

Hellenic Mediterranean University

SCHOOL OF ENGINEERING

DEPARTMENT OF INFORMATICS ENGINEERING

Evaluation and Certification of Software

for Examining the Integrity of Software on IoT devices

Student :MariolasAdamantios

Supervisor :Kornaros George, Associate Professor

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

ΕΛΛΗΝΙΚΟ ΜΕΣΟΓΕΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

Μέτρηση και Πιστοποίηση Λογισμικού για την εξέταση της
ακεραιότητας του λογισμικού σε συσκευές IoT

Σπουδαστής : Αδαμάντιος Μαργιόλας
Επιβλέπων : Κορνάρος Γεώργιος, Αναπληρωτής Καθηγητής

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Τριμελής Εξεταστική Επιτροπή

Γεώργιος Κορνάρος
Αναπληρωτής Καθηγητής του Τμήματος Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών (ΗΜΜΥ) του Ελληνικού Μεσογειακού
Πανεπιστημίου (ΕΛ.ΜΕ.ΠΑ)

Σπυρίδων Παναγιωτάκης

Αναπληρωτής Καθηγητής του Τμήματος Ηλεκτρολόγων Μηχανικών και
Μηχανικών Υπολογιστών (ΗΜΜΥ) του Ελληνικού Μεσογειακού

Πανεπιστημίου (ΕΛ.ΜΕ.ΠΑ)

Παπαδάκης Νικόλαος
Αναπληρωτής Καθηγητής του Τμήματος Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών (ΗΜΜΥ) του Ελληνικού Μεσογειακού
Πανεπιστημίου (ΕΛ.ΜΕ.ΠΑ)

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Declaration of Academic Integrity

I hereby confirm that the present thesis on
__

is solely my own work and that if any text passages or diagrams from
books, papers, the Web or other sources have been copied or in any
other way used, all references – including those found in electronic
media – have been acknowledged and fully cited.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Acknowledgements

I would like to say a special thank you to my supervisor,

Kornaros George for his support, guidance and overall insights

in this field. I would also like to thank my family for supporting

me during the compilation of this dissertation.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Table of Contents

Table of Contents 6

Σύνοψη στα ελληνικά 8

Abstract in English 8

Tables 10

Chapter 1. Introduction 12

1.1 Problem 12

1.2 The objective of the Thesis 12

1.3 Contribution 13

1.4 Structure 13

Chapter 2.Development environment & board 14

2.1 Development environment 14

2.2 Hardware equipment 14

2.2.1 ST Microelectronics Company 14

2.2.2 Board features 14

2.2.3 BME680 gas sensor 17

Chapter 3.IoT, Security Issuesand Related Work 18

3.1 What is IoT? 18

3.2 IoT Terminology 19

3.3 Applications in IoT 19

3.4 Information Security 20

3.5 Key Definitions in Software Security 20

3.6 Related work 21

Chapter 4.Zephyr OSand SHA–2 24

4.1. What is Zephyr? 24

4.2. Zephyr OS Features 24

4.3. What is SHA-2and is SHA-2 secure? 26

Chapter 5. Implementation & code in C 27

5.1. Implementation in C – Why? 27

5.2. Structure of the code 28

5.2.1 Source file– Description of deliverable package 28

5.2.1.1 main.c 28

5.2.1.2 crypto.h 35

5.2.1.3 hash.h 39

Chapter 6. Use Case Scenarios 40

6.1. Use Case Scenario 1 : Room 42

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

6.2. Use Case Scenario 2: Basemen 44

6.3. Use Case Scenario 3: factory simulation 45

6.4. Use Case Scenario 4: greenhouse simulation 47

6.5 Use Case Scenario 5: Car 50

Chapter 7. Conclusions & Future Work 53

7.1. Conclusion 53

7.2. Future Work using advanced material and updated Programming code 53

References 55

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Σύνοψη στα ελληνικά

Στις μέρες μας, παρατηρούνται μεγάλης κλίμακας κυβερνητικών επιθέσεων στον

παγκόσμιο ιστό, όπως επίσης καταστροφές σημαντικής υποδομής πληροφοριών,

λόγω επιθέσεων λογισμικού όπως το worm, το botnet και το DDoS σε συσκευές IoT.

Η μέτρηση και η πιστοποίηση λογισμικού αποτελούν γενικές μεθόδους για τον

εντοπισμό της ακεραιότητας του λογισμικού και των καταστάσεων του κατά την

διάρκεια που εκτελείται σε ένα στοιχείο IoT. Στην παρούσα πτυχιακή εργασία θα

αναπτυχθούν πρακτικές μέθοδοι για την αξιόπιστη εκτέλεση λογισμικού που

βασίζεται σε τεχνικές "ελαφριά" εκτέλεση και εμπιστοσύνη. Επιπλέον, θα

εφαρμοστούν μέθοδοι που συνδυάζουν τη δυναμική μέτρηση και την ακεραιότητα

ροής ελέγχου με το κλειδί σύνδεσης συσκευής και κρυπτογράφησης της διεύθυνσης

κώδικα ή δεδομένων, έτσι ώστε να μπορεί να προστατευτεί η ακεραιότητα του

λογισμικού κατά το χρόνο εκτέλεσης στη συσκευή IoT.

Λέξεις κλειδιά: κυβερνητικές επιθέσεις, μέτρηση και πιστοποίηση λογισμικού,

κρυπτογράφηση, ΙοΤ, "ελαφριά" εκτέλεση και εμπιστοσύνη.

Abstract in English

Nowadays, there are large-scale cyber-attacks on the World Wide Web, as well as
destruction of important information infrastructure, due to software attacks such as
worm, botnet and DDoS on IoT devices. Software measurement and certification are
general methods for identifying the integrity of software and its states while running
on an IoT component. In this thesis, practical methods will be developed for the
reliable execution of software based on "lightweight" execution and trust
techniques. In addition, methods that combine dynamic measurement and control
flow integrity with device connection key and code or data address encryption will
be implemented so that the integrity of the software at runtime on the IoT device
can be protected.

Keywords: cyber-attacks, "lightweight" execution and trust, software

measurement and certification, IoT, control flow integrity.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Table of Figures

Figure 1: stm32f469i-disco board 14
Figure 2: Top side layout 15
Figure 3: Bottom side layout 15
Figure 4: Hardware block diagram 16
Figure 5 : include header files 28
Figure 6 : Definition of Variables 28
Figure 7: Signatures of functions and structs 29
Figure 8: UINT7 29
Figure 9: Hash function 30
Figure 10: Send function 30
Figure 11: Receive function 31
Figure 12: Tread a 32
Figure 13: Tread b 33
Figure 14: Main function 34
Figure 15: STM32F469I-DISCO along withj BME680 39
Figure 16:Application using STM32F469I-DISCO along with BME680 40
Figure 17: STM32F469I-DISCO along with BME680 in a room 41
Figure 18:STM32F469I-DISCO along with BME680 hardware failure
simulation 45
Figure 19: STM32F469I-DISCO along with BME680 greenhouse
simulation 47
Figure 20: STM32F469I-DISCO along with BME680 in a car 49
Figure 21: STM32F469I-DISCO along with BME680 in a car 50
Figure 22: Types of Sensors 53

file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.1ksv4uv
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.44sinio
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.2jxsxqh
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.z337ya
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.ihv636
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.4f1mdlm
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.37m2jsg
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.2lwamvv
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.111kx3o
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.3l18frh
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.206ipza
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.4k668n3
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.2zbgiuw
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.1egqt2p
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.2dlolyb
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.sqyw64
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.1rvwp1q
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.1664s55
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.1664s55
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.25b2l0r
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.25b2l0r
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.34g0dwd
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.1jlao46
file:///C:/Users/sia_o/Downloads/Thesis%20Structure_v0.1.7%20(1).docx%23_heading=h.3hv69ve

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Tables

Table 1: Temperatures retrieved in Living Room and Bathroom during the morning
and the afternoon…………………………………………………………………………………………………44
Table 2: Temperatures retrieved in basement during a day.…………………………………45
Table 3: Temperatures retrieved in Factory simulation during a day..………………..…47
Table 4: Temperatures retrieved in Factory simulation during a day…………………….49
Table 5: Temperatures retrieved in basement during a day………………………………….52

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Abbreviations

Term Description
IoT Internet of Things

NOx (NO, NO2,
N2O)

Nitrogen deposition that can cause respiratory and cardiovascular sickness

CO Combustion transport and power generation that can cause headache,
functioning of heart and prolong inhalation lead to comma

CO2 Fossil fuel, cement construction and vehicles that can affect O2 movement in
blood

SO2 Combustion, power generation that can cause problem in breathing of
children, visibility impairment and respiratory disorder

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Chapters

Chapter 1. Introduction

1.1 Problem

IoT devices are gradually increasing the interest of the wider consumer public.
Several studies predict an almost exponential increase in the number of IoT devices,
which reached around 20 - 30 billion by 2020. On the other hand, a major challenge
affecting consumer and industry decisions are the security and privacy issues. These
problems are the main factor that slows down interoperability and development the
domain of Internet of Things.

Reports have been published from time to time documenting vulnerabilities in either
smart home automation or in wider IoT networks. It is important to identifythe
vulnerabilities with automated tools and to be investigated remotely, especially via
Internet.

1.2 The objective of the Thesis

The aim of the thesis is to present a secure framework of an IoT network; analyzing
the aspects of the ecosystem, the main vulnerabilities and the real risks. More
specifically, this thesis proposes an application that may contribute to the security
issues that may derive in IoT devices and more general in microcontrollers.
Therefore, it is a means of preventing attacks either from malicious software or from
malicious users with the aim of falsifying data.

