

ΔΥΝΑΜΙΚΗ ΟΠΤΙΚΟΠΟΙΗΣΗ 3D ΑΝΤΙΚΕΙΜΕΝΩΝ ΜΕΣΩ ΕΠΑΥΞΗΜΕΝΗΣ

ΠΡΑΓΜΑΤΙΚΟΤΗΤΑΣ

του

ΣΦΥΡΑΚΗΣ ΜΥΡΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

υποβληθείσα σε μερική εκπλήρωση των απαιτήσεων για το πτυχίο

ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

ΕΛΛΗΝΙΚΟ ΜΕΣΟΓΕΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

2023

Εγκεκριμένη από:

Δρ. Βιδάκης Νικόλαος

DYNAMIC VISUALIZATION OF 3D OBJECTS THROUGH AUGMENTED REALITY

by

SFYRAKIS MYRON

A THESIS

submitted in partial fulfillment of the requirements for the degree

BACHELOR OF INFORMATICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SCHOOL OF ENGINEERING

HELLENIC MEDITERRANEAN UNIVERSITY

2023

Approved by:

Dr. Vidakis Nikolaos

Περίληψη

Η επαυξημένη πραγματικότητα (AR) είναι μια τεχνολογία που επικαλύπτει ψηφιακές

πληροφορίες και στοιχεία στον φυσικό κόσμο, ενισχύοντας την εμπειρία του χρήστη στον

πραγματικό κόσμο. Έχει διάφορες εφαρμογές, συμπεριλαμβανομένων των βιομηχανιών

ψυχαγωγίας, εκπαίδευσης, τυχερών παιχνιδιών, λιανικής και διαφήμισης. Αν και μπορεί να

βρίσκεται ακόμη στο αρχικό της στάδιο, σίγουρα κλιμακώνεται σε δημοτικότητα και οι

προγραμματιστές το χρησιμοποιούν ακόμη πιο συχνά κάθε μέρα και σε όλο τον κόσμο. Ένα από

τα ατυχή, αλλά λογικά πράγματα για το AR, είναι η έλλειψη εργαλείων, που βοηθούν τους

προγραμματιστές και όχι μόνο, να εξοικειωθούν περισσότερο με την τεχνολογία και τελικά να

ξεκινήσουν εύκολα και γρήγορα την ανάπτυξη εφαρμογών που έχουν να κάνουν με εμπειρίες

επαυξημένης πραγματικότητας.

Για όλους τους προαναφερθέντες λόγους, χρειάστηκε να υλοποιηθεί ένα εργαλείο με το

όνομα 3D Visualization in AR. Βοηθά κάθε χρήστη που θέλει να δημιουργήσει μια εμπειρία AR

που θα οπτικοποιήσει, με μοναδικό τρόπο, κάθε προσαρμοσμένο αντικείμενο που επιθυμεί. Η

κύρια συμπεριφορά των προσαρμοσμένων αντικειμένων που υποστηρίζει αυτήν τη στιγμή το

εργαλείο, είναι η συμπεριφορά τροχιάς, αλλά μπορεί εύκολα να επεκταθεί για να υποστηρίξει

περισσότερους τύπους συμπεριφορών. Το σύνολο εργαλείων αποτελείται από δύο

διαφορετικούς custom editors στο περιβάλλον Unity, όπου ο πρώτος είναι υπεύθυνος για την

επιλογή της συμπεριφοράς που θα χρησιμοποιηθεί. Ο δεύτερος custom editor, ο οποίος είναι ο

κύριος, απαιτεί από τον χρήστη να συμπληρώσει ορισμένες ιδιότητες που θα καθορίσουν τη

συμπεριφορά τροχιάς του προσαρμοσμένου αντικειμένου, όπως η ταχύτητα τροχιάς, η

απόσταση, η τροχιά γύρω από το αντικείμενο κ.λπ.

Λέξεις κλειδιά: Επαυξημένη πραγματικότητα, AR, 3D, οπτικοποίηση, εργαλείο,

αλληλεπίδραση χρήστη-υπολογιστή (HCI)

Abstract

Augmented Reality (AR) is a technology that overlays digital information and elements

onto the physical world, enhancing the user's real-world experience. It has various applications,

including entertainment, education, gaming, retail, and advertising industries. Although it might

still be at its early stage, it is surely escalating into popularity, and developers even more

frequently use everyday use and across the world. One of the unfortunate, but logical things

about AR, is the lack of tools, which help the developers and not only, to get more familiar with

the technology and eventually, start easily and quickly the development of applications that have

to do with augmented reality experiences.

For all the aforementioned reasons, a toolset named 3D Visualization in AR needed to be

implemented. It helps any user who wants to build an AR experience that will visualize, in a

unique way, any custom object that he desires. The main behavior of the custom objects that the

toolset currently supports is the orbit behavior, but it can easily be extended to support more

types of behaviors. The toolset is made of two different custom editors in the Unity environment,

where the first one is responsible for the selection of the behavior to be used. The second custom

editor, which is the main one, requires the user’s input to fill in some properties that will define

the custom object’s orbit behavior, such as the orbit speed, the distance, the orbit around object,

etc.

Keywords: augmented reality, AR, 3D, visualization, tool, human-computer interaction (HCI)

Acknowledgements

Primarily, I would like to extend my sincere gratitude to my supervising committee, Dr.

Nikolaos Vidakis, and Ilias Logothetis, for their invaluable guidance and support throughout my

research journey. Their wealth of knowledge and expertise in the field has been an immense

source of inspiration, and I am deeply grateful for the time and effort they have dedicated to my

growth as a scholar.

Secondly, I would also like to express my heartfelt thanks to my family, who have been

my rock and source of encouragement throughout this process. Their unwavering love and

support have allowed me to pursue my dreams and achieve this important milestone. I am

incredibly grateful to my parents, who have always believed in me and encouraged me to strive

for excellence. Their sacrifices and dedication have been instrumental in shaping me into the

person I am today, and I will be forever grateful for their unconditional love and support.

I would also like to acknowledge the support of my friends and colleagues from Nile Lab,

who have provided me with a network of encouragement and motivation throughout this journey.

Special thanks to Harris, Dimitris, and Sakis because this journey may not have ended like this

without them. Finally, I would like to express my appreciation to all who have played a role in

this thesis, directly or indirectly. Your contributions have been deeply appreciated, and I am

grateful for everything you have done to make this a successful experience.

