PRIVACY PRESERVING CLOUD COMPUTATION FOR DATA COLLECTED
FROM MICROCONTROLLERS

by

Georgios Daoutis

BSc, Informatics Engineering, Hellenic Mediterranean University, 2020

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
SCHOOL OF ENGINEERING
HELLENIC MEDITERRANEAN UNIVERSITY
2022
Approved by:

Major Professor
Georgios Kornaros

Abstract

The growth of the internet of things has given us the ability to monitor and
control various situations from distance, mostly by collecting data from the edge, then
storing and distributing them with the use of servers. This data can be the location of a
person, medical data, industrial data, or other sensitive information, so we must
protect them from unauthorized users. If the server where the data will be stored is
semi-trusted, then we must protect take action to protect those data. As semi-honest,
we referred to a party that adheres to the protocol correctly while also keeping a log of
all its intermediate calculations. The proposed solution to this problem is the use of
homomorphic encryption which give us the ability to perform operations on encrypted
data such as additions and multiplications without the need of decrypting the data
first. This makes homomorphic cryptography ideal for this use because the server can
perform operations and at the same time, he cannot have access to the data.

In this project, we will build the above scenario for data collected from
microcontrollers. The microcontroller will have various data stored on its local
memory and when the user wants to offload them and send them to the cloud for
storage, the microcontroller will first encrypt those data with homomorphic
encryption and then send them to the cloud. The microcontroller will connect with the
outside world via NFC. When the user wants to extract some information from those
data, he will ask the server to execute an algorithm on those data and then send back
the result encrypted that only the user can decrypt with the android application using
his secret key. The query implemented is an encrypted inference based on a dataset
that determines the presents of humans in a room. For that reason, we trained a
perceptron and designed a that can run on the server without the server can access the

private values that the board collected.

MepiAnyn

H avamtoén tou Aladiktoou TV MpayHatov Hog €6mae T SuvaToTnTa Vo
TapaKoAOLOOVPE KOl Vo EAEYXOVLHE S1AQPOPEC KATAOTACELG OO QMOCTAOT), KLPIWG
OLAAEYOVTOG SeSOPEVH OO TEPHATIKEG OLOKEVEG, AMOBNKEVOVTAG KOl SIAVEHOVTHG TX
pHe TN xpnon Sakopot®v. Avtd ta dedopeva pmopel va eivor 1 tomobeoia evog
OTOHOV, 1aTPIKAE dedopéva, Bropnyavika dedopéva 11 aAAeg evaioBnteg mAnpoeopieg,
EMOPEVMG TIPETEL va Ta Tpootatevovpe. Edav o Swakopiotng otov omoio 6O
amnoBnkevutovv Ta dedopéva eival NUI-EUMIOTOG, TOTE TPEMEL V& AXBOLHE PETPR Y
TNV TPOOTACIX VTV TV Se60HEVOVY. Q¢ NHI-EUTIIOTOG, AVAPEPOHNATTE GE KOO0V
TIOL TNPel COOTA TO TPWTOKOAAOD, Vi Slatnpel emiong éva apyeio Kataypaeng 6Awv
TV EVSIAPECT®Y LTTIOAOYIOH®Y Tov. H mpotevopevn Avon o€ avutd to mpofAnua eivon
Nl XP1iON OHOHOPYPIKNG KPLTITOYPAPNOTG TTOL HOG Sivel TN SuvatOTNTA VA EKTEAOVE
TIPAEEIG 0€ KPLMTOYpOaONHEVA SedOpEVA OMG TIPOOBECELG KOl TIOAAAMANGIOGHOVG
XWPIg va xpeldileTan IPOTH VA AIOKPLTITOYPAPT|OO0LHE Ta Sedopéva. AvTto Kaboth v
OHOHOPQIKT KPLTTOYPXOIia 10QVIKA YO QUTH TN XPTOT|, EMELSN O SIOKOHLIOTHG PTopet
Vo €KTEAECEL Agltoupyieg Kol Tavtoxpova, Ogv prmopel va €xel mpoofoaon oo
dedopéva.

Xe autn Vv SIMAGHATIKT, SHI0LPYT|CALE TO TIHPATIAVE GEVAPLO Yo SedopEVa
TIOL GUAAEYOVTOL QMO HIKPOEAEYKTEG. O HIKpoeAeyKTG Ba €xel Siapopa Sedopéva
QmoBNKeLPEVH OTNV TOTIKT] TOL UVHHN KOl 0TV 0 XpNoTtng BéAel va ta oteilel oTo
cloud ywx amoBnkevon, o HIKPoeAEYKTIG B KPLTITOYPAPNOEL TPOTA XVTA T SESOHEV
HE OHOHOPEIKN Kpumtoypdenon kot otn ouvvéxewx Ba ta oteidet oto cloud. O
HIKPOEAEYKTIG OCLVOEETAL HE TOV €E0 KOOHO pédwm NFC.

Otav o xpnotg BéAer va eéaydyel kdamoleg MAnpogopieg amd ovtd T
dedopéva, Ba (NTroel and Tov SIOKOUIOTH VA EKTEAETEL évay aAyoplBpo oe auTd T
dedopéva Kol aTn ouvéxela Ba oTeiAel TO AMOTEAEGHA KPUTITOYPAPNHEVO TIOV [HOVO O
XPNOTNG HMOpPEL Vo oMOKPLITOYPAPTOEl pe TV €pappoyn android ko
XPTOHOTIOI®VTOG TO HUOTIKO KAEWST Tov. Emoelg oxedidloape Kot DAOTOINOOE Evav
TPOTIO YO VO EMEEEPYNOTOVHE OHOOHOPQOIKK Tor dedopeva. [avtov tov Adyo,
ekmondevoape éva perceptron Kot oxeSldoape éva aAyoplBpo mov pmopel va Tpéxel
OTOV Sserver To perceptron xwpig va €yel mpoofaomn ot evatonteg TANPOPOPLEG TIOV

OULVEAEEE 1| TAOKETOL.

Table of Contents

1 INTRODUCTTION....ccccceeeeereereeceresveceressescssessessssess 1
R A 500 N 23 12101 i (0) PR URRTRRRON 2
1.2 OUTLINE.eitiiiiiitetiieeeeeeeeeeeetiieeeeeeeerrerstaseeeeeeerssssanseseeesessssssnnsesessssssssssnseeessessssssssnnnseesessnes 2

2 INTERNET OF THIINGS....ocuccetteeeeerrerecerrereeserseseescssssssscssssssscssasssssassessssssssssanse 4
2.1 PERCEPTION LAYER..uuuueeiierrruutueeeeeeerssssnieeeeeesssssmmneneeesssssssmnssessesssssmnseesssssssssnseesssssssssnnsessees 5
2.2 INETWORK LAYER..uuuuieeterrereuunneeeeeeresssssssnneeeeeeessssssssnsseesessssssssssmmsessesssssssssssssessesssssssssnnensees 6
2.3 APPLICATION LAYERuuuuuueeeeerrrersneeeeeersssessneeeeeesssssssneeeeesssssssnnseesssssssssnneessesssssssnnessssssssssnnonnees 6

1S I ©3 1910 1 5) D RN 7
3.1 CLOUD COMPUTING.....cevvtuuieeeeeerrrrrrnniieeeeeersessnnneeeeeessssssssnmaeessssssssssneeseesssssssssoseessssssssssnnnesees 7
3.2 CLOUD COMPUTING VS LOCAL RESOURCES...uuuuiiiiiiitieeeeeeeiiiiieeeeeeettiiieeeeeeetesssaesseessssannseeseses 8
3.3 CLOUD COMPUTING PRIVACY ISSUES...uuuiiiiiiiiiiiiieeeeeeietieee ettt eee e tetvaaseeessesevesaansn s 9
3.4 USE OF ENCRYPTION IN SAAS STAGES....ceuuuueiieiiiitiieeeeeeeetttiiieeeeeeettsnesseseressnnssessessssnsesseseees 11

4 HOMOMORPHIC ENCRYPTION....ccccceeeereereceereeseccerersscesersecsssesssssssseasesessans 13
4.1 HOMOMORPHIC ENCRYPTION...uuuueieirtrunneeseeeeeessssneeessesssssssssessesssesssmnmsseseessssnnnssssssssesssnssessees 13
4.2 HOMOMORPHIC ENCRYPTION TYPES....cciiiiiiiiiiieiieeieeeieeietieeeeeeeeeeteeeaaseeseeeeeeessssanannseeaeees 13
/G T O G Yol 213 Y 1 TSRO 14

F G B N O (0 (G Yol 1 T=J 1 =N 14
4.4 MMICROSOFT SEAL ..ottt et e ettt e s e e ettt es s e e s ee s ab e s sessesssannannnns 15
4.4.1 Using Microsoft SEAL CKEKS.......ccueuueeivieeireecieesiteeeseeseeesssessssessssessssssssssssnnns 16
4.4.2 Creating A MESSAGE.cceuveeeesuereriereernaeeeeasreeesaseessasetessssesesssseeessssssssssssssseeseeees 16
4.4.3 EnNcode Of the MeSSAQGE..........cccvueevveeieeeerieeieeeiteescseesiteesseesssessseessseesssessssessseenes 17
4.4.4 Encryption of encoded MASSAGE.............ccueecveeseeriueeriuersieeesiessieesiseeeesssssnseessnns 18
4.4.5 Multiplication & ReSCAIE...............oeeecueeeeeeiieecteeeecieeeeteeerteeeeeae e aeeeeeaseeaenaeas 19

5 PATTERN RECOGNITION...cuicereeeceereeesecereessecessesseccssessecssssssscssssssssssasessssase 22

5.1 PERCEPTRONS. tuutuuieitiitittteeeeeeetttat e eeeeeetsstasaseeseessasasseesesssasaassesssessnnsssssesesssnnnssseseessssnns 23
5.1.1 PeICEOPLTOMN.c.....uueeeeeeeeeeieeeeeeeeeeteeeeeeettteeseeseatteeesenrtteesessnsreeeeseennssnsnsnnnnaannanns 23
5.1.2 Multi-LaYer PerCePIION.........coevueieeereieiiiierieteesiteeiee st estessitessaeesssaesnreeesssaneees 23

6 RELATED WORK.oeueertenecerrenrecessessesessessescssessessssessssssssssssssssssssssssssssssssssanee 26

7 IMPLEMENTATTON.....ccccceeeeeerereceereerescereasesssssssssssssssssssssssssssssssssssosssssssssssssoses 28
7.1 SYSTEM OVERVIEW.....uieieenentnerenenrererereeeeeereeeeeeeeeeeeeseeseeeeesesseens 28
7.2 EDGE TO SERVER SIDE...uuuuueeeeieeeeetrersnuneseeeeseeesessssmsssssessssessessssssssmsssssssssssssssssmsssssssssssssssssnne 28

7.2.1 IMPIOMENEALION.c.uveeeieiieiiriieeiieeeiieeneeestesseessseesseesssessssessseessseesssassssessssesssnnnns 29
7.2.1.1 EMDEdded SYSTEIM......ceerutruiriieitriieiteiteiteteiteite ettt ettt et ettt ettt et ettt et e b e st e ebaenaee 29
7.2.1.2 T2C PIOLOCOL....ceuieiiiierieetteteete et e st et e te st et ete st esbe et e esbesaeesseesesssesseessasnsesssensaensesssesssenssaesnns 30
7.2.1.3 INFC ADNLEIINA . 0uutttttuiieieeeeeeeeeeeeeeeeeeeeeeereeeeereresserearaa......aaaeesesesesesesssesessessssssssssssssssssnneeessssesssns 32
7.2.1.4 ST25 fast transfer mode embedded library.........cccceceeeieriiiniinienniinieeccceecee e 34
7.2.1.5 Software implementation...........cccceeetrieieirieieiete ettt ettt ettt ettt 35
7.2.1.6 Microsoft SEAL I0T IDIary......cceecuererrieiienieriieiesteseesieetese et esteeeeseeesseessesaesaesssesssessesnseenes 39
7.2.1.7 ANAroid appliCatiOn.........coeerueeierienierteteeit ettt sttt b ettt sre e st esbaeeeeaee 40
7.2.1.8 Power and tilme MEASUIEITICIIS.eeeerurreeeeirereeirreeeeessreeeeesteeeeesseesessseesssssseeesssseessssssseeesssesees 41

7.3 SERVER TO CLIENT SIDE...uuuceerrrutuuuneeeesreessssunseeeessssssmmneeeesssssssmmneeessssssssssnsesessssssssmsnseesesssses 42

7.3.1 IMPIOMENLALION.veveereeeeeeetieesieeeiteesteesteeseessseesseesssessssessssessseesssessssesssesssnsnns 44

7.3.1.1 Dataset deSCIIPION. ...cc.ueruerruirteriterieeterterieesteete et e st e tesatesat e beebesatesbeebeestesbeesseenbesstesseesesasesns 44

7.3.1.2 Perceptron architecture & trailing.........ccoceevueeiereeneniienterieeeeeteeteesee ettt st saeesareeeebeeeean 46

7.3.1.3 Encrypted matrix multiplication implementation............c.cceeeererirenenenieneneneneneeeseneeeene 48

7.3.1.4 ENCIYPted INFEIONCE. ...cc.eiuieiietieeietieteeteeeet ettt ettt ettt et et e et eseene et eneesnseenneenne 50

7.3.1.5 MODile aPPIICAtION....cc.eiruiiiiriieiteriteie ettt ettt ettt e e e st et e st esaeesbasnsessnessaesnnbeesnnne 52

