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Amayopevetal 1 ovTypa®r], omobnKeLo Kot SlvopUr TNG TOPOVCHG TTLYLOKNG
epyaciag €€ oAokANpov 1 TUNUOTOC OVTNAG, Y gumopikd okomd. Emitpémetor
avoTOTOGT, amodNKELGON Kot OLOVOUT Y10l GKOTO U1 KEPOOGKOMIKO, EKTOLOEVTIKNG 1)
EPELVNTIKNG POONG, VIO TNV TPoHTHOEoN Vo avaPEPETAL 1] TNYT TPOEAELONG KOl VL
dwnpeitar 10 wapodv pnvope. Epotipato mov a@opovdv i xpnorm e TTLUYLOKNG
EPYNCIOG Y10 KEPOOGKOTIKO GKOMO TPEMEL VO omevBivovTon mpog Tov cuyypapéa. Ot
OTOWYELS KO TO GUUTEPACUOTO TOV TEPLEYOVIOL GE OVTO TO E£YYPAPO eKOPALovV TN
oLYYPOPEN Kot OgV TTPETEL Vo punvevdet OtL avtimpoownevovy TG emionueg Béoelg
tov Tpnuoatog HAektpoddymv Mnyovikov kot Mnyovikdv YmoAoylotdv XyoAn
Mnyovikev tov EAAnvikod Mecoyetokov [avemomnuiov.
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Abstract

The present work outlines core aspects of machine learning in the fields of radiomics, genom-
ics, transcriptomics and radiogenomics. More specifically, it’s attempting through the usage of
multi-type data (including medical images, gene expressions, trascriptome expressions) to ad-
vance the diagnostic power of predictive models. In the same time, it’s trying to advance the
survival rate metrics using the same type of data in order to help with cancer correlations and

treatment observation and evaluation.

Starting off the reader will understand core concepts of the biomedical field, the nature of
the problem as well as the scope and target of this thesis. Continuing we will also give the
reader the necessary computational knowledge needed to follow up with the experiments.
Moving forward we perform a multi-type experiment attempting to merge radiogenomic clas-
sifiers with a better cancer survival rate. Lastly we present our results, give our outlook and
discuss about the work done & problems we encountered and close off by pondering over fu-

ture research.

The begin of the experiments starts with a lengthy preprocessing of approximately 4000
MRI blocks of multiple modalities (FLAIR, T1, TICE, T2) and generation of custom input ob-
jects. Through the use of a DNN, namely a 3D CNN with modified inputs, we establish cancer
classification and semantic segmentation into 4 major classes(background, necrotic core/non
enhancing tumor, peritumoral edema, enhancing tumor) through the training and evaluation of

multiple segmentation models.

Using the imaging data, we extract a plethora of imaging features that we later use in gradi-
ent boosting (XGBOOST) to approximate survival prediction from the imaging data analysis.
Continuing with the genomic & trascriptomic data, we establish two major classes of “dead” or
“alive for over 100 days” and generate classifiers based on the multi-omic profiling of our
samples. Lastly we use the multi-omic data to generate powerful regressors for survival rate

prediction.
Key words: bioinformatics, radiogenomics, MRI, multi-omics, cancer, gliomas, Data

Preprocessing, 3D-CNN, Classification, Regression, Semantic segmentation, tumor

classification, Survival prediction
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MepiAnyn

H mapovoa epyacio oxlaypagel Tig Pacikég mTuyég TG WNXOVIKNG HdBnong 6Toug TopElG TG
POOIOVOUIKNG, TNG YOVIOI®UATIKNG, TNG UETOYPAPTOMKNG Kol TNG padloyovidropotikng. ITo
OUYKEKPIUEVO,  emyEpel  péo® MG XPNONS  O€0OUEVOV  TOAAATAGV — TOT@V
(ovumeplopuavopéveoy  1OTPIKOV  EIKOVOV, EKQPPAcE®Y  YoVIdimV, EKPPACEDV
LETOYPOPOUAT®V) VO TPO®ONoEL TN OlyvVOOTIKY] OOVOUN TOV TPOYVOOTIKOV HOVIEAWV.
Tovtdypova, mpoomabel vo mpowBnoel TIC UETPNOES TOL  WOGOGTOV  EMPIOONG
YPNCLOTOIDVTAG TOVG 101005 TOTOVS OEOOUEVAV, TPOKEWEVOD Vo fonONGEL e TIG GLGYETIOELS

TOV KOPKIVOL KOl TNV Topatipnon Kot aEloddynon g KopKvikng Oepomeiog.

HEekivavtag o avayvaotng o koatavonocel tig Pacikég £vvoleg tov Proiatpukcod touéa, Bo
KOTOVOTOEL TN QVGT] TOL TPOPANUATOS KAOMG KOl TO EVPOC KO TOV GTOYO OVTHG TNG OoTpPng.
Yuveyilovtag amoTUTMOVOLLE TOV OVOYVAGTN TIS DTOAOYIGTIKEG YVMOGELS TOV OTOLTOVVTOL Y10l
mv  mapakoAovOnon tov mepapdtov. Ilpoyopodvioag, mpoaypotomoloVue £€vo  mEipopo
TOAALOTAGDV TOTOV ETYEPAOVTOS VO GUYYOVEVGOVUE POOIOYOVIOIOUOTIKOVS TAEWVOUNTEG LE
KoAOTEPO TOG00TO emPimong and Kapkivo. Télog, mapovcsidlovpe To AmOTEAECUATO LOG,
OIVOLLE TIC TPOOTTIKES oG Kol GLENTALE YiaL T SOVAELL TTOL £)EL YIVEL KO TOL TPOPANLLOTA TTOV

OVTILETOTICOUE Kol KAEIVOVLLE LLE TO GTOYUGHOVS Y10 LEALOVTIKY] £PEVVAL.

H apyn tov nepopdtov Eexva pe o pokpd tpoemeiepyacio mepimov 4000 pmiox MRI
moAlamhodv tonwv (FLAIR, T1, TICE, T2) kot dnpuovpyio TPOGUPUOCUEVOV OVTIKELEV®V
eloayoync. Méow g ypnong €voég DNN, ocvykekpyéva evoc tpiodidototov CNN e
TPOTOTOMUEVES ELGOJ0VGE, KAEPMVOLLE TNV TOEVOUNGT TOV KOPKIVOL KOl T GNUOGLOAOYIKY|
katdtunon oe 4 xopieg katnyopieg (VedPabpo, vekpOTKOS TUPNVOG/UN EVICYLTIKOG OYKOG,
TEPLOYKIKO OIONUO, EVIOYLTIKOG OYKOC) HEC® NG eKmaidgvong kot g a&oAdynong €&

LOVTEAWDV TOAAATANG TUNIOTOTOINGNG EKOVOLG.

XPNOYWOTOUDVTOG TO OEOOUEVO OMEIKOVIONG HOC, £EAyouE pia TANODPO YOPOKTNPICTIKMOV
OTEIKOVIONG TTOV aPYOTEPX YPNOLUOTOLOVUE GTOVG TaEvouNTESG evicyvong KAiong (XGBOOST)
Yy va Tpoceyyicovpe v mpoPreyn emPioong amd v avaAvomn OedOUEVOV ATEIKOVIONG.
Yvveyilovtag He TO YOVIOIOUOTIKA Kol HETOYPAPIKA Oedopéva, Kablepdvoupe dVo KOPLEg
Kkatnyopieg «vekpovy 1 «loviovov yio mepiocdtepeg and 100 nuépeg» Kot onpovpyodue

tagvountég pe PAacn to TOAV-OUKO TPOQPIA TV delypdtov poc. TEAOG, y¥pnoyloTolovue To



TOAAD-OLUKG OEGOUEVA Y10 VO ONULOVPYNGOLVLE EVAY 10YLPO TOAMVOPOUNTH Yo TV TPOPAEYN

TOV TOGOGTOV EMPIMONG.
AéEerg KAedid: Prominpopopikn, HOYVNTIKE TOHOYPOQio, XOPOKTNPIOTIKE LOTPIKNAG EKOVAG,

3D-CNN, multi-omics, koapkivog, mpo-enelepyacio dedopévov, ylolopa, Kotnyoploroinon,

TOAVOPOUNOT), ONUAGIOAOYIKT KATATUN O], KATYOPlomoinot dykov, mpofieyn emiPioong
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1. Biomedical Literature

1 Biomedical Literature

Biology is the study of living things. In this section we give a brief overview of core con-

cepts the reader needs to know to understand the problem this thesis is trying to tackle.

1.1 Cell

Dubbed as the smallest unit of life that can live on it’s own by the dogma of Biology,
the cell is the principal building block of all organisms (even if it’s a one cell organ-

ism!). It consists of three main parts(fig.1'):

1. the cell membrane, surrounds the cell and
controls it’s I/O stream Cytoplasm

Nucleus

2. the cytoplasm, the fluid within the cell that Membrane
contains multiple smaller cell parts that per-
form certain functions (energy production,
protein forming, etc.)

3. the nucleus, which contains the cell’s DNA

Figure 1: The Cell

Fun fact: the average human consists of more than 30 trillion cells!

1.2 DNA

DNA(fig.2%) is a polymer composed of two polynucleotide chains that coil around
each other to form a double helix as proposed by Watson & Crick [16]. It carries ge-
netic instructions for the development, growth and reproduction of all known organ-
1isms. Each DNA strand is made of four chemical units, called nucleotide bases, which
comprise the genetic "alphabet." The bases are adenine (A), thymine (T), guanine (G),
and cytosine (C).

The vast majority of our DNA (named ncDNA that composes 98% of our DNA)
doesn’t code proteins but serves functional roles (like the regulation of gene expres-

sion). It is believed that it has functions that are yet to be discovered®.

! https://media.istockphoto.com/photos/internal-structure-of-an-animal-cell-3d-rendering-section-view-picture-id 1306045773?
k=20&m=1306045773 &s=612x612&w=0&h=81ecNdkPSXfw8gAYVZW-Aj_rocDDfjIfBqTrmPg5--M=

2 https://en.wikipedia.org/wiki/DNA#/media/File:Eukaryote DNA-en.svg

* https://www.lsi.umich.edu/news/2018-04/scientists-discover-role-%E2%80%98junk %E2%80%99-dna
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A gene is a hereditary unit that we inherit from

. Cell
our parents that define our characteristics(color of D

eyes, height, etc). A human has about 23,000 such
instruction snipets. They are composed of DNA. (
The complete set of an organisms genes is called

the genome. In humans the genome is approxim- p
Nucleus Chromosome

ately ~2% of our total DNA. Our genome is dis-
Figure 2: Location of our DNA

tributed in 46 chromosomes (23 pairs), half taken

from our mother and the other half from our father.

1.2.1 Genomics

The study of the genome and it’s environment is called Genomics. It is an interdisci-
plinary field of Biology. It aims at the collective characterization and quantification of

all of an organism's genes, their interrelations and influence on the organism[19].

A major milestone of the field is the completion of “The Human Genome Project”.
It is dubbed as one of the greatest scientific feats in history. It started in 1997 and it’s
aim was to decipher the chemical makeup of the human genome[17] and it finished in

2003[ 18] having completed about 92% of the total human genome sequencing.

1.3 RNA

RNA is also a nucleic acid that exists in all living cells. It has structural similarities to
DNA, but unlike DNA it is single stranded (with some exceptions to double stranded
RNA viruses and special RNA types). It is using the same bases as DNA [1.2] with the
only difference that it’s using uracil (U) instead of thymine (T). There are multiple
types of RNA but the three major types are:

- mRNA: DNA is stored inside the nucleus and under normal circumstances it
never leaves it. The mRNA comes into play to carry out information from the
nucleus to the cytoplasm

- tRNA: becomes part of the ribosome, which is the factory for protein synthesis

- tRNA: is the carrier of amino acids to the ribosome in order to complete the

protein synthesis
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1.3.1 Transcription

Transcription(fig.3*) is the first step in gene expression, in which information from a
gene is used to construct a functional product such as a protein. The goal of transcrip-
tion is to make an RNA copy of a gene's DNA sequence’. For a protein-coding gene,
the RNA copy(transcript), carries the information needed to build a polypeptide (pro-

tein or protein subunit).

[~ L T R T T T T T O |
ONA
{
Transcipiion ANA
| I I T I B I}
DNA
d
— Transcvipt
(RNA)
J
Trans\ation
Het (Tle (Sec  folypeptide

Figure 3: The process of transcription and translation

1.3.2 miRNA

The miRNAJ[18] is a small RNA segment that is produced by ncRNA. The job of
miRNA is to act as a gene regulator by intercepting the mRNA and silencing genes.
This happens because miRNA is partially complementary to the mRNA it’s trying to
oppress. As soon as it attaches itself to the mRNA, it will cause either it’s degradation

or prevent ribosomes from translating it.

The interesting thing about miRNA is that it can be associated with a plethora of
diseases, cancer being one of them[20],[21]. The very odd thing about it is that it has
both been associated with oncogenic events and as tumor suppressing agent!

We call this type of miRNA, an “oncomiR”. A list of miRNAs directly associated
with cancer can be found here®. Lastly, research has shown that miRNAs can directly

be associated with survival prediction in cancer patients [22], [23].

*  https://cdn.kastatic.org/ka-perseus-images/20ce29384b2e7ff0cdea72acaa5b1dbd7287ab00.png
https://www.khanacademy.org/science/ap-biology/gene-expression-and-regulation/transcription-and-
rna-processing/a/overview-of-transcription

https://en.wikipedia.org/wiki/
Oncomir#Characteristics_and_mechanisms_of some well defined oncomirs
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1.3.3 Transcriptomics

Same as with Genomics in [1.2.1], transcriptomics study the transcriptome (the com-
plete set of RNA transcripts that are produced by the genome). The main focuses of
transcriptomics is how transcripts of a cell, tissue or living organism are influenced by
disease or other environmental factors[19], but scientists are also looking into other

functions for ncRNA.

1.4 Brain

The brain is the most complex organ inside the human body. It controls our thoughts, it
stores memories, expresses emotion through chemical reactions, understands and pro-
cesses complex signals from our sensors (vision from our eyes, audio from our ears)
and generally is the main operator behind most processes that are carried out inside

our body.

1.4.1 Brain cell (Neuron)

To further our understanding of the brain we begin with the smallest biological compu-

tational unit. The neuron[24](fig.4").

Dendrite
Synapse

“

Figure 4: A biological neuron

Neuron are primarily information messengers. They collect information from other

neurons on their dendrites via neurotransmitters. The information flows to the cell nuc-

7 The source of the image was google, but it has been lost
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leus and gets stored in the axon hillock. When enough information is gathered to ex-
cite the neuron it generates an action potential. Then the information travels down the
axon, which is covered in myelin (layer that insulates the pathway so the signal won’t
loose it’s strength. The signal reaches the axon terminals and the neuron emits neuro-

transmitters. Lastly the neuron resets to prepare to fire again.

1.4.2 Main parts of the brain

The brain consists of approximately 100 billion neurons [1.4.1]! There are many more
parts in the brain than neurons. Synoptically the main parts of the brain are(fig.5*):

- Frontal lobe, is our cognitive center (controls speech, judgement, etc.)

« Parietal lobe, helps with sensory information

+ Temporal lobe, is responsible for memory and hearing

+  Occipital lobe, processes input coming from our eye retina

+  Cerebellum, primary motor functions and balance

« Spinal cord, is what connects our brain with the rest of the body forming the

CNS

Human Brain Anatomy

Frontal lobe Parietal lobe

Occipital lobe

Cerebellum
Temporal lobe

Spinal Cord

Figure 5: The brain's anatomy

https://www.hopkinsmedicine.org/-/media/images/health/1 -conditions/brain/brain-lobes-ana-
tomy.ashx
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1.5 Cancer

Cancer is a genetic disease that is caused when cells in the human body disavow the
natural cycle of their lives by refusing to die when they become too damaged or dic-
tated to do so, or growing uncontrollably without being signaled to do so. This can
happen anywhere in the body because as mentioned in [1.1] the human body averages

over 30 trillion cells.

Cancerous cells that aren’t intercepted by our immune system might form clumps
that we call tumors. These tumors can be classified as:
-+ Benign, which is in general an overgrowth of human cells but may still pose a
serious threat to ones life. These usually don’t re-appear after being removed.
- Malign, where the tumor will start invading nearby tissue and start over con-
suming resources to the point that the further it expands, it’s internal area dies

from the lack of resources (oxygen, building blocks, etc.).

There are four distinct cancer stages and a preliminary stage:
« Stage 0: cancer is localized in the area that it started

- Stage I: cancer is localized to a small area and hasn’t spread to lymph nodes or
other tissues.

- Stage II: cancer has grown, but it hasn’t spread.

- Stage III: cancer has grown larger and has possibly spread to lymph nodes or
other tissues.

« Stage IV: cancer has spread to other organs or areas of the body. (metastasis)

Cancer is statistically likely to show up in our lives. A research facility in the UK
claims that one in two people will develop cancer in their lifetime’. There are multiple
major risk factors for cancer:

- Hereditary, if one or both parents had or develop cancer, the genes get passed
down to the children

- Exposure to radiation (Atomic accidents like Chernobyl(1986), or UV sun
rays) that causes destabilization of DNA which might lead to cancer

- Age, the older we get it’s more likely for an error to occur while cell replica-

tion happens leading to cancerous cells

°  https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/age-and-cancer
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1.5.1 Brain Cancer

Due to brain cancer not operating like other tumors (e.g. it’s very rare for a brain tu-
mor to metastasize outsize of the brain) a special grading system is used. The person-
nel in charge of diagnosing the grade will perform preliminary neurological tests to de-
termine the impact of the tumor on basic functions (speech, motor function, etc.). The
main factors used to asses the tumor include:

Size, morphology and location

Type of cells / tissue affected

The possibility of the partial or full tumor volume being removed by surgery

(resectability) or cauterization

The spread of the cancer within the brain or spinal cord

The possibility the cancer metastasized outside the brain area or the CNS

1.5.1.1 Gliomas

Gliomas make up about 33% of the brain cancers. Glioma is an umbrella term that de-
notes cancers found in the glial cells. Glial cells are responsible to clean up after neur-

ons as well as resupply them with resources.

Usually the gliomas are named for the type of glial cell they resemble. The way we

grade gliomas is how aggressive they are and how fast they grow:

LGG: grade I & 11
HGG: grade III & IV

Often times it’s not enough to grade a glioma by it’s type. A low grade glioma can
rise in grade if it shows excessive aggression or growth. It can also rise in grade if a
gene analysis finds high correlation with already established high grade gliomas (e.g.
GBM IDH wildtype is a grade IV glioma and currently the most aggressive brain can-

cer).

1.6.2 Diagnosis

Most cancers usually give a footprint signalling their existence. They might cause
pain, discomfort, and a myriad of other symptoms. A doctor will perform standard

physiological tests and look through the patients family medical record. In case they



1. Biomedical Literature

find something abnormal they might order lab tests(blood work), imaging tests(CT,
MRI, PET, Ultrasound) or even a biopsy where tissue and fluid from the tumor is ex-

tracted surgically and tested in a lab.

The problem with brain cancer, especially LGGs (because of the low growth rate) is
that the brain is encapsulated in our skulls. The brain itself does not have any pain re-
ceptors so brain cancer often times is very hard to diagnose. It will make itself known
through various symptoms among others:

« Headaches coming in various frequencies and severities
«  Problems with cognitive functions
«  Motor functions operating abnormally

+ Drastic changes in personality

1.5.2.1 Radiology

Radiology is a field in medical science that works with imaging techniques to let doc-
tors see inside a patients body without invasive means. Despite the term containing the

word radiation not all of Radiology is radiation based (e.g. MRI, Ultrasound).

Radiology can be broken down into two categories:

Diagnostic, imaging within the body:

o CT Scan
o MRI
o PET

o Ultrasound

o Mammography

- Interventional, when it’s used to guide a proced-  Figure 6: CT scan
ure, like incision, catheter placement, etc.
The field that studies radiological data and extracts information in the forms of fea-

tures is called radiomics [3.4].

1.5.2.1.1 MRI

MRI is an imaging technology that produces detailed anatomical images of internal

body regions by non-invasive means.
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It uses a giant magnet (Usually 1.5 or 3 Tesla but advancements in the field have
proved that high tesla magnets increase the quality of the pictures taken(e.g. the 11.7
tesla magnet used in the Iseult Project[27])) to create a unified magnetic field around

the patient.

When the patient enters the field the water molecules will align themselves with the
magnetic field due to hydrogen atoms acting as magnets. Low energy water molecules
also start spinning when we bombard them with a radio frequency waves by sapping

the energy needed from the radio waves.

