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Abstract
As  technology  evolves  rapidly,  more  and  more  critical  infrastructures  are  going  online.  Malicious
individuals are trying to exploit such infrastructures, thus cyber-attacks have become a major issue for
users and businesses. Various network security software applications are developed to prevent or mitigate
cyber-attacks; however, with a low success rate [1], as more than three billion zero-day [2] attacks were
reported in a calendar year in the USA and Australia according to Symantec Internet Security Threat
Report1.  Current  software  applications  struggle  to  confront the  more  sophisticated malware  that
cybercriminals use. Additionally,  network security software applications,  which utilize network packets
for detecting cyber-attacks, consume a great amount of power and system resources, such as  Random
Access Memory (RAM), Disk, Central Processing Unit (CPU), etc. 
After  researching  and  reviewing  multiple  technologies  that  can  be  employed  to  implement  optimal
security systems,  this thesis proposes a cyber-security software application named eIDPs.  The proposed
solution employs novel technologies for detecting, analyzing, and preventing various network attacks,
while utilizing minimum computer resources, namely: the Extended Berkeley Packet Filter (eBPF), which
can run virtualized functions directly in the kernel, and Machine Learning (ML) for detecting, analyzing,
and preventing various network attacks, while utilizing minimum computer resources. 
The  use  of  novel  technologies  resulted  in  a  better,  efficient  attack  detection  and prevention  system
compared to the current state-of-art network intrusion detection and prevention systems, such as Snort 2. A
comparison was conducted between  the solution proposed in this thesis and the Snort  software, in a
closed test environment. Slight modifications were performed on the Snort detection schema for utilizing
the same ML model internally,  in order to perform equal measurements between the proposed solution
and the Snort software. The evaluation results showcased that  eIDPS are vastly more lightweight and
efficient in detecting and preventing malicious activities.