8 CONCLUSIONS AND FUTURE WORK......ccccnnueeniicccssssssssassssscsssssessossassasses 54
9 BIBLIOGRAPHYciiiiiiiiinneniiiicossinsssssssssssscsssssssssssssssesssssssssssssssssssssssssssssssssss 55
10 APPENDIX..cttiiiiiiiiiiinnnssnesssiecssssssssssssssscsssasssssssssss 61
ALPPENDIX Al iiitteeeeiteee ettt e ettt e e e ettt e e s eatte e e sttt e e e sateee bt eeee bt aese bt eeseanbaee e nbaee e rtaee e anaaeeas 61
101 APPENDIX Bttt ettt e st e e e st e s st e e st e e e e neee s 62
10.2 APPENDIX Clreririieeieeiteeeeetteeeette e setee e setee s st ee s saae e e s suneeesssaseeesssnsaeesssnseessssseeesssnseeens 63
10.3 APPENDIX Dottt ettt ettt et st e et e st e e st e e st e st e s beesab e e sabaesnsaessnneens 64

vi

List of Figures

Fig. 1: TOU SITUCKUTE.eeiiiiitieeeeiteee ettt ettt e st e e e e ae e e s enraee e e e e e e e e annnes 4
Fig. 2: Transmission teChNOlOgies...........coceevuerienienieriienieeeteeeeee et 6
Fig. 3: Cloud Service Models *........c.ccoouiiieiieeiiieecieeete et e e sre e e eaeae s 8
Fig. 4: Microsoft SEAL example........ccccoveriiririenieiinieceeeeteneeie e 15
Fig. 5: The CKK Scheme*..........coii ittt 16
Fig. 6: The message fOrmat.........ccooueriiriiriinieiinieeeeeeeereet et 17
Fig. 7: ENCOAE PrOCEAULIE........cccuieeeiiiiieeieeiieeie et eeteeteeeteeseeesteesaeessaesseesssaesseasssasnns 18
Fig. 8: The CKK SCheme........cccueiiiiiiiiiieeteeet ettt 18
Fig. 9: Polynomial modulus degree and max coeff modulus bit..........cccccecuervrvuiennneen. 19
Fig. 10: The CKK SCheME........ceiiiiiiiiieeiieeeieceiteestee et esre st ereee e e e s avaee e s e enens 20
Fig. 11: The CKK Scheme *source:

https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf........c.ccccccevrriirniennnnen. 21
Fig. 12: A POICEPIION. ..cccuuetiiriiirieeieiiteeeeitee e ettt e st e e e eree e s s araeesenraeesesnreeesesennns 23
Fig. 13: Multilayer PerCepPtroN.........cccceeieeieirienieiniieeieereesieesieeseeeseeessseessssneessssnens 24
Fig. 14: First layer calCulations...........cccecueeriieiiiieeiiieeiieecceeeeveeceveeesveeseeeee e e e 24
Fig. 15: Second layer calCulations...........cccevveruerierieneenienienenieeeeseeseeeeesee e 24
Fig. 16: SYSIEM OVEIVIEW.....eiiiiiiiiiiiiiiiieiiiieieete ettt ettt et e s ere e s saraee e s 28
Fig. 17: Sequence diagrall...........ccecueerieriierniienieenteeieerieeete et e st eaeeste et eessneae s e e 29
Fig. 18: 32F746GDISCOVERY DiSCOVETY Kit.......coeevueriiniiienieneiienieereeeseeeseeene 30
Fig. 19: 20 DUS™ ...ttt ettt ettt s 31
Fig. 20: I2C WaVeTOIT..c..coouiiiieieriieieeteseeeetese ettt st 32
Fig. 21: 12C mMassage fTaIme........cccueerieeciieiieeieeiieeieeseeeeteeseeereesseesveesseessseesssesnseesnns 32
Fig. 22: NFC QNeNNA.....cccctiiiiiiiiiiiiiiiiiteeeiieeieeere ettt sre e s srnn e e e e ssnnnaees 33
Fig. 23: ST25DVE4KC I2C deVICE....cveeueruiriieniiieieiertesteeieeieeeteeeteteee et 34
Fig. 24: ST25FTM tranSmiSSION StALES.........ccererueeereirueeeririreernereeeeeeeeeeesessssnnnnnneeeee 35
Fig. 25: STMB32CUDEIDE.......c..coiiiiiiieieieeeteeeesee ettt 36
Fig. 26: T2C S UP.cuuureeiieiiieeieiiiteeeeiteeeesirteessiireesessseeeeessssaeeessssaeesssssaessssssssssssnnes 36
Fig. 27 PrOJECE SELUP...ceiieiueteeieeiiteeeeritteeeeiieeeeeeereee s et e e esareeesessreeesesnnneeessnneneessnnnnns 37
Fig. 28: Usage of GPO_ACHVALE........cceevueriirerienieieeieeteseeeeeteie et 38
Fig. 29: Board-antenna CONNECLION.cccuerreerueriueruerruentenreesreseesreessreeesreessneessseesans 38
Fig. 30: SEAL-Embedded.........ccccocerimiriririeiiiiieteneneneeeeteeeteeeteee e 40
Fig. 31: Android appliCation.......ccccueeruiiriieiiienieeteeieeeee ettt 41
Fig. 32: Time MeasUIeIMeNLS.ueiriuteirrieiiiieiiteeeteeereeereeesrreesrreeeeessnnraeeessennneee 42
Fig. 33: POWEr MEASUTEMENLS.ceiiriireeieriiieeeeiireeeeesiiteeeesireeeeesiaarrerreeeeeeeeeessssssnnnns 42
Fig. 34: Sequence diagraml.........cccceevuerueerierieniinieeteneere ettt s e e sreessaeeenee s 43
Fig. 35: Dataset viSualiZation.........c.c.eeeueerueeniennieenienieeree ettt e e e eeeee e 45
Fig. 36: Neural network arChit@Cture..........ccecueerieriieeniieeniiieieee ettt 47
Fig. 37: Extracted weights mMatriCes.cecueeeerierieniniieniereeieeteseeeee et 47
Fig. 38: ConfuSion MatliX.......cccueeiiierieeiiienieeieesieccteeeeeecieesee e vt eseeesareeeessaeesnsnaeanns 48
Fig. 39: Matrix column-major fOrmat.........c..ceccervuererrierrienennienieneeee e 49
Fig. 40: Ciphertext encrypted by the board...........ccceeeviiiriiiiniiiiniiiiecceccieee e, 50
Fig. 41: Encrypted inference.........c.ccooeeieriinierieniinienieseeeeteseeieste et 51
Fig. 42: Plaintext-ciphertext COmMPAriSON..........ccecueruerrueritereerienieneereeesteeeeeeeeeeeaeens 51
Fig. 43: Encrypted neural network analysis........ccccceeverrienniennieniieniieniee e 52
Fig. 44: Android client appliCation...........cceevueerieriiieniienieeriesieeee et e e 53

vii

viii

List of Abbreviations and Symbols

HE
CKKS
loT
MLP
NFC
GPO
RSA
LWE
PaaS
SaaS
laaS
WSN

Homomorphic Encryption
Cheon-Kim-Kim-Song
Internet of Things
Multi-Layer Perceptron
Near Field Communication
General Purpose Output
Rivest—-Shamir—Adleman
Learning With Errors
Platform as a Service
Software as a Service
Infrastructure as a Service

Wireless Sensor Networks

ix

1. Introduction

1 Introduction

The move to the cloud has been accelerated during the past few years. The process-
ing power and storage made available by the cloud providers are used by millions of
users, both businesses and people alike, offering a variety of services that make our
lives easier [1]. The IoT in particular has grown significantly. Nowadays, the services
that we can benefit from, are ranging from simple databases for storage to complete
stand-alone systems for IoT management that can store, process data, and make auto-
mated decisions. This kind of applications will make the monitoring and controlling of
various events more broadly available with less cost. As a result, we can benefit in
many areas like precision farming, smart cities , etc... IoT and many other applications
that rely on the cloud will undoubtedly begin to play a bigger role in our personal life
soon [2]. Sensitive data that are collected by the IoT devices are sent to the cloud
providers and therefore we need to protect them from unauthorized access [3]. Using
cryptographic algorithms like symmetric and asymmetric encryption we can achieve
limited security because the data must still be decrypted on the server to be processed.
This means that we need to have trust in the cloud provider for proper data manage-
ment.

In recent years as computers have become more powerful and cryptography has
evolved, more techniques are being continuously developed that can solve problems
that until recently were impossible to be solved, enabling us to have complete control
over our data. One of these techniques is homomorphic encryption [4]. Data that has
been encrypted using homomorphic encryption can be analyzed or changed without re-
vealing information to anyone. Similar to other types of encryptions, homomorphic en-
cryption encrypts data using a public and a secret key. After the manipulation of the
data is completed, only the person who owns the private key can access the encrypted
data. Homomorphic encryption will play an important role as it will allow us to have
full control over our data but there is still research to be done as it is a new technology.
Some issues that prevent us from using this technology in IoT are the large size of the

cyphertext data generated and the overhead which burdens the constrained IoT devices

[5].

1. Introduction

1.1 Contribution

The purposes of this thesis are the design and development of an IoT applica-
tion while exploring the possibilities of homomorphic encryption in embedded sys-
tems and the extraction of information from the data collected while maintaining the
privacy of users' data on the cloud. More specifically the infrastructure will consist of
an embedded system that will encrypt homomorphically the collected values from sen-
sors using the SEAL-Embedded library[6]. Those values are the temperature of a
room, light and sound intensity, PIR, and CO2. Then the ciphertext will be collected
through the NFC android app and will be sent to the cloud for storage. For the server
to process data and extract information, we trained a perceptron that can determine if
there was a human presence at a given time. For the server to be able to calculate the
output of the perceptron we also design and implement an algorithm that multiplies an
encrypted matrix with one that is not encrypted, the matrices are the wights of the per-
ceptron that are in plaintext form and the other matrix is the input that needs to be mul-
tiplied with the weights matrices, this way the values that the board encryped are safe
from leaking or to be used from the server for other purposes. Finally, the owner can
make queries to the server by using the android app that was developed. The answers

to the queries made by the user are sent back to him encrypted.

1.2 Outline

The thesis's outline is presented below, and the important features of each chapter are
emphasized.

Chapter 1 - Introduction - An overview is provided in the Introduction section. We
mention why homomorphic cryptography is important in IoT and also describe the
work developed.

-Chapter 2 — Internet of things: Analysis on the structure of the Internet of Things.

-Chapter 3 — Cloud: In this chapter we describe what a Cloud is and the services that

it offers as well as concerns about the privacy of the users.

1. Introduction

-Chapter 4 - Homomorphic encryption: Here we analyze what homomorphic cryp-
tography is and delve into the analysis of the CKK scheme which we used in this

work.

-Chapter 5 - Pattern recognition: We describe what pattern recognition is and the
process we follow to build such a system. We also describe the Multi-Layer Percep-

trons algorithm.

-Chapter 6 — Related work: Discussion about homomorphic encryption and pattern

recognition that relates to our proposed work.

-Chapter 7 — Implementation: Detailed performance analysis on the system we im-

plemented.

-Chapter 8 — Conclusion: Conclusions and improvements that we can implement in

the future.

2. Internet of things

2 Internet of things

In general, the Internet of Things (IoT) is the interaction between people,
objects- devices, and the internet [13]. The IoT is a collection of heterogeneous
devices that can connect exchange, and transfer data with other connected devices
usually over the internet or inside a local network. These devices are embedded with
sensors, software, and other related technologies. Examples of 10T applications include
everything from basic sensors for measuring and reporting the temperature to
sophisticated industrial equipment for enabling automated control [14]. Healthcare,
manufacturing, and agriculture are just a few industries that are quickly adopting IoT
as it allows the collection of useful data that can be used for better usage of the
available resources or on-time notification of various events. The demand for IoT
devices is rising even in regular households. According to Forbes [15] by the year
2025, the IoT industry is expected to have an economic impact of $11 trillion. In a
report released in 2016, Statista Research Department predicted that 75 billion IoT
devices would be available to consumers worldwide by the year 2025. The central

concept of the Internet of Things is defined by a three-layer architecture.

-
Appllcatlon Layer ==

Cloud / Servers @'
N

1

Network Layer
Routers and Gateways \ /

/1\

Perception Layer

Sensors and Actuators
.]
m . = ‘l‘
el e

Fig. 1: Iot structure
*https://www.researchgate.net/profile/Qasem-AbuAlHaija/publication/347072341/figure/fig1/
AS:970126849482752@1608307673848/10T-Layered-Architecture-Considering-the-3-layer-Scheme-

of-IoT-4.png

2. Internet of things

2.1 Perception layer

This is the architecture's initial layer, and it is responsible for gathering and
pre-processing data with the ability to react to different events. Big data is created at
this layer, where they are digitalized and sent to the Object Abstraction Layer for
additional processing or storage through secure channels. The main technologies that
make up this level are the following:

-Sensors and actuators: A crucial element of IoT systems is the sensors as they can
observe the outside world and report the collected data so the machines or the people
can use them. Sensors might be either analog or digital. Some examples of sensors that
record their environment are temperature sensors, humidity sensors, pressure sensors,
accelerometers, gyroscopes, cameras and many more. On the other hand, actuators are
devices that can interact with their environment,some examples are step-motors, smart

door lockers, smart light bulbs and more.

‘Objects and devices: Devices or objects are various forms of hardware such as mi-
crocontrollers, household appliances smartwatches that can broadcast data over the in-
ternet and can be configured for certain purposes. These devices must have low con-
sumption as many times they have to operate with batteries and have limited process-

ing capabilities.

‘Transmission technologies: These technologies are used for local network traffic or
for transmitting the data to the gateway, their range can be from few centimeters to few
kilometers. Some examples of such technologies are ZigBee, Bluetooth Low Energy,

NFC, Wi-Fi.

2. Internet of things

Bluetooth LE
ZigBee

NEC (EMV) . Thread (6LoOWPAM) * 802.11a/bin/ac
RFID o {/\Qﬁave . * 802.11af (white space)
WirclessHIART 802.11ah & 802.11p
ISA100.11a (6loWPAN)
+ EnOcean * Wi-SUN (6LoWPAN)
+ Plus more « ZigBee-NAN (6LoWPAN)
o = /] / 5 * Cellular
/4 y / / * 2G/3GHG
Yy / . > / + LTE-MTC
/4 i : Wireless Wireless \ 5
{ Wireless Personal Wireless Local Neighborhood Y o + 5G in the future
Proximity | Arca Network | Area Network ArcaNetwork REENGE 0 * Low Power Wide Arca
A " LOW Wl 1l ¢
(GWEAN)) LOWNAN) L (WWAN) (LPWAN)
X N d H y A * SIGFOX
2 : 2 : * LoRa
* Telensa
Contact range 4 1 = HE
(0-10 meter) : Short range Short/Medium range Medium range Long range * Plus more
(10-100meter) 1091000 meter) (-5-10 km) (up to 100 km)

Fig. 2: Transmission technologies

2.2 Network layer

This layer must handle large amounts of data generated by smart devices or
gateways and send them via secure channels to the cloud provider that hosts the IoT
application. The network layer uses a variety of network technologies to achieve
scalability, large bandwidth, and security that various I[oT applications need to
function. To locate and route the data packets two main protocols are used in this layer,
the IPv6 protocol is usually used by the gateways to connect with the outside world.
But when a gateway is difficult to use like wireless sensor networks (WSN) a popular
choice is IPv6 Low Power Wireless Personal Area Network (6LoWPAN). The objects
are using technologies like Bluetooth, ZigBee, or NFC to reach the gateway.