When the radio waves are interrupted these molecules discharge the energy and re-
turn to equilibrium state while the rest of the water molecules keep spinning in re-
spects to the unified magnetic field. The MRI machine detects the movement of the
low energy water molecules and then translates that into slices based on a gradient. By

stacking these slices we obtain a 3D representation of the organ or we want to observe.

MRI Scanner Cutaway

Figure 7: MRI Scanner

Because MRI doesn’t use radiation like X-Rays or CT scans do, it’s often the best
type of imaging for frequent studies although the cost can be rather high in comparison
to the aforementioned.

By changing the radio wave frequency and the gradient we obtain a different MRI
[28]. These are called MRI sequences'. Using different sequences yields different tis-

sue densities. Examples of sequences:

10 https://www.wikidoc.org/index.php/MRI_sequences
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« T1 (longitudinal relaxation time)(fig. 8'"):
o Fat: bright
o Muscle: gray
o Fluid: dark
o Moving blood: dark

o Bone: dark \ A
o Air: dark N 2 s ]
o Brain: i - ) ,

= Gray matter: gray Figure 8: T1

=  White matter: bright

T1 is best used in assessing the anatomy as the image resembles the tissue macro-

scopically.

- T1 CE(or GD) (fig. 9'):

Practically the same as T1 with the difference that the
patient is injected with GD. This is used to alter the mov-
ing blood density to bright. T1-CE is useful in assessing hy-

pervascular lesions.

T2 (transverse relaxation time)(fig.10"):
o Fat: bright
o Muscle: gray
o Fluid: dark
o Moving blood: dark

o Bone: dark
o Air: dark
o Brain:

= QGray matter: gray

=  White matter: bright Figure 10: T2

Used mostly as supplementary to T1, to help with the lesion analysis.

https://www.wikidoc.org/images/3/31/T1_acoustic-schwannoma-14.jpg
https://www.wikidoc.org/images/c/c8/T1_c¢_acoustic-schwannoma-14.jpg
https://prod-images-static.radiopaedia.org/images/
3374474/17d9d073fda711{fd52fd1522243594 thumb.jpg

10
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- FLAIR (fig.11):
o Fat: bright
o Muscle: gray
o Fluid: dark
o Moving blood: dark

o Bone: dark
o Air: dark
o Brain:
= Qray matter: gray Figure 11: FLAIR

=  White matter: darker than gray matter

Useful in assessing lesions near ventricles, the lesion can easily be discriminated by

cerebrospinal fluid.

1.5.3 Survival Rate

Survival rate is a metric that is used to calculate the life expectancy of a cancer patient
based on previously recorded cases. It’s often spread into three time frames:

« 1*year mark

« 5 year mark

+ 10 year mark

In some special cases (GBM IDH wildtype), the cancer is aggressive enough that
sub one year prediction metrics come into use[29]. Survival prediction isn’t set in
stone, one could argue that due to the older recordings of fatalities due to cancer the
prediction can be biased by the time frame they were taken in respects to the dia-
gnostic & technological level of the times. In recent years we’ve come to use survival
rate as a metric to observe and document the results of cancer therapy. There are mul-
tiple factors that form this metric'*:

- Type of cancer (glioma, lymphoma, etc.)
-« Stage of cancer ([1.5])
« Available treatment (chemotherapy, radiation, etc.)
- Age & gender,
By adding more data types (radiomic, genomic, etc.) to the factor section we are

able to create far more complex models to calculate the survival rate of a patient.

4 https://www.wcrf.org/cancer-trends/cancer-survival-statistics/

11
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2 Research Question

In this section we will discuss current problems related to cancer in multiple levels(so-
cial, diagnostic, treatment), efforts in the literature and give our proposed solution and

define the scope and target of this dissertation.

2.1 Problems

According to WHO, cancer is one of the leading causes of death on the planet surpass-
ing 10 million deaths in a year"! There are many problems associated with cancer, not

all of them being the cancer itself:

« Socioeconomic spectrum: According to Anna Lewandowska[34] in a study in-
volving 800 patients, they found out that cancer patients have a high level of
unmet needs especially in terms of psychological support and medical informa-
tion. Most of them find themselves in denial, despair and extreme anxiety.
These states have a high effect on the decision making and clairvoyance of the
situation the patient is in. On the same scope, a study in the UK [33] supports
that patients would get treated for their symptoms without the idea of cancer

being present based on socioeconomic and educational level factors.

- Lack of data: while there might be an influx of cancer caused deaths and new
cancer cases'®over the last decade, the lack of large multi type datasets and
public data availability is impacting research teams across the globe and hin-
ders design and creation and evolution of prognostic, diagnostic and treatment

assessment tools.

- Diagnostic: Disavowing early signs. A Danish study [31] found out that the
mortality rate, due to general symptoms being present in a multitude of other
non-life threatening diseases therefore causing concern for a cancer diagnosis
to be non existent or low, to be increased. This happens as a result of the low

probability of the symptoms pointing to cancer.

'S https://www.who.int/news-room/fact-sheets/detail/cancer
16 https://www.cdc.gov/cancer/dcpe/data/index.htm

12
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- Biomarker complexity: despite continuous efforts in the multi-omic biomedi-
cal field a lot of the biomarkers fail to complete their clinical evaluation trials
due to the uniqueness of the cancers on a molecular level. A biomarker from
it’s discovery needs to be analytically validated and clinically evaluated before

it can be implemented clinically [32],[37].

2.2 Current advancements

With a great deal of problems comes a lot of attempts to solve them, some solution im-

plementations include:

- Cancer patient pathway (CPP): In many countries a “fast track™ has been im-
plemented as a system to shorten the interval between consultation, diagnosis

and treatment in cases of suspected cancer [30].

- Multi datatype banks: efforts around the globe have started in the last decade
to create public datasets that document cancer cases with as much information
as possible (multi-omic data, medical imaging, patient metadata(background,
medical history, etc.) in order to give researches the data availability to find

deep structural patterns in various cancers as proposed by [36],[38].

«  Precision medicine: we know that cancer varies from patient to patient in terms
of it’s uniqueness (genetic makeup, tissue it’s effecting, etc) alongside a
plethora of factors (patients health, demographics, etc). Precision medicine
treatment comes into play with advancements in the multi-omic fields which
lead to isolation of the genetic mutations of the tumors. This gives the medical
professionals handles to perform targeted treatment (immunotherapy, cancer

vaccine, etc) [35],[36].

2.3 Proposed solution

In our solution we are proposing a multi datatype classification of cancer with both ra-
diomic features [4.4] and multi-omic data [4.7]. Furthermore we aim to bring radiomic

extracted features (explained in [3.4]) and multi-omic related features together by cal-

13
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culating the accuracy of cancer survival rate predictors by utilizing ensembled models

of weak learners into powerful regressors [4.6], [4.7])

2.3.1 Scope

The general purpose of the study is to peer into the usage of multi-type data for the
purposes meta cancer analysis from a computational informatics perspective. The sam-
ples we obtained came from a vast number of institutes over the course of three years
of competitions (BraTS datasets ‘18-’19-°20). These contain multi-grade gliomas. The
gene & miRNA dataset came from a multi-omic benchmarking set [6]. From these we

used only the data addressed to GBM.

The duration of the study happened over the course of two months. We will be dis-
cussing about data preprocessing, various supervised machine learning methods[3.3]
(RFCs, gradient boosting, ANNSs), class imbalance strategies and image features ex-
traction and usage([3.4][4.5][4.6].

2.3.2 Target

Our target is to come up with a way to combine imaging data with multi-omic data in
an effort to bolster classification of tumors and prediction of survival rates. In other
words we’ll try proving that the use of radiomic and multi-omic (genomic & trascrip-
tomic in this case) data can be used to have a more accurate classification of tumors

alongside better survival predictions.

We aim to create a classifier / segmenter that locates and annotates the class
([4.2.1]) of a brain lesion (if a lesion exists) and extract it’s radiomic features based on
the predicted mask. We will then use these features to train a regressor to try and ap-

proximate the survival rate of the patient.

We also aim to create a classifier that takes genomic and trasncriptomic data and is
able to classify in between two classes ([4.2.2]). We will then use the multi-omic
dataset to create a regressor to extract survival predictions based on a multi-omic sam-
ple input([4.7]).

14
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3 Computational Literature

In this section we describe and analyze the informatics theoretical basics and various

other needed components to give the theoretical background of our analysis.

3.1 Data preprocessing

Two major data types are used in this study:
- MRI, 3D anatomical image of our brain

«  Multi-omic expressions, tabular data

3.1.1 MRI

We define a 3D image as a function:
1(i, j, k)
in an arbitrary 3D space with 1, j, k denoting spatial coordinates where:
« i=0, .. M-I
- j=0, .., N-1
« k=0, .. D-1

Every (i, j, k) set translates to a voxel’s location in the 3D image.
The way we get MRIs is by firstly acquiring a 2D slice and then stacking it on an
axis. In MRIs a value is assigned to each of these voxels based on average magnetic

resonance characteristics present in the tissue corresponding to that voxel[44].

3.1.1.1 Skull striping(fig.12'")

MRIs of the brain come with a plethora of structures we don’t need(CSF, neck, skull,
eyes). Actions must be taken before we are left with just the brain tissue. A lot re-
searchers have tackled the issue with a wide variety of ways [45]:
«  Morphology based methods: these use the morphological erosion and dilation
operations to separate the skull from the brain region
- Intensity based methods: these use the intensity values of the image pixels to
separate brain and non brain regions
«  Deformable surface based methods: these evolve and deform an active con-

tour to fit the brain surface

17" https://jerrylinew.github.io/cs188/public/front.png
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« Atlas(or template) based methods: they rely on fitting an atlas on the MRI to
separate brain from non brain matter.
- Hybrid methods: these use all of the above in order to counteract a specific

methods’ disadvantages as illustrated by Kalavathi et al[45].

Figure 12: Skull Striping

3.1.1.2 Image Registration

Image registration(fig.13'®) is the geometrical alignment of an N number of images de-
picting the same scene in different time intervals and maybe the use of different
sensors (e.g. MRI sequences) [46].
These are important due to enabling healthcare professional from monitoring
growth patterns on tumors. For a two image system:
« 1, denotes the source image (the movable one)
« I, denotes the target image (the static one),
most of the registration methods will usually follow these steps:
Feature detection, locating distinctive objects (edge, contours, corners, geo-
metrical structures etc.)
- Feature matching, correlating detected features amongst the different source
image and the target image
« Transform model estimation, calculating the type of the mapping functions
that will help aligning the source image to the target image(translations, shears,
scaling, etc.)
+  Resample and transformation, performing the transformations from the

model estimation and interpolates non integer spatial coordinates

'8 https://els-jbs-prod-cdn.jbs.elsevierhealth.com/cms/attachment/e5 1bb6¢2-629f-4b55-8fea-
677faf0299ae/gr2 lIrg.jpg

16
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Figure 13: Image registration of MRI and fMRI

3.1.1.3 Denoising

Noise can cause tremendous amount of corruption to our data, causing errors in
quantitative imaging with potential leading to miss diagnosis. There are multiple noise

factors in the process of acquiring MRI data:

«  Thermal noise, coming from the machine itself
- Living noise, which is caused by bio processes inside the brain or movement

of the patient while inside the MRI machine

A standard way to filter MRIs has been proposed by Buades et al[47]. This uses the
self spatial similarities that natural images have by using the redundancy of the neigh-
bourhood pixels to remove the noise(fig.14"). A more detailed overview on various

filters and methods be found in [48].

Figure 14: NLM filtering (A) noisy (B) filtered

19 Edit of : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0116986.2006 &type=large
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3.1.1.4 Bias field correction

The bias field is a low-frequency artifact that causes a smooth signal intensity varia-
tion within tissue of the same physical properties[44]. This gets exacerbated in older
MRI machines [49]. A very prominent way to fix this is by using an improved version
of the famous non parametric nonuniform intensity normalization (N3) [50], dubbed
“N4ITK” [51]. In short, it performs histogram normalization to vanish lightning de-

fects that may be caused by the magnetic coils.

Both N3 and N4 corrections assume that the non-uniformity in the MRI is multi-
plicative. This means that the noisy image (/,) we get is a multiplication of a corrected

image (/.) and a bias field (B) at each point. This is given by the equation:

1,(r) = I.(r) x B(r)

Both the techniques theorize that the log of the bias field (B(r)) is a zero centered
Gaussian distribution and so both of them operate in the log transformed space of im-

age intensities. This transforms the above equation from multiplication to addition:

log(Lu(r)) = log(l:(r)) + log(B(r))

The process starts by masking the background. This happens in order to avoid areas
in the image where the signal intensity approaches zero. Then begins an iterative pro-
cess (usually this process has a function to break it out when demand is met but prac-

tically it’s used with a set number of iterations (n_total)):

1. The bias field histogram is calculated to sharpen the image. This is achieved by
using the Wiener deconvolution filter®(it uses a Gaussian kernel)

ii. The estimation of the bias field is smoothed by fitting it with 3D B-spline
field*'

1il. Loops back to (1) until ifer > n_total where the iterative process stops.

2 https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/VELDHUIZEN/node15.htmI#SEC-
TION00533000000000000000
2l https://en.wikipedia.org/wiki/B-spline
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From there the bias field estimation is extrapolated over the entire field of view.
Lastly the noisy image /, is divided by the bias field estimation to give us the approx-

imation of the corrected image /..

(@) (b)

Figure 15: Example of N4ITK before(a) & after (b)

3.1.1.5 Normalization

We use normalization to bring the scale of image values to a range our neural network
can utilize for learning without the fear of model corruption. Depending on our uses
and targets the normalization might happen in two ranges:

-« 0...255

- 0...1

The formula we use for normalization for any range [a, b] is given by the equa-

tion??;

(z — min(x))(b — a)

voar max(z) — min(z)

2 https://en.wikipedia.org/wiki/Feature scaling#Rescaling_(min-max_normalization)
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3.1.2 Tabular data

Tabular data are usually in csv files and are organized by rows and column, translating
into samples and features respectively. The same formula as in [3.1.1.5] is used to nor-

malize them.

3.1.2.1 Class Imbalance

Class imbalance occurs when we have a certain distribution of classes. In a two class

system the imbalance degree would be given by these percentages®:

Degree of imbalance Proportion of Minority Class
Mild 20-40% of the data set
Moderate 1-20% of the data set
Extreme <1% of the data set

Table 1: Class imbalance tiers
There multiple ways to address class imbalance, some major concepts are:
« Undersampling the majority class:
o ClusterCentroids(fig, where the majority class is undersampled by repla-
cing a cluster of majority samples by the cluster centroid of a K-Means al-

gorithm*(fig.16%).

Decision function with ClusterCentroids Resampling with ClusterCentroids

Figure 16: Undersampling of majority class with K-means clusters

«  Oversampling the minority class by augmentation:

2 https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-

data

https://imbalanced-learn.org/stable/references/generated/imblearn.under sampling.ClusterCentroid-
s.html

https://imbalanced-learn.org/stable/_images/sphx_glr plot comparison under sampling 001.png
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o SMOTE (fig.17*)[52], suggests that data should be oversampled by gener-
ation of synthetic minority samples using the interpolating pairs of the

minority classes original points

Original Dataset ., SMOTE Dver’sam pling
-
35 o 3 %
LY “-“
@ G‘? 2oy ‘G
24 . g 2
o ”&rﬁg.'?:.giﬁ' ;

1 . 'n;%ﬁ.'}%e B _om 1 _° 't':i‘:% :ﬂg’?
Ja® oB&8%% . TS o

a o o=, o .‘: ] a

d ] N 14

Figure 17: Oversampling with SMOTE

o BorderlineSMOTE (fig.18*)[53], is a variant of SMOTE that enforces the
synthetic minority samples to be at the border of the decision function

between other classes

Decision function for BorderlineSMOTE Resampling with BorderlineSMOTE

Figure 18: Oversampling with BorderlineSMOTE

o ADASYN (fig.19%)[54], works the same as SMOTE with the only differ-
ence that it will address the samples that are difficult to get classified with a

nearest neighbour rule, whereas SMOTE will be indifferent towards them

Original Dataset .4 ADASYN Oversampling

Figure 19: Oversampling with ADASYN

% https://imbalanced-learn.org/stable/_images/sphx_glr plot_comparison_over_sampling_006.png

21 https://imbalanced-learn.org/stable/_images/sphx_glr plot comparison_over_sampling_007.png
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3.2 Machine Learning

In this section we explore one of, if not the most important, sector of modern informat-
ics. ML is a subset of Artificial intelligence(fig.20*)(Al is mostly boring mathematics
and philosophy, but as soon as it moves to solving computational problems it leaves us

all in awe).

As the title self explains, machine learning is when we use samples of experiences
to teach a machine, so that it may analyse them and derive knowledge from them. It
does this by approximations (in statistical machine learning) or by discovering deep

mathematical structures within the data (deep learning).

The core things needed to start solving machine learning problems are:
+ A problem in need of solution
- Data correlating to the problem that can yield usable results

« Performance metrics in order to evaluate the models created

REINFORCEMENT
LEARNING

DEEP
LEARNING

SUPERVISED UNSUPERVISED
LEARNING LEARNING /

MACHINE
LEARNING

Figure 20: Al and it's Subsets

2 hittps://www.researchgate.net/profile/Akshaya-Karthikeyan-2/publication/357234810/figure/fig2/
AS:1103630992195584@1640137541038/Schematic-of-the-conventional-relationship-between-arti-
ficial-intelligence-Al-machine.png
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3.2.1 Types of machine learning

There are three core denominations of machine learning and a fourth one that utilizes

the best aspects of two of the main types (tools used by each can be found on fig.21%):

+  Supervised learning, is when we are in full control of the training process.
This includes having a clearly defined task as well as properly structured data
with correct labels and tags. We train models based on authenticated data so
when we feed the predictive model new data that it hasn’t seen it might be able
to come up with correct predictions.

An example of this would be object classification and the CIFAR-10*° dataset con-

tains 10 classes and 60000 images!

«  Unsupervised learning, is when we have data or labels but lack any annota-
tions. The results of this type varies and it’s never a good idea to use this for
practical models. It excels at exploratory operations due to it’s nature, by giv-
ing us an idea of what the data looks like or what structures might lie under-
neath.

An example of this would be the use of K-means algorithm in any dataset to de-

termine if there distinct classes exist.

- Reinforcement learning, is practically attempting to train a dog. The way this
works is by having an agent explore the environment it’s in and by taking any
action, it either gets rewarded if it performs positively or punished(penalized)
if it performs negatively. More professionally this means that it’s trying to
maximize it’s reward function while at the same time trying to minimize it’s
loss function. Since the data here have no labels the agent is doomed to brute
force the knowledge out of the data.

Bickering aside the example for this category would be an artificial dog. By letting
it loose on a virtual field or a house you would be able to reward it positively for good

behavior or punish it if it goes haywire and starts breaking the house.

¥ https://cdn-images-1.medium.com/max/800/1*rbaxTrB_CZCqbty zv2bEg.png
30 https://www.cs.toronto.edu/~kriz/cifar.html
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« Semi-supervised learning, is the middle ground of supervised and unsuper-
vised learning. Utilizing mostly unlabeled data and some data with a lot of
noise it is able to reach a generalization faster. The models produced aren’t as
good as the models from supervised learning, but semi-supervised learning is a
cheap way to reach a good point in both understanding your data alongside the

scope of your task.

A good example of this would be the semi-supervised protein classification as pro-

posed by Weston et al[57].

[ Machine Learning ]

| | l

[ Supervised Learning ] [ Unsupervised Learning ] [ Reinforcement Learning ]

L
[ Classification ][ Regression ] [ Clustering ] [Decmiunh’laking]

r"r-Naive Bayes N r’f-LinearRegressiDn\ \ ( \

Classifier =Neural Network 'K'MEEHS_UUHE””E

o : = Mean-shift
= Decision Trees Regression Clusteri
= Support Vector = Support Vector Ustering i = O-Learning

. : = DBSCAN Clustering =R L i
Machines Regression . | - earning
= Random Forest = Decision Tree H‘F‘EE DT:_ErEl' e =TD Learning
=K — Nearest Regression erarchica
Neighbors = | 3ssoRegression L

= Gaussian Mixture

\_ J b\:RidgERegressiDn/ \ _/1 \ J

Figure 21: Tools used in ML

3.2.2 Random Forest Classifier

These derive from the ensemble of many Random Tree Classifiers(RTC) [58]. By tak-
ing a lot of weak learners, that we create by a random selection of features each time
results in them accumulating their result and averaging out their prediction. This way
they are able to beat the downside of a single RTC’s high variance and achieve better

generalization as showcased in fig.22%'.

