
HELLENIC MEDITERRANEAN UNIVERSITY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SCHOOL OF ENGINEERING

Integration of gene expressions with polymorphism data in
Systems Biology

Comparison with imaging techniques in Gliomas

A Bachelor of Science Thesis
Iosifidis Petros Konstantinos (4132)

Supervisor A: Prof. Dr. Tsiknakis Manolis
Supervisor B: Dr. Koumakis Lefteris

Heraklion, September 2022

Με επιφύλαξη παντός δικαιώματος. All rights reserved.
Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας πτυχιακής
εργασίας εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η
ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή
ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να
διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της πτυχιακής
εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι
απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τη
συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις
του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή
Μηχανικών του Ελληνικού Μεσογειακού Πανεπιστημίου.

ii

Acknowledgements

I would like to start this thesis off by thanking several people.
First and foremost I would like to thank my family for their
continuous love and support throughout the journey of my life and
subsequently my bachelors’ degree. I would like to thank the
educational staff of HMU for providing me the tools, knowledge
and inspiration to attempt the field of computer science. A special
thanks to Dr. Manolis Tsiknakis for supervising this thesis.
Furthermore, a special thanks to Dr. Kostas Marias for introducing
me to CV, taking me up on my wild goose chase and the pep talks
given in every lecture. A warm thanks to Evangelia Maniadi for
her quick walk-throughs through the bureaucracy of the university
system. Lastly I would like to address a special thanks to Dr.
Lefteris Koumakis for not losing hope in me and despite our
limited time frame coming up with an exciting strategy to tackle
the subject of this thesis; his contribution was invaluable.

Thanks, everyone.

-Petros Iosifidis

iii

Abstract

The present work outlines core aspects of machine learning in the fields of radiomics, genom-

ics, transcriptomics and radiogenomics. More specifically, it’s attempting through the usage of

multi-type data (including medical images, gene expressions, trascriptome expressions) to ad-

vance the diagnostic power of predictive models. In the same time, it’s trying to advance the

survival rate metrics using the same type of data in order to help with cancer correlations and

treatment observation and evaluation.

Starting off the reader will understand core concepts of the biomedical field, the nature of

the problem as well as the scope and target of this thesis. Continuing we will also give the

reader the necessary computational knowledge needed to follow up with the experiments.

Moving forward we perform a multi-type experiment attempting to merge radiogenomic clas-

sifiers with a better cancer survival rate. Lastly we present our results, give our outlook and

discuss about the work done & problems we encountered and close off by pondering over fu-

ture research.

The begin of the experiments starts with a lengthy preprocessing of approximately 4000

MRI blocks of multiple modalities (FLAIR, T1, T1CE, T2) and generation of custom input ob-

jects. Through the use of a DNN, namely a 3D CNN with modified inputs, we establish cancer

classification and semantic segmentation into 4 major classes(background, necrotic core/non

enhancing tumor, peritumoral edema, enhancing tumor) through the training and evaluation of

multiple segmentation models.

Using the imaging data, we extract a plethora of imaging features that we later use in gradi-

ent boosting (XGBOOST) to approximate survival prediction from the imaging data analysis.

Continuing with the genomic & trascriptomic data, we establish two major classes of “dead” or

“alive for over 100 days” and generate classifiers based on the multi-omic profiling of our

samples. Lastly we use the multi-omic data to generate powerful regressors for survival rate

prediction.

Key words: bioinformatics, radiogenomics, MRI, multi-omics, cancer, gliomas, Data

Preprocessing, 3D-CNN, Classification, Regression, Semantic segmentation, tumor

classification, Survival prediction

iv

Περίληψη

Η παρούσα εργασία σκιαγραφεί τις βασικές πτυχές της μηχανικής μάθησης στους τομείς της

ραδιονομικής, της γονιδιωματικής, της μεταγραφτομικής και της ραδιογονιδιωματικής. Πιο

συγκεκριμένα, επιχειρεί μέσω της χρήσης δεδομένων πολλαπλών τύπων

(συμπεριλαμβανομένων ιατρικών εικόνων, εκφράσεων γονιδίων, εκφράσεων

μεταγραφωμάτων) να προωθήσει τη διαγνωστική δύναμη των προγνωστικών μοντέλων.

Ταυτόχρονα, προσπαθεί να προωθήσει τις μετρήσεις του ποσοστού επιβίωσης

χρησιμοποιώντας τους ίδιους τύπους δεδομένων, προκειμένου να βοηθήσει με τις συσχετίσεις

του καρκίνου και την παρατήρηση και αξιολόγηση της καρκινικής θεραπείας.

 Ξεκινώντας ο αναγνώστης θα κατανοήσει τις βασικές έννοιες του βιοϊατρικού τομέα, θα

κατανοήσει τη φύση του προβλήματος καθώς και το εύρος και τον στόχο αυτής της διατριβής.

Συνεχίζοντας αποτυπώνουμε τον αναγνώστη τις υπολογιστικές γνώσεις που απαιτούνται για

την παρακολούθηση των πειραμάτων. Προχωρώντας, πραγματοποιούμε ένα πείραμα

πολλαπλών τύπων επιχειρώντας να συγχωνεύσουμε ραδιογονιδιωματικούς ταξινομητές με

καλύτερο ποσοστό επιβίωσης από καρκίνο. Τέλος, παρουσιάζουμε τα αποτελέσματά μας,

δίνουμε τις προοπτικές μας και συζητάμε για τη δουλειά που έχει γίνει και τα προβλήματα που

αντιμετωπίσαμε και κλείνουμε με το στοχασμούς για μελλοντική έρευνα.

 Η αρχή των πειραμάτων ξεκινά με μια μακρά προεπεξεργασία περίπου 4000 μπλοκ MRI

πολλαπλών τύπων (FLAIR, T1, T1CE, T2) και δημιουργία προσαρμοσμένων αντικειμένων

εισαγωγής. Μέσω της χρήσης ενός DNN, συγκεκριμένα ενός τρισδιάστατου CNN με

τροποποιημένες εισόδους, καθιερώνουμε την ταξινόμηση του καρκίνου και τη σημασιολογική

κατάτμηση σε 4 κύριες κατηγορίες (υπόβαθρο, νεκρωτικός πυρήνας/μη ενισχυτικός όγκος,

περιογκικό οίδημα, ενισχυτικός όγκος) μέσω της εκπαίδευσης και της αξιολόγησης έξι

μοντέλων πολλαπλής τμηματοποίησης εικόνας.

 Χρησιμοποιώντας τα δεδομένα απεικόνισης μας, εξάγουμε μια πληθώρα χαρακτηριστικών

απεικόνισης που αργότερα χρησιμοποιούμε στους ταξινομητές ενίσχυσης κλίσης (XGBOOST)

για να προσεγγίσουμε την πρόβλεψη επιβίωσης από την ανάλυση δεδομένων απεικόνισης.

Συνεχίζοντας με τα γονιδιωματικά και μεταγραφικά δεδομένα, καθιερώνουμε δύο κύριες

κατηγορίες «νεκρών» ή «ζωντανών για περισσότερες από 100 ημέρες» και δημιουργούμε

ταξινομητές με βάση το πολυ-ομικό προφίλ των δειγμάτων μας. Τέλος, χρησιμοποιούμε τα

v

πολλυ-ομικά δεδομένα για να δημιουργήσουμε έναν ισχυρό παλινδρομητή για την πρόβλεψη

του ποσοστού επιβίωσης.

Λέξεις Κλειδιά: βιοπληροφορική, μαγνητική τομογραφία, χαρακτηριστικά ιατρικής εικόνας,

3D-CNN, multi-omics, καρκίνος, προ-επεξεργασία δεδομένων, γλοίωμα, κατηγοριοποίηση,

παλινδρόμηση, σημασιολογική κατάτμηση, κατηγοριοποίηση όγκου, πρόβλεψη επιβίωσης

vi

Table of Contents

1 BIOMEDICAL LITERATURE..1
1.1 CELL..1
1.2 DNA...1

1.2.1 Genomics...2
1.3 RNA...2

1.3.1 Transcription..3
1.3.2 miRNA...3
1.3.3 Transcriptomics...4

1.4 BRAIN..4
1.4.1 Brain cell (Neuron)..4
1.4.2 Main parts of the brain..5

1.5 CANCER..6
1.5.1 Brain Cancer...7

1.5.1.1 Gliomas..7
1.5.2 Diagnosis...7

1.5.2.1 Radiology...8
1.5.2.1.1 MRI...8

1.5.3 Survival Rate..11

2 RESEARCH QUESTION..12
2.1 PROBLEMS...12
2.2 CURRENT ADVANCEMENTS..13
2.3 PROPOSED SOLUTION...13

2.3.1 Scope..14
2.3.2 Target...14

3 COMPUTATIONAL LITERATURE...15
3.1 DATA PREPROCESSING..15

3.1.1 MRI..15
3.1.1.1 Skull striping(fig.12)..15
3.1.1.2 Image Registration...16
3.1.1.3 Denoising...17
3.1.1.4 Bias field correction...18
3.1.1.5 Normalization..19

3.1.2 Tabular data...20
3.1.2.1 Class Imbalance...20

3.2 MACHINE LEARNING...22
3.2.1 Types of machine learning..23
3.2.2 Random Forest Classifier...24

3.2.2.1 Boosting...25
3.2.2.2 Gradient Boosting..25
3.2.2.3 Metrics...26

3.2.3 ANN...27
3.2.3.1 CNN...31

3.2.3.1.1 Unet...33
3.2.3.1.2 Metrics...34
3.2.3.1.3 Statistics or Deep learning?...34

3.3 IMAGE FEATURES..35
3.3.1 First order statistics...35
3.3.2 Shape Based (3D)..36

vii

3.3.3 Gray Level Co-occurrence Matrix...37
3.3.4 Gray Level Run Length Matrix...38
3.3.5 Gray Level Size Zone Matrix..40
3.3.6 Neighbouring Gray Tone Difference Matrix...41
3.3.7 Gray Level Dependence Matrix...42

4 CASE STUDY...44
4.1 ENVIRONMENT INFO..44
4.2 DATASETS...46

4.2.1 Image Data..46
4.2.2 Genomic and transcriptomic data..47

4.3 PREPROCESSING..48
4.3.1 Images..48

4.3.1.1 Bundling..51
4.3.1.2 Dataset Split...52

4.3.2 Multi-omic Data...52
4.4 IMAGE SEGMENTATION...54

4.4.1 Data Generators..55
4.4.2 Hyperparameters, optimizer, and callbacks...55

4.4.2.1 Hyperparameters..55
4.4.2.2 Optimizer...56
4.4.2.3 Callbacks..56

4.4.3 Model architecture...56
4.4.4 Model Training..57

4.5 FEATURE EXTRACTION..59
4.6 SURVIVAL PREDICTION FROM IMAGING DATA..61
4.7 MULTI-OMIC DATA ANALYSIS...65

5 RESULTS..73

6 DISCUSSION & OUTLOOK...76

7 FUTURE PROSPECTS...78

8 APPENDIX – SCRIPTS...79
8.1 RIG INFORMATION...79
8.2 IMAGE PREPROCESS PIPELINE...80
8.3 DATA BUNDLING..89
8.4 MULTI-OMICS..91
8.5 DATA GENERATOR..108
8.6 UNET...109
8.7 TRAIN...112
8.8 RETRAIN...115
8.9 IMAGE FEATURE EXTRACTION...118
8.10 IMAGE FEATURE SURVIVAL PREDICTION...124

9 BIBLIOGRAPHY..131
9.1 ONLINE SOURCES...131
9.2 REFERENCES..133

List of Figures
Figure 1: The Cell...1
Figure 2: Location of our DNA..2

viii

Figure 3: The process of transcription and translation...3
Figure 4: A biological neuron...4
Figure 5: The brain's anatomy..5
Figure 6: CT scan...8
Figure 7: MRI Scanner...9
Figure 8: T1..10
Figure 9: T1 CE..10
Figure 10: T2..10
Figure 11: FLAIR...11
Figure 12: Skull Striping..16
Figure 13: Image registration of MRI and fMRI..17
Figure 14: NLM filtering (A) noisy (B) filtered...17
Figure 15: Example of N4ITK before(a) & after (b)..19
Figure 16: Undersampling of majority class with K-means clusters...........................20
Figure 17: Oversampling with SMOTE...21
Figure 18: Oversampling with BorderlineSMOTE..21
Figure 19: Oversampling with ADASYN..21
Figure 20: AI and it's Subsets...22
Figure 21: Tools used in ML..24
Figure 22: RFC breakdown..25
Figure 23: Friedman's Gradient Boosting Algorithm[59]..26
Figure 24: A perceptron..28
Figure 25: Activation Functions...28
Figure 26: Basic Neural network, fully connected, multiple I/O.................................29
Figure 27: The three primary strips..29
Figure 28: Weight updates with various GD..30
Figure 29: Convolution..31
Figure 30: 2D CNN representation..32
Figure 31: Original UNet Architecture...33
Figure 32: Randomly chosen package #914 and slice #87..50
Figure 33: Randomly chosen package with visualized mask.......................................50
Figure 34: Distribution of classes after oversampling minority class..........................53
Figure 35: Original class distribution...53
Figure 36: Survival value distribution..53
Figure 37: Pruned and normalized survival value distribution....................................54
Figure 38: Tensorboard Graphs for model A..57
Figure 39: Predictions for model A..58
Figure 40: Prediction for model B..58
Figure 41: Tensorboard graphs for model B...59
Figure 42: Sample of survival csv files..59
Figure 43: Survival data distribution of the BraTS data..61
Figure 44: Prediction for non normalized data modality data......................................62
Figure 45: Prediction for non normalized merged modality set...................................63
Figure 46: Predictions for normalized modality data...64
Figure 47: Prediction for normalized merged data...65
Figure 48: XGB Classifiers predictions...71
Figure 49: Best Classifier Predictions..72

ix

List of Tables
 Table 1: Class imbalance tiers..20
 Table 2: Machine software and firmware versions...45
 Table 3: Python package versions..46
 Table 4: Example of survival data..46
 Table 5: Patient count for each dataset and type..47
 Table 6: Image data class labels...47
 Table 7: Gene expression data sample..47
 Table 8: Transcriptome expression data sample...48
 Table 9: Clinical data sample...48
 Table 10: Raw file suffixes...48
 Table 11: Elapsed time for preprocess pipeline..51
 Table 12: Final Image data quantities...52
 Table 13: Multi-omic class sample quantities..52
 Table 14: Merged dataframe sample..54
 Table 15: Time usage for feature extraction...60
 Table 16: Computational time for the entire project..73
 Table 17: CNN models categorical accuracy...73
 Table 18: Imaging survival predictor scores (non normalized)................................73
 Table 19: Imaging survival predictor scores (normalized).......................................73
 Table 20: Accuracy score of non normalized multi-omic classifiers.........................74
 Table 21: Accuracy score of normalized multi-omic classifiers................................74
 Table 22: K-FCV of our merged multi-omic regressor..74

x

List of Abbreviations and Symbols

GBM Glioblastoma

CV Computer Vision

csv comma-separated values

FLAIR Fluid Attenuated Inversion Recovery

LGG Low Grade Glioma

HGG High Grade Glioma

miRNA micro RNA

GAN Generative Adversarial Network

GD Gadolinium

CE Contrast Enhanced

DNA Deoxyribonucleic acid

RNA Ribonucleic acid

miRNA micro RNA

LR Learning Rate

ML Machine Learning

AI Artificial Intelligence

MSE Mean Square Error

RMSE Root Mean Square Error

I/O Input / Output

ncDNA non coding DNA

mRNA messenger RNA

ncRNA non Coding RNA

rRNA ribosomal RNA

 tRNA transfer RNA

CNS Central Nervous System

ROI Region of Interest

NN Nearest Neighbour

ADASYN Adaptive Synthetic

SMOTE Synthetic Minority Over-sampling Technique

IDH Isocitrate dehydrogenase

CSF Cerebrospinal Fluid

FC Fully Connected

MLP Multi Layer Perceptron

xi

1. Biomedical Literature

1 Biomedical Literature

Biology is the study of living things. In this section we give a brief overview of core con-

cepts the reader needs to know to understand the problem this thesis is trying to tackle.

1.1 Cell

Dubbed as the smallest unit of life that can live on it’s own by the dogma of Biology,

the cell is the principal building block of all organisms (even if it’s a one cell organ-

ism!). It consists of three main parts(fig.11):

1. the cell membrane, surrounds the cell and

controls it’s I/O stream

2. the cytoplasm, the fluid within the cell that

contains multiple smaller cell parts that per-

form certain functions (energy production,

protein forming, etc.)

3. the nucleus, which contains the cell’s DNA

Fun fact: the average human consists of more than 30 trillion cells!

1.2 DNA

DNA(fig.22) is a polymer composed of two polynucleotide chains that coil around

each other to form a double helix as proposed by Watson & Crick [16]. It carries ge-

netic instructions for the development, growth and reproduction of all known organ-

isms. Each DNA strand is made of four chemical units, called nucleotide bases, which

comprise the genetic "alphabet." The bases are adenine (A), thymine (T), guanine (G),

and cytosine (C).

The vast majority of our DNA (named ncDNA that composes 98% of our DNA)

doesn’t code proteins but serves functional roles (like the regulation of gene expres-

sion). It is believed that it has functions that are yet to be discovered3.

1 https://media.istockphoto.com/photos/internal-structure-of-an-animal-cell-3d-rendering-section-view-picture-id1306045773?
k=20&m=1306045773&s=612x612&w=0&h=81ecNdkPSXfw8gAYvZW-Aj_rocDDfjlfBqTrmPg5--M=

2 https://en.wikipedia.org/wiki/DNA#/media/File:Eukaryote_DNA-en.svg
3 https://www.lsi.umich.edu/news/2018-04/scientists-discover-role-%E2%80%98junk%E2%80%99-dna

1

Figure 1: The Cell

1. Biomedical Literature

A gene is a hereditary unit that we inherit from

our parents that define our characteristics(color of

eyes, height, etc). A human has about 23,000 such

instruction snipets. They are composed of DNA.

The complete set of an organisms genes is called

the genome. In humans the genome is approxim-

ately ~2% of our total DNA. Our genome is dis-

tributed in 46 chromosomes (23 pairs), half taken

from our mother and the other half from our father.

1.2.1 Genomics

The study of the genome and it’s environment is called Genomics. It is an interdisci-

plinary field of Biology. It aims at the collective characterization and quantification of

all of an organism's genes, their interrelations and influence on the organism[19].

A major milestone of the field is the completion of “The Human Genome Project”.

It is dubbed as one of the greatest scientific feats in history. It started in 1997 and it’s

aim was to decipher the chemical makeup of the human genome[17] and it finished in

2003[18] having completed about 92% of the total human genome sequencing.

1.3 RNA

RNA is also a nucleic acid that exists in all living cells. It has structural similarities to

DNA, but unlike DNA it is single stranded (with some exceptions to double stranded

RNA viruses and special RNA types). It is using the same bases as DNA [1.2] with the

only difference that it’s using uracil (U) instead of thymine (T). There are multiple

types of RNA but the three major types are:

• mRNA: DNA is stored inside the nucleus and under normal circumstances it

never leaves it. The mRNA comes into play to carry out information from the

nucleus to the cytoplasm

• rRNA: becomes part of the ribosome, which is the factory for protein synthesis

• tRNA: is the carrier of amino acids to the ribosome in order to complete the

protein synthesis

2

Figure 2: Location of our DNA

1. Biomedical Literature

1.3.1 Transcription

Transcription(fig.34) is the first step in gene expression, in which information from a

gene is used to construct a functional product such as a protein. The goal of transcrip-

tion is to make an RNA copy of a gene's DNA sequence5. For a protein-coding gene,

the RNA copy(transcript), carries the information needed to build a polypeptide (pro-

tein or protein subunit).

1.3.2 miRNA

The miRNA[18] is a small RNA segment that is produced by ncRNA. The job of

miRNA is to act as a gene regulator by intercepting the mRNA and silencing genes.

This happens because miRNA is partially complementary to the mRNA it’s trying to

oppress. As soon as it attaches itself to the mRNA, it will cause either it’s degradation

or prevent ribosomes from translating it.

The interesting thing about miRNA is that it can be associated with a plethora of

diseases, cancer being one of them[20],[21]. The very odd thing about it is that it has

both been associated with oncogenic events and as tumor suppressing agent!

We call this type of miRNA, an “oncomiR”. A list of miRNAs directly associated

with cancer can be found here6. Lastly, research has shown that miRNAs can directly

be associated with survival prediction in cancer patients [22], [23].

4 https://cdn.kastatic.org/ka-perseus-images/20ce29384b2e7ff0cdea72acaa5b1dbd7287ab00.png
5 https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/transcription-and-

rna-processing/a/overview-of-transcription
6 https://en.wikipedia.org/wiki/

Oncomir#Characteristics_and_mechanisms_of_some_well_defined_oncomirs

3

Figure 3: The process of transcription and translation

1. Biomedical Literature

1.3.3 Transcriptomics

Same as with Genomics in [1.2.1], transcriptomics study the transcriptome (the com-

plete set of RNA transcripts that are produced by the genome). The main focuses of

transcriptomics is how transcripts of a cell, tissue or living organism are influenced by

disease or other environmental factors[19], but scientists are also looking into other

functions for ncRNA.

1.4 Brain

The brain is the most complex organ inside the human body. It controls our thoughts, it

stores memories, expresses emotion through chemical reactions, understands and pro-

cesses complex signals from our sensors (vision from our eyes, audio from our ears)

and generally is the main operator behind most processes that are carried out inside

our body.

1.4.1 Brain cell (Neuron)

To further our understanding of the brain we begin with the smallest biological compu-

tational unit. The neuron[24](fig.47).

Neuron are primarily information messengers. They collect information from other

neurons on their dendrites via neurotransmitters. The information flows to the cell nuc-

7 The source of the image was google, but it has been lost

4

Figure 4: A biological neuron

1. Biomedical Literature

leus and gets stored in the axon hillock. When enough information is gathered to ex-

cite the neuron it generates an action potential. Then the information travels down the

axon, which is covered in myelin (layer that insulates the pathway so the signal won’t

loose it’s strength. The signal reaches the axon terminals and the neuron emits neuro-

transmitters. Lastly the neuron resets to prepare to fire again.

1.4.2 Main parts of the brain

The brain consists of approximately 100 billion neurons [1.4.1]! There are many more

parts in the brain than neurons. Synoptically the main parts of the brain are(fig.58):

• Frontal lobe, is our cognitive center (controls speech, judgement, etc.)

• Parietal lobe, helps with sensory information

• Temporal lobe, is responsible for memory and hearing

• Occipital lobe, processes input coming from our eye retina

• Cerebellum, primary motor functions and balance

• Spinal cord, is what connects our brain with the rest of the body forming the

CNS

8 https://www.hopkinsmedicine.org/-/media/images/health/1_-conditions/brain/brain-lobes-ana-
tomy.ashx

5

Figure 5: The brain's anatomy

1. Biomedical Literature

1.5 Cancer

Cancer is a genetic disease that is caused when cells in the human body disavow the

natural cycle of their lives by refusing to die when they become too damaged or dic-

tated to do so, or growing uncontrollably without being signaled to do so. This can

happen anywhere in the body because as mentioned in [1.1] the human body averages

over 30 trillion cells.

Cancerous cells that aren’t intercepted by our immune system might form clumps

that we call tumors. These tumors can be classified as:

• Benign, which is in general an overgrowth of human cells but may still pose a

serious threat to ones life. These usually don’t re-appear after being removed.

• Malign, where the tumor will start invading nearby tissue and start over con-

suming resources to the point that the further it expands, it’s internal area dies

from the lack of resources (oxygen, building blocks, etc.).

There are four distinct cancer stages and a preliminary stage:

• Stage 0: cancer is localized in the area that it started

• Stage I: cancer is localized to a small area and hasn’t spread to lymph nodes or
other tissues.