Its purpose is to ensure the integrity of the software. More specifically, it enables
two or more threads to be able to communicate with each other, and to be able to
recognize and determine the authenticity of the message from the sender (in our
case regarding temperatures retrieved from sensor), as well as reply back to it or
execute certain commands.

Let us think about what could happen if the sensor we have placed in a factory, in a
house, or in general in a device, sent incorrect data (e.g. false temperatures). The
results could be fatal and in some cases even dangerous.

For the application (proof of concept) of such methodology, we will follow a practical
approach using some open source tools to detect network-explorable vulnerabilities
TCP/IP. The proposed methodology allows manufacturers of IoT devices to detect
vulnerabilities in cyber-attacks with low cost, as well as, companies or even
individuals can be benefited from this application as they can ensure the
correct/proper operation of both the applications and the machines themselves
where the sensors are used.

The above tools are installed on Linux OS and any conclusions/measurements help
us to evaluate and verify the proposed methodology.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

1.3 Contribution

In this thesis, we carry out an extensive bibliographic research on the security issues
of IoT. We have collected and listed in detail related material of IoT terminology, as
well as security issues (IoT attacks) and solutions (chapter 2); taking into account
existing work and solutions. We reviewed a number of literature sources that were
sourced from conference proceedings, publications, surveys, scientific articles, books
and Internet sources

1.4 Structure

Abstract in Greek and in English are presented in the beginning of this Thesis.

Chapter 1 is the introduction of the thesis. More specifically, we are referring to the
problem that this thesis deals with, its purpose, its contribution as well as its
structure.

In Chapter 2, entitled as “Development environment & board”, we are talking about
the installation, development environment and the equipment that have been used
in the context of the work of this thesis.

In Chapter 3, entitled as “IoT & Security Issues”, a literature review of IoT and the
security issues detected in IoT domain is conducted. Particularly, we first present the
terminology needed; regarding IoT (terminology, applications, etc.). We also list in
details security issues that are important for IoT concept (challenges, security
standards used, solutions, etc.).

Moving on Chapter 4, entitled as “Zephyr OS and SHA-2”, we present what is zephyr
and how zephyr contributes to this work, as well as SHA-2 concepts.

In Chapter 5, entitled as “Implementation & code in C”, we exhibit a detailed
overview and description of the programming code that accompanies this thesis,
while in Chapter 6, entitled as “Measurements & results”, we present some of the
experimentation that has been conducted as well as results that we get by executing
this code; using the board and the sensor as described in Chapter 2.

The last chapter, Chapter 7, entitled as “Conclusion & Future Work”, concludes the
work made in this Thesis; by presenting the conclusions of the work and some future
work.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Chapter 2.Development environment & board

2.1 Development environment

For the implementation of the application, the following IDE has been used:

Microsoft visual studio [1] with the following extensions: C++ syntax, C/C++, C/C++

Extension Pack, codelldb. VS code is mainly chosen in order the writing of the code

to be easier, by using the graphical element that it provides.

Moreover, an installation of zephyr os is a pre-requisite on the system and was done

in our case in Linux peppermint (Debian based), in order our solution to be compiled.

Specifically, the following steps are followed via terminal:

● Open the zephyrproject/zephyr folder.

● Run the command

west build -b stm32f469i-disco samples/adamantios_demos/final/ --pristine.

2.2 Hardware equipment

2.2.1 ST Microelectronics Company

ST Microelectronics [2] is a company that is established in 1994 and deals with the

design of products that aim to provide a friendly ecosystem for humans. In this

Thesis, we make use of the STMicro Discovery Board of this company named as

stm32f469i-disco.

2.2.2 Board features

Figure 1: stm32f469i-disco board

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

The stm32f469i-disco board provides users with a simple application development

environment and features [3] as follows:

● STM32F469NIH6 microcontroller featuring 2 Mbytes of Flash memory and
324 Kbytes of RAM in BGA216 package

● On-board ST-LINK/V2-1 SWD debugger, supporting USB remuneration
capability:

o Mbed-enabled (mbed.org)
o USB functions: USB virtual COM port, mass storage, debug port

● 4 inches 800x480 pixel TFT colour LCD with MIPI DSI interface and capacitive
touch screen

● SAI Audio DAC, with a stereo headphone output jack
● 3 MEMS microphones
● MicroSD card connector
● I2C extension connector
● 4Mx32bit SDRAM
● 128-Mbit Quad-SPI NOR Flash
● Reset and wake-up buttons
● 4 color user LEDs
● USB OTG FS with Micro-AB connector
● Three power supply options:
● Expansion connectors and Arduino™ UNO V3 connectors

Figure 2: Top side layout

As we can see, there is also a touch screen that can be used for the development and

testing of applications.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Figure 3: Bottom side layout

These applications can provide a GUI for the user to interact with, as well as there is

a possibility to include many types of sensors and a wide variety of connectivity

features with other devices (e.g. Arduino connectors for external sensor

connectivity).

Figure 4: Hardware block diagram

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

2.2.3 BME680 gas sensor

The BME680 gas sensor is used in the context of this Thesis as well. It can integrate

high-linearity and high-accuracy since it measures gas on the air, atmospheric

pressure, humidity and temperature; using the latest sensors on the market.

It is especially developed for mobile applications (size 3.0 x 3.0 x 0.93 mm³)that have

low power consumption. BME680 can guarantee optimization on consumption, long-

term stability and high EMC robustness.

The reason that BME680 is used in this Thesis is because the gas sensor within the

BME680 can detect a broad range of gases such as volatile organic compounds

(VOC); allow the users to measure air quality for personal wellbeing.

More specifically, in this thesis as we have already mentioned, the equipment used is

the board STM32F469i with an ARM® Cortex®-M4 processor. On the board, we have

placed this external Bosch sensor - BME680, to get the measurements of the

temperatures (10 Celsius values per measurement).

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Chapter 3.IoT, Security Issuesand Related Work

3.1 What is IoT?

The Internet of Things (IoT), also called Internet of Everything (IoE), is a new
technological achievement, envisioned as the global network of computing machines
and electronic devices that can interact with each other. IoT is recognized as one of
the most important areas of modern and future technology and attracts great
attention from a wide range of industries.

IoT is a collection of many interconnected objects, services, people and devices,
which can communicate, share data and information, in order to achieve a common
goal in various fields and applications. IoT devices support "Identity Management"
identified in homogeneous and heterogeneous devices. Similarly, an IoT domain can
be defined by an address IP. However, each device within this range can have its own
address IP.

The term IoT was first invented by Kevin Ashton in 1999 in the context of supply
chain management [4]. However, during the latter decade, the definition has
covered a wider range of applications such as healthcare, utilities, energy
distribution, etc. [5]. Although the definition of "Things" has changed as technology
has evolved, the main goal of providing information about the machines without
human assistance intervention remains the same.

 A radical evolution of the Internet in one Network of interconnected objects that
not only collects information from the environment (detection) and interacts with
the physical world (activation / command / control), but also makes use of existing
Internet standards to provide services for the transfer of information, applications
and communications. Some examples include enabled devices with open wireless
technology such as Bluetooth, radio frequency identification (RFID), Wi-Fi and
telephone data services, as well as embedded sensor nodes and activator.

The Internet revolution has led to the interconnection between objects to create an
intelligent environment. From 2011 the number of interconnected devices on the
planet exceeds the number of population. In 2019, there were 9 billion
interconnected devices and this number reached 24 billion devices by
2020. According to the GSMA, regarding the healthcare, automotive, and consumer
electronics sectors, the aforementioned amounts translated to $1.3 trillion revenue
opportunities.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

3.2 IoT Terminology

Some of the definitions given according to different sources are:

● IEEE – 2015 [5]: “A global network of interconnected objects withunique
addressing based on basic communication protocols".

● Wikipedia [6]: “The Internet of Things or Internet of Things(English: Internet
of things) is the mass communication network appliances, household
appliances, cars as well as any object that integrates electronics, software,
sensors and connectivity into network to allow connection and data
exchange. simpler, the philosophy of IoT is to connect all electronic devices
between them (local area network) or connected to the internet (world wide
web)"

● Tutorials Point - Simply Easy Learning [7]: “IoT (Internet of Things) is an
advanced automation and analysis system that takes advantage of
networking, sensing, big data and artificial intelligence to provide integrated
systems for a product or a service. These systems allow greater transparency,
control and performance when applied to any industry or system.”

● IEEE 2015 9th International Conference on Next Generation Mobile
Applications, Services and Technologies [8]: "Group of structures which
interconnect the connected objects and allow their management, the data
mining and access to the data they generate.

3.3 Applications in IoT

Internet technologies are expected to drive innovation in a number of key industrial
sectors, such as health, factory automation / smart manufacturing, food production
and distribution, environmental monitoring, buildings, living environments, energy,
smart cities, etc. [11].

In more detail, the application value of IoT could be analyzed in some areas, as
shown below [12]:

● In the living environment
IoT domain can bring benefits to people's daily living environments. Citizens work
and spend many hours of the day in these environments, e.g. home, work,
sports, entertainment, social activities, etc. People exercise and be engaged in a
wide variety of activities that can be designed for activities such as health and
fitness, work from home experiences and experiences from energy consumption.

● In Agriculture and Nutrition
IoT technology enables monitoring and control of plants and animal products
throughout the farm-to-plate cycle. The challenge in the future is to design
architectures and implement algorithms that will support behavior optimization,
according to its role in smart agriculture and smart food chain, reducing the
ecological footprint and economic costs and increasing the food and production
and consumption safety.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

● In the Energy sector
IoT enables the connection and monitoring of energy resources and goods, from
almost anywhere, using connected devices and utilities so that energy consumers
/ promoters can have access to monitor and improve their energy efficiency.
Using IoT technology, the utility programs are equipped to provide more power
to improve operations efficiency, reduce emissions and management costs and
restore their power faster, while energy operators (private and public) are able
to immediately recognize outages; allowing them to improve their efficiency

● Smart City
There are some basic elements needed to set up a smart city, such as smart
society, smart buildings, smart energy, intelligent lighting, intelligent mobility,
intelligent management of water etc. The basic infrastructure of the above is
based on interconnection of sensors, actuators, and electronic systems, which
deal with software, data, support Internet and PC connection. The IoT is applied
to improve all those systems that create a smart city that are autonomous and
interoperable, secure and reliable. The interaction of systems depends on the
degree of interconnectivity and systems communication.