2.3 Application layer

It receives massive amounts of data from the previous layer and stores, pro-
cesses, and analyzes them. All the software and hardware required to provide a particu-
lar service over the internet are contained in the application layer on the cloud, more

about the concerns and the abilities of the cloud in the next chapter.

3. Cloud

3 Cloud

3.1 Cloud Computing

In both industrial and commercial applications, cloud computing has become
an important paradigm that has garnered a lot of attention, especially in recent years.
Without even knowing it, a lot of users and businesses utilize the cloud every day. For
instance, all forms of email, online conferences, storage space for our personal files, or
programs like Excel and Microsoft Word, that are not physically installed on our per-
sonal computer, are some forms of cloud computing applications. All the infrastructure
to support these services exists somewhere in the world but customers might not be
aware of the location of the servers that are hosting the source code of the programs
they use for storing their data.

The term cloud computing is used to refer to computer resources offered on de-
mand without the user's direct involvement by a worldwide network of connected
servers accessible through the public internet [7]. These resources are mostly storage
for data, processing power, and source code and must be delivered in seconds as if
there was no difference if these applications were installed locally. This combination
of computing resources can be used for many needs and many different kinds of appli-
cations.

To better understand how different organizations and ordinary people benefit from the

cloud we must take a look at the three categories of services provided by the cloud.

Infrastructure as a service (IaaS): This is a service that offers basic processing and
storage space over the internet. Instead of investing in their server or network infra-
structure, businesses can rent those services and use them as needed instead of keeping

those resources locally.

-Platform as a service (PaaS): Developers can use the PaaS platforms for the creation
of software applications. A full software environment can run at a service provider’s
server while customers don't have to worry about the infostructure to support it.

Google Cloud and Microsoft Azure are two examples.

3. Cloud

-Software as a service (SaaS): Instead of purchasing a full license for an application,
SaaS users can rent it for as much time as they need it through an Internet browser.
SaaS follows a pay-per-use business model. These services are addressed to different

customers.

Cloud Service Models

Packaged Software
0S & Application Stack End Users
Servers Storage Network S a a S
QS & Application Stack Application
Server Storage Network Pa a S Developers

Server Storage Network Infrastructure &

Network Architects

Fig. 3: Cloud Service Models *
*source: https://miro.medium.com/max/1400/1*OwcTPPaoQwE6e-cnOluGmw.png

3.2 Cloud Computing vs Local Resources

There are many advantages of using cloud computing instead of our computer
resources locally.

For companies that want to host an application online, the benefits of using a
cloud provider are many. First of all, there is no need to invest in new hardware and
software or maintain the existing ones because they are provided as pay-per-use much
faster and cheaper. Companies can also quickly increase or reduce the amount of com-
puting resources to much their needs. This is frequently done automatically giving the
impression that resources are limitless and that applications can always handle the de-
mand. Resources are returned to the resource pool when they are no longer required
and they become available for others to use. We can also increase application speed by

using cloud load balancing techniques in order to share these recourses more effi-

https://miro.medium.com/max/1400/1*OwcTPPaoQwE6e-cnOluGmw.png

3. Cloud

ciently among several applications that may run in the cloud. This means that by host-
ing our application in the cloud, the operational costs of many applications are re-
duced.

For the users using Cloud-Based Software instead of a desktop app, the main
benefits are that they avoid the process of installing or updating the application locally
and making backups of their files. They often avoid the cost of paying for software as
it is often free with the display of ads or a small fee.

There are also many environmental benefits of cloud computing in addition to
its technological and economical ones. On-site servers require ongoing electrical
power and cooling systems to prevent overheating. One server can consume 500 to
1,200 watts of electricity per hour. It is estimated that 200 terawatt hours are used an-
nually by larger data centers. That exceeds the whole national energy usage of several
countries [27]. These numbers can be drastically reduced thanks to cloud computing.
According to research from Northwestern University, the transferring of frequently
used software applications to the cloud would reduce energy usage by up to 87 percent
[24].

3.3 Cloud Computing Privacy Issues

To better understand what privacy is we must clarify the difference between
privacy and security. Although these terms are related, data security and privacy are
not the same. We can have only security without privacy but not the opposite. Data se-
curity enables us to defend our data against unauthorized access, it puts into practice
the protocols that ensure our information's availability, confidentiality, and integrity
[28]. On the other hand, privacy refers to an organization's responsibility to use peo-
ple's personal information only for purposes to which they have given consent. These
are usually personally identifiable information (PII), information that can be used to
identify a specific individual such as financial data, medical records, social security/ID
numbers, names, and birthdates. In many developed nations, it is protected by the con-
stitution, making it a basic human right.

The nature of cloud services makes protecting customers' privacy a difficult
task since the data are frequently being sent and maintained by a different party other

than the data owner. The adoption of cloud services is significantly hampered by con-

3. Cloud

cerns about the leakage of private information or the loss of sensitive data. These wor-
ries are indeed true. Services that depend on people's location, preferences, schedule,
and social networks would need to take into account privacy since there are real poten-
tial dangers. For instance, it was revealed that in 2010 280 million user records con-
taining personally identifiable information (PII) such as usernames, emails, phone
numbers, and locations were exposed by insecure back-end databases of mobile apps
[9]. Concluding, the public cloud is a popular architecture for cost reduction. However,
depending on a cloud service provider to handle and store your data creates a lot of
privacy problems. Using cloud services ultimately comes down to making trade-offs
between security, privacy, costs, and advantages that it offers. Some concerns about

privacy issues are described below [10]:

-Lack of User Control: When a SaaS environment is used, the service provider is in
control of data storage, with limited visibility and control by the user. There is a risk of
theft, leak, or misuse because the data of the customer are processed in the cloud by

computers and software that they do not own or control.

-Unauthorized Secondary Usage: The service provider may make a profit from sec-
ondary uses of customers' data, mostly by targeted advertisement as part of the cloud
computing standard business model. But some secondary data use might be unwanted
to the data owner. For instance, a cloud provider is using the data for reasons other
than those that were first agreed upon with the customer, like resale the costumer's data

to other secondary businesses without his permission.

-Data Proliferation and Transborder Data Flow: Cloud providers can have many
servers in different countries. Moving data for processing from one country to another

increases risk factors such as legal complexity about how this data can be used.
‘Lack of Customer Trust: Individuals will develop mistrust when it is unclear to

them why their personal information is being asked, how it will be used, or by whom.

This lack of control and visibility of the provider is also contributing to this mistrust.

10

3. Cloud

3.4 Use of encryption in SaaS stages

If encryption is not used when it is required, the data may be exposed to
external or internal threats. Despite the fact that utilizing encryption can help to retain
data security on our infrastructure, putting encryption into practice is a difficult task
and requires a lot of planning and design. It is difficult to determine when to encrypt
the data and when decryption is necessary. The improper stage to encrypt data could
result in poor computational resource management decreased performance, and
increased costs. To better understand at which point the cryptography is most
appropriate we have to look at the stages that the data went through from creation and

sending to the server until processing.

-Data in Transit: Data sent between a server and a client, as well as between servers,
can be encrypted by the network. This is done in order to prevent unauthorized users
from eavesdropping on network traffic and to achieve the integrity of the data. Data
must be transmitted through the Secure Sockets Layer when the device can be ac-
cessed via a web interface, and only by security protocols like Transport Layer Secu-
rity [29].

-Data at Rest: This is when the data are stored on the server and are not in use. In
SaaS environments, we have two options. The first option is, following the receipt of
the data from the client, the cloud provider encrypts them with a key that he owns.
This would secure the data from outside threats and allow the provider to retransmit or
store the data in an encrypted form. The second option is, prior to uploading the data to
the cloud, the client can encrypt it using an encryption key and an encryption method
that only he knows. Given that the service provider lacks the decryption key, the SaaS
application can only perform a restricted number of activities on the encrypted data.
The encrypted data won't be readable by the SaaS application as a result he will not be

able to process them.
-Data in Use: By using conventional encryption algorithms, encrypted data must first

be decrypted before being loaded and processed in the server’s memory. This proce-

dure should be done with care as the data may leak at this stage. This makes it difficult

11

3. Cloud

to always maintain the data protected. Therefore, it will be very helpful to be able to
process encrypted data without having to decrypt them. This can be done by using ho-
momorphic encryption which we will analyze in the next chapter. This way the user
can enhance their privacy from an honest-but-curious [30] cloud provider. As honest-
but-curious, we referred to a cloud provider that adheres to the protocol correctly while

also keeping a log of all its intermediate calculations for its personal profit.

12

4. Homomorphic encryption

4 Homomorphic encryption

4.1 Homomorphic encryption

Homomorphic encryption is a type of encryption that has the ability to do eval-
uations like additions and multiplications on encrypted data without having access to
the secret key while the computation's outcome is always encrypted [20]. Generally
speaking, homomorphism is a transformation that preserves structure between the
plaintexts and the ciphertext. The necessity of using a secret homomorphism to en-
crypt the data of a bank is first mentioned in this paper [25] which shows that Time-
shared computers needs manipulate the data without the need to first decrypt it.
Homomorphic Encryption works at the circuit level, which means that the functions to
be used should only consist of binary operations such as AND and XOR.
Homomorphic encryption is a term for an encryption scheme that can encrypt 0 and 1
and can multiply and add them. As we can see below, whatever calculation we perform
on the encrypted numbers, must have the same result if we decrypt them or as if it was

being decrypted.

E (ml+m2)=E (ml) + E (m2)
E (m1 * m2) = E (m1) * E (m2)

Despite the fact that homomorphic evaluations can be performed on the
encrypted data, it is crucial that this encryption must be as secure as the standard
encryption methods. With the ability to compute encrypted data, it is a technology that
we need to make use of as it has great potential in many real-world applications such
as private statistical testing, private machine learning, and private neural networks
[21],[22],[23]. Homomorphic encryption will play a key role in the future as more and
more applications will rely on the cloud and people and companies are growing more

apprehensive about the security and privacy of cloud data.

4.2 Homomorphic Encryption Types

Different homomorphic encryption techniques are in existence, some more powerful
than others. They are distinguished by the types of functions that can be applied to the

encrypted data. The homomorphic encryption types can be separated into three

13

4. Homomorphic encryption

generations of groups. Each generation tries to improve the problems that preceded

them:

-Partially homomorphic encryption: Partially homomorphic encryption only allows
a unlimeted number of operations to be evaluated on encrypted data, either just addi-
tions or just multiplications, and have only a small number of uses in real-life scenar-
ios. Algorithms such as RSA and El Gamal belong to this category as they can only
multiply encrypted data. These kinds of schemes are not safe to be used as homomor-

phic encryption schemes as they are vulnerable to CPA attacks.

-Somewhat homomorphic encryption: Allows computing additions on encrypted
data as well as a limited number of multiplications. But as opposed to partially homo-
morphic encryption, a random element is included in the encryptions to prevent CPA
attacks. This creates a new problem as the noise grows every time an evaluation is per-
formed on the ciphertext, as a result, after a certain number of evaluations are applied

to the ciphertext the correct decryption is not possible.

‘Fully homomorphic encryption: In somewhat homomorphic encryption, after we
have performed several arithmetic operations, the noise will have increased so much
that it cannot be decrypted correctly. Fully homomorphic encryption includes boot-
strapping techniques that allow the processing of the ciphertext further. This kind of
homomorphic encryption enables much more if not unlimited multiplications and ad-

ditions.

4.3 CKK Scheme

4.3.1 CKK Scheme

The Cheon-Kim-Kim-Song (CKKS) [11] is a fully homomorphic encryption
scheme. The security of a CKKS system is based on the difficulty of learning with er-
rors (LWE) over a ring of polynomial factors. CKK and all the other Fully homomor-
phic encryption (HE) became feasible after the development of a bootstrappable algo-
rithm that could add and multiply homomorphically by Gentry [26]. Using CKKS, we

are able to do calculations on complex value vectors and real values as well [8].

14

4. Homomorphic encryption

The CKK homomorphic encryption scheme supports the following four algo-
rithms KeyGen, Enc, Dec, and Eval as any HE scheme. Let M and C represent, respec-
tively, the plaintext and ciphertext spaces, a HE scheme IT = (KeyGen, Enc, Dec, Eval)

consists of four algorithms and works as follows:

-KeyGen(1A). The Key Generation Algorithm with respect to the security
parameter A, the output of this algorithm is a public-secret pair of keys pk
and sk and an evaluation key evk.

-Encpk(m). The encryption algorithm encrypts a message m € M into a
ciphertext ct € C using the public key pk.

Decsk(ct). the decryption algorithm returns a message m € M using the
ciphertext ct and a secret key sk.

-Evalevk(f; ctl, . . ., ctk). Using the evaluation key evk and a tuple of
ciphertexts (ctl, . . ., ctk) Eval carries out the function f on the ciphertext.
The output of the evaluation algorithm is a ciphertext ct € C.

4.4 Microsoft SEAL

The Simple Encrypted Arithmetic Library (SEAL) [33], is an open-source FHE
library developed by Microsoft and it aims to make homomorphic encryption more ac-
cessible and has been used for industrial applications and academics. It was written in
C++ and has no external dependencies. Two distinct homomorphic encryption schemes
are included in Microsoft SEAL, the CKKS, and the BFV. For operations with en-
crypted integers, the BFV schemes can be used. While adding and multiplying en-
crypted real or complex numbers is possible only with the CKKS scheme, the down-
side of this scheme is that the results that yield are approximations of the result. CKKS
is the best option in applications like adding encrypted real numbers, analyzing ma-
chine learning models on encrypted data, or calculating distances between encrypted

locations. The BFV scheme is better suited for uses where precise values are required.

Fig. 4: Microsoft SEAL example

15

4. Homomorphic encryption

4.4.1 Using Microsoft SEAL CKKS

The whole process of encrypting text is described below (figure 5). As we can
see there is an initial plaintext in the message m. This message must consist of floaing-
point numbers. The first step is to encode the plaintext into a polynomial, and then it is
encrypted with a public key. CKKS offers some operations that can be carried out on
the message m once it has been encrypted into c, like addition, multiplication and rota-
tion. After the encryption has been performed, we follow the reverse procedure to get
the result. Below in this chapter, we will see separately each of the steps in detail to
better understand the parameters and their effects on the security and performance of

our computations.