• Stage II: cancer has grown, but it hasn’t spread.
• Stage III: cancer has grown larger and has possibly spread to lymph nodes or

other tissues.
• Stage IV: cancer has spread to other organs or areas of the body. (metastasis)

Cancer is statistically likely to show up in our lives. A research facility in the UK

claims that one in two people will develop cancer in their lifetime9. There are multiple

major risk factors for cancer:

• Hereditary, if one or both parents had or develop cancer, the genes get passed

down to the children

• Exposure to radiation (Atomic accidents like Chernobyl(1986), or UV sun

rays) that causes destabilization of DNA which might lead to cancer

• Age, the older we get it’s more likely for an error to occur while cell replica-

tion happens leading to cancerous cells

9 https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/age-and-cancer

6

1. Biomedical Literature

1.5.1 Brain Cancer

Due to brain cancer not operating like other tumors (e.g. it’s very rare for a brain tu-

mor to metastasize outsize of the brain) a special grading system is used. The person-

nel in charge of diagnosing the grade will perform preliminary neurological tests to de-

termine the impact of the tumor on basic functions (speech, motor function, etc.). The

main factors used to asses the tumor include:

• Size, morphology and location

• Type of cells / tissue affected

• The possibility of the partial or full tumor volume being removed by surgery

(resectability) or cauterization

• The spread of the cancer within the brain or spinal cord

• The possibility the cancer metastasized outside the brain area or the CNS

1.5.1.1 Gliomas

Gliomas make up about 33% of the brain cancers. Glioma is an umbrella term that de-

notes cancers found in the glial cells. Glial cells are responsible to clean up after neur-

ons as well as resupply them with resources.

Usually the gliomas are named for the type of glial cell they resemble. The way we

grade gliomas is how aggressive they are and how fast they grow:

• LGG: grade I & II

• HGG: grade III & IV

Often times it’s not enough to grade a glioma by it’s type. A low grade glioma can

rise in grade if it shows excessive aggression or growth. It can also rise in grade if a

gene analysis finds high correlation with already established high grade gliomas (e.g.

GBM IDH wildtype is a grade IV glioma and currently the most aggressive brain can-

cer).

1.5.2 Diagnosis

Most cancers usually give a footprint signalling their existence. They might cause

pain, discomfort, and a myriad of other symptoms. A doctor will perform standard

physiological tests and look through the patients family medical record. In case they

7

1. Biomedical Literature

find something abnormal they might order lab tests(blood work), imaging tests(CT,

MRI, PET, Ultrasound) or even a biopsy where tissue and fluid from the tumor is ex-

tracted surgically and tested in a lab.

The problem with brain cancer, especially LGGs (because of the low growth rate) is

that the brain is encapsulated in our skulls. The brain itself does not have any pain re-

ceptors so brain cancer often times is very hard to diagnose. It will make itself known

through various symptoms among others:

• Headaches coming in various frequencies and severities

• Problems with cognitive functions

• Motor functions operating abnormally

• Drastic changes in personality

1.5.2.1 Radiology

Radiology is a field in medical science that works with imaging techniques to let doc-

tors see inside a patients body without invasive means. Despite the term containing the

word radiation not all of Radiology is radiation based (e.g. MRI, Ultrasound).

Radiology can be broken down into two categories:

• Diagnostic, imaging within the body:

◦ CT Scan

◦ MRI

◦ PET

◦ Ultrasound

◦ Mammography

• Interventional, when it’s used to guide a proced-

ure, like incision, catheter placement, etc.

The field that studies radiological data and extracts information in the forms of fea-

tures is called radiomics [3.4].

1.5.2.1.1 MRI

MRI is an imaging technology that produces detailed anatomical images of internal

body regions by non-invasive means.

8

Figure 6: CT scan

1. Biomedical Literature

It uses a giant magnet (Usually 1.5 or 3 Tesla but advancements in the field have

proved that high tesla magnets increase the quality of the pictures taken(e.g. the 11.7

tesla magnet used in the Iseult Project[27])) to create a unified magnetic field around

the patient.

When the patient enters the field the water molecules will align themselves with the

magnetic field due to hydrogen atoms acting as magnets. Low energy water molecules

also start spinning when we bombard them with a radio frequency waves by sapping

the energy needed from the radio waves.

When the radio waves are interrupted these molecules discharge the energy and re-

turn to equilibrium state while the rest of the water molecules keep spinning in re-

spects to the unified magnetic field. The MRI machine detects the movement of the

low energy water molecules and then translates that into slices based on a gradient. By

stacking these slices we obtain a 3D representation of the organ or we want to observe.

Because MRI doesn’t use radiation like X-Rays or CT scans do, it’s often the best

type of imaging for frequent studies although the cost can be rather high in comparison

to the aforementioned.

By changing the radio wave frequency and the gradient we obtain a different MRI

[28]. These are called MRI sequences10. Using different sequences yields different tis-

sue densities. Examples of sequences:

10 https://www.wikidoc.org/index.php/MRI_sequences

9

Figure 7: MRI Scanner

1. Biomedical Literature

• T1 (longitudinal relaxation time)(fig. 811):

◦ Fat: bright

◦ Muscle: gray

◦ Fluid: dark

◦ Moving blood: dark

◦ Bone: dark

◦ Air: dark

◦ Brain:

▪ Gray matter: gray

▪ White matter: bright

T1 is best used in assessing the anatomy as the image resembles the tissue macro-

scopically.

• T1 CE(or GD) (fig. 912):

Practically the same as T1 with the difference that the

patient is injected with GD. This is used to alter the mov-

ing blood density to bright. T1-CE is useful in assessing hy-

pervascular lesions.

• T2 (transverse relaxation time)(fig.1013):

◦ Fat: bright

◦ Muscle: gray

◦ Fluid: dark

◦ Moving blood: dark

◦ Bone: dark

◦ Air: dark

◦ Brain:

▪ Gray matter: gray

▪ White matter: bright

Used mostly as supplementary to T1, to help with the lesion analysis.

11 https://www.wikidoc.org/images/3/31/T1_acoustic-schwannoma-14.jpg
12 https://www.wikidoc.org/images/c/c8/T1_c_acoustic-schwannoma-14.jpg
13 https://prod-images-static.radiopaedia.org/images/

3374474/17d9d073fda711fd52fd1522243594_thumb.jpg

10

Figure 8: T1

Figure 9: T1 CE

Figure 10: T2

1. Biomedical Literature

• FLAIR (fig.11):

◦ Fat: bright

◦ Muscle: gray

◦ Fluid: dark

◦ Moving blood: dark

◦ Bone: dark

◦ Air: dark

◦ Brain:

▪ Gray matter: gray

▪ White matter: darker than gray matter

Useful in assessing lesions near ventricles, the lesion can easily be discriminated by

cerebrospinal fluid.

1.5.3 Survival Rate

Survival rate is a metric that is used to calculate the life expectancy of a cancer patient

based on previously recorded cases. It’s often spread into three time frames:

• 1st year mark

• 5 year mark

• 10 year mark

In some special cases (GBM IDH wildtype), the cancer is aggressive enough that

sub one year prediction metrics come into use[29]. Survival prediction isn’t set in

stone, one could argue that due to the older recordings of fatalities due to cancer the

prediction can be biased by the time frame they were taken in respects to the dia-

gnostic & technological level of the times. In recent years we’ve come to use survival

rate as a metric to observe and document the results of cancer therapy. There are mul-

tiple factors that form this metric14:

• Type of cancer (glioma, lymphoma, etc.)

• Stage of cancer ([1.5])

• Available treatment (chemotherapy, radiation, etc.)

• Age & gender,

By adding more data types (radiomic, genomic, etc.) to the factor section we are

able to create far more complex models to calculate the survival rate of a patient.
14 https://www.wcrf.org/cancer-trends/cancer-survival-statistics/

11

Figure 11: FLAIR

2. Research Question

2 Research Question

In this section we will discuss current problems related to cancer in multiple levels(so-

cial, diagnostic, treatment), efforts in the literature and give our proposed solution and

define the scope and target of this dissertation.

2.1 Problems

According to WHO, cancer is one of the leading causes of death on the planet surpass-

ing 10 million deaths in a year15! There are many problems associated with cancer, not

all of them being the cancer itself:

• Socioeconomic spectrum: According to Anna Lewandowska[34] in a study in-

volving 800 patients, they found out that cancer patients have a high level of

unmet needs especially in terms of psychological support and medical informa-

tion. Most of them find themselves in denial, despair and extreme anxiety.

These states have a high effect on the decision making and clairvoyance of the

situation the patient is in. On the same scope, a study in the UK [33] supports

that patients would get treated for their symptoms without the idea of cancer

being present based on socioeconomic and educational level factors.

• Lack of data: while there might be an influx of cancer caused deaths and new

cancer cases16over the last decade, the lack of large multi type datasets and

public data availability is impacting research teams across the globe and hin-

ders design and creation and evolution of prognostic, diagnostic and treatment

assessment tools.

• Diagnostic: Disavowing early signs. A Danish study [31] found out that the

mortality rate, due to general symptoms being present in a multitude of other

non-life threatening diseases therefore causing concern for a cancer diagnosis

to be non existent or low, to be increased. This happens as a result of the low

probability of the symptoms pointing to cancer.

15 https://www.who.int/news-room/fact-sheets/detail/cancer
16 https://www.cdc.gov/cancer/dcpc/data/index.htm

12

2. Research Question

• Biomarker complexity: despite continuous efforts in the multi-omic biomedi-

cal field a lot of the biomarkers fail to complete their clinical evaluation trials

due to the uniqueness of the cancers on a molecular level. A biomarker from

it’s discovery needs to be analytically validated and clinically evaluated before

it can be implemented clinically [32],[37].

2.2 Current advancements

With a great deal of problems comes a lot of attempts to solve them, some solution im-

plementations include:

• Cancer patient pathway (CPP): In many countries a “fast track” has been im-

plemented as a system to shorten the interval between consultation, diagnosis

and treatment in cases of suspected cancer [30].

• Multi datatype banks: efforts around the globe have started in the last decade

to create public datasets that document cancer cases with as much information

as possible (multi-omic data, medical imaging, patient metadata(background,

medical history, etc.) in order to give researches the data availability to find

deep structural patterns in various cancers as proposed by [36],[38].

• Precision medicine: we know that cancer varies from patient to patient in terms

of it’s uniqueness (genetic makeup, tissue it’s effecting, etc) alongside a

plethora of factors (patients health, demographics, etc). Precision medicine

treatment comes into play with advancements in the multi-omic fields which

lead to isolation of the genetic mutations of the tumors. This gives the medical

professionals handles to perform targeted treatment (immunotherapy, cancer

vaccine, etc) [35],[36].

2.3 Proposed solution

In our solution we are proposing a multi datatype classification of cancer with both ra-

diomic features [4.4] and multi-omic data [4.7]. Furthermore we aim to bring radiomic

extracted features (explained in [3.4]) and multi-omic related features together by cal-

13

2. Research Question

culating the accuracy of cancer survival rate predictors by utilizing ensembled models

of weak learners into powerful regressors [4.6], [4.7])

2.3.1 Scope

The general purpose of the study is to peer into the usage of multi-type data for the

purposes meta cancer analysis from a computational informatics perspective. The sam-

ples we obtained came from a vast number of institutes over the course of three years

of competitions (BraTS datasets ‘18-’19-’20). These contain multi-grade gliomas. The

gene & miRNA dataset came from a multi-omic benchmarking set [6]. From these we

used only the data addressed to GBM.

The duration of the study happened over the course of two months. We will be dis-

cussing about data preprocessing, various supervised machine learning methods[3.3]

(RFCs, gradient boosting, ANNs), class imbalance strategies and image features ex-

traction and usage[3.4][4.5][4.6].

2.3.2 Target

Our target is to come up with a way to combine imaging data with multi-omic data in

an effort to bolster classification of tumors and prediction of survival rates. In other

words we’ll try proving that the use of radiomic and multi-omic (genomic & trascrip-

tomic in this case) data can be used to have a more accurate classification of tumors

alongside better survival predictions.

 We aim to create a classifier / segmenter that locates and annotates the class

([4.2.1]) of a brain lesion (if a lesion exists) and extract it’s radiomic features based on

the predicted mask. We will then use these features to train a regressor to try and ap-

proximate the survival rate of the patient.

We also aim to create a classifier that takes genomic and trasncriptomic data and is

able to classify in between two classes ([4.2.2]). We will then use the multi-omic

dataset to create a regressor to extract survival predictions based on a multi-omic sam-

ple input([4.7]).

14

3. Computational Literature

3 Computational Literature

In this section we describe and analyze the informatics theoretical basics and various

other needed components to give the theoretical background of our analysis.

3.1 Data preprocessing

Two major data types are used in this study:

• MRI, 3D anatomical image of our brain

• Multi-omic expressions, tabular data

3.1.1 MRI

We define a 3D image as a function:

I(i, j, k)

in an arbitrary 3D space with i, j, k denoting spatial coordinates where:

• i = 0, …, M-1

• j = 0, …, N-1

• k = 0, …, D-1

Every (i, j, k) set translates to a voxel’s location in the 3D image.

The way we get MRIs is by firstly acquiring a 2D slice and then stacking it on an

axis. In MRIs a value is assigned to each of these voxels based on average magnetic

resonance characteristics present in the tissue corresponding to that voxel[44].

3.1.1.1 Skull striping(fig.1217)

MRIs of the brain come with a plethora of structures we don’t need(CSF, neck, skull,

eyes). Actions must be taken before we are left with just the brain tissue. A lot re-

searchers have tackled the issue with a wide variety of ways [45]:

• Morphology based methods: these use the morphological erosion and dilation

operations to separate the skull from the brain region

• Intensity based methods: these use the intensity values of the image pixels to

separate brain and non brain regions

• Deformable surface based methods: these evolve and deform an active con-

tour to fit the brain surface

17 https://jerrylinew.github.io/cs188/public/front.png

15

3. Computational Literature

• Atlas(or template) based methods: they rely on fitting an atlas on the MRI to

separate brain from non brain matter.

• Hybrid methods: these use all of the above in order to counteract a specific

methods’ disadvantages as illustrated by Kalavathi et al[45].

3.1.1.2 Image Registration

Image registration(fig.1318) is the geometrical alignment of an N number of images de-

picting the same scene in different time intervals and maybe the use of different

sensors (e.g. MRI sequences) [46].

These are important due to enabling healthcare professional from monitoring

growth patterns on tumors. For a two image system:

• I1, denotes the source image (the movable one)

• I2, denotes the target image (the static one),

most of the registration methods will usually follow these steps:

• Feature detection, locating distinctive objects (edge, contours, corners, geo-

metrical structures etc.)

• Feature matching, correlating detected features amongst the different source

image and the target image

• Transform model estimation, calculating the type of the mapping functions

that will help aligning the source image to the target image(translations, shears,

scaling, etc.)

• Resample and transformation, performing the transformations from the

model estimation and interpolates non integer spatial coordinates

18 https://els-jbs-prod-cdn.jbs.elsevierhealth.com/cms/attachment/e51bb6c2-629f-4b55-8fea-
677faf0299ae/gr2_lrg.jpg

16

Figure 12: Skull Striping

3. Computational Literature

3.1.1.3 Denoising

Noise can cause tremendous amount of corruption to our data, causing errors in

quantitative imaging with potential leading to miss diagnosis. There are multiple noise

factors in the process of acquiring MRI data:

• Thermal noise, coming from the machine itself

• Living noise, which is caused by bio processes inside the brain or movement

of the patient while inside the MRI machine

A standard way to filter MRIs has been proposed by Buades et al[47]. This uses the

self spatial similarities that natural images have by using the redundancy of the neigh-

bourhood pixels to remove the noise(fig.1419). A more detailed overview on various

filters and methods be found in [48].

19 Edit of : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0116986.g006&type=large

17

Figure 13: Image registration of MRI and fMRI

Figure 14: NLM filtering (A) noisy (B) filtered

3. Computational Literature

3.1.1.4 Bias field correction

The bias field is a low-frequency artifact that causes a smooth signal intensity varia-

tion within tissue of the same physical properties[44]. This gets exacerbated in older

MRI machines [49]. A very prominent way to fix this is by using an improved version

of the famous non parametric nonuniform intensity normalization (N3) [50], dubbed

“N4ITK” [51]. In short, it performs histogram normalization to vanish lightning de-

fects that may be caused by the magnetic coils.

Both N3 and N4 corrections assume that the non-uniformity in the MRI is multi-

plicative. This means that the noisy image (Ia) we get is a multiplication of a corrected

image (Ic) and a bias field (B) at each point. This is given by the equation:

Ia(r) = Ic(r) x B(r)

Both the techniques theorize that the log of the bias field (B(r)) is a zero centered

Gaussian distribution and so both of them operate in the log transformed space of im-

age intensities. This transforms the above equation from multiplication to addition:

log(Ia(r)) = log(Ic(r)) + log(B(r))

The process starts by masking the background. This happens in order to avoid areas

in the image where the signal intensity approaches zero. Then begins an iterative pro-

cess (usually this process has a function to break it out when demand is met but prac-

tically it’s used with a set number of iterations (n_total)):

i. The bias field histogram is calculated to sharpen the image. This is achieved by

using the Wiener deconvolution filter20(it uses a Gaussian kernel)

ii. The estimation of the bias field is smoothed by fitting it with 3D B-spline

field21

iii. Loops back to (i) until iter > n_total where the iterative process stops.

20 https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node15.html#SEC-
TION00533000000000000000

21 https://en.wikipedia.org/wiki/B-spline

18

3. Computational Literature

From there the bias field estimation is extrapolated over the entire field of view.

Lastly the noisy image Ia is divided by the bias field estimation to give us the approx-

imation of the corrected image Ic.

3.1.1.5 Normalization

We use normalization to bring the scale of image values to a range our neural network

can utilize for learning without the fear of model corruption. Depending on our uses

and targets the normalization might happen in two ranges:

• 0 … 255

• 0 … 1

The formula we use for normalization for any range [a, b] is given by the equa-

tion22:

22 https://en.wikipedia.org/wiki/Feature_scaling#Rescaling_(min-max_normalization)

19

Figure 15: Example of N4ITK before(a) & after (b)

3. Computational Literature

3.1.2 Tabular data

Tabular data are usually in csv files and are organized by rows and column, translating

into samples and features respectively. The same formula as in [3.1.1.5] is used to nor-

malize them.

3.1.2.1 Class Imbalance

Class imbalance occurs when we have a certain distribution of classes. In a two class

system the imbalance degree would be given by these percentages23:

There multiple ways to address class imbalance, some major concepts are:

• Undersampling the majority class:

◦ ClusterCentroids(fig, where the majority class is undersampled by repla-

cing a cluster of majority samples by the cluster centroid of a K-Means al-

gorithm24(fig.1625).

• Oversampling the minority class by augmentation:

23 https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-
data

24 https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.ClusterCentroid-
s.html

25 https://imbalanced-learn.org/stable/_images/sphx_glr_plot_comparison_under_sampling_001.png

20

Table 1: Class imbalance tiers

Figure 16: Undersampling of majority class with K-means clusters

3. Computational Literature

◦ SMOTE (fig.1726)[52], suggests that data should be oversampled by gener-

ation of synthetic minority samples using the interpolating pairs of the

minority classes original points

◦ BorderlineSMOTE (fig.1827)[53], is a variant of SMOTE that enforces the

synthetic minority samples to be at the border of the decision function

between other classes

◦ ADASYN (fig.1926)[54], works the same as SMOTE with the only differ-

ence that it will address the samples that are difficult to get classified with a

nearest neighbour rule, whereas SMOTE will be indifferent towards them

26 https://imbalanced-learn.org/stable/_images/sphx_glr_plot_comparison_over_sampling_006.png
27 https://imbalanced-learn.org/stable/_images/sphx_glr_plot_comparison_over_sampling_007.png

21

Figure 17: Oversampling with SMOTE

Figure 19: Oversampling with ADASYN

Figure 18: Oversampling with BorderlineSMOTE

3. Computational Literature

3.2 Machine Learning

In this section we explore one of, if not the most important, sector of modern informat-

ics. ML is a subset of Artificial intelligence(fig.2028)(AI is mostly boring mathematics

and philosophy, but as soon as it moves to solving computational problems it leaves us

all in awe).

As the title self explains, machine learning is when we use samples of experiences

to teach a machine, so that it may analyse them and derive knowledge from them. It

does this by approximations (in statistical machine learning) or by discovering deep

mathematical structures within the data (deep learning).

The core things needed to start solving machine learning problems are:

• A problem in need of solution

• Data correlating to the problem that can yield usable results

• Performance metrics in order to evaluate the models created

28 https://www.researchgate.net/profile/Akshaya-Karthikeyan-2/publication/357234810/figure/fig2/
AS:1103630992195584@1640137541038/Schematic-of-the-conventional-relationship-between-arti-
ficial-intelligence-AI-machine.png

22

Figure 20: AI and it's Subsets

3. Computational Literature

3.2.1 Types of machine learning

There are three core denominations of machine learning and a fourth one that utilizes

the best aspects of two of the main types (tools used by each can be found on fig.2129):

• Supervised learning, is when we are in full control of the training process.

This includes having a clearly defined task as well as properly structured data

with correct labels and tags. We train models based on authenticated data so

when we feed the predictive model new data that it hasn’t seen it might be able

to come up with correct predictions.

An example of this would be object classification and the CIFAR-1030 dataset con-

tains 10 classes and 60000 images!

• Unsupervised learning, is when we have data or labels but lack any annota-

tions. The results of this type varies and it’s never a good idea to use this for

practical models. It excels at exploratory operations due to it’s nature, by giv-

ing us an idea of what the data looks like or what structures might lie under-

neath.

An example of this would be the use of K-means algorithm in any dataset to de-

termine if there distinct classes exist.

• Reinforcement learning, is practically attempting to train a dog. The way this

works is by having an agent explore the environment it’s in and by taking any

action, it either gets rewarded if it performs positively or punished(penalized)

if it performs negatively. More professionally this means that it’s trying to

maximize it’s reward function while at the same time trying to minimize it’s

loss function. Since the data here have no labels the agent is doomed to brute

force the knowledge out of the data.

Bickering aside the example for this category would be an artificial dog. By letting

it loose on a virtual field or a house you would be able to reward it positively for good

behavior or punish it if it goes haywire and starts breaking the house.

29 https://cdn-images-1.medium.com/max/800/1*rbaxTrB_CZCqbty_zv2bEg.png
30 https://www.cs.toronto.edu/~kriz/cifar.html

23

3. Computational Literature

• Semi-supervised learning, is the middle ground of supervised and unsuper-

vised learning. Utilizing mostly unlabeled data and some data with a lot of

noise it is able to reach a generalization faster. The models produced aren’t as

good as the models from supervised learning, but semi-supervised learning is a

cheap way to reach a good point in both understanding your data alongside the

scope of your task.

A good example of this would be the semi-supervised protein classification as pro-

posed by Weston et al[57].

3.2.2 Random Forest Classifier

These derive from the ensemble of many Random Tree Classifiers(RTC) [58]. By tak-

ing a lot of weak learners, that we create by a random selection of features each time

results in them accumulating their result and averaging out their prediction. This way

they are able to beat the downside of a single RTC’s high variance and achieve better

generalization as showcased in fig.2231.

31 https://miro.medium.com/max/1200/1*hmtbIgxoflflJqMJ_UHwXw.jpeg

24

Figure 21: Tools used in ML

3. Computational Literature

3.2.2.1 Boosting

Boosting32 is an ensemble method where we build multiple weak learners one on top

of another in order to increase the predictive capabilities of the final estimator. The

main idea is that each new model added to the ensemble is attempting to fix the short-

comings of its ancestor.

An example with RTCs would be that the first model we build, regardless it’s ac-

curacy would be used to train the second model, another RTC. The second model

would then try to capitalize on the errors of the first one by focusing on learning the

correct predictions for the miss predictions of the first model. This process repeats till

a certain number of weak learners are conjoined in the ensemble or a certain threshold

is reached.

3.2.2.2 Gradient Boosting

The difference of gradient boosting [59](fig. 2333) from normal boosting is that it

focuses on the prediction error by factoring it in the next weak learner generation. It

appends the error (residuals) into the dataset, but it scales it down by the learning rate

32 https://en.wikipedia.org/wiki/Boosting_(machine_learning)
33 https://miro.medium.com/max/1400/1*dIHrPFBT2fmXuTXMb-3_Xw.png

25

Figure 22: RFC breakdown

3. Computational Literature

to intercept instances of over fitting. This process is iterative just like normal boosting

until a set number of iterations has passed or a threshold of performance is reached.