3.4 Information Security

Information Security (Information Security) or Information System Security
(Information System Security) is the Information Science that aims to protect the
information resources of an Information System (IS), from possible damage or
malicious actions, which may cause directly or indirectly, reducing their value.
Moreover, Software Security aims to provide reliable information, which is available
to authorized users when they need it [9].

The safeguarding of information resources and data is based on the principles of the
three fundamental properties of Information Security.

These properties are known internationally as "CIA", and are as follows [10]:

• Confidentiality: concerns the protection of information from its unauthorized
disclosure (reading).

• Integrity (Integrity): concerns the protection of information from its unauthorized
change (modification or deletion).

• Availability: concerns the safeguarding of authorized access (whether for disclosure
or change) to information, without obstacles or delay.

3.5 Key Definitions in Software Security

An asset is any object (computing or network resource or data), which has value for
its owner and for this reason must be protected from its occasional or permanent
loss. Risk represents the cause to limit the value of the asset. Harm is the limitation
of the value of the asset. Any situation that can cause damage to a computer system
is a threat to it.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Threats can be categorized into:

• Natural threats (environmental threats, e.g. fire, flood, earthquakes, etc.),
Intentional threats arising intentionally from malicious users, and Unintentional
threats arising unintentionally and incorrectly by computer users systems.
Damages to a system can be caused after attacks. Each attack exploits one or more
OS vulnerabilities. Vulnerability refers to a weakness in system settings or
management or a weak point in a security subsystem.

The ranking of vulnerabilities is summarized as follows:

• Human Vulnerabilities: are the most critical category for the security of a PF. They
are the worst as they can cause the worst effects, since they come from users who
know the OS well.

• Hardware and Software Vulnerabilities: concern problematic construction, as well
as incorrect settings and malfunctions of hardware and software.

• Media Vulnerabilities: involve problematic management processes that can lead
to the theft or destruction of magnetic, optical or paper data storage media

• Communications Vulnerabilities: involve manufacturing weaknesses, incorrect
settings, as well as network connection malfunctions.

• Physical Vulnerabilities: concern the physical space where they develop and
systems (e.g. data centers) operate.

• Natural Vulnerabilities: concern natural phenomena (e.g. natural disasters),
environmental dependencies etc.

3.6 Related work

In this Section, we are going to present some related work that either include
sensors or can tackle security issues on sensors, or even use innovated technologies
and methodologies to tackle security issues may arrive in IoT era.

In [13], G. Kornaros, O. Tomoutzoglou et al. are presenting in their work, an
investigation into machine learning (ML) and deep learning (DL) methodologies for
IoT device security; while examining benefits, drawbacks, and potential. Various
solutions hardware-based methods for ML-based IoT authentication, access control,
secure offloading, and malware detection schemes are studied and reviewed in the
context of integration of accelerators and customizing embedded device
architectures for effective use of ML-based methods.

In [14], G. Kornaros et al. present a real implementation on an electric motorcycle.
This work refers to a layered systematic approach to harden vehicle’s electronic
architecture against potential attacks; and more specifically, to ensure that vehicle
systems are able to take actions to decreasethe success of cyber-attacks and
mitigate the ramifications of potential unauthorized access. This infrastructure

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

offers secure interconnection mechanisms where trustworthy communications for
electronic control nodes can be ensured; hardware firewall as well, to prevent any
unauthorized access from untrusted applications/firmware. They introduce a secure
technology that encourage prevention from cyber-attacks in automotive Controller
Area Network (CAN) protocol which is used in in-vehicle networks; named secure
CAN (sCAN) that respects standard CAN-bus and is made for security mechanisms
implemented in software or hardware; while adding less than 1 ms latency on the
communication.

 In [15], G.Trouli&G.Kornaros, as a continuing work of [14] and inspired by the
literature review of [13], they introduce virtual sensors by extending vehicle’s
gateway functionality with supervised machine learning to monitor temporal
behavior of CAN bus messages. They designed a vehicle gateway enabled with k-NN
classification to achieve real-time analysis of traffic from three fully loaded CAN
buses for secure vehicle networking.

In [16], O. Vermesan, M. Coppola et al. present the new technological developments
of Internet of Things (IoT) and Industrial Internet of Things (IIoT) and the how
Artificial Intelligence (AI) is benefited from. Some of the improvements,, according to
the writers include:“edge computing processing, new sensing capabilities, more
security protection and autonomous functions accelerating progress towards the
ability for IoT systems to self-develop, self-maintain and self-optimize”. In this book
Chapter, the writers are trying to provide a complete review of the most recent
advances in the next wave of the IoT; as well as platforms and smart data aspects
that will offer intelligence, sustainability, dependability, autonomy, and also can
support human-centric solutions.

In [17], connection of industrial automation devices and equipment with cloud-
based systems to process and analyze information faster and toprovide innovated
customer experience and services is described. More specifically, LoRaWAN
environment along with concepts required in order complete IIoT security to be
achieved and implemented are discussed. The threat model includes attacks such as
malicious network, firmware attacks, etc. by modification of the IoT node firmware
or injection of malicious code into the firmware/operating system/kernel driver.

In [18], research challenges of ensuring security in Cyber-physical systems (CPS) are
presented. More specifically, due to CPS applications are able to access and modify
safety critical device internals; cyber-physical attacks can easily affect the integrity,
availability and confidentiality ofthese systems. Some examples could include: false-
data-injection, sensor and actuator attacks, replay attacks, and also denial-of-service
attacks. This chapter presents an architectural approach as well as methods for
open CPS applications.

In [19], intelligent and dynamic security policy enforcement methodologies and
networking technologies such as SDN-NFV have been proposed, in order to
minimize cyber-security threats at the edge of the network in Internet-of Things (IoT)
domains. The aforementioned methodologies can ensure network communications
for IoT services where traditional security is embedded and privacy riskssuch as
service hijacking, DDoS attack, denial service, IP spoofing, man-in-the-middle, may
arise. In this work, they extend these frameworks and present a software-defined

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

protection-oriented hardware technique that supports physical isolation of memory
compartments and of hardware devices such as DMAs and accelerators inside
modern Systems-on-Chip (SoCs), not only at the edge but also at the IoT high-end
accelerator-rich devices. These mechanisms can enhanceIoT ecosystem security by
design.

In the article [20], S. Leivadaros, G. Kornaros and M. Coppola propose an
implementation of IOTA Tangle architecture for data transactions; which is extended
with HMAC signing through using STM32 (F7 CPU) IoT devices. They also present
evaluation results that show the following: with 32 light nodes to exceed 28
transactions per second by using 4 full nodes. Thus, making IOTA-based distributed
ledger, an effective solution for IoT-based manufacturing environments with zero-
value (data) transactions can be achieved.

In [21], D. Bakoyiannis, O. Tomoutzoglou, G. Kornaros and M. Coppolaintroduce
hardware mechanisms to ensure security in terms of secure key and signature
storage through RFID/NFC secure modules and an IoT infrastructure communicating
over LoRaWAN in conjunction with Hyperledger Fabric for traceability and
immutability. They also present a practical implementation along with the evaluation
where the results show the following: an average throughput of more than 70
transactions/sec for 16 peers.

In [22], G. Kornaros, D. Bakoyiannis, O. Tomoutzoglou,et al. propose a lightweight
technique in order to enable virtual trusted channel and normal untrusted channel
over the same physical CAN-bus network (TrustNet) and their intention is to secure
CAN-bus sensitive communications by providing protection against replay attacks
with minimum overhead and full legacy support.

In [23], D. Bakoyiannis, O. Tomoutzoglou, and G. Kornarosdepict a secure over-the-
air firmware updating that offer homogenized updating process across OEMs,
suppliers and sub-tiers decreasing at the same time the costs for security
precautions and cryptographic countermeasures for each sub-system. This work
aims to overcome any attacks to the servers, to the networks as well as to the
diverse electronic control units (ECUs) in modern vehicles. They also demonstrate a
real vehicle case (STM32F7xx-based prototype).

In [24], G. Kornaros and S. Leivadarosdemonstrate propose a secure framework for
runtime updating of firmware in Internet of Things devices where they execute
critical applications. They proposed and developed a methodology where dynamic
updating of real-time applications is achieved; when executing on a Xilinx ZYNQ-
based platform. They present a bio-signal monitoring use case where there are
accelerometer data andthe results are referring to if a person has fallen; while a
distant medical management system can dynamically perform firmware updates.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Chapter 4.Zephyr OSand SHA–2

4.1. What is Zephyr?

Zephyr os[25,26] is a real time operating system. Its use includes embedded systems
and microprocessors. It can be supported by multiple architectures under the
apache licenses 2.0.

It includes the following:

● a kernel
● components and libraries
● device drivers
● protocol stacks
● file systems
● firmware updates

All the aforementioned described elements that Zephyr os provides are needed in
order full application software to be implemented

It is available on windows / mac / linux and very simple to use and install.