Scaling factor

| Message Plaintext Ciphertext

encoding ' (pk/sk)
encrypt

Homomorphic operations
(encrypted computation)

(pt-ct/ct-ct) add, mult
rescale, rotation, etc.

Scaling factor

Message ' Plaintext

decoding decrypt

Fig. 5: The CKK Scheme*
*Source: https://yongsoosong.github.io/files/slides/intro _to CKKS.pdf

4.4.2 Creating a message

The first step is the size selection of the message. This parameter is called poly-
nomial modulo degree N and affects the number of slots of each ciphertext, this pa-
rameter is always a number of power of 2. Some common values that it takes are 2048,
4096, 8192, 16384, and 32768. The ciphertext has N/2 slots for floating point numbers

(figure 6). We have to keep in mind that the message length is not the only reason to

16

https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf

4. Homomorphic encryption

select an appropriate polynomial modulo degree, a bigger polynomial modulo degree

also means more computing capabilities like more multiplications as we will see later.

Numof 0 1 2 3 s N/2-5 N/2-4 N/2-3 N/2-2 N/2-1
slot
Message 1.3 2.0 4.2 2. 20 R 6.3 2.4 1.4 2.3 33

Fig. 6: The message format

4.4.3 Encode of the message

The next step is to encode the message vector (figure 7). This is done in order
to turn each real number in the vector into an integer. This is necessary since in the
CKKS scheme the plaintext and the ciphertext elements are polynomials with integer
coefficients. So, all the numbers in the vector we want to encrypt are multiplied by a
scaling factor A. Bigger A means more precision. We can think of the scale as setting
the bit-precision of our result. Example of fixed-point arithmetic with rescaling:

If we have two variables a = 0.331843, b = 2.226724 and scaling factor A = 10° then:
a’=a*A=331843
b’=b* A=2226724
To calculate a + b, we perform the following steps.
1) calculate the result: ¢' = a' + b’ = 2558567
2) rescale: c'/A = 2.558567
To calculate a * b, we perform the following steps.
1) calculate the result: ¢' = a' * b' = 738922772332
2) rescale: c'/A =0.73892277233

CY2 x R encoding R =Z[X]/(X"+1)
'Z decoding Az
1 .
—
= : a m(X) = =
.Zn/z - /2

17

4. Homomorphic encryption

Fig. 7: Encode procedure

Instead of using decimal fixed-point arithmetic in CKKS, binary fixed-point
arithmetic is utilized A = 2P. Additionally, CKKS operations add an additional
approximation error that usually erases between 12 and 25 least significant bits so we

have to keep that in mind as well when we set the encryption parameters.

4.4.4 Encryption of encoded massage

The encryption parameters must be set according to the number of
multiplications and the decimal precision that we want. Each time a CKK ciphertext is
multiplied, noise is added to the resulting ciphertext, on the other hand, encrypted
addition and rotation do not have any significant impact on the ciphertext, so the
design is relying on the multiplicative depth of our implementation. The multiplicative
depth is determined by the length of its longest chain of consecutive multiplications.
For example, the multiplicative depth of the cpo*cp,*...*cpn is N, the multiplicative
depth of the cp:* cp>*...* cpn + cpi™* cpo*...* cpm is M if M>N or N if N>M. It is
advised to look for an implementation with the smallest depth possible because it will

give us better performance.

Encrypt (pk/sk)

m(X) € R ct = (co(X),c1(X)) € R, Ry =Zy[X]/(X™ +1)
el Decrypt (sk = s) Az,
A. . A
: LM Ciphertext 52
Az, MSB A-zn, | LSB

~

log Q bits

Fig. 8: Encryption procedure
*source: https://vongsoosong.github.io/files/slides/intro to CKKS.pdf

The encryption parameters are set by the coefficient modulus. The coefficient
modulus Q (figure 8) is the sum of an array of sizes of primes in bits and we can think

of it as space that our encoded float number will be, on our example code (figure 4) it

18

https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf

4. Homomorphic encryption

is {60,40,40,60} so it will be Q = 60*2+40*20 = 200 so our scale A needs to be much

smaller in order to “fit” (figure 6). The position of each number in the coefficient

modulus array is important. There are the outer primes (the first and last numbers) and

the inner primes which are all the rest. We must keep in mind the following things

considering the coefficient modulus:

The number of inner primes determines the multiplicative depth

limit. In our example (figure 4) we have a multiplicative depth of two.

Poorer performance, longer run-time of the computation, and bigger

memory consumption is associated with larger size of primes.

The precision both before and after the decimal point is determined
by prime sizes. For example, if we want precision to be 10 bits, we must set
the inner primes at 25 and the outer primes are of size 35.

The polynomial modulus degree limits the coefficient modulo bit
count (figure 9). In our example, if we set the polynomial modulus degree
to the value 8192 and we have Q = 60*2+40*20 = 200 and the max is 218.

poly_modulus_degree max coeff_modulus bit count
1024 27

2048 54

4096 109

8192 218

16384 438

32768 881

Fig. 9: Polynomial modulus degree and max coeff modulus bit

4.4.5 Multiplication & Rescale

Scales in ciphertexts increase as a result of encrypted multiplication. The ci-

phertext's scale shouldn't be too close to the coefficient modulus's overall size, or else

there won't be enough space in the ciphertext to store the scaled-up plaintext (figure 8).

19

4. Homomorphic encryption

Reducing the scale and stabilizing scale expansion is made possible by the rescale
functionality of the CKKS scheme. Rescaling is a modulus switch operation. An inner
prime in coefficient modulus is removed as part of the modulus switching process, as a
result, the ciphertext is scaled down by the removed prime (figure 9). For example, if
the ciphertext's scale is A and its current coefficient modulus is P as its last prime,
rescaling to the next level converts the scale to A/P and eliminates the prime P from
the coefficient modulus. We must choose carefully primes sizes for the coefficient

modulus because we want to have complete control over how the scales are changed.

meR ct = (o, c1) E R ct' = (co',c1") ERG
A-xyq Ay A% - xyyy
. . 2 .
A-x, % Ay, - A% - x5y,
A- xn/z A- yn/z AZ . xn/zl’nfz
Ciphertext Ciphertext

Fig. 10: Encrypted multiplication

*source: https://yongsoosong.github.io/files/slides/intro to CKKS.pd

The number of inner primes restricts the multiplicative depth as we described
above and limits the number of rescalings that can be performed. Every time we
rescale, we go down a level by removing an inner prime. When there is no inner prime
left then we have reached level zero. On level zero we can’t apply any more

evaluations on the encrypted message and we must decrypt it.

20

https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf

4. Homomorphic encryption

2z I
A - X1

AZ - X1

MSB A2 ot LSB
——

‘ , log A bits

A-xy
A-x,
=]
A—xﬂ/2|
—

v I

log (Q/A) bits

Fig. 11: Rescale operation
*source: https://yongsoosong.github.io/files/slides/intro_to_CKKS.pd,

21

https://yongsoosong.github.io/files/slides/intro_to_CKKS.pdf

5. Pattern recognition

5 Pattern recognition

Pattern recognition originates from engineering and statistics. Pattern
recognition is a classification process and its objective is to help machines to make
automated decisions based on data given. A pattern recognition classifier needs to be
capable of adapting and learning from examples. Applications for pattern recognition
include image processing, speech and fingerprint recognition, etc. The application
domain should always be taken into account while designing a pattern recognition
system. Pattern recognition algorithms are typically divided into two categories:
supervised and unsupervised. Most of the time, labeled data for training is used to train
a pattern recognition system. This is known as supervised methods. Other algorithms
can be employed to find previously unidentified patterns when labeled data are not
available. This is known as unsupervised methods. To design such systems, we must

follow the three steps that are presented below.

-Pre-processing: Its purpose is to make a more consistent set of data by minimizing
variances. Pattern discovery during the training phase is more challenging if there are a
lot of redundant, irrelevant information, or noisy data. Cleaning, instance selection,

normalization, one hot encoding are a few examples of data preprocessing.

-Feature extraction: In this step, we must discover distinctive characteristics that are
common across several data classes as this will allow us to make better predictions
with fewer data. There must be little intraclass variation. The features extracted and the

feature extraction techniques depend on the application.

-Classification: The system must recognize the patterns of the inputs and assigns each
one to the proper class using the characteristics that were retrieved from the learning
processes. In the literature, there are two different kinds of learning processes super-

vised and unsupervised learning.

22

5. Pattern recognition

5.1 Perceptrons

5.1.1 Perceptron

Perceptron is a pattern recognition algorithm and consists of one neuron (figure 12). A
neuron has a number of inputs and the result of this equation is passed to an activation
function in order to decide whether or not that neuron should activate. When
categorizing data that can be separated linearly, the perceptron is a very useful
technique. But as it was discovered with the XOR problem, they run into serious

limitations with data sets that do not follow this pattern.

oy

W1
Fon W2 e /v
w2 | wix) |
(x2) [FO)) (v
w3

AT/

i

Fig. 12: A Perceptron

5.1.2 Multi-Layer Perceptron

Multi-Layer Perceptrons correct this problem that is present in the single per-
ceptrons. Perceptrons are the basic unit of Multilayer Perceptrons. The Multi-Layer
Perceptrons are a powerful tool for categorizing groups of data that cannot be linearly
separated. This is accomplished by adding a hidden layer and an output layer as we

figure 13.

23

5. Pattern recognition

A“I

aAr
B

S v

6
T,

QL '
‘

‘@
L

Fig. 13: Multilayer Perceptron

The MLP algorithm is as follows:

1.The first step is to calculate the output of the hidden layer. To do this, we simply
calculate the product of the matrix of weights with the input matrix figure 14.

hn Wy W2 W3
I

Y2 W21 W2 Wz
— 2

Ys W3 W32 Wsas
L3

Ya Wy Wy Wy

Fig. 14: First layer calculations

2.0n every output from the first step, MLPs apply an activation function. There are
numerous activation functions that we can use, including tanh, sigmoid Function
and ReLU.

3.The results taken by the operations from the previous step are multiplied by the
table of weights of the output layer (figure 15).

(51
(21)(Wh11 whya whys 'whu) Y2
z3) \why why whayy whyy) | ys
Y4

Fig. 15: Second layer calculations

24

5. Pattern recognition

4.Finally, we have two options for what we can do with this result, in the case of
training we use the output to correct the weights, and in the case of testing, we use
the output to make a decision based on the data we used.

25

6. Related work

6 Related work

Modern embedded systems, which cover a wide range of applications and
different communication protocols, are commonly resource constrained, making it
difficult to deploy the traditional software-based techniques used for detecting and
containing malicious software in general-purpose computing systems [40][41]. An
important concern for the Internet of Things based systems is to ensure trusted
execution of applications and communication inside wvehicles, factories, smart
buildings, for well-being, and healthcare [43][44][45]. Even more challenging is
implementing verification checks of applications executing in low-performance and
limited memory embedded systems [42].

From the above papers mentioned on traditional security techniques we can
conclude that there is a tradeoff between the edge-device’s computation burden and the
security of the application, as the closer to the edge-device a security feature is
implemented, the more secure but also more complex the application will be. This is
also true for our case but fully homomorphic encryption is even more resource
demanding on both memory and computation but it promises great potential for our
privacy [47].

In some early attempts to use homomorphic encryption on IoT, there have been
proposed several homomorphic schemes other than fully homomorphic encryption that
are more lightweight for uses cases like IoT and mobile applications, but those
schemes can apply only certain kinds of queries as they are on based partial
homomorphic encryption or somewhat homomorphic encryption, for instance [48][49]
they propose a partially homomorphic encryption scheme based on ElGamal
encryption that supports only homomorphic addition so they can do only certain kinds
of queries like the summation of some values or to find the range of those values, but
the operations of the scheme are light enough to run on embedded system or mobile
phone. In more recent years more and more attempts are made to utilize fully
homomorphic encryption on the edge, for example, they have implemented a scenario
[51] where homomorphically encrypted data from automobiles are collected from the
cloud but still, the encryption is not implemented on the edge device.

The present thesis used the SEAL-Embedded library to perform fully
homomorphic encryption completely on the edge and measure the computational load

and time for such use cases, and in addition, it combined encrypted inference

26

6. Related work

techniques based on [36][37][38] in order to have a complete use case scenario where

the user can perform queries from his phone from the data that the board encrypted.

27

7. Implementation

7 Implementation

7.1 System Overview

We can summarize the system we implemented in its three main functions as

we can see in figure 16 which we will analyze further below.

1.Initially, the embedded system will encrypt and send via NFC to the
android the encrypted values. The mobile will play the role of the gateway
and will send the data to the server for storage.

2.From another application, the user will be able to ask the server to
perform actions on the data stored on the server.

3.The server is responsible to retrieve the right information, processing the
data and answer to the user's query.

1) Send & / N\ 3) Encrypted answer
Store data / 2) Query .
S X
.// 3 \\
.\\\\

2 p
@/ :

Fig. 16: System overview

7.2 Edge to server side

The whole process that we designed in order to send data homomorphically en-
crypted to the server from the edge device is described below in figure 17. The data are
values from the sensors collected by the embedded system. The data initially will exist
in plaintext form stored in the board's memory, this is done because as we will see later
in chapter 7.3 homomorphically encrypted data takes up much more memory space
than plaintext data, so the board will encrypt the data piece by piece. Each piece of

data will be deleted as soon as the user collects them.

28

7. Implementation

When the user wants to collect the data to offload board memory must do it
through the mobile application that was developed. When the collection process is
complete and all the ciphertext is on the mobile phone, then the ciphertext will be send
and stored in a non-relational database on the server along with its metadata through
TCP. In this chapter we will deal with:

‘The connection of the embedded system with a NFC antenna and the
installation of the appropriate libraries.

+The installation of encryption library on the embedded system.

-Development of the android application that will collect the data and send
them to the server.

Smartphone NFC board server

collect and send to the server the data of a day |

ask a part of the ciphertext

pack and encrypt data

retumn chiphertext

< ___________________

send ciphertext to the server

Fig. 17: Sequence diagram

7.2.1 Implementation

7.2.1.1 Embedded system

The 32F746GDISCOVERY Discovery kit [31] used in this project contains the
STM32F746NG microcontroller, which is based on an Arm Cortex-M7 core. The au-
dio, multi-sensor support, graphics, security, video, and high-speed connectivity fea-
tures of the Discovery kit can enable a wide range of applications. The ARDUINO
connectivity support offers lot of expansion potential with a wide range of add-on

boards.