3.2.2.3 Metrics

For regression we use:

• MSE, which measures the squares of the error an estimator produces and the

ground truth34:

n being the quantity of predictions of a prediction vector

• RMSE, which measures the differences between values predicted by an estim-

ator and the ground truth35, theta being the estimator in question:

34 https://en.wikipedia.org/wiki/Mean_squared_error#cite_note-:1-1
35 https://en.wikipedia.org/wiki/Root-mean-square_deviation

26

Figure 23: Friedman's Gradient Boosting Algorithm[59]

3. Computational Literature

• K-fold cross validation, which is used to estimate the skill of an estimator on

unseen data. The process that happens in is very simple36:

1. If shuffle is set to true, the dataset is going to be shuffled

2. The dataset is split into K groups

3. For every K (or fold):

1. Take that fold out as a test set

2. Form the rest of the folds into a train set

3. Fit the created training set and evaluate it on the test set

4. Append the evaluation score to a list L and trash the model

4. Sum the list L and divide it by K to figure out the mean score

Typically K-Fold cross validation returns a positive number, but if the log_neg is

set to true it will return a negative.

For classification we use standard accuracy score:

Where TP = True positive, FP = False positive,

 TN = True negative, FN = False negative

3.2.3 ANN

Following on the biological neuron presented in [1.4.1] early researchers decided to at-

tempt to simulate the function of a biological neuron artificially. This gave birth to the

first artificial neuron, by Warren McCulloch and Walter Pitts[55].

Fifteen years later, psychologist Frank Rosenblatt proposed the Perceptron(fig.2437)

and gave birth to neural networks[56]. By taking Rosenblatts simple perceptron which

acted as a linear classifier, and by stacking multiple of them into layers non linear

functions could be solved38.

36 https://machinelearningmastery.com/k-fold-cross-validation/
37 https://en.wikipedia.org/wiki/Perceptron
38 https://analyticsindiamag.com/xor-problem-with-neural-networks-an-explanation-for-beginners/

27

3. Computational Literature

The way a single neuron works is as follows39:

• Set a static learning rate

• Initialize the weights (random small values or distributions)

• Sum all the weights multiplied by the inputs

• Add the bias factor by multiplying Xj,0 * bias

• And pass the result through an activation function(fig. 2540) to get Ypredicted

• Update the weights via:

n is the total number of samples, r is the learning rate, and d is the ground truth

• Repeat the process till the model converges or epoch requirement are met

39 https://en.wikipedia.org/wiki/Perceptron#Learning_algorithm
40 https://www.researchgate.net/publication/341310767/figure/fig7/

AS:890211844255749@1589254451431/Common-activation-functions-in-artificial-neural-net-
works-NNs-that-introduce.ppm

28

Figure 24: A perceptron

Figure 25: Activation Functions

3. Computational Literature

By stacking multiple of these perceptrons we obtain a basic neural network

(fig.2641).

The neural network is spread in 3

parts (fig.2742):

1. Input layer

2. Hidden layer

3. Output layer

Hyperparameters are global parameters that are set before the model is compiled.

They are used to control the way the model trains. These include:

• Learning rate, determines how fast the model is going to learn from samples.

Despite being a hyperparameter late literature has show that a decaying [61] or

cyclical LR [60],[61]; derived from natural processes can help boost the mod-

els convergence.

• Epochs, determines how many times the entire training set is going to pass

through the network

41 https://thumbs.dreamstime.com/b/neural-network-illustration-vector-deep-learning-concept-neural-
network-illustration-103427158.jpg

42 https://miro.medium.com/max/1400/1*f9XlMlruW7TMF3EHbPDfYg.png

29

Figure 26: Basic Neural network, fully connected, multiple I/O

Figure 27: The three primary strips

3. Computational Literature

• Hidden layers, determines how many internal layers the unit will have(kind

off deprecated considering we use high level APIs to build models now days)

• Batch size, determines how many samples are going in the model before a

weight update

• Dropout, a percentage (let’s call it dp) given to the neural network so it will

null dp% of the neurons in order to not over fit the model

Back propagation is the method the model updates it’s weights, among other it

could be, we can see how these work on (fig. 2843):

• SGD (stochastic): where the weights update every sample

• Mini-batch: where the weights update after every batch of samples

• Batch: where the weights update once every epoch

And finally, we need a way to properly update weights, possibly modify the LR,

and minimize the loss function per update iteration. All this is an optimizers job44.

Some optimizers may include:

• ADAM[62], standard deep learning optimizer

• SGD [63], is very slow and often times gets stuck on local minimas instead of

reaching the global minima

• AdaFAIR [13], has the ability to alleviate discrimination against minority

classes

• AdaBoost[64], is used for the creation of weak learners

43 https://miro.medium.com/max/908/1*bKSddSmLDaYszWllvQ3Z6A.png
44 https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optim-

izers/

30

Figure 28: Weight updates with various GD

3. Computational Literature

3.2.3.1 CNN

CNNs introduce the idea of convolution.

Convolution is basically applying a kernel over an image where each pixels value is

determined by the filter multiplied by the original image g(x, y) pixel values (fig2945).

CNNs have a specific architecture(fig.3046) that enables them to learn from im-

ages47.

This includes multiple level of convolutional layers followed by max pooling lay-

ers. The convolutional layers have the following parameters:

• Number of filters, how many random filters will it generate

• Kernel size, (how big the generated filter is going to be (this is a matrix

shape)):

◦ in 2D default kernels are: (2x2)

◦ in 3D default kernels are: (3x3x3)

• Stride, which determines how many pixels the filter is going to move next

• Kernel initialization: a method to generate these filters (e.g. he_uniform)

45 https://miro.medium.com/max/464/0*e-SMFTzO8r7skkpc
46 https://cdn-images-1.medium.com/max/1600/1*g6qPMZTpO2Nl9Y2dxwgvCA.png
47 https://aigents.co/data-science-blog/publication/introduction-to-convolutional-neural-networks-cnns

31

Figure 29: Convolution

3. Computational Literature

• The convolutional layer does the following:

1. Takes an input image

2. Pad the image in order to get all available information from the image

3. Initialize a number of random filters and iterate through the image

4. By convolution we reduce redundancy and leave the features flowing into

the next layers to have more information yield.

After each convolutional layer a max pooling layer exist. This has multiple causes:

• The Convolved features amassed from the convolutional layer are too big,

and they get scaled down to reduce computational cost via a dimensionality

reduction process.

• It’s very good for the dominant features because they are both positional

and rotational invariant, so they are maintained

Lastly after multiple steps of convolution and max pooling we reach the classifica-

tion layer. The usage of a FC (MLP like) layer of usually 3-5 layer size is a one way

ticket to learn the purpose of the non linear combination of abstract level structures

yielded from the convolutions. To do this we have to flatten the output of the last max

pooling layer. The output layer is a softmax layer with one neuron for each class

we’re trying to classify.

32

Figure 30: 2D CNN representation

3. Computational Literature

3.2.3.1.1 Unet

A U-net is a CNN architecture based network. It was primarily developed to tackle the

problem of biomedical image segmentation [65]. The architecture it’s using attempts

to maximize information yield on all levels of computation as well as utilizing all

knowledge acquired from the model by propagating it throughout all levels of the

model.

The model begins with a straight forward CNN classifier network (contraction

path) and yields increasingly powerful imaging features with each convolutional oper-

ation.

On the end of the contraction the condensed features are stored inside a vector

space. We’d like to add to this part, that this is how autoencoders(and their variations)

are created by replacing the vector space with a FC layer of arbitrary amount of layers.

 And then begins the expansion path, where high-resolution features from the con-

tracting path are concatenated with the upscaled (deconvoluted) data.

33

Figure 31: Original UNet Architecture

3. Computational Literature

All convolutions in the model are followed by a nonlinear function (ReLU) ensur-

ing integrity by not having negative values. After each max pool operation the feature

channels from the previous operation are doubled from the previous level. On the ex-

pansion path, this is reversed and they are divided by two.

3.2.3.1.2 Metrics

Metrics for neural networks can vary but in our case (image segmentation) we have

three very powerful ones:

• Categorical Accuracy, this measures how often the model gets the prediction

right. It generates two variables “total” & “count” that are used to store inform-

ation in regards to how many times did the predicted Y match the ground

truth48.

• Dice’s coefficient (DSC) [67],[68],[66], otherwise known as F1 score or

“Sørensen–Dice index”, it’s given by the formula:

• Intersection over Union (IoU), otherwise known as Jacards distance[69] that

is given by the formula:

3.2.3.1.3 Statistics or Deep learning?

As a data scientist it is very important to be able to recognize where each tool and

methodology should be used. According to [42], they led a study on various tasks

across 11 datasets for tabular data and found out that ensembled gradient boosted

forests (XGB ensembles) still outperformed Deep Learning. They did however accept

that deep learning models are still the leading methodology in complex operations like

semantic segmentation in images. Therefore for our analysis in [4.4] we choose to use

48 https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy

34

3. Computational Literature

a modified 3D-Unet for our imaging data and since the rest of the data (both the ones

we extracted and the ones we obtained are in tabular forms) to use XGBOOST.

3.3 Image Features

Image features represent characteristics that help us discriminate between ROIs and

background in MRIs by providing us with imaging biomarkers. These can rely on

shape based numerical measurements (like the total voxels present in the ROI) or

quantitative visual appearance (like the neighbouring voxel intensity)[44]. In this sec-

tion we analyse all the imaging features we extract from our imaging data as stated in

[15] and used in [4.5]

3.3.1 First order statistics

First-order statistics describe the distribution of voxel intensities within the image re-

gion defined -by the mask through commonly used and basic metrics. These include:

• Energy: is a measure of the magnitude of voxel values in an image. A larger

value implies a greater sum of the squares of these values

• Total Energy: is the value of Energy feature scaled by the volume of the voxel

in cubic mm

• Entropy: it specifies the uncertainty/randomness in the image values. It mea-

sures the average amount of information required to encode the image values

• Minimum: the minimum gray level value within the ROI

• 10th percentile: the 10th percentile of the gray level values within the ROI

• 90th percentile: the 90th percentile of the gray level values within the ROI

• Maximum: the maximum gray level value within the ROI

• Mean: the average gray level intensity within the ROI

• Median: the median gray level intestate within the ROI

• Interquartile Range: 75th percentile minus the 25th percentile of the image ar-

ray

• Range: Maximum – Minimum

• Mean Absolute Deviation(MAD): is the mean distance of all intensity values

from the Mean Value of the image array

35

3. Computational Literature

• Robust Mean Absolute Deviation (rMAD): is the mean distance of all inten-

sity values from the Mean Value calculated on the subset of image array with

gray levels in between, or equal to the 10th and 90th percentile

• Root Mean Squared (RMS): is the square-root of the mean of all the squared

intensity values. It is another measure of the magnitude of the image values

• Standard Deviation: it measures the amount of variation or dispersion from

the Mean Value

• Skewness: it measures the asymmetry of the distribution of values about the

Mean value

• Kurtosis: is a measure of the ‘peakedness’ of the distribution of values in the

image ROI

• Variance: is the mean of the squared distances of each intensity value from the

Mean value

• Uniformity: is a measure of the sum of the squares of each intensity value

3.3.2 Shape Based (3D)

In this group of features we included descriptors of the three-dimensional size and

shape of the ROI. These include:

• Mesh Volume: the volume of all the voxels in the ROI

• Voxel Volume: is approximated by multiplying the number of voxels in the

ROI by the volume of a single voxel

• Surface Area: first the surface area of each triangle in the mesh is calculated.

The total surface area is then obtained by taking the sum of all calculated sub-

areas

• Surface Area to Volume ratio: Surface Area divided by Voxel Volume

• Sphericity: is a measure of the roundness of the shape of the tumor region rel-

ative to a sphere

• Compactness 1: is a measure of how compact the shape of the tumor is rela-

tive to a sphere (most compact)

• Compactness 2: is a measure of how compact the shape of the tumor is rela-

tive to a sphere (most compact)

• Spherical Disproportion: is the ratio of the surface area of the tumor region to

the surface area of a sphere with the same volume as the tumor region

36

3. Computational Literature

• Maximum 3D diameter(Feret Diameter): is the largest pairwise Euclidean

distance between tumor surface mesh vertices

• Maximum 2D diameter (Slice): is the largest pairwise Euclidean distance be-

tween tumor surface mesh vertices in the row-column (generally the axial)

plane

• Maximum 2D diameter (Column): is the largest pairwise Euclidean distance

between tumor surface mesh vertices in the row-slice (usually the coronal)

plane

• Maximum 2D diameter (Row): is the largest pairwise Euclidean distance be-

tween tumor surface mesh vertices in the column-slice (usually the sagittal)

plane

• Elongation: it shows the relationship between the two largest principal compo-

nents in the ROI shape

• Flatness: shows the relationship between the largest and smallest principal

components in the ROI shape.

3.3.3 Gray Level Co-occurrence Matrix

A GLCM describes the second-order joint probability function of an image region con-

strained by the mask. This includes the features:

• Autocorrelation: is a measure of the magnitude of the fineness and coarseness

of texture

• Joint Average: is the mean gray level intensity of the i distribution

• Cluster Prominence: is a measure of the skewness and asymmetry of the

GLCM

• Cluster Shade: is a measure of the skewness and uniformity of the GLCM

• Cluster Tendency: is a measure of groupings of voxels with similar gray-level

values

• Contrast: is a measure of the local intensity variation, favoring values away

from the diagonal

• Correlation: is a value between 0 (uncorrelated) and 1 (perfectly correlated)

• Difference Average: it measures the relationship between occurrences of pairs

with similar intensity values and occurrences of pairs with differing intensity

values

37

3. Computational Literature

• Difference Entropy: is a measure of the randomness/variability in neighbor-

hood intensity value differences

• Difference Variance: is a measure of heterogeneity that places higher weights

on differing intensity level pairs that deviate more from the mean

• Joint Energy: is a measure of homogeneous patterns in the image

• Joint Entropy: is a measure of the randomness/variability in neighborhood in-

tensity values

• Informational Measure of Correlation (IMC) 1: it assesses the correlation

between the probability distributions of i and j (quantifying the complexity of

the texture), using mutual information I(x, y)

• Informational Measure of Correlation (IMC) 2: it also assesses the correla-

tion between the probability distributions of i and j (quantifying the complexity

of the texture)

• Inverse Difference Moment (IDM): is a measure of the local homogeneity of

an image

• Maximal Correlation Coefficient (MCC): he Maximal Correlation Coeffi-

cient is a measure of complexity of the texture

• Inverse Difference Moment Normalized (IDMN): is a measure of the local

homogeneity of an image

• Inverse Difference (ID): is another measure of the local homogeneity of an

image

• Inverse Difference Normalized (IDN): is another measure of the local homo-

geneity of an image

• Inverse Variance

• Maximum Probability: is occurrences of the most predominant pair of neigh-

boring intensity values

• Sum Average: measures the relationship between occurrences of pairs with

lower intensity values and occurrences of pairs with higher intensity values

• Sum Entropy: is a sum of neighborhood intensity value differences

• Sum of Squares(Variance): is a measure in the distribution of neighboring in-

tensity level pairs about the mean intensity level in the GLCM

38

3. Computational Literature

3.3.4 Gray Level Run Length Matrix

A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are

defined as the length in number of pixels, of consecutive pixels that have the same

gray level value. This includes the features:

• Short Run Emphasis (SRE): is a measure of the distribution of short run

lengths, with a greater value indicative of shorter run lengths and more fine

textural textures

• Long Run Emphasis (LRE): is a measure of the distribution of long run

lengths, with a greater value indicative of longer run lengths and more coarse

structural textures

• Gray Level Non-Uniformity (GLN): measures the similarity of gray-level in-

tensity values in the image, where a lower GLN value correlates with a greater

similarity in intensity values

• Gray Level Non-Uniformity Normalized (GLNN): measures the similarity of

gray-level intensity values in the image, where a lower GLNN value correlates

with a greater similarity in intensity values

• Run Length Non-Uniformity (RLN): measures the similarity of run lengths

throughout the image, with a lower value indicating more homogeneity among

run lengths in the image

• Run Length Non-Uniformity Normalized (RLNN): measures the similarity

of run lengths throughout the image, with a lower value indicating more homo-

geneity among run lengths in the image

• Run Percentage (RP): measures the coarseness of the texture by taking the ra-

tio of number of runs and number of voxels in the ROI

• Gray Level Variance (GLV): measures the variance in gray level intensity for

the runs

• Run Variance (RV): is a measure of the variance in runs for the run lengths

• Run Entropy (RE): measures the uncertainty/randomness in the distribution of

run lengths and gray levels

• Low Gray Level Run Emphasis (LGLRE): measures the distribution of low

gray-level values, with a higher value indicating a greater concentration of low

gray-level values in the image

39

3. Computational Literature

• High Gray Level Run Emphasis (HGLRE): measures the distribution of the

higher gray-level values, with a higher value indicating a greater concentration

of high gray-level values in the image

• Short Run Low Gray Level Emphasis (SRLGLE): measures the joint distri-

bution of shorter run lengths with higher gray-level values

• Short Run High Gray Level Emphasis (SRHGLE): measures the joint distri-

bution of shorter run lengths with higher gray-level values

• Long Run Low Gray Level Emphasis (LRLGLE): measures the joint distri-

bution of long run lengths with lower gray-level values

• Long Run High Gray Level Emphasis (LRHGLE): measures the joint distri-

bution of long run lengths with higher gray-level values

3.3.5 Gray Level Size Zone Matrix

A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray

level zone is defined as a the number of connected voxels that share the same gray

level intensity. This includes the features:

• Small Area Emphasis (SAE): is a measure of the distribution of small size

zones, with a greater value indicative of more smaller size zones and more fine

textures

• Large Area Emphasis (LAE): is a measure of the distribution of large area

size zones, with a greater value indicative of more larger size zones and more

coarse textures

• Gray Level Non-Uniformity (GLN): measures the variability of gray-level in-

tensity values in the image, with a lower value indicating more homogeneity in

intensity values

• Gray Level Non-Uniformity Normalized (GLNN): measures the variability

of gray-level intensity values in the image, with a lower value indicating a

greater similarity in intensity values

• Size-Zone Non-Uniformity (SZN): measures the variability of size zone

volumes in the image, with a lower value indicating more homogeneity in size

zone volumes

• Size-Zone Non-Uniformity Normalized (SZNN): measures the variability of

size zone volumes throughout the image, with a lower value indicating more

homogeneity among zone size volumes in the image

40

3. Computational Literature

• Zone Percentage (ZP): measures the coarseness of the texture by taking the

ratio of number of zones and number of voxels in the ROI

• Gray Level Variance (GLV): measures the variance in gray level intensities

for the zones

• Zone Variance (ZV): measures the variance in zone size volumes for the zones

• Zone Entropy (ZE): measures the uncertainty/randomness in the distribution

of zone sizes and gray levels

• Low Gray Level Zone Emphasis (LGLZE): measures the distribution of

lower gray-level size zones, with a higher value indicating a greater proportion

of lower gray-level values and size zones in the image

• High Gray Level Zone Emphasis (HGLZE): measures the distribution of the

higher gray-level values, with a higher value indicating a greater proportion of

higher gray-level values and size zones in the image

• Small Area Low Gray Level Emphasis (SALGLE): measures the proportion

in the image of the joint distribution of smaller size zones with lower gray-

level values

• Small Area High Gray Level Emphasis (SAHGLE): measures the proportion

in the image of the joint distribution of smaller size zones with higher gray-

level values

• Large Area Low Gray Level Emphasis (LALGLE): measures the proportion

in the image of the joint distribution of larger size zones with lower gray-level

values

• Large Area High Gray Level Emphasis (LAHGLE): measures the proportion

in the image of the joint distribution of larger size zones with higher gray-level

values

3.3.6 Neighbouring Gray Tone Difference Matrix

A Neighbouring Gray Tone Difference Matrix (NGTDM) quantifies the difference

between a gray value and the average gray value of its neighbours within distance δ.

This includes the features:

• Coarseness: is a measure of average difference between the center voxel and

its neighbourhood and is an indication of the spatial rate of change

• Contrast: is a measure of the spatial intensity change, but is also dependent on

the overall gray level dynamic range

41

3. Computational Literature

• Busyness: is a measure of the change from a pixel to its neighbour. A high

value for busyness indicates a ‘busy’ image, with rapid changes of intensity

between pixels and its neighbourhood

• Complexity: is considered complex when there are many primitive compon-

ents in the image

• Strength: is a measure of the primitives in an image. Its value is high when the

primitives are easily defined and visible

3.3.7 Gray Level Dependence Matrix

A Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in an

image. A gray level dependency is defined as a the number of connected voxels within

distance δ that are dependent on the center voxel. This includes the features:

• Small Dependence Emphasis (SDE): a measure of the distribution of small

dependencies, with a greater value indicative of smaller dependence and less

homogeneous textures

• Large Dependence Emphasis (LDE): a measure of the distribution of large

dependencies, with a greater value indicative of larger dependence and more

homogeneous textures

• Gray Level Non-Uniformity (GLN): measures the similarity of gray-level in-

tensity values in the image, where a lower GLN value correlates with a greater

similarity in intensity values

• Dependence Non-Uniformity (DN): measures the similarity of dependence

throughout the image, with a lower value indicating more homogeneity among

dependencies in the image

• Dependence Non-Uniformity Normalized (DNN): measures the similarity of

dependence throughout the image, with a lower value indicating more homo-

geneity among dependencies in the image

• Gray Level Variance (GLV): measures the variance in grey level in the image.

• Dependence Variance (DV): measures the variance in dependence size in the

image.

• Low Gray Level Emphasis (LGLE): measures the distribution of low gray-

level values, with a higher value indicating a greater concentration of low gray-

level values in the image

42

3. Computational Literature

• High Gray Level Emphasis (HGLE): measures the distribution of the higher

gray-level values, with a higher value indicating a greater concentration of high

gray-level values in the image

• Small Dependence Low Gray Level Emphasis (SDLGLE): measures the

joint distribution of small dependence with lower gray-level values

• Small Dependence High Gray Level Emphasis (SDHGLE): measures the

joint distribution of small dependence with higher gray-level values

• Large Dependence Low Gray Level Emphasis (LDLGLE): measures the

joint distribution of large dependence with lower gray-level values

• Large Dependence High Gray Level Emphasis (LDHGLE): measures the

joint distribution of large dependence with higher gray-level values

43

4. Case Study

4 Case Study

In all the previous sections we have analyzed core concepts from the domain of biol-

ogy[1.] and informatics[3.]. We have established a problem, a scope and a target[2.].

In this section we present a strategy to yield survival rate predictions on cancer pa-

tients based on a two part strategy which includes the usage of 3D CNN (3D-Unet)

and various weak learner approaches (RFC, XGBOOST).

4.1 Environment Info

We begin by giving a report of the packages used as well as the description of the ma-

chine where most computations took place.

Starting off with the machine description:

System: Windows

Release: 10

Version: 10.0.19044

Machine: AMD64

CPU:

 Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

 Base speed: 4,00 GHz

 Sockets: 1

 Cores: 4

 Logical processors: 8

 Virtualization: Enabled

 L1 cache: 256 KB

 L2 cache: 1,0 MB

 L3 cache: 8,0 MB

44

4. Case Study

RAM:

 Capacity: 16,0 GB

 Speed: 2133 MHz

 Slots used: 2 of 4

 Form factor: DIMM

 Total possible extension: 31,2 GB

GPU:

 NVIDIA GeForce GTX 1060 6GB

 Driver version: 31.0.15.1659

 Driver date: 23/6/2022

 DirectX version: 12 (FL 12.1)

DATA STORAGE:

 SSD ADATA SP550 (240GB)

Continuing with a table of basic architecture of software and firmware:

Software / Firmware Version
Anaconda Navigator 2.2.0
Jupyter Notebook 6.4.12
PyCharm Community Edition 2022.2
Python 3.9.12
CUDA 64_112
CUDA Computational Capabilities sm_35, sm_50, sm_60, sm_70, sm_75, compute_80
CUDNN 64_8
Libre Office 64_7.3.3.2

Table 2: Machine software and firmware versions

Finishing off with a table of all the packages used in python excluding the basic

python packages:

Package Version

pandas 1.4.3

numpy 1.21.5

keras 2.9.0

matplotlib 3.5.2

sklearn 1.1.1

45

4. Case Study

radiomics 3.0.1

nibabel 4.0.1

SimpleITK 2.1.1.2

imblearn 0.9.1

xgboost 1.6.1

tensorflow 2.9.1

Table 3: Python package versions

These were gathered through the use of Script [Rig information], except the rig in-

formation that were written down manually.