Zephyr also offers numerous features such as:

● Extensive suite of Kernel services

● Multiple Scheduling Algorithms

● Highly configurable / Modular for flexibility

● Cross Architecture

● Memory Protection

● Compile-time resource definition

● Optimized Device Driver Model

● Devicetree Support

● Native Networking Stack supporting multiple protocols

● Bluetooth Low Energy 5.0 support

● Native Linux, macOS, and Windows Development

● Virtual File System Interface with LittleFS and FATFS Support

● Powerful multi-backend logging Framework

● User friendly and full-featured Shell interface

● Settings on non-volatile storage

● Non-volatile storage (NVS)

● Native POSIX port

4.2. Zephyr OS Features

Zephyr has RO/NX memory protection, stack depth overflow prevention, and stack
buffer overflow detection, like the case of Linux. There is no kernel and no user

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

address space layout randomization(ASLR), which “will likely move to a build time
randomization and a small boot time relocation,” according to Smalley and James
[27].The aforementioned writers explained that in Zephyr, the process isolation is
missing, but nevertheless there is a userspace thread model.

In Zephyr, the security is dependent on particular SoCs and kernel configurations and
in general the user is working in a single application compared to Linux where there
are a number of core OS neutral and independent security features. The first release
of Zephyr had a single executable with a single address space with all threads in
supervisor mode and no memory protection or virtual memory. However, Zephyr
added OS protections, and minimized changes to kernel APIs in order to be backward
compatible. Zephyr philosophy is to do almost everything at build time, and then as
much as possible at last view time, to minimize runtime overheads and to ensure
bounded latency for real-time.

Because some of the MCUs Zephyr targets include memory protection units (MPUs),
while others do not, this makes the security of Zephyr, complicated. Zephyr started
offering memory safeguards in releases 1.8 and 1.9, with support for both kinds of
MCUs. The Kernel Self Protection Project (KSPP) for Linux's lkdtm tests [30] served as
the inspiration for the NSA team's creation of a set of kernel memory protection
tests. According to Smalley and James [27] [28], "the tests were useful in finding
flaws in Zephyr MPU drivers and are now used for regression testing."

Versions 1.10 and 1.11 of Zephyr added userspace support for user mode threads
with isolated memory. The userspace tests created by Smalley's team "to confirm
the security properties for user mode threads were being applied." There is no
virtual memory in Zephyr's userspace memory model, which is still constrained to a
single executable and address space. Smalley and James said, "It can support user
mode threads but not complete processes”.

The object permissions paradigm used by Zephyr's security features requires that
user threads be granted access to an object before they can utilize it. According to
Smalley and James [27],[28], access privileges can be granted from a kernel mode
thread to a user mode thread, and they can be passed down via an inheritance
mechanism. All user threads have access to every global variable in the program
because it is an all or nothing model.

This all-or-nothing strategy imposes a considerable cost on the application
developer, who must manually design the application global variable memory layout
to match MPU limits. In order to make up for this, the NSA team[28] created a
feature that supports a slightly more developer friendly approach of organizing
application global based on desired protections and is scheduled for version 1.13.
Some Zephyr security future work that is in progress includes adding MPU
virtualization, which would allow users to support a larger number of regions instead
of just eight that can be swapped in and out of the MPU on demand, according to
Smalley and James [27], [28].

Kernel code is completely trusted in Zephyr [27],[28]. In order to minimize runtime
overheads, Linux-type mitigations for kernel vulns leveraging KSPP kernel self-

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

protection features can be applied. Utilizing armv8-m for Cortex-M MCUs to provide
TrustZone security is a plus as well.

4.3. What is SHA-2and is SHA-2 secure?

SHA-2 (Secure Hash Algorithm 2)[31, 32] is a set of cryptographic hash functions.
These functions are designed by the United States National Security Agency (NSA) in
2001 and are built using the Merkle–Damgård construction.
The SHA-2 family consists of six hash functions, which are the following: SHA-224,
SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.
SHA-256 and SHA-512 are novel hash functions computed with eight 32-bit and 64-
bit words, respectively. They use different shift amounts and additive constants.
However, their structures are virtually identical; differing only in the number of
rounds.
SHA-224 and SHA-384 are truncated versions of SHA-256 and SHA-512 respectively,
computed with different initial values. SHA-512/224 and SHA-512/256 are also
truncated versions of SHA-512.
Currently, the best public attacks break preimage resistance for 52 out of 64 rounds
of SHA-256 or 57 out of 80 rounds of SHA-512, and collision resistance for 46 out of
64 rounds of SHA-256.
SHA-2 family of algorithms is characterized as secure; since there has been
significant research into the security of the SHA-2 family over the years, and no
significant issue is detected. These are some of the reasons that SHA-2 family of
algorithms is used in this Thesis, where a secure hash algorithm is needed.
Each of the six algorithms are secure among various scenarios.For example, if length
extension attacks are a threat, the best solution would be SHA-512/224 or SHA-
512/256.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Chapter 5. Implementation & code in C

5.1. Implementation in C – Why?

The implementation that accompanies this thesis is basically in C.

Some of the reasons why C language is selected include:

● Flexibility: C language is extensively used and provides flexibility [34] in terms
of memory management and allocation [35] (namely, a user has control on
memory allocation/reallocation – e.g. calloc (), malloc ()).

● Portability: C language is portable [36] with a huge number of libraries to be
used that practically are compatible to any processor architecture. It is
known that compilers, libraries, and interpreters for other programming
languages are written in C.

● Simplicity: C is language is simple to use [33, 37] since it combines
characteristics of high-level and low-level languages, as well as it provides
simple break down of code into smaller parts, since it is a structured language
(namely, functions written in C can be used to break down a whole program
into smaller and allow the reusability of code.

● Speed: C provides a considerable speed in compilation and execution
(namely, lesser inbuilt functions, the lesser overhead).

● Minimal C library part of Zephyr [38]: First of all, the minimal C library is part
of Zephyr and second this library contains a set of C functions that are
needed by Zephyr [REF]. The functions that are implemented in this library,
included with Zephyr are the following:

o abs()
o atoi()
o bsearch()
o calloc()
o free()
o gmtime()
o gmtime_r()
o isalnum()
o isalpha()
o isdigit()
o isgraph()
o isprint()
o isspace()
o isupper()
o isxdigit()
o localtime()
o malloc()
o memchr()
o memcmp()

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

o memcpy()
o memmove()
o memset()
o mktime()
o rand()
o realloc()
o snprintf()
o sprintf()
o strcat()
o strchr()
o strcmp()
o strcpy()
o strlen()
o trncat()
o strncmp()
o strncpy()
o strrchr()
o strstr()
o strtol()
o trtoul()
o time()
o tolower()
o toupper()
o vsnprintf()
o vsprintf()

5.2. Structure of the code

The package that accompanies this thesis includes:

● a source file (main.c)
● two header files (hash.h / crypto.h)

5.2.1 Source file– Description of deliverable package

5.2.1.1 main.c

The main.c source file contains the following:

The first part includes the libraries that are needed in order the code to be compiled
and executed (see Figure6). As far as we can see the first four lines, include the
libraries of zephyr.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Figure 5 : include header files

● #include<zephyr .h>: This header is used to enable the zephyr os.
● #include<zephyr/kernel .h>: This header includes all the resources from

zephyr Linux kernel.
● #include <zephyr/device .h>: This header is responsible for detecting the

divide that zephyr is booting on and the peripheral devices , so it will set the
system to support each hardware part , at the best possible clocks. In that
way the hardware will give the best results to the user (performance issues).

● #include<zephyr/drivers/sensor .h>: This header is responsible for detecting
the sensors that are connected on the main board, so that the best data
exchange between the board and the sensors can be achieved.

● #include<stdio .h>: This header defines three variable types, several macros,
and various functions for performing input and output.

● #include<stdlib .h>: This header defines four variable types, several macros,
and various functions for performing general functions.

● #include<string .h>: This header defines one variable type, one macro, and
various functions for manipulating arrays of characters.

● #include<crypto/crypto .h>: This header contains the crypto abstraction
layer APIs. It contains function to start and stop the hash process.

● #include<crypto/hash .h>: This header is used to select one or more hashing
algorithms for the project.

The second part includes definitions of variables that are used in the body of the
code(see Figure7).

Figure 6 : Definition of Variables

● stack_size(2048): The stack_size sets the thread_stack_size of each thread.
● Mail_len: The mail_len is the max available length of the mailbox buffer. It is

needed to have more than 32 bytes of size. The reason is because the hash is
32 bytes but we do not know the size of the message each time.

● Crypto_drv_name: This is the driver for the sha-256
● Hash_size: The hash has the same size each time .32 bytes.
● Log_hash:This define a part of the code to be ignored. If it is set to 1 , then

the preprocessor will compile the code between the #if ….. #endif.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

● CMD_REQ_MALLOC – CDM_MALLOC_PTR – CMD_DATA_READY: These
three variables define, set the option, so that the threads will know for what
the message is for.

The third part includes the declarations of the structs and functions used in the main
function that constitutes the core of the implementation that accompanies this
thesis (see Figure8).

Figure 7: Signatures of functions and structs

● K_thread_stack_define: The first variable is the actual name of the threads’

stack. The second variable is the stack size of the thread.
● K_mbox: it is the mailbox structure, where the threads will use to

communicate with each other.
● K_thread: The k_thread is the name of the thread.

Figure 8: UINT7

● Uint7: The reason the unsigned integer 7 is created, is that the threads will
use 1 kilobyte of memory space. In that way there will be 128 integers.
So when the thread will reach the 128th integer of the buffer it resets and
rewrites at the same memory space.

The fourth part includes the implementation of the functions. This part consists of 5
functions which are the following:

● The hash function is responsible for calculating the hash from the given
parameters (see Figure10).

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Figure 9: Hash function

When the hash function is called, there are 3 parameters. The hash_in, the

hash_out, and the size. The first and the second are pointer for the input and output.

For hash computation, there is needed to start and stop the process. At the begging

the driver needs to read the device info, the ctx pointer(context),and the algorithm

to compute the hash. In this Thesis, SHA-256 is used. The hash is created and then

the memory for the whole process needs to be freed.

