

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 1

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, ΕΛ.ΜΕ.ΠΑ. Κρήτης

Ελληνικό Μεσογειακό Πανεπιστήμιο

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πρόγραμμα Σπουδών Μηχανικών Πληροφορικής ΤΕ

Τίτλος:
Αυτοματοποίηση της διαχείρισης ευπαθειών λογισμικού με χρήση

τεχνικών Robotic Process Automation.
Title:

Enabling Automatic Vulnerability Management Through a Robotic
Process Automation Framework

Παπαχατζάκης Νικόλαος (τπ4294)

Επιβλέπων εκπαιδευτικός : Μαρκάκης Ευάγγελος

Επιτροπή Αξιολόγησης :

• Μαρκάκης Ευάγγελος
• Παναγιωτάκης Σπυρίδων
• Στρατάκης Δημήτριος

Ημερομηνία παρουσίασης: Δευτέρα 04 Ιουλίου 2022

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 2

 Ευχαριστίες
Δεν θα μπορούσα να μην να εκφράσω τις θερμές μου ευχαριστίες στον καθηγητή μου Δρ.

Ευάγγελο Μαρκάκη, καθώς και στους απόφοιτους μεταπτυχιακού Κεφαλούκο Ιωάννη και
Αστυρακάκη Νικόλαο, για την πολύτιμη βοήθεια τους στην εκπόνηση και στη βελτίωση της
πτυχιακής μου εργασίας, καθώς και στο εργαστήριο Pasiphae Lab για την υπέροχη συνεργασία
και την γενναιόδωρη βοήθεια σε οτιδήποτε με απασχόλησε. Η βοήθειά τους, μα κυρίως η στάση
τους, πέρα από ένα καλό αποτέλεσμα, με έκανε να καταλάβω πόσο πολύ μου αρέσει το
αντικείμενο και το πόσο σημαντικό είναι να έχεις ανθρώπους που να σε στηρίζουν και να
πιστεύουν σε εσένα.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 3

Abstract

Internet these days has shaped our society in such a way that more and more things we do
in our everyday lives tend to digitalization. The benefits behind that digitalization trend are that
it makes our lives easier and more productive, especially with today’s computing power and
technological advancement where almost everything is possible to do online. To extend the
functionality and usability of the current technology, an enormous number of new services are
created every day. Considering that, every new service published, has the potential to become a
target from malicious software and users as they might possess security vulnerabilities that are
not yet identified or mitigated. The process of making an organization secure from such risk has
become harder and more time-consuming than ever because of the eruption of new services,
exposing their interfaces to the internet. For these reasons we propose an application that
enables administrators to automate their way into managing software vulnerabilities in
organizations, using Robotic Process Automation (RPA) technics. Our tool has all the functionality
needed to help administrators automate the mitigation actions required for known
vulnerabilities by recording the mitigation actions of the admin into a process, then our tool
distributes robots that executes the recorded actions to multiple hosts, relieving administrators
from such time-consuming tasks.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 4

Περίληψη

Το Διαδίκτυο στις μέρες μας, έχει διαμορφώσει την κοινωνία μας με τέτοιο τρόπο που όλο
και περισσότερα πράγματα που κάνουμε στην καθημερινή μας ζωή τείνουν προς την
ψηφιοποίηση. Τα οφέλη πίσω από αυτήν την τάση ψηφιοποίησης είναι ότι κάνει τη ζωή μας
ευκολότερη και πιο παραγωγική, ειδικά με τη σημερινή υπολογιστική ισχύ και την πρόοδο της
τεχνολογίας όπου σχεδόν τα πάντα είναι δυνατά να γίνουν online. Με σκοπό την πρόοδο της
λειτουργικότητας και της χρηστικότητας της τεχνολογίας, ο αριθμός των νέων υπηρεσιών που
δημιουργείται καθημερινά είναι τεράστιος. Κάθε νέα υπηρεσία που δημοσιεύεται, είναι
πιθανόν να γίνει στόχος από κακόβουλο λογισμικό, καθώς ενδέχεται να διαθέτει ευπάθειες
ασφαλείας που δεν έχουν ακόμη εντοπιστεί. Η διαδικασία διασφάλισης ενός οργανισμού από
τέτοιους κινδύνους έχει γίνει πιο δύσκολη και πιο χρονοβόρα από ποτέ λόγω αυτής της έκρηξης
νέων υπηρεσιών. Για αυτούς τους λόγους, προτείνουμε μια εφαρμογή που επιτρέπει στους
διαχειριστές να αυτοματοποιήσουν τον τρόπο διαχείρισης των ευπαθειών λογισμικού σε
οργανισμούς και όχι μόνο, χρησιμοποιώντας τεχνικές Robotic Process Automation (RPA). Το
εργαλείο μας έχει όλη τη λειτουργικότητα που απαιτείται από τους διαχειριστές για να
αυτοματοποιήσουν τις ενέργειες που απαιτούνται για να αντιμετωπιστούν τα γνωστά τρωτά
σημεία, καταγράφοντας τις ενέργειες τους σε μια διεργασία, όπου έπειτα διανέμονται και
εκτελούνται οι ενέργειες αυτές σε πολλούς υπολογιστές, απαλλάσσοντας τους διαχειριστές από
τέτοιες χρονοβόρες εργασίες.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 5

Table of Contents

Ευχαριστίες .. 2

Abstract ... 3

Περίληψη ... 4

Table of Contents .. 5

List of Figures ... 7

List of Tables .. 8

1. Introduction ... 9

2. State of the Art .. 10

3. Technology Enablers .. 12

3.1. Robotic Process Automation .. 12

3.2. Microsoft UIA framework .. 12

3.3. Visual Studio ... 12

3.4. NMAP ... 13

3.5. Visual C# ... 14

3.6. PyCharm ... 14

3.7. Flask ... 14

3.8. JSON Web Token .. 15

3.9. PostgreSQL ... 15

3.10. Docker .. 15

3.11. Windows Forms ... 16

4. Implementation ... 17

4.1. Architecture ... 17

4.2. Server-side Logic (Backend) ... 17

4.2.1. Database .. 17

4.2.2. Server API .. 19

4.2.3. Endpoints ... 19

4.3. Client-side Logic (Frontend) ... 20

4.3.1. RPA Assistant ... 20

4.3.2. Desktop application ... 20

Sign in... 20

Sign up ... 21

Assistant ... 21

Dashboard .. 22

Robots .. 23

Processes ... 24

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 6

Optimizations ... 35

Client API.. 36

Robots .. 36

5. Use-case Scenario .. 41

5.1. Methodology ... 41

5.2. Real-world application ... 43

6. Conclusion ... 45

7. References ... 46

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 7

List of Figures

Figure 1 Visual studio Community edition environment ... 13
Figure 2 Nmap Logo ... 13
Figure 3 Python logo .. 14
Figure 4 Flask logo ... 14
Figure 5 PostgreSQL Logo .. 15
Figure 6 Docker Logo ... 16
Figure 7 WinForms architecture .. 16
Figure 8 Architecture diagram ... 17
Figure 9 The database Schema .. 18
Figure 10 Sign in page .. 20
Figure 11 Sign up page ... 21
Figure 12 RPA Assistant Welcome page .. 22
Figure 13 Dashboard .. 23
Figure 14 Robots Page ... 23
Figure 15 New robot dialog ... 24
Figure 16 Processes page ... 24
Figure 17 Recording toolbox dialog ... 26
Figure 18 An example process ... 27
Figure 19 All the available tasks .. 29
Figure 20 Task states ... 29
Figure 21 Targets page overview ... 30
Figure 22 Discover host dialog ... 30
Figure 23 Vulnerability scan dialog .. 31
Figure 24 Targets board - Overview tab .. 32
Figure 25 Vulnerability Right click Context menu .. 32
Figure 26 Targets - Discovered vulnerabilities tab .. 32
Figure 27 Targets board - Timeline tab .. 33
Figure 28 Settings page ... 34
Figure 29 Profile page .. 35
Figure 30 Mouse click recording sequence ... 37
Figure 31 Playback robot flowchart ... 38
Figure 32 Example robot token data ... 39
Figure 33 Robot warning dialog - Postpone execution .. 40
Figure 34 Use-case diagram of Vulnerability management scenario .. 42
Figure 35 Sequence diagram of Vulnerability management scenario ... 42
Figure 36 Remediation process for XAMPP ... 43
Figure 37 Before remediation - Discovered vulnerabilities ... 44
Figure 38 After remediation - Discovered vulnerabilities .. 44

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 8

List of Tables

Table 1 API endpoints .. 19

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 9

1. Introduction

As technology progresses and becomes more affordable, even more people get their hands
on powerful and capable pieces of technology. Provided that the technology type of choice these
days is the portable devices [1], i.e. (smartphones, tablets, and laptops), suggests that our
information should be available from anywhere in the world. To accommodate that need,
organizations focus on the development of web applications and distributed services. Although,
some people may use the internet maliciously to benefit from others by stealing their private
information. That is possible due to the huge number of bugs in the published apps and software
vulnerabilities of web services that an attacker could exploit. As presented in [2], the number of
discovered vulnerabilities keeps rising year by year. That is why we need to make sure that the
apps, the services, and the organization’s infrastructure are not vulnerable and secure from
malicious users.