31 https://miro.medium.com/max/1200/1*hmtbIgxoflfligMJ_UHwXw.jpeg
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Random Forest Classifier

X dataset

NS e i s .

N, features N, features N, features N, features

/'® = /® T //@\ .-”"@-""\,
TREE #1 TREE #2 TREE #3 TREE #4
CLASS C CLASS D CLASS B CLASS C

[ l | J

MAIJORITY VOTING

FINAL CLASS

Figure 22: RFC breakdown

3.2.2.1 Boosting

Boosting®? is an ensemble method where we build multiple weak learners one on top
of another in order to increase the predictive capabilities of the final estimator. The
main idea is that each new model added to the ensemble is attempting to fix the short-

comings of its ancestor.

An example with RTCs would be that the first model we build, regardless it’s ac-
curacy would be used to train the second model, another RTC. The second model
would then try to capitalize on the errors of the first one by focusing on learning the
correct predictions for the miss predictions of the first model. This process repeats till
a certain number of weak learners are conjoined in the ensemble or a certain threshold

is reached.

3.2.2.2 Gradient Boosting

The difference of gradient boosting [59](fig. 23**) from normal boosting is that it
focuses on the prediction error by factoring it in the next weak learner generation. It

appends the error (residuals) into the dataset, but it scales it down by the learning rate

32 https://en.wikipedia.org/wiki/Boosting_(machine learning)
3 https://miro.medium.com/max/1400/1*dIHrPFBT2fmXuTXMb-3_Xw.png
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to intercept instances of over fitting. This process is iterative just like normal boosting

until a set number of iterations has passed or a threshold of performance is reached.

Gradient Boosting Algorithm

1. Initialize model with a constant value:

Fo(x) = argminz Ly, y)
|
2.form =1 to M:
aL(‘/i: F(x;))
oF(x;)

2-2. Train regression tree with features x against  and create terminal node

2-1. Compute residuals r;, = — l fori=1,.,n

Lx)=Fm1 ®)

reasions Rj,, forj = 1,...,

2-3. Compute y;,, = argmin Z L(y;, Fpoa(x)) +y) forj=1,.,],

%i€R
2-4. Update the model:
I
F(x) = Fp1(0) +v 2 jurl (x € Ryy)
j=1

Figure 23: Friedman's Gradient Boosting Algorithm[59]
3.2.2.3 Metrics

For regression we use:
«  MSE, which measures the squares of the error an estimator produces and the

ground truth®:
T

MSE — %Z (y; —}%)2.

i=1

n being the quantity of predictions of a prediction vector

- RMSE, which measures the differences between values predicted by an estim-

ator and the ground truth®, theta being the estimator in question:

RMSD(A) = /MSE(6)

3 https://en.wikipedia.org/wiki/Mean_squared_error#cite_note-:1-1
3 https://en.wikipedia.org/wiki/Root-mean-square_deviation
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« K-fold cross validation, which is used to estimate the skill of an estimator on
unseen data. The process that happens in is very simple*:

1. If shuftle is set to true, the dataset is going to be shuffled

2. The dataset is split into K groups

3. For every K (or fold):
1. Take that fold out as a test set
2. Form the rest of the folds into a train set
3. Fit the created training set and evaluate it on the test set
4. Append the evaluation score to a list L and trash the model

4. Sum the list L and divide it by K to figure out the mean score

Typically K-Fold cross validation returns a positive number, but if the log_neg is

set to true it will return a negative.

For classification we use standard accuracy score:

TP+TN
TP+TN+ FP+ FN

Accuracy =

Where TP = True positive, FP = False positive,
TN = True negative, FN = False negative

3.2.3 ANN

Following on the biological neuron presented in [1.4.1] early researchers decided to at-
tempt to simulate the function of a biological neuron artificially. This gave birth to the

first artificial neuron, by Warren McCulloch and Walter Pitts[55].

Fifteen years later, psychologist Frank Rosenblatt proposed the Perceptron(fig.24°7)
and gave birth to neural networks[56]. By taking Rosenblatts simple perceptron which
acted as a linear classifier, and by stacking multiple of them into layers non linear

functions could be solved?®.

3¢ https://machinelearningmastery.com/k-fold-cross-validation/
37 https://en.wikipedia.org/wiki/Perceptron
3% https://analyticsindiamag.com/xor-problem-with-neural-networks-an-explanation-for-beginners/
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ry o -

Activation
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Weights

Figure 24: A perceptron

The way a single neuron works is as follows®:

Set a static learning rate

Y

Initialize the weights (random small values or distributions)

Sum all the weights multiplied by the inputs
Add the bias factor by multiplying Xj, * bias

And pass the result through an activation function(fig. 25*) to get Y predicted

Update the weights via:

wi(t+1) = w;(t) + - (dj — y;(t))x);, forall features 0 < i < n

n is the total number of samples, r is the learning rate, and d is the ground truth

Repeat the process till the model converges or epoch requirement are met

Perceptron Sigmoid Tanh
1.0 St 1.0
.8 0.5
82 B(2) 0.0 tanh(z)
0.2 —0.5
1X1} —-1.0
-5 0 b —h 0 ]
ReLU Leaky ReLU ELU
6 6 ” T E—
. 0.1zif z < ( e —1if z
4] max(0, z) 4 41 Lif 20
2 2 2
0
D b : —
—5 1] 5 -5 0 5
Softplus
0.20 6
0.15 4
0.10
0.05 2
0.00 1]

5 0 5

Figure 25: Activation Functions

39
40

https://en.wikipedia.org/wiki/Perceptron#Learning_algorithm

https://www.researchgate.net/publication/341310767/figure/fig7/
AS:890211844255749@ 158925445143 1/Common-activation-functions-in-artificial-neural-net-
works-NNs-that-introduce.ppm
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By stacking multiple of these perceptrons we obtain a basic neural network
(fig.26).

vy oy v

Figure 26: Basic Neural network, fully connected, multiple 1/0

The neural network is spread in 3
parts (fig.27*):

1. Input layer

2. Hidden layer

3. Output layer

Output

Figure 27: The t\hr;e primary strips
Hyperparameters are global parameters that are set before the model is compiled.
They are used to control the way the model trains. These include:

- Learning rate, determines how fast the model is going to learn from samples.
Despite being a hyperparameter late literature has show that a decaying [61] or
cyclical LR [60],[61]; derived from natural processes can help boost the mod-
els convergence.

- Epochs, determines how many times the entire training set is going to pass

through the network

41 https://thumbs.dreamstime.com/b/neural-network-illustration-vector-deep-learning-concept-neural-

network-illustration-103427158.jpg
2 https://miro.medium.com/max/1400/1*fOXIMIruW7TMF3EHbPDfY g.png
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- Hidden layers, determines how many internal layers the unit will have(kind
off deprecated considering we use high level APIs to build models now days)

- Batch size, determines how many samples are going in the model before a
weight update
Dropout, a percentage (let’s call it dp) given to the neural network so it will

null dp% of the neurons in order to not over fit the model

Back propagation is the method the model updates it’s weights, among other it
could be, we can see how these work on (fig. 28*):
«  SGD (stochastic): where the weights update every sample
- Mini-batch: where the weights update after every batch of samples

Batch: where the weights update once every epoch

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Figure 28: Weight updates with various GD

And finally, we need a way to properly update weights, possibly modify the LR,
and minimize the loss function per update iteration. All this is an optimizers job*.
Some optimizers may include:

- ADAM]62], standard deep learning optimizer

- SGD [63], is very slow and often times gets stuck on local minimas instead of
reaching the global minima

- AdaFAIR [13], has the ability to alleviate discrimination against minority
classes

« AdaBoost[64], is used for the creation of weak learners

# https://miro.medium.com/max/908/1*bKSddSmLDaYszWI1lvQ3Z6A png
# https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optim-
izers/
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3.2.3.1 CNN

CNNss introduce the idea of convolution.
Convolution is basically applying a kernel over an image where each pixels value is

determined by the filter multiplied by the original image g(x, y) pixel values (fig29*).

(4 x 0)

%
Center element of the kemel is placed over the Eg " g;

source pixel. The source pixel is then replaced 0%0)
with a weighted sum of itself and nearby pixels. ©x1)

(0x1)
(0%0)
(0x1)

+(-4x2)

Source pixel

Convaolution

Mew pixel value (destination pixel)

Figure 29: Convolution

CNNs have a specific architecture(fig.30*) that enables them to learn from im-
ages?.
This includes multiple level of convolutional layers followed by max pooling lay-
ers. The convolutional layers have the following parameters:
«  Number of filters, how many random filters will it generate
- Kernel size, (how big the generated filter is going to be (this is a matrix
shape)):
o in 2D default kernels are: (2x2)
o in 3D default kernels are: (3x3x3)
«  Stride, which determines how many pixels the filter is going to move next

- Kernel initialization: a method to generate these filters (e.g. he uniform)

# https://miro.medium.com/max/464/0*e-SMFTzO8r7skkpc
* https://cdn-images- 1.medium.com/max/1600/1*g6qPMZTpO2NI19Y2dxwgvCA.png
47 https://aigents.co/data-science-blog/publication/introduction-to-convolutional-neural-networks-cnns
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. The convolutional layer does the following:
1. Takes an input image
Pad the image in order to get all available information from the image

Initialize a number of random filters and iterate through the image

Sl

By convolution we reduce redundancy and leave the features flowing into

the next layers to have more information yield.

After each convolutional layer a max pooling layer exist. This has multiple causes:

« The Convolved features amassed from the convolutional layer are too big,
and they get scaled down to reduce computational cost via a dimensionality
reduction process.

- It’s very good for the dominant features because they are both positional

and rotational invariant, so they are maintained

Lastly after multiple steps of convolution and max pooling we reach the classifica-
tion layer. The usage of a FC (MLP like) layer of usually 3-5 layer size is a one way
ticket to learn the purpose of the non linear combination of abstract level structures
yielded from the convolutions. To do this we have to flatten the output of the last max
pooling layer. The output layer is a softmax layer with one neuron for each class

we’re trying to classify.

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 RelU activation
Convolution Convolution | /—M

(5 x 5) kernel (5 x 5) kernel

X ! Max-Pooling ; - Max-Pooling (with
valid padding 2x2) valid padding (2x2) | dropout)

— @ o

INPUT nlchannels nl channels n2 channels n2 channels E . 9
(28x28x1) (24x24xn1) (12x12xn1) (8 x8xn2) (4 x4 xn2) . OUTPUT

Figure 30: 2D CNN representation
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3.2.3.1.1 Unet

A U-net is a CNN architecture based network. It was primarily developed to tackle the
problem of biomedical image segmentation [65]. The architecture it’s using attempts
to maximize information yield on all levels of computation as well as utilizing all

knowledge acquired from the model by propagating it throughout all levels of the

model.
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Figure 31: Original UNet Architecture

The model begins with a straight forward CNN classifier network (contraction
path) and yields increasingly powerful imaging features with each convolutional oper-

ation.
On the end of the contraction the condensed features are stored inside a vector
space. We’d like to add to this part, that this is how autoencoders(and their variations)

are created by replacing the vector space with a FC layer of arbitrary amount of layers.

And then begins the expansion path, where high-resolution features from the con-

tracting path are concatenated with the upscaled (deconvoluted) data.
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All convolutions in the model are followed by a nonlinear function (ReLU) ensur-
ing integrity by not having negative values. After each max pool operation the feature
channels from the previous operation are doubled from the previous level. On the ex-

pansion path, this is reversed and they are divided by two.

3.2.3.1.2 Metrics

Metrics for neural networks can vary but in our case (image segmentation) we have
three very powerful ones:

- Categorical Accuracy, this measures how often the model gets the prediction

right. It generates two variables “total” & “count” that are used to store inform-

ation in regards to how many times did the predicted Y match the ground

truth®.

- Dice’s coefficient (DSC) [67],[68],[66], otherwise known as F1 score or

“Serensen—Dice index”, it’s given by the formula:

2XNY]|
DSC=—"—
X] + Y]

- Intersection over Union (IoU), otherwise known as Jacards distance[69] that

is given by the formula:
|AN B| | AN B

J(A, B) = =
( ) |AUB| |A|+|B|—-|ANB|

3.2.3.1.3 Statistics or Deep learning?

As a data scientist it is very important to be able to recognize where each tool and
methodology should be used. According to [42], they led a study on various tasks
across 11 datasets for tabular data and found out that ensembled gradient boosted
forests (XGB ensembles) still outperformed Deep Learning. They did however accept
that deep learning models are still the leading methodology in complex operations like

semantic segmentation in images. Therefore for our analysis in [4.4] we choose to use

% https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Categorical Accuracy
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a modified 3D-Unet for our imaging data and since the rest of the data (both the ones

we extracted and the ones we obtained are in tabular forms) to use XGBOOST.

3.3 Image Features

Image features represent characteristics that help us discriminate between ROIs and
background in MRIs by providing us with imaging biomarkers. These can rely on
shape based numerical measurements (like the total voxels present in the ROI) or
quantitative visual appearance (like the neighbouring voxel intensity)[44]. In this sec-
tion we analyse all the imaging features we extract from our imaging data as stated in

[15] and used in [4.5]

3.3.1 First order statistics

First-order statistics describe the distribution of voxel intensities within the image re-
gion defined -by the mask through commonly used and basic metrics. These include:
- Energy: is a measure of the magnitude of voxel values in an image. A larger
value implies a greater sum of the squares of these values
- Total Energy: is the value of Energy feature scaled by the volume of the voxel
in cubic mm
- Entropy: it specifies the uncertainty/randomness in the image values. It mea-
sures the average amount of information required to encode the image values
«  Minimum: the minimum gray level value within the ROI
10™ percentile: the 10™ percentile of the gray level values within the ROI
-« 90™ percentile: the 90" percentile of the gray level values within the ROI
«  Maximum: the maximum gray level value within the ROI
« Mean: the average gray level intensity within the ROI
«  Median: the median gray level intestate within the ROI
- Interquartile Range: 75™ percentile minus the 25™ percentile of the image ar-
ray
- Range: Maximum — Minimum
Mean Absolute Deviation(MAD): is the mean distance of all intensity values

from the Mean Value of the image array
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- Robust Mean Absolute Deviation (rMAD): is the mean distance of all inten-

sity values from the Mean Value calculated on the subset of image array with

gray levels in between, or equal to the 10™ and 90™ percentile

+ Root Mean Squared (RMS): is the square-root of the mean of all the squared
intensity values. It is another measure of the magnitude of the image values
Standard Deviation: it measures the amount of variation or dispersion from
the Mean Value

- Skewness: it measures the asymmetry of the distribution of values about the
Mean value

- Kurtosis: is a measure of the ‘peakedness’ of the distribution of values in the
image ROI

- Variance: is the mean of the squared distances of each intensity value from the
Mean value

Uniformity: is a measure of the sum of the squares of each intensity value

3.3.2 Shape Based (3D)

In this group of features we included descriptors of the three-dimensional size and
shape of the ROI. These include:
Mesh Volume: the volume of all the voxels in the ROI
«  Voxel Volume: is approximated by multiplying the number of voxels in the
ROI by the volume of a single voxel
+ Surface Area: first the surface area of each triangle in the mesh is calculated.
The total surface area is then obtained by taking the sum of all calculated sub-
areas
«  Surface Area to Volume ratio: Surface Area divided by Voxel Volume
+  Sphericity: is a measure of the roundness of the shape of the tumor region rel-
ative to a sphere
- Compactness 1: is a measure of how compact the shape of the tumor is rela-
tive to a sphere (most compact)
- Compactness 2: is a measure of how compact the shape of the tumor is rela-
tive to a sphere (most compact)
- Spherical Disproportion: is the ratio of the surface area of the tumor region to

the surface area of a sphere with the same volume as the tumor region

36



3. Computational Literature

«  Maximum 3D diameter(Feret Diameter): is the largest pairwise Euclidean
distance between tumor surface mesh vertices

- Maximum 2D diameter (Slice): is the largest pairwise Euclidean distance be-
tween tumor surface mesh vertices in the row-column (generally the axial)
plane

- Maximum 2D diameter (Column): is the largest pairwise Euclidean distance
between tumor surface mesh vertices in the row-slice (usually the coronal)
plane

«  Maximum 2D diameter (Row): is the largest pairwise Euclidean distance be-
tween tumor surface mesh vertices in the column-slice (usually the sagittal)
plane
Elongation: it shows the relationship between the two largest principal compo-
nents in the ROI shape

- Flatness: shows the relationship between the largest and smallest principal

components in the ROI shape.

3.3.3 Gray Level Co-occurrence Matrix

A GLCM describes the second-order joint probability function of an image region con-
strained by the mask. This includes the features:
-+ Autocorrelation: is a measure of the magnitude of the fineness and coarseness
of texture
- Joint Average: is the mean gray level intensity of the /distribution
« Cluster Prominence: is a measure of the skewness and asymmetry of the
GLCM
Cluster Shade: is a measure of the skewness and uniformity of the GLCM
« Cluster Tendency: is a measure of groupings of voxels with similar gray-level
values
- Contrast: is a measure of the local intensity variation, favoring values away
from the diagonal
- Correlation: is a value between 0 (uncorrelated) and 1 (perfectly correlated)
- Difference Average: it measures the relationship between occurrences of pairs
with similar intensity values and occurrences of pairs with differing intensity

values
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Difference Entropy: is a measure of the randomness/variability in neighbor-
hood intensity value differences

Difference Variance: is a measure of heterogeneity that places higher weights
on differing intensity level pairs that deviate more from the mean

Joint Energy: is a measure of homogeneous patterns in the image

Joint Entropy: is a measure of the randomness/variability in neighborhood in-
tensity values

Informational Measure of Correlation (IMC) 1: it assesses the correlation
between the probability distributions of /and / (quantifying the complexity of
the texture), using mutual information I(x, y)

Informational Measure of Correlation (IMC) 2: it also assesses the correla-
tion between the probability distributions of /and / (quantifying the complexity
of the texture)

Inverse Difference Moment (IDM): is a measure of the local homogeneity of
an image

Maximal Correlation Coefficient (MCC): he Maximal Correlation Coeffi-
cient is a measure of complexity of the texture

Inverse Difference Moment Normalized (IDMN): is a measure of the local
homogeneity of an image

Inverse Difference (ID): is another measure of the local homogeneity of an
image

Inverse Difference Normalized (IDN): is another measure of the local homo-
geneity of an image

Inverse Variance

Maximum Probability: is occurrences of the most predominant pair of neigh-
boring intensity values

Sum Average: measures the relationship between occurrences of pairs with
lower intensity values and occurrences of pairs with higher intensity values
Sum Entropy: is a sum of neighborhood intensity value differences

Sum of Squares(Variance): is a measure in the distribution of neighboring in-

tensity level pairs about the mean intensity level in the GLCM
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3.3.4 Gray Level Run Length Matrix

A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs, which are
defined as the length in number of pixels, of consecutive pixels that have the same
gray level value. This includes the features:

«  Short Run Emphasis (SRE): is a measure of the distribution of short run
lengths, with a greater value indicative of shorter run lengths and more fine
textural textures
Long Run Emphasis (LRE): is a measure of the distribution of long run
lengths, with a greater value indicative of longer run lengths and more coarse
structural textures

«  Gray Level Non-Uniformity (GLN): measures the similarity of gray-level in-
tensity values in the image, where a lower GLN value correlates with a greater
similarity in intensity values

- Gray Level Non-Uniformity Normalized (GLNN): measures the similarity of
gray-level intensity values in the image, where a lower GLNN value correlates
with a greater similarity in intensity values

« Run Length Non-Uniformity (RLN): measures the similarity of run lengths
throughout the image, with a lower value indicating more homogeneity among
run lengths in the image

+  Run Length Non-Uniformity Normalized (RLNN): measures the similarity
of run lengths throughout the image, with a lower value indicating more homo-
geneity among run lengths in the image

« Run Percentage (RP): measures the coarseness of the texture by taking the ra-
tio of number of runs and number of voxels in the ROI

« Gray Level Variance (GLV): measures the variance in gray level intensity for
the runs

- Run Variance (RV): is a measure of the variance in runs for the run lengths

«  Run Entropy (RE): measures the uncertainty/randomness in the distribution of
run lengths and gray levels

- Low Gray Level Run Emphasis (LGLRE): measures the distribution of low
gray-level values, with a higher value indicating a greater concentration of low

gray-level values in the image
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- High Gray Level Run Emphasis (HGLRE): measures the distribution of the
higher gray-level values, with a higher value indicating a greater concentration
of high gray-level values in the image
Short Run Low Gray Level Emphasis (SRLGLE): measures the joint distri-
bution of shorter run lengths with higher gray-level values