● The send function that is called from the threads when a mailbox needs to be

send(see Figure11). Note that in this function there is a call of the hash
function in order to generate the hash before sending the mail.

Figure 10: Send function

When the send function is called, there are 5 parameters. The mailbox, the thread id,
the command, the data, and the size , of the data to be hashed. After copping the
thread id into the hash_in, it is extended by the size of the message. At the end, after
the hash function is called (by zephyr), the output will be a hash, created with the
thread id combined with the user data. Then a message is formed to be sent by the
mailbox to the receiver thread.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

● The receive function is called from the threads when a mailbox needs to be
read(see Figure12).Note that the 2 threads know the id of each other, soin
this function there is a call of the hash function in order tothe hash to be
generated, as well as to check if there are any changes on the received hash.

Figure 11: Receive function

When the send function is called, there are 5 parameters which are the following:
the mailbox, the sender thread id, data, size, and command. The 2 threads know the
id of each other. For security reasons, it is needed to recreate the incoming hash, by
ignoring the first 32 bits of the incoming mailbox. Then, using the sender id and the
rest of the mailbox data, the local hash is created. If the local hash is the same as the
incoming hash, then the message is valid. The received data are store to the data
pointer, so in that way the thread with data in need will be informed.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

● The thread_a is responsible to request the size of the memory (malloc) and to
display the values that thread_btakes(see Figure 13).

Figure 12: Tread a

Thread_a is the master of the 2 user created threads. When the thread_a starts , it
sets the mailbox, the memory size for the operation, and the pointers for the data
that will be used from the slave. First, the malloc size is sent to thread_b(slave), after
that , if the malloc was successfully allocate the memory, it gets the malloc pointer.
Then, every 10 new sensor reads, it will be informed by the thread_b to display the
values on the console.

● The thread_b is responsible to reserve the memory (malloc) that thread_a
requests' and to inform it accordingly by providing each time 10 new entries
of temperatures.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Figure 13: Tread b

Thread_b is the slave of the two user threads. When the thread_b starts, it sets the

sensor driver, the mailbox. First, it waits for the malloc size from thread_b. If the

malloc function is successful, it returns the pointer to thread_a. Then it sets up the

sensor and reads 10 temps values, one every 200 ms, and informs the thread_a for

the new reads.

Finally, the main function defines the parameters “k_thread_create” in order for the
thread to be created as well as the tb_tid : receiver thread and tba_tid: sender
thread are both created(see Figure 15). It has void type and is responsible for
creating the threads and prevents the program from quitting; using a while(1) loop.

After setting the ids and the mailbox the threads are created. The first thread is the
master whilethread_b is the slave thread. The reason why the thread_b is created
first, it is because the send function is blocking.
Each thread needs some parameters such as: the thread name, the thread stack size
name, the stack size, the thread name, pointer 1, pointer 2, pointer 3, the
permissions , and finally the delay of the creation.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Figure 14: Main function

5.2.1.2 crypto.h

This file contains the Crypto Abstraction layer APIs under the license: SPDX-License-
Identifier: Apache-2.0 which provides some important functions as follows:

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

5.2.1.3 hash.h

This file contains the Crypto Abstraction layer APIs under the license: SPDX-License-
Identifier: Apache-2.0 and is displayed below:

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Chapter 6. Use Case Scenarios

As we presented in Chapter 2, the equipment used in this Thesis is the board
STM32F469i with an ARM® Cortex®-M4 processor. On the board, we have placed an
external Bosch sensor - BME680, to get the measurements of the temperatures (10
Celsius values per measurement).

Figure 15: STM32F469I-DISCO along with BME680

As we connect the board to the computer, it immediately powers up and starts
running the code that was last loaded onto it (see Figure 17). For instance, if the
code that is already uploaded on the board is not the desired one, it is needed to
load a new one.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Figure 16: Application using STM32F469I-DISCO along with BME680

Upon board connection, we open a terminal console and we start writing
commands.

The commands are as follows:

 cd zephyrproject/zephyr
 west build -b stm32f469i-disco samples/adamantios_demos/final/ --pristine.
 west flash

The last command helps the code to be loaded onto the board.

The program is executed, the initial constants are defined and subsequently the
threads are defined, as well.

The first thread requests memory from the second and then upon the memory is
allocated, values from the sensor are retrieved. This process is done until we turn off
the power of the board.

The results of the whole process are 10 Celsius values per measurement.

In order to measure the sending time in the sensor and the function k_cycle_get_32
which is located in the kernel.h library, before starting the measurement we keep
the number of cycles. Then, upon measure has been taken, and the process has
finished, we keep the number of cycles, once more.

We, then subtract the initial measurement of cycles from the later measurement of
cycles (sub = later cycles - initial cycles), in order to get the total time it takes to the

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

read process to be executed (in processor clock cycles) and convert these cycles
(using an online converter) in nanoseconds.

These calculations help us to get the performance of the application; using the
aforementioned equipment. In the clocks file, we count as follows:
sensor read time | sensor send time | hash time (where max clock 180 Mhz ==
5.5555555 nanoseconds).

For this Thesis we conducted measurements; having simulated different
environments, that can be applied in different contexts and domains of IoT.
These experiments will be presented in the following sections.

6.1. Use Case Scenario 1 : Room

The first experiment included set of temperatures in the living room, during summer
period (August).

Figure 17: STM32F469I-DISCO along with BME680 in a room

The values (see Table 1) are retrieved in the morning (among 1.203.024, for
simplicity we have presented the average per 12’ for a duration of 4 hours in the
morning), in the afternoon (among 1.203.024, for simplicity we have presented the
average per 12’ for a duration of 4 hours in the afternoon).

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Place Period of the
Day

Time of the
Day

Temperature

Living Room Morning 08:00 -12:00 23.590000

Living Room Morning 08:00 -12:00 24.400000

Living Room Morning 08:00 -12:00 25.220000

Living Room Morning 08:00 -12:00 25.540000

Living Room Morning 08:00 -12:00 25.850000

Living Room Morning 08:00 -12:00 26.070000

Living Room Morning 08:00 -12:00 26.200000

Living Room Morning 08:00 -12:00 26.330000

Living Room Morning 08:00 -12:00 26.410000

Living Room Morning 08:00 -12:00 26.490000

Living Room Morning 08:00 -12:00 26.540000

Living Room Morning 08:00 -12:00 26.600000

Living Room Morning 08:00 -12:00 28.420000

Living Room Morning 08:00 -12:00 28.820000

Living Room Morning 08:00 -12:00 29.110000

Living Room Morning 08:00 -12:00 29.140000

Living Room Morning 08:00 -12:00 29.220000

Living Room Morning 08:00 -12:00 29.600000

Living Room Morning 08:00 -12:00 29.920000

Living Room Morning 08:00 -12:00 29.970000

Living Room Afternoon 13:00 – 17:00 29.880000

Living Room Afternoon 13:00 – 17:00 29.640000

Living Room Afternoon 13:00 – 17:00 29.550000

Living Room Afternoon 13:00 – 17:00 29.650000

Living Room Afternoon 13:00 – 17:00 29.740000

Living Room Afternoon 13:00 – 17:00 29.800000

Living Room Afternoon 13:00 – 17:00 29.740000

Living Room Afternoon 13:00 – 17:00 30.180000

Living Room Afternoon 13:00 – 17:00 30.080000

Living Room Afternoon 13:00 – 17:00 30.050000

Living Room Afternoon 13:00 – 17:00 30.040000

Living Room Afternoon 13:00 – 17:00 30.050000

Living Room Afternoon 13:00 – 17:00 30.090000

Living Room Afternoon 13:00 – 17:00 30.080000

Living Room Afternoon 13:00 – 17:00 29.980000

Living Room Afternoon 13:00 – 17:00 30.030000

Living Room Afternoon 13:00 – 17:00 30.090000

Living Room Afternoon 13:00 – 17:00 29.980000

Living Room Afternoon 13:00 – 17:00 29.960000

Living Room Afternoon 13:00 – 17:00 29.940000
Table 1: Temperatures retrieved in Living Room and Bathroom during the morning and the afternoon.

These measurements can help people to stabilize and control the living conditions in
a house. Having in mind, sensitive group of people, such as elderly people or babies

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

where a significant change of temperature in the room or during having their bath
could be catastrophic and may cause even death. Thus, as a future work in this
experiment, we could imagine that this sensor could send a signal to a connected
device (e.g. air condition installed) in order the temperature to be reset in normal
levels or a message to the owner of the house in order them to open any doors or
windows.

6.2. Use Case Scenario 2: Basemen

Another experiment included set of temperatures in a basement, during summer
period (August).

The values (see Table 2) are retrieved in the morning (among 2.213.524, for
simplicity we have presented the average per 12’ for a duration of 4 hours in the
morning), in the afternoon (among 2.213.524, for simplicity we have presented the
average per 12’ for a duration of 4 hours in the afternoon).