To have an acceptable level of security in an organization, most software vulnerabilities must
be completely assessed and mitigated. Remediating all the possible vulnerabilities is a tedious
and time-consuming process for the operators because software vulnerabilities may exist in any
software an organization utilizes, whether it is the OS (Operating System), the web server, or
even the smart lamp in the office. A typical organization usually consists of several employees
that use computers with internet access, which exposes even more vulnerabilities and widens
the attack surface of the organization, providing attackers with points of entry into the system.
Thinking of all that, network administrators need help to stay fast and effective against
cybercriminals. In this thesis, we propose an implementation of a Windows application made
with network administrators in mind. [3] This application is essentially a Robotic Process
Automation (RPA) tool that gives the administrators a way to automate the vulnerability
mitigation process by allowing them to record the remediating actions needed in a remediating
process or search for an already created process from other users of the platform. Using this
process, robots can be deployed on multiple machines simultaneously and replicate the
administrators’ actions by executing the recorded process. Finally, operators can use the
applications vulnerability scanning tools to rescan the targets for vulnerabilities and evaluate
the effectiveness of the mitigation.

The rest of the paper is structured as follows. Section II presents the state of the art regarding
automated vulnerability assessment and mitigation. Section III presents the technology enablers.
Section IV presents the implementation details (System Architecture)

of the presented platform. Section V presents a Use-case scenario. Finally, Section VI
concludes this paper with a short discussion on the results of this thesis and the presentation of
foreseen future steps.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 10

2. State of the Art

Vulnerability Management in an enterprise environment is a very critical and time-consuming
task for the operators, because of the huge number of vulnerabilities discovered every day and
the need to manage each of them for every machine in the infrastructure. Automations can be
used to assist operators to free up valuable time that they spend on such repetitive tasks. Thus,
in this section, we will analyze existing solutions for vulnerability assessment and remediation
automations.

There have been several studies about Automated Software Vulnerability patching. Authors
in [4] proposed a methodology for automated patching of known vulnerabilities in binary
programs, using code from a non-defective version of the software and using this to patch the
binary. Similarly, authors in [5] proposed an automatic patching technique, which overwrites the
Global Offsets Table (GOT) and Procedure Linkage Table (PLT) of the vulnerable functions in a
binary program. The authors also performed fuzzing and symbolic execution on binary program
files to discover possible unknown vulnerabilities.

 Moreover, the work in [6] studies a dynamic risk-aware patch scheduling mechanism to
determine the order with which vulnerabilities should be patched, thus minimizing the security
risks imposed by vulnerabilities. Similarly, the work in [7] proposes a machine-learning based
automation framework to automate remediation decision analysis for electric utilities. Even
though the presented solution was investigated within an organization selling electric utilities, it
can also be applied to different networking environments as the authors claim. In this context,
the authors in [8] proposed a machine-learning based solution for prioritizing vulnerability
remediation actions by classifying vulnerabilities according to high- and low-risk, where high-risk
vulnerabilities are those that have been exploited in actual organization networks. Moreover, the
work in [9] verifies and tests any possible vulnerabilities by automatically pen-testing the system
based on generated attack graphs.
Regarding automated vulnerability assessment, authors in [10] describe a vulnerability
assessment framework that could be used to assess cyber threats on computer networks,
specifically on Cyber-Physical Systems (CPS) and Aviation cyber-physical systems (ACPS).
Additionally, the work in [11], [12] presents a machine learning model to extract vulnerability
characteristics using the vulnerabilities’ description, optimizing the vulnerability assessment on
software. The presented machine-learning model utilizes a combination of character-level and
word-level features to improve effectiveness.

Finally, there have been numerous research initiatives on remote, automated mitigation of
vulnerabilities on computer networks. Nishant Sharma et al. in [13] proposed a proof of concept
for remote automated vulnerability assessment and mitigation on a host-based solution, using
custom vulnerability specific Python scripts. Similarly, authors in [14] presented ARMOUR, which
mitigates the threat and secures the network by preventing the communication between
vulnerable and critical assets, but it does not make any vulnerability remediation actions on the
assets.

Most of the presented work does not propose a remote automated way of patching
vulnerabilities, and even the work that does still requires operators to heavily interact with the
remote machine and write custom scripts for every possible vulnerability. To address the above-

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 11

mentioned issue, we propose a framework that performs i) remote automated vulnerability
assessment to multiple hosts and ii) remote and fully automated vulnerability patching to
multiple hosts, utilizing RPA technics to minimize the time spent by network operators to
manually patch common vulnerabilities; and shrink the attack surface of the network.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 12

3. Technology Enablers

In this section, we will present all the technologies that we used and briefly explain the use
and purpose of each one. All the technologies presented in this section are Open-Source and are
available for academic purposes.

3.1. Robotic Process Automation

Robotic process automation is a technology that helps us create, deploy, and manage
software robots. These robots often emulate human actions on computers, using the mouse and
keyboard to interact with the user interfaces (UI) of various applications and systems. RPA robots
can recognize what is on the user screen and even identify and extract data from the screen. It
mainly executes a process of well-defined actions as a human would do.

3.2. Microsoft UIA framework

Microsoft UI Automation1 is a framework developed by Microsoft 2and is part of the .NET3
framework collection. UIA is a framework that it’s mainly used for Accessibility applications
because it provides programmatic access to the user interface (UI) and delivers information for
what is on screen and can interact with the UI in more ways than just input from the user.

3.3. Visual Studio

Visual Studio4 is a complete Integrated Development Environment (IDE) developed by
Microsoft that enables users to easily develop their applications with various programming
languages like Visual C#, Visual C++, ASP.NET, and more.

1 https://docs.microsoft.com/en-us/dotnet/framework/ui-automation/
2 https://www.microsoft.com/
3 https://docs.microsoft.com/en-us/dotnet/
4 https://visualstudio.microsoft.com/

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 13

Figure 1 Visual studio Community edition environment

3.4. NMAP

NMAP5 is an open-source utility for network discovery and cybersecurity. It is very useful for
network operators because of its easy and well-designed command-line interface (CLI) and
because of the nicely structured data of the network that provides. NMAP also provides a
scripting engine (NSE) that allows the expandability and scalability of the utility through custom
scripts written in the LUA6 programming language

Figure 2 Nmap Logo

5 https://nmap.org/
6 https://www.lua.org/

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 14

3.5. Visual C#

Visual C# is a C-like programming language developed and maintained by Microsoft and is a
basic part of the .NET framework. C# has a very flexible and scalable syntax and is quite easy to
master. It supports declarative and non-declarative syntax and is very good for Graphical User
Interface (GUI) applications.

3.6. Python

Python is an interpreted non-declarative programming language with the prime goal of easy,
fast, and flexible software development. Python7 is cross-platform and open-source language and
is one of the most famous and used programming languages.

Figure 3 Python logo

3.7. Flask

Flask8 is a lightweight Web Server Gateway Interface (WSGI) web application framework for

Python which is designed for easy and fast web development. There are many extensions for
Flask that extend its functionality and usability. In our research, we utilize flask as a REST API
server.

Figure 4 Flask logo

7 https://www.python.org/
8 https://palletsprojects.com/p/flask/

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 15

3.8. JSON Web Token

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact and self-
contained way of securely transmitting information structured in JSON format. JWT is a bearer
authentication method and uses JSON data encoded as Hex string.

3.9. PostgreSQL

PostgreSQL9 is an open-source object-relational Database Management System (DBMS)
compatible with Structured Query Language (SQL) that helps us manage and manipulate
databases in a traditional fashion. It is popular for its robustness and superior performance.

Figure 5 PostgreSQL Logo

3.10. Docker

Docker10 is a software that enables containerization technology of Linux containers.
Containers are stripped down Linux kernels that provide a separate environment with specific
packages and drivers for our applications to run on independently. It supports a wide variety
of custom containers, and it makes the deployment and the management of the containers
easier.

9 https://www.postgresql.org/
10 https://www.docker.com/

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 16

Figure 6 Docker Logo

3.11. Windows Forms

Windows Forms (WinForms) is a free and open-source Graphical User Interface (GUI) class
library that is part of Microsoft .NET framework. WinForms makes the development of the GUI
easy with all the of the shelf components and controls that offers. Although Windows
Presentation Foundation (WPF) has come to replace WinForms, still lots of users prefer the old
traditional way.

Figure 7 WinForms architecture

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 17

4. Implementation
4.1. Architecture

 In this section, the architecture of the proposed framework will be presented. The
application is designed to be cloud native therefore, the proposed architecture is split into two
discrete parts, the server-side logic (backend) and the client-side logic (frontend).

Figure 8 Architecture diagram

4.2. Server-side Logic (Backend)

4.2.1. Database

One of the key components of a cloud native application is the database, which is used to
securely store all the user’s data. In our implementation, we decided to use PostgreSQL11

database management system (DBMS), since PostgreSQL supports JSON and XML datatypes
which other commercial DBMS lack. To enhance scalability and load balancing, the database lives
on Docker containers.

As seen in Figure 9, the database schema contains tables for users, processes, targets,
reports, robots, and subscriptions. The table of users consists of fields for saving his ID in
Universal Unique Identifier (UUID) format, first name, last name, email, password (as hashed

SHA25612 string), last login date, birthdate, and a subscription id that user have purchased. The
fields of the processes table are the process UUID, the name and type of the process, creation
date, its visibility (public or not), a description text, an array of tags for easier search, the list of
actions that the robot will execute, the owner (User id) of the process, if it is a subprocess, and

11 https://www.postgresql.org/
12 https://en.wikipedia.org/wiki/SHA-2

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 18

the last modified date. The robots table consists of fields for robot UUID, the process id that it
will execute, the name and the id of the target that it will be deployed, its status, last ran date,
and the id of the user that created it. The targets table contains fields for saving the name of the
target, its IP and MAC address, the subnet, the last scanned date, its state, vendor, the Operating
system that is running, an array of discovered vulnerabilities, the id of the user that this machine
belongs, SHH credentials and the ports that are open on the machine. The reports table also
contains fields for the report id, the robot id that produced the report, the creation date, the
status, and the data that builds the body of the report. Finally, the subscriptions table holds
information about the available subscriptions the user can purchase. It has fields for the
subscription name, the id, the price of the subscription, a description, and the purchase and
expiration date.