29

store ciphertext whith metadata

7. Implementation

arm

MBED
Enabled

Fig. 18: 32F746GDISCOVERY Discovery kit

Main features of the board:

1.STM32F746NGH6 Arm® Cortex® core-based microcontroller with 1 Mbyte of
Flash memory and 340 Kbytes of RAM, in BGA216 package

2.4.3” RGB 480%272 color LCD-TFT with capacitive touch screen
3.Ethernet compliant with IEEE-802.3-2002

4.ARDUINO Uno V3 expansion connectors

7.2.1.2 12C protocol

The Inter-Integrated Circuit (I2C) bus is a two-wire serial interface protocol
which is used in consumer products and was created by the Phillips Corporation [32].
The I2C protocol allows communication between numerous devices connected to the

same bus network (figure 19).

30

7. Implementation

MASTER T Rp § Rp
|

SDA L T
!

SCL T T *

SLAVE #2 SLAVE #3

Fig. 19: I12C bus*
*Source: https://www.analog.com/en/technical-articles/i2c-primer-what-is-i2c-part-1.html

SLAVE #1

All data in I2C are carried over two bidirectional lines, one line for the data
which is called the serial data line (SDA), and another one serial clock line (SCL) for
the clock whose purpose is to synchronize the nodes. The 12C bus is connected to a
common power supply (VDD) so when it is idle it is in HIGH state, if a node wants to
transmit then must toggle the lines by pulling LOW with its open drain pins.

12C follows a master/slave hierarchy, there is one device the master that
controls the clock of the bus (thus the communication speed), addresses slaves, and
writes to or reads data from slave nodes. The start signals and the stop signal are
represented by the negative edge and positive edge of SDA respectively when the SCL
is in HIGH state (figure 20). The slaves on the other hand are nodes that only answer
when invoked by the master via their specific address. Therefore, it is essential to
prevent address duplication among slaves. A data transfer is never started by a slave.
The speeds we can write/read data are 400 kbits/s which is called The Fast Mode

transfer rate, compared to the standard data transfer rate of 100 kbits/s.

31

https://www.analog.com/en/technical-articles/i2c-primer-what-is-i2c-part-1.html

7. Implementation

" N = T

SCL
1 2 8 9
P +»
Start Stop
condition condition

Fig. 20: 12C waveform

Every I2C message must have a slave address, the operation that the master
wants to execute, and the data packets that are 8-bit long (figure 21). Only a read or a

write operation occurs during a transmission session.

Message

—_—

: Read/ | ACK/ ACK!/ ACK
Start 7 or 10 Bits write |nack| 8 Bits |nack] 8 Bits [nack| Stop
Bit Bit Bit Bit

N e Sy et

Address Frame Data F 1
Start Condition ata Frame Data Frame 2 Stop Condition

Fig. 21: 12C message frame
*Source: https://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-I2C-Message-

Frame-and-Bit-2.png

7.2.1.3 NFC Antenna

The NFC antenna used for the project is a Class 5 antenna daughter card
ST25DV Discovery ANTC5 by STMicroelectronics [35] which includes (figure 22):
40 mm x 24 mm, 13.56 MHz inductive antenna etched on the PCB

-ST25DV04K Dynamic NFC / RFID tag
-I2C interface connectors
-Energy harvesting output (VOUT) with a 10 nF capacitance filtering circuit

«GPO configurable as RF WIP/BUSY output, to indicate that an RF operation is
ongoing

32

https://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-I2C-Message-Frame-and-Bit-2.png
https://www.circuitbasics.com/wp-content/uploads/2016/01/Introduction-to-I2C-Message-Frame-and-Bit-2.png

7. Implementation

VEH/N/CC connection

Ly ® VEH or VCC power selection

kys

lile.ougmenfied

ST25DV_Discovery_ANT_C5

MB1285-A

@« L =

VDG setting ST25DV Antenna

Fig. 22: NFC antenna

We choose this antenna because is embedded with the ST25DV64KC (figure
22) and we can make use of its fast transfer mode capabilities to send the ciphertext
from the board to the phone via NFC. The antenna has three features that we make use

of:

*The mailbox that the embedded library uses to transfer messages between the RF
and 12C worlds. The data in this mailbox can hold up to 256 Bytes.

«A GPO output that can trigger an interrupt when multiple RF events like field
change, memory write, activity, Fast Transfer end, user set/reset/pulse and 12C
events like memory write completed, RF switch off occurs.

‘The MB_CTRL_Dyn dynamic register contains activity indicators about the
mailbox and the fast transfer mode state.

33

7. Implementation

ST250V

Dynamic registers
MB_LEM_Dwn
MB_CRTL_Dyn

Fast Tranzfer Mode mailbax ISCAEC
12C host 12¢ (256 Bytes) C% E‘D 15693 reader

= Host message

Y

1Mbis

Up to
Static register 53kbis
FTM

GPO/RF_GET_MSG

r

Fig. 23: ST25DV64KC I2C device

In order to send data from the 12C host to the RF reader Fast transfer mode
must be enabled, the mailbox must be empty, VCC power must be present, and the 12C
host must first write the message which contains the data. To see if there is an 12C
message in the mailbox, the RF device must poll the MB CTRL Dyn register. After the
RF has finished reading the entire message, the mailbox is once again considered free
and is capable to receiving new messages. A GPO interrupt will alert the I2C host that

the message has been read by the RF.

7.2.1.4 ST25 fast transfer mode embedded library

The embedded library ST25 fast transfer mode (ST25FTM) enables quick data
transfer between an NFC reader and a dynamic tag. The ST25FTM protocol was cre-
ated to control this kind of data transfer using the ST25DVxxKC chip family while al-
lowing for error detection and recovery and using the least amount of meta-data possi-
ble. ST25FTM is based on a state machine to keep track of the data sent or received
(figure 24). The ST25FTM library is a middle-ware and was made independent of the
microcontroller and the dynamic tag. This means that a lower-layer API for the mid-

dle-ware needs to be implemented for the intended hardware.

34

7. Implementation

When the ST25FTM_SendCommand function is called to provide data to be
ST25FTM_WRITE_IDLE transmitted, the FTM transmission state machine initializes all the required state

variables and the CRC IP.

The ST25FTM transmission state machine prepares the next segment to be sent,
ST25FTM_WRITE_CMD according to the acknowledgment scheme selected (doing nothing/computing segment
CRC).

The ST25FTM transmission state machine prepares the next message to be sent,

ST25FTM_WRITE_SEGMENT) . I
- - according to its position in the segment.

The ST25FTM transmission state machine actually writes the message to the FTM

ST25FTM_WRITE_PKT
memory.

The ST25FTM transmission state machine waits until the message has been read by the

ST25FTM_WRITE_WAIT_READ :
= = = peer device.

In case an ACK is expected from peer device, the ST25FTM transmission state machine

ST25FTM_WRITE_READ_ACK poll to read the ACK message.

ST25FTM_WRITE_DONE The transmission has successfully gone to its end.
ST25FTM_WRITE_ERROR An unrecoverable error occurred.

Fig. 24: ST25FTM transmission states

7.2.1.5 Software implementation

STM32CubelDE is an advanced C/C++ development platform with peripheral
configuration, code generation, code compilation, and debug features for STM32 mi-
crocontrollers and microprocessors. It is based on the Eclipse framework and GCC
toolchain for the development, and GDB for the debugging. It allows the integration of
the hundreds of existing plugins that complete the features of the Eclipse IDE.

[} STMIZFTAGNGHK_FLASHIA
4 STMAZFTAGNGHX_RAM Id
+ Mnfe seal 3

Fig. 25: STM32CubelDE

35

7. Implementation

At this point, we have two hardware devices, the
ST25DV_Discovery_ANT_C5 and the 32F746GDISCOVERY Discovery board, and
the ST25FTM software to put together. ST25FTM library needs the NFC drivers to
use the tag since was developed independently from the NFC tag, and the NFC tag
drivers need the 12C drivers of STM32F746NGH6 microcontroller since the driver
was developed independently from the board, so we will set up the project from the
bottom to the top starting with the I12C drivers. We can initialize 12C drivers for our

board with the following parameters using the STM32CubelDE (figure 26).

@ NVIC Settings @ DMA Settings

@ Parameter Settings

Configure the below parameters :

[i]

~ Timing configuration

12C Speed Mode Fast Mode

12C Speed Frequency (KHz) 400

Rise Time (ns) 0

Fall Time (ns) 0

Coefficient of Digital Filter 0

Analog Filter Enabled
v Slave Features

Clock No Stretch Mode Disabled

General Call Address Detection Disabled

Primary Address Length selection 7-bit

Dual Address Acknowledged Disabled

Primary slave address 0

Fig. 26: 12C set up

Then we can copy the ST25DV drivers and the ST25FTM library into the
project. The ST25DV driver's files (figure 27 blue square) include all the addresses for
writing and reading from the I2C peripheral and a standard API to use the tag as
recommended by the STM32 Cube methodology, they are also compatible with the
HAL drivers so we will have no problem using them together with 12C drivers we
create earlier. The API is used by the fast transfer mode middleware libraries (figure 27

red square) to write to the mailbox.

36

7. Implementation

File Edit Source Refactor MNavigate Search Project Run Window Help
- 9 - - B, Erivdr@~r B0 -Qr® 5~ - - ¥ ’ - ~ ™m0

& Project Explorer 3 | B G 7 § = 0O | [mainc = x|

» [nfc

= B nfc_seal
» 4 Binaries
¥ @l Includes

19- void MemManage_Handler(void)
» & Core o1 & /* USER CODE BEGIN Memor
¥ (2 Drivers 182
~ (5 nfc_tag !
b L€ ili9341_cube.c

+ [ili9341_cube.h

+ [g st25dv_reg.c

+ [st25dv_reg.h

b g st25dv.c

b (b st25dv.h

R T ra—
+ [0 st25ftm_common.h

+ [st25ftm_config_template.h

» g sk25ftm_config.c

b [n st25ftm_config.h

» (g st2s5ftm_protocol.c

v (1 st25ftm_protocol.h

v [g st25ftm_rx.c

b [sE25Ftm bx.c

183 /* USER CODE END MemoryM
164 while (1)
w5 o

» 59 seal
» (= Debug
[nfe_seal.ioc

d. Problems £ Tasks B Console [T Properties + 82 == Static Stack Analyzer s, Build Analyzer

No search results available. Start a search from the search dislog...

Fig. 27: Project setup

Now that we can write to the mailbox, we need to also to install the interrupt
for the library to know for different events that occurred. So once again we enable
interrupts from STM32CubelDE, every time an interrupt occurs the interrupt handler
assigns the value 1 into the global variable GPO_Activate so the FTM library knows

an event occurred and must check the MB_CTRL_Dyn register.

37

7. Implementation

static void ManageGPO(void)
uint8 t itstatus;
if(GPO_Activated == 1)
{ GPO Activated = ©;
5T25 RETRY(BSP _NFCTAG ReadITSTStatus Dyn(BSP NFCTAG INSTANCE, &itstatus));
if((itstatus & ST25DV_ITSTS DYN FIELDFALLING MASK) == ST25DV_ITSTS DYN FIELDFALLING MASK)

FieldoffEvt = 1;
}

if((itstatus & ST25DV _ITSTS DYN FIELDRISING MASK) == ST25DV_ITSTS DYN FIELDRISING MASK)

{
FieldOnEvt

}

if((itstatus & ST25DV_ITSTS DYN RFPUTMSG MASK) == ST25DV ITSTS DYN RFPUTMSG MASK)
{

mailboxStatus = ST25FTM MESSAGE PEER;

1;

}
if((itstatus & ST25DV_ITSTS DYN RFGETMSG MASK) == ST25DV_ITSTS DYN RFGETMSG MASK)
{
mailboxStatus = ST25FTM MESSAGE EMPTY;
}

1
}

Fig. 28: Usage of GPO_Activated

In figure 29 we can see the connections between the NFC antenna and the
board. The antenna provides a power supply for the I2C bus to work. We chose the

pins according to Appendix A.

* -
El [[-4_: L
= wk Lliks ik —-I

i CN8 =
I 7 -
— 2 | lOREF =
— 3 | NRST 5 f—
i P —a |3V & =
2 12 | = [=i
¢ — s |avo| & —
— | GPI — 7 |GnD | & —
: =7 — & [um i4ii

G SDA F201-1*08MGE-W1-HA
% + CNS -
~5 1 = 1 | AD —_
= RS | | =
L n —3|a | = —

1] — 4 | A3 b

12 —I s |4 =
£ o 0 - —
BE T PR e FI01-1*06MGE-W1-HA =
D114 08-G-8 NA OND 1%0:

Fig. 29: Board-antenna connection

38

7. Implementation

7.2.1.6 Microsoft SEAL IoT library

The SEAL-Embedded is the first homomorphic encryption library designed for
embedded devices that can support the CKKS approximate homomorphic encryption
scheme. The library consists of two pieces, the library that the board is running and the
adapter server module that transforms data encrypted by SEAL-Embedded into a
format compatible with the Microsoft SEAL library. Additionally, the SEAL-
Embedded adapter has functions for generating the public and secret keys in a format
that the SEAL-Embedded library can understand. To be able for the board to encrypt
homomorphically, the creators of the library have implemented some optimizations to
lower the memory consumption of homomorphic encryption encoding and encryption

while maintaining high performance. The main optimizations are:

‘RNS partitioning is the first significant way that the library overcomes memory con-
straints. By operating to a single prime at any given point, the isomorphism estab-
lished by the Chinese remainder theorem [39] preserves arithmetic in Rq0 Rq 1 ---Rq
L—1 with arithmetic in subrings Rqi that can be performed independently. SEAL- Em-
bedded exploits this property by performing encryption in one subring Rqi at a time,

allocating just enough memory to carry out operations for a single prime component.