1 https://docs.broadcom.com/doc/istr-03-jan-en
2 https://www.snort.org/
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Περίληψη
Καθώς  η  τεχνολογία  εξελίσσεται  ραγδαία,  όλο και  περισσότερες  κρίσιμες  υποδομές  συνδέονται  στο
διαδίκτυο.  Κακόβουλα άτομα προσπαθούν να εκμεταλλευτούν αυτές τις υποδομές,  με αποτέλεσμα οι
επιθέσεις  στον  κυβερνοχώρο  να  έχουν  γίνει  μείζον  ζήτημα  για  τους  χρήστες  και  τις  επιχειρήσεις.
Διάφορες εφαρμογές λογισμικού ασφάλειας δικτύων αναπτύσσονται για την πρόληψη ή τον μετριασμό
των  κυβερνοεπιθέσεων-  ωστόσο,  με  χαμηλό  ποσοστό  επιτυχίας  [1],  καθώς  περισσότερες  από  τρία
δισεκατομμύρια  επιθέσεις  zero  day  [2]  αναφέρθηκαν  σε  ένα  ημερολογιακό  έτος  στις  ΗΠΑ και  την
Αυστραλία σύμφωνα με την έκθεση Symantec Internet Security Threat Report. Οι τρέχουσες εφαρμογές
λογισμικού  δυσκολεύονται  να  αντιμετωπίσουν  το  ολοένα  εξελισσόμενο  κακόβουλο  λογισμικό  που
χρησιμοποιούν  οι  εγκληματίες  του  κυβερνοχώρου.  Επιπλέον,  οι  εφαρμογές  λογισμικού  ασφάλειας
δικτύου, οι οποίες χρησιμοποιούν πακέτα δικτύου για τον εντοπισμό κυβερνοεπιθέσεων, καταναλώνουν
μεγάλη ποσότητα ενέργειας και πόρων συστήματος, όπως μνήμη τυχαίας προσπέλασης (RAM), δίσκος,
κεντρική μονάδα επεξεργασίας (CPU) κ.λπ.
Μετά  από  έρευνα  και  εξέταση  πολλαπλών  τεχνολογιών  που  μπορούν  να  χρησιμοποιηθούν  για  την
εφαρμογή  βέλτιστων  συστημάτων  ασφαλείας,  η  παρούσα  πτυχιακή  εργασία  προτείνει  μια  εφαρμογή
λογισμικού  κυβερνοασφάλειας  με  την  ονομασία  eIDPs.  Η  προτεινόμενη  λύση  χρησιμοποιεί  νέες
τεχνολογίες  για  την  ανίχνευση,  την  ανάλυση,  και  την  αποτροπή  διαφόρων  επιθέσεων  δικτύου,  με
ταυτόχρονη χρήση ελάχιστων υπολογιστικών πόρων, και συγκεκριμένα: το Extended Berkeley Packet
Filter (eBPF), το οποίο μπορεί να εκτελεί εικονικές λειτουργίες απευθείας στον πυρήνα του συστήματος,
και  τη  Μηχανική  Μάθηση  (MM)  για  την  ανίχνευση,  την  ανάλυση,  και  την  αποτροπή  διαφόρων
επιθέσεων δικτύου, με ταυτόχρονη χρήση ελάχιστων υπολογιστικών πόρων.
Η χρήση νέων τεχνολογιών οδήγησε σε ένα καλύτερο και αποτελεσματικότερο σύστημα ανίχνευσης και
πρόληψης  επιθέσεων  σε  σύγκριση  με  τα  τρέχοντα  σύγχρονα  συστήματα  ανίχνευσης  και  πρόληψης
εισβολών στο δίκτυο, όπως το Snort . Πραγματοποιήθηκε σύγκριση μεταξύ της λύσης που προτείνεται
στην  παρούσα  πτυχιακή  εργασία  και  του  λογισμικού  Snort,  σε  κλειστό  περιβάλλον  δοκιμών.
Πραγματοποιήθηκαν μικρές  τροποποιήσεις  στο  σχήμα ανίχνευσης του Snort  για  τη χρήση του ίδιου
μοντέλου MΜ στο εσωτερικό του, προκειμένου να πραγματοποιηθούν ισότιμες μετρήσεις μεταξύ της
προτεινόμενης λύσης και του λογισμικού Snort. Τα αποτελέσματα της αξιολόγησης έδειξαν ότι το eIDPS
είναι  πολύ  πιο  ελαφρύ  και  αποτελεσματικό  στην  ανίχνευση  και  την  πρόληψη  κακόβουλων
δραστηριοτήτων.
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1.  Introduction
1.1.  Established network security systems

Frequently  occurring  cyber-attacks  have  become  a  major  problem  for  corporations  and  individuals,
according to Albahar M. et al. [3]. Towards securing computer systems and networks, various software
applications are developed to mitigate cyber-attacks. There are two main variations of such cybersecurity
software:  (1)  the  Network  Intrusion  Detection  Systems  (NIDS)  [4]  and  (2)  the  Network  Intrusion
Prevention Systems (NIPS) [5]. NIDSs are a sub-category of Intrusion Detection Systems (IDS) that also
include Host Intrusion Detection Systems (HIDS) [6].
NIDS and NIPS are systems that supervise a network or a computer system for malicious activities by
analyzing the incoming network traffic.  The main difference between them is that the former detects
attacks  and notifies  the  user  that  something  malicious  is  happening and the  latter  detects  an attack,
notifies the user, and additionally tries to prevent it. 
  On the other hand, an HIDS acts as a monitor for the operating system, by supervising files, folders, and
actions of a computer system for malicious changes. Moreover, a variation of such systems can employ a
hybrid detection scheme that can detect malicious activities and anomalies in a network or in a computer
file system by combining different strategies and algorithms. Such systems are named Hybrid IDS (H-
IDS) [7].
In this thesis, the focus is placed on NIDS and NIPS, rather than HIDS. In  Figure 1 below, a concept
diagram of a NIDS software in a network is depicted. In this concept, the NIDS system  along with a
firewall are the “first layer” of security in this architecture. They are both attached to a router to monitor
the egress and the ingress traffic of the underlying network.