Figure 9 The database Schema

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 19

4.2.2. Server API
The server-side API is mainly a RESTful API written in Python using Flask and SQLAlchemy. We

used the SQLAlchemy13 toolkit because it makes it easy to connect the DBMS with the Python by
wrapping the complicated API of the DBMS into a user-friendly adapter and using models to
interact with the database instead of SQL queries. The use of models makes the development
easier and faster while keeping the code clean and providing the basic data type checking. The
Flask web server exposes to the internet a series of endpoints where the frontend-logic and the
robots can use to communicate. Flask was the framework of choice because it provides native
support for JSON Web Token (JWT) and SQLAlchemy which makes the development process
much quicker. The API is responsible for handling and processing all the user’s data as well as the
authentication of the user. If the user provides valid credentials, the API sends back to the client
a bearer token (JWT token) that represents the user’s access card. Using that token the API checks
if the user is authorized to access the information, he requested for.

4.2.3. Endpoints
The following table shows the available endpoints of the server API.

URL Method Description

/api/v1/login POST Returns a Bearer token if credentials are valid

/api/v1/logout GET Logs out the user

/api/v1/signup POST Registers a new account with the posted data

/api/v1/process GET/POST/PUT/DE-
TELTE

CRUD operations for processes.

/api/v1/scan/token GET Returns a special token for the scanner robot

/api/v1/users GET/PUT/DELETE Used to retrieve, update, and delete users ac-
count data

/api/v1/robots GET/POST/PUT/DE-
LETE

CRUD operations for the robots

/api/v1/robots/token GET Returns a Bearer token for the playback robot

/api/v1/robots/process GET Returns the process for the robot to execute

/api/v1/targets GET/POST/PUT/DE-
LETE

CRUD operations for the targets

/api/v1/subscriptions GET/POST/DELETE Used to create, retrieve, and delete subscrip-
tions schemes

/api/v1/dashboard GET Returns users dashboard statistics

/api/v1/docs GET Shows API documentation
Table 1 API endpoints

13 https://www.sqlalchemy.org/

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 20

4.3. Client-side Logic (Frontend)

4.3.1. RPA Assistant

The assistant mainly consists of the main desktop application and the client API. We went
with a traditional desktop application design because there was the need for things to happen
on the user’s hardware, such as network scanning and remote access. For the development of
the assistant, we choose to use the Microsoft WinForms GUI class library and Microsoft Visual C#
programming language that are under the .NET framework. The reason we settled with the older
WinForms instead of newer technology is that it is supported by machines that run on Microsoft
Windows, even older systems like Windows XP.

4.3.2. Desktop application

Having in mind that the application needed to be modular and easily expandable, we
followed a container style approach on the assistant, which means that the main UI is just a
container that fills up with custom boards and a side menu to navigate between them.

Sign in

Aside from the assistant’s main form, we created a sign-in page, which is the first thing to
appear when the application is started. On the sign-in page, the users must fill their login
credentials, such as email and password. If the users do not remember their credentials, they can
reset the password for this email using the link next to the Sign in button. Because the users may
log in multiple times during a working day, we added a “Remember me” checkbox for the
application to remember the last used credentials.

Figure 10 Sign in page

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 21

Sign up

On the Sign-in page, clicking the “Register” link reveals the Sign-up page. On this page,
the user can create a new account by filling in all the necessary information indicated with the
star “*” character. The subscription that the user selects, changes the monthly cost of the
application, and changes the functionality of the application. Although, in the scope of the thesis,
the subscription mechanism was not implemented.

Figure 11 Sign up page

Assistant

After the user successfully login, the main form of the application starts. As seen in
Figure_12 the application consists of the container space (marked with gray color) where all the
content boards are displayed and the top panel where we find the title of the active board, the
profile button, and the window controls. Moving on, on the left side we find the navigation side
panel with all the available boards. By clicking on any item in the navigation side panel, the
specific board will be displayed in the center of the application. Lastly, at the bottom, the status
bar with a progress bar on the right is depicted. This progress bar indicates the progress of the
robot deployment. Right next to the progress bar, we find a button to resize the whole window.
For aesthetic purposes, the application lacks the default window border, therefore, making the
resize button mandatory.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 22

Figure 12 RPA Assistant Welcome page

Dashboard

The dashboard is the page that shows to the user various information about their activity
on the platform. Some of this information are the processes that the user has made, the robots,
the discovered targets, reports, robot status, and the sum of the discovered vulnerabilities.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 23

Figure 13 Dashboard

Robots

Robot’s page main purpose is for listing and handling the user’s robots. As seen in

Figure_14, in the center of the page, there is a list of all the robots of the user. The information
that is saved for every robot such as the name, the IP address of the machine to deploy on, its
status of execution (started, ended, running, etc.), the last run date, the user who created it, the
process name to be executed and the UUID of the robot.

Figure 14 Robots Page

At the top of the page is the menu with all the available actions. The “add new” button,
when clicked, will show a dialog window prompting the user to insert the name of the new robot,
the IP address of the machine to deploy on, and the process to execute. Similarly, the “edit”
button shows a dialog with the robots’ details already filled for the user to change. The “delete”
button deletes all the selected robots. The “deploy” button deploys all the selected robots from
the list on the specified machines for each robot. Lastly, the “deploy scheduled” also deploys the
selected robots but gives the robots a specified starting time and date. Finally, right below the
main menu is a field where the user can search for a robot using its name.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 24

Figure 15 New robot dialog

Processes

The processes board provides the ability to the user to create, edit and delete the
processes. The page consists of the following UI components.

Figure 16 Processes page

Actions menu

As seen on most pages, on the top of the page is a menu bar containing all the available
functionality of the specific page. The process page is no exception to that, having a menu with
buttons to create, save, delete, record, and run the selected process. Going on, we find a status
label that describes if the process is saved or not, a Fit to screen button that resets all the tasks
of the process to the origin14, the Export button, which exports the current process to a PNG
format image for easy sharing, and the Hide properties button that minimize-maximize the Task

14 Origin is the point where the (x, y) coordinates are (0, 0) respectively. The origin point is presented on the
drawing board with a small red square.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 25

list and process details panels to extend the usable area of the drawing board. On the right of all
these, there is a field that is used to filter the processes on the process list by their name, a
checkbox that when checked the process list contains all the public processes across our platform
and if not, then only the users’ processes will be displayed. Finally, there is a slider that is used
to scale the process to the desired size.

Process List

The process list is the left most panel of the process page, and its purpose is to display the
available processes ordered by their name in ascending order. Users can use this list to select the
process they want to edit. By right clicking on an item of the list, a context menu appears which
gives us the ability to clone the specific process, delete or edit the process.

Tasks List

The tasks list is located on the right of the process list and there is a list of all the available
tasks the user can insert into a process. It helps the user to manually edit the process if needed.
By clicking on a task, it automatically inserts a task of that kind on the drawing board.

Process details

Right below the tasks list, we can find the process details panel. This panel is responsible
for displaying all the details of the current process. Such details are the process’s name, id,
creation date, owner, type, tags, visibility, and its description. Some of this information use a text
field to display because we wanted the user to be able to edit these details of the process. The
type of the process defines where this process was recorded. The tags of the process are used to
make the search of the process easier and to provide some information regarding the content of
the process. The visibility of the process is to determine if other users on the platform can view
and use this process.

Process Recording toolbox

 When the user decides to record a process, by clicking the “Record” button on the Actions menu, the
assistant gets minimized and the recording toolbox dialog shows up. This dialog gives the user the time needed to
prepare for the recording while providing a variety of different recording modes. As seen in Figure_17, the toolbox
consists of:

• “Start recording” button starts recording any action made by the user.

• “Click” button records a single mouse click action.

• “Keystrokes” button records the user’s keystrokes.

• “Special key” button records a special key combination (i.e., CTRL + SHIFT + V keys).

• “Command window” button records a terminal session.

• “Save” button saves the recordings and terminates the procedure.

Pressing any of the above-mentioned buttons, the toolbox gets minimized, allowing the user to perform
the remediating actions. By pressing the Escape (ESC) button, the user can stop the recording and show the
toolbox.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 26

Figure 17 Recording toolbox dialog

Process Drawing board

Finally, the most important part of the processes page is the process drawing board. Using this
component, the user can design and view a process. A process is represented as a directed graph
in which each node is a task of the process, and each edge, points to the next task to execute in
the process. By design, the tasks can have multiple inward and outward connections but, in our
implementation, we do not take advantage of that feature yet.

Moving on to the process design, the user can insert a task into the drawing board manually or
by recording the user’s actions. The recorded processes are complete and ready to execute. That
is not the case when the user manually inserts tasks into the process. To be able to execute a
task, it must be connected to a start task, or a sequence of tasks starting with the start task. After
the successful insert of a recorded process, the user can edit the process manually using the
controls described below.

• Holding the right mouse button down and moving the mouse, moves the whole board
around.