1

Table of Contents

Acknowledgements ... v

List of Figures ... 3

Chapter 1 - Introduction .. 5

1.1 Motivation ... 5

1.2 Objective ... 6

1.3 Outline .. 6

Chapter 2 - Background Work .. 7

2.1 Augmented Reality ... 7

2.2 Virtual Reality ... 8

2.3 Mixed Reality ... 9

2.4 Extended Reality ... 10

Chapter 3 - Similar Work .. 11

3.1 ZeusAR ... 11

3.2 A Pervasive Augmented Reality Serious Game ... 12

3.3 AR-Maze ... 12

3.4 ComposAR .. 13

3.5 Interactive Educational Content Based on Augmented Reality and 3D Visualization 14

Chapter 4 - Software Design ... 15

4.1 Main Components ... 15

4.2 Classes and Methods ... 16

4.3 Toolset’s Sequence ... 17

Chapter 5 - System Implementation ... 19

5.1 Technologies and Frameworks ... 19

5.1.1 Unity .. 19

5.1.2 Blender ... 20

5.2 Tool Implementation ... 21

5.2.1 SOLID .. 21

5.2.2 Unity Editors Implementation .. 23

2

5.2.2.1 Behavior Selection Editor ... 23

5.2.2.2 Selected Behavior Editor (Orbit Behavior Editor) .. 25

5.2.2.3 Custom Object .. 30

5.2.2.4 Orbit Behavior Implementation .. 30

5.3 Tool Results – AR Experience Use Case .. 31

5.3.1 Creation of the Models ... 32

5.3.2 Adding the planets in the scene.. 33

5.3.3 The final application .. 35

Chapter 6 - Conclusion & Future Work .. 37

6.1 Conclusion .. 37

6.2 Future Work .. 37

Chapter 8 - References .. 38

3

List of Figures

Figure 1. 3D Geography Course using AR: The Case of the Map of Greece [12]. 7

Figure 2. VR experience with HTC Vive. [16] ... 9

Figure 3. Virtuality Continuum (VC) – MR spectrum [2]. ... 9

Figure 4. Extended Reality spectrum visualization [18]. .. 10

Figure 5. Left side - the ZeusAR toolset. Right side – the generated AR game [6]. 11

Figure 6. Pervasive Augmented Reality Serious Game – AR Racing Game [19]. 12

Figure 7. AR-Maze programming tool using augmented reality technology [20]. 13

Figure 8. ComposAR interface components [21]. .. 13

Figure 9. ICE example for laboratory work [22]. ... 14

Figure 10. UML Component Diagram.. 15

Figure 11. UML Class Diagram.. 17

Figure 12. UML Sequence Diagram. .. 18

Figure 13. How to access the toolset. ... 23

Figure 14. Behavior Selection Editor.. 24

Figure 15. Behavior Selection Editor code snippet. ... 24

Figure 16. Editor Handler code snippet. ... 25

Figure 17. Orbit Behavior Editor. ... 25

Figure 18. Orbit Editor Window code snippet – Variables, ShowWindow & OnEnable functions.

 ... 27

Figure 19. Orbit Editor Window code snippet – OnGUI function. .. 28

Figure 20. Orbit Editor Handler code snippet. .. 29

Figure 21. Custom Object code snippet. ... 30

Figure 22. Orbit Behavior code snippet – Awake & Update. ... 30

Figure 23. Orbit Behavior code snippet – RotateSelf & RotateAround. 31

Figure 24. Blender’s shading tab – Sun’s model. ... 32

Figure 25. Custom Sun material and prefab created in Unity... 33

Figure 26. Unity’s hierarchy before adding the planets. ... 33

Figure 27. Creating the Sun as a custom object through the toolset. .. 34

4

Figure 28. Unity’s hierarchy after adding all the planets. ... 35

Figure 29. Plane detection and visualization of the planets. ... 35

Figure 30. Sun’s information panel and settings menu... 36

5

Chapter 1 - Introduction

Augmented Reality (AR) and Virtual Reality (VR) are powerful technologies that are

increasingly being used in various aspects of our daily lives. AR enables the user to overlay

virtual content onto the real world [1], while Mixed Reality (MR) blends the real and virtual

worlds [2]. VR, on the other hand, provides a fully immersive experience in a virtual

environment [3]. The combination of all the aforementioned technologies that use a mix of both

real and virtual word, belong to a bigger category named Extended Reality (XR) [4].

These technologies start to be increasingly popular nowadays, since they enhance the real

world by overlaying digital information on top of it, making it easier for us to understand and

interact with the environment. They make all the experiences way more interactive, by providing

users with the ability to manipulate virtual objects in real-time. An also mayor benefit of their

use, is the fact that can be an effective tool for education and learning [5], making complex

concepts easier to understand and allowing students to engage in interactive experiences.

As concerns the developing side of the XR community, quite many tools and software

products, such as ZeusAR [6] and EduARdo [7], have been published all this time. Each one of

them contributes on their own way, making the developing process of XR applications way

easier and more accessible to any new, to the XR world, developer. This way, the development

of XR applications has become more accessible, allowing for a greater diversity of experiences

to be created, and providing new opportunities for growth and innovation in the field.

 1.1 Motivation

After researching all the previously mentioned tools, the lack of dynamic addition of

custom objects in any scene during the development phase of an application that uses XR and

especially AR was clear. Most of the already existing ones, do not have any future of visualizing

objects with custom movement behavior. That is why the decision to create the proposed toolset

was set. The toolset would help developers to build their own AR experiences, by just interacting

with the Graphical User Interface (GUI) of the toolset, saving them a lot of time instead of doing

this process manually by writing code.

6

 1.2 Objective

The main goal is to create a toolset in Unity Game Engine [8] that consists of two custom

editors. The first one, is responsible for the selection of the object’s movement behavior, where

the second one, is responsible for the essential settings, according to the selected behavior from

the previous editor. The user will have the option to either create a new custom object or update

an already existing one from active scene’s hierarchy. Either way, the user must set all the

required settings through the toolset’s GUI, which easily guides him from the beginning of the

custom object’s creation process, until the end.

The main custom object’s behavior to be implemented will be the orbit behavior, which

consists of two kinds of rotations. Firstly, by rotating an object around itself, and secondly, by

orbiting a custom object around another at the same time. The basic settings of this behavior is

setting each custom object’s orbit speed, scale, center position (anchor point), name, information

and more that will be later analyzed more in-depth. The proposed toolset is an essential part of

the EduARdo [7] system and the current report is heavily based on the already published

academic paper, especially in the evaluation part of the toolset.

 1.3 Outline

The current thesis report consists of seven main chapters:

Chapter 1 – Introduction: A short mention of the technologies to be used, similar work’s

weaknesses, and the final objective of the current thesis project.

Chapter 2 – Background Work: A literature review about the technologies to be used.

Chapter 3 – Similar Work: A mention of other systems and tools alike this thesis.

Chapter 4 – Software Design: An overview of the struct and architecture.

Chapter 5 – System Implementation: An in-depth explanation and breakdown of the whole

process during the developing and 3D modeling phase.

Chapter 6 – Experiment Setup: An evaluation of the toolset.