-Data type compression, memory compression of some polynomials is the second
method SEAL-Embedded uses to lower memory usage. SEAL-Embedded take
advantage of the secret key polynomial s ternary structure or polynomial u in the
asymmetric case and use only two bits per coefficient to store its values. Additionally,
SEAL-Embedded uses compression to the error sampling's output. Due to the fact that
each error sample is an integer between [21, 21], only 6 bits are needed to represent

each sample.
‘Memory pooling, utilizing a memory pool is the third significant way SEAL-

Embedded overcomes memory constraints. SEAL-Embedded carefully calculated the

minimum amount of memory needed for the library to run effectively in both

39

7. Implementation

symmetric and asymmetric cases. These sizes are used by SEAL-Embedded to allocate

all the memory required up front for a specific library configuration.

Client loT Device Cloud Server

:' Secure Homomorphic“.
i Computation i
H |
f |

@ 1 | SEAL-Embedded E.i SEAL
' Adapter Server C
l\ !

-

Private -
Sensor Data

SEAL-Embedded
Library
Untrusted Domain

Fig. 30: SEAL-Embedded

7.2.1.7 Android application

For the android application part, a modified version of the STSW-ST25001
provided by STMicroelectronics was used. The STSW-ST25001 makes use of the
STSW-ST25SDK001 - ST25 software development kit which is a library that can
write to NFC and is compatible with fast transfer mode to collect the ciphertext. The
modifications were to collect all six parts of the ciphertext. The ciphertext consists of
six parts since the primes numbers we chose were six as we explain on the RNS
partitioning in the previous chapter.The board calculates each part and sends them to

the phone one by one.

40

7. Implementation

Fig. 31: Android application

7.2.1.8 Power and time measurements

In figure 32 the first image is showing the time that each part of the ciphertext
takes to be encrypted and sent to the phone through NFC. As we can see the sending
time remains stable in all ciphertext parts and takes about 35 seconds but that depends
on the distance and the position of the phone from the NFC antenna, each ciphertext
piece is 65.54 KB. On the other hand, the encrypting time is increasing steadily for

each ciphertext part.

41

7. Implementation

Total Time distribution

I S=nding
I Encrypting

sending

0

Time in seconds

Encrypling

2 3 4 3
Part of the ciphertext

Fig. 32: Time measurements

In Figure 33 we can see the power consumption of the embedded system during the
encryption and when the board is sending the ciphertext. We can see a slight increase

when the board is encprypting.

huAa g MALAUA TN, o) Lo d ol b AL A e Al

200
2
& 150 -
g —— bus voltage
2 current
£ 100
© Sending Encrypting Sending

50 4

o 4

Time

Fig. 33: Power measurements

7.3 Server to client side

42

7. Implementation

In this chapter, we will explain the whole process and the design of how the
user can send a query to the server and receive the encrypted answer based on the data
stored on the server. To demonstrate the abilities of the system we design a real-world
scenario which we will explain inmore detail later.

The front end of the application consists of a mobile application that is
responsible to send a query to the server through TCP, receiving/decrypting the
ciphertext, and displaying on the mobile phone the results that the user requested. On
the back end, the scenario is an encrypted inference of a perceptron classifier that

classifies the values encrypted by the embedded system.

[smartshone server

choose start and end day for inference Ioad and inilialize parameters for processing

d [

D init secret key and encryption parameters

send the 2 days days selected by the user
load the corresponding ciphertexts

inference

prepare packed result

D normalize data between 0-1

return packed result

result decryption I

|

R e LR o) |
|

!

display results L

Fig. 34: Sequence diagram

The whole process for doing that is described below (figure 34).

 The first thing that both server and user do is to load a predetermined set of
parameters that are agreed upon. These parameters are created by the client
using the adapter of the Microsoft SEAL embedded and are mandatory to make
possible the rotation and other evaluations. The client creates the SEAL
evaluator and other objects that the server requires and sends them to the server
while withholding the secret key, this way the server can’t decrypt the

ciphertexts but can process them.

43

« The next step for the server is to load from memory the encrypted values that
the user requested. The server knows which encrypted text belongs to which
data and what the user requested but does not know the contents inside as they

are encrypted.

The values that the board encrypts are the original ones that were recorded by
the board, but in order to pass through the neural network, they must be
normalized between the range zero and one on the server. Although it would be
convenient if the board send the normalized values directly to the server
because it would save us from encrypted evaluations, it would be difficult to
use the values for some other applications that need the original values like

calculating the average or extracting other statistics.

+ The server runs the inference network created and trained in TensorFlow. The
weights exist in plaintext form on the server. The data processing consists of
two matrix multiplications between the encrypted values send by the board and

the plaintext weights extracted from the model we implemented.

- And finally, the server prepares and sends the encrypted answer to his query

and sends it to the user.

7.3.1 Implementation

7.3.1.1 Dataset description

A suitable dataset to use to build our system and to test our use case is the
Room Occupancy Estimation Data Set [34]. This dataset contains measurements from
environmental sensors to estimate the presents of people in a room. These
measurements are temperature, light, sound, CO2, and digital passive infrared (PIR
sensor). The measurements were taken from one 6m x 4.6m room and the dataset can
be used to measure the space-frequency rate and occupancy rate which helps us to
determine whether and how space is being used and help us to make decisions about
the future [53]. Below in figure 35, we visualize the data to see if there is any

correlation between the data and to have a better idea of the dataset in general. The

44

dataset has sixteen attributes four of them are the temperature, four are light density,
four are sound classes one is CO2 slope and two are PIR. The dataset's classes(num of
occupants fig. 35) are four and they are the number of occupants and take values from
0 to 3. In this work, we merge the classes from 1 to 3 as we wanted only to find

presence in the room at a given time.

[] T

P 100 100 2008 2500 »00 150 o

Fig. 35: Dataset visualization

From the above plots in figure 35, we conclude that we can separate the
dataset's attributes into two categories. The data that can provide a very good
indication of how many people are in the room but it takes them some time to rise or
to fall into the category that they belong, those values are CO2 readings and
temperature, and the data that can provide a more immediate indication like light,

sound, and PIR but we can't rely always on them as they are not always present, for

45

example, someone who is in the room may have the lights closed or make no

sound.So, we will use all the attributes and let the neural network find a pattern for us.

7.3.1.2 Perceptron architecture & training

We designed the architecture of the model keeping in mind that the vast majority of
its calculations will have to run in the encrypted domain, so a couple of things that we
have to keep in mind are the multiplication depth that is restricted and the fact that
only multiplication and addition are allowed and it is impossible to use division or
comparison. This means that we can't make use of the most common activation
functions since they make use of that kind of calculation, for example, the sigmoid
function use division and relu, and step functions use comparison so we must avoid
them. In figure 36 we can see the architecture of the neural network that we trained. It
takes as input all the 16 attributes and has square activation function in the middle, the
square activation function is the simplest non-linear function that we can use as it
consists of just one multiplication. For better training results we used the sigmoid
activation function only on the output layer of the neural network. Although we
explained why it is impossible to use the sigmoid function at the intermediate layers of
the neural network, we can still use it only on the last layer. This is because the
sigmoid function is a monotonically increasing function. The application of a
monotonically increasing function will not change the result of the neural network, the
smaller number will stay smaller and the bigger number will stay bigger, so we can
skip the application of the sigmoid function, and just choose the biggest of the two
outputs of the FC-2 layer to be our inferred result. So, we use the sigmoid function to

train the plaintext network but we are not using it on the encrypted inference.

46

Layer

FC-1

Square activation function

Fc-2

Sigmoid activation function

Fig. 36: Neural network architecture

for layer in model.layers: print(layer.get config(), layer.get weights())

{'name': 'flatten', 'trainable': True, 'batch input shape': (None, 16, 1), ‘'dtype’:

{'name': 'dense', 'trainable':

9.611, ©.234, -0.59 ,
[.17 , 0.585, -0.075,
08.353, -0.24 , -0.257,
[-0.686, 0.799, ©.966,
-@.297, -0.429, -0.213,
[-0.091, -0.161, ©.13 ,
1.266, ©.654, -9.85 ,
[-8.29 , 1.082, 0.794,
-9.536, -0.777, -0.634,
[-0.611, -0.106, ©.713,
0.06 , -0.183, -0.501,
[-0.177, -0.01 , ©.082,
8.361, -0.417, -0.234,
[-8.112, ©.355, -0.086,
@.401, -0.199, 0.176,
[-0.655, ©.776, -0.002,
-0.877, -0.399, -0.954,
[-0.376, ©.449, 0.723,
-0.602, -0.253, -1.184,
[-6.238, ©.297, 0.006,
0.144, 0.066, -0.18 ,
[-6.163, ©.669, -0.079,
-@.148, ©.309, 0.302,
[-6.118, ©.03 , 0.506,
0.687, ©.427, -0.514,
[-0.928, 1.167, 0.769,
-0.305, ©.441, 0.146,
[-0.358, 0.281, ©.137,
0.078, 0.025, 0.072,
[@.837, ©.145, 0.309,
-9.163, -0.175, -0.433,
0.866, 1. , 0.625,
{'name': ‘'dense 1', 'trainable’:
[-1.074, ©.175],
[-0.878, 0.819],
[-0.828, 0.501],
[-0.87 , 0.227],
[-6.808, -0.278],
[@.717, -0.895],
[-0.825. 0.47 1.

-0.844], dtype=float32)]
‘dtype':

True,

*float32', 'units': 2, ‘activation': 'sigmoid', 'use bias':

Fig. 37: Extracted weights matrices

'float32', 'data format': 'channels last'} []

True, 'dtype': 'float32', 'units': 12, 'activation’': {'class name': 'Activation', 'config': {'name': ‘'activation', "traim:
0.649],

©0.589, -0.202, -0.065, 0.249, 0.274,
0.716],

©.334, -0.967, 0.612, 0.179, 0.616,
0.425],

0.08 , 0.229, 0.025, -0.975, -0.176,
-9.354],

1.03 , -0.859, ©.892, 0.642, 1.189,
0.715],

©.778, ©.005, -0.002, 0.303, 0.501,
0.7881,

©0.016, -0.271, ©.064, -0.135, -0.073,
-9.85]

-9.007, ©.141, -0.059, -0.203, 0.034,
0.114],

0.226, -0.291, ©.51 , 0.496, 0.281,
1.308],

0.506, -0.319, ©.209, 0.465, 0.337,
0.632],

0.518, -0.133, 0.454, 0.285, 0.183,
0.52 1,

0.212, -6.28 , -0.188, -0.675, 0.384,
0.445],

-9.085, 0.045, 0.049, -0.102, -0.215,
1.04],

1.014, -0.851, ©.455, -0.264, ©.579,
-0.4 1,

©.003, -0.314, ©.484, -0.218, 0.187,
09.691],

-0.442, -0.354, ©0.371, 0.076, -0.199,
0.514]1, dtype=float32), array([-0.099, ©0.078, 0.168, 0.052, -0.234, 0.19 , -0.895, ©.25 ,

True, 'kernel initializer': {'class name': 't

In figure 38 we can see the accuracy of the perceptron we trained using the test

dataset. The A is the human present class and the B is the no-present class.

47

True class

A B
predict class || A 2458 2
B 1 578

Fig. 38: Confusion matrix

7.3.1.3 Encrypted matrix multiplication implementation

To implement the encrypted perceptron, we need a matrix multiplication
algorithm. A simple method for multiplying two matrices one encrypted and one
ciphertext of size N xN is to use N distinct ciphertexts, one ciphertext for each value
using only one slot, although this solution may work for certain use cases it is
impossible to do this in our implementation because of the many extra data that the
board will have to send to the server. For example, each ciphertext of degree 8192 is
440KB, if we wanted to send 4096 values to the server using only one slot per
ciphertext then we have to send 1760MB instead of 440KB. So, our goal is to try to
use all the slots of each ciphertext that the board encrypts and sends to the server, so no
empty slots arrive at the server. For that purpose, it was desing a matrix multiplication
algorithm that supports ciphertext packing technique, so we can encrypt multiple
values into a single ciphertext and use them more efficiently.

The matrix multiplication algorithm 1 takes as an input an encrypted matrix of
dimension NxP and a plaintext matrix of dimension PxN and outputs a ciphertext with
the encrypted result. The algorithm also takes as an input a matrix in column-major
format order (figure 39) and yields a matrix that has the same format the rest blue slots
are ignored. This way, we can have many matrix multiplications in a row with the
same function, as many of our chain multiplication depths allow us. The cp.A and the
pt.B represent the encrypted matrix and the plaintext matrix respectively, and the U is
a binary mask in the size of each row,n and p are the dimensions of the first encrypted
matrix and m is the number of columns of the second plaintext matrix.An illustrative
explanation of the algorithm can be found in Appendix B and the code for the SEAL

implementation can be found in appendix C.

48

-

!

I + I .

Fig. 39: Matrix column-major format

Algorithm 1

procedure MatMult_ciphertext_plaintext(ct.A, pt.B,n,p,m)
[STEP 1]
For k=0 to p do
o Ct.A= Rot(ct.A;n)
o Ct.Temp[k] = Mult(ct.A;U)
End for
[STEP 2]
For k=0 to p do
o Forg=0tomdo
= Ct.B =Ct.Temp|K]
= Ct.Temp[k] = Add(Rot(Ct.B;g*n), Ct.Temp[k])
o End for
End for
[STEP 3]
For k=0 to p do
o Forg=0tomdo
= Pt.Temp[k] = pt.B[k*n+g]
o End for
End for
[STEP 4]
For k=0 to p do
o ct.AB = Add(Mult(Pt. Templ[k], Ct.Temp[K]) , ct.AB)
End for

return ct.AB

49

7.3.1.4 Encrypted inference

In figure 40 we can see the ciphertext that the board is encrypting. The
ciphertext’s polynomial modulo degree is 8192 which means that the cipher has 4096
slots, in these slots we can fit 256 matrices of size 1x16. For simplicity, we chose to

collect values every 6 minutes so that one ciphertext corresponds to exactly a day's

measurements.
0 min 6 min 1424 min
))
f Y : i, A \
value 249 247 ... 0O O 23 24 .. 03 01 ...22 22 ... 05 00

| J
Y

a day's mesurments 24h

Fig. 40: Ciphertext encrypted by the board

In figure 41 we can see the exact implementation of the encrypted inference.
The matrices with red letters are encrypted and the ones with black letters are
plaintext. In addition, the gray part is executed on the server while the orange one is
sent to the final user as the answer. As we can see the user does not apply the sigmoid
function as we explain in chapter 7.3.1.2. The code for the SEAL implementation can

be found in appendix D.