• Holding the left mouse button down and mouse move on the board reveals a doted
rectangle where every task that interacts with this rectangle gets selected. The se-
lected tasks are lighter in color and feature a blue border.

• Holding the left mouse button down and moving the mouse on a task, moves the se-
lected tasks on the board.

• A single left click on the board deselects everything.

• A single left click on a task adds it to the selection while deselecting everything else.

• Holding the CTRL key while single clicking on a task adds it to the selection.

• Holding the CTRL key and left mouse button while moving the mouse, creates a group-
ing rectangle. Every task that intersects the rectangle, becomes a child of it. The
grouping rectangles are meant for grouping tasks with similar functionality. They have
a title, size, and color properties that by right clicking on it, the user can change their
values through the context menu.

• Holding the left mouse button down while moving the mouse on a grouping rectangle,
moves the rectangle and its tasks around on the board.

• DEL key deletes everything selected on the drawing board.

• CTRL + S keys combination saves the process

• CTRL + C keys combination copies the selected items on the drawing board

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 27

• CTRL + V keys combination pastes the previously copied tasks, on the board

 There are two ways to insert a task manually. One of these is to insert a task through the task
list. The second way to insert a task is while connecting to another task. To connect the tasks, the
user needs to click on a green plus (+) button at the bottom center of the task. When this button
gets clicked, an arrow appears on the board indicating that the connection is taking place. The
user then needs to click on another task to connect them. If the user does not have a task to
connect on, by clicking on the board, a context menu appears, and the user has the option to add
a task on that spot and connect to it.

Figure 18 An example process

Tasks

The key components of a process are the tasks. The tasks are the actual instructions that the
robot will follow to complete a process. We have created a collection of tasks for the user to
choose from.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 28

a) The start task is a nonoperational task that indicates the start of a process. The robots

always execute the start task first and for that reason, any task that is not connected

to a start task will not be executed.

b) The click task is used to direct the robot to position the cursor onto a specific control

on the user’s desktop and perform a click, double click, or a right click.

c) The special keys task is responsible for pressing special keys combos. By clicking on

the toggle buttons on the task the user can specify the keys to press.

d) The message box task is used for displaying a message to the user while the robot is

running.

e) The keystrokes task is used for emulating keyboard strokes. Along with the keystrokes,

the user can define a key modifier by toggling the modifiers buttons.

f) The attach task attaches the robot to a specific window on the user’s desktop. This is

useful because it helps the robot to search for the controls more efficiently.

g) The open application task starts an instance of the specified program with the speci-

fied arguments.

h) The delay task halts the execution of the process for the time the user specifies in

milliseconds.

i) The open hyperlink task opens the specified URL on the system’s default browser.

j) The open terminal starts a new instance of a terminal window on the specified direc-

tory.

k) The wait for the component task halts the execution of the robot until the specified

control appears on the screen. For safety reasons, the task will timeout after 10

minutes if the control never shows up.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 29

Figure 19 All the available tasks

For aesthetic and usability purposes, the tasks can be displayed on four (4) different
states. The normal appearance, when selected, when disabled, and when collapsed.

Figure 20 Task states

Targets

The targets page is dedicated to display and handle all the necessary information about
the discovered hosts of the user. Its main purpose is to provide the user a way to manage
discovered hosts, scan for new hosts on the network, perform vulnerability test and manage the
vulnerabilities of each one, and finally to program timed events for a host. The targets page
consists of the following UI.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 30

Figure 21 Targets page overview

Action menu

On the top of the page is a menu bar containing all the available functionality of the
specific page. Regarding the targets page, the discover button allows the user to scan a network
for active hosts while also choosing the method of the scan and the scanner to be used. The
delete button forgets the selected host and deletes it from the list. If the user scans again and
the deleted hosts are active, they will be displayed again. Finally, the vulnerability scan button
allows the user to scan for vulnerabilities on specific targets or on all known targets.

Figure 22 Discover host dialog

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 31

Figure 23 Vulnerability scan dialog

Targets list

On the left side of the page, we can find the discovered hosts list. This list displays all
known hosts. Next to the title of the panel, is a refresh button that is used to ping all the known
targets to determine if they are still online or not. By clicking on an item on the list, the user
selects a target for further information. On the other hand, by right clicking on an item of the list,
a context menu appears that gives us the options to rescan the host with a specified method, to
vulnerability scan, characterize the machine as critical infrastructure, monitor its network traffic,
delete it from the list, open an SHH shell window, and send a shutdown signal.

Target information panel

Next to the targets list, is a panel that displays general information about the selected
target. This panel consists of three collapsible panels that are used to categorize the information.
The first one holds security metrics and info about the target. The second holds information
about the network properties of the target and finally the third holds the SSH credentials of the
target.

Main tabbed control

At the center of the page, there is a tabbed control that is used to provide more
information about the selected host. There are three different tabs on that control. The overview
tab mostly displays general information about the associated robots, the open ports, when it was
last scanned and the amount of the discovered vulnerabilities. There is also a list of the open
ports of the host.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 32

Figure 24 Targets board - Overview tab

 Moving on, the discovered vulnerabilities tab gives us a more graphical way to manage
the discovered vulnerabilities of the target. As shown in Figure_25, it consists of a button to scan
this target for vulnerabilities on the top right, a pie chart that displays the vulnerabilities based
on their Common Vulnerability Scoring System (CVSS) score, and a list with more details about
the vulnerabilities. If the user right clicks on an item of the list, as seen in Figure_24, a context
menu appears which gives us the following options.

• View vulnerability’s reference webpage

• Create a mitigation process

• Search for existing mitigation processes on the platform

• Ignore this vulnerability for all targets or for this target only.

Figure 25 Vulnerability Right click Context menu

Figure 26 Targets - Discovered vulnerabilities tab

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 33

Finally, the timeline tab, lets the user create timed events for the selected targets. An
event could be a robot deployment, a scheduled vulnerability scan, or a network scan. Currently,
this tab is not functional, but it will be implemented in the future.

Figure 27 Targets board - Timeline tab

Settings

The settings page contains all the available settings and preferences that the user can
change and personalize. The settings are categorized into the environment, automations,
scanning, robots, and vulnerability settings for easier navigation. Again, in the context of this
thesis, the settings are a prototype and are not yet been implemented.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 34

Figure 28 Settings page

Profile

The last page in assistant is the profile page. To navigate to this page, on the top right corner
is the profile button. Clicking on this button reveals a context menu where the view profile option
is the one that lands the user on the profile page. Here, the users can review their personal info
and act about their profile. The users can edit their personal information, change profile picture,
change password, update the subscription purchased and delete the account altogether.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 35

Figure 29 Profile page

Optimizations

Because WinForms is based on GDI+ graphics engine, it does not support hardware-
accelerated graphics which means that all the graphics calls are handled by the main thread on
the Central Processing Unit (CPU). This means that the performance is quite poor, even for a few
components. We came across that problem when the user started making processes longer than
a few tasks which made the application run very slow. So, we decided to create our own drawing
routines to optimize the drawing procedure by implementing a custom Double buffered graphics
object using the GDI+. With all that, we were able to effectively draw to screen a huge number
of tasks, and eliminate the screen tearing, stutter, and flickering while keeping the performance
on an acceptable level.

We managed to do all that by making the tasks to save a screenshot of their client area into
a bitmap and refresh this bitmap every time the task gets invalidated. Then when the user
attempts to move the process around, the drawing board prevents the application from
automatically drawing the tasks by changing their visibility to false. After that, our custom redraw
function pastes the pre-drawn bitmap of each task in the same location as the task is and then
writes the whole bitmap on a secondary buffer. When the drawing has been completed, the
function copies the secondary buffer to the primary buffer to update the actual graphics on the
screen and then moves to compute the next frame on the secondary buffer.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 36

Client API

Moving on to the client API, we designed it to be a singleton instance object that wraps
all the communication with the cloud in simple and easy to use functions. These functions are
asynchronous with the rest of the application and therefore an event driven model was
implemented, to notify the application that the requested data is ready. When the application
makes a call to the client API, it builds the request body and sends it to the cloud. When a
response comes back from the cloud, it raises a custom-made event and invokes every subscribed
function on the application. The “subscriber” functions then handle the response from the cloud.

Robots

Lastly, we have the robots within the frontend package. In robotic process automation, the
robots are small pieces of software that mimic the human interaction with the computer by
executing strictly defined steps. In our implementation, we used Python programming language
to create the robots and compiled them into standalone applications with the PyInstaller15 utility.
Because the robots are compiled into binary files, the deployment process becomes very easy as
they come with all the dependencies they need to run on any windows-based machine. The
robots are meant to communicate with the backend as well as with the assistant, they need a
special token that gives them the authorization needed. For this reason, the main application
asks the backend for a special token for the robot beforehand and then moves on using the robot.

Recorder Robot

The recorder robot is used to record the actions of the user on the screen and encode
these actions into a process. To recognize the actions that happen on the UI by the user, we used
the Microsoft UIA framework. Firstly, the robot constantly monitors the keyboard and the mouse
for input. If for example the left mouse button gets clicked, then we make a call to the UIA
framework to find out what is the control that got clicked on the screen. The framework then gives
us some details of the control such as an automation id, a name, the type of the control, and much
more. Then the robot formats the info on a string of characters along with a screenshot of the
control (for visualization purposes) and prints the action on the standard output while waiting for
more input. Finally, the recording stops when the user hit the Escape (ESC) key on the keyboard.
The app listens for output from the recorder and saves it to the current process.