4.2 Datasets

In this section we give the overview of the data used in the experiment.

4.2.1 Image Data

The MRI images are acquired through the BraTS competitions datasets over the years.

There are duplicate data that are carried over from year to year. These are removed

based on the name mapping sheets that are given by the original data distributors. All

data are using the compressed nifti49 medical imaging protocol (including masks).

The data are accompanied by clinical metadata csv sheets supplying us with the age

of the patient(float), days of survival(int or N/A) and resection status(String or N/A).

The survival sheets format is identical across all three datasets.

BraTS19ID Age Survival Resection Status
BraTS19_CBICA_AAB_1 60.4630137 289 GTR
BraTS19_CBICA_AAG_1 52.2630137 616 GTR
BraTS19_CBICA_AAL_1 54.30136986 464 GTR
BraTS19_TCIA02_331_1 84.84383562 187 N/A
BraTS19_CBICA_AAP_1 39.06849315 788 GTR

Table 4: Example of survival data

49 https://radiopaedia.org/articles/nifti-file-format

46

https://radiopaedia.org/articles/nifti-file-format

4. Case Study

Each patient folder contains a segmentation mask and four modalities:

• T1

• T1-CE

• T2

• FLAIR

Dataset Type Count

BraTS 2018[1][2][3][4]
HGG 210

LGG 75

BraTS 2019[1][2][3][4][5]
HGG 259

LGG 76

BraTS 2020[1][2][3][4][5] Merged 369

Total 989

Table 5: Patient count for each dataset and type

All sets contain 3 distinct classes with labels:

Class Label
Background 0
Necrotic core / Non Enhancing Tumor 1
Peritumoral Edema 2
Enhancing Tumor 4

Table 6: Image data class labels

4.2.2 Genomic and transcriptomic data

We obtain the gene expression and miRNA for GBM from Ron Shamir’s lab50[6]. The

data are tabular and come in csv format. It needs to be mentioned that the clinical data

csv has a fair amount of faulty lines, they are mentioned inside the genomics notebook.

• Gene Expression Data: 538 samples, 12042 genes expressed

Index(Patient_ID) AACS FSTL1 ELMO2 CREB3L1 RPS11
TCGA.02.0001.01 6.500551 8.729663 5.511362 4.882953 10.984784
TCGA.02.0003.01 6.539245 9.794400 6.213981 4.836276 10.811245
TCGA.02.0004.01 7.377848 12.059550 7.051738 6.112444 10.436374
TCGA.02.0007.01 7.186891 4.945053 5.230444 5.818606 10.477304
TCGA.02.0009.01 7.675038 10.840095 6.620676 5.333213 10.637267

Table 7: Gene expression data sample

50 http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html

47

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html

4. Case Study

• miRNA Data: 575 samples, 534 transcriptomes expressed

Index(Patient_ID) ebv-miR-BART1-3p ebv-miR-BART1-5p ebv-miR-BART10
TCGA.02.0001.01 5.855126 5.799428 5.862059
TCGA.02.0003.01 5.801614 5.790478 5.818763
TCGA.02.0004.01 5.771332 5.758764 5.825401
TCGA.02.0006.01 5.763649 5.800184 5.831836
TCGA.02.0007.01 5.818828 5.800582 5.818181

Table 8: Transcriptome expression data sample

• Clinical Data: 629 samples, 137 columns

Column Value
CDE_DxAge 44.3
CDE_survival_time 353.0
days_to_last_followup 279.0
CDE_vital_status DECEASED

Table 9: Clinical data sample

4.3 Preprocessing

In this section we execute the preprocessing strategy as described in [3.2]. Multiple

sanity checks are being made throughout the scripts to make sure everything is work-

ing as intended.

4.3.1 Images

We begin the preprocessing by pathing the image training folder and extracting recur-

sively all files that end with a “nii.gz” suffix. We find that we have accumulated 4945

files. This is normal since we have five distinct file types:

Type Suffix
Mask _seg.nii.gz
FLAIR _flair.nii.gz
T1 _t1.nii.gz
T1-CE (GD) _t1ce.nii.gz
T2 _t2.nii.gz

Table 10: Raw file suffixes

From there we merge all the files in a single dataframe using the pandas library. We

generate a new location mirroring the original folder structure to store the prepro-

cessed data with minimal changes to the dataframe. We move the masks to the new lo-

cations as is with their new affixes (“_preprocessed”).

48

4. Case Study

We begin the preprocess pipeline by taking the lines of the primary dataframe of

locations one by one. Each image is getting loaded using the nibabel library and kept

in memory to later use the affine matrix & object header, both important to guarantee

data integrity for further usage of the preprocessed data in a full state.

From each of the four nifti object we extract the image array and we populate a list

with four slots, each containing a 3D image of dimensions (240 x 240 x 155) of it’s re-

spective modality. Using the “grab_NSD” function we calculate the estimated sigmas

with NaN intercept built in along the Z axis, giving us a single matrix with dimensions

(155 x 1) for each 3D packet.

Using the estimated sigmas alongside the Z axis we initialize the denoising process

through “denoise_process” and parallel cast it on four cores, each core handling a dif-

ferent modality. We apply the NLM filter from the skimage package on each 2D image

alongside the Z axis and filter each of the 2D slices as mentioned in [3.2.1.3]. This will

return each 3D packet with the Z axis on index 0 instead of index 2, meaning we have

flipped the image matrix.

Continuing we initialize a global bias field corrector filter from SimpleITK library

and pass each 3D flipped packet into “the bias_field_correction” function. We with-

draw the image matrices yet again alongside the Z axis and cast them in Float32 (Real

format) as it’s a dependency of the corrector function. Performing aggressive multiple

Otsu Threshold51 for histogram_bins = 200, we yield a mask that we cast into uint8,

again for dependency issues. Then we proceed by using the global corrector with the

2D image slice and the yielded mask. Then return the 3D packet once again.

Finally using the “data_nesting” function we grab the header and the affine matrix

of each image and we remake a nifti image which we save to the modified primary

location dataframe. Keep in mind that we use transpose from the numpy package on

the image matrix so the axis return to their original locations.

Using random from the core python library we pick a random line from the pro-

cessed dataframe and load it using “load_pack”. Using random again to pick a slice
51 https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_multiotsu.html

49

4. Case Study

number. Keep in mind for best visual results set the borders 40-50 from the start and at

least -20 from the end, in this case low_bound = 50 and high_bound=100. And finish

by plotting some pictures.

 The entire process was done using Script [Image Preprocess Pipeline].

50

Figure 32: Randomly chosen package #914 and slice #87

Figure 33: Randomly chosen package with visualized mask

4. Case Study

Time for the main preprocess pipeline to run:

Time it took for one line (four 3D images) 80.45 sec

Time estimation for entire dataset 22.10 hours

Actual time for the entire dataset 23.51 hours

Table 11: Elapsed time for preprocess pipeline

4.3.1.1 Bundling

Since the 2D extraction of slices and generation of appropriately 750k 2D slices in or-

der to use Jordan Colmans’ modified 2D Unet52[11] failed, due to computational infra-

structure constraints(model was generating 74,6 million trainable parameters) which

for the way they were feeding inputs (input being a multi modality image stack); re-

quired distributed strategy, we decided to follow technique from Dr. Sreenivas Bhat-

tiprolu53 were also a super stacked multi modality package is created by stacking the

3D modality blocks on top of each other as shown in Script [Data Bundling] for a

slightly modified 3D Unet. Nifti images are normalized into 0-255 range. Furthermore

the packets are pruned down to cubes of shape (128 x 128 x 128) for three reasons:

1. To tackle class imbalance by pruning the majority of non brain tissue back-

ground (black pixels)

2. To enable a 3D Unet to be able to perform filter generation without the need

for asymmetrical paddings

3. To be less computationally expensive when passed through a 3D Unet

Our newly formed four dimensional MRI packets ([0-2]x 240 x 240 x 155) are

ready but we are unable to save them as images of any kind, we proceed to save them

as numpy arrays and drop them in a merged “data” folder. Masks are also loaded and

pruned into (128 x 128 x 128) cubes. If a mask has less than 1% of valuable informa-

tion on it’s entirety the mask is dropped and the numpy array with the corresponding

mask is purged. The masks that remain get the non existent class label nullified by

turning the label “4” into label “3”. This happens to again help out the training

process of the modified Unet by having a range of labels [0,1,2,3] without interrup-
52 https://github.com/jordan-colman/DR-Unet104
53 https://youtu.be/ScdCQqLtnis

51

4. Case Study

tions. Lastly the masks get synced with the packets and are also moved in the merged

data folder sharing a same numeric affix.

4.3.1.2 Dataset Split

As a last step to finalize the preprocess of the imaging dataset, we use the

train_test_split function from the package sklearn.model_selection by passing it as in-

put a dataframe with the locations of the paired mask and arrays for a 20% split into a

validation set for the Unets' training. Then we run again the 80% dataset to get a 10%

test set for the Unets’ categorical accuracy. Our final data cluster ensures that we have

tackled a plethora of issues that can arise from training a DNN with raw data that suf-

fer from severe class imbalance, noise, etc. Our final data quantity is as follows:

Set Quantity of numpy array objects
Train 662

Validation 166
Test 92

Table 12: Final Image data quantities

4.3.2 Multi-omic Data

The preprocessing strategy for the multi-omic data includes the separation of the

dataset to two distinct classes which we extract from the clinical data through these

tags:

a) CDE_Status: Living & days_to_last_followup > 100

b) CDE_Status: Deceased

Samples that don’t belong to either of these classes (containing N/A or second part

of (a) not satisfied) are dropped from the dataset. Lastly, we take only the intersection

of patient_IDs in both the gene expression data and miRNA. This generates:

Class Quantity
CDE_Status == ’Living’ & days_to_last_followup > 100 103
CDE_Status == ‘Deceased’ 387

Total 490

Table 13: Multi-omic class sample quantities

52

4. Case Study

We observe that the classes are imbalanced. Copying the data to a new dataframe

and by utilizing the package imblearn we initialize three different methods to balance

our data distribution as shown in [3.2.2.4]:

• SMOTE

• BorderlineSMOTE

• ADASYN

Creating a copy of the balanced dataframes and using the min_max_scaler from the

package sklearn, we create a normalized version of the dataframe to compare with it’s

non normalized counterpart. Our four dataframes are now ready for the classifiers

[5.6].

Going back to the original dataframes, we concatenate the gene expression data and

the miRNA data into a singular dataframe alongside the index (we’ve already pruned

non intersection members at the start of [5.3.2]. And finally append the survival (in

days) of the patients as a feature column in the dataframe.

53

Figure 35: Original class distribution Figure 34: Distribution of classes after
oversampling minority class

Figure 36: Survival value distribution

4. Case Study

Observing multiple outlier cases we decide to prune the dataset by dropping the top

5% of the values (n=24) due to them holding over 45% of the value range upper limit,

alongside their samples. Then we normalize the entire dataframe feature wise. The fi-

nal dataframe shape is (457 x 12576). The finalized survival value distribution now

looks smoother.

The entire process took 2 minutes to complete, with Script [Multi-omics]

4.4 Image segmentation

In this section we analyse the modifications done to a standard CNN (3D Unet) as

showcased in [3.3.4.1]. Then we briefly talk about hyperparameters and analyse the

model and strategy used. Lastly, we present some training data and results. The theory

is explained in [3.3.4]

54

Figure 37: Pruned and normalized survival value distribution

Table 14: Merged dataframe sample

4. Case Study

4.4.1 Data Generators

Since we cannot use the internalized data generators from keras due to the nature of

our data packs, keras will only support up to 3D representations and our data packets

are in the fourth dimension due to a modality channel stack, we create custom generat-

ors. A custom generator is basically a function that instead of the “return” statement is

using the “yield” statement. We do this by using Script [Data Generator].

Depending on our batch size, the generator will return a block of the numpy array

objects as mentioned in [5.3.1.1]. In this case the batch_size is set to 1. This is because

of the limited GPU memory that can only facilitate the model itself and one data

packet at a time before running out of VRAM.

We create two data generators:

• Training data generator, which will feed the U-net

• Validation data generator, which will be used at the end of each epoch to assess

the model

4.4.2 Hyperparameters, optimizer, and callbacks

In this section we briefly describe our optimizer, hyperparameter settings, the call-

backs we use and how these function

4.4.2.1 Hyperparameters

• Batch_size = 1, reasons explained in [5.4.1]

• Epochs: depending on the model [0-6] different approaches were taken.

From mini models of 5-10 epochs to the main model of 100 epochs.

• LR: default at 1e-4 but often times used 1e-3 or even 1e-2 to train[Train] and

retrain[Retrain] models for 5 epochs with a LR_decay_rate = LR / Epochs to

simulate cyclical LR[14], therefore skipping the need to tune it as a hyperpara-

meter. This happens due to the nature of the model, each epoch takes approx-

imately 15minutes and another 3 minutes to finish validation and update

weights for a total of 18-20 minutes per epoch.

55

4. Case Study

4.4.2.2 Optimizer

For the experiments in [4.4.3] a standard Adam optimizer (as showcased in [3.3.4])

was used. We are supplying it with a learning rate and a decay rate as showed in

[4.4.2.1].

4.4.2.3 Callbacks

Model callbacks are functions that are called after every epoch. We use:

• model_save: used from tensorflow.keras.callbacks package to save the weights

of the model every time it’s prediction capability increases on the validation

set.

• Tensorboard54:

◦ Tracks and visualizes metrics such as loss and accuracy, etc.

◦ Visualizes the model graph

◦ Views histograms of weights, biases as they change over time

4.4.3 Model architecture

The model architecture is a modified version of a 3D Unet to facilitate the special data

packages that we are feeding it as inputs. The only difference from a 3D Unet as show-

cased in [3.2.3.1.1] is that it has two more input channels cause the input shape to con-

tain:

• Batch_IDX, self nulled due to current batch_size = 1

• X – Image Height = 128

• Y – Image Width = 128

• Z – Image Depth = 128

• C – Image Channels = 4, this is the range of the labels we want to segment

The input packet that goes into the network is an array containing:

[(none), (X, Y, Z), C]

The weights are initialized using he_uniform55 transform from tf.keras. This means

that it draws samples from a uniform distribution within [-limit, limit], where

54 https://www.tensorflow.org/tensorboard
55 https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform

56

4. Case Study

limit = √(6 /qinput) ,qinput is the number of input units in the weight tensor.

Overall the model is standing at 5,645 million parameters, all of them being train-

able. We instantiate the model from Script [Train], the model itself is stored in Script

[Unet].

4.4.4 Model Training

In this section we show graphs of metrics and losses of the two most prominent mod-

els. Overall six models were trained and two of them were retrained to boost categor-

ical accuracy by utilizing cyclical LR simulation. Despite best efforts to avoid unfair

prediction, the sparsity in the dataset is too great without some serious data augmenta-

tion.

• Model A (1):

Trained for epochs = 100

LR = 1e-4

Decaying_LR = Yes

Elapsed time: approximately 34hours

MeanIoU over the test set: 82%

57

Figure 38: Tensorboard Graphs for model A

4. Case Study

• Model B (3.1):

Trained for epochs = 20, in segments of 5 to reset it’s LR

LR = 1e-3

Decaying_LR = Yes

Elapsed time: approximately 7hours

MeanIoU over the test set: 78%

58

Figure 39: Predictions for model A

Figure 40: Prediction for model B

4. Case Study

4.5 Feature Extraction

To extract the imaging features that are thoroughly explained in [3.3] first we must

yield the survival data from three different survival csv files. We begin by populating

our location dataframe as we have done in previous chapters of this section. We then

load the survival data of all three csv files.

59

Figure 41: Tensorboard graphs for model B

Figure 42: Sample of survival csv files

4. Case Study

Using the patient IDs from the locations dataframe, we cross reference it with the

survival sets to yield the survival days of each patient. If the patient does not exist in-

side the survival sets or the survival days are N/A, we place a NaN placeholder in the

list, on it’s hypothetical index to prune the data later.

After having completed the aforementioned, we count 381 inputs to be NaN. Utiliz-

ing dataframe operations we quickly drop these values and reset the dataframe index

to intercept potential problems with iloc in the future. We perform frequent sanity

checks to ensure data won’t go missing. Finally from 989 lines we are left with 608

samples.

We instantiate four empty lists to facilitate each modality. Using the package pyra-

diomics56, we enable all imaging features and we instantiate an extractor. We perform

parallel casting of the extraction process including the T1 modality. It is acknowledged

that the T1 modality is not used in training the models mentioned in [4.4.4] but in our

judgement we would have one CPU core stall while the others worked, and the more

data we extract the better it’s going to be for our survival rate predictors in the next

chapter.

Finally we create four dataframes, one for each modality, from the feature lists. We

split the extra data (spatial information about the mask, tool versions, etc) from the

feature (tabular) data and now we have two dataframes per modality that we save un-

der /main/outputs/ as:

• Extra data <modality>_extras.csv

• Feature data <modality>_features.csv

Another csv is created to store the survival days of the 608 sample set and saved in

the same folder as the above. For chapter [4.5] the Script [Image Feature Extraction]

was used. Time usage for chapter [4.5]:

Operation Time
Single loc dataframe line 7.01 seconds
Approximation of all data 4263.95 seconds (71.06 minutes)
True time for full feature extraction 4469.47 seconds (74.49 minutes)

Table 15: Time usage for feature extraction

56 https://pyradiomics.readthedocs.io/en/latest/

60

4. Case Study

4.6 Survival Prediction from Imaging Data

Having extracted the imaging features now we can perform analysis utilizing weak

learners as showcased in [3.2.2]. We begin by loading our feature csv files for each

modality and appending the survival days as a feature column at the end.

We use the train_test_split method from the sklearn package and split our data into

80% training and 20% test sets. Random state is set to 42. For the four modalities this

works fine, but for the merged set we have to combine the previously split sets to not

have values from the training set into the test set of the merged set.

Initializing five XGBOOST Regressors with default settings. And fitting them to

our train X_train, Y_train sets as taken from train_test_split.

The XGBRegressors took 1.52s to train.

Training score: 87.44% for set: flair
Training score: 87.20% for set: t1
Training score: 86.70% for set: t1ce
Training score: 88.59% for set: t2
Training score: 87.67% for set: merged

K-Fold cross val(n=10) score: 82.26 for set: flair
K-Fold cross val(n=10) score: 76.46 for set: t1
K-Fold cross val(n=10) score: 84.39 for set: t1ce
K-Fold cross val(n=10) score: 79.99 for set: t2
K-Fold cross val(n=10) score: 99.38 for set: merged

MSE: 12732.87 for set: flair
MSE: 12977.93 for set: t1
MSE: 13482.55 for set: t1ce
MSE: 11571.53 for set: t2
MSE: 12503.22 for set: merged

61

Figure 43: Survival data distribution of the BraTS data

4. Case Study

RMSE: 112.84 for set: flair
RMSE: 113.92 for set: t1
RMSE: 116.11 for set: t1ce
RMSE: 107.57 for set: t2
RMSE: 111.82 for set: merged

62

Figure 44: Prediction for non normalized data modality data

4. Case Study

It’s normal for the MSE / RMSE scores to look absurd because the data are not nor-

malized. This is done in order to look for significant changes in the prediction in nor-

malized and non normalized datasets.

Moving forward we perform feature (column) wise normalization. Note that we do

not remove any high values due to the dataset being somewhat balanced. After we’re

done we repeat the process with new XGB Regressors.

XGBRegressors took 1.27s to train.

Training score: 83.03% for set: flair
Training score: 84.75% for set: t1
Training score: 80.42% for set: t1ce
Training score: 86.73% for set: t2
Training score: 85.25% for set: merged

K-Fold cross validation took 12.45s to estimate.

K-Fold cross val(n=10) score: 75.73 for set: flair
K-Fold cross val(n=10) score: 76.63 for set: t1
K-Fold cross val(n=10) score: 87.22 for set: t1ce
K-Fold cross val(n=10) score: 89.00 for set: t2
K-Fold cross val(n=10) score: 98.96 for set: merged

MSE: 0.01 for set: flair
MSE: 0.00 for set: t1
MSE: 0.01 for set: t1ce
MSE: 0.00 for set: t2
MSE: 0.00 for set: merged

RMSE: 0.07 for set: flair
RMSE: 0.07 for set: t1
RMSE: 0.08 for set: t1ce
RMSE: 0.07 for set: t2
RMSE: 0.07 for set: merged

63

Figure 45: Prediction for non normalized merged modality set

4. Case Study

64

Figure 46: Predictions for normalized modality data

4. Case Study

This chapter was completed using Script [Image Feature Survival Prediction]. Time

elapsed was approximately 1 minute.

4.7 Multi-omic Data analysis

Lastly, we use the preprocessed data we created in [4.3.2] to create multiple classifiers

and finally a regressor for survival prediction on the merged multi-omic set. Multiple

classifiers are used to compare between class imbalance control strategies and two

weak learners: RFC and XGBOOST for non normalized and normalized data. Script

used is still [Multi-omics]

We split all our sets into 80% train and 20% test with random state = 42. Then we

initialize for each data set (gene_exp, miRNA) and each oversampling strategy

(SMOTE, BorderlineSMOTE, ADASYN) a RFC and a XGB Classifier. Bellow are the

results of each one. To avoid having parts of the graph hidden, the legend is turned off.

Starting off with the non normalized sets: (Legend: Original(Blue), Predicted(Red))

Purple means that the prediction matches the ground truth:

65

Figure 47: Prediction for normalized merged data

4. Case Study

66

4. Case Study

67

4. Case Study

And now we repeat the same process for new classifiers on normalized data.

68

4. Case Study

69

4. Case Study

70

4. Case Study

Total time elapsed to train all 24 classifiers was about two minutes.

We now merge the two main datasets (gene_exp & miRNA) and only keep the

samples that are in the intersection of the two sets. Furthermore we drop any sample

that we don’t have the survival days and append the survival days as a feature column

at the end of the new dataframe. We are left with 457 samples containing 12577 fea-

tures.

71

Figure 48: XGB Classifiers predictions

4. Case Study

We perform multiple tests and use K-Fold cross validation[3.2.2.3] with number of

splits = 10 and enabled shuffling. Our initial random state is set to 42. Tests per-

formed:

• Raw survival days, normalized data:

K-fold cross validation took 231.16s with a score of: 55.90%

• Normalized survival days, normalized data:

K-fold cross validation took 211.29s with a score of: 57.99%

• Normalized & pruned(n=10) survival days, normalized data

K-fold cross validation took 197.23s with a score of: 27.87%

• Normalized & pruned(n=5%) survival days, normalized data

K-fold cross validation took 249.02s with a score of: 21.14%

• Normalized & pruned(n=5%) survival days, normalized data, CRS57 (rt=5)

K-fold cross validation took 230.84s with a score of: 28.56%

• Normalized survival days, normalized data, RRS58, CTS59 (n=.33)

K-fold cross validation took 213.03s with a score of: 25.07%

Overall time elapsed for the classifiers training was approximately 25 minutes.

57 CRS = Changed Random State
58 RRS = Removed Random State
59 CTS = Changed Test Split

72

Figure 49: Best Classifier Predictions

5. Results

5 Results

Though lengthy our experiment yielded some interesting results.