Chapter 7 – Conclusion and Future Work: Final thoughts and potential future developments.

7

Chapter 2 - Background Work

 2.1 Augmented Reality

Augmented Reality (AR) is a rapidly growing technology that has garnered significant

attention in recent years. AR enhances the real world by overlaying digital information and

graphics on it, providing users with a more immersive and interactive experience. This

technology has been applied in various domains, including education, gaming, and healthcare,

among others.

In education, AR has the potential to revolutionize the way students learn, providing

them with interactive and engaging experiences [9], [10]. For example, AR can be used to create

educational content that is more interactive [11], allowing students to explore complex concepts

in a more intuitive and direct manner. Additionally, AR can be used to provide students with

instant access to information, without the need for additional devices such as a computer or

smartphone.

Figure 1. 3D Geography Course using AR: The Case of the Map of Greece [12].

In gaming, AR has been used to create immersive experiences that blend the real and

virtual worlds. AR games can be played in the real world, with virtual elements being overlayed

on the physical environment, making the gaming experience more interactive and engaging.

Moreover, AR games can be played on smartphones, eliminating the need for specialized gaming

devices [13].

8

In healthcare, AR has been used to provide medical professionals with a more

comprehensive view of their patients [14]. For example, AR can be used to overlay medical

images, such as x-rays or MRI scans, on the real world, providing medical professionals with a

better understanding of their patients' conditions. Additionally, AR can be used to provide

medical professionals with real-time information about their patients, helping them to make more

informed decisions.

In conclusion, AR is a rapidly growing technology that has the potential to revolutionize

various domains, including education, gaming, retail, and healthcare. This technology has the

potential to provide users with more immersive and interactive experiences and has the potential

to improve efficiency and productivity in various industries. With the increasing popularity of

AR, it is likely that we will see more innovative and innovative applications in the future,

providing new opportunities for growth and innovation in the field.

 2.2 Virtual Reality

Virtual Reality (VR) is a technology that creates a simulated environment, either based

on real-life or computer-generated environments [2]. It allows users to experience and interact

with this environment as if they were present within it. VR provides a sense of presence and

immersion using head-mounted displays (HMDs) and other sensory inputs such as audio [15],

haptic feedback, and other controllers.

VR technology has been used in a variety of fields, including education, entertainment,

and health care. In education, VR has been used to create immersive learning experiences,

providing students with direct simulations and interactive scenarios that allow them to apply

what they have learned. In entertainment, VR has been used to create immersive gaming

experiences, allowing players to be fully immersed in a virtual environment. In health care, VR

has been used to create virtual simulations for medical procedures and surgeries, providing

training and experience for medical professionals.

Several VR systems have been developed and commercialized, including the Oculus Rift,

HTC Vive, and PlayStation VR. These systems have been designed to deliver high-quality,

immersive VR experiences, with advancements in hardware and software technology continually

improving the VR experience.

9

Figure 2. VR experience with HTC Vive. [16]

 2.3 Mixed Reality

Mixed Reality (MR) is a technology that blends the real and virtual worlds to create a

hybrid environment [1], [2]. MR refers to a continuum that ranges from AR, which enhances the

real world with virtual objects, to VR, which replaces the real world with a virtual one. It

provides a seamless blend of the physical and digital worlds, allowing users to interact with

virtual objects as if they were real. This is achieved by using various technologies such as AR,

VR, and projection mapping, which combine to create an immersive experience that blurs the

line between the physical and virtual worlds.

MR has a wide range of applications in fields such as entertainment, education, and

industry. In entertainment, MR has been used to create immersive gaming experiences that allow

players to interact with virtual objects in the real world. In education, MR has been used to create

interactive and immersive learning experiences, providing students with firsthand simulations

and interactive scenarios that allow them to apply what they have learned. In industry, MR has

been used to create virtual prototypes, allowing designers and engineers to evaluate and refine

their designs before going into production.

Figure 3. Virtuality Continuum (VC) – MR spectrum [2].

10

 2.4 Extended Reality

Extended Reality (XR) is a broad term that encompasses various technologies that aim to

enhance or extend human perception and experience. XR refers to a spectrum of realities that

includes AR, VR, and MR, which range from augmenting the real world with virtual elements to

completely immersing users in virtual environments. [17]

XR technologies have been rapidly evolving in recent years and have found applications

in many areas, including entertainment, education, and industry. In entertainment, XR has been

used to create immersive gaming experiences, providing players with new and exciting ways to

interact with virtual objects. In education, XR has been used to create interactive and engaging

learning experiences, providing students with direct simulations and interactive scenarios that

help them to better understand complex concepts. In industry, XR has been used to create virtual

prototypes, allowing designers and engineers to evaluate and refine their designs before going

into production.

The potential of XR is vast, and its ability to enhance human perception and experience is

being explored in various fields, including psychology, neuroscience, and medicine. XR has the

potential to revolutionize the way we interact with the world, and its continued development will

lead to new and exciting applications in the future.

Figure 4. Extended Reality spectrum visualization [18].

11

Chapter 3 - Similar Work

Augmented Reality technology has seen a significant increase in popularity and adoption

in recent years, with a wide range of applications across various industries. As mentioned

previously, AR is a technology that allows for the overlay of virtual objects on the real world,

creating an immersive and interactive experience for users. It comes with significant use in in

gaming, where players can use AR-enabled devices to interact with virtual game elements in the

physical world. Also, in education, by allowing the creation of interactive educational content,

making learning more engaging and effective and more.

The use of AR technology has rapidly expanded in recent years and its applications are

only set to increase in the future. As the technology continues to evolve and improve, we can

expect to see even more innovative uses for AR in a wide range of industries. Further down, it

will be a short mention of today’s state of art in AR tools and applications already published, by

pointing out each system’s key points and objectives.

 3.1 ZeusAR

ZeusAR is a software system for developing Augmented Reality Serious Games

(ARSGs) that involves three phases: analysis, configuration, and generation [6]. The analysis

phase involves examining the standard project structure of a typical serious game and identifying

the actions that AR content can be added to. The configuration phase involves configuring the

AR features and library to be integrated into the game structure, and the generation phase

involves inserting the AR code and necessary files into the game structure. The ZeusAR process

is implemented through a software architecture and is not dependent on specific software

development technologies or programming languages.

Figure 5. Left side - the ZeusAR toolset. Right side – the generated AR game [6].

12

 3.2 A Pervasive Augmented Reality Serious Game

The game is a racing game where the objective is to start the car and move around the

track without colliding with objects [19]. It is a pervasive augmented reality serious game aimed

at enhancing entertainment through a multimodal tracking interface. The research focuses on

designing and implementing user-friendly interfaces that can be used by a wide range of users,

including people with disabilities. Users can interact with the game through a pinch glove, a

Wiimote, tangible objects, and I/O controls of a UMPC (keyboard/mouse). Initial evaluation

results show that multimodal-based interaction in serious games can be beneficial.