15 https://www.pyinstaller.org/

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 37

Figure 30 Mouse click recording sequence

Playback Robot

The playback robot is used to replicate the actions that the user recorded. Simply put, the
robot takes a process as an input and executes it step by step. To achieve that, the playback robot
gets the encoded process string and decodes it into discrete commands. Each command is unique
and represents one action. For example, ‘lclick[args]’ is the command that tells the robot to
execute a mouse left button click. The ‘args’ part of the command comes with all the necessary
information about the control that the robot needs to click on. Then, the robot gets the
arguments and using the UIA framework, searches the UI for control with matching identifiers. If
the robot finds a control that matches, find a clickable (x, y) point on the control, moves the
mouse over it, and then perform the left click. If the robot does not find a matching control, halts
for 5 seconds and tries again. After three unsuccessful tries, logs an error and stops the execution.
After the action has been completed successfully, the robot continues to the rest actions in the
process until there are no more actions to do or a fail-safe trigger is triggered. Fail-safe, triggers
when the user moves the mouse to the top-left corner of the screen. Having a fail-safe trigger
helps when for whatever reason the user wants to stop the execution of the robot.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 38

Figure 31 Playback robot flowchart

Scanner Robot

The scanner robot is used to scan the network for machines and vulnerabilities. In our
implementation, the scanner robot has three (3) different functions. 1) The host discovery, where
we search a network for online machines and their open ports. 2) The Online test, where we ping
the known machines to determine if they are still online, and 3) Vulnerability test, were using the
Vulners16 script for NMAP, we determine the vulnerabilities of a specified machine. All this is
possible due to NMAP17 network discovery software, which provides a robust and easy way to
scan a network.

16 https://nmap.org/nsedoc/scripts/vulners.html
17 https://nmap.org/

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 39

Robot Deployment

 The Robot deployment starts when the user clicks the deploy button on the robot’s page.

Firstly, the application gets the list of the robots that the user selected for deployment, and for
each robot in that list, makes a request to the backend for a specialized token. As we can see in
Figure 11, there is a lot of useful information about the robot, for example, the isHuman keyword
describes if this token is issued to a human user or a robot, and the robotId and processId give us
the robot id and process id respectively. Moreover, the keyword sub indicates the username
(email) of the user that issued this token and the runNow keyword describes that the robot
should start execution right away or wait for the token to expire before starting up. We used the
expiration date of the token to give the robot a specific time and date of the execution.

Figure 32 Example robot token data

After the application successfully retrieves the token from the backend, using the SSH
credentials of the target machine, starts an SSH connection to that machine and using the SFTP
protocol of the SSH, uploads the binary of the robot to the target machine. Along with the binary
file, a configuration file gets transferred which has the encoded token string and a runner script,
written in BATCH. After the transfer is completed successfully, the application executes the
runner script. The script is responsible for executing the robot. We went with this approach,
because the SSHd (SSH daemon), does not let you start applications with GUI (Graphical user
interface). That happens because, the SSHd runs as a service, where services have no access to
the user desktop, and to start an application of that kind, you need access to the user desktop.
We found a workaround to that problem by utilizing a script that creates a Scheduled task using
Windows Scheduled tasks. This task is an event type task that waits until something triggers it.
The script then triggers the task, and the task launches the robot with elevated permissions. After
the robot has successfully launched, it decodes its token and gets the expiration time of the token
and waits until then. One minute before the token expires, a dialog appears on the user screen
which informs the user that an update is about to happen. The user can postpone18 the execution
of the robot for ten (10) minutes for only one time with the purpose of saving any unsaved work

18 Note. The postpone mechanism is not yet implemented.

{
"typ": "JWT",
 "alg": "HS256"
}

{
 "fresh": false,
 "iat": 1640270249,
 "jti": "02ec7f09-6941-416d-a2e7-ae9fddd7961c",
 "type": "access",
 "sub": "test@pasiphae.eu",
 "nbf": 1640270249,
 "exp": 1640270489,
 "isHuman": false,
 "robotId": "8faf6cd7-1d2b-11ec-af97-8cec4b86f0de",

 "target": "172.16.5.4",
 "processId": "dfc056d7-1d29-11ec-9732-8cec4b86f0de",
 "runNow": "False"
}

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 40

and stopping using the computer. If the time run out or the Ok button gets pressed, the robot,
using its token, requests the process that it is about to run from the backend. If the token is valid,
the backend responds back to the process. The robot decodes the process and executes it. If the
process is successfully executed, the robot posts to the backend its status as “Ended”. If not,
depending on the situation, the robot might post status like “Crashed”, “Stopped”, “Running” or
“Waiting”.

Figure 33 Robot warning dialog - Postpone execution

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 41

5. Use-case Scenario

In this section, a specific use-case scenario will be presented. This use-case is about the actions
of the user, to completely remediate one or more vulnerabilities on a remote machine.

5.1. Methodology

As described in [15], the network operator must do a sequence of actions, to complete the
Vulnerability management cycle (VMC) procedure. Regarding that, in our example, the first thing
the user must do is to login into the RPA Assistant using their registered account credentials. In
the case that the user does not have an account yet, by using the sign-up form, a new account
can be created. After the successful login, through the “Targets” board on the sidebar, the user
can scan the whole network for hosts or scan for a specific target, by clicking the “Discover”
button on the header menu. Then, a popup window appears, where the user fills up the network
address (with CIDR19 identifier) or the specific host address, selects the scanner, and the method
to be used. Upon successful completion of the network scan, the discovered hosts are depicted
on the sidebar. By clicking on the target of choice, details of that target are shown in the sidebar.
The user must set up the connection method to that machine by filling up the SSH credentials of
the machine. After that, through the “Discovered vulnerabilities” tab, the user can start a
vulnerability scan on that specific target, or by clicking the “Vulnerability scan” button on the
header menu, a multiple target scan can be initiated. Moving on, when the vulnerability scan on
the target is completed, on the “Discovered vulnerabilities” tab of the target, a list containing the
discovered vulnerabilities will be shown. By right clicking on one or multiple entries on that list,
a context menu appears that let the user “Create mitigation process” for these vulnerabilities or
search for an already created process from other users on the platform. In our example, we
assume that there is no such process, so the user moves on to create a remediating process. That
can be done using the built-in GUI recorder tool to record the remediating actions automatically
or manually by adding and connecting tasks together. For debugging purposes, the user can run
the process locally using the “Run” button on the header menu. When the user has finished the
process, on the “Robots” board is a list of the user’s robots. Using the “Create robot” button, the
user creates a robot with the desired target and selects the process that the robot will execute.
When the robot is created, by selecting the robot and clicking on the “Deploy” button, the
assistant will connect to the machine using the user defined SSH credentials and deploy the robot
automatically on the target machine. The robot gets uploaded to the target and then initiates the
remediation procedure. After the successful execution of the robot, the vulnerabilities should be
remediated. To verify that, the user must perform a vulnerability scan on that target as described
above and manually identify that the remediated vulnerabilities have gone.

19 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 42

Figure 34 Use-case diagram of Vulnerability management scenario

Figure 35 Sequence diagram of Vulnerability management scenario

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 43

5.2. Real-world application

 We could not finish this thesis without testing the application in a real-world scenario. To
do that, we set up two different machines on the network running an old version of XAMPP20
which comes with a vulnerable Apache version (v2.2.4) on Windows 10 operating system. So,
using the application as described in the scenario above, we scanned the network and found out
that there were two machines with the same vulnerabilities. We assessed the vulnerabilities and
settled upon the remediation process of installing the newest version of XAMPP and then we
transferred the website (htdocs folder) to the newer XAMPP installation. Then, we downloaded
the newest version and moved on to create the process shown in Figure 35. Using the recorder
tool on the assistant, we recorded the setup process of the XAMPP. Right after that, again using
the recorder tool, we recorded a terminal session where we delete the stock htdocs folder of the
XAMPP and copied our htdocs folder containing the website. Next, yet another terminal session
was recorded where we stop the vulnerable versions of Apache and MySQL. After that, we
replace the old XAMPP installation with the newer one by deleting the old and copying the new
over the same name. Finally, we cleaned up all the temporary files we left behind and restart the
services.

Figure 36 Remediation process for XAMPP

When we were happy about the process, we created and deployed one remediating robot to
each one of the vulnerable targets with the same process to execute. When the assistant reports

20 https://en.wikipedia.org/wiki/XAMPP

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 44

that the robots have successfully finished the job, the next thing to do was to perform a second
vulnerability scan on those two machines. Doing that, as seen in Figure_36, Figure_37 we found
out that the remediation was indeed successful because there were no vulnerabilities reported
by the scan and the website was online as expected.

Figure 37 Before remediation - Discovered vulnerabilities

Figure 38 After remediation - Discovered vulnerabilities

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 45

6. Conclusion

In this thesis, we presented a cloud native Robotic Process Automation application that is
used to help the network administrators automate the procedure of vulnerability management.
It can automatically scan the network for targets, scan the targets for known vulnerabilities, and
with the help of the RPA technics, automates the remote deployment of the remediation
procedure on multiple organization assets. Moreover, we showcased a real-world use-case
scenario using the application to detect, assess and remediate some vulnerabilities on two
vulnerable machines on the network running an old version of Apache web server. In the future,
we plan to upgrade the recorder robots to run remotely, allowing the administrators to record
the remediation process on a remote machine directly. Finally, we plan to extend the support of
the application to other operating systems, including Apple’s Mac OSX and Debian based Linux
distributions.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 46

7. References

[1] D. G., “TechJury.” .
[2] “CVEDetails.” .
[3] K. Karampidis, S. Panagiotakis, M. Vasilakis, E. K. Markakis, and G. Papadourakis, “Industrial cybersecurity

4.0: Preparing the operational technicians for industry 4.0,” IEEE Int. Work. Comput. Aided Model. Des.
Commun. Links Networks, CAMAD, vol. 2019-September, Sep. 2019, doi: 10.1109/CAMAD.2019.8858454.