+  Short Run High Gray Level Emphasis (SRHGLE): measures the joint distri-
bution of shorter run lengths with higher gray-level values

- Long Run Low Gray Level Emphasis (LRLGLE): measures the joint distri-
bution of long run lengths with lower gray-level values

- Long Run High Gray Level Emphasis (LRHGLE): measures the joint distri-

bution of long run lengths with higher gray-level values

3.3.5 Gray Level Size Zone Matrix

A Gray Level Size Zone (GLSZM) quantifies gray level zones in an image. A gray
level zone is defined as a the number of connected voxels that share the same gray
level intensity. This includes the features:
Small Area Emphasis (SAE): is a measure of the distribution of small size
zones, with a greater value indicative of more smaller size zones and more fine
textures
- Large Area Emphasis (LAE): is a measure of the distribution of large area
size zones, with a greater value indicative of more larger size zones and more
coarse textures
+  Gray Level Non-Uniformity (GLN): measures the variability of gray-level in-
tensity values in the image, with a lower value indicating more homogeneity in
intensity values
« Gray Level Non-Uniformity Normalized (GLNN): measures the variability
of gray-level intensity values in the image, with a lower value indicating a
greater similarity in intensity values
« Size-Zone Non-Uniformity (SZN): measures the variability of size zone
volumes in the image, with a lower value indicating more homogeneity in size
zone volumes
+ Size-Zone Non-Uniformity Normalized (SZNN): measures the variability of
size zone volumes throughout the image, with a lower value indicating more

homogeneity among zone size volumes in the image
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«  Zone Percentage (ZP): measures the coarseness of the texture by taking the
ratio of number of zones and number of voxels in the ROI

« Gray Level Variance (GLV): measures the variance in gray level intensities
for the zones
Zone Variance (ZV): measures the variance in zone size volumes for the zones

« Zone Entropy (ZE): measures the uncertainty/randomness in the distribution
of zone sizes and gray levels

«  Low Gray Level Zone Emphasis (LGLZE): measures the distribution of
lower gray-level size zones, with a higher value indicating a greater proportion
of lower gray-level values and size zones in the image

- High Gray Level Zone Emphasis (HGLZE): measures the distribution of the
higher gray-level values, with a higher value indicating a greater proportion of
higher gray-level values and size zones in the image

- Small Area Low Gray Level Emphasis (SALGLE): measures the proportion
in the image of the joint distribution of smaller size zones with lower gray-
level values

- Small Area High Gray Level Emphasis (SAHGLE): measures the proportion
in the image of the joint distribution of smaller size zones with higher gray-
level values
Large Area Low Gray Level Emphasis (LALGLE): measures the proportion
in the image of the joint distribution of larger size zones with lower gray-level
values

- Large Area High Gray Level Emphasis (LAHGLE): measures the proportion
in the image of the joint distribution of larger size zones with higher gray-level

values

3.3.6 Neighbouring Gray Tone Difference Matrix

A Neighbouring Gray Tone Difference Matrix (NGTDM) quantifies the difference
between a gray value and the average gray value of its neighbours within distance 9.
This includes the features:
- Coarseness: is a measure of average difference between the center voxel and
its neighbourhood and is an indication of the spatial rate of change
Contrast: is a measure of the spatial intensity change, but is also dependent on

the overall gray level dynamic range
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- Busyness: is a measure of the change from a pixel to its neighbour. A high
value for busyness indicates a ‘busy’ image, with rapid changes of intensity
between pixels and its neighbourhood
Complexity: is considered complex when there are many primitive compon-
ents in the image

- Strength: is a measure of the primitives in an image. Its value is high when the

primitives are easily defined and visible

3.3.7 Gray Level Dependence Matrix

A Gray Level Dependence Matrix (GLDM) quantifies gray level dependencies in an
image. A gray level dependency is defined as a the number of connected voxels within
distance 0 that are dependent on the center voxel. This includes the features:

- Small Dependence Emphasis (SDE): a measure of the distribution of small
dependencies, with a greater value indicative of smaller dependence and less
homogeneous textures
Large Dependence Emphasis (LDE): a measure of the distribution of large
dependencies, with a greater value indicative of larger dependence and more
homogeneous textures

«  Gray Level Non-Uniformity (GLN): measures the similarity of gray-level in-
tensity values in the image, where a lower GLN value correlates with a greater
similarity in intensity values

- Dependence Non-Uniformity (DN): measures the similarity of dependence
throughout the image, with a lower value indicating more homogeneity among
dependencies in the image

« Dependence Non-Uniformity Normalized (DNN): measures the similarity of
dependence throughout the image, with a lower value indicating more homo-
geneity among dependencies in the image

« Gray Level Variance (GLV): measures the variance in grey level in the image.

- Dependence Variance (DV): measures the variance in dependence size in the
image.

- Low Gray Level Emphasis (LGLE): measures the distribution of low gray-
level values, with a higher value indicating a greater concentration of low gray-

level values in the image
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High Gray Level Emphasis (HGLE): measures the distribution of the higher
gray-level values, with a higher value indicating a greater concentration of high
gray-level values in the image

Small Dependence Low Gray Level Emphasis (SDLGLE): measures the
joint distribution of small dependence with lower gray-level values

Small Dependence High Gray Level Emphasis (SDHGLE): measures the
joint distribution of small dependence with higher gray-level values

Large Dependence Low Gray Level Emphasis (LDLGLE): measures the
joint distribution of large dependence with lower gray-level values

Large Dependence High Gray Level Emphasis (LDHGLE): measures the

joint distribution of large dependence with higher gray-level values
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4 Case Study

In all the previous sections we have analyzed core concepts from the domain of biol-
ogy[1.] and informatics[3.]. We have established a problem, a scope and a target[2.].
In this section we present a strategy to yield survival rate predictions on cancer pa-
tients based on a two part strategy which includes the usage of 3D CNN (3D-Unet)
and various weak learner approaches (RFC, XGBOOST).

4.1 Environment Info

We begin by giving a report of the packages used as well as the description of the ma-

chine where most computations took place.

Starting off with the machine description:

System: Windows
Release: 10
Version: 10.0.19044
Machine: AMD64

CPU:
Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

Base speed: 4,00 GHz
Sockets: 1
Cores: 4
Logical processors: 8
Virtualization: Enabled
L1 cache: 256 KB
L2 cache: 1,0 MB
L3 cache: 8,0 MB
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RAM:

Capacity: 16,0 GB

Speed: 2133 MHz

Slots used: 2 of 4
DIMM

Form factor:

Total possible extension: 31,2 GB

GPU:

NVIDIA GeForce GTX 1060 6GB
Driver version: 31.0.15.1659

Driver date:

DirectX version:

DATA STORAGE:

23/6/2022

12 (FL 12.1)

SSD ADATA SP550 (240GB)

Continuing with a table of basic architecture of software and firmware:

Software / Firmware Version

Anaconda Navigator 2.2.0

Jupyter Notebook 6.4.12

PyCharm Community Edition 2022.2

Python 3.9.12

CUDA 64 112

CUDA Computational Capabilities sm_35, sm_50, sm_60, sm_70, sm_75, compute_80
CUDNN 64_8

Libre Office 64 7.3.3.2

Table 2: Machine software and firmware versions

Finishing off with a table of all the packages used in python excluding the basic

python packages:

Package Version
pandas 1.4.3
numpy 1.21.5

keras 29.0
matplotlib 3.5.2
sklearn 1.1.1

45



4. Case Study

radiomics 3.0.1
nibabel 4.0.1
SimpleITK 2.1.1.2
imblearn 0.9.1
xgboost 1.6.1
tensorflow 29.1

Table 3: Python package versions

These were gathered through the use of Script [Rig information], except the rig in-

formation that were written down manually.

4.2 Datasets

In this section we give the overview of the data used in the experiment.

4.2.1 Image Data

The MRI images are acquired through the BraTS competitions datasets over the years.
There are duplicate data that are carried over from year to year. These are removed
based on the name mapping sheets that are given by the original data distributors. All

data are using the compressed nifti*” medical imaging protocol (including masks).

The data are accompanied by clinical metadata csv sheets supplying us with the age
of the patient(float), days of survival(int or N/A) and resection status(String or N/A).

The survival sheets format is identical across all three datasets.

BraTS191D Age Survival Resection Status
BraTS19 CBICA_AAB 1 60.4630137 289 GTR
BraTS19 CBICA_AAG_1 52.2630137 616 GTR
BraTS19_CBICA_AAL 1 54.30136986 464 GTR
BraTS19_TCIA02_331_1 84.84383562 187 N/A
BraTS19 CBICA_AAP 1 39.06849315 788 GTR

Table 4: Example of survival data
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Each patient folder contains a segmentation mask and four modalities:

Tl
T1-CE
T2

FLAIR

Dataset Type Count
HGG 210
BraTS 2018/
LGG 75
HGG 259
BraTS 2019!2BI4Is]
LGG 76
BraTS 2020!M2RI41s) Merged 369
Total 989
Table 5: Patient count for each dataset and type
All sets contain 3 distinct classes with labels:
Class Label
Background 0
Necrotic core / Non Enhancing Tumor 1
Peritumoral Edema 2
Enhancing Tumor 4

Table 6: Image data class labels

4.2.2 Genomic and transcriptomic data

We obtain the gene expression and miRNA for GBM from Ron Shamir’s 1lab>’[6]. The

data are tabular and come in csv format. It needs to be mentioned that the clinical data

csv has a fair amount of faulty lines, they are mentioned inside the genomics notebook.

Gene Expression Data: 538 samples, 12042 genes expressed

Index(Patient_ID) AACS FSTL1 ELMO2 CREB3L1 RPS11

TCGA.02.0001.01 6.500551 8.729663  5.511362 4.882953 10.984784
TCGA.02.0003.01 6.539245 9.794400 6.213981 4.836276  10.811245
TCGA.02.0004.01 7.377848  12.059550 7.051738 6.112444  10.436374
TCGA.02.0007.01 7.186891 4.945053 5.230444  5.818606 10.477304
TCGA.02.0009.01 7.675038 10.840095 6.620676  5.333213  10.637267
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Table 7: Gene expression data sample

http://acgt.cs.tau.ac.il/multi omic_benchmark/download.html
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miRNA Data: 575 samples, 534 transcriptomes expressed
Index(Patient_ID)  ebv-miR-BART1-3p ebv-miR-BART1-5p ebv-miR-BART10

TCGA.02.0001.01 5.855126 5.799428 5.862059
TCGA.02.0003.01 5.801614 5.790478 5.818763
TCGA.02.0004.01 5.771332 5.758764 5.825401
TCGA.02.0006.01 5.763649 5.800184 5.831836
TCGA.02.0007.01 5.818828 5.800582 5.818181

Table 8: Transcriptome expression data sample

Clinical Data: 629 samples, 137 columns

Column Value
CDE_DxAge 44.3
CDE_survival_time 353.0
days_to_last_followup 279.0
CDE_vital status DECEASED

Table 9: Clinical data sample

4.3 Preprocessing

In this section we execute the preprocessing strategy as described in [3.2]. Multiple
sanity checks are being made throughout the scripts to make sure everything is work-

ing as intended.

4.3.1 Images

We begin the preprocessing by pathing the image training folder and extracting recur-
sively all files that end with a “nii.gz” suffix. We find that we have accumulated 4945

files. This is normal since we have five distinct file types:

Type Suffix
Mask _seg.nii.gz
FLAIR _flair.nii.gz
T1 _tl.nii.gz
T1-CE (GD) _tlce.nii.gz
T2 _t2.nii.gz

Table 10: Raw file suffixes

From there we merge all the files in a single dataframe using the pandas library. We
generate a new location mirroring the original folder structure to store the prepro-
cessed data with minimal changes to the dataframe. We move the masks to the new lo-

cations as is with their new affixes (“ preprocessed”).
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We begin the preprocess pipeline by taking the lines of the primary dataframe of
locations one by one. Each image is getting loaded using the nibabel library and kept
in memory to later use the affine matrix & object header, both important to guarantee

data integrity for further usage of the preprocessed data in a full state.

From each of the four nifti object we extract the image array and we populate a list
with four slots, each containing a 3D image of dimensions (240 x 240 x 155) of it’s re-
spective modality. Using the “grab NSD” function we calculate the estimated sigmas
with NaN intercept built in along the Z axis, giving us a single matrix with dimensions
(155 x 1) for each 3D packet.

Using the estimated sigmas alongside the Z axis we initialize the denoising process
through “denoise process” and parallel cast it on four cores, each core handling a dif-
ferent modality. We apply the NLM filter from the skimage package on each 2D image
alongside the Z axis and filter each of the 2D slices as mentioned in [3.2.1.3]. This will
return each 3D packet with the Z axis on index 0 instead of index 2, meaning we have

flipped the image matrix.

Continuing we initialize a global bias field corrector filter from SimplelTK library
and pass each 3D flipped packet into “the bias_field correction” function. We with-
draw the image matrices yet again alongside the Z axis and cast them in Float32 (Real
format) as it’s a dependency of the corrector function. Performing aggressive multiple
Otsu Threshold’! for histogram bins = 200, we yield a mask that we cast into uint8,
again for dependency issues. Then we proceed by using the global corrector with the

2D image slice and the yielded mask. Then return the 3D packet once again.

Finally using the “data_nesting” function we grab the header and the affine matrix
of each image and we remake a nifti image which we save to the modified primary
location dataframe. Keep in mind that we use transpose from the numpy package on
the image matrix so the axis return to their original locations.

Using random from the core python library we pick a random line from the pro-

cessed dataframe and load it using “load pack”. Using random again to pick a slice

U https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_multiotsu.html
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number. Keep in mind for best visual results set the borders 40-50 from the start and at
least -20 from the end, in this case low bound = 50 and high bound=100. And finish
by plotting some pictures.
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Figure 32: Randomly chosen package #914 and slice #87

The entire process was done using Script [Image Preprocess Pipeline].
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Figure 33: Randomly chosen package with visualized mask
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Time for the main preprocess pipeline to run:

Time it took for one line (four 3D images) 80.45 sec
Time estimation for entire dataset 22.10 hours
Actual time for the entire dataset 23.51 hours

Table 11: Elapsed time for preprocess pipeline

4.3.1.1 Bundling

Since the 2D extraction of slices and generation of appropriately 750k 2D slices in or-
der to use Jordan Colmans’ modified 2D Unet™[11] failed, due to computational infra-
structure constraints(model was generating 74,6 million trainable parameters) which
for the way they were feeding inputs (input being a multi modality image stack); re-
quired distributed strategy, we decided to follow technique from Dr. Sreenivas Bhat-
tiprolu® were also a super stacked multi modality package is created by stacking the
3D modality blocks on top of each other as shown in Script [Data Bundling] for a
slightly modified 3D Unet. Nifti images are normalized into 0-255 range. Furthermore

the packets are pruned down to cubes of shape (128 x 128 x 128) for three reasons:

1. To tackle class imbalance by pruning the majority of non brain tissue back-
ground (black pixels)

2. To enable a 3D Unet to be able to perform filter generation without the need
for asymmetrical paddings

3. To be less computationally expensive when passed through a 3D Unet

Our newly formed four dimensional MRI packets ([0-2]x 240 x 240 x 155) are
ready but we are unable to save them as images of any kind, we proceed to save them
as numpy arrays and drop them in a merged “data” folder. Masks are also loaded and
pruned into (128 x 128 x 128) cubes. If a mask has less than 1% of valuable informa-
tion on it’s entirety the mask is dropped and the numpy array with the corresponding
mask is purged. The masks that remain get the non existent class label nullified by
turning the label “4” into label “3”. This happens to again help out the training
process of the modified Unet by having a range of labels [0,1,2,3] without interrup-

2 https://github.com/jordan-colman/DR-Unet104
3 https://youtu.be/ScdCQqLtnis
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tions. Lastly the masks get synced with the packets and are also moved in the merged

data folder sharing a same numeric affix.

4.3.1.2 Dataset Split

As a last step to finalize the preprocess of the imaging dataset, we use the
train_test_split function from the package sklearn.model selection by passing it as in-
put a dataframe with the locations of the paired mask and arrays for a 20% split into a
validation set for the Unets' training. Then we run again the 80% dataset to get a 10%
test set for the Unets’ categorical accuracy. Our final data cluster ensures that we have
tackled a plethora of issues that can arise from training a DNN with raw data that suf-

fer from severe class imbalance, noise, etc. Our final data quantity is as follows:

Set Quantity of numpy array objects
Train 662
Validation 166
Test 92

Table 12: Final Image data quantities

4.3.2 Multi-omic Data

The preprocessing strategy for the multi-omic data includes the separation of the
dataset to two distinct classes which we extract from the clinical data through these
tags:

a) CDE Status: Living & days_to last followup > 100

b) CDE Status: Deceased

Samples that don’t belong to either of these classes (containing N/A or second part
of (a) not satisfied) are dropped from the dataset. Lastly, we take only the intersection

of patient IDs in both the gene expression data and miRNA. This generates:

Class Quantity

CDE_Status == ’Living’ & days_to_last_followup > 100 103

CDE_Status == ‘Deceased’ 387
Total 490

Table 13: Multi-omic class sample quantities
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We observe that the classes are imbalanced. Copying the data to a new dataframe
and by utilizing the package imblearn we initialize three different methods to balance

our data distribution as shown in [3.2.2.4]:

« SMOTE
«  BorderlineSMOTE
« ADASYN
Class distribution Class distribution
500 1600
1400
400 1200
1000
g 300 g
g g 800
R A
200 £00
400
100
200
0 0
Ttal Samples Dead  Alive & SD:>100 Total samples Dead Alive & 50:=100

Classes Classes

Figure 34: Distribution of classes after

Figure 35: Original class distribution
oversampling minority class

Creating a copy of the balanced dataframes and using the min_max_scaler from the
package sklearn, we create a normalized version of the dataframe to compare with it’s
non normalized counterpart. Our four dataframes are now ready for the classifiers
[5.6].

Going back to the original dataframes, we concatenate the gene expression data and
the miRNA data into a singular dataframe alongside the index (we’ve already pruned
non intersection members at the start of [5.3.2]. And finally append the survival (in

days) of the patients as a feature column in the dataframe.

Survival Value Distribution
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Figure 36: Survival value distribution

300 400 500
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Observing multiple outlier cases we decide to prune the dataset by dropping the top
5% of the values (n=24) due to them holding over 45% of the value range upper limit,
alongside their samples. Then we normalize the entire dataframe feature wise. The fi-
nal dataframe shape is (457 x 12576). The finalized survival value distribution now

looks smoother.

Pruned & Normalized Survival Value Distribution
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Figure 37: Pruned and normalized survival value distribution

kshv-miR-K12-5 kshv-miR-K12-6-3p kshv-miR-K12-6-5p kshv-miR-K12-7 kshv-miR-K12-8 kshv-miR-K12-9 kshv-miR-K12-9*  survival
TCGA.02.0001.01 0209063 0.138093 0.228091 0134261 0.091509 0.426120 0141433 0.233896
TCGA.02.0003.01 0177776 1.000000 0.723260 0.114528 0.140906 0.280823 0.042647 (0.094885
TCGA.02.0004.01 0238456 0.093871 0.219845 0091838 0.150736 0.348257 0342738 0230148
TCGA.02.0007.01 0184753 0185483 0.150212 0124973 0.220636 0.259578 0151400 0.472400
TCGA.02.0009.01 0135338 0.179925 0.205519 0114916 0211126 0.329504 0.607467 0.214670
TCGA.02.0010.01 0226242 0166332 0.241461 0122931 0.204291 0.262196 0623282 0722746
TCGA.02.0011.01 0134976 0.205034 0.146358 0204764 0.226990 0.283439 0235892 0421938
TCGA.02.0015.01 0225279 0189638 0.142951 0.086004 0.233455 0.258762 0355068 0.419919
TCGA.02.0023.01 0300055 0.208677 0.195412 0484526 0.256765 0.322936 0334906 0.409825
TCGA.02.0025.01 0330529 0.266495 0.156455 0832538 0555685 0281484 0402746 0.872313

Table 14: Merged dataframe sample

The entire process took 2 minutes to complete, with Script [Multi-omics]

4.4 Image segmentation

In this section we analyse the modifications done to a standard CNN (3D Unet) as
showcased in [3.3.4.1]. Then we briefly talk about hyperparameters and analyse the
model and strategy used. Lastly, we present some training data and results. The theory

is explained in [3.3.4]
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4.4.1 Data Generators

Since we cannot use the internalized data generators from keras due to the nature of
our data packs, keras will only support up to 3D representations and our data packets
are in the fourth dimension due to a modality channel stack, we create custom generat-
ors. A custom generator is basically a function that instead of the “return” statement is

using the “yield” statement. We do this by using Script [Data Generator].