Figure 6. Pervasive Augmented Reality Serious Game – AR Racing Game [19].

 3.3 AR-Maze

AR-Maze is a cutting-edge educational tool that leverages augmented reality to instruct

children about computational thinking [20]. It offers real-time feedback on the physical world

while maintaining a fun and cost-effective learning environment. Children can create their own

programs by arranging programming blocks and testing their code using a mobile device. With

AR-Maze, they will have the opportunity to learn essential programming concepts such as

parameters, loop logic, debugging, and more. The tool has been developed, and a preliminary

user study has been conducted to evaluate its effectiveness and guide future design

improvements. The aim of AR-Maze is to provide children with an enjoyable and intuitive way

to learn programming.

13

Figure 7. AR-Maze programming tool using augmented reality technology [20].

 3.4 ComposAR

ComposAR is a tool aimed at making AR and MR application creation accessible to a

broad audience [21]. It is unique in that it offers a combination of visual programming and

scripting options, as well as real-time testing. Being written in Python, the user interface and

runtime can be easily modified and additional modules from external sources can be integrated

into the authoring process. ComposAR distinguishes itself from other AR authoring tools by

offering multiple levels of interaction.

Figure 8. ComposAR interface components [21].

14

 3.5 Interactive Educational Content Based on Augmented Reality and 3D

Visualization

This tool uses AR and 3D Visualization, specifically for educational reasons, since its

goal is to motivate students from secondary education to be more creative and conduct research

on their subjects, by interacting with the final application in an immersive way [22]. The

produced interactive education content (ICE) consists of several software and hardware

resources, such as texts, audio, video, virtual 3D objects and more. To make the ICE even more

appealing to the students, a few 2D animated virtual persons were added into the User Interface

(UI).

Figure 9. ICE example for laboratory work [22].

15

Chapter 4 - Software Design

The whole thesis project is implemented in C# with the help of Unity Game Engine.

Since Unity gives the option to create a custom editor and add any functionalities the developer

wants, it supports all the features required for the toolset’s implementation. Of course, all the

actions to be made, are well-combined with AR scenes that are under development. This way,

the use of the toolset will help the developers to create even faster as many custom objects they

need according to their use case applications. Before the implementation of the toolset, it will be

necessary to analyze and design the components, classes and methods that will be further

developed.

 4.1 Main Components

The main components of the toolset will be visualized in Unified Modeling Language

(UML) component diagram [23], [24]. It is a visual representation of the components, interfaces,

inputs/outputs, and relationships in a software system, used for design and communication. In

Figure 10, you can see all the essential components for the implementation of the toolset, which

will be described down below.

Figure 10. UML Component Diagram.

16

The whole design of the toolset consists of nine main components:

1. Scene: The active scene in Unity Game Engine, where all the custom objects to be created

with the toolset’s help, will be instantiated and used.

2. Behavior Object: The script of a game object that keeps all the necessary data, properties and

information of any object created from the toolset. Its name is “Custom Object” in the actual

implementation.

3. Behavior Manager: It is responsible for the management of all the available behaviors that the

toolset supports.

4. IBehavior: An interface implemented by all the objects created with the toolset and by all the

implemented behaviors mechanics.

5. Object Behavior: The implementation of each movement behavior to be used in the toolset.

6. Behavior Selection Editor: The custom editor to be used inside Unity’s environment. It is

responsible to get user’s input, that have to do with the preferred behavior of the object to be

created.

7. Editor Handler: It is responsible for the switch from one editor to another.

8. Object Behavior Editor: The specific custom editor, which is enabled after the preferred

behavior from the user. It includes all the essential settings and data used for the custom object’s

behavior to be created. Its name is “Orbit Editor Window” in the actual implementation of the

toolset.

9. Orbit Behavior Editor Handler: It is responsible for all the functionalities and processes

required for the creation of the custom objects with orbit behavior as selection.

 4.2 Classes and Methods

UML class diagrams are a type of diagram used in software engineering to model the

structure of a system by representing the classes, objects, and relationships between objects [24].

They can be used for requirements gathering and analysis, design, implementation, and

maintenance and evolution, providing a visual representation of the structure of a system and

making it easier to understand and communicate the design. UML class diagrams typically

include class names, attributes, and methods, and can represent real-world objects, abstract

concepts, or software components, helping to ensure that the implementation matches the design.

17

In Figure 11, it is in-depth visualized all the classes, attributes, methods, and relationships

of the proposed toolset. An object-oriented approach was followed, making the developing

process much clearer and easier. This way, the final result of the toolset’s implementation is

extendable and effortlessly understandable from users/developer who want to use it for their own

immersive AR experiences. Each class, represented in the class diagram below, is already

explained in section 4.1. Each one of them, has their own attributes, methods, and relationships,

which are also included in the class diagram.

Figure 11. UML Class Diagram.

 4.3 Toolset’s Sequence

UML sequence diagrams are a type of diagram used in software engineering to represent

the interactions between objects or components in a system over time [24], [25]. They depict the

order in which messages are sent and received between objects, and are used to model the

behavior of a system. A UML sequence diagram shows the objects involved in the interaction,

along with the messages they exchange, arranged in a timeline format. The messages are

18

represented as arrows pointing from the sender object to the receiver object, and can include the

name of the message, the parameters passed, and any return values.

Firstly, the user has to access the toolset through Unity’s toolbar and the first custom

editor will appear. After that, he needs to select one from all the available object behaviors, that

are supported from the toolset (only the orbit behavior is currently implemented). Then, a second

custom editor (the selected behavior editor) will be shown in the screen, waiting for the user to

give all the essential input, to configure the desired custom object that will be created or updated.

After that, with just one click of a button, the new custom object is created in Unity’s hierarchy

of the currently active scene. In Figure 12, it is pictured the UML sequence diagram of the

toolset, where all the steps and possible scenarios according to user’s actions, are in-depth

described and visualized.

Figure 12. UML Sequence Diagram.

19

Chapter 5 - System Implementation

5.1 Technologies and Frameworks

 5.1.1 Unity

Unity is a cross-platform game engine developed by Unity Technologies. It is widely

used in the game industry to create 2D and 3D games for a variety of platforms, including PC,

console, mobile, and web [8]. Unity is also used in various non-game contexts, such as

architecture, engineering, and film. In addition to its traditional game development capabilities,

Unity strongly supports AR and VR development. Unity is a comprehensive game development

platform that includes a powerful game engine, a visual scripting system, a 2D and 3D graphics

engine, audio and animation tools, and a range of other features. It is designed to be user-friendly

and easy to use, making it accessible to both novice and experienced game developers.