[4] Y. Hu, Y. Zhang, and D. Gu, “Automatically patching vulnerabilities of binary programs via code transfer
from correct versions,” IEEE Access, vol. 7, pp. 28170–28184, 2019, doi: 10.1109/ACCESS.2019.2901951.

[5] J. Jurn, T. Kim, and H. Kim, “An Automated Vulnerability Detection and Remediation Method for Software
Security,” Sustainability, vol. 10, no. 5, p. 1652, May 2018, doi: 10.3390/su10051652.

[6] F. Zhang and Q. Li, “Dynamic Risk-Aware Patch Scheduling,” 2020 IEEE Conf. Commun. Netw. Secur. CNS
2020, 2020, doi: 10.1109/CNS48642.2020.9162225.

[7] F. Zhang, P. Huff, K. McClanahan, and Q. Li, “A Machine Learning-based Approach for Automated
Vulnerability Remediation Analysis,” Jun. 2020, doi: 10.1109/CNS48642.2020.9162309.

[8] J. Jacobs, S. Romanosky, I. Adjerid, and W. Baker, “Improving vulnerability remediation through better
exploit prediction,” J. Cybersecurity, vol. 6, no. 1, Jan. 2020, doi: 10.1093/cybsec/tyaa015.

[9] D. Malzahn, Z. Birnbaum, and C. Wright-Hamor, “Automated Vulnerability Testing via Executable Attack
Graphs,” Jul. 2020, pp. 1–10, doi: 10.1109/cybersecurity49315.2020.9138852.

[10] S. A. P. Kumar and B. Xu, “Vulnerability Assessment for Security in Aviation Cyber-Physical Systems,” in
Proceedings - 4th IEEE International Conference on Cyber Security and Cloud Computing, CSCloud 2017 and
3rd IEEE International Conference of Scalable and Smart Cloud, SSC 2017, Jul. 2017, pp. 145–150, doi:
10.1109/CSCloud.2017.17.

[11] T. H. M. Le, B. Sabir, and M. A. Babar, “Automated software vulnerability assessment with concept drift,” in
IEEE International Working Conference on Mining Software Repositories, May 2019, vol. 2019-May, pp.
371–382, doi: 10.1109/MSR.2019.00063.

[12] Y. Nikoloudakis, E. Pallis, G. Mastorakis, C. X. Mavromoustakis, C. Skianis, and E. K. Markakis, “Vulnerability
assessment as a service for fog-centric ICT ecosystems: A healthcare use case,” Peer-to-Peer Netw. Appl.,
vol. 12, no. 5, pp. 1216–1224, Sep. 2019, doi: 10.1007/S12083-019-0716-Y/TABLES/2.

[13] and S. P. Nishant Sharma, H. Parveen Sultana, Asif Sayyad, Rahul Singh, “Remote Automated Vulnerability
Assessment and Mitigation in an Organization,” 2020, pp. 219–227.

[14] N. Nakhla, K. Perrett, and C. McKenzie, “Automated computer network defence using ARMOUR: Mission-
oriented decision support and vulnerability mitigation,” Oct. 2017, doi: 10.1109/CyberSA.2017.8073389.

[15] E. Heaslip, “Nightfall.” .
[16] Y. Nikoloudakis et al., “Towards a Machine Learning Based Situational Awareness Framework for

Cybersecurity: An SDN Implementation,” Sensors 2021, Vol. 21, Page 4939, vol. 21, no. 14, p. 4939, Jul.
2021, doi: 10.3390/S21144939.

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 47

8. Appendix

8.1. Assistant - Drawing board source code

usingFontAwesome.Sharp;
usingRPA_Client.Events;
usingSystem.Reflection;
usingSystem.Runtime.InteropServices;
usingSystem.Threading;
usingSystem.Windows.Forms;

namespaceRPA_Client.Forms{
publicpartialclassProcessDrawingBoard:UserControl{
publiceventEventHandlerOnProcessChanged;
privateintindx=0;
privatePointpointOfClick;
privatebooldragging=false;
privateboolscaling=false;
privateboolselecting=false;
privateboolconnecting=false;
privateboolgroopingTasks=false;
privateboolrectDragging=false;
privateList<Task>selectedTasks;
privatePointselectionStart;
privatePointselectionEnd;
privatePointconnectingFrom;
privatePointorigin;
privateboolbackgroundDisabled=false;
privateboolexporting=false;

[DllImport("user32.dll")]
privateexternstaticIntPtrSendMessage(IntPtrhWnd,intmsg,intwParam,IntPtrlParam);

privateconstintWM_SETREDRAW=11;
set{
this.scaling=value;
}
}
publicboolEnableTaskGroupSelection{
get{returngroopingTasks;}
set{
this.groopingTasks=value;
if(value){
this.Cursor=Cursors.Cross;
}else{
this.Cursor=Cursors.Default;
}
}
}
publicintIndex{
get{returnindx;}

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 48

;
handler?.Invoke(null,newEventArgs());
}

publicProcessDrawingBoard(){
InitializeComponent();
this.SetStyle(ControlStyles.UserPaint|ControlStyles.AllPaintingInWmPaint,true);
this.SetStyle(ControlStyles.OptimizedDoubleBuffer,true);
ctx
connections=newDictionary<int,List<int>>();
toolsAvailable=newList<Task>();
clipBoard=newList<Task>();
groupRectangles=newList<TaskSelectionRectangle>();
selectedGroupRectangles=newList<TaskSelectionRectangle>();
initialised=true;
foreach(TasktinControls){

selectedTasks.Add(t);
t.Selected=true;
}
}

privatevoidRecreateBuffers(){
//Checkthatwearen'tdisposingorthiscouldbeinvalid.
if(!initialised||this.IsDisposed)
return;
ctx.MaximumBuffer=newSize(this.Width+1,this.Height+1);
bgctx.MaximumBuffer=newSize(this.Width+1,this.Height+1);
//DisposeofoldbackbufferGraphics(ifonehasbeencreatedalready)
if(graphics!=null)
graphics.Dispose();
if(bgGraphics!=null)
bgGraphics.Dispose();
graphics=ctx.Allocate(this.CreateGraphics(),
new
if(EnableScaling){
Zoom(v);
}else{
[16]
}
}
selectedTasks.Clear();
ReDraw();
this.Invalidate();

}

privatevoidOnMouseDown(objectsender,MouseEventArgse){
TaskSelectionRectanglerect=CursorInSelectionRectange();

if(e.Button==MouseButtons.Right){
pointOfClick=this.PointToClient(Cursor.Position);
dragging=true;

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 49

this.Cursor=Cursors.SizeAll;
(!rect.Lock){
if(!rect.Selected){

rect.Selected=true;
selectedGroup=rect;
selectedGroupRectangles.Add(rect);

}
pointOfClick=this.PointToClient(Cursor.Position);
rectDragging=true;
this.Cursor=Cursors.SizeAll;
}
}

}
ReDraw();
InvalidateAndUpdate();

}

privateTaskSelectionRectangleCursorInSelectionRectange(){
Pointc=this.PointToClient(Cursor.Position);
foreach(TaskSelectionRectanglerectingroupRectangles){
if(rect.Rectangle.IntersectsWith(newRectangle(c,newSize(1,1)))){
returnrect;
}
}
returnnull;
}
privateList<Task>GetGroupedTasks(TaskSelectionRectanglerect){
List<Task>grouped=newList<Task>();
foreach(Tasktinthis.Controls){
if(rect.Rectangle.IntersectsWith(t.Bounds)){
grouped.Add((Task)t);
}
}
returngrouped;
}
privatevoidOnMouseMove(objectsender,MouseEventArgse){
if(dragging){
Pointmpos=this.PointToClient(Cursor.Position);
foreach(Taskchildinthis.Controls){
if(child.ParentGroup==null){
child.Location=newPoint(child.Left+(mpos.X-pointOfClick.X),child.Top+(mpos.Y-pointOfClick.Y));
}
}
foreach(TaskSelectionRectanglerectingroupRectangles){
rect.Translate((mpos.X-pointOfClick.X),(mpos.Y-pointOfClick.Y),driver:null);
}
//updateworldorigin
origin.X+=(mpos.X-pointOfClick.X);
origin.Y+=(mpos.Y-pointOfClick.Y);

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 50

pointOfClick=mpos;
ReDrawBackground();
ReDraw();
DrawTasks(false);
InvalidateAndUpdate();
return;
}
if(rectDragging){
Pointmpos=this.PointToClient(Cursor.Position);
TranslateProcess(GetRectOutOfBorderDisplacement(selectedGroup.Rectangle));
foreach(TaskSelectionRectanglerectinselectedGroupRectangles){
rect.Translate(mpos.X-pointOfClick.X,mpos.Y-pointOfClick.Y,driver:null);
}
pointOfClick=mpos;
ReDraw();
DrawTasks(false);
InvalidateAndUpdate();
return;
}
if(selecting){

selectionEnd=this.PointToClient(Cursor.Position);
SetSelectionRect();
ReDraw();
InvalidateAndUpdate();
return;
}
privatevoidDrawTasks(boolv){
if(tasksVisible==v)return;

foreach(TasktinControls){
t.Visible=v;
}
tasksVisible=v;
InvalidateAndUpdate();
}

privatevoidInvalidateAndUpdate(){
this.Invalidate();
this.Update();
}

privatevoidOnMouseUp(objectsender,MouseEventArgse){

TaskSelectionRectanglerect=CursorInSelectionRectange();
if(e.Button==MouseButtons.Right){
if(rect!=null){
if(!rect.Lock){
groupContext.Show(Cursor.Position);
selectedGroup=rect;
}
}
}else{

