, pp. 60–65, Jul. 2015,

doi: 10.1109/MSP.2015.86.

[9] A. Aksoy and M. H. Gunes, “Operating System Classification Performance of TCP/IP

Protocol Headers,” 2016, doi: 10.1109/LCNW.2016.37.

[10] M. Lastovicka and D. Filakovsky, “Passive os fingerprinting prototype

demonstration,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and

Management Symposium, Apr. 2018, pp. 1–2. doi: 10.1109/NOMS.2018.8406128.

[11] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky, “Passive os

fingerprinting methods in the jungle of wireless networks,” in NOMS 2018 - 2018

IEEE/IFIP Network Operations and Management Symposium, Apr. 2018, pp. 1–9. doi:

10.1109/NOMS.2018.8406262.

[12] M. Lastovicka, A. Dufka, and J. Komarkova, “Machine Learning Fingerprinting

Methods in Cyber Security Domain: Which one to Use?,” in 2018 14th International

Wireless Communications & Mobile Computing Conference (IWCMC), Jun. 2018, pp.

542–547. doi: 10.1109/IWCMC.2018.8450406.

[13] D. H. Hagos, M. Loland, A. Yazidi, O. Kure, and P. E. Engelstad, “Advanced Passive

Operating System Fingerprinting Using Machine Learning and Deep Learning,” in

2020 29th International Conference on Computer Communications and Networks

(ICCCN), Aug. 2020, pp. 1–11. doi: 10.1109/ICCCN49398.2020.9209694.

[14] “Virtual Box.” https://www.virtualbox.org

[15] “Kali Linux.” https://www.kali.org/

[16] “Ubuntu.” https://ubuntu.com/

[17] “Windows 10.” https://www.microsoft.com/en-us/windows/windows-10-specifications

[18] “Wireshark.” https://www.wireshark.org/

Όνομα Φοιτητή: Νίκας Ευάγγελος Πολυνίκης

Σελίδα. 34

[19] “nProbe.” https://www.ntop.org/products/netflow/nprobe/

[20] “Pandas.” https://pandas.pydata.org/

[21] “WEKA.” https://www.cs.waikato.ac.nz/ml/weka/

[22] “SSH”, [Online]. Available: https://www.ssh.com/academy/ssh

[23] A. Zien, N. Krämer, S. Sonnenburg, and G. Rätsch, “The feature importance ranking

measure,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 5782 LNAI, no. PART 2, pp. 694–709, 2009, doi:

10.1007/978-3-642-04174-7_45.

[24] D. Gnanambal, D. Thangaraj, Meenatchi V T, and D. Gayathri, “Classification

Algorithms with Attribute Selection: an evaluation study using WEKA,” Int. J. Adv.

Netw. Appl., vol. 09, no. 06, pp. 3640–3644, 2018.

[25] S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine

Learning,” Nov. 2018, [Online]. Available: http://arxiv.org/abs/1811.12808

[26] J. Janssen and W. Laatz, “Naive Bayes,” in Statistische Datenanalyse mit SPSS, vol. 4,

no. 1, Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 557–569. doi:

10.1007/978-3-662-53477-9_25.

[27] W. Li and Q. Li, “Using Naive Bayes with AdaBoost to Enhance Network Anomaly

Intrusion Detection,” in 2010 Third International Conference on Intelligent Networks

and Intelligent Systems, Nov. 2010, pp. 486–489. doi: 10.1109/ICINIS.2010.133.

[28] L. Vinet and A. Zhedanov, “A ‘missing’ family of classical orthogonal polynomials,”

Proc. Seventeenth Int. Jt. Conf. Artif. Intell., p. 7, Nov. 2010, doi: 10.1088/1751-

8113/44/8/085201.

[29] J. Dj Novakovi, A. Veljovi, S. S. Ili, ˇ Zeljko Papi, and M. Tomovi, “Evaluation of

Classification Models in Machine Learning,” Theory Appl. Math. Comput. Sci., vol. 7,

no. 1, pp. 39–46, 2017.