Depending on our batch size, the generator will return a block of the numpy array
objects as mentioned in [5.3.1.1]. In this case the batch_size is set to 1. This is because
of the limited GPU memory that can only facilitate the model itself and one data
packet at a time before running out of VRAM.

We create two data generators:
Training data generator, which will feed the U-net
Validation data generator, which will be used at the end of each epoch to assess

the model

4.4.2 Hyperparameters, optimizer, and callbacks

In this section we briefly describe our optimizer, hyperparameter settings, the call-

backs we use and how these function

4.4.2.1 Hyperparameters

Batch_size = 1, reasons explained in [5.4.1]

Epochs: depending on the model [0-6] different approaches were taken.

From mini models of 5-10 epochs to the main model of 100 epochs.

LR: default at 1e-4 but often times used le-3 or even le-2 to train[Train] and
retrain[Retrain] models for 5 epochs with a LR decay rate = LR / Epochs to
simulate cyclical LR[14], therefore skipping the need to tune it as a hyperpara-
meter. This happens due to the nature of the model, each epoch takes approx-
imately 15minutes and another 3 minutes to finish validation and update

weights for a total of 18-20 minutes per epoch.
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4.4.2.2 Optimizer

For the experiments in [4.4.3] a standard Adam optimizer (as showcased in [3.3.4])

was used. We are supplying it with a learning rate and a decay rate as showed in
[4.4.2.1].

4.4.2.3 Callbacks

Model callbacks are functions that are called after every epoch. We use:

- model_save: used from tensorflow.keras.callbacks package to save the weights

of the model every time it’s prediction capability increases on the validation

set.

+  Tensorboard™:
o Tracks and visualizes metrics such as loss and accuracy, etc.
o Visualizes the model graph

o Views histograms of weights, biases as they change over time

4.4.3 Model architecture

The model architecture is a modified version of a 3D Unet to facilitate the special data
packages that we are feeding it as inputs. The only difference from a 3D Unet as show-
cased in [3.2.3.1.1] is that it has two more input channels cause the input shape to con-
tain:
Batch_IDX, self nulled due to current batch_size = 1

- X —Image Height = 128

« Y —Image Width = 128

« Z —Image Depth =128

« C —Image Channels = 4, this is the range of the labels we want to segment

The input packet that goes into the network is an array containing:

[(none), (X, Y, Z), C]

The weights are initialized using he uniform™ transform from tf.keras. This means

that it draws samples from a uniform distribution within [-limit, limit], where

* https://www.tensorflow.org/tensorboard
> https://www.tensorflow.org/api_docs/python/tf/keras/initializers/HeUniform
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limit = /(6/qinput) -qinput is the number of input units in the weight tensor.

Overall the model is standing at 5,645 million parameters, all of them being train-

able. We instantiate the model from Script [Train], the model itself is stored in Script

[Unet].

4.4.4 Model Training

In this section we show graphs of metrics and losses of the two most prominent mod-

els. Overall six models were trained and two of them were retrained to boost categor-

ical accuracy by utilizing cyclical LR simulation. Despite best efforts to avoid unfair

prediction, the sparsity in the dataset is too great without some serious data augmenta-

tion.

epoch_dice_coef
tag: epoch_dice_coef

Model A (1):

Trained for epochs = 100

LR =le-4

Decaying LR = Yes

Elapsed time: approximately 34hours

MeanloU over the test set: 82%

epoch_iou
tag: epoch_iou

n.as el 0.908
0.946 0,602
0.942
0.896
0.938
0.934 0.89
0e3 0.8R4
a 20 40 &0 80 100
epoch_loss

tag: epoch_loss

tag: evaluation_iou_vs_iterations

0932

-0.936

5k 158k 25k

Figure 38: Tensorboard Graphs for model A

evaluation_iou_vs_iterations

38k 48k 55k
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Ground Truth Prediction mask

Image #23, Slice #71
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Figure 39: Predictions for model A

«  Model B (3.1):
Trained for epochs = 20, in segments of 5 to reset it’s LR
LR = 1e-3
Decaying LR = Yes
Elapsed time: approximately 7hours

MeanloU over the test set: 78%

Image #11, Slice #70 Ground Truth Prediction mask

00

120

0 20 40 &0 80 00 1z0

Figure 40: Prediction for model B
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epoch_categorical_accuracy
tag: epoch_categorical_accuracy
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Figure 41: Tensorboard graphs for model B

4.5 Feature Extraction

4k

7

5k

8 9

Bk

To extract the imaging features that are thoroughly explained in [3.3] first we must

yield the survival data from three different survival csv files. We begin by populating

our location dataframe as we have done in previous chapters of this section. We then

load the survival data of all three csv files.

TR WNEREO® TR WNEREO®

PLWNE O

BraTS18ID
Brats18_TCIA@S_167_1
Brats18_TCIA@S_242 1
Bratsl18_TCIA@S_319 1
Brats18_TCIA@S_469_1
Bratsl8_TCIA@S_218 1

BraTS19ID
BraTS19_CBICA AAB_1
BraTS19_CBICA_AAG_1
BraTS19_CBICA AAL_1
BraTS19_CBICA_AAP_1
BraTS19_CBICA_ABB_1

Brats20ID
BraTS2e_Training_se1l
BraTS2e@_Training_ee2
BraTS2@ Training_ee3
BraTS2e@_Training_ee4
BraTS2@ Training_ees

Figure 42: Sample of survival csv files

Age
74.907
66.479
64.860
63.899
57.345

Survival ResectionStatus

153
147
254
519
346

NaN
NaN
NaN
NaN
NaN

Age Survival ResectionStatus

GTR
GTR
GTR
GTR
GTR

Age Survival_days Extent_of_Resection

60.463014 289
52.263014 616
54.301370 464
39.068493 788
68.493151 465
€0.463 289
52.263 616
54,301 464
39.068 788
68.493 465

GTR
GTR
GTR
GTR
GTR
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Using the patient IDs from the locations dataframe, we cross reference it with the
survival sets to yield the survival days of each patient. If the patient does not exist in-
side the survival sets or the survival days are N/A, we place a NaN placeholder in the

list, on it’s hypothetical index to prune the data later.

After having completed the aforementioned, we count 381 inputs to be NaN. Utiliz-
ing dataframe operations we quickly drop these values and reset the dataframe index
to intercept potential problems with iloc in the future. We perform frequent sanity
checks to ensure data won’t go missing. Finally from 989 lines we are left with 608

samples.

We instantiate four empty lists to facilitate each modality. Using the package pyra-
diomics™, we enable all imaging features and we instantiate an extractor. We perform
parallel casting of the extraction process including the T1 modality. It is acknowledged
that the T1 modality is not used in training the models mentioned in [4.4.4] but in our
judgement we would have one CPU core stall while the others worked, and the more
data we extract the better it’s going to be for our survival rate predictors in the next

chapter.

Finally we create four dataframes, one for each modality, from the feature lists. We
split the extra data (spatial information about the mask, tool versions, etc) from the
feature (tabular) data and now we have two dataframes per modality that we save un-
der /main/outputs/ as:

- Extra data <modality> extras.csv

« Feature data <modality> features.csv

Another csv is created to store the survival days of the 608 sample set and saved in
the same folder as the above. For chapter [4.5] the Script [Image Feature Extraction ]

was used. Time usage for chapter [4.5]:

Operation Time

Single loc dataframe line 7.01 seconds
Approximation of all data 4263.95 seconds (71.06 minutes)
True time for full feature extraction 4469.47 seconds (74.49 minutes)

Table 15: Time usage for feature extraction

3 https://pyradiomics.readthedocs.io/en/latest/
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4.6 Survival Prediction from Imaging Data

Having extracted the imaging features now we can perform analysis utilizing weak
learners as showcased in [3.2.2]. We begin by loading our feature csv files for each

modality and appending the survival days as a feature column at the end.

Survival Value Distribution

1750
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250 I

100 200 300 a00 500 600

Figure 43: Survival data distribution of the BraTS data

=

We use the train_test split method from the sklearn package and split our data into
80% training and 20% test sets. Random state is set to 42. For the four modalities this
works fine, but for the merged set we have to combine the previously split sets to not

have values from the training set into the test set of the merged set.

Initializing five XGBOOST Regressors with default settings. And fitting them to
our train X train, Y _train sets as taken from train_test split.

The XGBRegressors took 1.52s to train.

Training score: 87.44% for set: flair
Training score: 87.20% for set: tl
Training score: 86.70% for set: tlce
Training score: 88.59% for set: t2
Training score: 87.67% for set: merged

K-Fold cross val(n=10) score: 82.26 for set: flair
K-Fold cross val(n=10) score: 76.46 for set: tl
K-Fold cross val(n=10) score: 84.39 for set: tlce
K-Fold cross val(n=10) score: 79.99 for set: t2
K-Fold cross val(n=10) score: 99.38 for set: merged

MSE: 12732.87 for set: flair
MSE: 12977.93 for set: t1
MSE: 13482.55 for set: tlce
MSE: 11571.53 for set: t2
MSE: 12503.22 for set: merged
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RMSE: 112.84 for set: flair
RMSE: 113.92 for set: tl
RMSE: 116.11 for set: tlce
RMSE: 107.57 for set: t2
RMSE: 111.82 for set: merged

Ground Truth & Predictions for set:flair
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Figure 44: Prediction for non normalized data modality data
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Ground Truth & Predictions for set:merged
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Figure 45: Prediction for non normalized merged modality set

It’s normal for the MSE / RMSE scores to look absurd because the data are not nor-
malized. This is done in order to look for significant changes in the prediction in nor-

malized and non normalized datasets.

Moving forward we perform feature (column) wise normalization. Note that we do
not remove any high values due to the dataset being somewhat balanced. After we’re

done we repeat the process with new XGB Regressors.

XGBRegressors took 1.27s to train.

Training score: 83.03% for set: flair
Training score: 84.75% for set: tl
Training score: 80.42% for set: tlce
Training score: 86.73% for set: t2
Training score: 85.25% for set: merged

K-Fold cross validation took 12.45s to estimate.

K-Fold cross val(n=10) score: 75.73 for set: flair
K-Fold cross val(n=10) score: 76.63 for set: tl
K-Fold cross val(n=10) score: 87.22 for set: tlce
K-Fold cross val(n=10) score: 89.00 for set: t2
K-Fold cross val(n=10) score: 98.96 for set: merged

MSE: 0.01 for set: flair
MSE: 0.00 for set: tl
MSE: 0.01 for set: tlce
MSE: 0.00 for set: t2
MSE: 0.00 for set: merged

RMSE: 0.07 for set: flair
RMSE: 0.07 for set: tl1
RMSE: 0.08 for set: tlce
RMSE: 0.07 for set: t2
RMSE: 0.07 for set: merged
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Ground Truth & Predictions for normalized set-flair

10

0.8 4

0.6 4

044

0.2 4

0.0

—— original
predicted

=~

.=-
]
5
8
]
g
5

Ground Truth & Predictions for normalized set:tl

104

08+

0.6 4

0.4

0.2 4

0.0 4

—— original
predicted

e

o_
=
5
2}
3
15
(=]
=1
S

Ground Truth & Predictions for normalized set:tlce

10

0.8 4

0.6 4

044

024

0.0

—— original
predicted

e

c_
=
&
3
B
5
(=]
=1
=

Ground Truth & Predictions for normalized set:t2

104

0.8 4

0.6 4

0.4

0.2 4

0.0

— original
predicted

—

.:,_
=3
5
2}
B
=1
(=]
=1
S

Figure 46: Predictions for normalized modality data
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Ground Truth & Predictions for normalized set:merged
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Figure 47: Prediction for normalized merged data

This chapter was completed using Script [Image Feature Survival Prediction]. Time

elapsed was approximately 1 minute.

4.7 Multi-omic Data analysis

Lastly, we use the preprocessed data we created in [4.3.2] to create multiple classifiers
and finally a regressor for survival prediction on the merged multi-omic set. Multiple
classifiers are used to compare between class imbalance control strategies and two
weak learners: RFC and XGBOOST for non normalized and normalized data. Script

used is still [Multi-omics]

We split all our sets into 80% train and 20% test with random state = 42. Then we
initialize for each data set (gene exp, miRNA) and each oversampling strategy
(SMOTE, BorderlineSMOTE, ADASYN) a RFC and a XGB Classifier. Bellow are the
results of each one. To avoid having parts of the graph hidden, the legend is turned off.

Starting off with the non normalized sets: (Legend: Original(Blue), Predicted(Red))
Purple means that the prediction matches the ground truth:

Accuracy for XGBOOST on exp: 88.31%

XGBoost Results for EXP data (Imb_Strat: SMOTE)
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Accuracy for RTC on exp: 88.39%

RTC Results for EXP data (Imb_Strat: ADASYN)

o omnm HF W INEANA MR FERER T

08 4

0 ” ) IH'W

0.4

SR A ER LAY L0

0 20 40 60 80 100 120 140

Accuracy for XGBOOST on mirna: 90.20%

XGBoost Results for miRNA data (Imb_Strat: ADASYN)
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Figure 48: XGB Classifiers predictions

Total time elapsed to train all 24 classifiers was about two minutes.

We now merge the two main datasets (gene exp & miRNA) and only keep the
samples that are in the intersection of the two sets. Furthermore we drop any sample
that we don’t have the survival days and append the survival days as a feature column
at the end of the new dataframe. We are left with 457 samples containing 12577 fea-

tures.
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We perform multiple tests and use K-Fold cross validation[3.2.2.3] with number of
splits = 10 and enabled shuffling. Our initial random state is set to 42. Tests per-
formed:

Raw survival days, normalized data:

K-fold cross validation took 231.16s with a score of: 55.90%

Normalized survival days, normalized data:

K-fold cross validation took 211.29s with a score of: 57.99%

Normalized & pruned(n=10) survival days, normalized data

K-fold cross validation took 197.23s with a score of: 27.87%

Normalized & pruned(n=5%) survival days, normalized data

K-fold cross validation took 249.02s with a score of: 21.14%

Normalized & pruned(n=5%) survival days, normalized data, CRS*" (rt=5)
K-fold cross validation took 230.84s with a score of: 28.56%

Normalized survival days, normalized data, RRS*, CTS* (n=.33)
K-fold cross validation took 213.03s with a score of: 25.07%

Overall time elapsed for the classifiers training was approximately 25 minutes.

MSE: ©.e5
RMSE: ©.21

Ground Truth & Regression Predictions
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Figure 49: Best Classtf ier Predlcttons

7 CRS = Changed Random State
** RRS = Removed Random State
¥ CTS = Changed Test Split
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5 Results

Though lengthy our experiment yielded some interesting results.

Total time to run all computations per department:

Operation(s) Total Time
Preprocessing 24,5 hours
Train 3D CNNs 52-55 hours
Evaluate models 1 hour
Extract radiomic features 75 minutes
Image survival predictor (train & eval) 1 minute
Multi-omic classifier (train & eval) 2 minutes
Multi-omic survival predictor (train & eval) 23 minutes
Total Elapsed ~ 82 hours

Table 16: Computational time for the entire project

The results of our imaging classifiers:

Type Accuracy
3D CNN (1* model) 82%
3D CNN (2" model) 78%
3D CNN (3" model) 75%
3D CNN (4" model) 69%
3D CNN (5™ model) 68%
3D CNN (6" model) 42%

Table 17: CNN models categorical accuracy

The results of our imaging survival predictors for non normalized data:

Modality Train score K-FCV MSE RMSE
FLAIR 87.40% 82.26% 12732.87 112.84
T1 87.20% 76.46% 12977.93 113.92
T1-CE 86.70% 84.39% 13482.55 116.11
T2 88.59% 79.99% 11571.53 107.57
Merged 87.67% 99.38% 12503.22 111.82

Table 18: Imaging survival predictor scores ( non normalized )

The results of our imaging survival predictors for normalized data:

Modality Train score K-FCV MSE RMSE
FLAIR 83.03% 75.73% 0.01 0.07
T1 84.75% 76.63% <0.01 0.07
T1-CE 80.42% 87.22% 0.01 0.08
T2 86.73% 89.00% <0.01 0.07
Merged 85.25% 98.96% <0.01 0.07

Table 19: Imaging survival predictor scores ( normalized )
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The result of our non normalized multi-omic classifiers:

Set Classifier Oversampling Type Accuracy score
Gene Expression RFC SMOTE 76.62%
Gene Expression RFC BorderlineSMOTE 83.12%
Gene Expression RFC ADASYN 80.39%
Gene Expression XGBOOST SMOTE 88.31%
Gene Expression XGBOOST BorderlineSSMOTE 89.61%
Gene Expression XGBOOST ADASYN 93.46%
miRNA RFC SMOTE 83.12%
miRNA RFC BorderlineSSMOTE 77.92%
miRNA RFC ADASYN 68.21%
miRNA XGBOOST SMOTE 92.86%
miRNA XGBOOST BorderlineSSMOTE 88.96%
miRNA XGBOOST ADASYN 88.08%

Table 20: Accuracy score of non normalized multi-omic classifiers

The result of our normalized multi-omic classifiers:

Set Classifier Oversampling Type Accuracy score
Gene Expression REFC SMOTE 79.22%
Gene Expression RFC BorderlineSSMOTE 79.87%
Gene Expression RFC ADASYN 80.39%
Gene Expression XGBOOST SMOTE 93.51%
Gene Expression XGBOOST BorderlineSMOTE 90.91%
Gene Expression XGBOOST ADASYN 93.46%
miRNA RFC SMOTE 74.68%
miRNA RFC BorderlineSMOTE 75.97%
miRNA RFC ADASYN 75.16%
miRNA XGBOOST SMOTE 90.91%
miRNA XGBOOST BorderlineSSMOTE 88.96%
miRNA XGBOOST ADASYN 90.20%
Table 21: Accuracy score of normalized multi-omic classifiers

The K-FCV result of our merged set (gene _exp & miRNA)
Normalized Days  Special Prune Score
No - No 55.90%
Yes - No 57.99%
Yes - Yes(n=10) 27.87%
Yes - Yes(n=5%) 21.14%
Yes CRS(rt=5) Yes(n=5%) 28.56%
Yes RRS & CTS(n=.33) No 25.07%

Table 22: K-FCV of our merged multi-omic regressor
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To summarize, we achieved:

Cancer diagnosis and semantic segmentation of the tumor at a categorical ac-
curacy of 82% and 78% with multiple different approaches utilizing modified

3D Unets and training six models.

Survival type classification (classes from [4.3.2]) based on gene expression
data and miRNA data with our best score coming from the gene expression
data classified by a XGB Classifier after the data got normalized and balanced
with the use of SMOTE [4.3.2], [4.7] for a score of 93.51%.

Merged omic set attempts only yielded a maximum of a score of 57.99% with
MSE of 0.05 and RMSE of 0.21. Given the oppressive amount of features the
dataset had against the amount of samples, we find this normal yet under-

whelming.

And bringing it all together we created survival rate predictors for both the
imaging data (by extracting their imaging features and performing analysis
with weak learners) reaching a MSE of less than 0.01 in imaging [4.6] and

0.05 in merged multi-omic data analysis [4.7]
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6 Discussion & Outlook

The objective of this thesis was to prove that it is possible to merge data obtained by
multiple scientific fields (biology & medicine) that are brought together by the field of
informatics in order to reach the goal of cancer diagnostic tools such as [4.4.4] and
[4.7] as well as survival rate predictions as shown in [4.6] and [4.7]. It also proved that
you can approximate a pretty accurate result in survival rates if you have multiple type

data sources(imaging, multi-omics, etc.).

Despite our poor results[5.] due to us still being naive to the grand scheme of 3D
semantic segmentation (we got a good slap from the danning krueger effect[40]) opti-
mal deep learning with neural networks is by far the bleeding edge in terms of seman-

tic segmentation in medical imaging with scoring as much a 0.95 dice score[39]!

For the multi-omics part on the other hand, some ANN based approaches fall be-
hind [41]. Despite DNNs being able to discover structures inside big data, problems
arise when our features far exceed our samples. It’s causing the model to over fit re-
sulting in the model loosing predictive capabilities. This is why XGBOOST usually
outperforms standard ANNSs in tabular data classification & regression[42]. Despite all
that in respects to multi-omics as a whole, given the sheer volume of data that exists
and continues generating; DNNs will surely play a very important role in the year to

come.