Total time to run all computations per department:

Operation(s) Total Time
Preprocessing 24,5 hours
Train 3D CNNs 52-55 hours
Evaluate models 1 hour
Extract radiomic features 75 minutes
Image survival predictor (train & eval) 1 minute
Multi-omic classifier (train & eval) 2 minutes
Multi-omic survival predictor (train & eval) 23 minutes
Total Elapsed ~ 82 hours

Table 16: Computational time for the entire project

The results of our imaging classifiers:

Type Accuracy
3D CNN (1st model) 82%
3D CNN (2nd model) 78%
3D CNN (3rd model) 75%
3D CNN (4th model) 69%
3D CNN (5th model) 68%
3D CNN (6th model) 42%

Table 17: CNN models categorical accuracy

The results of our imaging survival predictors for non normalized data:

Modality Train score K-FCV MSE RMSE
FLAIR 87.40% 82.26% 12732.87 112.84
T1 87.20% 76.46% 12977.93 113.92
T1-CE 86.70% 84.39% 13482.55 116.11
T2 88.59% 79.99% 11571.53 107.57
Merged 87.67% 99.38% 12503.22 111.82

Table 18: Imaging survival predictor scores (non normalized)

The results of our imaging survival predictors for normalized data:

Modality Train score K-FCV MSE RMSE
FLAIR 83.03% 75.73% 0.01 0.07
T1 84.75% 76.63% <0.01 0.07
T1-CE 80.42% 87.22% 0.01 0.08
T2 86.73% 89.00% <0.01 0.07
Merged 85.25% 98.96% <0.01 0.07

Table 19: Imaging survival predictor scores (normalized)

73

5. Results

The result of our non normalized multi-omic classifiers:

Set Classifier Oversampling Type Accuracy score
Gene Expression RFC SMOTE 76.62%
Gene Expression RFC BorderlineSMOTE 83.12%
Gene Expression RFC ADASYN 80.39%
Gene Expression XGBOOST SMOTE 88.31%
Gene Expression XGBOOST BorderlineSMOTE 89.61%
Gene Expression XGBOOST ADASYN 93.46%
miRNA RFC SMOTE 83.12%
miRNA RFC BorderlineSMOTE 77.92%
miRNA RFC ADASYN 68.21%
miRNA XGBOOST SMOTE 92.86%
miRNA XGBOOST BorderlineSMOTE 88.96%
miRNA XGBOOST ADASYN 88.08%

Table 20: Accuracy score of non normalized multi-omic classifiers

The result of our normalized multi-omic classifiers:

Set Classifier Oversampling Type Accuracy score
Gene Expression RFC SMOTE 79.22%
Gene Expression RFC BorderlineSMOTE 79.87%
Gene Expression RFC ADASYN 80.39%
Gene Expression XGBOOST SMOTE 93.51%
Gene Expression XGBOOST BorderlineSMOTE 90.91%
Gene Expression XGBOOST ADASYN 93.46%
miRNA RFC SMOTE 74.68%
miRNA RFC BorderlineSMOTE 75.97%
miRNA RFC ADASYN 75.16%
miRNA XGBOOST SMOTE 90.91%
miRNA XGBOOST BorderlineSMOTE 88.96%
miRNA XGBOOST ADASYN 90.20%

Table 21: Accuracy score of normalized multi-omic classifiers

The K-FCV result of our merged set (gene_exp & miRNA)

Normalized Days Special Prune Score
No - No 55.90%
Yes - No 57.99%
Yes - Yes(n=10) 27.87%
Yes - Yes(n=5%) 21.14%
Yes CRS(rt=5) Yes(n=5%) 28.56%
Yes RRS & CTS(n=.33) No 25.07%

Table 22: K-FCV of our merged multi-omic regressor

74

5. Results

To summarize, we achieved:

• Cancer diagnosis and semantic segmentation of the tumor at a categorical ac-

curacy of 82% and 78% with multiple different approaches utilizing modified

3D Unets and training six models.

• Survival type classification (classes from [4.3.2]) based on gene expression

data and miRNA data with our best score coming from the gene expression

data classified by a XGB Classifier after the data got normalized and balanced

with the use of SMOTE [4.3.2], [4.7] for a score of 93.51%.

• Merged omic set attempts only yielded a maximum of a score of 57.99% with

MSE of 0.05 and RMSE of 0.21. Given the oppressive amount of features the

dataset had against the amount of samples, we find this normal yet under-

whelming.

• And bringing it all together we created survival rate predictors for both the

imaging data (by extracting their imaging features and performing analysis

with weak learners) reaching a MSE of less than 0.01 in imaging [4.6] and

0.05 in merged multi-omic data analysis [4.7]

75

6. Discussion & Outlook

6 Discussion & Outlook

The objective of this thesis was to prove that it is possible to merge data obtained by

multiple scientific fields (biology & medicine) that are brought together by the field of

informatics in order to reach the goal of cancer diagnostic tools such as [4.4.4] and

[4.7] as well as survival rate predictions as shown in [4.6] and [4.7]. It also proved that

you can approximate a pretty accurate result in survival rates if you have multiple type

data sources(imaging, multi-omics, etc.).

Despite our poor results[5.] due to us still being naive to the grand scheme of 3D

semantic segmentation (we got a good slap from the danning krueger effect[40]) opti-

mal deep learning with neural networks is by far the bleeding edge in terms of seman-

tic segmentation in medical imaging with scoring as much a 0.95 dice score[39]!

For the multi-omics part on the other hand, some ANN based approaches fall be-

hind [41]. Despite DNNs being able to discover structures inside big data, problems

arise when our features far exceed our samples. It’s causing the model to over fit re-

sulting in the model loosing predictive capabilities. This is why XGBOOST usually

outperforms standard ANNs in tabular data classification & regression[42]. Despite all

that in respects to multi-omics as a whole, given the sheer volume of data that exists

and continues generating; DNNs will surely play a very important role in the year to

come.

Recent scientific literature indicates that quantitative features extracted from multi-

modal imaging data (CT, MRI, X-Ray) can be used as imaging biomarkers to charac-

terize a lesion. Added to this imaging arsenal, multi-omics data acquisition being per-

formed alongside imaging data acquisition with the result of a slow but steadily in-

creasing quantity of data. Soon we will be able to engage into large scale research with

deep learning models in the field of radiogenomics[43]

For our closing remarks we’d like to state that we started this thesis with a serious

limitation on time, knowledge and sense of time but despite that still choose to fully

embrace the idea behind a thesis (by learning new things and applying them in order to

76

6. Discussion & Outlook

solve a problem[2.1],[2.3]) we have to say that we are positively surprised by the turn

of events (in respect to our results[6.]).

Overall, parts of our knowledge in machine learning techniques and bioinformatics

have been re-established through trial and error and have set the stage for much more

knowledge to come and experiments to be made. For that, we are grateful.

77

7. Future Prospects

7 Future Prospects

Moving forward in the brave new world of bioinformatics, we would like to further

our experimentation on multiple levels. These include but are not limited to prepro-

cessing, training models and data augmentation. Our focus is to expand our research

horizons by asking increasingly more complex questions to further understand prob-

lems inside the domain of bioinformatics and systems biology as a whole with the aim

to figure out solutions.

In the preprocessing part, we would like to experiment with ANN/DNN based

methods for denoising as presented in papers like [7], [8] and bias field correction as

presented in papers like [9], [10].

In the segmentation model part, we would like to experiment with multiple neural

networks, as mentioned already in the aftermath of the failed attempt mentioned in

[4.3.1.1]. Another approach we would like to look into is ensemble learning by utiliz-

ing different types of neural networks and attempt to make a super accurate segmenter

networks with the ability to generalize in brain gliomas. Subsequently, we would also

like to use different optimizers(AdaFair [13]) and hyperparameter tuning strategies.

In the regression and classification part we would like to take the time and analyze

our features. Due to our limited time, resources and knowledge some important steps

were not used that would have yielded optimal or at least better results. Example of

this would be [4.7], [4.6] where the entire datasets were used instead of proper feature

weighting and massive feature drops.

Lastly, we understand the diversity and sparsity of datasets due to problems men-

tioned in [3.1]. Therefore we would also tap into data augmentation with the usage of

conventional methods like random affine, elastic and pixel wise transformations on

our currently available datasets, as well as utilizing deep GANs in order to create new

and unseen data as showcased in [12].

The End.

78

8. Appendix – Scripts

8 Appendix – Scripts

8.1 Rig information
#!/usr/bin/env python

print(f'Python version: {platform.python_version()}')

sys_details = tf.sysconfig.get_build_info()
print(f'CUDA version: {sys_details["cuda_version"]}')
print(f'CUDA computational capabilities:
{sys_details["cuda_compute_capabilities"]}')
print(f'CUDNN version: {sys_details["cudnn_version"]}')

tools = ['pandas','numpy','keras','matplotlib','sklearn','radiomics',
 'nibabel','SimpleITK','imblearn','xgboost','tensorflow']
packages = {}

for i in range(len(tools)):
 try:
 packages[tools[i]] = import_module(tools[i])
 temp = packages[tools[i]].__version__
 if i < 3:
 print(f'Package: {tools[i]}\t\t is in version:\t {temp}')
 else:
 print(f'Package: {tools[i]}\t is in version:\t {temp}')
 except (PackageNotFound, NameError):
 print(f'Package: {tools[i]}\t is in version:\t {version(tools[i])}')

79

8. Appendix – Scripts

8.2 Image Preprocess Pipeline

def grab_NSD(img_data, depth_len):

 """

 Simple function to grab sigma estimates from MRI slices with NaN intercept

 img_data : i x j x z image data matrix

 depth_len : slice count (Z)

 """

 temp_list_a = []

 for i in range(depth_len):

 X = np.mean(estimate_sigma(img_data[:, :, i]))

 if np.isnan(X):

 temp_list_a.append(1)

 else:

 temp_list_a.append(X)

 return np.float64(temp_list_a)

def denoise_img_data(temp_list_A, temp_list_B):

 """

 Clutter control function to generate NLM denoised images

 temp_list_A: a 3D MRI image

 temp_list_B: the estimated sigma values for each Z depth slice of temp_list_A

 """

 a = []

 options = dict(fast_mode=True, # true for non gaussian

 patch_size=5, # 5x5 patches

 patch_distance=6, # 13x13 search area

 multichannel=False)

 for i in range(len(temp_list_B)):

80

8. Appendix – Scripts

 a.append(denoise_nl_means(temp_list_A[:, :, i], h=1.15 * temp_list_B[i],

**options))

 return a

def denoise_process(i):

 """

 Denoise function to assist with

 Parallel error intercept due to i/o stream going ballistic

 i: counter for delayed

 """

 stream = getattr(sys, "stdout")

 f = denoise_img_data((temp_list_A[i]), temp_list_B[i])

 stream.flush()

 return f

def bias_field_correction(i):

 """

 Bias field correction function to assist with

 Parallel error intercept due to i/o stream going ballistic

 i: counter for delayed

 """

 stream = getattr(sys, "stdout")

 f = []

 for j in range(Z_depth):

 # cast image to Real ITK format

 obj_f = sitk.GetImageFromArray(temp_list_C[i][j])

 obj_f = sitk.Cast(obj_f, sitk.sitkFloat32)

 # Cast mask to uint8 format

 mask_image = sitk.OtsuMultipleThresholds(obj_f, 0, 1, 200)

81

8. Appendix – Scripts

 mask_image = sitk.Cast(mask_image, sitk.sitkUInt8)

 # note that both casts are done as a dependency to the correction execute seq , it's

an inconvenience

 # but my time management is BAD so this will have to do for now , might change

it later

 bias_corrected_img = corrector.Execute(obj_f, mask_image)

 # return the image slice to original 240x240 dimensions and drop it on the

Z_depth stack

 f.append(sitk.GetArrayFromImage(bias_corrected_img))

 stream.flush()

 return f

def data_nesting(x):

 """

 data saving function to assist with

 Parallel error intercept due to i/o stream going ballistic

 i: counter for delayed

 """

 stream = getattr(sys, "stdout")

 hdr = object_nifti[x].header

 aff = object_nifti[x].affine

 finalized_nifti_img = nib.Nifti1Image(np.transpose(np.array(temp_list_D[x]),

axes=(1, 2, 0)), aff, hdr)

 nib.save(finalized_nifti_img, finalized_locs.iloc[i][x + 1])

 stream.flush()

82

8. Appendix – Scripts

def create_dir_tree_without_files(src, dst):

 # src https://www.geeksforgeeks.org/python-copy-directory-structure-without-files/

 # getting the absolute path of the source

 # directory

 src = os.path.abspath(src)

 # making a variable having the index till which

 # src string has directory and a path separator

 src_prefix = len(src) + len(os.path.sep)

 # making the destination directory

 os.makedirs(dst)

 # doing os walk in source directory

 for root, dirs, files in os.walk(src):

 for dirname in dirs:

 # here dst has destination directory,

 # root[src_prefix:] gives us relative

 # path from source directory

 # and dirname has folder names

 dirpath = os.path.join(dst, root[src_prefix:], dirname)

 # making the path which we made by

 # joining all of the above three

 os.mkdir(dirpath)

def load_pack(index, slice_index):

 """

 simple data grabber

 index: number that indicates which image set will be grabbed from the location

dataframes

83

8. Appendix – Scripts

 slice_index: number that indicates which Z-depth slice is gonna get grabbed

 """

 # mask

 mask = nib.load(finalized_locs.iloc[index][0]).get_fdata()[:, :, slice_index]

 # a raw data sample

 raw_img = [(nib.load(raw_data_loc.iloc[index][x]).get_fdata())[:, :, slice_index] for

x in range(1, 5)]

 # a preprocessed data sample

 prep_img = [(nib.load(finalized_locs.iloc[index][x]).get_fdata())[:, :, slice_index]

for x in range(1, 5)]

 return mask, raw_img, prep_img

def plot_pack(mask, raw_img, prep_img):

 """

 simple data plot

 mask: 240x240 segmentation mask

 raw_img : list[0-4] of 240x240 images

 prep_img : same as above

 """

 names = ["flair", "t1", "t1c", "t2"]

 plt.figure(figsize=(17, 17))

 for i in range(4):

 plt.subplot(1, 4, i + 1)

 plt.title("Original " + names[i])

 plt.imshow(raw_img[i], cmap='gray')

 plt.imshow(mask, cmap='jet', alpha=.33)

84

8. Appendix – Scripts

 plt.figure(figsize=(17, 17))

 for i in range(4):

 plt.subplot(1, 4, i + 1)

 plt.title("Processed " + names[i])

 plt.imshow(prep_img[i], cmap='gray')

 plt.imshow(mask, cmap='jet', alpha=.33)

 plt.show()

~~ *** ~~~ *** ~~~ *** ~~~

Initial data loc grab of the BraTS datasets

files = glob('X:\Datasets\BraTS\DATA\DATA_Training***.nii.gz', recursive=True)

train_files_masks = glob('X:\Datasets\BraTS\DATA\DATA_Training***seg.nii.gz',

recursive=True)

train_files_scans = [fn for fn in (filter(lambda x: not x.__contains__("seg"), files))]

print(f'Found masks :{len(train_files_masks)} and scans:{len(train_files_scans)}.')

separating scan pairs and merging data locations

flair = []

t1ce = []

t1 = []

t2 = []

for x in train_files_scans:

 if "t1ce.nii.gz" in x:

 t1ce.append(x)

 elif "t1.nii.gz" in x:

 t1.append(x)

 elif "t2" in x:

 t2.append(x)

 elif "flair.nii.gz" in x:

 flair.append(x)

 else:

85

8. Appendix – Scripts

 print("Something funny happened.")

 break

print(f'Accumulated -> Flair:{len(flair)}, T1:{len(t1)}, T1c:{len(t1ce)}, T2:{len(t2)}\n')

temp_a = list(zip(train_files_masks, flair, t1, t1ce, t2))

temp_b = ["mask", "flair", "t1", "t1c", "t2"]

raw_data_loc = pd.DataFrame(temp_a, columns=temp_b)

null = [print(raw_data_loc.iloc[0][i]) for i in range(5)]

#raw_data_loc.head()

Generate Mirror Locations for post process storing

Uncomment if you need to recreate directory

create_dir_tree_without_files('D:\Datasets\BraTS\DATA\DATA_Training',

 'D:\Datasets\BraTS\DATA\Processed_DATA_Training')

finalized_locs = raw_data_loc.copy()

for i in range(finalized_locs.shape[0]):

 for j in range(finalized_locs.shape[1]):

 temp = raw_data_loc.iloc[i][j]

 temp = temp[:23] + "Processed_" + temp[23:]

 finalized_locs.iloc[i][j] = temp

Uncomment if you need to transfer the masks , if they are there already this should

return an error

for i in range(finalized_locs.shape[0]):

 shutil.copyfile(raw_data_loc.iloc[i][0], finalized_locs.iloc[i][0])

Preprocess Pipeline

86

8. Appendix – Scripts

temp_time_start = time()

warnings.filterwarnings("ignore")

Z_depth = 155

for i in range(len(raw_data_loc)):

 object_nifti = [] # keep these for header & affine affix copy

 temp_list_A = [] # line tuple from raw_data

 temp_list_B = [] # estimated sigmas for tuple data

 # grab data tuple

 for j in range(4):

 object_nifti.append(nib.load(raw_data_loc.iloc[i][j + 1])) # a nifti image object

 temp_list_A.append(object_nifti[j].get_fdata()) # grab image_data #dim:

240x240x155

 temp_list_B.append(grab_NSD(temp_list_A[j], Z_depth)) # grab estimated

sigmas , dim: 155x

 temp_list_C = Parallel(n_jobs=4, backend="threading")(delayed(denoise_process)

(x) for x in range(4))

 corrector = sitk.N4BiasFieldCorrectionImageFilter() # generate global filter

 temp_list_D = Parallel(n_jobs=4, backend="threading")

(delayed(bias_field_correction)(x) for x in range(4))

 x = Parallel(n_jobs=4, backend="threading")(delayed(data_nesting)(x) for x in

range(4))

temp_time_stop = time()

print(f'Time elasped for preprocessing: {(temp_time_stop - temp_time_start)} sec.')

pack_index = np.random.randint(low=0, high=len(raw_data_loc))

slice_index = np.random.randint(low=50, high= 100)

87

8. Appendix – Scripts

mask, raw_img, prep_img = load_pack(pack_index, slice_index)

plot_pack(mask, raw_img, prep_img)

88

8. Appendix – Scripts

8.3 Data Bundling

t1_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/*t1.nii.gz',

recursive=True)

t2_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/*t2.nii.gz',

recursive=True)

t1ce_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/

*t1ce.nii.gz', recursive=True)

flair_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/

*flair.nii.gz', recursive=True)

mask_list = glob('X:/Datasets/BraTS/DATA/Processed_DATA_Training/**/

*seg.nii.gz', recursive=True)

c = 0

scaler = MinMaxScaler()

for i in range(len(t1_list)):

 print(f"\rCurrent: {i}")

 #temp_image_t1 = nib.load(t1_list[i]).get_fdata()

 #temp_image_t1 = scaler.fit_transform(temp_image_t1.reshape(-1,

temp_image_t1.shape[-1])).reshape(temp_image_t1.shape)

 temp_image_t2 = nib.load(t2_list[i]).get_fdata()

 temp_image_t2 = scaler.fit_transform(temp_image_t2.reshape(-1,

temp_image_t2.shape[-1])).reshape(temp_image_t2.shape)

 temp_image_t1ce = nib.load(t1ce_list[i]).get_fdata()

 temp_image_t1ce = scaler.fit_transform(temp_image_t1ce.reshape(-1, temp_im-

age_t1ce.shape[-1])).reshape(temp_image_t1ce.shape)

 temp_image_flair = nib.load(flair_list[i]).get_fdata()

89

8. Appendix – Scripts

 temp_image_flair = scaler.fit_transform(temp_image_flair.reshape(-1, temp_im-

age_flair.shape[-1])).reshape(temp_image_flair.shape)

 temp_mask = nib.load(mask_list[i]).get_fdata()

 temp_mask = temp_mask.astype(np.uint8)

 # 3 has no representation in the entire dataset so we replace it with 4

 temp_mask[temp_mask == 4] = 3

 #add temp_image_t1 in the stack if you want to save it too

 temp_combined_images = np.stack([temp_image_flair, temp_image_t1ce,

temp_image_t2], axis=3)

 # cropping down to 128x128x128 patches

 temp_combined_images = temp_combined_images[56:184, 56:184, 13:141]

 temp_mask = temp_mask[56:184, 56:184, 13:141]

 val, counts = np.unique(temp_mask, return_counts=True)

 # if the useful information on the picture is less than 1%, drop the image

 if (1 - (counts[0] / counts.sum())) > 0.01:

 temp_mask = to_categorical(temp_mask, num_classes=4)

 np.save('X:/Data/3D_Blocks/images/stack_' + str(i) + '.npy', temp_combined_im-

ages)

 np.save('X:/Data/3D_Blocks/classes/mask_' + str(i) + '.npy', temp_mask)

 else:

 c += 1

print(f'Out of {len(t1_list)} 3D stacks, {c} didn't have enough information')

90

8. Appendix – Scripts

8.4 Multi-omics

#!/usr/bin/env python

initial data grab

CLINICAL DATA GBM IS RIDDEN WITH DELIMITER ERRORS ON THESE

LINES*

#*:we get rid of them but noting them nontheless in case we can repair / yield some

information from them

x = [66, 110, 111, 117, 119,

120, 126, 128, 138, 145,

163, 165, 167, 227, 277,

300, 304, 306, 349, 373,

431, 468, 485, 499, 585]

x_loc = 'X:/Data/Extras/Genomics/' # >SE , g_loc , L:D

#x_loc = 'D:/thesis_movable/Genomics/' # >SE , g_loc , L:L

#currently indexing per sample name

exp_data = pd.read_csv(x_loc+'exp', index_col=0)

mirna_data = pd.read_csv(x_loc+'mirna', index_col=0)

survival_data = pd.read_csv(x_loc+'survival', index_col=0)

clinical_data = pd.read_csv(x_loc + 'clinical_gbm',

 index_col=0,

 delimiter='\t',

 on_bad_lines='skip')

Taking a look to retain sanity points

print(f'Exp data size: {exp_data.T.shape}.\n--')

print(exp_data.iloc[0:5,0:5].T)

print('\n\n***\n\n')

print(f'miRNA data size: {mirna_data.T.shape}.\n--')

print(mirna_data.iloc[0:3,0:5].T)

91

8. Appendix – Scripts

print('\n\n***\n\n')

print(f'Survival data size {survival_data.shape}.\n--')

print(survival_data.head())

print('\n\n***\n\n')

print(f'Clinical data size {clinical_data.shape}.\n--')

pd.set_option('display.max_rows', len(clinical_data.iloc[0]))

print(clinical_data.iloc[0].T)

pd.reset_option('display.max_rows')

print('\n\n***\n\n')

define classes and grab usable datasets

c1 = clinical_data.query('CDE_vital_status == "DECEASED"')

c2 = clinical_data.query('CDE_vital_status == "LIVING" & days_to_last_followup

> 100')

print(f'Classes:\t\t[Dead: {len(c1)}] [Alive & DTLF>100: {len(c2)}] [Total

Samples: {len(c1)+len(c2)}]')

obtain subject tags

c1_tags = c1.index.str.replace("-",".").to_list()

c2_tags = c2.index.str.replace("-",".").to_list()

exp_tags = exp_data.T.index.to_list()

mirna_tags = mirna_data.T.index.to_list()

#check if they have exp & mirna data and purge if they dont

for x in c1_tags:

 if x in exp_tags and x in mirna_tags:

 continue

 else:

 c1_tags.remove(x)

92

8. Appendix – Scripts

for x in c2_tags:

 if x in exp_tags and x in mirna_tags:

 continue

 else:

 c2_tags.remove(x)

class_dead_exp_data = exp_data.T.query(f'index in {c1_tags}')

class_dead_mirna_data = mirna_data.T.query(f'index in {c1_tags}')

class_alive_exp_data = exp_data.T.query(f'index in {c2_tags}')

class_alive_mirna_data = mirna_data.T.query(f'index in {c2_tags}')

print(f'Classes after pruning: [Dead: {len(c1_tags)}] [Alive & DTLF>100:

{len(c2_tags)}] [Total Samples: {len(c1_tags)+len(c2_tags)}]\n')

plt_data = {'Total Samples': len(c1_tags)+len(c2_tags), 'Dead': len(c1_tags), 'Alive