Place Period of the
Day

Time of the
Day

Temperature

basement Morning 08:00 -12:00 21.590000

basement Morning 08:00 -12:00 21.400000

basement Morning 08:00 -12:00 21.220000

basement Morning 08:00 -12:00 21.540000

basement Morning 08:00 -12:00 21.850000

basement Morning 08:00 -12:00 21.900000

basement Morning 08:00 -12:00 21.950000

basement Morning 08:00 -12:00 22.220000

basement Morning 08:00 -12:00 22.250000

basement Morning 08:00 -12:00 22.070000

basement Morning 08:00 -12:00 22.200000

basement Morning 08:00 -12:00 22.330000

basement Morning 08:00 -12:00 23.410000

basement Morning 08:00 -12:00 22.200000

basement Morning 08:00 -12:00 22.330000

basement Morning 08:00 -12:00 23.400000

basement Morning 08:00 -12:00 23.220000

basement Morning 08:00 -12:00 23.540000

basement Morning 08:00 -12:00 23.850000

basement Morning 08:00 -12:00 23.900000

basement Afternoon 13:00 – 17:00 24.400000

basement Afternoon 13:00 – 17:00 25.220000

basement Afternoon 13:00 – 17:00 25.540000

basement Afternoon 13:00 – 17:00 24.850000

basement Afternoon 13:00 – 17:00 24.900000

basement Afternoon 13:00 – 17:00 24.950000

basement Afternoon 13:00 – 17:00 25.220000

basement Afternoon 13:00 – 17:00 25.350000

basement Afternoon 13:00 – 17:00 25.420000

basement Afternoon 13:00 – 17:00 25.520000

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

basement Afternoon 13:00 – 17:00 25.850000

basement Afternoon 13:00 – 17:00 26.070000

basement Afternoon 13:00 – 17:00 26.200000

basement Afternoon 13:00 – 17:00 26.330000

basement Afternoon 13:00 – 17:00 26.350000

basement Afternoon 13:00 – 17:00 26.410000

basement Afternoon 13:00 – 17:00 26.490000

basement Afternoon 13:00 – 17:00 26.540000

basement Afternoon 13:00 – 17:00 26.600000

basement Afternoon 13:00 – 17:00 26.700000
Table 2: Temperatures retrieved in basement during a day.

These measurements can help people to stabilize and control the conditions in a
basement where they store for example some groceries or wine. Having in mind,
wine producers that the store the collected grapes as well as tones of wine in
basement, a significant change of temperature in the basement during summer or
winter period could be a disaster. Thus, as a future work in this experiment, we could
imagine that this sensor could send a signal to a connected device (e.g. air condition
installed) in order the temperature to be reset in normal levels.

6.3. Use Case Scenario 3: factory simulation

Another experiment included set of temperatures in a room, during summer period
(August); where a lighter was used near the sensor (during the morning and
afternoon) to simulate significant change of temperature in a factory, when a
problem regarding a machine there caused.

Figure 18:STM32F469I-DISCO along with BME680 hardware failure simulation

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

The values (see Table 3) are retrieved in the morning (among 502.761, for simplicity
we have presented some average values for a duration of 4 hours in the morning), in
the afternoon (among 502.761, for simplicity we have presented some average
values for a duration of 4 hours in the afternoon).

Place Period of
the Day

Time of the
Day

Temperature

Factory simulation Morning 08:00 -12:00 37.600000

Factory simulation Morning 08:00 -12:00 38.330000

Factory simulation Morning 08:00 -12:00 38.550000

Factory simulation Morning 08:00 -12:00 38.800000

Factory simulation Morning 08:00 -12:00 39.820000

Factory simulation Morning 08:00 -12:00 40.590000

Factory simulation Morning 08:00 -12:00 42.380000

Factory simulation Morning 08:00 -12:00 46.850000

Factory simulation Morning 08:00 -12:00 49.270000

Factory simulation Morning 08:00 -12:00 49.880000

Factory simulation Morning 08:00 -12:00 50.000000

Factory simulation Morning 08:00 -12:00 51.690000

Factory simulation Morning 08:00 -12:00 53.930000

Factory simulation Morning 08:00 -12:00 54.360000

Factory simulation Morning 08:00 -12:00 53.810000

Factory simulation Morning 08:00 -12:00 53.520000

Factory simulation Morning 08:00 -12:00 53.180000

Factory simulation Morning 08:00 -12:00 52.810000

Factory simulation Morning 08:00 -12:00 52.220000

Factory simulation Morning 08:00 -12:00 51.260000

Factory simulation Afternoon 13:00 – 17:00 50.910000

Factory simulation Afternoon 13:00 – 17:00 50.510000

Factory simulation Afternoon 13:00 – 17:00 49.820000

Factory simulation Afternoon 13:00 – 17:00 49.750000

Factory simulation Afternoon 13:00 – 17:00 49.230000

Factory simulation Afternoon 13:00 – 17:00 48.340000

Factory simulation Afternoon 13:00 – 17:00 48.130000

Factory simulation Afternoon 13:00 – 17:00 47.330000

Factory simulation Afternoon 13:00 – 17:00 46.970000

Factory simulation Afternoon 13:00 – 17:00 45.800000

Factory simulation Afternoon 13:00 – 17:00 43.230000

Factory simulation Afternoon 13:00 – 17:00 42.170000

Factory simulation Afternoon 13:00 – 17:00 41.640000

Factory simulation Afternoon 13:00 – 17:00 40.830000

Factory simulation Afternoon 13:00 – 17:00 39.830000

Factory simulation Afternoon 13:00 – 17:00 38.790000

Factory simulation Afternoon 13:00 – 17:00 38.670000

Factory simulation Afternoon 13:00 – 17:00 37.350000

Factory simulation Afternoon 13:00 – 17:00 36.450000

Factory simulation Afternoon 13:00 – 17:00 34.150000

Factory simulation Afternoon 13:00 – 17:00 33.340000

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Factory simulation Afternoon 13:00 – 17:00 32.830000

Factory simulation Afternoon 13:00 – 17:00 29.390000

Factory simulation Afternoon 13:00 – 17:00 28.490000

Factory simulation Afternoon 13:00 – 17:00 28.410000

Factory simulation Afternoon 13:00 – 17:00 27.450000

Factory simulation Afternoon 13:00 – 17:00 26.390000

Factory simulation Afternoon 13:00 – 17:00 26.190000

Factory simulation Afternoon 13:00 – 17:00 24.880000

Factory simulation Afternoon 13:00 – 17:00 24.510000

Factory simulation Afternoon 13:00 – 17:00 23.210000
Table 3: Temperatures retrieved in Factory simulation during a day.

These measurements can help factories or companies that are using machines that
can be on fire easily (or potentially), to stabilize and control the conditions in the
factory/company. This simulation showed us that from the time that the
temperature is increased, it takes around 2 h and a half (in average) to get back to
the normal levels. Thus, as a future work in this experiment, we could imagine that
this sensor could send a message that something wrong is happening, in order for
the firemen reaches the place and the machines to get powered off.

6.4. Use Case Scenario 4: greenhouse simulation

Another experiment included set of temperatures in a room, during summer period
(August); where a plastic box was used to cover totally the sensor (during the day)
and a hairdryer (during the morning and night) to simulate temperatures in a
greenhouse, when a significant change of temperature may arise due to the
temperature outside or due to an accident (e.g. low temperatures during winter or
really high temperatures in summer).

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Figure 19: STM32F469I-DISCO along with BME680 greenhouse simulation

The values (see Table 4) are retrieved in the morning (among 934.156, for simplicity
we have presented some average values for a duration of 4 hours in the morning), in
the afternoon (among 934.156, for simplicity we have presented some average
values for a duration of 4 hours in the afternoon).
.

Place Period of
the Day

Time of the
Day

Temperature

greenhouse simulation Morning 08:00 -12:00 37.600000

greenhouse simulation Morning 08:00 -12:00 38.330000

greenhouse simulation Morning 08:00 -12:00 38.550000

greenhouse simulation Morning 08:00 -12:00 38.800000

greenhouse simulation Morning 08:00 -12:00 38.910000

greenhouse simulation Morning 08:00 -12:00 38.960000

greenhouse simulation Morning 08:00 -12:00 38.980000

greenhouse simulation Morning 08:00 -12:00 38.770000

greenhouse simulation Morning 08:00 -12:00 36.580000

greenhouse simulation Morning 08:00 -12:00 36.150000

greenhouse simulation Morning 08:00 -12:00 35.990000

greenhouse simulation Morning 08:00 -12:00 35.620000

greenhouse simulation Morning 08:00 -12:00 34.680000

greenhouse simulation Morning 08:00 -12:00 34.430000

greenhouse simulation Morning 08:00 -12:00 34.230000

greenhouse simulation Morning 08:00 -12:00 34.240000

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

greenhouse simulation Morning 08:00 -12:00 34.190000

greenhouse simulation Morning 08:00 -12:00 34.180000

greenhouse simulation Morning 08:00 -12:00 34.170000

greenhouse simulation Morning 08:00 -12:00 34.150000

greenhouse simulation Afternoo
n

13:00 – 17:00 70.860000

greenhouse simulation Afternoo
n

13:00 – 17:00 66.890000

greenhouse simulation Afternoo
n

13:00 – 17:00 66.610000

greenhouse simulation Afternoo
n

13:00 – 17:00 67.570000

greenhouse simulation Afternoo
n

13:00 – 17:00 65.490000

greenhouse simulation Afternoo
n

13:00 – 17:00 65.470000

greenhouse simulation Afternoo
n

13:00 – 17:00 64.430000

greenhouse simulation Afternoo
n

13:00 – 17:00 64.040000

greenhouse simulation Afternoo
n

13:00 – 17:00 63.980000

greenhouse simulation Afternoo
n

13:00 – 17:00 63.820000

greenhouse simulation Afternoo
n

13:00 – 17:00 62.460000

greenhouse simulation Afternoo
n

13:00 – 17:00 62.400000

greenhouse simulation Afternoo
n

13:00 – 17:00 61.290000

greenhouse simulation Afternoo
n

13:00 – 17:00 60.920000

greenhouse simulation Afternoo
n

13:00 – 17:00 60.460000

greenhouse simulation Afternoo
n

13:00 – 17:00 59.830000

greenhouse simulation Afternoo
n

13:00 – 17:00 59.460000

greenhouse simulation Afternoo
n

13:00 – 17:00 57.300000

greenhouse simulation Afternoo
n

13:00 – 17:00 56.940000

greenhousesimulation Afternoo
n

13:00 – 17:00 54.390000

greenhouse simulation Afternoo
n

13:00 – 17:00 39.310000

greenhouse simulation Afternoo
n

13:00 – 17:00 37.410000

greenhouse simulation Afternoo 13:00 – 17:00 36.410000

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

n

greenhouse simulation Afternoo
n

13:00 – 17:00 35.410000

greenhouse simulation Afternoo
n

13:00 – 17:00 35.120000

greenhouse simulation Afternoo
n

13:00 – 17:00 35.040000

greenhouse simulation Afternoo
n

13:00 – 17:00 34.580000

Table 4: Temperatures retrieved in Factory simulation during a day.