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 51

if(!EnableTaskGroupSelection){
ClearSelected();
}
}

if(connecting){
connecting=false;
ReDraw();
this.Invalidate();
newTaskContext.Show(Cursor.Position);
return;
}
if(dragging){
dragging=false;
DrawTasks(true);
this.Cursor=Cursors.Default;
}elseif(rectDragging){
rectDragging=false;
DrawTasks(true);
this.Cursor=Cursors.Default;
}elseif(selecting){
selecting=false;
if(selectionStart==this.PointToClient(Cursor.Position)){
ClearSelected();
return;
}
SetSelectionRect();
if(groopingTasks){

TaskGroupTitleDialogdialog=newTaskGroupTitleDialog();
DialogResultres=dialog.ShowDialog();

if(res==DialogResult.OK){

Randomr=newRandom();
TaskSelectionRectangleg=newTaskSelectionRectangle(){
Rectangle=selection,
FillColor=Color.FromArgb(80,r.Next(0,255),r.Next(0,255),r.Next(0,255)),
BorderColor=Color.Black,
Selected=false,
Title=dialog.GroupTitle
};
List<Task>children=GetGroupedTasks(g);
foreach(Tasktinchildren){
g.Addchild(t);
t.ParentGroup=g;
}
groupRectangles.Add(g);
EnableTaskGroupSelection=false;
}

}else{
SelectOverlappedTasks();

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 52

}
ReDraw();
InvalidateAndUpdate();
}
((ProcessBoard)this.Parent).SaveProcess();
}

publicvoidTranslateToOrigin(){
Rectangleareaofinterest=GetAreaOfInterest();
Pointtranslation=newPoint((-1)*areaofinterest.X+10,(-1)*areaofinterest.Y+10);
TranslateProcess(translation);
ReDraw();
this.Invalidate();

}

privatevoidSetSelectionRect(){
intx,y;
intwidth,height;
x=selectionStart.X>selectionEnd.X?selectionEnd.X:selectionStart.X;
y=selectionStart.Y>selectionEnd.Y?selectionEnd.Y:selectionStart.Y;
width=selectionStart.X>selectionEnd.X?selectionStart.X-selectionEnd.X:selectionEnd.X-selectionStart.X;
height=selectionStart.Y>selectionEnd.Y?selectionStart.Y-selectionEnd.Y:selectionEnd.Y-selectionStart.Y;
selection=newRectangle(x,y,width,height);
}

publicvoidZoom(floatdelta){
if(scaling||false){//FIXME-------FIXME
//return;//FIXME------FIXME------FIXME------FIXME------FIXME------FIXME------FIXME------FIXME------FIXME------FIXME
//foreach(Controlchildinthis.Controls){
//child.Scale(newSizeF(delta,delta));
//child.Invalidate();
//}

graphics.Graphics.ScaleTransform(delta,delta);
bgGraphics.Graphics.ScaleTransform(delta,delta);
globalScaling=globalScaling+delta;
Console.WriteLine("SCALE+{0}",globalScaling);
ReDrawBackground();
ReDraw();
InvalidateAndUpdate();
ProcessChanged();
}
}
privatevoidSelectOverlappedTasks(){
ClearSelected();
foreach(Controlcinthis.Controls){
if(cisTask){
if(selection.IntersectsWith(c.Bounds)){
((Task)c).Selected=true;
selectedTasks.Add((Task)c);
}

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 53

}
}
foreach(TaskSelectionRectanglecingroupRectangles){
if(selection.IntersectsWith(c.Rectangle)){
selectedGroupRectangles.Add(c);
c.Selected=true;
}
}
}
privateTaskGetTaskByIndex(intindx){
foreach(Tasktinthis.Controls){
if(t.Index==indx){
returnt;
}
}
returnnull;
}
protectedoverridevoidOnPaint(PaintEventArgse){
if(!this.IsDisposed&&graphics!=null){
//bgGraphics.Render(e.Graphics);
graphics.Render(e.Graphics);

}
}
publicstaticfloatGetWindowsScaling(){
return(float)(Screen.PrimaryScreen.Bounds.Width/System.Windows.SystemParameters.PrimaryScreenWidth);
}
privatevoidReDrawBackground(){
if(!initialised)return;
Graphicsg=bgGraphics.Graphics;
g.Clear(Color.White);
Penp=newPen(Color.FromArgb(255,150,150,150),1);
//Drawbackgroundgrid
for(inty=-origin.Y;y<Height-origin.Y;y++){
if((y%(80*GetWindowsScaling()))==0){
p.Color=Color.FromArgb(255,50,50,50);

g.DrawLine(p,newPoint(0,y+origin.Y),newPoint(Width,y+origin.Y));
continue;
}
if((y%(20*GetWindowsScaling()))==0){
p.Color=Color.FromArgb(255,180,180,180);
g.DrawLine(p,newPoint(0,y+origin.Y),newPoint(Width,y+origin.Y));
continue;
}

}
p.Width=1;
for(intx=-origin.X;x<Width-origin.X;x++){
if((x%(80*GetWindowsScaling()))==0){
p.Color=Color.FromArgb(255,50,50,50);
g.DrawLine(p,newPoint(x+origin.X,0),newPoint(x+origin.X,Height));
}elseif((x%(20*GetWindowsScaling()))==0){

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 54

p.Color=Color.FromArgb(255,180,180,180);
g.DrawLine(p,newPoint(x+origin.X,0),newPoint(x+origin.X,Height));
}

}
g.FillRectangle(Brushes.Red,newRectangle(origin.X,origin.Y,10,10));
}

privatevoidReDraw(Graphicsg=null){
if(gisnull){
g=graphics.Graphics;
}
//Clearthegraphics
g.Clear(Color.White);
if(RenderBackground){
gGraphics.Render(g);
}
//drawashedrectangewhileselecting
g.

}
//setpenwithcustomtriangleendcap
Penpen=newPen(Color.Black,2F);
AdjustableArrowCaparrowCap=newAdjustableArrowCap(5,5);
pen.CustomEndCap=arrowCap;
pen.StartCap=LineCap.RoundAnchor;
//drawarrowforthenewconnection
if(connecting){
g.DrawLine(pen,connectingFrom,this.PointToClient(Cursor.Position));
}
foreach(TaskSelectionRectanglerectingroupRectangles){
rect.Draw(g);
}
//loopthroughallconnectionsanddrawarrowsforeveryone
foreach(KeyValuePair<int,List<int>>pairinconnections){
Taskt=GetTaskByIndex(pair.Key);
if(t==null)continue;
foreach(intiinpair.Value){
Taskt1=GetTaskByIndex(i);
if(t1==null)
continue;
Rectangleb1=t.Bounds;
Rectangleb2=t1.Bounds;
if(b1.Top>b2.Bottom){
if(b1.Right<b2.Left){
//ConnectRightBottom
g.DrawLine(pen,newPoint(b1.Right,b1.Top+b1.Height/2),newPoint(b2.Left+b2.Width/2,b2.Bottom));
}elseif(b1.Left>b2.Right){
//ConnectLeftBottom
g.DrawLine(pen,newPoint(b1.Left,b1.Top+b1.Height/2),newPoint(b2.Left+b2.Width/2,b2.Bottom));
}else{
//ConnectTopBottom
g.DrawLine(pen,newPoint(b1.Left+b1.Width/2,b1.Top),newPoint(b2.Left+b2.Width/2,b2.Bottom));

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 55

}
}elseif(b1.Bottom<b2.Top){
if(b1.Right<b2.Left){
//ConnectRightTop
g.DrawLine(pen,newPoint(b1.Right,b1.Top+b1.Height/2),newPoint(b2.Left+b2.Width/2,b2.Top));
}elseif(b1.Left>b2.Right){
//ConnectLeftTop
g.DrawLine(pen,newPoint(b1.Left,b1.Top+b1.Height/2),newPoint(b2.Left+b2.Width/2,b2.Top));
}else{
//ConnectBottomTop
//starttask(bottom)toendtask(top)
g.DrawLine(pen,newPoint(b1.Left+b1.Width/2,b1.Bottom),newPoint(b2.Left+b2.Width/2,b2.Top));
}
}else{
if(b1.Left>b2.Right){
//ConnectLeftRight
g.
g.DrawImage(t.Bitmap,t.Location);
}
}
}

//RECCURSIVEFUNCTION
publicvoidPrintProcess(intindx){
if(indx==0){
indx=connections.Keys.Min();
Console.WriteLine("Root"+indx);
}
try{
foreach(intiinconnections[indx]){
strings="Node"+i;
s.PadRight(7+i);
Console.WriteLine(s);
PrintProcess(i);
}
}catch(Exception){
Console.WriteLine("NodeHasnochilds");
}