Figure 1 NIDS Coceptual Diagram
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Furthermore, in Figure 2, the conceptual diagram of a HIDS is displayed. In addition to the firewall and
the NIDS, the HIDS extends security in the computer hosts of the network. The HIDS monitors the hosts
and collects events that happen inside the system. If they detect an abnormal event, such as worms  [8]or
viruses [9], they log and report the findings to the users. 

Figure 2 HIDS Conceptual Diagram

In Figure 3, the conceptual diagram of a NIPS is shown. This system works similarly to a NIDS. NIPS is
also connected to the network firewall and together with the firewall they are the “frontier defense” in a
network. 
Moreover, a NIPS is required to be connected to the router as it needs to have direct access to the ingress
and egress network traffic. Therefore, when a potentially malicious packet arrives in a network interface
of the router, the NIPS analyzes it and, if it matches with a rule that instructs the NIPS to drop it,  will
prevent it from reaching deeper in the network.

Figure 3 NIPS Conceptual Diagram

Σελίδα. 10
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In Figure 4, the conceptual diagram of a H-IDS is described. This system combines different strategies for
anomaly detections. In this scenario, the system utilizes a signature-based detection scheme together with
a Machine Learning [10] anomaly detection scheme [11]. After analyzing the incoming data with both
schemes, the system decides whether the incoming traffic is an attack or not and notifies the user.

Figure 4 Hybrid-IDS Conceptual Diagram

1.2.  Detection Techniques

The  detection  techniques  of  a  NIDS  are  divided  in  three  main  variations:  (1)  the  Signature-based
detection  technique,  which  is  a  method  that  compares  incoming  packets  with  pre-configured  attack
patterns named “signatures”; (2) the Statistical anomaly-based detection technique, which is a method
that  compares  the  incoming traffic  with an established dataset  that  has  predetermined benign traffic
statistics. For instance, if a packet differs from what the system “thinks” that constitutes normal traffic, it
categorizes  it  as  an  anomaly/malicious  activity;  last  but  not  least,  (3)  the  Stateful  protocol  analysis
detection technique that compares the protocol of an incoming packet (e.g., TCP) with pre-determined
profiles of an accepted benign activity. 
Finally, a NIPS system also uses a detection scheme to detect attacks. In addition to that, the user needs to
instruct the NIPS of “what” action needs to be taken, for each kind of detection, according to a specific
rule. The incoming packet is matched with a detection signature. Thus, when the system detects an attack
with one or more of the previously mentioned detection schemes, the rule that the user created previously
is triggered, and it performs the appropriate action, e.g., Packet Drop action.

1.3.  Machine Learning (ML)

The efficiency of a NIDS system can be improved by using ML algorithms. The ML technology has a
plethora of use cases. The most notable are Big Data [12], the medical field [13], and cybersecurity.
Progressively,  people  are  using  ML  for  various  cybersecurity  purposes,  such  as  data  analysis,  risk
exposure assessment, etc., but also for detecting cyber-attacks, as it offers great and precise results in
detecting malicious traffic [14]. A combination of ML with NIDS is easier due to the nature of network
traffic analysis. Network traffic involves large volumes of data, making it suitable for ML algorithms to
analyze and identify patterns or anomalies, as most of these algorithms need a massive input of sample
data to have a valid outcome on detections. 

In Figure 5, the basic data flow of an ML algorithm is depicted. At the outset, there is a collection of data,
referred to as the dataset,  that  serves as an input to the model.  This data is prepared for training by
cleaning unnecessary features (pieces of information about an item inside the dataset). Afterwards, the
model gets trained with the dataset using an ML algorithm and gets validated simultaneously. Following,
a validation process is required to improve the model’s efficiency by testing data at the same time while

Σελίδα. 11
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training the model. In addition, the testing data of the validation process sometimes is a different dataset,
dedicated to validation, or it can be a fraction of the training dataset.
Additionally, the model's outputs may vary based on the ML algorithm used to train it. Some algorithms
are better suited to particular datasets and applications than others. For instance, if a relatively small
dataset is used for training an ML model that utilizes a complicated algorithm, then the model can learn
and adapt to it too well, resulting in production of false outputs. 