These measurements can help people to monitor and control plants and animal
products throughout the farm-to-plate cycle. In this context, we can imagine smart
agriculture and smart food chain, reducing economic costs and increasing the food
and production safety. This simulation showed us that from the time that the
temperature is increased, it takes around 1hour and a half (in average)to get back to
the normal levels. Thus, as a future work in this experiment, we could imagine that
this sensor could send a signal to a connected device (e.g. air condition installed) in
order the temperature to be reset in normal levels or a message to the owner of
greenhouse in order them to come and open any doors or windows.

6.5 Use Case Scenario 5: Car

Another experiment included set of temperatures in a car, during summer period
(August).

Figure 20: STM32F469I-DISCO along with BME680 in a car

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Figure 21: STM32F469I-DISCO along with BME680 in a car

The values (see Table 5) are retrieved in the morning (among 978.911, for simplicity
we have presented some average values for a duration of 4 hours in the morning), in
the afternoon (among 978.911, for simplicity we have presented some average
values for a duration of 4 hours in the afternoon).

Place Period of
the Day

Time of the
Day

Temperature

car Morning 08:00 -12:00 24.400000

car Morning 08:00 -12:00 25.220000

car Morning 08:00 -12:00 25.540000

car Morning 08:00 -12:00 25.850000

car Morning 08:00 -12:00 26.070000

car Morning 08:00 -12:00 26.200000

car Morning 08:00 -12:00 26.330000

car Morning 08:00 -12:00 26.410000

car Morning 08:00 -12:00 26.490000

car Morning 08:00 -12:00 26.540000

car Morning 08:00 -12:00 26.600000

car Morning 08:00 -12:00 28.420000

car Morning 08:00 -12:00 28.820000

car Morning 08:00 -12:00 29.110000

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

car Morning 08:00 -12:00 29.140000

car Morning 08:00 -12:00 29.220000

car Morning 08:00 -12:00 29.600000

car Morning 08:00 -12:00 29.920000

car Morning 08:00 -12:00 29.400000

car Morning 08:00 -12:00 29.220000

car Afternoon 13:00 – 17:00 30.840000

car Afternoon 13:00 – 17:00 30.850000

car Afternoon 13:00 – 17:00 30.870000

car Afternoon 13:00 – 17:00 30.880000

car Afternoon 13:00 – 17:00 30.890000

car Afternoon 13:00 – 17:00 30.900000

car Afternoon 13:00 – 17:00 30.910000

car Afternoon 13:00 – 17:00 30.930000

car Afternoon 13:00 – 17:00 30.960000

car Afternoon 13:00 – 17:00 30.930000

car Afternoon 13:00 – 17:00 31.750000

car Afternoon 13:00 – 17:00 31.790000

car Afternoon 13:00 – 17:00 32.900000

car Afternoon 13:00 – 17:00 33.420000

car Afternoon 13:00 – 17:00 33.460000

car Afternoon 13:00 – 17:00 35.290000

car Afternoon 13:00 – 17:00 36.230000

car Afternoon 13:00 – 17:00 36.390000

car Afternoon 13:00 – 17:00 36.400000

car Afternoon 13:00 – 17:00 36.760000
Table 5: Temperatures retrieved in basement during a day.

These measurements can help people to stabilize and control the conditions in a car.
Having in mind, people that drive a lot during the day (e.g. transporters, taxi drivers,
etc.), a significant change of temperature in their vehicles may cause respiratory
problems or even death. Thus, as future work in this experiment, we could imagine
that this sensor could send a signal to the driver (e.g. message in their cell-phone) in
order to stop driving until the temperature to be reset in normal levels.

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

Chapter 7. Conclusions & Future Work

7.1. Conclusion

There are billions of devices connected making up the famous Internet of Things
(IoT), and their number is increasing considerably. Internet can be used in various
areas to its advantage human life and occupation. IoT is changing our world and the
way we live However, IoT does not have a single architecture and this is where
different types of malicious attacks at different levels of IoT are noticed.

The IoT devices are more vulnerable to attacks because safety measures cannot be
taken sufficiently. Having studied the existing solution, the implementation that
accompanies this Thesis tried to develop practical methods for the reliable execution
of software based on "lightweight" execution and trust techniques. Moreover,
dynamic measurement and control flow integrity methods with device connection
key and code /data address encryption have been implemented, to ensure the
integrity of the software at runtime on the IoT device.

More specifically, in Chapter 1, we provided a detailed Introduction; presenting the
problem, the objective of this thesis, its contribution and its structure.

In Chapter 2, we described the Development environment, as well as the board that
has been used for the implementation of the solution. In Chapter 3, we have
presented the State of the Art, regarding IoT (namely, the development of Internet
of Things and what is its network architecture), IoT Applications (e.g. Health, Smart
Cities) and Security Issues regarding IoT (namely, fundamental concepts of the
Security of Information Systems, the risks from malicious programs in combination
with IoT, etc.).

In Chapter 4, we have presented zephyr OS and its contribution in this thesis. In
Chapter 5, we have provided an extensive analysis of the Implemented solution
(structure, code, etc.) as well as why C/C++ language is selected for the
implementation. In Chapter 6, we exhibited the measurements and the results
taken by the execution of the implemented solution and the contribution of this
application throughout everyday-life scenarios.

In conclusion, this Thesis attempted to constitute a State of the Art forSecurity in IoT
devices, proposing a reliable execution of software based on "lightweight"
execution; supporting data address encryption for integrity of the software at
runtime on the IoT devices that can be used by any people, as well as different
scientific institutions and companies.

7.2. Future Work using advanced material and updated Programming
code

The air quality – indoor and outdoor, is equally important. The research showed that we
spend maximum time at indoor such as houses, hospitals, schools, etc. where various
gases such as CO2, CO, Benzene, toluene and VOCs with humidity are well monitored.

https://www.sciencedirect.com/topics/chemical-engineering/volatile-organic-compound

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

The long term effect of these gases on the humans is possible to cause respiratory
infections, lung cancer and heart diseases [39,40,41]. Therefore, indoor as well as
outdoor air pollution detection is equally important.

Gas sensors provide information regarding air quality and allow people to take specific
actions at the right place and time.

 As a future work, we can imagine to make our application work in the context of

pollutants in a factory; using a combination of sensors (see Figure X) and different
sources of pollutants such as CO2, CO, Benzene, toluene and VOCs.

Figure 22: Types of Sensors

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

References

[1] https://visualstudio.microsoft.com

[2] https://www.st.com/content/st_com/en.html

[3] https://www.st.com/en/evaluation-tools/32f469idiscovery.html

[4] Gubbi et al. (2013) Internet of Things (IoT): A Vision, Architectural Elements, and
Future Directions. Future Generation Computer Systems, pp.1645–1660.

Available from:
https://www.sciencedirect.com/science/article/abs/pii/S0167739X13000241, Last
accessed August 2022

[5] Towards a definition of the Internet of Things - Revision 1 - published on May
2015, Available from
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Thi
ngs_Revision1_27MAY15.pdf , Last accessed August 2022.

[6] https://el.wikipedia.org/wiki/Διαδίκτυο_των_πραγμάτων, Last accessed August
2022

[7] https://www.tutorialspoint.com/internet_of_things/index.htm, Last accessed
August 2022

[8] Dorsemaine B., et al., IEEE 2015 9th International Conference on Next Generation
Mobile Applications, Services and Technologies

Available from: https://ieeexplore.ieee.org/document/7373221, Last accessed
August 2022

[9] Πάγκαλου Γ., Μαυρίδη Ι. (2002) Ασφάλεια Πληροφοριακών Συστημάτων και
Δικτύων. Θεσσαλονίκη: Εκδόσεις Ανικούλα.

[10] Κάτσικα Σ., Γκρίτζαλη Δ., Γκρίτζαλη Σ. (2004) Ασφάλεια Πληροφοριακών
Συστημάτων. Αθήνα: Εκδόσεις Νέων Τεχνολογιών.

[11] https://iot-analytics.com/10-internet-of-things-applications,
LastaccessedAugust 2022

[12] https://aioti.eu/wp-content/uploads/2017/03/AIOTIWG01Report2015-
Applications.pdf Last accessed, August 2022

[13]G. Kornaros, “Hardware-Assisted Machine Learning in Resource-Constrained IoT

Environments for Security: Review and Future Prospective,” in IEEE Access, vol. 10,

pp. 58603-58622, 2022, doi: 10.1109/ACCESS.2022.3179047.