50

Fig. 41: Encrypted inference

In figure 42 the first image is the output of the plaintext model from chapter
7.3.1.2 and the second one is the output of the encrypted model from chapter 7.3.1.4
for the same input. As we can see we have lost some precision after the third-fourth
decimal number but this is expected, as we explained in the chapter 3.3.1 CKK is an
approximate homomorphic encryption scheme, but this is not a problem as two

decimal numbers are more than enough for the application.

v [6] print(model.predict(np.array([[0.174 ,6.089, 0.069 ,0.346 ,0. , ©. , 0. , ©. , 0.068 ,0.003 ,0.003 ,0.803,0.016, 0.412 ,06. , 6. 11)))

I7T T 1 - ©s 66ms/step
ﬁ[[0.93945045 a.eo?ﬁa?zn]])

Fig. 42: Plaintext-ciphertext comparison

51

In figure 43 we can see in detail the initial parameters of our encryption, the
scale as it grows on each layer and the rescales operation, we apply to keep the scale
under control. When the calculations are on the second layer, we have finished with
the encrypted inference but we keep applying to ciphertext rescale operations because
each time we remove a prime the ciphertext size is also reduced so the server will have

to send less data to the user.

Encryption parameters :

poly_modulus_degree: 8192

coeff_modulus size: 218 (30 + 30 + 30 + 30 + 30 + 30 + 38) bits
scale 25

scale Modulus chain Size of ciphertext
index

Initial ciphertext 440 KB
First layer

Activation function 90
Second layer 140 4

Fig. 43: Encrypted neural network analysis

7.3.1.5 Mobile application

Because there is no available library for android, all of the FHE functionality of
the application was created in native C++, we built a dynamic library *.so compatible
with the phone's architecture and wrapped it with JNI interface so we can call it
through the android app. As we described earlier, we used a polynomial modulo degree
of 8192 which means we have 4096 available slots, the neural network has 2 outputs
one for every class so in each ciphertext we can fit 2048 inferences. In figure 44 we

have sent a request to the server to evaluate 10 instances of the dataset, and the server

52

and 0 in class A, the unknown class is the remaining

classified 10 of them in class B

slots that arrived empty.

Noe29 10:24
My - MainActivityjava [Myapp]
Build R s VCS v

adapter.cpp - SEAL-Embedded-main - Visual Studio Code
Emulator: T, Pixel XL API
«emBD

@ jetbra
© oD

Activities

adapter.cpp X
in i
or. rotate_vector_inplace(ct

> a Gradle Scripts

class 1:0
class 2: 10

class unknown : 2038

eadapte] G Lnx @ &

OUTLINE c A
TIMELINE 1]
X § @ ®0A0 O CMake: [Release]:Ready 3% [Clang 10.0.0x86_64-pclinux-gnu] @Build [l & D
- gAa-) - <
E

Fig. 44: Android client application

8. Conclusions and Future Work

8 Conclusions and Future Work

The highlights of this thesis were the use and testing of the SEAL-Embedded
on the 32F746GDISCOVERY Discovery Kkit, its combination with encrypted inference
techniques found in literature, and the development of the mobile application that
makes the query to the server.

More precisely on the embedded system side, we ran the library and tried to
send the ciphertext through NFC. Although the NFC is not the transmission
technology with the highest throughput we manage to send the cipher text in a
reasonable time around 3.5 minutes in total for both encryption and transmission
which is acceptable for some use cases but in some cases, it might be better to use
Bluetooth or ZigBee. On the server side, a multilayer perceptron was trained based on
a dataset we found and use some techniques to execute it on the encrypted domain and
also we create an android app for the user to manage the data.

There are lots of aspects of this work that can be improved. For instance, we
manage to protect the privacy of the user as we used homomorphic encryption, but the
integrity of the data is not protected by any means, since evaluation can be done on the
encrypted data, some malicious users may change the content of the ciphertext, so
some other types of encryption can utilized like hash functions and symmetric
encryption like AES to make sure that only the server can process the ciphertext.

Also, we can take action to protect the secret key that exists on the board and
the code itself. As some papers show there is a chance for an attacker to find the secret
key with a side channel attack [52]. We can also try to run the librarie to a trust

execution environment but this will be challenging since the TEE has limed resources.

54

8. Conclusions and Future Work

9 Bibliography

[1] D Kaur, A., Singh, V. P, & Singh Gill, S. (2018). The Future of
CloudComputing:Opportunities, Challenges and Research Trends. 2018 2nd
International Conference on I-SMAC (IoT in Social, Mobile, Analytics and
Cloud) (I-SMAC)I-SMAC (IoT in Social,Mobile, Analytics and Cloud) (I-
SMAC), 2018 2™ International = Conference = On.doi:10.1109/i-
smac.2018.8653731

[2] Dores, C., Reis, L. P., & Lopes, N. V. (2014). Internet of things and cloud
computing. 2014 9th Iberian Conference on Information Systems and
Technologies(CISTT). doi:10.1109/cisti.2014.6877071

[3] Choudhury, T., Gupta, A., Pradhan, S., Kumar, P., & Rathore, Y. S. (2017).
Privacy and Security of Cloud-Based Internet of Things (IoT). 2017 3rd
International Conference on Computational Intelligence and Networks (CINE).
doi:10.1109/cine.2017.28

[4] Hamza, R.; Hassan, A.; Ali,A.; Bashir, M.B.; Alghtani, S.;Tawfeeg, T.M.;
Yousif, A.TowardsSecure Big Data Analysis via FullyHomomorphic
EncryptionAlgorithms.Entropy 2022, 24,
519.https://doi.org/10.3390/e24040519

[5] Peralta, G.; Cid-Fuentes, R.G.; Bilbao, J.; Crespo, P.M. Homomorphic

Encryption and Network Coding in IoT Architectures: Advantages and Future
Challenges. Electronics 2019, 8, 827.
https://doi.org/10.3390/electronics8080827

[6] Natarajan, D., & Dai, W. (2021). SEAL-Embedded: A Homomorphic

Encryption Library for the Internet of Things. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(3), 756-779.
https://doi.org/10.46586/tches.v2021.i3.756-779

[7] Surbiryala, J., & Rong, C. (2019). Cloud Computing: History and Overview.
2019 IEEE Cloud Summit. doi:10.1109/cloudsummit47114.2019.00007

[8] Cheon, J.H., Kim, A., Kim, M., Song, Y. (2017). Homomorphic Encryption for

55

https://doi.org/10.46586/tches.v2021.i3.756-779
https://doi.org/10.3390/electronics8080827
https://doi.org/10.3390/e24040519

9. Bibliography

Arithmetic of Approximate Numbers. In: Takagi, T., Peyrin, T. (eds) Advances
in Cryptology — ASIACRYPT 2017. ASIACRYPT 2017. Lecture Notes in
ComputerScience(), vol 10624. Springer, Cham. https://doi.org/10.1007/978-3-
319-70694-8 15

[9] Zuo, C., Lin, Z., & Zhang, Y. (2019). Why Does Your Data Leak? Uncovering
the Data Leakage in Cloud from Mobile Apps. 2019 IEEE Symposium on
Security and Privacy (SP). doi:10.1109/sp.2019.00009

[10] Pearson, S., & Benameur, A. (2010). Privacy, Security and Trust Issues
Arising from Cloud Computing. 2010 IEEE Second International Conference
on Cloud Computing Technology and Science. doi:10.1109/cloudcom.2010.66

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song.
Homomorphic encryption for arithmetic of approximate numbers. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624
of LNCS, pages 409-437. Springer, Heidelberg, December 2017

[12] https://www.st.com/en/evaluation-tools/32f746gdiscovery.html

[13] Babu, S. M., Lakshmi, A. J., & Rao, B. T. (2015). A study on cloud
based Internet of Things: CloudloT. 2015 Global Conference on
Communication Technologies (GCCT). doi:10.1109/gcct.2015.7342624

[14] Navani, D., Jain, S., & Nehra, M. S. (2017). The Internet of Things
(IoT): A Study of Architectural Elements. 2017 13th International Conference

on Signal-Image Technology & Internet-Based Systems (SITIS).
doi:10.1109/sitis.2017.83

[15] https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-

potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-
globaleconomy/?sh=18ad816e5f29
[16] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining

digital signatures and publickey cryptosystems,” Commun. ACM, vol. 21, no.
2, pp. 120-126, 1978.

[17] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in
Proceedings of the Annual ACM Symposium on Theory of Computing, 2009,
vol. 9, pp. 169-178.

[18] T. Sander, A. Young, and M. Young, “Non - Interactive
CryptoComputing for NC1,” FOCS Comput., pp. 554-557, 1999.

56

https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-globaleconomy/?sh=18ad816e5f29
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-globaleconomy/?sh=18ad816e5f29
https://www.forbes.com/sites/raufarif/2021/06/05/with-an-economic-potential-of-11-trillion-internet-of-things-is-here-to-revolutionize-globaleconomy/?sh=18ad816e5f29
https://www.st.com/en/evaluation-tools/32f746gdiscovery.html
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15

9. Bibliography

[19] C. Gentry, “Fully Homomorphic Encryption Using Ideal Lattices,” in
Proceedings ofthe Annual ACM Symposium on Theory of Computing, 2009,
vol. 9, pp. 169-178.

[20] N. N. Kucherov, M. A. Deryabin and M. G. Babenko, "Homomorphic
Encryption Methods Review," 2020 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus), 2020, pp.
370-373, doi:10.1109/EIConRus49466.2020.9039110.

[21] A. Dalvi, A. Jain, S. Moradiya, R. Nirmal, J. Sanghavi and I.
Siddavatam, "Securing Neural Networks Using Homomorphic Encryption,"
2021 International Conference on Intelligent Technologies (CONIT), 2021, pp.
1-7, doi:10.1109/CONIT51480.2021.9498376.

[22] Zebbiche, K. & Khelifi, Fouad & Bouridane, Ahmed. (2008). An
Efficient Watermarking Technique for the Protection of Fingerprint Images.
EURASIP J.Information Security. 2008. 10.1155/2008/918601.

[23] J. Kim and A. Yun, "Secure Fully Homomorphic Authenticated
Encryption,” in IEEE Access, vol. 9, pp. 107279-107297, 2021,
doi:10.1109/ACCESS.2021.3100852.

[24] https://earth5r.org/environmental-benefits-cloud-computing/

[25] Ronald L. Rivest Len Adleman Michael L. Dertouzos “ON DATA
BANKS AND PRIVACY HOMOMORPHISMS” Massachusetts Institute of

Technology Cambridge, Massachusetts 1978

[26] C. Gentry and D. Boneh, A fully homomorphic encryption scheme, 09.
Stanford University Stanford, 2009, vol. 20.

[27] https://www.nature.com/articles/d41586-018-06610-y

[28] A. Durcikova and M. E. Jennex, "Introduction to Confidentiality,

Integrity, and Awvailability of Knowledge, Innovation, and Entrepreneurial
Systems Minitrack,"2016 49th Hawaii International Conference on System
Sciences (HICSS), 2016, pp.4010-4010, doi: 10.1109/HICSS.2016.497.

[29] L. Perrin and A. Brisson, "Enhancing transport layer security with
Dynamic Identity Verification and Authentication (DIVA): Maintaining and
enhancing SSL/TLS reliability,” 2017 IEEE SmartWorld, Ubiquitous
Intelligence & Computing,Advanced & Trusted Computed, Scalable

Computing & Communications, Cloud & Big Data Computing, Internet of

57

https://www.nature.com/articles/d41586-018-06610-y
https://earth5r.org/environmental-benefits-cloud-computing/

9. Bibliography

People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1-5, doi:
10.1109/UIC-ATC.2017.8397606.

[30] M. Veeningen, B. Weger, and N. Zannone. “Modeling Identity-Related
Properties and Their Privacy Strength”. In: Formal Aspects of Security and
Trust. Lecture Notes in Computer Science. 2011, pp. 126-140 (cited on page
56).

[31] https://www.st.com/en/evaluation-tools/32f746gdiscovery.html

[32] C. Liu, Q. Meng, T. Liao, X. Bao and C. Xu, "A Flexible Hardware

Architecture for Slave Device of I2C Bus," 2019 International Conference on
Electronic Engineering and Informatics (EEI), 2019, pp. 309-313, doi:
10.1109/EEI48997.2019.00074.

[33] https://github.com/Microsoft/SEAL

[34] https://archive.ics.uci.edu/ml/datasets/Room+QOccupancy+Estimation
[35] https://www.st.com/en/evaluation-tools/st25dv-discovery.html

[36] T. Ishiyama, T. Suzuki and H. Yamana, "Highly Accurate CNN

Inference Using Approximate Activation Functions over Homomorphic
Encryption,” 2020 IEEE International Conference on Big Data (Big Data),
2020, pp. 3989-3995, doi: 10.1109/BigData50022.2020.9378372.

[37] Obla, Srinath & Gong, Xinghan & Aloufi, Asma & Hu, Peizhao &
Takabi, Daniel. (2020). Effective Activation Functions for Homomorphic
Evaluation of Deep Neural Networks. IEEE Access. PP. 1- 1.
10.1109/ACCESS.2020.3017436.

[38] Minelli, M. (2018). Fully homomorphic encryption for machine
learning. Cryptography and Security Université Paris sciences et lettres.

[39] https://en.wikipedia.org/wiki/Chinese remainder theorem

[40] O. Vermesan, M. Coppola, M.D.Nava, A. Capra, G. Kornaros, R. Bahr

et al.,"New waves of 10T technologies research—transcending intelligence and
senses at the edge to create multi experience environments", In: Internet of
things—the call of the edge. Everything Intelligent Everywhere. River
Publishers, p 168, 2020.

58

https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://www.st.com/en/evaluation-tools/st25dv-discovery.html
https://archive.ics.uci.edu/ml/datasets/Room+Occupancy+Estimation
https://github.com/Microsoft/SEAL
https://www.st.com/en/evaluation-tools/32f746gdiscovery.html

9. Bibliography

[41] G. Kornaros, "Hardware-assisted machine learning in resource-
constrained IoT environments for security: review and future prospective,"
IEEE Access, vol. 10, no. 1, pp. 58603-58622, 2022.

[42] D. Bakoyiannis, O. Tomoutzoglou, G. Kornaros, and M. Coppola,
"From hardware- software contracts to industrial iot-cloud block-chains for
security", In 2021 Smart Systems Integration (SSI), pages 1-4, 2021.