& SD:>100':len(c2_tags)}

classes = list(plt_data.keys())

values = list(plt_data.values())

colors = ['blue','brown','green']

plt.figure(figsize=(4,4))

plt.bar(classes, values, width=.5, color=colors)

plt.title('Class distribution')

plt.xlabel("Classes")

plt.ylabel('Samples')

plt.show()

print('Majority class: %.2f' % (abs(1-(len(c2_tags) / len(c1_tags)))))

print('Minority class: %.2f' % (len(c2_tags) / len(c1_tags)))

true sets

93

8. Appendix – Scripts

u_X_exp = pd.concat([class_dead_exp_data, class_alive_exp_data],

verify_integrity=True)

u_Y_exp = np.zeros(len(u_X_exp), dtype=np.uint8)

u_Y_exp[len(class_dead_exp_data):] = 1

u_X_mirna = pd.concat([class_dead_mirna_data, class_alive_mirna_data],

verify_integrity=True)

u_Y_mirna = np.zeros(len(u_X_mirna), dtype=np.uint8)

u_Y_mirna[len(class_dead_mirna_data):] = 1

print(f"\nTrue sets:\n\tEXP: {u_X_exp.shape}\n\tMIRNA:{u_X_mirna.shape}")

three way oversampling of C2

rt = 42

s1 = sm(random_state=rt)

s2 = bsm(random_state=rt)

s3 = ada(random_state=rt)

SMOTE

V1_X_exp_res, V1_Y_exp_res = s1.fit_resample(u_X_exp, u_Y_exp)

V1_X_mirna_res, V1_Y_mirna_res = s1.fit_resample(u_X_mirna, u_Y_mirna)

BorderlineSMOTE

V2_X_exp_res, V2_Y_exp_res = s2.fit_resample(u_X_exp, u_Y_exp)

V2_X_mirna_res, V2_Y_mirna_res = s2.fit_resample(u_X_mirna, u_Y_mirna)

ADASYN

V3_X_exp_res, V3_Y_exp_res = s3.fit_resample(u_X_exp, u_Y_exp)

V3_X_mirna_res, V3_Y_mirna_res = s3.fit_resample(u_X_mirna, u_Y_mirna)

reploting

plt_data = {'Total Samples': len(V1_Y_exp_res)+len(V1_Y_mirna_res),

94

8. Appendix – Scripts

 'Dead': len(V1_Y_exp_res),

 'Alive & SD:>100':len(V1_Y_mirna_res)}

classes = list(plt_data.keys())

values = list(plt_data.values())

colors = ['blue','brown','green']

plt.figure(figsize=(4,4))

plt.bar(classes, values, width=.5, color=colors)

plt.title('Class distribution')

plt.xlabel("Classes")

plt.ylabel('Samples')

plt.show()

Chop suey

rt = 7

exp_X_trains = []

exp_Y_trains = []

exp_X_tests = []

exp_Y_tests = []

mirna_X_trains = []

mirna_Y_trains = []

mirna_X_tests = []

mirna_Y_tests = []

V1expXtrain, V1expXtest, V1expYtrain, V1expYtest =

train_test_split(V1_X_exp_res, V1_Y_exp_res, test_size=.2, random_state=rt)

V1mirnaXtrain, V1mirnaXtest, V1mirnaYtrain, V1mirnaYtest =

train_test_split(V1_X_mirna_res, V1_Y_mirna_res, test_size=.2, random_state=rt)

V2expXtrain, V2expXtest, V2expYtrain, V2expYtest =

train_test_split(V2_X_exp_res, V2_Y_exp_res, test_size=.2, random_state=rt)

95

8. Appendix – Scripts

V2mirnaXtrain, V2mirnaXtest, V2mirnaYtrain, V2mirnaYtest =

train_test_split(V2_X_mirna_res, V2_Y_mirna_res, test_size=.2, random_state=rt)

V3expXtrain, V3expXtest, V3expYtrain, V3expYtest =

train_test_split(V3_X_exp_res, V3_Y_exp_res, test_size=.2, random_state=rt)

V3mirnaXtrain, V3mirnaXtest, V3mirnaYtrain, V3mirnaYtest =

train_test_split(V3_X_mirna_res, V3_Y_mirna_res, test_size=.2, random_state=rt)

for i in range(3):

 affix = 'V' + str(i+1)

 exp_X_trains.append(eval(affix + 'expXtrain'))

 exp_Y_trains.append(eval(affix + 'expYtrain'))

 exp_X_tests.append(eval(affix + 'expXtest'))

 exp_Y_tests.append(eval(affix + 'expYtest'))

 mirna_X_trains.append(eval(affix + 'mirnaXtrain'))

 mirna_Y_trains.append(eval(affix + 'mirnaYtrain'))

 mirna_X_tests.append(eval(affix + 'mirnaXtest'))

 mirna_Y_tests.append(eval(affix + 'mirnaYtest'))

init classfiers (W L) 4x3 = 12 classfiers

xgboost_exp_cls = []

xgboost_mirna_cls = []

dtc_exp_cls = []

dtc_mirna_cls = []

for i in range(3):

 xgboost_exp_cls.append(xgb.XGBClassifier())

 dtc_exp_cls.append(dtc())

 xgboost_mirna_cls.append(xgb.XGBClassifier())

96

8. Appendix – Scripts

 dtc_mirna_cls.append(dtc())

training classfiers

start_t = time()

for i in range(3):

 xgboost_exp_cls[i].fit(exp_X_trains[i], exp_Y_trains[i])

 dtc_exp_cls[i].fit(exp_X_trains[i], exp_Y_trains[i])

 xgboost_mirna_cls[i].fit(mirna_X_trains[i], mirna_Y_trains[i])

 dtc_mirna_cls[i].fit(mirna_X_trains[i], mirna_Y_trains[i])

print(f'Training all classifiers took {int(time()-start_t)}sec.')

results

c_type = ['SMOTE', 'BorderlineSMOTE', 'ADASYN']

for i in range(3):

 print(f'Printing accuracy results for imbalance correction method: {c_type[i]}.\

n-')

 # predictions

 a_pred = xgboost_exp_cls[i].predict(exp_X_tests[i])

 b_pred = dtc_exp_cls[i].predict(exp_X_tests[i])

 c_pred = xgboost_mirna_cls[i].predict(mirna_X_tests[i])

 d_pred = dtc_mirna_cls[i].predict(mirna_X_tests[i])

 # accuracy stuff & plots

 exp_x_ax = range(len(exp_Y_tests[i]))

 mirna_x_ax = range(len(mirna_X_tests[i]))

 a_acc = acc(exp_Y_tests[i], a_pred)

 print('Accuracy for XGBOOST on exp: %.2f%%' %(a_acc*100))

97

8. Appendix – Scripts

 plt.figure(figsize=(10,3))

 plt.title(f'XGBoost Results for EXP data (Imb_Strat: {c_type[i]})')

 plt.plot(exp_x_ax, exp_Y_tests[i], label='original')

 plt.plot(exp_x_ax, a_pred, label='predicted', color='r', alpha=.33)

 plt.show()

 b_acc = acc(exp_Y_tests[i], b_pred)

 print('Accuracy for RFC on exp: %.2f%%' %(b_acc*100))

 plt.figure(figsize=(10,3))

 plt.title(f'RFC Results for EXP data (Imb_Strat: {c_type[i]})')

 plt.plot(exp_x_ax, exp_Y_tests[i], label='original')

 plt.plot(exp_x_ax, b_pred, label='predicted', color='r', alpha=.33)

 plt.show()

 c_acc = acc(mirna_Y_tests[i], c_pred)

 print('Accuracy for XGBOOST on mirna: %.2f%%' %(c_acc*100))

 plt.figure(figsize=(10,3))

 plt.title(f'XGBoost Results for miRNA data (Imb_Strat: {c_type[i]})')

 plt.plot(mirna_x_ax, mirna_Y_tests[i], label='original')

 plt.plot(mirna_x_ax, c_pred, label='predicted', color='r', alpha=.33)

 plt.show()

 d_acc = acc(mirna_Y_tests[i], d_pred)

 print('Accuracy for RFC on mirna: %.2f%%' %(d_acc*100))

 plt.figure(figsize=(10,3))

 plt.title(f'RFC Results for miRNA data (Imb_Strat: {c_type[i]})')

 plt.plot(mirna_x_ax, mirna_Y_tests[i], label='original')

 plt.plot(mirna_x_ax, d_pred, label='predicted', color='r', alpha=.33)

 plt.show()

 # post

 print ('\n**')

98

8. Appendix – Scripts

save model cause it's cool to keep nice things

#f_loc = 'D:/thesis_movable/main/saved_models/' # global , S_E

f_loc = 'C:/Users/delta/my_thesis/main/saved_models/' # global , S_E

prefix = 'non_normal_'

model_name = 'GEN_model_XGBClassifier_' +

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

suffix = '.json'

f_name = f_loc + prefix + model_name + suffix

xgboost_exp_cls[2].save_model(f_name)

full dataset normalization attempt

scaler1 = MinMaxScaler()

scaler2 = MinMaxScaler()

scaler1.fit(u_X_exp)

scaler2.fit(u_X_mirna)

u_X_exp = scaler1.transform(u_X_exp)

u_X_mirna = scaler2.transform(u_X_mirna)

three way oversampling of C2

rt = 42

s1 = sm(random_state=rt)

s2 = bsm(random_state=rt)

s3 = ada(random_state=rt)

SMOTE

99

8. Appendix – Scripts

f1_X_exp_res, f1_Y_exp_res = s1.fit_resample(u_X_exp, u_Y_exp)

f1_X_mirna_res, f1_Y_mirna_res = s1.fit_resample(u_X_mirna, u_Y_mirna)

BorderlineSMOTE

f2_X_exp_res, f2_Y_exp_res = s2.fit_resample(u_X_exp, u_Y_exp)

f2_X_mirna_res, f2_Y_mirna_res = s2.fit_resample(u_X_mirna, u_Y_mirna)

ADASYN

f3_X_exp_res, f3_Y_exp_res = s3.fit_resample(u_X_exp, u_Y_exp)

f3_X_mirna_res, f3_Y_mirna_res = s3.fit_resample(u_X_mirna, u_Y_mirna)

Chop suey

rt = 7

fxp_X_trains = []

fxp_Y_trains = []

fxp_X_tests = []

fxp_Y_tests = []

firna_X_trains = []

firna_Y_trains = []

firna_X_tests = []

firna_Y_tests = []

f1fxpXtrain, f1fxpXtest, f1fxpYtrain, f1fxpYtest = train_test_split(f1_X_exp_res,

f1_Y_exp_res, test_size=.2, random_state=rt)

f1firnaXtrain, f1firnaXtest, f1firnaYtrain, f1firnaYtest =

train_test_split(f1_X_mirna_res, f1_Y_mirna_res, test_size=.2, random_state=rt)

f2fxpXtrain, f2fxpXtest, f2fxpYtrain, f2fxpYtest = train_test_split(f2_X_exp_res,

f2_Y_exp_res, test_size=.2, random_state=rt)

f2firnaXtrain, f2firnaXtest, f2firnaYtrain, f2firnaYtest =

train_test_split(V2_X_mirna_res, V2_Y_mirna_res, test_size=.2, random_state=rt)

100

8. Appendix – Scripts

f3fxpXtrain, f3fxpXtest, f3fxpYtrain, f3fxpYtest = train_test_split(f3_X_exp_res,

f3_Y_exp_res, test_size=.2, random_state=rt)

f3firnaXtrain, f3firnaXtest, f3firnaYtrain, f3firnaYtest =

train_test_split(f3_X_mirna_res, f3_Y_mirna_res, test_size=.2, random_state=rt)

for i in range(3):

 affix = 'f' + str(i+1)

 fxp_X_trains.append(eval(affix + 'fxpXtrain'))

 fxp_Y_trains.append(eval(affix + 'fxpYtrain'))

 fxp_X_tests.append(eval(affix + 'fxpXtest'))

 fxp_Y_tests.append(eval(affix + 'fxpYtest'))

 firna_X_trains.append(eval(affix + 'firnaXtrain'))

 firna_Y_trains.append(eval(affix + 'firnaYtrain'))

 firna_X_tests.append(eval(affix + 'firnaXtest'))

 firna_Y_tests.append(eval(affix + 'firnaYtest'))

init classfiers (W L) 4x3 = 12 classfiers

fgboost_exp_cls = []

fgboost_mirna_cls = []

ftc_exp_cls = []

ftc_mirna_cls = []

for i in range(3):

 fgboost_exp_cls.append(xgb.XGBClassifier())

 ftc_exp_cls.append(dtc())

 fgboost_mirna_cls.append(xgb.XGBClassifier())

 ftc_mirna_cls.append(dtc())

101

8. Appendix – Scripts

training classfiers

start_t = time()

for i in range(3):

 fgboost_exp_cls[i].fit(fxp_X_trains[i], fxp_Y_trains[i])

 ftc_exp_cls[i].fit(fxp_X_trains[i], fxp_Y_trains[i])

 fgboost_mirna_cls[i].fit(firna_X_trains[i], firna_Y_trains[i])

 ftc_mirna_cls[i].fit(firna_X_trains[i], firna_Y_trains[i])

print(f'Training all classifiers took {int(time()-start_t)}sec.')

results

c_type = ['SMOTE', 'BorderlineSMOTE', 'ADASYN']

for i in range(3):

 print(f'Printing accuracy results for imbalance correction method: {c_type[i]}.\

n-')

 # predictions

 fa_pred = fgboost_exp_cls[i].predict(fxp_X_tests[i])

 fb_pred = ftc_exp_cls[i].predict(fxp_X_tests[i])

 fc_pred = fgboost_mirna_cls[i].predict(firna_X_tests[i])

 fd_pred = ftc_mirna_cls[i].predict(firna_X_tests[i])

 # accuracy stuff & plots

 fxp_x_ax = range(len(fxp_Y_tests[i]))

 firna_x_ax = range(len(firna_X_tests[i]))

 fa_acc = acc(fxp_Y_tests[i], fa_pred)

 print('Accuracy for XGBOOST on exp: %.2f%%' %(fa_acc*100))

 plt.figure(figsize=(10,3))

 plt.title(f'XGBoost Results for EXP data (Imb_Strat: {c_type[i]})')

102

8. Appendix – Scripts

 plt.plot(fxp_x_ax, fxp_Y_tests[i], label='original')

 plt.plot(fxp_x_ax, fa_pred, label='predicted', color='r', alpha=.33)

 plt.show()

 fb_acc = acc(fxp_Y_tests[i], fb_pred)

 print('Accuracy for RFC on exp: %.2f%%' %(fb_acc*100))

 plt.figure(figsize=(10,3))

 plt.title(f'RFC Results for EXP data (Imb_Strat: {c_type[i]})')

 plt.plot(fxp_x_ax, fxp_Y_tests[i], label='original')

 plt.plot(fxp_x_ax, fb_pred, label='predicted', color='r', alpha=.33)

 plt.show()

 fc_acc = acc(firna_Y_tests[i], fc_pred)

 print('Accuracy for XGBOOST on mirna: %.2f%%' %(fc_acc*100))

 plt.figure(figsize=(10,3))

 plt.title(f'XGBoost Results for miRNA data (Imb_Strat: {c_type[i]})')

 plt.plot(firna_x_ax, firna_Y_tests[i], label='original')

 plt.plot(firna_x_ax, fc_pred, label='predicted', color='r', alpha=.33)

 plt.show()

 fd_acc = acc(firna_Y_tests[i], fd_pred)

 print('Accuracy for RFC on mirna: %.2f%%' %(fd_acc*100))

 plt.figure(figsize=(10,3))

 plt.title(f'RFC Results for miRNA data (Imb_Strat: {c_type[i]})')

 plt.plot(firna_x_ax, firna_Y_tests[i], label='original')

 plt.plot(firna_x_ax, fd_pred, label='predicted', color='r', alpha=.33)

 plt.show()

 # post

 print ('\n**')

save model cause it's cool to keep nice things

#f_loc = 'D:/thesis_movable/main/saved_models/' # global , S_E

103

8. Appendix – Scripts

f_loc = 'C:/Users/delta/my_thesis/main/saved_models/' # global , S_E

model_name = 'GEN_model_XGBClassifier_' +

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

prefix = 'normal_'

suffix = '.json'

f_name = f_loc + prefix + model_name + suffix

fgboost_exp_cls[2].save_model(f_name)

merging dataframes

u_X_merged = pd.merge(u_X_exp, u_X_mirna, left_index=True,

right_index=True, how='outer')

#eliminate non intersection participants

u_X_merged.dropna(inplace=True)

print(f'Merged set shape: {u_X_merged.shape}.')

grab survival days

survival_days = [survival_data.loc[x[:-3]][0] for x in

u_X_merged.index.str.lower()]

inject it in the end of the merged dataset

u_X_merged['survival'] = np.array(survival_days)

ploting survival

x_ax = range(len(u_X_merged))

plt.figure(figsize=(15,5))

plt.title('Survival Value Distribution')

104

8. Appendix – Scripts

plt.plot(x_ax, u_X_merged['survival'])

plt.show()

getting rid of some outliers

u_X_merged.drop(u_X_merged['survival'].nlargest(25).index, inplace=True)

24 is the 5% of the dataset, aka getting rid of the top 5% of the dataset

normalize dataset

u_X_merged = (u_X_merged-u_X_merged.min())/(u_X_merged.max()-

u_X_merged.min())

eliminate errors

u_X_merged.replace([np.inf, -np.inf], np.nan, inplace=True)

u_X_merged.dropna(inplace=True)

ploting pruned survival

x_ax = range(len(u_X_merged))

plt.figure(figsize=(15,5))

plt.title('Pruned & Normalized Survival Value Distribution')

plt.plot(x_ax, u_X_merged['survival'])

plt.show()

print(f'Finalized merged set shape: {u_X_merged.shape}.')

u_X_merged.iloc[:10,-8:] # S_C

to address data leakage perform line 10 after you've split the dataset & normalize

them INDIVIDUALY , S_E - R_5 ?!

splits

rt=42

mX_train, mX_test, mY_train, mY_test = train_test_split(u_X_merged.iloc[:,:-1],

u_X_merged.iloc[:,-1], test_size=.2, random_state=rt)

print(f'Sets:\n\t Train:{len(mX_train)}, Test:{len(mX_test)}.')

105

8. Appendix – Scripts

model init

reg_model = xgb.XGBRegressor()

a_time = time()

fit it

reg_model.fit(mX_train, mY_train)

print(f'XGB regressor took {time()-a_time} to train.')

measure it

score = reg_model.score(mX_train, mY_train)

print(f"Training score: {score}")

score2 = reg_model.score(mX_test, mY_test)

print(f"Testing score: {score2}")

b_time = time()

kfold = KFold(n_splits=10, shuffle=True)

kf_cv_scores = cross_val_score(reg_model, mX_train, mY_train, cv=kfold)

print(f"K-fold cross validation took {format(time()-b_time,'.2f')}s with a score of :

{format(kf_cv_scores.mean(),'.2f')}")

predictions

mY_pred = reg_model.predict(mX_test)

mse_score = mse(mY_test, mY_pred)

print("MSE: %.2f" % mse_score)

print("RMSE: %.2f" % (mse_score**(1/2.0)))

plots

x_ax = range(len(mY_test))

plt.figure(figsize=(15,5))

plt.title('Ground Truth & Predictions')

plt.plot(x_ax, mY_test, label="original")

106

8. Appendix – Scripts

plt.plot(x_ax, mY_pred, label="predicted")

plt.legend()

plt.show()

save model cause it's cool to keep nice things

#f_loc = 'D:/thesis_movable/main/saved_models/' # global , S_E

f_loc = 'C:/Users/delta/my_thesis/main/' # global , S_E

model_name = 'GEN_model_XGBRegressor_' +

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

suffix = '.json'

f_name = f_loc + model_name + suffix

reg_model.save_model(f_name)

107

8. Appendix – Scripts

8.5 Data Generator

def load_img(img_dir, img_list):

 images = []

 for i, image_name in enumerate(img_list):

 if (image_name.split('.')[1] == 'npy'):

 image = np.load(img_dir + image_name)

 images.append(image)

 images = np.array(images)

 return (images)

def imageLoader(img_dir, img_list, mask_dir, mask_list, batch_size=1):

 L = len(img_list)

 while True:

 batch_start = 0

 batch_end = batch_size

 while batch_start < L:

 limit = min(batch_end, L)

 X = load_img(img_dir, img_list[batch_start:limit])

 Y = load_img(mask_dir, mask_list[batch_start:limit])

 yield (X, Y)

 batch_start += batch_size

 batch_end += batch_size

108

8. Appendix – Scripts

8.6 Unet

kernel_initializer = 'he_uniform'

def simple_unet_model(IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH,

IMG_CHANNELS, num_classes):

 # Build the model

 inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH,

IMG_CHANNELS))

 s = inputs

 # Contraction path

 c1 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(s)

 c1 = Dropout(0.1)(c1)

 c1 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(c1)

 p1 = MaxPooling3D((2, 2, 2))(c1)

 c2 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(p1)

 c2 = Dropout(0.1)(c2)

 c2 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(c2)

 p2 = MaxPooling3D((2, 2, 2))(c2)

 c3 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(p2)

 c3 = Dropout(0.2)(c3)

 c3 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(c3)

 p3 = MaxPooling3D((2, 2, 2))(c3)

109

8. Appendix – Scripts

 c4 = Conv3D(128, (3, 3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same')(p3)

 c4 = Dropout(0.2)(c4)

 c4 = Conv3D(128, (3, 3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same')(c4)

 p4 = MaxPooling3D(pool_size=(2, 2, 2))(c4)

 c5 = Conv3D(256, (3, 3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same')(p4)

 c5 = Dropout(0.3)(c5)

 c5 = Conv3D(256, (3, 3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same')(c5)

 # Expansive path

 u6 = Conv3DTranspose(128, (2, 2, 2), strides=(2, 2, 2), padding='same')(c5)

 u6 = concatenate([u6, c4])

 c6 = Conv3D(128, (3, 3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same')(u6)

 c6 = Dropout(0.2)(c6)

 c6 = Conv3D(128, (3, 3, 3), activation='relu',

kernel_initializer=kernel_initializer, padding='same')(c6)

 u7 = Conv3DTranspose(64, (2, 2, 2), strides=(2, 2, 2), padding='same')(c6)

 u7 = concatenate([u7, c3])

 c7 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(u7)

 c7 = Dropout(0.2)(c7)

 c7 = Conv3D(64, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(c7)

 u8 = Conv3DTranspose(32, (2, 2, 2), strides=(2, 2, 2), padding='same')(c7)

 u8 = concatenate([u8, c2])

110

8. Appendix – Scripts

 c8 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(u8)

 c8 = Dropout(0.1)(c8)

 c8 = Conv3D(32, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(c8)

 u9 = Conv3DTranspose(16, (2, 2, 2), strides=(2, 2, 2), padding='same')(c8)

 u9 = concatenate([u9, c1])

 c9 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(u9)

 c9 = Dropout(0.1)(c9)

 c9 = Conv3D(16, (3, 3, 3), activation='relu', kernel_initializer=kernel_initializer,

padding='same')(c9)

 outputs = Conv3D(num_classes, (1, 1, 1), activation='softmax')(c9)

 model = Model(inputs=[inputs], outputs=[outputs])

 return model

111

8. Appendix – Scripts

8.7 Train

gpus = tf.config.experimental.list_physical_devices('GPU')

tf.config.experimental.set_memory_growth(gpus[0], True)

smooth=100

def dice_coef(y_true, y_pred):

 y_truef = K.flatten(y_true)

 y_predf = K.flatten(y_pred)

 And = K.sum(y_truef* y_predf)

 return ((2* And + smooth) / (K.sum(y_truef) + K.sum(y_predf) + smooth))

#def dice_coef_loss(y_true, y_pred):

return -dice_coef(y_true, y_pred)

def iou(y_true, y_pred):

 intersection = K.sum(y_true * y_pred)

 sum_ = K.sum(y_true + y_pred)

 jac = (intersection + smooth) / (sum_ - intersection + smooth)

 return jac

data locs

train_img_dir = "X:/Data/3D_Blocks/Sets/train/train/"

train_mask_dir = "X:/Data/3D_Blocks/Sets/train/class/"

val_img_dir = "X:/Data/3D_Blocks/Sets/val/train/"

val_mask_dir = "X:/Data/3D_Blocks/Sets/val/class/"

train_img_list = os.listdir(train_img_dir)

train_mask_list = os.listdir(train_mask_dir)

val_img_list = os.listdir(val_img_dir)

val_mask_list = os.listdir(val_mask_dir)

model params

112

8. Appendix – Scripts

batch_size = 1 #(1 x [3x3D image & seg_mask]) >> this cannot be higher due to

hardware constraints

steps_per_epoch = len(train_img_list) // batch_size

val_steps_per_epoch = len(val_img_list) // batch_size

model_params = dict(IMG_HEIGHT=128,

 IMG_WIDTH=128,

 IMG_DEPTH=128,

 IMG_CHANNELS=3,

 num_classes=4)

opt , adafair was having trouble cause i'd have to downgrade everything for it to

work

#we're gonna leave that for a later date

l_r=1e-4

v_epochs = 25

decay_rate = l_r/ v_epochs

optimizer = tf.optimizers.Adam(learning_rate=l_r,

 decay=decay_rate,

 amsgrad=False)

#model number

model_num = 5

#callbacks

model_save =

tf.keras.callbacks.ModelCheckpoint(f'C:/Users/delta/my_thesis/main/saved_models/

model_{str(model_num)}.hdf5', verbose=1,save_best_only=True)

log_dir = f"logs/logs_{str(model_num)}/" + "fit" +

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,

histogram_freq=1)

113

8. Appendix – Scripts

data generators

train_img_datagen = data_gen.imageLoader(train_img_dir, train_img_list,

 train_mask_dir, train_mask_list, batch_size)

val_img_datagen = data_gen.imageLoader(val_img_dir, val_img_list,

 val_mask_dir, val_mask_list, batch_size)

#init casual 3D unet

model = simple_unet_model(**model_params)

model.summary()

model.compile(optimizer=optimizer,loss=tf.keras.losses.CategoricalCrossentropy(),

metrics=['CategoricalAccuracy',iou, dice_coef])

timer_a = time()

history = model.fit(train_img_datagen,

 steps_per_epoch=steps_per_epoch,

 epochs=v_epochs,

 validation_data=val_img_datagen,

 validation_steps=val_steps_per_epoch,

 callbacks=[model_save, tensorboard_callback])

print(f'Took {time()-timer_a} to finish all training.')