One of the main features of Unity is its game engine, which is responsible for rendering

graphics, handling input, and managing game logic. The Unity game engine is built on top of the

Mono .NET framework, which provides a range of features such as garbage collection,

threading, and networking support. The game engine is optimized for performance and

scalability, making it suitable for developing games of all sizes and complexity. In addition to

the game engine, Unity also includes a visual scripting system called UnityScript, which is a

node-based system that allows developers to create and modify game logic without writing code.

It is designed to be user-friendly and easy to use, making it accessible to developers who may not

have programming experience.

Unity also includes a powerful 2D and 3D graphics engine that allows developers to

create high-quality graphics and special effects. The graphics engine is based on the Shaderlab

language, which enables developers to create custom shaders and materials. Unity also includes a

range of built-in lighting and shadowing systems and supports various rendering techniques,

such as deferred rendering and screen space reflections.

Unity also provides a range of tools and features for developing AR applications. These

tools include support for ARKit and ARCore, the AR platforms supplied by Apple and Google,

respectively. In addition to these platform-specific tools, Unity also offers a range of cross-

platform AR tools, such as the AR Foundation package, which allows developers to build AR

20

applications that can be deployed to multiple platforms. Unity's AR tools also support features

such as image tracking, object recognition, and 3D object placement. These tools make it easy

for developers to build AR experiences that are interactive, engaging, and immersive.

In addition to its graphics engine, Unity includes various audio and animation tools. The

audio tools allow developers to create and manage sound effects and music, while the animation

tools allow developers to create and edit character and object animations. Unity also includes a

range of built-in physics and AI systems, networking, and multiplayer gameplay support.

 5.1.2 Blender

Blender is a free and open-source 3D computer graphics software tool for creating

animated films, visual effects, art, 3D printed models, motion graphics, interactive 3D

applications, and computer games [27]. Blender is developed and maintained by the Blender

Foundation, a non-profit organization that provides open-source software tools for the 3D

graphics community. Blender is a comprehensive 3D graphics software suite that includes a

range of tools for modeling, shading, texturing, animating, and rendering 3D graphics. It is

designed to be user-friendly and easy to use, making it accessible to both novice and experienced

3D graphics artists.

One of the main features of Blender is its 3D modeling toolset, which allows users to

create and manipulate 3D shapes and objects. The modeling toolset includes features like mesh

modeling, curve modeling, sculpting, and texture mapping. It has many advanced features, such

as multiresolution sculpting, dynamic topology sculpting, and parametric modeling. These tools

allow users to create 3D models, from simple shapes to complex, detailed models.

In addition to its modeling tools, Blender also includes a range of shading and texturing

tools. These tools allow users to apply materials and textures to their 3D models and control the

appearance of the models in the final rendered image. Blender's shading and texturing tools

include support for a variety of techniques, such as bump mapping, specular mapping, and

ambient occlusion. These tools allow users to create natural, high-quality materials and textures

for their 3D models.

Blender also includes a powerful animation toolset that allows users to create and edit

character and object animations. The animation toolset includes keyframe animation, inverse

kinematics, and constraints. It also consists of a non-linear animation editor, which allows users

21

to create complex animations by manipulating a series of keyframes. These tools enable users to

create a wide range of animations, from simple character movements to complex, multi-layered

animations.

Also, Blender includes a highly efficient rendering engine that allows users to create

high-quality, photorealistic images and animations. The rendering engine supports various

features, such as global illumination, ambient occlusion, and subsurface scattering. It also

includes support for a variety of rendering techniques, such as path tracing, bidirectional path

tracing, and final gathering. These features allow users to create highly realistic, lifelike 3D

graphics.

In addition to its core features, Blender also includes a range of tools and features that are

useful for 3D graphics artists. These include support for compositing, video editing, and 2D

animation, as well as a range of third-party add-ons and plugins that can extend the software’s

functionality. Overall, Blender is a comprehensive and powerful 3D graphics software suite that

is widely used in a variety of industries, including film and video, game development,

architecture, and product design. It is free and open source, making it an affordable and

accessible option for 3D graphics artists of all skill levels.

5.2 Tool Implementation

 5.2.1 SOLID

SOLID is a mnemonic acronym that stands for five principles of object-oriented software

design [26]. Robert C. Martin first proposed these principles in his book "Agile Software

Development, Principles, Patterns, and Practices." The SOLID principles are intended to guide

software designers in developing software systems that are easy to maintain and extend over

time. They are widely recognized as best practices in the field of software engineering and are

often cited as fundamental principles of good design.

The first principle of SOLID is the Single Responsibility Principle (SRP). This principle

states that a class should have only one reason to change. In other words, a class should have a

single, well-defined responsibility and not be responsible for multiple unrelated tasks. Adhering

to the SRP can help reduce a software system’s complexity and make it easier to understand and

maintain.

22

The second principle of SOLID is the Open/Closed Principle (OCP). This principle states

that software components should be open for extension but closed for modification. In other

words, a member should be designed so that it can be extended to support new functionality

without requiring changes to its existing code. This can help to reduce the risk of introducing

new bugs or breaking existing functionality when adding new features to a software system.

The third principle of SOLID is the Liskov Substitution Principle (LSP). This principle

states that objects of a subclass should be able to be used in the same way as objects of the parent

class. In other words, a subclass should be a substitution for its parent class without altering the

correctness of the program. Adhering to the LSP can help to ensure that a software system is

well-structured and maintainable over time.

The fourth principle of SOLID is the Interface Segregation Principle (ISP). This

principle states that clients should not be forced to depend on interfaces they do not use. In other

words, interfaces should be designed to minimize the number of methods a client needs to be

aware of. Adhering to the ISP can help reduce a software system’s complexity and make it easier

to understand and maintain.

The fifth and final principle of SOLID is the Dependency Inversion Principle (DIP). This

principle states that high-level modules should not depend on low-level modules, but rather both

should depend on abstractions. In other words, software components should depend on

abstractions rather than concrete implementations. This can help to reduce the coupling between

components and make a software system more flexible and easier to maintain.

In summary, the SOLID principles are a set of best practices for object-oriented software

design. They are intended to guide software designers in developing software systems that are

easy to maintain and extend over time. The SOLID principles are widely recognized as key

principles of good design and are often cited as best practices in software engineering. Adhering

to the SOLID principles can help to ensure that a software system is well-structured,

maintainable, and flexible over time.

23

 5.2.2 Unity Editors Implementation

Custom Unity Editors specialized in AR can be used to help build custom 3D objects for

AR experiences. These custom editors provide a user-friendly interface for creating, modifying,

and integrating 3D models, animations, and other AR assets. The editor's features can be tailored

to fit the specific requirements of AR development, such as intuitive placement and scaling of

objects in the real-world environment. Using these custom Unity Editors, students can learn how

to build and design interactive AR experiences and gain hands-on experience with AR

development tools. Creating custom 3D objects within the editor helps students fully realize their

creative visions and add a unique touch to their AR projects. In conclusion, custom Unity Editors

specialized in AR provide a valuable resource for students to build, experiment and create

immersive AR experiences.