 
Figure 5 Simplified Machine Learning Data Flow

1.4.  eBPF technology

eBPF [15] is a novel technology on the rise which can run virtualized functions, directly in the kernel.
This technology is an extension of the Berkeley Packet Filter (BPF) [16] that was released in 1992, for
UNIX [17] type systems and Windows [18]. This technology is primarily used for network traffic analysis
and packet filtering. Figure 6 below, depicts an overall eBPF architecture. More specifically, the generic
eBPF architecture consists of a program that runs in a user space and gets invoked by the kernel when a
certain event happens, called “hook”, such as system calls or a network packet arrival. 
Additionally, in the below architecture diagram, someone can preview the eBPF program, which can be
compiled by a compiler. The most popular compilers for eBPF functions in C-programming language are
the Clang3 and the LLVM4. The eBPF software needs to be translated (compiled) into bytecode, in order
to be injected into the kernel later. 
Since the eBPF resides in the kernel, it poses some limitations for the kernel’s security. The kernel shall
not be stopped or crashed at any time. Additionally, eBPF has a limit of maximum one million lines of
code, requires no unbounded loops, and prohibits memory relocation. To avoid all these issues, eBPF has
a verification module that examines each eBPF software and it ensures that there are no errors in the
program or violations of the aforementioned limitations. If there are no errors, the eBPF bytecode is
inserted in the just-in-time (JIT) compiler [19] for execution, otherwise, the eBPF software gets rejected
and a notification is shown to the user, with the indication of “unsafe” application. 
Finally, the program in the kernel can communicate with the user space through the eBPF maps. These
maps have key-value tables with entries, and they are shared with the user space program.

3 https://clang.llvm.org/
4 https://llvm.org/
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Figure 6 eBPF Architecture

1.5.  XDP

The eBPF technology has evolved quickly in recent years. Every Linux kernel release adds support of
new features for eBPF. One feature that got released in 2016 is the eXpress Data Path (XDP) [20]. In
Figure 7, the XDP’s architecture is shown. This diagram presents an application which utilizes the XDP
feature, which is basically an eBPF-based program that gets hooked into the Network Interface Card
(NIC) driver. In other words, the NIC card can communicate with the program and get instructions on
what to do with the network traffic, in near real-time. 
Furthermore, there are two buffers called rx_ring and sk_buff. The former is a buffer that lies in the NIC
driver and stores pointers to the incoming packets. Consequently, the XDP utilizes it to process packets
fast. The latter is a buffer inside the kernel, that stores packets’ information like its length and data in the
network stack. More particularly, when a packet arrives, before the packet is copied to the sk_buff, it gets
on the rx_ring buffer where the XDP program processes it. The XDP program can instruct the NIC driver
to various actions with the egress and ingress traffic through certain functions. These functions are the
“XDP_PASS”, which lets a packet through the system, the “XDP_DROP” that discards a packet and
prevents it from reaching the system, the “XDP_ABORTED”, which drops a packet and returns an error
code,  the  “XDP_TX”,  which  bounces  the  packet  to  the  same  NIC  it  arrived  on  and  finally,  the
“XDP_REDIRECT”, which redirects a packet to a different NIC.

Σελίδα. 13
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Figure 7 XDP Architecture

1.6.  eBPF and ML

eBPF technology can be utilized with the previously mentioned NIDS and NIPS systems alongside ML
algorithms,  to  monitor  a  computer  network  and  prevent  malicious  activity.  By  elevating  the
aforementioned technologies, packet processing can happen fast and vastly, based on experiments from
literature .More specifically, according to [21], eBPF and XDP applications have notable differences in
using system resources, in contradiction to other similar applications. That is because XDP scales the
CPU usage with the packet load that is facing, instead of dedicating CPU cores exclusively to packet
processing. This means that less CPU and RAM are required. Moreover, because eBPF operates within
the kernel and offloads traffic analysis to the NIC, packet processing occurs significantly faster than with
security software that processes packets in the operating system's user space. 