}
publicstringGetProcess(){
//Returnsstringrepresentingtheprocess
stringprocess="[TASKS]";
foreach(TasktinControls){
if(tisStartTask){
process+="\n"+"[START_NODE,"+t.Left+","+t.Top+"]";
}else{
process+="\n"+t.Index+","
+t.GetType().Namespace+"."+t.GetType().Name//allthisis"namespace,ClassName"identifier
+","+t.Left+","+t.Top+","+t.Collapsed+','+t.Data;
}
}
process+="\n[CONNECTIONS]";

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 56

foreach(KeyValuePair<int,List<int>>pairinconnections){
foreach(intnextinpair.Value){
process+="\n"+pair.Key+","+next;
}

}
process+="\n[GROUPS]";
foreach(TaskSelectionRectanglerectingroupRectangles){
process+="\n"
+rect.Rectangle.X+","
+rect.Rectangle.Y+","
+rect.Rectangle.Width+","
+rect.Rectangle.Height+","
+rect.FillColor.ToArgb()+","
+rect.Title+","
+"[";
foreach(Tasktinrect.Children){
process+=t.Index+";";
}
process.Substring(0,process.Length-1);
process+=']';
}
returnprocess;
}
privateRectangleGetAreaOfInterest(){
intminX=int.MaxValue,minY=int.MaxValue;//representsNegativeInfinity
){
minX=Math.Min(minX,rect.Rectangle.X);
minY=Math.Min(minY,rect.Rectangle.Y);
maxX=Math.Max(maxX,rect.Rectangle.X+rect.Rectangle.Width);
maxY=Math.Max(maxY,rect.Rectangle.Y+rect.Rectangle.Height);
}
returnnewRectangle(minX,minY,maxX-minX,maxY-minY);
}
privatevoidTranslateProcess(Pointtranslation){
//applythetranslationtogroups
foreach(TaskSelectionRectanglerectingroupRectangles){
rect.Translate(translation.X,translation.Y,driver:null);
}
//applythetranslationtonongroppedtasks
foreach(TasktinControls.OfType<Task>()){
if(t.ParentGroup==null){
t.Location=newPoint(t.Location.X+translation.X,t.Location.Y+translation.Y);
}
}
origin.Y+=translation.Y;
origin.X+=translation.X;
}

publicvoidExportProcess(stringfile){
exporting=true;
SuspendDrawing(this);
//newlyaddedcode-------

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 57

foreach(TasktinControls){
t.Invalidate();//invalidateeverytasktoupdateitsbitmapforcorrectprintonpng
}
//newlyaddedcode-------

RectangleareaOfInterest=GetAreaOfInterest();
Pointtranslation=newPoint();
//Determineifprocesshasnegativecoordinatesandfindoutthetranslationneeded
if(areaOfInterest.X<0){
translation.X=(-1)*areaOfInterest.X+10;
}
if(areaOfInterest.Y<0){
translation.Y=(-1)*areaOfInterest.Y+10;
}
//applythetranslations
TranslateProcess(translation);

Bitmappp=newBitmap(8000,8000);//thebiggestpossiblebitmap.Wewillcropitlater
Graphicsgg=Graphics.FromImage(pp);
RenderBackground=false;
ReDraw(gg);
RenderBackground=true;
Bitmapp=pp.Clone(newRectangle(areaOfInterest.X+translation.X,areaOfInterest.Y+translation.Y,areaOfInterest.Wi
dth+20,areaOfInterest.Height+20),pp.PixelFormat);
p.Save(file,System.Drawing.Imaging.ImageFormat.Png);
p.Dispose();
pp.Dispose();
//rollbacktranslations
TranslateProcess(newPoint(-translation.X,-translation.Y));
exporting=false;
ResumeDrawing(this);
}
publicvoidEmptyDrawingBoard(){
ClearSelected();
groupRectangles.Clear();
selectedGroup=null;
foreach(TasktinControls){
t.OnTaskClicked-=OnTaskClicked;
t.OnCreateConnection-=OnCreateConnection;
t.OnDeleteConnections-=OnDeleteConnections;
t.OnTaskCollapsedChange-=OnTaskCollapsedChange;
t.OnTaskMouseDown-=OnTaskMouseDown;
t.OnTaskMouseUp-=OnTaskMouseUp;
t.OnTaskMoved-=OnTaskMoved;
t.Dispose();

}
origin=Point.Empty;
Controls.Clear();
connections.Clear();
GC.Collect();
ReDraw();
InvalidateAndUpdate();

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 58

}
privateTaskCreateStartTask(){
//Startnode
Taskstart=newStartTask();
start.Index=0;
start.Left=200;
start.Top=0;
start.OnTaskClicked+=OnTaskClicked;
start.OnDeleteConnections+=OnDeleteConnections;
start.OnCreateConnection+=OnCreateConnection;
start.OnTaskMoved+=OnTaskMoved;
start.OnTaskMouseDown+=OnTaskMouseDown;
start.OnTaskMouseUp+=OnTaskMouseUp;
returnstart;
}
publicvoidCreateProcess(List<string>instructions){
if(this.locked)return;
SuspendDrawing(this);
if(instructions==null){
return;
}elseif(instructions.Count<=0){
return;
}
if(GetStartTask()!=null){
prevTask=null;
}else{
Taskstart=CreateStartTask();
this.Controls.Add(start);
prevTask=start;
}

//Everyothernode
foreach(stringcomininstructions){
string[]sp=com.Split('[');
stringcommand=sp[0];//.Substring(0,sp[0].Length);
Taskt;
switch(command){
case"lclick":
t=newClickTask();
((ClickTask)t).Button=MouseButtons.Left;
((ClickTask)t).Command=command;
break;
case"rclick":
t=newClickTask();
((ClickTask)t).Button=MouseButtons.Right;
((ClickTask)t).Command=command;
break;
case"double-click":
t=newClickTask();
((ClickTask)t).IsDoubleClick=true;
((ClickTask)t).Command=command;
break;
case"attach":

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 59

t=newAttachTask();
break;
case"type":
t=newKeyStrokesTask();
break;
case"terminal":
t=newOpenTerminalTask();
break;
default:
t=newTask();
Console.WriteLine("Taskwithcommand{0}doesnotexists.",command);
break;
}
t.Data=com;
if(prevTask!=null){
Tasktask=AddTask(t,newPoint(prevTask.Left,prevTask.Top+200),NextIndex);
ConnectTasks(prevTask,task);
prevTask=task;
}else{
prevTask=AddTask(t,newPoint(200,0),NextIndex);
}
}
ProcessChanged();
ResumeDrawing(this);
}
publicvoidLoadProcess(stringinstruction){
SuspendDrawing(this);
EmptyDrawingBoard();
Index=0;
if(instruction==""||instruction==null){
ReDraw();

ResumeDrawing(this);
this.Invalidate();
this.Update();
return;
}
string[]process=instruction.Split('\n');
boolreadingTasks=true;
boolreadingGroups=false;
foreach(stringcominprocess){
if(com.Equals("[TASKS]")){
readingTasks=true;
readingGroups=false;
continue;
}
if(com.Equals("[CONNECTIONS]")){
readingTasks=false;
readingGroups=false;
continue;
}
if(com.Equals("[GROUPS]")){
readingTasks=false;

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 60

readingGroups=true;
continue;
}
if(com.StartsWith("[START_NODE")){
if(GetStartTask()!=null){
}else{
Taskt=CreateStartTask();
string[]pos=com.Split(',');
t.Left=Int32.Parse(pos[1]);
t.Top=Int32.Parse(pos[2].Substring(0,pos[2].Length-1));
Controls.Add(t);
prevTask=t;
}
continue;
}
string[]details=com.Split(',');
if(readingTasks&&!readingGroups){
try{
intindex=Int32.Parse(details[0]);
Typetp=Type.GetType(details[1],true);
Tasktool=(Task)Activator.CreateInstance(tp);
tool.Data=details[5];
Taskt=AddTask(tool,newPoint(Int32.Parse(details[2]),Int32.Parse(details[3])),index);
if(Index<index){
Index=index;
}
t.Collapsed=bool.Parse(details[4]);
}catch(FormatException){
MessageBox.Show(
"Errorwhileloadingprocess.\nOneormoretasksaremisconfigured.Theywillberejectedfromtheprocess."
,"Taskscorrupted",MessageBoxButtons.OK,MessageBoxIcon.Error);
}catch(TypeLoadExceptionex){
MessageBox.Show(
"Errorwhileloadingprocess.\nOneormoretasksaremisconfigured.Theywillberejectedfromtheprocess."
,"Taskscorrupted",MessageBoxButtons.OK,MessageBoxIcon.Error);
}
}elseif(!readingTasks&!readingGroups){
intstart=Int32.Parse(details[0]);
intend=Int32.Parse(details[1]);
ConnectTasks(start,end);
}else{
TaskSelectionRectangleg=newTaskSelectionRectangle(){
Rectangle=newRectangle(int.Parse(details[0]),int.Parse(details[1]),int.Parse(details[2]),int.Parse(details[3])),
FillColor=Color.FromArgb(int.Parse(details[4])),
BorderColor=Color.Black,
Selected=false,
Title=details[5]
};
string[]children=details[6].Substring(1,details[6].Length-2).Split(';');
foreach(stringiinchildren){
if(i==""){
continue;
}

Enabling Automatic Vulnerability Management Through a Robotic Process Automation Framework

Papachatzakis Nikolaos

Σελίδα. 61

Taskt=GetTaskByIndex(int.Parse(i));
if(t==null){
continue;
}
g.Addchild(t);
t.ParentGroup=g;
}
groupRectangles.Add(g);
}
}
ReDraw();
ResumeDrawing(this);