This section will analyze the two main custom editors of the toolset in more depth. First

and foremost, the user should be able to select the behavior of the object that he wants to create.

After that, according to the user’s selection, the second editor, which is the main one, is shown,

and helps the user to create or update a custom object ready to be used in an AR experience, by

changing some values in a friendly and interactive way.

To access the tool, after it is imported via Unity’s package manager, the user must go to

Tools -> 3D Visualization in AR, and the Behavior Selection Editor will open.

Figure 13. How to access the toolset.

 5.2.2.1 Behavior Selection Editor

In this editor, the user selects the behavior of the custom objects they want to create. In

the current version of the toolset, the only implemented behavior is the orbit behavior, in which

custom objects are moving around in the AR space by orbiting around specific other custom

objects or around themselves.

24

Figure 14. Behavior Selection Editor.

 As concerns the coding part, it’s a simple Graphical User Interface (GUI) that includes a

simple label, a drop-down menu, and a button to confirm the userdesirable behavior of the

objects.

Figure 15. Behavior Selection Editor code snippet.

 The EditorHandler class is responsible for showing the selected behavior editor according

to the user’s choice. Since the only implemented behavior is the Orbit Behavior, it just shows the

OrbitEditorWindow, which will be analyzed in depth down below.

25

Figure 16. Editor Handler code snippet.

 5.2.2.2 Selected Behavior Editor (Orbit Behavior Editor)

This editor is responsible for the creation of custom objects, according to the user’s input.

More specifically, it is assembled by thirteen required or not required fields, and each of them is

a major property of the final movement of the custom object in the AR field.

Figure 17. Orbit Behavior Editor.

26

All the fields are described as follows:

1. Center (optional): The user specifies the anchor point of the orbit. By default, it is set to

(0,0,0), which is the center of the whole composition of custom objects.

2. Distance from center: The user specifies the distance from the center. It is basically an

offset in the X-Axis.

3. Scale: The user specifies the scale of the custom object.

4. Orbit Speed: The user specifies how fast or slow will the custom object be orbiting

around the Orbit Around value, given in the seventh field of the editor. By default, the

orbit around the Center direction will be clockwise, unless the user unchecks the

“Clockwise” checkbox.

5. Self Speed: The user specifies how fast or slow will the custom object be rotating or

spinning around itself. The spin direction will default to clockwise unless the user

unchecks the “Clockwise” checkbox.

6. Orbit Distance: The user specifies the orbit behavior of the custom object, specifically

for the X, Y, and Z axis. This way, the custom object can perform even a non-circular

orbit.

7. Orbit Around (optional): The user specifies an already created custom object to orbit

around it. By default, it is set to the center of the whole composition (0,0,0).

8. Model: The user specifies the model of the custom object to be created. It supports

Unity’s Game Object as input.

9. Name: The user specifies the name of the custom object to be created.

10. Information: The user specifies any information he wants about the custom object.

11. Object to update (optional): The user specifies an already existing custom object from

the hierarchy, that he wants to update and apply the latest changes.

12. Create Object Button: The user clicks on it when he has finished with all the required

input fields. After that, the new custom object is created in the hierarchy, and it is ready

to be used for any use case.

13. Update Object Button: The user clicks on it when he has finished with the new input

process. It is required to have already specified which already created custom object

wants to apply the changes. This action is made, as previously mentioned, from the

eleventh field named Object to update.

27

The programming part of the orbit editor window was a bit tricky since it involved the

creation of the UI (labels, float fields, dropdowns, and more). In Figure 18, you can see, with

more details, all the necessary variables, the ShowWindow function, and finally, the

OnEnable function, where the setup of the functionalities is made, and the tool is ready to

proceed with the user’s input.

Figure 18. Orbit Editor Window code snippet – Variables, ShowWindow & OnEnable functions.

 Most of the lines of code in the Orbit Editor Window script, have to do with the OnGUI

function, where all the UI components are declared. More in depth, you can see all the code that

assembles the final UI of the toolset, in Figure 19.

28

Figure 19. Orbit Editor Window code snippet – OnGUI function.

29

 As concerns the actual validation, create and update operations of the editor, all of them

are included in the Orbit Editor Handler script. It is responsible for the correct validation of the

user’s input each time the create or the update button is pressed. In the Create Custom Object

function, all the necessary actions are implemented, and the result is that a new Game Object is

instantiated in Unity’s hierarchy, with all the data that the user gave as input through the toolset.

As of the Update Custom Object, the same logic is also applied here, with the difference of not

having to create a new custom object from scratch, but changing the properties of an already

created custom object that is active in Unity’s hierarchy.

Figure 20. Orbit Editor Handler code snippet.

30

 5.2.2.3 Custom Object

Every custom object has all data from the user’s input, saved in variables. In Figure 21,

you can see all of them that are necessary for the correct and smooth use of them in AR

experiences.

Figure 21. Custom Object code snippet.

 5.2.2.4 Orbit Behavior Implementation

The actual implementation of the custom object’s orbit around any object, and the custom

object’s orbit or spin around itself, is implemented in the Orbit Behavior script. This script is

used in the AR experience’s actual scene and it’s responsible for the visualization of the objects

with the orbit behavior.

Figure 22. Orbit Behavior code snippet – Awake & Update.

Its main mechanics are the Rotate Self, and Rotate Around function, which you can see in

depth at figure 23. The first one, spins all the custom objects around themselves, and the second

31

one, orbits all the custom objects that are active in the hierarchy, around each one’s selected orbit

around object.

Figure 23. Orbit Behavior code snippet – RotateSelf & RotateAround.

5.3 Tool Results – AR Experience Use Case

 The use case AR experience that got implemented is the visualization of the solar system.

A small part of our solar system that involves the Sun, earth and the moon were implemented.

The models of the planets to be used, were designed, and created in Blender and converted

accordingly to fit Unity’s needs. The result is a mobile application, where the user can interact

with the planets via touching the objects themselves with the combination of the UI. The user

can either affect the whole composition of custom objects, in this use case the planets, or each

32

custom object on its own. The main actions that can be taken are scaling up or down, slowing

down or speeding up the time, changing the position by dragging the objects in the AR space,

and more.

 5.3.1 Creation of the Models

The normal textures and the elevated data textures were needed to create each planet with

their own details. The software needed for some retouching and detailing, as mentioned before,

is Blender. You can see the main project, specifically about the development of the Sun’s model,

in Figure 24.

Figure 24. Blender’s shading tab – Sun’s model.