Recent scientific literature indicates that quantitative features extracted from multi-
modal imaging data (CT, MRI, X-Ray) can be used as imaging biomarkers to charac-
terize a lesion. Added to this imaging arsenal, multi-omics data acquisition being per-
formed alongside imaging data acquisition with the result of a slow but steadily in-
creasing quantity of data. Soon we will be able to engage into large scale research with

deep learning models in the field of radiogenomics[43]

For our closing remarks we’d like to state that we started this thesis with a serious
limitation on time, knowledge and sense of time but despite that still choose to fully

embrace the idea behind a thesis (by learning new things and applying them in order to
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solve a problem[2.1],[2.3]) we have to say that we are positively surprised by the turn

of events (in respect to our results[6.]).
Overall, parts of our knowledge in machine learning techniques and bioinformatics

have been re-established through trial and error and have set the stage for much more

knowledge to come and experiments to be made. For that, we are grateful.
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7 Future Prospects

Moving forward in the brave new world of bioinformatics, we would like to further
our experimentation on multiple levels. These include but are not limited to prepro-
cessing, training models and data augmentation. Our focus is to expand our research
horizons by asking increasingly more complex questions to further understand prob-
lems inside the domain of bioinformatics and systems biology as a whole with the aim

to figure out solutions.

In the preprocessing part, we would like to experiment with ANN/DNN based
methods for denoising as presented in papers like [7], [8] and bias field correction as

presented in papers like [9], [10].

In the segmentation model part, we would like to experiment with multiple neural
networks, as mentioned already in the aftermath of the failed attempt mentioned in
[4.3.1.1]. Another approach we would like to look into is ensemble learning by utiliz-
ing different types of neural networks and attempt to make a super accurate segmenter
networks with the ability to generalize in brain gliomas. Subsequently, we would also

like to use different optimizers(AdaFair [13]) and hyperparameter tuning strategies.

In the regression and classification part we would like to take the time and analyze
our features. Due to our limited time, resources and knowledge some important steps
were not used that would have yielded optimal or at least better results. Example of
this would be [4.7], [4.6] where the entire datasets were used instead of proper feature

weighting and massive feature drops.

Lastly, we understand the diversity and sparsity of datasets due to problems men-
tioned in [3.1]. Therefore we would also tap into data augmentation with the usage of
conventional methods like random affine, elastic and pixel wise transformations on
our currently available datasets, as well as utilizing deep GANs in order to create new

and unseen data as showcased in [12].

The End.

78



8. Appendix — Scripts

8 Appendix — Scripts

8.1 Rig information
#!/usr/bin/env python

print(fPython version: {platform.python version()}")

sys_details = tf.sysconfig.get build info()

print(fCUDA version: {sys_details["cuda version"]}")
print(f CUDA computational capabilities:
{sys_details["cuda compute capabilities"]}")
print(fCUDNN version: {sys_details["cudnn_version"]}")

tools = ['pandas','numpy’,'keras','matplotlib','sklearn’,'radiomics’,
'nibabel','Simplel TK','imblearn','xgboost','tensorflow']
packages = {}

for i in range(len(tools)):
try:
packages[tools[i]] = import_module(tools[i])
temp = packages[tools[i]]. version
if i <3:
print(f'Package: {tools[i]}\t\t is in version:\t {temp}")
else:
print(f'Package: {tools[i]}\t is in version:\t {temp}")
except (PackageNotFound, NameError):
print(f'Package: {tools[i]}\t is in version:\t {version(tools[i])}")
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8.2 Image Preprocess Pipeline

def grab NSD(img_data, depth_len):
Simple function to grab sigma estimates from MRI slices with NaN intercept
img data : ixjx z image data matrix
depth_len : slice count (Z)

"

temp list a =[]

for 1 in range(depth len):
X = np.mean(estimate_sigma(img_data[:, :, i]))
if np.isnan(X):
temp_list_a.append(1)
else:

temp_list_a.append(X)

return np.float64(temp list a)

def denoise _img_data(temp_list A, temp list B):
Clutter control function to generate NLM denoised images
temp list A: a 3D MRI image
temp list B: the estimated sigma values for each Z depth slice of temp_list A

e

a=[]

options = dict(fast mode=True, # true for non gaussian
patch_size=5, # 5x5 patches
patch_distance=6, # /3x13 search area
multichannel=False)

for 1 in range(len(temp_list B)):
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a.append(denoise nl _means(temp _list A[:, :, i], h=1.15 * temp list BJ[i],

**options))

return a

def denoise process(i):
Denoise function to assist with
Parallel error intercept due to i/o stream going ballistic
i. counter for delayed
stream = getattr(sys, "stdout")
f = denoise_img data((temp_list A[i]), temp_list B[i])

stream.flush()

return f

def bias_field correction(i):
"
Bias field correction function to assist with
Parallel error intercept due to i/o stream going ballistic
i: counter for delayed

"

stream = getattr(sys, "stdout")

f=1]

for j in range(Z_depth):
# cast image to Real ITK format
obj f = sitk.GetlmageFromArray(temp_list C[i][j])
obj_f = sitk.Cast(obj_f, sitk.sitkFloat32)
# Cast mask to uint8 format

mask image = sitk.OtsuMultipleThresholds(obj f, 0, 1, 200)
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mask image = sitk.Cast(mask image, sitk.sitkUInt8)

# note that both casts are done as a dependency to the correction execute seq , it's
an inconvenience

# but my time management is BAD so this will have to do for now , might change

it later

bias corrected img = corrector.Execute(obj_f, mask image)

# return the image slice to original 240x240 dimensions and drop it on the
Z depth stack
f.append(sitk.GetArrayFromlmage(bias corrected img))

stream.flush()

return f

def data nesting(x):

"

data saving function to assist with
Parallel error intercept due to i/o stream going ballistic

i. counter for delayed

"

stream = getattr(sys, "stdout")

hdr = object nifti[x].header
aff = object nifti[x].affine

finalized nifti_img = nib.NiftilImage(np.transpose(np.array(temp_list D[x]),
axes—=(1, 2, 0)), aff, hdr)

nib.save(finalized nifti img, finalized locs.iloc[i][x + 1])

stream.flush()
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def create dir tree without files(src, dst):

# sre hitps://www.geeksforgeeks.org/python-copy-directory-structure-without-files/

# getting the absolute path of the source
# directory
src = os.path.abspath(src)

# making a variable having the index till which
# src string has directory and a path separator

src_prefix = len(src) + len(os.path.sep)

# making the destination directory

os.makedirs(dst)

# doing os walk in source directory
for root, dirs, files in os.walk(src):
for dirname in dirs:
# here dst has destination directory,
# root[src_prefix:] gives us relative
# path from source directory
# and dirname has folder names

dirpath = os.path.join(dst, root[src_prefix:], dirname)

# making the path which we made by
# joining all of the above three
os.mkdir(dirpath)

def load pack(index, slice_index):

simple data grabber

index: number that indicates which image set will be grabbed from the location

dataframes
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slice_index: number that indicates which Z-depth slice is gonna get grabbed

"

# mask
mask = nib.load(finalized locs.iloc[index][0]).get fdata()[:, :, slice_index]

# a raw data sample
raw_img = [(nib.load(raw_data_loc.iloc[index][x]).get fdata())[:, :, slice_index] for

x in range(1, 5)]

# a preprocessed data sample
prep_img = [(nib.load(finalized locs.iloc[index][x]).get fdata())[:, :, slice index]

for x in range(1, 5)]

return mask, raw_img, prep_img

def plot_pack(mask, raw_img, prep _img):

"

simple data plot

mask: 240x240 segmentation mask
raw_img : list[0-4] of 240x240 images
prep_img : same as above

"

names = ["ﬂair", "tl", "th", ntzn]

plt.figure(figsize=(17, 17))

for i in range(4):
plt.subplot(1, 4,1+ 1)
plt.title("Original " + names][i])
plt.imshow(raw_img[i], cmap='gray')

plt.imshow(mask, cmap='jet', alpha=.33)

84



8. Appendix — Scripts

plt.figure(figsize=(17, 17))

for 1in range(4):
plt.subplot(1, 4,1+ 1)
plt.title("Processed " + names[i])
plt.imshow(prep_img[i], cmap='gray')
plt.imshow(mask, cmap='jet', alpha=.33)
plt.show()

T SO L L DR L L DUGOR L 1 B

# Initial data loc grab of the BraTS datasets
files = glob('X:\Datasets\BraTS\DATA\DATA Training\**\* nii.gz', recursive=True)
train_files masks = glob("X:\Datasets\BraTS\DATA\DATA Training\**\*seg.nii.gz',

recursive=True)

train_files scans = [fn for fn in (filter(lambda x: not x. _contains__ ("seg"), files))]

print(fFound masks :{len(train_files masks)} and scans:{len(train_files scans)}.")

# separating scan pairs and merging data locations
flair =[]
tlce =[]
th =]
2=1]
for x in train_files_scans:
if "tlce.nii.gz" in x:
tlce.append(x)
elif "t1.nii.gz" in x:
tl.append(x)
elif "t2" in x:
t2.append(x)
elif "flair.nii.gz" in x:
flair.append(x)

else:
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print("Something funny happened.")
break

print(f'Accumulated -> Flair:{len(flair)}, T1:{len(t1)}, T1c:{len(tlce)}, T2:{len(t2)}\n")

temp_a = list(zip(train_files masks, flair, t1, tlce, t2))
temp_b — [Hmaskﬂ, "ﬂairH’ "tl", "tlcﬂ, Ht2"]

raw_data loc = pd.DataFrame(temp_a, columns=temp_b)
null = [print(raw_data loc.iloc[0][i]) for i in range(5)]
#raw data_loc.head()

# Generate Mirror Locations for post process storing

# Uncomment if you need to recreate directory
create_dir tree without files('D:\Datasets\BraTS\DATA\DATA Training',
'D:\Datasets\BraTS\DATA\Processed DATA Training')

finalized locs = raw_data loc.copy()

for 1 in range(finalized locs.shape[0]):
for j in range(finalized locs.shape[1]):
temp = raw_data_loc.iloc[i][j]
temp = temp[:23] + "Processed " + temp[23:]

finalized locs.iloc[i][j] = temp
# Uncomment if you need to transfer the masks , if they are there already this should
return an error
for 1 in range(finalized locs.shape[0]):

shutil.copyfile(raw_data loc.iloc[i][0], finalized locs.iloc[i][0])

# Preprocess Pipeline
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temp time_start = time()
warnings.filterwarnings("ignore'")
Z depth =155

for 1in range(len(raw_data loc)):
object_nifti =[] # keep these for header & affine affix copy
temp _list A =[] #line tuple from raw data
temp list B =[] # estimated sigmas for tuple data

# grab data tuple
for j in range(4):
object nifti.append(nib.load(raw_data loc.iloc[i][j + 1])) # a nifti image object
temp_list A.append(object nifti[j].get fdata()) # grab image data #dim:
240x240x155
temp_list B.append(grab NSD(temp list A[j], Z depth)) # grab estimated
sigmas , dim: 155x

temp_list C = Parallel(n_jobs=4, backend="threading")(delayed(denoise process)
(x) for x in range(4))

corrector = sitk.N4BiasFieldCorrectionlmageFilter() # generate global filter
temp_list D = Parallel(n_jobs=4, backend="threading")

(delayed(bias_field correction)(x) for x in range(4))

x = Parallel(n_jobs=4, backend="threading")(delayed(data_nesting)(x) for x in
range(4))

temp_time_stop = time()

print(f Time elasped for preprocessing: {(temp_time stop - temp_time_start)} sec.")

pack index = np.random.randint(low=0, high=len(raw_data loc))

slice_index = np.random.randint(low=50, high= 100)
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mask, raw_img, prep_img = load pack(pack index, slice index)

plot pack(mask, raw_img, prep img)
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8.3 Data Bundling

tl_list = glob('X:/Datasets/BraTS/DATA/Processed DATA Training/**/*t1.nii.gz',
recursive=True)

t2_list = glob('X:/Datasets/BraTS/DATA/Processed DATA_Training/**/*t2.nii.gz',
recursive=True)

tlce list = glob('X:/Datasets/BraTS/DATA/Processed DATA Training/**/
*tlce.nii.gz', recursive=True)

flair _list = glob("X:/Datasets/BraTS/DATA/Processed DATA Training/**/
*flair.nii.gz', recursive=True)

mask_list = glob('X:/Datasets/BraTS/DATA/Processed DATA Training/**/

*seg.nii.gz', recursive=True)

c=0

scaler = MinMaxScaler()

for 1in range(len(tl _list)):
print(f"\rCurrent: {i}")

#temp image tl = nib.load(tl _list[i]).get fdata()
#temp image tl = scaler.fit transform(temp image tl.reshape(-1,

temp _image tl.shape[-1])).reshape(temp image tl.shape)
temp image t2 = nib.load(t2_list[i]).get fdata()
temp_image t2 = scaler.fit_transform(temp image t2.reshape(-1,
temp_image t2.shape[-1])).reshape(temp image t2.shape)
temp_image tlce = nib.load(tlce list[i]).get fdata()
temp _image tlce = scaler.fit_transform(temp image tlce.reshape(-1, temp im-

age tlce.shape[-1])).reshape(temp image tlce.shape)

temp image flair = nib.load(flair list[i]).get fdata()
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temp image flair = scaler.fit_transform(temp image flair.reshape(-1, temp im-

age flair.shape[-1])).reshape(temp image flair.shape)

temp_mask = nib.load(mask_list[i]).get fdata()
temp_mask = temp_mask.astype(np.uint8)
# 3 has no representation in the entire dataset so we replace it with 4

temp_mask[temp mask == 4] =3

#add temp _image tl in the stack if you want to save it too
temp combined images = np.stack([temp image flair, temp image tlce,

temp image t2], axis=3)

# cropping down to 128x128x128 patches
temp combined images = temp combined images[56:184, 56:184, 13:141]
temp_mask = temp_mask[56:184, 56:184, 13:141]

val, counts = np.unique(temp_mask, return_counts=True)
# if the useful information on the picture is less than 1%, drop the image
if (1 - (counts[0] / counts.sum())) > 0.01:
temp_mask = to_categorical(temp mask, num_classes=4)
np.save('X:/Data/3D Blocks/images/stack '+ str(i) + ".npy', temp_combined im-
ages)
np.save('X:/Data/3D_Blocks/classes/mask '+ str(i) + ".npy', temp_mask)
else:

c+=1

print(f'Out of {len(t1 list)} 3D stacks, {c} didn't have enough information")
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8.4 Multi-omics

#!/usr/bin/env python

# initial data grab
# CLINICAL DATA GBM IS RIDDEN WITH DELIMITER ERRORS ON THESE
LINES*

#*:we get rid of them but noting them nontheless in case we can repair / yield some

information from them

#x=[66, 110, 111, 117, 119,

#

#
#
#

120, 126, 128, 138, 145,
163, 165, 167, 227, 277,
300, 304, 306, 349, 373,
431, 468, 485, 499, 585]

x_loc ='X:/Data/Extras/Genomics/' #>SE, g loc, L:D
#x_loc = 'D:/thesis_movable/Genomics/' # >SE , g loc, L:L

#currently indexing per sample name

exp_data = pd.read_csv(x_loc+'exp', index col=0)

mirna_data = pd.read_csv(x_loc+'mirna’, index col=0)

survival data = pd.read csv(x_loc+'survival', index col=0)

clinical _data = pd.read csv(x_loc + 'clinical gbm',

index col=0,
delimiter="\t',

on_bad lines='skip")

# Taking a look to retain sanity points

print(f'Exp data size: {exp_data.T.shape}.\n--")
print(exp_data.iloc[0:5,0:5].T)

print("\n\n***\n\n")

print(fmiRNA data size: {mirna_data.T.shape}.\n--")

print(mirna_data.iloc[0:3,0:5].T)
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print("\n\n***\n\n")

print(f'Survival data size {survival data.shape}.\n--")
print(survival data.head())

print("\n\n***\n\n")

print(f'Clinical data size {clinical data.shape}.\n--")
pd.set_option('display.max_rows', len(clinical data.iloc[0]))
print(clinical data.iloc[0].T)

pd.reset_option('display.max rows')

print("\n\n***\n\n")

# define classes and grab usable datasets

cl = clinical data.query('CDE vital status =="DECEASED"")

c2 = clinical_data.query('CDE vital status =="LIVING" & days to last followup
>100")

print(f'Classes:\t\t[Dead: {len(c1)}] [Alive & DTLF>100: {len(c2)}] [Total
Samples: {len(cl)+len(c2)}]")

# obtain subject tags

cl _tags = cl.index.str.replace("-",".").to_list()
c2 tags = c2.index.str.replace("-",".").to_list()
exp tags = exp_data.T.index.to_list()

mirna_tags = mirna_data.T.index.to_list()

#check if they have exp & mirna data and purge if they dont
for x in cl_tags:
if x in exp_tags and x in mirna_tags:
continue
else:

cl tags.remove(x)
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for x in c2_tags:
if x in exp _tags and x in mirna_tags:
continue
else:

c2_tags.remove(x)

class dead exp data = exp_ data.T.query(f'index in {c1 tags}')

class_dead mirna data = mirna_data.T.query(f'index in {cl tags}')

class alive exp data =exp data.T.query(f'index in {c2 tags}')

class alive mirna data = mirna_data.T.query(f'index in {c2_tags}')

print(f'Classes after pruning: [Dead: {len(cl tags)}] [Alive & DTLF>100:
{len(c2_tags)}| [Total Samples: {len(cl tags)+len(c2 tags)}|\n")

plt data = {'Total Samples': len(c1_tags)+len(c2 tags), 'Dead": len(cl_tags), 'Alive
& SD:>100":len(c2_tags)}

classes = list(plt_data.keys())

values = list(plt_data.values())

colors = ['blue','brown','green']

plt.figure(figsize=(4,4))

plt.bar(classes, values, width=.5, color=colors)
plt.title('Class distribution")
plt.xlabel("Classes")

plt.ylabel('Samples")

plt.show()

print(‘Majority class: %.2f" % (abs(1-(len(c2_tags) / len(cl_tags)))))
print('Minority class: %.2f" % (len(c2_tags) / len(cl_tags)))

# true sets
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u X exp = pd.concat([class_dead exp data, class alive exp data],
verify integrity=True)

u_ Y exp =np.zeros(len(u_X exp), dtype=np.uint8)

u Y exp[len(class_dead exp data):] =1

u X mirna = pd.concat([class_dead mirna_data, class_alive mirna data],
verify integrity=True)
u_Y mirna = np.zeros(len(u_X_mirna), dtype=np.uint8)

u_ Y mirna[len(class dead mirna data):] =1

print(f"\nTrue sets:\n\tEXP: {u X exp.shape}\n\tMIRNA:{u X mirna.shape}")

# three way oversampling of C2

rt=42

sl = sm(random_state=rt)
s2 = bsm(random_ state=rt)

s3 = ada(random_ state=rt)

# SMOTE
V1 X exp res, V1 Y exp_res = sl .fit resample(u_X exp,u_Y_exp)

V1 X mirna res, V1 Y mirna res = sl.fit resample(u_X mirna, u Y mirna)

# BorderlineSMOTE
V2 X exp res, V2 Y exp_res = s2.fit resample(u X exp,u_ Y exp)

V2 X mirna res, V2 Y mirna res = s2.fit resample(u_X mirna, u Y mirna)
# ADASYN
V3 X exp res, V3 Y exp_res = s3.fit resample(u_X exp,u_Y_exp)

V3 X mirna res, V3_Y mirna_res = s3.fit resample(u_X mirna, u_Y mirna)

# reploting

plt _data = {'Total Samples": len(V1_Y exp res)+len(V1 Y mirna res),
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'Dead": len(V1_Y _exp res),

'Alive & SD:>100":len(V1_Y mirna res)}
classes = list(plt_data.keys())
values = list(plt_data.values())
colors = ['blue','brown’,'green’]

plt.figure(figsize=(4,4))

plt.bar(classes, values, width=.5, color=colors)
plt.title('Class distribution")
plt.xlabel("Classes")

plt.ylabel('Samples")

plt.show()

# Chop suey
rt="7

exp X trains =[]
exp Y trains =[]
exp X tests =[]
exp_Y tests =[]

mirna_X_trains = []
mirna_Y _trains = []
mirna X _tests = []

mirna_ Y _tests = []

VlexpXtrain, VlexpXtest, VlexpYtrain, VlexpYtest =

train_test_split(V1 X exp _res, V1 _Y exp res, test_size=.2, random_state=rt)
VlmirnaXtrain, V1mirnaXtest, VlmirnaYtrain, V1mirnaYtest =

train_test split(V1 X mirna res, V1 Y mirna res, test size=.2, random_state=rt)
V2expXtrain, V2expXtest, V2expYtrain, V2expYtest =

train_test_split(V2_X exp res, V2 Y exp res, test_size=.2, random_state=rt)

95



8. Appendix — Scripts

V2mirnaXtrain, V2mirnaXtest, V2mirnaYtrain, V2mirnaYtest =
train_test split(V2_ X mirna res, V2 Y mirna res, test size=.2, random_state=rt)
V3expXtrain, V3expXtest, V3expYtrain, V3expYtest =
train_test_split(V3_ X exp _res, V3 Y exp res, test_size=.2, random_state=rt)
V3mirnaXtrain, V3mirnaXtest, V3mirnaYtrain, V3mirnaYtest =

train_test split(V3 X mirna res, V3 Y mirna res, test size=.2, random_state=rt)

for i in range(3):
affix ='V' + str(i+1)

exp_ X trains.append(eval(affix + 'expXtrain'))
exp_ Y _trains.append(eval(affix + 'expYtrain'))
exp X tests.append(eval(affix + 'expXtest'))
exp_Y_tests.append(eval(affix + 'expYtest'))

mirna_X_trains.append(eval(affix + 'mirnaXtrain'))
mirna_Y _trains.append(eval(affix + 'mirnaYtrain'))
mirna_X tests.append(eval(affix + 'mirnaXtest'))

mirna_Y _tests.append(eval(affix + 'mirnaYtest'))
# init classfiers (W L ) 4x3 = 12 classfiers
xgboost_exp cls =[]

xgboost mirna_cls =[]

dtc_exp cls =[]

dtc_mirna cls =[]
for i in range(3):
xgboost_exp cls.append(xgb.XGBClassifier())

dtc_exp_cls.append(dtc())

xgboost mirna_cls.append(xgb.XGBClassifier())

96



8. Appendix — Scripts

dtc_mirna_cls.append(dtc())

# training classfiers

start_t = time()

for i in range(3):
xgboost_exp_cls[i].fit(exp X trains[i], exp Y _trains[i])
dtc_exp cls[i].fit(exp X trains[i], exp Y _trains[i])

xgboost mirna cls[i].fit(mirna X trains[i], mirna_Y trains[i])

dtc_mirna_cls[i].fit(mirna_X trains[i], mirna Y trains[i])

print(f Training all classifiers took {int(time()-start_t)}sec.")