1.7.  Thesis Contribution and Proposed System (eIDPS)

To  the  best  of  our  knowledge,  current  software  applications  underperform  regarding  detection  and
prevention of suspicious and probably malicious actions in a computer system simultaneously with the
aid of ML, , due to the fact that they need an enormous CPU power to make the packet processing and
execute the preventions rules simultaneously. Thus, this thesis proposes the eBPF Intrusion Detection and
Prevention System (hereinafter “eIDPS”) that is a virtualized kernel solution utilizing eBPF and XDP,
combined with a sophisticated ML algorithm, which can detect and prevent malicious packets in near
real-time.  The  proposed solution  is  evaluated  by  performing various  measurements  on  performance,
efficiency, and capabilities in a closed test environment. 

Σελίδα. 14
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1.8.  Thesis Structure

There are seven chapters including the introduction above.  The document is structured as follows: the
subsequent chapter is the “State-of-the-art” chapter, which includes related literature work conducted in
recent years. Next, the “Technology Enablers” chapter is presented, which outlines the tools and software
that is used to build and evaluate the application. The “Evaluation” chapter presents the experiments that
were conducted to evaluate this thesis’ proposed model and compare the resulting solution with similar
applications. Finally, the “Conclusion and Discussion” chapter summarizes the results of the evaluation
and discusses this thesis’ future work directions.

Σελίδα. 15
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2.  State of the Art
2.1.  Machine Learning in Network Intrusion Detection systems.

NIDSs are  among the most  popular  systems for  detecting  cyber-attacks  C.  Xu and J.  Shen in  [22],
developed  a  NIDS  using  a  Deep  Neural  Network  algorithm  (DNN),  an  ML  algorithm  that  gets
incorporated into the system and gets trained for detecting cyber-attacks. DNN was combined with Gate
Recurrent Units (GRU), which is a simpler Long Short-Term Memory (LSTM), Multilayer Perceptron
(MLP), and a SoftMax module, which takes an input vector of arbitrary real numbers and transforms
them into probability  distributions,  where  each element  represents  the  likelihood of  a  corresponding
outcome. Furthermore, the authors used the KDD-99 and NSL-KDD datasets to train their ML models.
Experiments using these datasets demonstrated the system's substantial efficiency. The overall detection
rates  for  KDD-99 and NSL-KDD were 99.42% and 99.31%, with false  positive  rates  of  0.05% and
0.84%, respectively. On the other hand, they used LSTM instead of GRU and comparative studies were
conducted. GRUs alongside an MLP performed better than LSTM, however, the system suggested in this
article primarily depends on theoretical validation and its practical application remains to be confirmed. 
Moreover, there are several attacks recorded against a network or system. On the network system, there is
a chance that  cyber-attacks such as "black holes," "gray holes," and "wormholes" may happen. These
attacks aim to alter data present on any system or to steal information from it. Attacks on the system
include DoS, probe, snort, r2l, and other methods to misuse the data. Hence, NIDSs have been introduced
to protect the system from such threats. In [23], researchers suggest that NIDS can be enhanced if it is
used with principal component analysis (PCA), which is a technique for analyzing big datasets using the
Random Forest  (RF)  algorithm.  The  suggested  method effectively  handles  the  detection  of  network
intrusions compared to previously used algorithms such as Support vector machine (SVM), Naive Bayes,
and Decision Tree. The suggested approach has an error rate of 21% compared to 2.67%, 3.49%, 0.78%,
for  SVM,  Naïve  Bayes,  and  Decision  Tree,  respectively.  Moreover,  its  accuracy  rate  is  96.78%,  in
comparison with the corresponding 84.34%, 80.85%, and 89.91%, rates. The suggested approach has the
potential to considerably increase detection rates and false error rates. 
According to  [24], due to  the  enormous number  and constant  change and evolution of  cyber-attacks
techniques  the  datasets  that  are  used for  training ML-based NIDSs should be routinely updated and
benchmarked.  A DNN was investigated to  create  a  flexible  and powerful  IDS that  can identify and
categorize  unanticipated  and  unpredictable  cyber-attacks.  In  both  HIDS  and  NIDS,  the proposed
architecture outperformed traditional ML classifiers currently in use. However, ML classifiers are only
partially capable of identifying cyber-attacks in the KDDCup-99 dataset's attacks’ category. None of the
ML classifiers could increase the cyber-attacks detection rate using this dataset. 