 After all the work that needed to be done at Blender’s environment, the

conversion into Unity was required. The sun model got exported as a .fbx object, were the

normal and the elevation data textures were included and got imported in Unity. After that, a

basic material needed to be created, that uses the previously mentioned textures. Then, a default

Sphere 3D object was created, and the custom planet’s material got applied, to create the final

game object that represents the Sun and was saved in the resources folder of the project as a

prefab. This process was done for the rest of the planets that were included in the use case

33

application. Both custom material and prefab that were created, can be seen more in-depth in

Figure 25.

Figure 25. Custom Sun material and prefab created in Unity.

5.3.2 Adding the planets in the scene.

Then, the process that follows have to do with the actual use of the toolset. In this part,

each custom object of the planet was added in the hierarchy of the scene through the toolset, after

all the essential data settings were applied for each planet. In Figure 26 you can see the hierarchy

of the use case scene in Unity before any planet was added.

Figure 26. Unity’s hierarchy before adding the planets.

34

 The first custom object to be created was the Sun. All the essential settings were added

through the friendly UI of the toolset. In Figure 27 you can see all the settings that were applied.

Figure 27. Creating the Sun as a custom object through the toolset.

After clicking the create object button, the Sun custom object was immediately created in

the hierarchy and ready to be used for the AR experience. This process was also done for the rest

of the planets. In the end, the final state of the hierarchy was ready, and the actual application

can be used from any user’s mobile device. In Figure 28, you can see the final version of the

hierarchy after all the planets were created.

35

Figure 28. Unity’s hierarchy after adding all the planets.

 5.3.3 The final application

After building the project, the final AR experience was ready to be used from any user.

After giving the required permissions for the application to use the camera of the phone, the

experience starts by scanning the area that the camera sees and starts the scan of vertical planes.

A light visual starts to cover the detected area in the AR experience, and the user starts the

visualization of the planets by touching a position from the planes that were detected. In Figure

29, you can see the process of plane detecting and the actual visualization of the planets, orbiting

around as defined during the toolset’s settings application step.

Figure 29. Plane detection and visualization of the planets.

36

 The user can touch any planet to mark it as selected and has an option to see all the

details of that custom object, just by tapping on the top left icon on the UI. In the left part of

Figure 30, you can see all the information about the Sun that were added through the toolset.

Figure 30. Sun’s information panel and settings menu.

 Finally, the user can also access some additional settings by tapping the top right icon on

the UI. He can toggle on or off some graphics settings about the shadows and the lights. Also, he

can affect some visualization settings that have to do with the scale of the planets and about how

fast or slow they are moving. Last but not least, by tapping the edit mode button, he toggles

between affecting all custom objects as a composition, or affecting only one custom object,

which needs to be marked as selected by just touching it. In the right part of Figure 30, you can

see all the settings UI that the user can apply his preferences.

37

Chapter 6 - Conclusion & Future Work

 6.1 Conclusion

This thesis project had as a beginning as goal, the creation of a powerful, and at the same

time, friendly for the user, toolset that will be able to create custom objects ready to be used in

any AR experience, with any movement behavior he prefers. This gives the chance to any

developer who is a beginner, as concerns the AR programming, to build his own immerse

experiences, in a fast and interactive way. Hopefully, it can be a fantastic addition to the AR

developing community, especially since the toolset can be extended way more.

The idea was unique and interesting, especially since there weren’t many toolsets

available to the public, which can help the developer during the development phase of their

applications. In the beginning, the project faced some challenges such as the limited resources

available for AR development and the lack of knowledge of the development team about AR

programming. However, after several trials and errors, the creation of the toolset was successful,

which met the initial goals and exceeded expectations. As mentioned in the previous chapter, the

toolset was tested by several developers and received positive feedback, proving its effectiveness

and user-friendliness.

The conclusion of this thesis project is that the creation of a powerful and user-friendly

AR toolset is not only possible but also necessary in today's fast-growing AR industry. The

toolset provides a solution to the common challenges faced by AR developers, especially

beginners, and helps them create their own immersive experiences in a fast and interactive way.

The team's work is a testament to the idea that innovation and creativity can lead to the

development of valuable tools that can benefit the AR community and contribute to the growth

of the industry.

 6.2 Future Work

The toolset has the potential to be extended even further, offering even more capabilities

and features to AR developers. Currently, the toolset supports only the orbit behavior, since there

were many tricky parts that concerned both the GUI of the toolset and the actual implementation

and mechanics of the orbit behavior. One of the major things that need to be implemented in the

future is the support of more than one behavior for any custom object to be created from the user.

38

This requires the creation of a specific GUI that will be included in the toolset and the main

support of its settings and options, to be used in each custom object that the user prefers to

create.

Additionally, the current user interface for the AR toolset could be even simpler, clearer

and more appealing, as concerns the visual design. To address this, the work on improving the

user interface by making it more intuitive and visually appealing is essential. This could include

adding clear and concise instructions, streamlined controls, and a more modern and appealing

design. Also, another addition could be by incorporating drag-and-drop functionality to make it

easier for users to create custom objects and add behaviors to them. The interface could also

include helpful tips and suggestions to guide users through the process of creating their AR

experiences.

Another great addition would be the support of physics-based behaviors to the toolset,

such as gravity and collision detection, allowing developers to create more realistic and

interactive AR experiences or/and the support for more complex animations and motion patterns,

giving developers even more flexibility and control over their AR creations. Of course, the

integration with popular AR platforms such as ARKit, ARCore, and Vuforia to increase the

accessibility of the toolset to a wider range of developers and platforms would be essential, once

the toolset is at a very steady and final version.

In closing, the future of the AR toolset is full of potential and opportunities. By

continuously evolving and improving the AR toolset, the team hopes to provide AR developers

with the tools they need to bring their innovative ideas to life and help the AR industry continue

to grow and evolve. It is an exciting time for AR technology, and the toolset has the potential to

be a driving force in the growth and evolution of AR technology, inspiring future generations of

AR developers to take their ideas to the next level and create extraordinary immersive AR

experiences.

Chapter 8 - References

[1] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001).

Recent advances in augmented reality. IEEE computer graphics and applications, 21(6),

34-47., https://doi.org/10.1109/38.963459

[2] Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE

TRANSACTIONS on Information and Systems, 77(12), 1321-1329.,

https://doi.org/10.1109/38.963459

39

[3] Coomans, M. K., & Timmermans, H. J. (1997, August). Towards a taxonomy of virtual

reality user interfaces. In Proceedings. 1997 IEEE Conference on Information

Visualization (Cat. No. 97TB100165) (pp. 279-284). IEEE.,

https://doi.org/10.1109/IV.1997.626531

[4] Ratcliffe, J., Soave, F., Bryan-Kinns, N., Tokarchuk, L., & Farkhatdinov, I. (2021, May).

Extended Reality (XR) remote research: a survey of drawbacks and opportunities. In

Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp.