# results

c_type = ['SMOTE', 'BorderlineSMOTE', 'ADASYN']

for i in range(3):
print(f Printing accuracy results for imbalance correction method: {c_type[i]}.\

n-")

# predictions

a_pred = xgboost _exp_cls[i].predict(exp X tests[i])

b pred = dtc_exp cls[i].predict(exp X tests[i])

c_pred = xgboost mirna_cls[i].predict(mirna_ X tests[i])

d pred = dtc mirna_cls[i].predict(mirna_X tests[i])
# accuracy stuff & plots
exp_x_ax = range(len(exp_ Y _tests[i]))

mirna x ax = range(len(mirna_X tests[i]))

a_acc = acc(exp_Y tests[i], a_pred)
print('Accuracy for XGBOOST on exp: %.21% %' %(a_acc*100))
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plt.figure(figsize=(10,3))

plt.title(f XGBoost Results for EXP data (Imb_Strat: {c_type[i]})")
plt.plot(exp x ax, exp Y _tests[i], label="original')
plt.plot(exp x_ ax, a_pred, label="predicted’, color="r', alpha=.33)
plt.show()

b _acc =acc(exp_Y tests[i], b _pred)

print('Accuracy for RFC on exp: %.21% %' %(b_acc*100))
plt.figure(figsize=(10,3))

plt.title(fRFC Results for EXP data (Imb_Strat: {c_type[i]})")
plt.plot(exp x ax, exp Y _tests[i], label="original')
plt.plot(exp_x_ax, b_pred, label='predicted', color="r', alpha=.33)
plt.show()

c_acc = acc(mirna_Y _tests[i], ¢ _pred)

print('Accuracy for XGBOOST on mirna: %.2f% %' %(c_acc*100))
plt.figure(figsize=(10,3))

plt.title(f XGBoost Results for miRNA data (Imb_Strat: {c¢_type[i]}))
plt.plot(mirna_x_ax, mirna_Y _tests[i], label='original')
plt.plot(mirna_x_ax, ¢_pred, label="predicted’, color="r', alpha=.33)
plt.show()

d _acc =acc(mirna_ Y _tests[i], d_pred)

print('Accuracy for RFC on mirna: %.21% %' %(d_acc*100))
plt.figure(figsize=(10,3))

plt.title(fRFC Results for miRNA data (Imb_Strat: {c_type[i]}))
plt.plot(mirna_x_ax, mirna_Y _tests[i], label='original')
plt.plot(mirna_x_ax, d pred, label='predicted’, color="r", alpha=.33)
plt.show()

# post
print ("\n**")
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# save model cause it's cool to keep nice things
#f loc = 'D:/thesis_movable/main/saved models/" # global , S E
f loc ='C:/Users/delta/my_thesis/main/saved models/' #global, S E

prefix = 'non normal '

model name ='GEN model XGBClassifier '+
datetime.datetime.now().strftime("%Y %m%d-%H%M%S")

suffix = ".json’

f name = f loc + prefix + model name + suffix
xgboost_exp cls[2].save_model(f name)

# full dataset normalization attempt

scaler] = MinMaxScaler()

scaler2 = MinMaxScaler()

scalerl.fit(u X exp)

scaler2.fit(u X mirna)

u X exp = scalerl.transform(u_X exp)

u_X mirna = scaler2.transform(u_X mirna)

# three way oversampling of C2
rt=42

sl = sm(random_state=rt)
s2 = bsm(random_ state=rt)

s3 = ada(random_ state=rt)

#SMOTE
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fl X exp res, f1 Y exp res = sl.fit resample(u X exp,u Y exp)

fl X mirna res, fl Y mirna res = sl.fit resample(u X mirna, u Y mirna)

# BorderlineSMOTE
f2 X exp res, f2 Y exp res = s2.fit resample(u_X exp,u_ Y _exp)

f2 X mirna res, f2 Y mirna res = s2.fit resample(u X mirna, u_Y mirna)

#ADASYN
f3 X exp res, f3 Y exp res = s3.fit resample(u X exp,u_ Y exp)

f3 X mirna res, f3 Y mirna res = s3.fit resample(u_X mirna, u Y mirna)

# Chop suey
t=7

fxp X trains =[]
fxp Y trains =[]
fxp X tests =[]
fxp Y tests =[]

firna X trains =[]
firna Y trains =[]
firna X tests =[]
firna Y tests =[]

flfxpXtrain, fl1fxpXtest, fl1fxpYtrain, flfxpYtest = train_test split(fl X exp res,
fl Y exp res, test size=.2, random_state=rt)

flfirnaXtrain, f1firnaXtest, flfirnaYtrain, flfirnaYtest =
train_test_split(fl X mirna res, fl Y mirna_res, test size=.2, random_state=rt)

f2fxpXtrain, 2fxpXtest, f2fxpYtrain, f2fxpYtest = train_test split(f2 X exp_res,
f2 Y exp_res, test size=.2, random_state=rt)

f2firnaXtrain, f2firnaXtest, f2firnaYtrain, f2firnaYtest =

train_test split(V2 X mirna res, V2 Y mirna_res, test size=.2, random_state=rt)
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f3fxpXtrain, f3fxpXtest, f3fxpYtrain, f3fxpYtest = train_test split(f3 X exp res,
f3 Y exp res, test size=.2, random_state=rt)
f3firnaXtrain, f3firnaXtest, f3firnaYtrain, f3firnaYtest =

train_test_split(f3_X mirna res, f3_ Y mirna_res, test size=.2, random_state=rt)

for i in range(3):

affix ="f' + str(i+1)

fxp X trains.append(eval(affix + 'fxpXtrain'))
fxp Y trains.append(eval(affix + 'fxpYtrain'))
fxp X tests.append(eval(affix + 'fxpXtest'))
fxp Y _tests.append(eval(affix + 'fxpYtest'))

firna_X_trains.append(eval(affix + 'firnaXtrain'))
firna_Y _trains.append(eval(affix + 'firnaYtrain'))
firna X tests.append(eval(affix + 'firnaXtest'))
firna Y tests.append(eval(affix + 'firnaYtest'))

# init classfiers (W L ) 4x3 = 12 classfiers
fgboost _exp cls =[]

fgboost mirna cls = []

ftc exp cls =[]

ftc_ mirna_cls =[]
for i in range(3):
fgboost_exp_cls.append(xgb.XGBClassifier())

ftc_exp_cls.append(dtc())

fgboost mirna_cls.append(xgb.XGBClassifier())
ftc_ mirna_cls.append(dtc())
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# training classfiers

start t = time()

for i in range(3):
fgboost _exp_cls[i].fit(fxp_ X trains[i], fxp Y _trains[i])
ftc_exp cls[i].fit(fxp X trains[i], fxp_ Y trains[i])

fgboost mirna_cls[i].fit(firna_X trains[i], firna Y trains[i])

ftc_mirna_cls[i].fit(firna_X trains[i], firna Y _trains[i])

print(f'Training all classifiers took {int(time()-start t)}sec.")

# results

c_type = ['SMOTE', 'BorderlineSSMOTE', 'ADASYN']

for i in range(3):
print(f'Printing accuracy results for imbalance correction method: {c_type[i]}.\

n-')

# predictions

fa_pred = fgboost exp_cls[i].predict(fxp X tests[i])
fb_pred = ftc_exp_cls[i].predict(fxp X tests[i])
fc_pred = fgboost _mirna_cls[i].predict(firna_X tests[i])
fd pred = ftc_mirna_cls[i].predict(firna_X tests[i])

# accuracy stuff & plots
fxp x_ax =range(len(fxp_ Y _tests[i]))

firna x ax = range(len(firna_X tests[i]))

fa_acc =acc(fxp Y tests[i], fa_pred)

print('Accuracy for XGBOOST on exp: %.2f% %' %(fa_acc*100))
plt.figure(figsize=(10,3))

plt.title(f XGBoost Results for EXP data (Imb_Strat: {c_type[i]})")
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plt.plot(fxp x_ax, fxp Y tests[i], label='original')
plt.plot(fxp _x ax, fa pred, label='predicted', color="r', alpha=.33)
plt.show()

fb_acc = acc(fxp Y _tests[i], b pred)

print('Accuracy for RFC on exp: %.21% %' %(tb_acc*100))
plt.figure(figsize=(10,3))

plt.title(fRFC Results for EXP data (Imb_Strat: {c¢_type[i]})")
plt.plot(fxp x_ax, fxp Y tests[i], label='original')
plt.plot(fxp_x ax, fb_pred, label="predicted’, color="r', alpha=.33)
plt.show()

fc_acc =acc(firna Y _tests[i], fc_pred)

print('Accuracy for XGBOOST on mirna: %.2f% %' %(fc_acc*100))
plt.figure(figsize=(10,3))

plt.title(f XGBoost Results for miRNA data (Imb_Strat: {c_type[i]})")
plt.plot(firna_x_ax, firna_Y _tests[i], label='original')
plt.plot(firna_x ax, fc pred, label="predicted', color="r", alpha=.33)
plt.show()

fd _acc = acc(firna_Y _tests[i], fd pred)

print('Accuracy for RFC on mirna: %.2{% %' %(fd_acc*100))
plt.figure(figsize=(10,3))

plt.title(fRFC Results for miRNA data (Imb_Strat: {c¢_type[i]})")
plt.plot(firna_x_ax, firna_Y _tests[i], label='original')
plt.plot(firna_x ax, fd pred, label='predicted', color="r', alpha=.33)
plt.show()

# post
print ("\n**")

# save model cause it's cool to keep nice things

#f loc = 'D:/thesis_movable/main/saved models/" # global , S E
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f loc ='C:/Users/delta/my _thesis/main/saved models/' # global, S E

model name ='GEN model XGBClassifier '+
datetime.datetime.now().strftime("%Y %m%d-%H%M%S")

prefix = 'normal '

suffix = 'json'

f name = f loc + prefix + model name + suffix

fgboost _exp cls[2].save_model(f name)

# merging dataframes

u X merged = pd.merge(u_X exp,u X mirna, left index=True,

right index=True, how='outer")

#eliminate non intersection participants

u_ X merged.dropna(inplace=True)

print(fMerged set shape: {u X merged.shape}.")

# grab survival days
survival days = [survival data.loc[x[:-3]][0] for x in

u X merged.index.str.lower()]

#inject it in the end of the merged dataset

u X merged['survival'] = np.array(survival days)

# ploting survival

x_ax = range(len(u_X_ merged))
plt.figure(figsize=(15,5))
plt.title('Survival Value Distribution")
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plt.plot(x_ax, u X merged['survival'])
plt.show()

# getting rid of some outliers
u_ X merged.drop(u_X merged|['survival'].nlargest(25).index, inplace=True)

# 24 is the 5% of the dataset, aka getting rid of the top 5% of the dataset

# normalize dataset
u X merged = (u_X merged-u X merged.min())/(u_X merged.max()-

u X merged.min())

# eliminate errors
u X merged.replace([np.inf, -np.inf], np.nan, inplace=True)

u X merged.dropna(inplace=True)

# ploting pruned survival

x_ax = range(len(u_X_ merged))

plt.figure(figsize=(15,5))

plt.title('Pruned & Normalized Survival Value Distribution')
plt.plot(x_ax, u_X merged['survival'])

plt.show()

print(f'Finalized merged set shape: {u_X merged.shape}.")

u X merged.iloc[:10,-8:] #S C

# to address data leakage perform line 10 after you've split the dataset & normalize
them INDIVIDUALY , S E-R 57!

# splits

rt=42

mX_train, mX test, mY _train, mY _test = train_test split(u_X merged.iloc[:,:-1],
u X merged.iloc[:,-1], test_size=.2, random_state=rt)

print(f'Sets:\n\t Train:{len(mX_ train)}, Test:{len(mX test)}."
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# model init
reg_model = xgb.XGBRegressor()

a_time = time()

# fit it
reg_model.fittmX train, mY _train)
print(f XGB regressor took {time()-a_time} to train.")

# measure it

score = reg_model.score(mX _train, mY _train)
print(f"Training score: {score}")

score2 = reg_model.score(mX_ test, mY _test)

print(f"Testing score: {score2}")

b_time = time()

kfold = KFold(n_splits=10, shuffle=True)
kf cv_scores = cross val score(reg model, mX train, mY train, cv=kfold )
print(f"K-fold cross validation took {format(time()-b_time,'.21")}s with a score of :

{format(kf cv_scores.mean(),.2f")}")

# predictions
mY_pred = reg_model.predict(mX _test)

mse_score = mse(mY_test, mY_pred)

print("MSE: %.2f" % mse_score)
print("RMSE: %.21" % (mse_score**(1/2.0)))

# plots

x_ax = range(len(mY _test))
plt.figure(figsize=(15,5))
plt.title('Ground Truth & Predictions')
plt.plot(x_ax, mY _test, label="original")
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plt.plot(x_ax, mY pred, label="predicted")
plt.legend()
plt.show()

# save model cause it's cool to keep nice things
# loc = 'D:/thesis_movable/main/saved_models/" # global , S E
f loc ='C:/Users/delta/my _thesis/main/' # global , S E

model name = 'GEN model XGBRegressor '+
datetime.datetime.now().strftime("%Y %m%d-%H%M%S")

suffix = ".json’

f name = f loc + model name + suffix

reg_model.save_model(f name)
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8.5 Data Generator

def load img(img_dir, img_list):
images = []
for i, image name in enumerate(img_list):
if (image name.split(".")[1] == npy"):

image = np.load(img_dir + image name)

images.append(image)

images = np.array(images)

return (images)

def imagelLoader(img_dir, img_list, mask dir, mask list, batch size=1):

L = len(img_list)

while True:

batch start =0
batch_end = batch_size

while batch_start < L:
limit = min(batch_end, L)

X =load img(img_dir, img_list[batch start:limit])
Y =load _img(mask dir, mask list[batch start:limit])

yield (X, Y)

batch_start += batch_size

batch _end += batch_size
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8.6 Unet

kernel initializer = 'he uniform'’

def simple unet model(IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH,
IMG_CHANNELS, num_classes):
# Build the model
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_DEPTH,
IMG_CHANNELYS))

s = inputs

# Contraction path

cl = Conv3D(16, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,
padding='same')(s)

cl = Dropout(0.1)(c1)

cl = Conv3D(16, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,
padding='same')(c1)

pl = MaxPooling3D((2, 2, 2))(cl)

c2 = Conv3D(32, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,
padding='same")(p1)

c2 = Dropout(0.1)(c2)

c2 = Conv3D(32, (3, 3, 3), activation="relu', kernel_initializer=kernel initializer,
padding='same')(c2)

p2 = MaxPooling3D((2, 2, 2))(c2)

c3 = Conv3D(64, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,
padding='same')(p2)

c3 = Dropout(0.2)(c3)

c3 = Conv3D(64, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,
padding='same')(c3)

p3 = MaxPooling3D((2, 2, 2))(c3)
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c4 = Conv3D(128, (3, 3, 3), activation="relu’,
kernel initializer=kernel initializer, padding='same')(p3)

c4 = Dropout(0.2)(c4)

c4 = Conv3D(128, (3, 3, 3), activation="relu’,
kernel initializer=kernel initializer, padding='same')(c4)

p4 = MaxPooling3D(pool size=(2, 2, 2))(c4)

¢S = Conv3D(256, (3, 3, 3), activation="relu’,
kernel initializer=kernel initializer, padding='same")(p4)

c5 = Dropout(0.3)(c5)

c5 = Conv3D(256, (3, 3, 3), activation="relu’,

kernel initializer=kernel initializer, padding='same')(c5)

# Expansive path
u6 = Conv3DTranspose(128, (2, 2, 2), strides=(2, 2, 2), padding='same")(c5)
u6 = concatenate([u6, c4])
c6 = Conv3D(128, (3, 3, 3), activation="relu’,
kernel initializer=kernel initializer, padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv3D(128, (3, 3, 3), activation="relu’,

kernel initializer=kernel initializer, padding='same')(c6)

u7 = Conv3DTranspose(64, (2, 2, 2), strides=(2, 2, 2), padding="same")(c6)

u7 = concatenate([u7, c3])

c7 = Conv3D(64, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,
padding='same")(u7)

c7 = Dropout(0.2)(c7)

c7 = Conv3D(64, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,

padding='same')(c7)

u8 = Conv3DTranspose(32, (2, 2, 2), strides=(2, 2, 2), padding="same")(c7)

u8 = concatenate([u8, c2])

110



8. Appendix — Scripts

c8 = Conv3D(32, (3, 3, 3), activation="relu’, kernel_initializer=kernel initializer,
padding='same")(u8)

¢8 = Dropout(0.1)(c8)

c8 = Conv3D(32, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,

padding='same')(c8)

u9 = Conv3DTranspose(16, (2, 2, 2), strides=(2, 2, 2), padding="same")(c8)

u9 = concatenate([u9, c1])

c9 = Conv3D(16, (3, 3, 3), activation="relu’, kernel_initializer=kernel initializer,
padding='same")(u9)

c9 = Dropout(0.1)(c9)

c9 = Conv3D(16, (3, 3, 3), activation="relu’, kernel initializer=kernel initializer,

padding='same')(c9)

outputs = Conv3D(num_classes, (1, 1, 1), activation='softmax")(c9)

model = Model(inputs=[inputs], outputs=[outputs])

return model
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8.7 Train

gpus = tf.config.experimental.list physical devices('GPU")

tf.config.experimental.set memory growth(gpus[0], True)

smooth=100
def dice coef(y true,y pred):
y_truef = K flatten(y_true)
y_predf = K flatten(y_pred)
And = K.sum(y_truef* y predf)
return ((2* And + smooth) / (K.sum(y_truef) + K.sum(y_predf) + smooth))

#def dice coef loss(y_true, y _pred):
# return -dice_coef(y_true, y_pred)

def iou(y_true, y pred):
intersection = K.sum(y_true * y pred)
sum_ = K.sum(y_true +y pred)
jac = (intersection + smooth) / (sum_ - intersection + smooth)

return jac

# data locs

train_img_dir = "X:/Data/3D Blocks/Sets/train/train/"
train_mask dir = "X:/Data/3D Blocks/Sets/train/class/"
val img_dir = "X:/Data/3D Blocks/Sets/val/train/"

val mask dir = "X:/Data/3D Blocks/Sets/val/class/"

train_img_list = os.listdir(train_img_dir)
train_mask_list = os.listdir(train_mask_dir)
val_img_list = os.listdir(val img_dir)

val_mask _list = os.listdir(val mask dir)