#class_weight={0:0.26, 1:22.53, 2:22.53, 3:26.21},

#save history to load it to the evaluation script // not needed since we use

tensorboard but you could do it nontheless

np.save(f"saved_models/history_{str(model_num)}.npy", history.history)

114

8. Appendix – Scripts

8.8 Retrain

gpus = tf.config.experimental.list_physical_devices('GPU')

tf.config.experimental.set_memory_growth(gpus[0], True)

#functs

smooth=1.

def dice_coef(y_true, y_pred):

 y_truef = K.flatten(y_true)

 y_predf = K.flatten(y_pred)

 And = K.sum(y_truef* y_predf)

 return ((2* And + smooth) / (K.sum(y_truef) + K.sum(y_predf) + smooth))

def iou(y_true, y_pred):

 intersection = K.sum(y_true * y_pred)

 sum_ = K.sum(y_true + y_pred)

 jac = (intersection + smooth) / (sum_ - intersection + smooth)

 return jac

#model load

model =

load_model('C:/Users/delta/my_thesis/main/saved_models/model_3.1.hdf5',

 custom_objects={'iou': iou, 'dice_coef':dice_coef})

data locs

train_img_dir = "X:/Data/3D_Blocks/train/train/"

train_mask_dir = "X:/Data/3D_Blocks/train/class/"

val_img_dir = "X:/Data/3D_Blocks/val/train/"

val_mask_dir = "X:/Data/3D_Blocks/val/class/"

train_img_list = os.listdir(train_img_dir)

train_mask_list = os.listdir(train_mask_dir)

val_img_list = os.listdir(val_img_dir)

115

8. Appendix – Scripts

val_mask_list = os.listdir(val_mask_dir)

model params

batch_size = 1 #(1 x [3x3D image & seg_mask]) >> this cannot be higher due to

hardware constraints

steps_per_epoch = len(train_img_list) // batch_size

val_steps_per_epoch = len(val_img_list) // batch_size

wt0, wt1, wt2, wt3 = 0.26, 22.53, 22.53, 26.21 # taken from contextual analysis of

mask pixels

dice_loss = sm.losses.DiceLoss(class_weights=np.array([wt0, wt1, wt2, wt3]))

focal_loss = sm.losses.CategoricalFocalLoss()

total_loss = dice_loss + (1 * focal_loss)

l_r= 1e-3

v_epochs = 25

decay_rate = l_r/ v_epochs

optimizer = tf.optimizers.Adam(learning_rate=l_r,

 decay=decay_rate,

 amsgrad=False)

#model number

model_num = 3.2

#callbacks

model_save =

tf.keras.callbacks.ModelCheckpoint(f'C:/Users/delta/my_thesis/main/saved_models/

model_{str(model_num)}.hdf5',

 verbose=1,

 save_best_only=True)

log_dir = f"logs/logs_{str(model_num)}/" + "fit" +

datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

116

8. Appendix – Scripts

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,

histogram_freq=1)

data generators

train_img_datagen = data_gen.imageLoader(train_img_dir, train_img_list,

 train_mask_dir, train_mask_list, batch_size)

val_img_datagen = data_gen.imageLoader(val_img_dir, val_img_list,

 val_mask_dir, val_mask_list, batch_size)

model.summary()

metrics = ['Accuracy','CategoricalAccuracy', sm.metrics.IOUScore(threshold=0.5),

dice_coef]

model.compile(optimizer=optimizer, loss=total_loss, metrics=metrics)

timer_a = time()

history = model.fit(train_img_datagen,

 steps_per_epoch=steps_per_epoch,

 epochs=v_epochs,

 validation_data=val_img_datagen,

 validation_steps=val_steps_per_epoch,

 callbacks=[model_save, tensorboard_callback])

print(f'Took {time()-timer_a} to finish retraining.')

#class_weight={0:0.26, 1:22.53, 2:22.53, 3:26.21},

#save history to load it to the evaluation script // not needed since we use

tensorboard but you could do it nontheless

np.save(f"saved_models/history_{str(model_num)}.npy", history.history)

117

8. Appendix – Scripts

8.9 Image Feature Extraction

#!/usr/bin/env python

functions

def feature_extraction(x):

 col_space = x+1

 for i in range(len(raw_data_loc)):

 # load label mask

 mask = sitk.ReadImage(raw_data_loc.iloc[i][0])

 mask_array = sitk.GetArrayFromImage(mask)

 # uniform mask

 for x in (2,3,4):

 mask_array[mask_array == x] = 1

 # apply original spatial data

 mask_merged = sitk.GetImageFromArray(mask_array)

 mask_merged.CopyInformation(mask)

 # extract featrues

 features = extractor.execute(raw_data_loc.iloc[i][col_space], mask_merged,

label=1)

 # store the data in their respective list

 if col_space == 1:

 flair.append(features)

 elif col_space == 2:

 t1.append(features)

 elif col_space == 3:

 t1ce.append(features)

 elif col_space == 4:

 t2.append(features)

118

8. Appendix – Scripts

saving loc

os.chdir('C:/Users/delta/my_thesis/main/__outputs/')

Initial data loc grab of the BraTS Preprocessed datasets

files = glob('X:\Datasets\BraTS\DATA\Processed_DATA_Training***.nii.gz',

recursive=True)

train_files_masks = glob('X:\Datasets\BraTS\DATA\Processed_DATA_Training**\

*seg.nii.gz', recursive=True)

train_files_scans = [fn for fn in (filter(lambda x: not x.__contains__("seg"),

files))]

print(f'Found masks :{len(train_files_masks)} and scans:{len(train_files_scans)}.')

separating scan pairs and merging data locations

flair = []

t1ce = []

t1 = []

t2 = []

for x in train_files_scans:

 if "t1ce.nii.gz" in x:

 t1ce.append(x)

 elif "t1.nii.gz" in x:

 t1.append(x)

 elif "t2" in x:

 t2.append(x)

 elif "flair.nii.gz" in x:

 flair.append(x)

 else:

 print("Something funny happened, you should check the sys log.")

 break;

119

8. Appendix – Scripts

print(f'Accumulated -> Flair:{len(flair)}, T1:{len(t1)}, T1c:{len(t1ce)}, T2:{len(t2)}\

n')

temp_a = list(zip(train_files_masks, flair, t1, t1ce, t2))

temp_b = ["mask", "flair", "t1", "t1c", "t2"]

raw_data_loc = pd.DataFrame(temp_a, columns=temp_b)

[print(raw_data_loc.iloc[0][i]) for i in range(5)]

raw_data_loc.head()

load the survival datasets and assign targets to the raw_locs

data_origin = []

for x in raw_data_loc['mask']:

 if str(x).__contains__('MICCAI_BraTS2020'):

 data_origin.append(2)

 if str(x).__contains__('MICCAI_BraTS_2019'):

 data_origin.append(1)

 if str(x).__contains__('MICCAI_BraTS_2018'):

 data_origin.append(0)

s_d = glob(r'X:\Datasets\BraTS\DATA\DATA_Training***survival*.csv',

recursive=True)

sd_2018 = pd.read_csv(s_d[0], delimiter=',')

sd_2019 = pd.read_csv(s_d[1], delimiter=',')

sd_2020 = pd.read_csv(s_d[2], delimiter=',')

print(f'{sd_2018.head()}\n--\n{sd_2019.head()}\n--\n{sd_2020.head()}')

grab patient ids

patients = [str(raw_data_loc.iloc[i][0]).split('\\')[-1].split('_seg')[:-1] for i in

range(len(raw_data_loc))]

grab survival data for the entire merged set

120

8. Appendix – Scripts

t_survival = []

err_count = 0

for count, x in enumerate(data_origin):

 try:

 if x == 0:

 t_survival.append(int(sd_2018[sd_2018['BraTS18ID']==patients[count][0]]

['Survival']))

 elif x == 1:

 t_survival.append(int(sd_2019[sd_2019['BraTS19ID']==patients[count][0]]

['Survival']))

 elif x == 2:

 t_survival.append(int(sd_2020[sd_2020['Brats20ID']==patients[count][0]]

['Survival_days']))

 except (ValueError, TypeError):

 # Error catch for non existing rows with that name

 # Also includes NA values , we force a nan so we can identify the positions

 err_count += 1

 t_survival.append(np.nan)

print(f'Found {err_count} inputs that don\'t exist in the survival datasets or are nan')

drop locations from the feature extraction

for count, surv in enumerate(t_survival):

 if np.isnan(surv):

 raw_data_loc.drop(count, inplace=True)

reset df index to establish index flow

raw_data_loc.reset_index(drop=True, inplace=True)

yield true survival set

survival = [x for x in t_survival if np.isnan(x) == False]

121

8. Appendix – Scripts

sanity check

print(f'Packets:{len(raw_data_loc)}, Survivals:{len(survival)}')

survival_csv = pd.DataFrame(survival, columns=['survival_days'])

survival_csv.to_csv('survival.csv', index=False)

#initialize feature lists

flair = []

t1 = []

t1ce = []

t2 = []

initialize a global extractor

extractor = featureextractor.RadiomicsFeatureExtractor()

setVerbosity(40) #

https://pyradiomics.readthedocs.io/en/latest/radiomics.html#radiomics.setVerbosity

extractor.enableAllFeatures() #instead of this we can yield specific features from

https://pyradiomics.readthedocs.io/en/latest/features.html, but the more data the

better

time_a = time()

null = Parallel(n_jobs=4, backend="threading")(delayed(feature_extraction)(x) for

x in range(4))

CPU : Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

Time for 1 line of the raw_data to be processed : 7.013089895248413 seconds

Time estimation for all data (608 lines) : 71.06597760518392 minutes

print(f'Time elasped: {time()-time_a} sec')

convert lists to dataframes

flair_features = pd.DataFrame.from_dict(flair)

t1_features = pd.DataFrame.from_dict(t1)

122

8. Appendix – Scripts

t1ce_features = pd.DataFrame.from_dict(t1ce)

t2_features = pd.DataFrame.from_dict(t2)

saving feature exports per modality 1st csv is the data 2nd csv are the diagnostic

data

flair_features.to_csv('flair_features.csv',index=False,columns=flair_features.colum

ns[22:])

flair_features.to_csv('flair_extras.csv',index=False,columns=flair_features.columns

[:22])

t1_features.to_csv('t1_features.csv',index=False,columns=t1_features.columns[22:]

)

t1_features.to_csv('t1_extras.csv',index=False,columns=t1_features.columns[:22])

t1ce_features.to_csv('t1ce_features.csv',index=False,columns=t1ce_features.colum

ns[22:])

t1ce_features.to_csv('t1ce_extras.csv',index=False,columns=t1ce_features.columns

[:22])

t2_features.to_csv('t2_features.csv',index=False,columns=t2_features.columns[22:]

)

t2_features.to_csv('t2_extras.csv',index=False,columns=t2_features.columns[:22])

123

8. Appendix – Scripts

8.10 Image Feature Survival Prediction

#!/usr/bin/env python

grab data

flair, t1, t1ce, t2 = glob(os.getcwd()+'/*features.csv', recursive=True)

survival = glob(os.getcwd()+'/*survival.csv', recursive=True)[0]

flair_data = pd.read_csv(flair)

t1_data = pd.read_csv(t1)

t1ce_data = pd.read_csv(t1ce)

t2_data = pd.read_csv(t2)

survival_data = pd.read_csv(survival)

append survival days to the datasets

flair_data['survival_days'] = np.array(survival_data)

t1_data['survival_days'] = np.array(survival_data)

t1ce_data['survival_days'] = np.array(survival_data)

t2_data['survival_days'] = np.array(survival_data)

create merged set

merged_modalities = [flair_data, t1_data, t1ce_data, t2_data]

merged_data = pd.concat(merged_modalities)

x_ax = range(len(survival_data))

plt.figure(figsize=(15,5))

plt.title('Survival Value Distribution')

plt.plot(x_ax, survival_data)

plt.show()

split sets

g_time = time()

rt=42

sets = ['flair', 't1', 't1ce', 't2', 'merged']

124

8. Appendix – Scripts

chow swaay splits #+1 for the merged

X_train = list(range(5))

X_test = list(range(5))

Y_train = list(range(5))

Y_test = list(range(5))

X_train[0], X_test[0], Y_train[0], Y_test[0] = train_test_split(flair_data.iloc[:,:-1],

flair_data.iloc[:,-1],

 test_size=.2, random_state=rt)

X_train[1], X_test[1], Y_train[1], Y_test[1] = train_test_split(t1_data.iloc[:,:-1],

t1_data.iloc[:,-1],

 test_size=.2, random_state=rt)

X_train[2], X_test[2], Y_train[2], Y_test[2] = train_test_split(t1ce_data.iloc[:,:-1],

t1ce_data.iloc[:,-1],

 test_size=.2, random_state=rt)

X_train[3], X_test[3], Y_train[3], Y_test[3] = train_test_split(t2_data.iloc[:,:-1],

t2_data.iloc[:,-1],

 test_size=.2, random_state=rt)

"""

for the merged set we have to merge the previous sets

 this happens because if we attempt to merge them and split the data

 we'll cause values in the test set to exist in the train set , voiding the model

"""

X_train[4] = pd.concat([X_train[0],X_train[1],X_train[2],X_train[3]])

X_test[4] = pd.concat([X_test[0],X_test[1],X_test[2],X_test[3]])

Y_train[4] = pd.concat([Y_train[0],Y_train[1],Y_train[2],Y_train[3]])

Y_test[4] = pd.concat([Y_test[0],Y_test[1],Y_test[2],Y_test[3]])

#initialize regressors

regressors = [xgb.XGBRegressor() for x in range(5)]

timer_a = time()

125

8. Appendix – Scripts

#fit regressors for non normalized data

for i in range(5):

 regressors[i].fit(X_train[i],Y_train[i])

print(f'XGBRegressors took {format(time()-timer_a, ".2f")}s to train.\n--')

measure them

score = list(range(5))

for i in range(5):

 score[i] = regressors[i].score(X_test[i], Y_test[i])

null = [print(f"Training score: {format(score[i]*100,'.2f')}% for set: {sets[i]}") for i

in range(5)]

timer_b = time()

KFolds = [KFold(n_splits=10, shuffle=True) for i in range(5)]

KF_CV_scores = [cross_val_score(regressors[i], X_train[i], Y_train[i],

cv=KFolds[i]) for i in range(5)]

print(f'\nK-Fold cross validation took {format(time()-timer_b,".2f")}s to estimate.\

n--')

null = [print(f'K-Fold cross val(n=10) score:

{format(KF_CV_scores[i].mean()*100,".2f")} for set: {sets[i]}') for i in range(5)]

calculate predictions

Y_pred = [regressors[i].predict(X_test[i]) for i in range(5)]

mse_scores = [mse(Y_test[i],Y_pred[i]) for i in range(5)]

print('\n--')

null = [print(f'MSE: {format(mse_scores[i],".2f")} for set: {sets[i]} ') for i in

range(5)]

print('\n--')

null = [print(f'RMSE: {format(mse_scores[i]**(1/2.0),".2f")} for set: {sets[i]} ') for

i in range(5)]

126

8. Appendix – Scripts

plots

for i in range(5):

 x_ax = range(len(Y_pred[i]))

 plt.figure(figsize=(15,5))

 plt.title(f'Ground Truth & Predictions for set:{sets[i]}')

 plt.plot(x_ax, Y_test[i], label='original')

 plt.plot(x_ax, Y_pred[i], label='predicted', color='r', alpha=.33)

 plt.legend()

 plt.show()

print(f'Total runtime {format(time()-g_time,".2f")}sec.')

normalize all sets

normalized_flair_data = (flair_data-flair_data.min())/(flair_data.max()-

flair_data.min())

normalized_t1_data = (t1_data-t1_data.min())/(t1_data.max()-t1_data.min())

normalized_t1ce_data = (t1ce_data-t1ce_data.min())/(t1ce_data.max()-

t1ce_data.min())

normalized_t2_data = (t2_data-t2_data.min())/(t2_data.max()-t2_data.min())

normalized_merged_data = (merged_data-

merged_data.min())/(merged_data.max()-merged_data.min())

split sets

g_time = time()

rt=42

sets = ['flair', 't1', 't1ce', 't2', 'merged']

chow swaay splits #+1 for the merged

X_train = list(range(5))

X_test = list(range(5))

Y_train = list(range(5))

Y_test = list(range(5))

127

8. Appendix – Scripts

X_train[0], X_test[0], Y_train[0], Y_test[0] =

train_test_split(normalized_flair_data.iloc[:,:-1],

 normalized_flair_data.iloc[:,-1],

 test_size=.2, random_state=rt)

X_train[1], X_test[1], Y_train[1], Y_test[1] =

train_test_split(normalized_t1_data.iloc[:,:-1],

 normalized_t1_data.iloc[:,-1],

 test_size=.2, random_state=rt)

X_train[2], X_test[2], Y_train[2], Y_test[2] =

train_test_split(normalized_t1ce_data.iloc[:,:-1],

 normalized_t1ce_data.iloc[:,-1],

 test_size=.2, random_state=rt)

X_train[3], X_test[3], Y_train[3], Y_test[3] =

train_test_split(normalized_t2_data.iloc[:,:-1],

 normalized_t2_data.iloc[:,-1],

 test_size=.2, random_state=rt)

"""

for the merged set we have to merge the previous sets

 this happens because if we attempt to merge them and split the data

 we'll cause values in the test set to exist in the train set , voiding the model

"""

X_train[4] = pd.concat([X_train[0],X_train[1],X_train[2],X_train[3]])

X_test[4] = pd.concat([X_test[0],X_test[1],X_test[2],X_test[3]])

Y_train[4] = pd.concat([Y_train[0],Y_train[1],Y_train[2],Y_train[3]])

Y_test[4] = pd.concat([Y_test[0],Y_test[1],Y_test[2],Y_test[3]])

#initialize regressors

regressors = [xgb.XGBRegressor() for x in range(5)]

timer_a = time()

#fit regressors for non normalized data

for i in range(5):

128

8. Appendix – Scripts

 regressors[i].fit(X_train[i],Y_train[i])

print(f'XGBRegressors took {format(time()-timer_a, ".2f")}s to train.\n--')

measure them

score = list(range(5))

for i in range(5):

 score[i] = regressors[i].score(X_test[i], Y_test[i])

null = [print(f"Training score: {format(score[i]*100,'.2f')}% for set: {sets[i]}") for i

in range(5)]

timer_b = time()

KFolds = [KFold(n_splits=10, shuffle=True) for i in range(5)]

KF_CV_scores = [cross_val_score(regressors[i], X_train[i], Y_train[i],

cv=KFolds[i]) for i in range(5)]

print(f'\nK-Fold cross validation took {format(time()-timer_b,".2f")}s to estimate.\

n--')

null = [print(f'K-Fold cross val(n=10) score:

{format(KF_CV_scores[i].mean()*100,".2f")} for set: {sets[i]}') for i in range(5)]

calculate predictions

Y_pred = [regressors[i].predict(X_test[i]) for i in range(5)]

mse_scores = [mse(Y_test[i],Y_pred[i]) for i in range(5)]

print('\n--')

null = [print(f'MSE: {format(mse_scores[i],".2f")} for set: {sets[i]} ') for i in

range(5)]

print('\n--')

null = [print(f'RMSE: {format(mse_scores[i]**(1/2.0),".2f")} for set: {sets[i]} ') for

i in range(5)]

plots

for i in range(5):

129

8. Appendix – Scripts

 x_ax = range(len(Y_pred[i]))

 plt.figure(figsize=(15,5))

 plt.title(f'Ground Truth & Predictions for normalized set:{sets[i]}')

 plt.plot(x_ax, Y_test[i], label='original')

 plt.plot(x_ax, Y_pred[i], label='predicted', color='r', alpha=.33)

 plt.legend()

 plt.show()

print(f'Total runtime {format(time()-g_time,".2f")}sec.')