1-13)., https://doi.org/10.1145/3411764.3445170

[5] Wen, Y. (2021). Augmented reality enhanced cognitive engagement: Designing

classroom-based collaborative learning activities for young language

learners. Educational Technology Research and Development, 69(2), 843-860.,

http://dx.doi.org/10.1007/s11423-020-09893-z

[6] Marín-Vega, H., Alor-Hernández, G., Colombo-Mendoza, L. O., Bustos-López, M., &

Zataraín-Cabada, R. (2022). ZeusAR: a process and an architecture to automate the

development of augmented reality serious games. Multimedia Tools and Applications,

81(2), 2901-2935., https://doi.org/10.1007/s11042-021-11695-1

[7] Logothetis, I., Sfyrakis, M., & Vidakis, N. (2023). EduARdo - Unity Components for

Augmented Reality Environments

[8] Unity Technologies, “Unity3D.” Unity Technologies, Jun. 2005, https://unity.com/

(accessed Feb. 10, 2023)

[9] Kumar, A., Mantri, A., & Dutta, R. (2021). Development of an augmented reality‐based

scaffold to improve the learning experience of engineering students in embedded system

course. Computer Applications in Engineering Education, 29(1), 244-257.,

https://doi.org/10.1002/cae.22245

[10] Lin, H. Y., & Tsai, S. C. (2021). Student perceptions towards the usage of AR-

supported STEMUP application in mobile courses development and its implementation

into English learning. Australasian Journal of Educational Technology, 37(3), 88-103.,

https://doi.org/10.14742/ajet.6125

[11] Buchner, J., Krüger, J. M., Bodemer, D., & Kerres, M. Teachers’ use of

augmented reality in the classroom., http://dx.doi.org/10.13140/RG.2.2.28026.16326

[12] Logothetis, I., Katsaris, I., Sfyrakis, M., & Vidakis, N. (2023). 3D Geography

Course using AR: The Case of the Map of Greece

[13] Koh, R. K. C., Duh, H. B. L., & Gu, J. (2010, October). An integrated design flow

in user interface and interaction for enhancing mobile AR gaming experiences. In 2010

IEEE International Symposium on Mixed and Augmented Reality-Arts, Media, and

Humanities (pp. 47-52). IEEE., https://doi.org/10.1109/ISMAR-AMH.2010.5643296

https://doi.org/10.1109/IV.1997.626531
https://doi.org/10.1145/3411764.3445170
http://dx.doi.org/10.1007/s11423-020-09893-z
https://doi.org/10.1007/s11042-021-11695-1
https://unity.com/
https://doi.org/10.1002/cae.22245
https://doi.org/10.14742/ajet.6125
http://dx.doi.org/10.13140/RG.2.2.28026.16326
https://doi.org/10.1109/ISMAR-AMH.2010.5643296

40

[14] McCallum, S., & Boletsis, C. (2013). Augmented reality & gesture-based

architecture in games for the elderly. Studies in health technology and informatics, 189,

139-144., http://dx.doi.org/10.3233/978-1-61499-268-4-139

[15] Hamilton, R. (2019, March). Collaborative and competitive futures for virtual

reality music and sound. In 2019 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR) (pp. 1510-1512). IEEE., https://doi.org/10.1109/VR.2019.8798166

[16] Virtual Reality at the Library, https://dit-ringsted.dk/virtual-reality-paa-

biblioteket/ (accessed Feb. 10, 2023)

[17] Doolani, S., Wessels, C., Kanal, V., Sevastopoulos, C., Jaiswal, A., Nambiappan,

H., & Makedon, F. (2020). A review of extended reality (xr) technologies for

manufacturing training. Technologies, 8(4), 77.,

https://doi.org/10.3390/technologies8040077

[18] Extended Reality (XR): A Sneak Peek into an Alternate Reality

https://martechlive.com/extended-reality/ (accessed Feb. 10, 2023)

[19] Liarokapis, F., Macan, L., Malone, G., Rebolledo-Mendez, G., & De Freitas, S.

(2009, March). A pervasive augmented reality serious game. In 2009 Conference in

Games and Virtual Worlds for Serious Applications (pp. 148-155). IEEE.,

https://doi.org/10.1109/VS-GAMES.2009.40

[20] Jin, Q., Wang, D., Deng, X., Zheng, N., & Chiu, S. (2018, June). AR-Maze: a

tangible programming tool for children based on AR technology. In Proceedings of the

17th ACM Conference on Interaction Design and Children (pp. 611-616).,
https://doi.org/10.1145/3202185.3210784

[21] Seichter, H., Looser, J., & Billinghurst, M. (2008, September). ComposAR: An

intuitive tool for authoring AR applications. In 2008 7th IEEE/ACM International

Symposium on Mixed and Augmented Reality (pp. 177-178). IEEE.,

https://doi.org/10.1109/ISMAR.2008.4637354

[22] Sannikov, S., Zhdanov, F., Chebotarev, P., & Rabinovich, P. (2015). Interactive

educational content based on augmented reality and 3D visualization. Procedia Computer

Science, 66, 720-729., https://doi.org/10.1016/j.procs.2015.11.082

[23] Bell, D. (2004). Uml basics: The component diagram. IBM Global Services.

[24] Ohst, D., Welle, M., & Kelter, U. (2003, September). Differences between

versions of UML diagrams. In Proceedings of the 9th European software engineering

conference held jointly with 11th ACM SIGSOFT international symposium on

Foundations of software engineering (pp. 227-236).,

https://doi.org/10.1145/940071.940102

http://dx.doi.org/10.3233/978-1-61499-268-4-139
https://doi.org/10.1109/VR.2019.8798166
https://dit-ringsted.dk/virtual-reality-paa-biblioteket/
https://dit-ringsted.dk/virtual-reality-paa-biblioteket/
https://doi.org/10.3390/technologies8040077
https://martechlive.com/extended-reality/
https://doi.org/10.1109/VS-GAMES.2009.40
https://doi.org/10.1145/3202185.3210784
https://doi.org/10.1109/ISMAR.2008.4637354
https://doi.org/10.1016/j.procs.2015.11.082
https://doi.org/10.1145/940071.940102

41

[25] Li, X., Liu, Z., & Jifeng, H. (2004, April). A formal semantics of UML sequence

diagram. In 2004 Australian Software Engineering Conference. Proceedings. (pp. 168-

177). IEEE.

[26] Joshi, B., & Joshi, B. (2016). Overview of SOLID Principles and Design Patterns.

Beginning SOLID Principles and Design Patterns for ASP. NET Developers, 1-44.,

https://doi.org/10.1007/978-1-4842-1848-8_1

[27] Blender, https://www.blender.org/, (accessed Feb. 10, 2023)

https://doi.org/10.1007/978-1-4842-1848-8_1
https://www.blender.org/