2.2.  eBPF and XDP

Originally,  computer  networks  incorporated  the  use  of  communication  protocols  in  the  hardware  of
network devices, making it challenging  to update/change them to comply with the demands of modern
times. In [25], researchers presented eBPF and XDP, the limitations that they have and how they are used
in packet processing procedures. Consequently, the growth of latest research projects using eBPF as well
as XDP, shows that these technologies have a lot of potential. Moreover, this technology can be used
together as a means of providing new functionalities in the data plane, which is a network component that
carries user traffic, and more specifically, through the data planes. These functionalities can protect the
user’s system from potential cyber-attacks. Finally, eBPF and XDP can be used in the development of
novel research prototypes and network solutions. 
Literature showed that an eBPF program combined with ML algorithms is faster at processing packets
than a user-space program, using the same algorithms. In accordance with M. Bachl in [26], it is feasible
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to create a NIDS using ML-based algorithms, such as Decision Trees, combined with eBPF, where the
Decision Tree decides if a packet is malicious and needs to notify the user accordingly. After training
their proposed model using the CIC-IDS-2017 dataset, an accuracy of 99% was achieved. As a result, the
eBPF program showcased a 24% increase in performance compared to the same NIDS and training model
in a user space program. However, there are few limitations to the eBPF, such as the floating points.
Therefore, the Decision Tree must use fixed-point arithmetic of 64-bit integers. To summarize, this study
doesn’t provide enough information neither on “how” the comparison was conducted nor provides a table
with the overall results. 
Moreover, software-based IDSs are slower and analyze fewer packets in a specific amount of time than
hardware-based systems. Wang S and Chang J in [27] proposed another NIDS that utilizes eBPF. Their
solution contains two programs, one that is running in the kernel through eBPF and one that is running in
the user space. The former uses a modified Snort ruleset combined with eBPF to filter the packets while
the latter uses Snort for packet filtering. The results show that, after some testing conditions, the eBPF
program that was running in the kernel not only offers higher network throughput but also requires less
CPU usage. This happens because Snort in the user space uses one thread, thus the single core usage is
100%. Additionally, packet loss happens for the same reason as bottlenecks occur when the traffic load
reaches over 200mbps. 
According to L. Caviglione [28], attackers are continually developing novel strategies to evade signature-
and rule-based detection techniques, making modern malware harder to detect. By using eBPF, software
operations can be efficiently tracked and observed in near real-time. To demonstrate the adaptability of
the method, the researchers investigated two real-world use case scenarios that employ various attack
strategies,  namely  two  processes  cooperating  by  changing  the  file  system  and  converting network
connection attempts buried within IPv6 [29] traffic flows. The findings demonstrate that even basic eBPF
algorithms may deliver pertinent information for anomaly identification with low overhead. Furthermore,
the adaptability of developing and running such programs enables the extraction of pertinent aspects that
may be used to produce datasets for “feeding” AI-powered security frameworks. 
In addition to that, eBPF has the ability  to use the NIC through XDP for monitoring packets directly.
Therefore, D. Scholz  et al. in [30]  presented the complexities of the two main technologies (eBPF and
XDP). The authors showcased the utilization of SmartNICs – which are NICs that can get offloaded tasks
from CPU – in packet processing to create a processing pipeline that is more effective . Finally, they
offered specific  details  on how  the aforementioned technologies can be used to  mitigate  Distributed
Denial of Service (DDoS) attacks. They found that the most effective method reduces CPU consumption
and  dropping  rates  reduced  by  combining  hardware  filtering  on  the  SmartNIC  with  XDP  software
filtering on the host. Operating a portion of the filtering pipeline on the SmartNIC, without XDP filtering,
the CPU would result  in performance degradation and a reduced ability to withstand powerful DDoS
attacks. However, according to their research, current SmartNICs can assist in reducing the network load
on overloaded servers, but they might not be a complete panacea. 
Moreover, in [31] T. Hoiland-Jorgensen demonstrate how XDP can process up to 24 million packets/sec
on a single core and highlight the programming model's adaptability with the help of three example use
cases: (1) the layer-3 routing case, (2) the inline DDoS protection case  and (3) the layer-4 load balancing
case. In accordance with their analysis, XDP can handle raw packets at speeds of up to 24 Mbps using
just one CPU core. Although they explain that XDP offers additional attractive features that make up for
the speed difference, they acknowledge that this is not on par with state-of-the-art kernel bypass-based
alternatives. 
Furthermore, the issue of performance was addressed in [32] by Oliver Hohlfeld et al. They brought up
the network stacks, which are the protocols that the network uses and are challenged by high packet rates
of  10  GBit/s  or  higher.  The  authors  elucidate  the  advantages  and  drawbacks  of  eBPF/XDP-based
offloading from user space to either the kernel or a SmartNIC with Virtual Machine (VM) virtualization.
In the end, they demonstrated that offloading could improve packet processing, but only if the workload
is  manageable  and  tailored  to  the  intended  environment.  Additionally,  their  SmartNIC  is  often
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overwhelmed by excessively demanding duties and updating offloaded data, which could be an expensive
task. 
Based on the results of the literature presented above, and to the best of our knowledge, there is currently
no NIDS  that  can  act  as  a  NIPS  simultaneously  and  in  near  real-time,  utilizing  ML for  detecting
anomalies. Most papers suggest NIDSs that can detect malicious packets using ML or Deep Learning
(DL) [33] algorithms, but neither prevent nor process them before they reach deeper in the operating
system. On the contrary, there are papers showing that the use of eBPF for monitoring computer systems
and filtering packets, inside the kernel and before they reach the system, can be beneficial for users since
it consumes less system resources. Moreover, relevant literature discusses that eBPF can be used through
XDP to  offload  the analysis  of  the  packets  directly  to  a  NIC,  consequently making the  decision  of
dropping a packet faster, thus creating a more efficient security system. However, these features are one-
dimensional. Adding an ML-based algorithm can expand the capabilities of eBPF as it can provide the
system with knowledge of malicious packets, therefore making the detection and prevention quicker and
more efficient.
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3.  Technology Enablers
3.1.  Extended Berkeley Packet Filter (eBPF)