[14] G. Kornaros, O. Tomoutzoglou, D. Mbakoyiannis, N. Karadimitriou, M. Coppola,

E. Montanari, I. Deligiannis, G. Gherardi, “Towards Holistic Secure Networking in

Connected Vehicles through Securing CAN-bus Communication and Firmware-over-

the-Air Updating”, Journal of Systems Architecture (2020), vol. 109, pp. 101761,

https://visualstudio.microsoft.com/
https://www.st.com/content/st_com/en.html
https://www.st.com/en/evaluation-tools/32f469idiscovery.html
https://www.sciencedirect.com/science/article/abs/pii/S0167739X13000241
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf
https://el.wikipedia.org/wiki/Διαδίκτυο_των_πραγμάτων
https://www.tutorialspoint.com/internet_of_things/index.htm
https://ieeexplore.ieee.org/document/7373221
https://iot-analytics.com/10-internet-of-things-applications
https://aioti.eu/wp-content/uploads/2017/03/AIOTIWG01Report2015-Applications.pdf
https://aioti.eu/wp-content/uploads/2017/03/AIOTIWG01Report2015-Applications.pdf
about:blank

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

ISSN 1383-

7621,doi: https://doi.org/10.1016/j.sysarc.2020.101761 (http://www.sciencedirect.c

om/science/article/pii/S1383762120300552)

[15]G. Trouli and G. Kornaros, "Automotive Virtual In-sensor Analytics for Securing

Vehicular Communication," in IEEE Design & Test, vol.37, issue 3, pp. 91-98, print

ISSN: 2168-2356,onlineISSN: 2168-

2364,https://ieeexplore.ieee.org/document/9001022, June2020,DOI: 10.1109/MDA

T.2020.2974914

[16]O. Vermesan, M. Coppola, M. D. Nava, A. Capra, G. Kornaros, R. Bahr, E. C.

Darmois, M. Serrano, P. Guillemin, K. Loupos, L. Karagiannidis and S. McGrath, “New

Waves of IoT Technologies Research – Transcending Intelligence and Senses at the

Edge to Create Multi Experience Environments”, online PDF , Chapter3 in book

"Internet of Things – The Call of the Edge - Everything Intelligent Everywhere", River

Publishers, DK, October 2020 (ISBN: 9788770221962, e-ISBN - 9788770221962 -

Open Access), online https://european-iot-pilots.eu/internet-of-things-the-call-of-

the-edge-everything-intelligent-everywhere/

[17]M. Coppola and G. Kornaros, “Automation for Industry 4.0 by using Secure

LoRaWAN Edge Gateways”, in L. Andrade, F. Rousseau, (eds), Multi-Processor

System-on-Chip, vol. 2., ISTE Ltd, London, and Wiley, New York, March

2021, https://iste.co.uk/book.php?id=1739, ISBN : 9781789450224

[18]G. Kornaros, E. Wozniak, O. Horst, N. Koch, C. Prehofer, A. Rigo, M. Coppola,

"Secure and Trusted Open CPS Platforms", in book "Handbook of Research on

Solutions for Cyber-Physical Systems Ubiquity", Editors: Norbert Druml, Andreas

Genser, Armin Krieg, Manuel Menghin and Andrea Hoeller, IGI Global book series

Advances in Systems Analysis, Software Engineering, and High Performance

Computing (ASASEHPC) (ISSN: 2327-3453; eISSN: 2327-3461), 2017

[19]F. Kolimbianakis and G. Kornaros, “Software-defined hardware-assisted isolation

for trusted next-generation IoT systems”, In Proceedings of the 37th ACM/SIGAPP

Symposium on Applied Computing (SAC '22), Association for Computing Machinery,

New York, NY, USA, 139–146. 2022, https://doi.org/10.1145/3477314.3508378

[20]S. Leivadaros, G. Kornaros and M. Coppola, “Secure Asset Tracking in

Manufacturing through Employing IOTA Distributed Ledger Technology”, in The 21th

IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

(CCGRID’21), 2nd Workshop on Secure IoT, Edge and Cloud systems (SIoTEC), May

10-13, 2021, Melbourne, Victoria, Australia

[21]D. Bakoyiannis, O. Tomoutzoglou, G. Kornaros and M. Coppola, “From Hardware-

Software Contracts to Industrial IoT-Cloud Block-chains for Security, Privacy and

Authenticity”, in Smart Systems Integration Conference, Virtual Edition 2021, April

27th – 29th, pp. 1-4, doi: 10.1109/SSI52265.2021.9467030

https://doi.org/10.1016/j.sysarc.2020.101761
http://www.sciencedirect.com/science/article/pii/S1383762120300552
http://www.sciencedirect.com/science/article/pii/S1383762120300552
https://ieeexplore.ieee.org/document/9001022
about:blank
https://european-iot-pilots.eu/internet-of-things-the-call-of-the-edge-everything-intelligent-everywhere/
https://european-iot-pilots.eu/internet-of-things-the-call-of-the-edge-everything-intelligent-everywhere/
https://iste.co.uk/book.php?id=1739
https://doi.org/10.1145/3477314.3508378
about:blank

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

[22]G. Kornaros, D. Bakoyiannis, O. Tomoutzoglou, M. Coppola and G. Gherardi,

"TrustNet: Ensuring Normal-world and Trusted-world CAN-bus Networking," 2019

IEEE International Conference on Communications, Control, and Computing

Technologies for Smart Grids (SmartGridComm), Beijing, China, 2019, pp. 1-6. doi:

10.1109/SmartGridComm.2019.8909715

[23]D. Mbakoyiannis, O. Tomoutzoglou, and G. Kornaros, “Secure Over-the-air

Firmware Updating for Automotive Electronic Control Units”, Proceedings of the

34th ACM/SIGAPP Symposium on Applied Computing (SAC '19), pp. 174—181,

Limassol,Cyprus,2019,doi:10.1145/3297280.3297299,url: http://doi.acm.org/10.114

5/3297280.3297299

[24]G. Kornaros and S. Leivadaros, "Securing Dynamic Firmware Updates of Mixed-

Critical Applications", 3rd IEEE International Conference on Cybernetics (CYBCONF),

2017, pp. 1-7, doi:10.1109/CYBConf.2017.7985807

[25] https://zephyrproject.org/

[26] https://en.wikipedia.org/wiki/Zephyr_(operating_system)

[27] Smalley, Stephen & Carter, James. (2018). Security in Zephyr and Fuchsia.
10.13140/RG.2.2.15496.57603.

[28] https://www.zephyrproject.org/zephyrs-security-assessment/

[29]
https://docs.zephyrproject.org/3.0.0/reference/usermode/memory_domain.html

[30] https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

[31] https://www.comparitech.com/blog/information-security/what-is-sha-2-how-
does-it-work/

[32] https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-
algorithms/

[33]https://www.brainbell.com/tutors/c/Advice_and_Warnings_for_C/Principles_Of
_Reuse.html

[34] https://www.ibm.com/docs/en/cics-ts/6.1?topic=zos-flexibility-programming-
language

[35] https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-
calloc-free-and-realloc/

[36] https://www.log2base2.com/C/basic/introduction-to-c-
language.html#:~:text=C%20is%20a%20portable%20programming,language%20or%
20platform%20independent%20language.

[37] https://www.geeksforgeeks.org/clarity-and-simplicity-of-expressions/

about:blank
about:blank
http://doi.acm.org/10.1145/3297280.3297299
http://doi.acm.org/10.1145/3297280.3297299
about:blank
https://zephyrproject.org/
https://en.wikipedia.org/wiki/Zephyr_(operating_system)
https://www.comparitech.com/blog/information-security/what-is-sha-2-how-does-it-work/
https://www.comparitech.com/blog/information-security/what-is-sha-2-how-does-it-work/
https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/
https://www.thesslstore.com/blog/difference-sha-1-sha-2-sha-256-hash-algorithms/
https://www.brainbell.com/tutors/c/Advice_and_Warnings_for_C/Principles_Of_Reuse.html
https://www.brainbell.com/tutors/c/Advice_and_Warnings_for_C/Principles_Of_Reuse.html
https://www.ibm.com/docs/en/cics-ts/6.1?topic=zos-flexibility-programming-language
https://www.ibm.com/docs/en/cics-ts/6.1?topic=zos-flexibility-programming-language
https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/
https://www.geeksforgeeks.org/dynamic-memory-allocation-in-c-using-malloc-calloc-free-and-realloc/
https://www.log2base2.com/C/basic/introduction-to-c-language.html%23:~:text=C%20is%20a%20portable%20programming,language%20or%20platform%20independent%20language.
https://www.log2base2.com/C/basic/introduction-to-c-language.html%23:~:text=C%20is%20a%20portable%20programming,language%20or%20platform%20independent%20language.
https://www.log2base2.com/C/basic/introduction-to-c-language.html%23:~:text=C%20is%20a%20portable%20programming,language%20or%20platform%20independent%20language.
https://www.geeksforgeeks.org/clarity-and-simplicity-of-expressions/

Evaluation and Certification of Software for Examining the Integrity of Software on IoT devices

[38] https://docs.zephyrproject.org/3.0.0/reference/libc/index.html

[39] Andrzej Chmielewski Monitoring, Control and Effects of Air Pollution Book, in
Tech 9789533075266, Croatia (2011) Google Scholar

[40] Who Newsletter - Ten threats to global health in 2019

https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019

[41]W.Y. Yi, K.M. Lo, T. Mak, K. SL, Yee Leung, Mei Ling Meng, A survey of wireless
sensor network based air pollution monitoring systems Sensors, 153 (2015),
pp. 1392-31427

https://docs.zephyrproject.org/3.0.0/reference/libc/index.html
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Andrzej+Chmielewski+Monitoring%2C+Control+and+Effects+of+Air+Pollution+Book%2C+in+Tech+9789533075266%2C+Croatia+(2011)+&btnG=
https://scholar.google.com/scholar?hl=el&as_sdt=0%2C5&q=Andrzej+Chmielewski+Monitoring%2C+Control+and+Effects+of+Air+Pollution+Book%2C+in+Tech+9789533075266%2C+Croatia+(2011)+&btnG=
https://www.sciencedirect.com/science/article/pii/S2666351121000371#bbib13
https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
https://www.sciencedirect.com/science/article/pii/S2666351121000371#bbib14
https://www.sciencedirect.com/science/article/pii/S2666351121000371#bbib14
https://www.mdpi.com/1424-8220/15/12/29859
https://www.mdpi.com/1424-8220/15/12/29859