[43] D. Mbakoyiannis, O. Tomoutzoglou, and G. Kornaros, "Secure over-
the-air firmware updating for automotive electronic control units", In 34 th
ACM/SIGAPP Symp. On Appl. Comp., SAC '19, page 174-181, 2019.

[44] G. Kornaros et al., "Towards holistic secure networking in connected
vehicles through securing CAN-bus communication and firmware-over-the-air
updating,” ournal of System Architecture, vol. 109, Oct. 2020, Art. no. 101761.

[45] S. Leivadaros, G. Kornaros, M. Coppola, "Secure asset tracking in
manufacturing through employing iota distributed ledger technology", in Procs
of IEEE/ACM 21* International Symposium on Cluster, Cloud and Internet
Computing, p. 754-761, 2021 DOI:10.1109/CCGrid51090.2021.00091

[46] G.I. Trouli and G. Kornaros, "Automotive virtual in-sensor analytics for
securing vehicular communication”, IEEE Design Test, vol. 37, no. 3, pp. 91—
98, Jun. 2020.

[47] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. P. Fitzek and N.
Aaraj, "Survey on Fully Homomorphic Encryption, Theory, and Applications,"
in Proceedings of the IEEE, vol. 110, no. 10, pp. 1572-1609, Oct. 2022, doi:
10.1109/JPROC.2022.3205665.

[48] Shafagh, H., Hithnawi, A., Burkhalter, L., Fischli, P., & Duquennoy, S.
(2017). Secure Sharing of Partially Homomorphic Encrypted IoT Data. Pro-
ceedings of the 15th ACM Conference on Embedded Network Sensor Systems
- SenSys ’17. doi:10.1145/3131672.3131697

[49] Baharon, M. R., Shi, Q., & Llewellyn-Jones, D. (2015). A New
Lightweight Homomorphic Encryption Scheme for Mobile Cloud Computing.
2015 IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive Intelligence and Computing.
doi:10.1109/cit/iucc/dasc/pico

59

9. Bibliography

[50] Boudguiga, A.; Stan, O.; Fazzat, A.; Labiod, H. and Clet, P. (2021). Pri-
vacy Preserving Services for Intelligent Transportation Systems with Homo-
morphi Encryption. In Proceedings of the 7th International Conference on In-
formation Systems Security and Privacy - ICISSP, ISBN 978-989-758-491-6;
ISSN 2184-4356, pages 684-693. DOI: 10.5220/0010349706840693

[51] Boudguiga, A.; Stan, O.; Fazzat, A.; Labiod, H. and Clet, P. (2021). Pri-
vacy Preserving Services for Intelligent Transportation Systems with Homo-
morphic Encryption. In Proceedings of the 7th International Conference on In-
formation Systems Security and Privacy - ICISSP, ISBN 978-989-758-491-6;
ISSN 2184-4356, pages 684-693. DOI: 10.5220/0010349706840693

[52] Furkan Aydin and Aydin Aysu. 2022. Exposing Side-Channel Leakage
of SEAL Homomorphic Encryption Library. In Proceedings of the 2022
Workshop on Attacks and Solutions in Hardware Security (ASHES'22).
Association for Computing Machinery, New York, NY, USA, 95-100.
https://doi.org/10.1145/3560834.3563833

[53] https://educationspaceconsultancy.com/what-are-space-frequency-

occupancy-and-utilisation-rates-and-how-do-i-calculate-them/

60

https://doi.org/10.1145/3560834.3563833

9. Bibliography

10 Appendix
Appendix A
Left connectors Right connectors
CN No. :m _ STI'!'I32 Function Function STI'!'IS! o cithe CN No.
o. name pin pin name No.
12C1_SCL PB8 D15 10
12C1_SDA PB9 D14 9
AVDD = AREF 8
Ground - GMND 7
1 NC - SPI2_SCK PI1 D13 6
2 | IOREF - 3.3V Ref SPI2 MISO | PB14 | D12 5 CWI
digita
TIM12_CH2,
3 RESET | NRST RESET SPI2 MOSI PB15 D11 4
CNG 4 +3V3 : . 3;;3\1 ; TIM1_CH1 PAS D10 3
power input/outpu
1 +5V - SV output TiM2_CH1 PA15 D9 2
6 GND - Ground - P12 D8 7 |
7 GND - Ground -
8 VIN - Power input - P13 D7 8
- TIM12_CH1 PHB D&
TIMS_CH4,5PI
1 AD PAD ADC3_INO 2 NSS PIO Ds 6
2 A PF10 | ADC3_IN8 - PGT D4 5
3 A2 PF9 ADC3_IN7 TIM3_CHA1 PB4 D3
4 A3 PF8 | ADC3_ING . PG6 D2 3 | CN4
ADC3_IN5
analog PF7 or (PFT)or
5 Ad ppi!) 12C1_SDA USARTE TX | PC6 D1 2
(PB9)
ADC3_IN4
PF& or (PCO) or
6 A5 pea(l) | 12c1_ScL USARTE_RX | PC7 Do 1
(PB8)

61

10. Appendix

10.1 Appendix B

Ciphertext mul_vmat(Ciphertext mat, vector<vector<double>> matl, EncryptionParameters

params,
int cols, int rows, int col2, int scale, GaloisKeys gal_keys)

Ciphertext res;

Plaintext pt;

SEALContext context(params);
Evaluator evaluator(context);
CKKSEnNcoder encoder(context);

vector<Ciphertext> ctA_result(cols);
vector<Ciphertext> ctB_result(cols);

vector<double> p(col2 * rows);

for (inty = 0; y < col2 * rows; y++) p[y] = 0.0001;
for (inty = 0; y < rows; y++) p[y] = 1;
encoder.encode(p, scale, pt);

parms_id_type last_parms_id = mat.parms_id();
evaluator.mod_switch_to_inplace(pt, last_parms_id);

for (inti=0; i< cols; i++)

{

evaluator.multiply_plain(mat, pt, ctA_result[i]);
evaluator.rotate_vector(mat, rows, gal_keys, mat);

ctB_result[i] = ctA_result[i];
for (intii = 0; ii < cols - 1; ii++)

{

evaluator.rotate_vector(ctA_result[i], -rows, gal_keys, ctA_result[i]);
evaluator.add(ctB_result[i], ctA_result[i], ctB_result]i]);

}
}

vector<vector<double>> a(cols, vector<double>(rows * col2));
for (inti=0; i< cols; i++)

intcnt =0;
for (int ii = 0; ii < rows * col2;)

g[i][ii] = matl[i][cnt];

ii++;
if (ii % rows == 0) cnt++;
}
}
for (inti=0; i< cols; i++)
{

encoder.encode(ali], scale, pt);

parms_id_type last_parms_id = ctB_result[i].parms_id();
evaluator.mod_switch_to_inplace(pt, last_parms_id);
evaluator.multiply_plain(ctB_result[i], pt, ctB_result[i]);

}

62

10. Appendix

evaluator.add_many(ctB_result, res);

return res;

}

10.2 Appendix C

plaintext

chipertext

Ciphertext plaintext Ciphertext H:
e [
: EN . EE
Bl 20a0 10 2 1
EEEN: - D
Step 1 Step 1

plaintext

x

s e [R R e
Step 1 Step 2
s 4 [R R R
Yy —— 8
[| | | [
Step 2 Step 3
||
2
!—}_\
ol 1 8 8 0 0 0 0 0 0
3 4 3 4 o
[R

63

10. Appendix

°
ol

i
(-]

I

o
@l

|

Step 4
plaintext ciphertext plaintext ciphertext ciphertext
1 B : 3 e
1 . 2 7 10 Ciphertext plaintext Ciphertext
: B« - B - e _ EE
> W o« o+ W e T
ox B+ o xll- .
0 o B |
) B o 35 Bm
0 | 0 o]
0 i 0 []
0 o} 0 []
o 0 0 o]

o

10.3 Appendix D

vector<vector<double>> fl_w = {
{-0.05, 0.723, -0.044, 0.749, -0.818, 0.138, -0.076, 0.87, 0.611, 0.234, -0.59, 0.649},
{0.17, 0.585, -0.075, 0.589, -0.202, -0.065, 0.249, 0.274, 0.353, -0.24, -0.257, 0.716},
{-0.686, 0.799, 0.966, 0.334, -0.967, 0.612, 0.179, 0.616, -0.297, -0.429, -0.213, 0.425},
{-0.091, -0.161, 0.13, 0.08, 0.229, 0.025, -0.975, -0.176, 1.266, 0.654, -0.05, -0.354},
{-0.29, 1.082, 0.794, 1.03, -0.859, 0.892, 0.642, 1.189, -0.536, -0.777, -0.634, 0.715},
{-0.611, -0.106, 0.713, 0.778, 0.005, -0.002, 0.303, 0.501, 0.06, -0.183, -0.501, 0.788},
{-0.177, -0.01, 0.082, 0.016, -0.271, 0.064, -0.135, -0.073, 0.361, -0.417, -0.234, -0.05},
{-0.112, 0.355, -0.086, -0.007, 0.141, -0.059, -0.203, 0.034, 0.401, -0.199, 0.176, 0.114},
{-0.655, 0.776, -0.002, 0.226, -0.291, 0.51, 0.496, 0.281, -0.077, -0.399, -0.954, 1.308},
{-0.376, 0.449, 0.723, 0.506, -0.319, 0.209, 0.465, 0.337, -0.602, -0.253, -1.184, 0.632},
{-0.238, 0.297, 0.006, 0.518, -0.133, 0.454, 0.285, 0.183, 0.144, 0.066, -0.18, 0.52},
{-0.163, 0.669, -0.079, 0.212, -0.28, -0.188, -0.675, 0.384, -0.148, 0.309, 0.302, 0.445},
{-0.118, 0.03, 0.506, -0.085, 0.045, 0.049, -0.102, -0.215, 0.687, 0.427, -0.514, 1.04},
{-0.928, 1.167, 0.769, 1.014, -0.851, 0.455, -0.264, 0.579, -0.305, 0.441, 0.146, -0.4},
{-0.358, 0.281, 0.137, 0.003, -0.314, 0.484, -0.218, 0.187, 0.078, 0.025, 0.072, 0.691},
{0.037, 0.145, 0.309, -0.442, -0.354, 0.371, 0.076, -0.199, -0.163, -0.175, -0.433, 0.514}};

vector<double> bias1 = {-0.099, 0.078, 0.168, 0.052, -0.234, 0.19,
-0.895, 0.25, 0.866, 1., 0.625, -0.844};

vector<vector<double>> s|_w = {

{-0.479, 0.773}, {-1.074, 0.175}, {-0.878, 0.819}, {-0.828, 0.501}, {-0.87, 0.227},
{-0.808, -0.278}, {0.717, -0.895}, {-0.825, 0.47}, {0.947, -1.366}, {1.439, -0.764},
{0.379, -1.13}, {1.556, -1.564}

2
vector<double> bias2 = {1.036, -1.036};
Ciphertext infer(Ciphertext input, EncryptionParameters params, double scale, GaloisKeys
gal_keys,
SEAL::SEALContext context, RelinKeys relin_keys)

{

Ciphertext ct;

Plaintext pt;

Evaluator evaluator(context);

CKKSEncoder encoder(context);

vector<double> tr;

64

10. Appendix

vector<double> sub;

for (inti=0;i< 16; i++) tr.push_back(1 / (norm_max[i % 16] - norm_min[i % 16]));

for (inti=0;i<4096; i++) sub.push_back(-1 * norm_min[i % 16] + 0.0001);

encoder.encode(sub, scale, pt);
evaluator.add_plain(input, pt, ct);
encoder.encode(tr, scale, pt);

parms_id_type last_parms_id = ct.parms_id();
evaluator.mod_switch_to_inplace(pt, last_parms_id);
evaluator.multiply _plain(ct, pt, ct);
evaluator.rescale_to_next_inplace(ct);

ct = mul_vmat(ct, fl_w, params, 16, 1, 12, ct.scale(), gal_keys);
evaluator.rescale_to_next_inplace(ct);

encoder.encode(biasl, ct.scale(), pt);

last_parms_id = ct.parms_id();
evaluator.mod_switch_to_inplace(pt, last_parms_id);
evaluator.add_plain(ct, pt, ct);

evaluator.square_inplace(ct);

evaluator.relinearize_inplace(ct, relin_keys);
evaluator.rescale_to_next_inplace(ct);

ct = mul_vmat(ct, sl_w, params, 12, 1, 2, scale, gal_keys);
encoder.encode(bias2, ct.scale(), pt);

last_parms_id = ct.parms_id();
evaluator.mod_switch_to_inplace(pt, last_parms_id);
evaluator.add_plain(ct, pt, ct);

return ct;

65

	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Internet of things
	2.1 Perception layer
	2.2 Network layer
	2.3 Application layer

	3 Cloud
	3.1 Cloud Computing
	3.2 Cloud Computing vs Local Resources
	3.3 Cloud Computing Privacy Issues
	3.4 Use of encryption in SaaS stages

	4 Homomorphic encryption
	4.1 Homomorphic encryption
	4.2 Homomorphic Encryption Types
	4.3 CKK Scheme
	4.3.1 CKK Scheme

	4.4 Microsoft SEAL
	4.4.1 Using Microsoft SEAL CKKS
	4.4.2 Creating a message
	4.4.3 Encode of the message
	4.4.4 Encryption of encoded massage
	4.4.5 Multiplication & Rescale

	5 Pattern recognition
	5.1 Perceptrons
	5.1.1 Perceptron
	5.1.2 Multi-Layer Perceptron

	6 Related work
	7 Implementation
	7.1 System Overview
	7.2 Edge to server side
	7.2.1 Implementation
	7.2.1.1 Embedded system
	7.2.1.2 I2C protocol
	7.2.1.3 NFC Antenna
	7.2.1.4 ST25 fast transfer mode embedded library
	7.2.1.5 Software implementation
	7.2.1.6 Microsoft SEAL IoT library
	7.2.1.7 Android application
	7.2.1.8 Power and time measurements

	7.3 Server to client side
	7.3.1 Implementation
	7.3.1.1 Dataset description
	7.3.1.2 Perceptron architecture & training
	7.3.1.3 Encrypted matrix multiplication implementation
	7.3.1.4 Encrypted inference
	7.3.1.5 Mobile application

	8 Conclusions and Future Work
	9 Bibliography
	10 Appendix
	Appendix A
	10.1 Appendix B
	10.2 Appendix C
	10.3 Appendix D