# model params
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batch_size = 1 #( [ x [3x3D image & seg _mask]) >> this cannot be higher due to
hardware constraints

steps_per_epoch = len(train_img_list) // batch_size

val steps _per epoch = len(val img_list) / batch_size

model params = dict(IMG_HEIGHT=128,
IMG_WIDTH=128,
IMG _DEPTH=128,
IMG_CHANNELS=3,

num_classes=4)

# opt , adafair was having trouble cause i'd have to downgrade everything for it to
work
#we're gonna leave that for a later date
1 r=1e-4
v_epochs = 25
decay rate =1 r/ v_epochs
optimizer = tf.optimizers.Adam(learning_rate=l r,
decay=decay rate,
amsgrad=False)
#model number

model num = 5

#callbacks
model save =
tf keras.callbacks.ModelCheckpoint(f'C:/Users/delta/my thesis/main/saved models/

model {str(model num)}.hdf5', verbose=1,save best only=True)

log dir = f"logs/logs {str(model num)}/" + "fit" +
datetime.datetime.now().strftime("%Y %m%d-%H%M%S")

tensorboard_callback = tf keras.callbacks.TensorBoard(log_dir=log_dir,
histogram_freq=1)
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# data generators
train_img_datagen = data gen.imagelLoader(train _img_dir, train_img_list,

train_mask_dir, train_mask _list, batch_size)

val img_datagen = data_gen.imagel.oader(val img dir, val img_list,

val_mask dir, val mask list, batch_size)

#init casual 3D unet
model = simple_unet model(**model params)

model.summary()

model.compile(optimizer=optimizer,loss=tf .keras.losses.Categorical Crossentropy(),

metrics=['Categorical Accuracy',iou, dice_coef])

timer_a = time()

history = model fit(train_img_datagen,
steps_per_epoch=steps per epoch,
epochs=v_epochs,
validation_data=val img_datagen,
validation_steps=val_steps_per epoch,

callbacks=[model save, tensorboard callback])
print(fTook {time()-timer a} to finish all training.")
#elass weight={0:0.26, 1:22.53, 2:22.53, 3:26.21},
#save history to load it to the evaluation script // not needed since we use

tensorboard but you could do it nontheless

np.save(f'saved models/history {str(model num)}.npy", history.history)
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8.8 Retrain
gpus = tf.config.experimental.list physical devices('GPU")

tf.config.experimental.set memory growth(gpus[0], True)

#functs

smooth=1.

def dice coef(y true, y pred):
y_truef = K flatten(y_true)
y_predf = K flatten(y_pred)
And = K.sum(y_truef* y predf)
return ((2* And + smooth) / (K.sum(y_truef) + K.sum(y_predf) + smooth))

def iou(y_true, y pred):
intersection = K.sum(y true * y pred)
sum_ = K.sum(y_true +y pred)
jac = (intersection + smooth) / (sum_ - intersection + smooth)

return jac

#model load
model =
load model('C:/Users/delta/my _thesis/main/saved models/model 3.1.hdf5',

custom_objects={'iou': iou, 'dice coef':dice coef})

# data locs

train_img_dir = "X:/Data/3D_Blocks/train/train/"
train_mask dir = "X:/Data/3D Blocks/train/class/"
val_img dir = "X:/Data/3D_ Blocks/val/train/"
val_mask dir = "X:/Data/3D Blocks/val/class/"

train_img_list = os.listdir(train_img_dir)
train_mask_list = os.listdir(train_mask dir)

val img_list = os.listdir(val img_dir)
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val_mask _list = os.listdir(val mask dir)

# model params

batch_size =1 #( [ x [3x3D image & seg_mask]) >> this cannot be higher due to
hardware constraints

steps_per_epoch = len(train_img_list) / batch_size

val_steps_per_epoch = len(val_img_list) // batch_size

wt0, wtl, wt2, wt3 = 0.26, 22.53, 22.53, 26.21 # taken from contextual analysis of
mask pixels

dice loss = sm.losses.DiceLoss(class weights=np.array([wt0, wtl, wt2, wt3]))

focal loss = sm.losses.CategoricalFocalLoss()

total loss = dice loss + (1 * focal loss)

1 r=1e-3

v_epochs =25

decay rate =1 r/ v_epochs

optimizer = tf.optimizers.Adam(learning_rate=l r,
decay=decay rate,

amsgrad=False)

#model number

model num = 3.2

#callbacks
model save =
tf keras.callbacks.ModelCheckpoint(f'C:/Users/delta/my thesis/main/saved models/
model {str(model num)}.hdf5',
verbose=1,

save best only=True)

log dir = f"logs/logs {str(model num)}/" + "fit" +
datetime.datetime.now().strftime("%Y %m%d-%H%M%S")
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tensorboard_callback = tf keras.callbacks.TensorBoard(log_dir=log_dir,
histogram_freq=1)

# data generators
train_img_datagen = data_gen.imageLoader(train_img_dir, train_img_list,

train_mask dir, train_mask_list, batch_size)

val img_datagen = data gen.imagelLoader(val img dir, val img_list,

val _mask dir, val mask list, batch size)

model.summary()

metrics = ['Accuracy','Categorical Accuracy', sm.metrics.IOUScore(threshold=0.5),

dice coef]

model.compile(optimizer=optimizer, loss=total loss, metrics=metrics)

timer a = time()

history = model.fit(train_img_datagen,
steps_per_epoch=steps_per_epoch,
epochs=v_epochs,
validation_data=val img datagen,
validation_steps=val steps per epoch,

callbacks=[model save, tensorboard callback])
print(f Took {time()-timer a} to finish retraining.")
#class weight={0:0.26, 1:22.53, 2:22.53, 3:26.21},
#save history to load it to the evaluation script // not needed since we use

tensorboard but you could do it nontheless

np.save(f'saved models/history {str(model num)}.npy", history.history)
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8.9 Image Feature Extraction

#!/usr/bin/env python

# functions
def feature extraction(x):

col space = x+1

for i in range(len(raw_data loc)):
# load label mask
mask = sitk. Readlmage(raw_data loc.iloc[1][0])

mask array = sitk.GetArrayFromImage(mask)

# uniform mask
for x in (2,3,4):

mask array[mask array == x] =1

# apply original spatial data
mask merged = sitk.GetlmageFromArray(mask array)

mask merged. CopyInformation(mask)

# extract featrues
features = extractor.execute(raw_data_loc.iloc[i][col space], mask merged,

label=1)

# store the data in their respective list

if col space == 1:
flair.append(features)

elif col space == 2:
t1.append(features)

elif col space == 3:
tlce.append(features)

elif col space == 4:

t2.append(features)
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# saving loc

os.chdir('C:/Users/delta/my _thesis/main/__outputs/')

# Initial data loc grab of the BraTS Preprocessed datasets

files = glob('X:\Datasets\BraTS\DATA\Processed DATA Training\**\*.nii.gz',
recursive=True)

train_files masks = glob("X:\Datasets\BraTS\DATA\Processed DATA Training\**\

*seg.nii.gz', recursive=True)

train_files scans = [fn for fn in (filter(lambda x: not x. _contains _ ("seg"),

files))]

print(f Found masks :{len(train_files masks)} and scans:{len(train_files scans)}.")

# separating scan pairs and merging data locations
flair =[]
tlce =[]
tl =]
2 =]
for x in train_files_scans:
if "tlce.nii.gz" in x:
tlce.append(x)
elif "t1.nii.gz" in x:
tl.append(x)
elif "t2" in x:
t2.append(x)
elif "flair.nii.gz" in x:
flair.append(x)
else:
print("Something funny happened, you should check the sys log.")
break;
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print(f' Accumulated -> Flair: {len(flair)}, T1:{len(tl)}, Tlc:{len(tlce)}, T2:{len(t2)}\
n')

temp_a = list(zip(train_files masks, flair, t1, tlce, t2))
temp_b — [Hmaskﬂ, Hﬂairﬂ’ Htl", ||tlcﬂ, "t2"]

raw_data loc = pd.DataFrame(temp_a, columns=temp_b)
[print(raw_data_loc.iloc[0][i]) for i in range(5)]

raw_data loc.head()

# load the survival datasets and assign targets to the raw_locs
data_origin =[]
for x in raw_data loc['mask']:
if str(x). contains  ('MICCAI BraTS2020'):
data_origin.append(2)
if str(x). _contains_ ('MICCAI BraTS 2019"):
data_origin.append(1)
if str(x). _contains_ ('MICCAI BraTS 2018"):
data_origin.append(0)

s_d = glob(r'X:\Datasets\BraTS\DATA\DATA Training\**\*survival*.csv',
recursive=True)

sd 2018 = pd.read_csv(s_d[0], delimiter="")

sd 2019 = pd.read_csv(s_d[1], delimiter="")

sd 2020 = pd.read_csv(s_d[2], delimiter="")

print(f'{sd_2018.head()}\n--\n{sd 2019.head()}\n--\n{sd_2020.head()}")
# grab patient ids
patients = [str(raw_data loc.iloc[i][0]).split("\\')[-1].split(' seg")[:-1] for i in

range(len(raw_data_loc))]

# grab survival data for the entire merged set
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t survival =[]
err_count =0
for count, x in enumerate(data_origin):
try:
ifx==0:
t_survival.append(int(sd_2018[sd 2018['BraTS18ID']==patients[count][0]]
['Survival']))
elif x == 1:
t_survival.append(int(sd_2019[sd_2019['BraTS19ID']|==patients[count][0]]
['Survival']))
elif x == 2:
t_survival.append(int(sd_2020[sd_2020['Brats20ID']==patients[count][0]]
['Survival days']))

except (ValueError, TypeError):
# Error catch for non existing rows with that name
# Also includes NA values , we force a nan so we can identify the positions
err_count += |

t_survival.append(np.nan)
print(fFound {err_count} inputs that don\'t exist in the survival datasets or are nan')
# drop locations from the feature extraction
for count, surv in enumerate(t_survival):
if np.isnan(surv):

raw_data_loc.drop(count, inplace=True)

# reset df index to establish index flow

raw_data loc.reset_index(drop=True, inplace=True)

# yield true survival set

survival = [x for x in t_survival if np.isnan(x) == False]
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# sanity check

print(f'Packets: {len(raw_data loc)}, Survivals:{len(survival)}")

survival _csv = pd.DataFrame(survival, columns=['survival days'])

survival _csv.to_csv('survival.csv', index=False)

#initialize feature lists

flair =[]
tl =]
tlce =]
t2 =]

# initialize a global extractor
extractor = featureextractor.RadiomicsFeatureExtractor()
setVerbosity(40) #
https://pyradiomics.readthedocs.io/en/latest/radiomics. html#radiomics.setVerbosity
extractor.enableAllFeatures() #instead of this we can yield specific features from
# https://pyradiomics.readthedocs.io/en/latest/features. html, but the more data the
better

time a = time()

null = Parallel(n_jobs=4, backend="threading")(delayed(feature extraction)(x) for
x in range(4))

## CPU . Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

## Time for I line of the raw_data to be processed : 7.013089895248413 seconds

## Time estimation for all data (608 lines) : 71.06597760518392 minutes

print(f Time elasped: {time()-time_a} sec')
# convert lists to dataframes

flair_features = pd.DataFrame.from_dict(flair)
tl_features = pd.DataFrame.from_dict(t1)
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tlce features = pd.DataFrame.from_dict(tlce)
t2_features = pd.DataFrame.from_dict(t2)

# saving feature exports per modality Ist csv is the data 2nd csv are the diagnostic

data

flair features.to csv('flair features.csv',index=False,columns=flair features.colum
ns[22:])

flair_features.to_csv('flair extras.csv',index=False,columns=flair features.columns

[:22])
t1 features.to csv('tl features.csv',index=False,columns=tl features.columns[22:]
tl features.to csv('tl extras.csv',index=False,columns=t1 features.columns[:22])
tlce features.to csv('tlce features.csv',index=False,columns=tlce features.colum
ns[22:])
tlce features.to csv('tlce extras.csv',index=False,columns=tlce features.columns
[:22])

t2_features.to csv('t2 features.csv',index=False,columns=t2_features.columns[22:]

t2 features.to csv('t2 extras.csv',index=False,columns=t2 features.columns[:22])
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8.10 Image Feature Survival Prediction

#!/usr/bin/env python
# grab data
flair, t1, tlce, t2 = glob(os.getcwd()+'/*features.csv', recursive=True)

survival = glob(os.getcwd()+'/*survival.csv', recursive=True)[ 0]

flair data = pd.read csv(flair)
t1 data = pd.read csv(tl)
tlce data = pd.read csv(tlce)
t2_data = pd.read csv(t2)

survival data = pd.read_csv(survival)

# append survival days to the datasets
flair_data['survival days'] = np.array(survival data)
t1 data['survival days'] = np.array(survival data)
tlce data['survival days'] =np.array(survival data)

t2_data['survival days'] = np.array(survival data)

# create merged set
merged modalities = [flair_data, t1 data, tlce data, t2 data]

merged data = pd.concat(merged modalities)

x_ax = range(len(survival data))
plt.figure(figsize=(15,5))
plt.title('Survival Value Distribution')
plt.plot(x_ax, survival data)

plt.show()

# split sets
g time = time()
rt=42

sets = ['flair', 't1", 'tlce', 't2', 'merged']
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# chow swaay splits #+1 for the merged
X _train = list(range(5))

X _test = list(range(5))

Y train = list(range(5))

Y test = list(range(5))

X train[0], X test[0], Y _train[0], Y test[0] = train_test split(flair_data.iloc[:,:-1],
flair _data.iloc[:,-1],
test_size=.2, random_state=rt)
X train[1], X test[1], Y train[1], Y test[]] = train_test split(tl data.iloc[:,:-1],
t1_data.iloc[:,-1],
test_size=.2, random_state=rt)
X train[2], X test[2], Y train[2], Y test[2] = train_test split(tlce data.iloc[:,:-1],
tlce data.iloc[:,-1],
test_size=.2, random_state=rt)
X train[3], X test[3], Y _train[3], Y test[3] = train_test split(t2 data.iloc[:,:-1],
t2_data.iloc[:,-1],
test size=.2, random_state=rt)
for the merged set we have to merge the previous sets
this happens because if we attempt to merge them and split the data
we'll cause values in the test set to exist in the train set , voiding the model
X train[4] = pd.concat([X train[0],X train[1],X train[2],X train[3]])
X test[4] = pd.concat([X test[0],X test[1],X test[2],X test[3]])
Y train[4] = pd.concat([Y train[0],Y train[1],Y train[2],Y train[3]])
Y test[4] = pd.concat([Y test[0],Y test[1],Y test[2],Y test[3]])

#initialize regressors

regressors = [xgb.XGBRegressor() for x in range(5)]

timer_a = time()
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#fit regressors for non normalized data
for i in range(5):

regressors[i].fit(X train[i],Y _train[i])

print(f XGBRegressors took {format(time()-timer_a, ".2f")}s to train.\n--")

# measure them
score = list(range(5))
for i in range(5):
score[i] = regressors[i].score(X test[i], Y _test[i])
null = [print(f"Training score: {format(score[i]*100,".21")}% for set: {sets[i]}") for 1

in range(5)]

timer b = time()

KFolds = [KFold(n_splits=10, shuffle=True) for i in range(5)]

KF _CV _scores = [cross_val score(regressors[i], X train[i], Y_train[i],
cv=KFolds[1]) for 1 in range(5)]

print(f\nK-Fold cross validation took {format(time()-timer b,".2f")}s to estimate.\
n-'

null = [print(fK-Fold cross val(n=10) score:
{format(KF_CV_scores[i].mean()*100,".2f")} for set: {sets[i]}') for i in range(5)]

# calculate predictions

Y pred = [regressors[i].predict(X _test[i]) for i in range(5)]

mse_scores = [mse(Y _test[i],Y pred[i]) for i in range(5)]

print("\n--")

null = [print(fMSE: {format(mse_scores[i],".2f")} for set: {sets[i]} ) for i in
range(5)]

print("\n--")

null = [print(fRMSE: {format(mse scores[i]**(1/2.0),".2f")} for set: {sets[i]} ') for
iin range(5)]
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# plots
for i in range(5):
x_ax = range(len(Y_pred[i]))
plt.figure(figsize=(15,5))
plt.title(f'Ground Truth & Predictions for set:{sets[i]}")
plt.plot(x_ax, Y _test[i], label="original’)
plt.plot(x_ax, Y_pred[i], label='predicted’, color="r', alpha=.33)
plt.legend()
plt.show()

print(f'Total runtime {format(time()-g_time,".2f")}sec.")

# normalize all sets
normalized flair data = (flair_data-flair data.min())/(flair data.max()-
flair_data.min())
normalized t1 data = (t1 data-tl data.min())/(tl data.max()-tl data.min())
normalized tlce data = (tlce data-tlce data.min())/(tlce data.max()-
tlce data.min())
normalized t2 data = (t2_data-t2 data.min())/(t2_data.max()-t2 data.min())
normalized merged data = (merged data-

merged data.min())/(merged data.max()-merged data.min())

# split sets

g time = time()

rt=42

sets = ['flair', 't1", 'tlce', 't2', 'merged']

# chow swaay splits #+1 for the merged
X train = list(range(5))

X test = list(range(5))

Y _train = list(range(5))

Y test = list(range(5))

127



8. Appendix — Scripts

X train[0], X test[0], Y _train[0], Y test[0] =
train_test split(normalized flair data.iloc|:,:-1],
normalized flair data.iloc[:,-1],
test_size=.2, random_state=rt)
X train[1], X test[1], Y _train[1],Y test[1]=
train_test_split(normalized tl data.iloc[:,:-1],
normalized t1 data.iloc[:,-1],
test_size=.2, random_state=rt)
X train[2], X test[2], Y train[2], Y test[2] =
train_test split(normalized tlce data.iloc|:,:-1],
normalized tlce data.iloc[:,-1],
test_size=.2, random_state=rt)
X train[3], X test[3], Y _train[3], Y test[3] =
train_test_split(normalized t2 data.iloc[:,:-1],
normalized t2 data.iloc[:,-1],
test_size=.2, random_state=rt)
for the merged set we have to merge the previous sets
this happens because if we attempt to merge them and split the data

we'll cause values in the test set to exist in the train set , voiding the model

"

X train[4] = pd.concat([X train[0],X train[1],X train[2],X train[3]])
X test[4] = pd.concat([X test[0],X test[1],X test[2],X test[3]])
Y train[4] = pd.concat([Y_train[0],Y train[1],Y train[2],Y train[3]])
Y test[4] = pd.concat([Y_test[0],Y test[1],Y test[2],Y test[3]])

#initialize regressors

regressors = [xgb.XGBRegressor() for x in range(5)]

timer_a = time()

#fit regressors for non normalized data

for i in range(5):
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regressors[i].fit(X train[i],Y _train[i])

print(f XGBRegressors took {format(time()-timer_a, ".2f")}s to train.\n--')

# measure them
score = list(range(5))
for i in range(5):
score[i] = regressors[i].score(X test[i], Y_test[i])
null = [print(f"Training score: {format(score[i]*100,".21")}% for set: {sets[i]}") for i
in range(5)]

timer b = time()

KFolds = [KFold(n_splits=10, shuffle=True) for i in range(5)]

KF_CV _scores = [cross_val score(regressors[i], X train[i], Y_train[i],
cv=KFolds[i]) for i in range(5)]

print(f\nK-Fold cross validation took {format(time()-timer b,".2f")}s to estimate.\
n-'

null = [print(fK-Fold cross val(n=10) score:
{format(KF_CV_scores[i].mean()*100,".2f")} for set: {sets[i]}') for 1 in range(5)]

# calculate predictions

Y pred = [regressors[i].predict(X _test[i]) for i in range(5)]

mse_scores = [mse(Y _test[i],Y pred[i]) for i in range(5)]

print("\n--")

null = [print(fMSE: {format(mse_scores[i],".2f")} for set: {sets[i]} ') for i in
range(5)]

print("\n--")

null = [print(fRMSE: {format(mse_scores[1]**(1/2.0),".2f")} for set: {sets[i]} ') for
iin range(5)]

# plots

for i in range(5):
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x_ax = range(len(Y _pred[i]))
plt.figure(figsize=(15,5))
plt.title(f' Ground Truth & Predictions for normalized set:{sets[i]}")
plt.plot(x_ax, Y _test[i], label='original’)
plt.plot(x_ax, Y pred[i], label='predicted’, color="r", alpha=.33)
plt.legend()
plt.show()
print(f'Total runtime {format(time()-g_time,".2{")}sec.")
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