eBPF5 is a technology that can run sand-boxed programs inside the Linux kernel. These applications are
isolated from the core of the kernel and cannot interfere with other functions. Moreover, eBPF is used to
expand the kernel’s capabilities without interfering with the source code or the load of kernel modules.
Using a JIT compiler and a verification engine, the operating system ensures that sandboxed applications
have  similar  security  levels  and  the  computation  performance  specifications,  as  a  natively  compiled
application – embedded functionality of the  kernel.  eBPF has various use cases  such as tracing and
monitoring  computer  systems.  In  this  scenario  it  is  used  for  networking  security  through  eXpress
Datapath, which is an eBPF extension that handles the ingress and egress network traffic.

     
3.2.  eXpress Data Path (XDP)

XDP6 is a feature of eBPF that is used for networking. It offers fast packet processing as it analyzes the
packets in the kernel and the NIC since it is possible to offload network traffic to the NIC. XDP performs
actions  to  the  ingress  and  egress  packets,  with  the  functions  “XDP_DROP”,  “XDP_PASS”,
“XDP_REDIRECT” and “XDP_REJECT”.

3.3.  Neural Networks

An artificial Neural Network is a computer system that mimics the biological neural networks of a human
or an animal, according to [34]. The aforementioned system is based on an assortment of nodes called
neurons and neurons that are connected together in a linear way are called layers. A neural network has
two layers: the input and the output layer. The former acts as an input and the latter as an output. In
addition, it may have layers between the input and output layers, called hidden layers. Neurons are similar
to synapses in the human brain. Each link can send a signal to one or many neighboring neurons after
processing it. This signal can be translated as a real number. Each neuron's output is determined by a
nonlinear  function  that  adds  up  all  its  inputs.  The  connections  between  neurons  are  called  edges.
Moreover, the parameter that connects the two basic units in an artificial Neural Network is called weight.
The weight of neurons and edges often changes as learning progresses. Such neural networks are trained
to  learn  by  analyzing  samples.  Each  sample  has  known  inputs  and  outputs  /  results,  thus  creating
probability-weighted correlations between the input and output.