130

9. Bibliography

9 Bibliography

9.1 Online Sources

[1] https://www.cancer.gov/publications/dictionaries/cancer-terms/def/cell

[2] https://en.wikipedia.org/wiki/DNA

[3] https://www.news-medical.net/life-sciences/History-of-Genomics.aspx

[4] https://www.genome.gov/genetics-glossary/RNA-Ribonucleic-Acid

[5] https://en.wikipedia.org/wiki/Oncomir

[6] https://en.wikipedia.org/wiki/MicroRNA

[7] https://www.youtube.com/watch?v=h4t-fhvAorA

[8] https://1drv.ms/p/s!Ah1DKWJIS3ebgZR_YODNnQ8do71UYw?e=pH4fvi

[9] https://flexbooks.ck12.org/cbook/ck-12-middle-school-life-science-2.0/section/

3.6/primary/lesson/rna-ms-ls/

[10] https://www.youtube.com/watch?v=6qS83wD29PY

[11] https://www.cancerresearchuk.org/about-cancer/what-is-cancer/body-systems-

and-cancer/the-immune-system-and-cancer#fight

[12] https://www.cancer.gov/about-cancer/understanding/what-is-cancer

[13] https://my.clevelandclinic.org/health/diseases/12194-cancer

[14] https://www.cancercenter.com/cancer-types/brain-cancer/grades

[15] https://www.mdanderson.org/cancerwise/glioma-vs--glioblastoma--what-is-

the-difference-in-these-brain-tumors-treatment-diagnosis.h00-159537378.html

[16] https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-

tumor#cancer

[17] https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-

causes/syc-20350084

[18] https://en.wikipedia.org/wiki/Radiology

[19] https://www.cancer.org/treatment/understanding-your-diagnosis/tests/imaging-

radiology-tests-for-cancer.html

[20] https://www.cancer.org/treatment/understanding-your-diagnosis/tests/mri-for-

cancer.html

[21] https://www.javatpoint.com/basic-concepts-in-machine-learning

[22] https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-

about-machine-learning/

131

https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/
https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/
https://www.javatpoint.com/basic-concepts-in-machine-learning
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/mri-for-cancer.html
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/mri-for-cancer.html
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/imaging-radiology-tests-for-cancer.html
https://www.cancer.org/treatment/understanding-your-diagnosis/tests/imaging-radiology-tests-for-cancer.html
https://en.wikipedia.org/wiki/Radiology
https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084
https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084
https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor#cancer
https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor#cancer
https://www.mdanderson.org/cancerwise/glioma-vs--glioblastoma--what-is-the-difference-in-these-brain-tumors-treatment-diagnosis.h00-159537378.html
https://www.mdanderson.org/cancerwise/glioma-vs--glioblastoma--what-is-the-difference-in-these-brain-tumors-treatment-diagnosis.h00-159537378.html
https://www.cancercenter.com/cancer-types/brain-cancer/grades
https://my.clevelandclinic.org/health/diseases/12194-cancer
https://www.cancer.gov/about-cancer/understanding/what-is-cancer
https://www.cancerresearchuk.org/about-cancer/what-is-cancer/body-systems-and-cancer/the-immune-system-and-cancer#fight
https://www.cancerresearchuk.org/about-cancer/what-is-cancer/body-systems-and-cancer/the-immune-system-and-cancer#fight
https://www.youtube.com/watch?v=6qS83wD29PY
https://flexbooks.ck12.org/cbook/ck-12-middle-school-life-science-2.0/section/3.6/primary/lesson/rna-ms-ls/
https://flexbooks.ck12.org/cbook/ck-12-middle-school-life-science-2.0/section/3.6/primary/lesson/rna-ms-ls/
https://1drv.ms/p/s!Ah1DKWJIS3ebgZR_YODNnQ8do71UYw?e=pH4fvi
https://www.youtube.com/watch?v=h4t-fhvAorA
https://en.wikipedia.org/wiki/MicroRNA
https://en.wikipedia.org/wiki/Oncomir
https://www.genome.gov/genetics-glossary/RNA-Ribonucleic-Acid
https://www.news-medical.net/life-sciences/History-of-Genomics.aspx
https://en.wikipedia.org/wiki/DNA
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/cell

9. Bibliography

[23] https://www.computerworld.com/article/2591759/artificial-neural-network-

s.html

[24] https://apothesis.lib.hmu.gr/bitstream/handle/20.500.12688/9883/Panagiotak-

isGeorgios2021.pdf?sequence=1&isAllowed=y

132

https://apothesis.lib.hmu.gr/bitstream/handle/20.500.12688/9883/PanagiotakisGeorgios2021.pdf?sequence=1&isAllowed=y
https://apothesis.lib.hmu.gr/bitstream/handle/20.500.12688/9883/PanagiotakisGeorgios2021.pdf?sequence=1&isAllowed=y
https://www.computerworld.com/article/2591759/artificial-neural-networks.html
https://www.computerworld.com/article/2591759/artificial-neural-networks.html

9. Bibliography

9.2 References

[1] Menze BH, et al. "The Multimodal Brain Tumor Image Segmentation Bench-

mark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015)

DOI: 10.1109/TMI.2014.2377694

[2] Bakas S, et al. "Advancing The Cancer Genome Atlas glioma MRI collections

with expert segmentation labels and radiomic features", Nature Scientific Data,

4:170117 (2017) DOI: 10.1038/sdata.2017.117

[3] Bakas S, et al. "Segmentation Labels and Radiomic Features for the Pre-operat-

ive Scans of the TCGA-GBM collection", The Cancer Imaging Archive, 2017. DOI:

10.7937/K9/TCIA.2017.KLXWJJ1Q

[4] Bakas S, et al. "Segmentation Labels and Radiomic Features for the Pre-operat-

ive Scans of the TCGA-LGG collection", The Cancer Imaging Archive, 2017. DOI:

10.7937/K9/TCIA.2017.GJQ7R0EF

[5] S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al., "Identify-

ing the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progres-

sion Assessment, and Overall Survival Prediction in the BRATS Challenge", arXiv

preprint arXiv:1811.02629 (2018)

[6] Nimrod Rappoport, Ron Shamir, Multi-omic and multi-view clustering al-

gorithms: review and cancer benchmark, Nucleic Acids Research, Volume 46, Issue

20, 16 November 2018, Pages 10546–10562, https://doi.org/10.1093/nar/gky889

[7] Jose V. Manjon, Pierrick Coupé. MRI Denoising Using Deep Learning. International

Workshop on Patch-based Techniques in Medical Imaging (MICCAI), Sep 2018, Granada,

Spain. pp.12 – 19, 10.1007/978-3-030-00500-9_2. hal-01918437

[8] Sanqian, Li & Zhou, Jinjie & Liang, Dong & Liu, Qiegen. (2020). MRI denoising us-

ing progressively distribution-based neural network. Magnetic Resonance Imaging. 71.

10.1016/j.mri.2020.04.006.

[9] Xu, Yan & Hu, Shunbo & Du, Yuyue. (2021). Deep Convolutional Neural Networks

for Bias Field Correction of Brain Magnetic Resonance Images. 10.21203/rs.3.rs-853699/

v1.

[10] T. Goldfryd, S. Gordon and T. R. Raviv, "Deep Semi-Supervised Bias Field Correc-

tion Of Mr Images," 2021 IEEE 18th International Symposium on Biomedical Imaging

(ISBI), 2021, pp. 1836-1840, doi: 10.1109/ISBI48211.2021.9433889.

133

9. Bibliography

[11] Colman, J., Zhang, L., Duan, W., Ye, X. (2021). DR-Unet104 for Multimodal MRI

Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple

Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer

Science(), vol 12659. Springer, Cham. https://doi.org/10.1007/978-3-030-72087-2_36

[12] Nalepa J, Marcinkiewicz M and Kawulok M (2019) Data Augmentation for Brain-

Tumor Segmentation: A Review. Front. Comput. Neurosci. 13:83. doi: 10.3389/

fncom.2019.00083

[13] Vasileios Iosifidis and Eirini Ntoutsi. 2019. AdaFair: Cumulative Fairness Adaptive

Boosting. In Proceedings of the 28th ACM International Conference on Information and

Knowledge Management (CIKM '19). Association for Computing Machinery, New York,

NY, USA, 781–790. https://doi.org/10.1145/3357384.3357974

[14] Smith, Leslie. (2017). Cyclical Learning Rates for Training Neural Networks. 464-

472. 10.1109/WACV.2017.58.

[15] van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan,

V., Beets-Tan, R. G. H., Fillon-Robin, J. C., Pieper, S., Aerts, H. J. W. L. (2017). Computa-

tional Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 77(21),

e104–e107. `https://doi.org/10.1158/0008-5472.CAN-17-0339 <https://doi.org/

10.1158/0008-5472.CAN-17-0339>`_

[16] WATSON, J., CRICK, F. Molecular Structure of Nucleic Acids: A Structure for

Deoxyribose Nucleic Acid. Nature 171, 737–738 (1953). https://doi.org/10.1038/171737a0

[17] Collins FS, Fink L. The Human Genome Project. Alcohol Health Res World.

1995;19(3):190-195. PMID: 31798046; PMCID: PMC6875757.

[18] Bartel DP. Metazoan MicroRNAs. Cell. 2018 Mar 22;173(1):20-51. doi: 10.1016/j.-

cell.2018.03.006. PMID: 29570994; PMCID: PMC6091663.

[19] Khodadadian A, Darzi S, Haghi-Daredeh S, Sadat Eshaghi F, Babakhanzadeh E,

Mirabutalebi SH, Nazari M. Genomics and Transcriptomics: The Powerful Technologies in

Precision Medicine. Int J Gen Med. 2020 Sep 17;13:627-640. doi: 10.2147/IJGM.S249970.

PMID: 32982380; PMCID: PMC7509479.

[20] Hammond, SM. (Nov 2006). "RNAi, microRNAs, and human disease". Cancer

Chemother Pharmacol. 58 Suppl 1: s63–8. doi:10.1007/s00280-006-0318-2.

PMID 17093929. S2CID 682108.

[21] "Detect microRNAs most commonly found in Cancer". SBI. Retrieved 14 February

2013.

134

http://www.systembio.com/microrna-research/expression-profiling/oncomir-collection/overview
https://api.semanticscholar.org/CorpusID:682108
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/17093929
https://en.wikipedia.org/wiki/PMID_(identifier)
https://doi.org/10.1007%2Fs00280-006-0318-2
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145/3357384.3357974

9. Bibliography

[22] Võsa U, Vooder T, Kolde R, Fischer K, Välk K, Tõnisson N, Roosipuu R, Vilo J, Met-

spalu A, Annilo T (October 2011). "Identification of miR-374a as a prognostic marker for

survival in patients with early-stage nonsmall cell lung cancer". Genes, Chromosomes &

Cancer. 50 (10): 812–22. doi:10.1002/gcc.20902. PMID 21748820. S2CID 9746594.

[23] Akçakaya P, Ekelund S, Kolosenko I, Caramuta S, Ozata DM, Xie H, Lindforss U,

Olivecrona H, Lui WO (August 2011). "miR-185 and miR-133b deregulation is associated

with overall survival and metastasis in colorectal cancer". International Journal of Onco-

logy. 39 (2): 311–8. doi:10.3892/ijo.2011.1043. PMID 21573504.

[24] Zhang, J., “Basic Neural Units of the Brain: Neurons, Synapses and Action Po-

tential”, <i>arXiv e-prints</i>, 2019.

[25] Mesfin FB, Al-Dhahir MA. Gliomas. 2022 Jun 4. In: StatPearls [Internet].

Treasure Island (FL): StatPearls Publishing; 2022 Jan–. PMID: 28722904.

[26] Herman GT (14 July 2009). Fundamentals of Computerized Tomography: Im-

age Reconstruction from Projections (2nd ed.). Springer. ISBN 978-1-84628-723-7

[27] Quettier, Lionel & Aubert, Guy & Belorgey, Jean & Berriaud, Christophe &

Bourquard, Alex & Bredy, Philippe & Dubois, Olivier & Gilgrass, G. & Juster, F.P. &

Lannou, Herve & Molinie, Frederic & Nusbaum, Marc & Nunio, Francois & Payn,

Alain & Schild, T. & Schweitzer, Michel & Scola, Loris & Sinanna, Armand &

Stepanov, Vadim & Vedrine, Pierre. (2016). Iseult/INUMAC Whole Body 11.7 T MRI

Magnet. IEEE Transactions on Applied Superconductivity. PP. 1-1. 10.1109/

TASC.2016.2627501.

[28] Gaillard, F., Baba, Y. MRI sequences (overview). Reference article, Radiopae-

dia.org. (accessed on 19 Sep 2022) https://doi.org/10.53347/rID-37346

[29] Yusuke Tabei, Keiichi Kobayashi, Kuniaki Saito, Saki Shimizu, Kaori Suzuki,

Nobuyoshi Sasaki, Yoshiaki Shiokawa, Motoo Nagane, Survival in patients with glio-

blastoma at a first progression does not correlate with isocitrate dehydrogenase

(IDH)1 gene mutation status, Japanese Journal of Clinical Oncology, Volume 51, Is-

sue 1, January 2021, Pages 45–53, https://doi.org/10.1093/jjco/hyaa162

[30] Holtedahl K. Challenges in early diagnosis of cancer: the fast track. Scand J

Prim Health Care. 2020 Sep;38(3):251-252. doi: 10.1080/02813432.2020.1794415.

PMID: 32791936; PMCID: PMC7470137.

[31] Tørring ML, Frydenberg M, Hansen RP, Olesen F, Vedsted P. Evidence of in-

creasing mortality with longer diagnostic intervals for five common cancers: a cohort

135

https://doi.org/10.1093/jjco/hyaa162
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84628-723-7
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://books.google.com/books?id=BhtGTkEjkOQC
https://books.google.com/books?id=BhtGTkEjkOQC
https://pubmed.ncbi.nlm.nih.gov/21573504
https://en.wikipedia.org/wiki/PMID_(identifier)
https://doi.org/10.3892%2Fijo.2011.1043
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.3892%2Fijo.2011.1043
https://doi.org/10.3892%2Fijo.2011.1043
https://api.semanticscholar.org/CorpusID:9746594
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/21748820
https://en.wikipedia.org/wiki/PMID_(identifier)
https://doi.org/10.1002%2Fgcc.20902
https://en.wikipedia.org/wiki/Doi_(identifier)
https://zenodo.org/record/1119590
https://zenodo.org/record/1119590

9. Bibliography

study in primary care. Eur J Cancer. 2013 Jun;49(9):2187-98. doi: 10.1016/

j.ejca.2013.01.025. Epub 2013 Feb 27. PMID: 23453935.

[32] Mishra A, Verma M. Cancer biomarkers: are we ready for the prime time?

Cancers (Basel). 2010 Mar 22;2(1):190-208. doi: 10.3390/cancers2010190. PMID:

24281040; PMCID: PMC3827599.

[33] Macleod U, Mitchell ED, Burgess C, Macdonald S, Ramirez AJ. Risk factors

for delayed presentation and referral of symptomatic cancer: evidence for common

cancers. Br J Cancer 2009. Dec;101(Suppl 2):S92-S101. 10.1038/sj.bjc.6605398

[34] Lewandowska A, Rudzki G, Lewandowski T, Rudzki S. The Problems and

Needs of Patients Diagnosed with Cancer and Their Caregivers. Int J Environ Res

Public Health. 2020 Dec 24;18(1):87. doi: 10.3390/ijerph18010087. PMID: 33374440;

PMCID: PMC7795845.

[35]Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel

M, White C, Lowe C, Sherba JJ, Hartmanshenn C, O'Neill KM, Balter ML, Fritz ZR,

Androulakis IP, Schloss RS, Yarmush ML. The growing role of precision and person-

alized medicine for cancer treatment. Technology (Singap World Sci). 2018 Sep-

Dec;6(3-4):79-100. doi: 10.1142/S2339547818300020. Epub 2019 Jan 11. PMID:

30713991; PMCID: PMC6352312.

[36] Ginsburg GS, Phillips KA. Precision Medicine: From Science To Value. Health

Aff (Millwood). 2018 May;37(5):694-701. doi: 10.1377/hlthaff.2017.1624. PMID:

29733705; PMCID: PMC5989714.

[37] Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and

validation. Transl Cancer Res. 2015 Jun;4(3):256-269. doi: 10.3978/j.issn.2218-

676X.2015.06.04. PMID: 26213686; PMCID: PMC4511498.

[38] Heo YJ, Hwa C, Lee GH, Park JM, An JY. Integrative Multi-Omics Ap-

proaches in Cancer Research: From Biological Networks to Clinical Subtypes. Mol

Cells. 2021 Jul 31;44(7):433-443. doi: 10.14348/molcells.2021.0042. PMID:

34238766; PMCID: PMC8334347.

[39] https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-

04794-9

[40] "Dunning-Kruger effect". www.britannica.com. Archived from the original on

30 November 2021. Retrieved 7 December 2021.

136

https://web.archive.org/web/20211130065643/https://www.britannica.com/science/Dunning-Kruger-effect
https://www.britannica.com/science/Dunning-Kruger-effect
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04794-9
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-022-04794-9

9. Bibliography

[41] Koumakis L. Deep learning models in genomics; are we there yet? Comput

Struct Biotechnol J. 2020 Jun 17;18:1466-1473. doi: 10.1016/j.csbj.2020.06.017.

PMID: 32637044; PMCID: PMC7327302.

[42] Ravid Shwartz-Ziv and Amitai Armon. 2022. Tabular data: Deep learning is

not all you need. Inf. Fusion 81, C (May 2022), 84–90. https://doi.org/10.1016/j.inf-

fus.2021.11.011

[43] Saxena S, Jena B, Gupta N, Das S, Sarmah D, Bhattacharya P, Nath T, Paul S,

Fouda MM, Kalra M, Saba L, Pareek G, Suri JS. Role of Artificial Intelligence in Ra-

diogenomics for Cancers in the Era of Precision Medicine. Cancers. 2022;

14(12):2860. https://doi.org/10.3390/cancers14122860

[44] Despotović I, Goossens B, Philips W. MRI segmentation of the human brain:

challenges, methods, and applications. Comput Math Methods Med.

2015;2015:450341. doi: 10.1155/2015/450341. Epub 2015 Mar 1. PMID: 25945121;

PMCID: PMC4402572.

[45] Kalavathi P, Prasath VB. Methods on Skull Stripping of MRI Head Scan Im-

ages-a Review. J Digit Imaging. 2016 Jun;29(3):365-79. doi: 10.1007/s10278-015-

9847-8. PMID: 26628083; PMCID: PMC4879034.

[46] B. Zitov ́a and J. Flusser, “Image registration methods: a survey,”Image and

Vision Computing, vol. 21, no. 11, pp. 977–1000, 2003.

[47] Buades, A., Coll, B., and Morel, J. (2005). “A Non-local Algorithm for Image

Denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR’05), 60–65.

[48] Moreno López M, Frederick JM and Ventura J (2021) Evaluation of MRI De-

noising Methods Using Unsupervised Learning. Front. Artif. Intell. 4:642731. doi:

10.3389/frai.2021.642731

[49] Juntu, J., Sijbers, J., Van Dyck, D., Gielen, J. (2005). Bias Field Correction for

MRI Images. In: Kurzyński, M., Puchała, E., Woźniak, M., żołnierek, A. (eds) Com-

puter Recognition Systems. Advances in Soft Computing, vol 30. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/3-540-32390-2_64

[50] Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic cor-

rection of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998

Feb;17(1):87-97. doi: 10.1109/42.668698. PMID: 9617910.

137

https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.1016/j.inffus.2021.11.011

9. Bibliography

[51] Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC.

N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010

Jun;29(6):1310-20. doi: 10.1109/TMI.2010.2046908. Epub 2010 Apr 8. PMID:

20378467; PMCID: PMC3071855.

[52] N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, “SMOTE: syn-

thetic minority over-sampling technique,” Journal of artificial intelligence research,

321-357, 2002

[53] H. Han, W. Wen-Yuan, M. Bing-Huan, “Borderline-SMOTE: a new over-

sampling method in imbalanced data sets learning,” Advances in intelligent comput-

ing, 878-887, 2005.

[54] Haibo He, Yang Bai, E. A. Garcia and Shutao Li, "ADASYN: Adaptive syn-

thetic sampling approach for imbalanced learning," 2008 IEEE International Joint

Conference on Neural Networks (IEEE World Congress on Computational Intelli-

gence), 2008, pp. 1322-1328, doi: 10.1109/IJCNN.2008.4633969.

[55] Palm, G. (1986). Warren McCulloch and Walter Pitts: A Logical Calculus of

the Ideas Immanent in Nervous Activity. In: Palm, G., Aertsen, A. (eds) Brain Theory.

Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70911-1_14

[56] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review, 65(6), 386–408. https://

doi.org/10.1037/h0042519

[57] Weston J, Leslie C, Ie E, Zhou D, Elisseeff A, Noble WS. Semi-supervised

protein classification using cluster kernels. Bioinformatics. 2005 Aug 1;21(15):3241-7.

doi: 10.1093/bioinformatics/bti497. Epub 2005 May 19. PMID: 15905279.

[58] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001). https://

doi.org/10.1023/A:1010933404324

[59] Friedman, Jerome. (2000). Greedy Function Approximation: A Gradient Boost-

ing Machine. The Annals of Statistics. 29. 10.1214/aos/1013203451.

[60] Smith, L. N., “Cyclical Learning Rates for Training Neural Networks”,

<i>arXiv e-prints</i>, 2015.

[61]]You, K., Long, M., Wang, J., and Jordan, M. I., “How Does Learning Rate

Decay Help Modern Neural Networks?”, <i>arXiv e-prints</i>, 2019.

[62] Kingma, Diederik & Ba, Jimmy. (2014). Adam: A Method for Stochastic Op-

timization. International Conference on Learning Representations.

138

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://psycnet.apa.org/doi/10.1037/h0042519
https://psycnet.apa.org/doi/10.1037/h0042519

9. Bibliography

[63] Ruder, S., “An overview of gradient descent optimization algorithms”,

<i>arXiv e-prints</i>, 2016.

[64] Schapire, R. E. (2013). Explaining adaboost. In Empirical inference (pp. 37–

52). Springer.

[65] Ronneberger O, Fischer P, Brox T (2015). "U-Net: Convolutional Networks for

Biomedical Image Segmentation". arXiv:1505.04597

[66] Dice, Lee R. (1945). "Measures of the Amount of Ecologic Association

Between Species". Ecology. 26 (3): 297–302. doi:10.2307/1932409. JSTOR 1932409

[67] Carass, A.; Roy, S.; Gherman, A.; Reinhold, J.C.; Jesson, A.; et al. (2020).

"Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Ana-

lysis". Scientific Reports. 10 (1): 8242. Bibcode:2020NatSR..10.8242C. doi:10.1038/

s41598-020-64803-w. ISSN 2045-2322. PMC 7237671. PMID 32427874

[68] Sørensen, T. (1948). "A method of establishing groups of equal amplitude in

plant sociology based on similarity of species and its application to analyses of the ve-

getation on Danish commons". Kongelige Danske Videnskabernes Selskab.

139

https://en.wikipedia.org/wiki/Kongelige_Danske_Videnskabernes_Selskab
https://pubmed.ncbi.nlm.nih.gov/32427874
https://en.wikipedia.org/wiki/PMID_(identifier)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237671
https://en.wikipedia.org/wiki/PMC_(identifier)
https://www.worldcat.org/issn/2045-2322
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://doi.org/10.1038%2Fs41598-020-64803-w
https://doi.org/10.1038%2Fs41598-020-64803-w
https://en.wikipedia.org/wiki/Doi_(identifier)
https://ui.adsabs.harvard.edu/abs/2020NatSR..10.8242C
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237671
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237671
https://www.jstor.org/stable/1932409
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://doi.org/10.2307%2F1932409
https://en.wikipedia.org/wiki/Doi_(identifier)
https://arxiv.org/abs/1505.04597
https://en.wikipedia.org/wiki/ArXiv_(identifier)

	1 Biomedical Literature
	1.1 Cell
	1.2 DNA
	1.2.1 Genomics

	1.3 RNA
	1.3.1 Transcription
	1.3.2 miRNA
	1.3.3 Transcriptomics

	1.4 Brain
	1.4.1 Brain cell (Neuron)
	1.4.2 Main parts of the brain

	1.5 Cancer
	1.5.1 Brain Cancer
	1.5.1.1 Gliomas

	1.5.2 Diagnosis
	1.5.2.1 Radiology
	1.5.2.1.1 MRI

	1.5.3 Survival Rate

	2 Research Question
	2.1 Problems
	2.2 Current advancements
	2.3 Proposed solution
	2.3.1 Scope
	2.3.2 Target

	3 Computational Literature
	3.1 Data preprocessing
	3.1.1 MRI
	3.1.1.1 Skull striping(fig.12)
	3.1.1.2 Image Registration
	3.1.1.3 Denoising
	3.1.1.4 Bias field correction
	3.1.1.5 Normalization

	3.1.2 Tabular data
	3.1.2.1 Class Imbalance

	3.2 Machine Learning
	3.2.1 Types of machine learning
	3.2.2 Random Forest Classifier
	3.2.2.1 Boosting
	3.2.2.2 Gradient Boosting
	3.2.2.3 Metrics

	3.2.3 ANN
	3.2.3.1 CNN
	3.2.3.1.1 Unet
	3.2.3.1.2 Metrics
	3.2.3.1.3 Statistics or Deep learning?

	3.3 Image Features
	3.3.1 First order statistics
	3.3.2 Shape Based (3D)
	3.3.3 Gray Level Co-occurrence Matrix
	3.3.4 Gray Level Run Length Matrix
	3.3.5 Gray Level Size Zone Matrix
	3.3.6 Neighbouring Gray Tone Difference Matrix
	3.3.7 Gray Level Dependence Matrix

	4 Case Study
	4.1 Environment Info
	4.2 Datasets
	4.2.1 Image Data
	4.2.2 Genomic and transcriptomic data

	4.3 Preprocessing
	4.3.1 Images
	4.3.1.1 Bundling
	4.3.1.2 Dataset Split

	4.3.2 Multi-omic Data

	4.4 Image segmentation
	4.4.1 Data Generators
	4.4.2 Hyperparameters, optimizer, and callbacks
	4.4.2.1 Hyperparameters
	4.4.2.2 Optimizer
	4.4.2.3 Callbacks

	4.4.3 Model architecture
	4.4.4 Model Training

	4.5 Feature Extraction
	4.6 Survival Prediction from Imaging Data
	4.7 Multi-omic Data analysis

	5 Results
	6 Discussion & Outlook
	7 Future Prospects
	8 Appendix – Scripts
	8.1 Rig information
	8.2 Image Preprocess Pipeline
	8.3 Data Bundling
	8.4 Multi-omics
	8.5 Data Generator
	8.6 Unet
	8.7 Train
	8.8 Retrain
	8.9 Image Feature Extraction
	8.10 Image Feature Survival Prediction

	9 Bibliography
	9.1 Online Sources
	9.2 References