Figure 8: Neural network Conceptual Diagram

5 https://ebpf.io/
6 https://www.iovisor.org/technology/xdp
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3.4.  NSL-KDD Dataset

The NSL-KDD Dataset7 is often used in ML-based NIDSs as a training and test dataset. It is an updated
version of the popular KDD cup99’ Dataset8,  solving some of the problems that KDD’99 had, such as
outdated attacks, and duplicate entries, according to Tavallaee [35]. NSL-KDD contains approximately
12500 unique  entries;  thus,  each  entry  is  a  different  packet.  Moreover,  the  entries  are  classified  as
anomaly or benign packets. In this thesis, NSL-KDD is used for the training of the ML model included in
the proposed solution.

3.5.  C-programming language

C-programming language9 is a versatile and efficient programming language. It is well-known for its low-
level  capabilities and direct  hardware access and is  frequently used for system programming.  In this
thesis, it was used to create the eBPF and XDP functions and libraries for the proposed eIDPS.

3.6.  Python Programming language

Python10 is  another  versatile  programming language  that  has  a  lot  of  use  cases.  It  emphasizes  code
readability  and  offers  a  broad  standard  library,  making  it  ideal  for  various  applications.  Python's
interpreted nature allows rapid development and testing, it also has numerous libraries and frameworks,
enabling developers  to  tackle  a  wide range of  projects,  from web development  to  data  analysis  and
artificial intelligence. In this thesis it was utilized to build the Neural Network through frameworks of
Keras and Pandas and plotting the training and validation loss and accuracy. 

3.7.  Keras

Keras11 is  an  open-source framework,  which offers  a  Python interface for  building neural  networks.
Moreover,  it  provides  a  simplified  interface to  build  TensorFlow12 neural  networks  and has  detailed
documentation. More specifically, TensorFlow is an open-source deep learning framework for building
and training machine learning models.

3.8.  Pandas Python Library

For the purpose of manipulating and analyzing data, the Python programming language has a library
called Pandas13. This includes specific data structures and procedures for working with time series and
mathematical tables and it is distributed as an open-source library. 

3.9.  Virtual Box

Virtual Box14, developed by Oracle, is a hypervisor that can create and run virtual machines on top of
bare-metal  machines  and  operating  systems.  Utilizing  this  technology  assisted  in  creating  multiple

7 http://www.di.uniba.it/~andresini/datasets.html
8 https://archive.ics.uci.edu/dataset/130/kdd+cup+1999+data
9 https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html
10 https://www.python.org/
11 https://keras.io/
12 https://www.tensorflow.org
13 https://pandas.pydata.org/
14 https://www.virtualbox.org/
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different virtual machines in this thesis, with various operating systems, to perform the laboratory tests
required for validation of the proposed eIDPS.

3.10. Kali Linux

Kali  Linux15 is  an  operating  system (of  Linux distribution)  designed for  cybersecurity  professionals,
penetration testers, and ethical hackers. In the proposed solution, it was installed in virtual machines, for
experimenting with eIDPS functionality. In addition to that, the previously mentioned similar application
to eIDPS was also installed in Kali to test its functionality.

3.11. Wireshark

Wireshark16 is a free and open-source tool for analysis, filtering, and previewing of network packets and
traffic.  This  tool  is  based  on  tcpdump17 (a  command-line  packet  analyzer)  and  pcap-filter18 (a  filter
program). Moreover, this tool was used to monitor traffic from virtual machines and perform various
metrics during the experimental phase.

     

4.  Implementation
This chapter refers to the implementation of the previously mentioned technologies to build a software
application that is capable of detecting and preventing malicious packets in near real-time. The eIDPs
uses a neural  network for the classification of the network packets and utilizes the offloading of the
packet processing in the NIC through XDP.

4.1.  Conceptual Diagram

The conceptual diagram in Figure 9 depicts in an abstract level the basic concept of the proposed solution
in layers. The layers are shown from top to bottom, namely: the first layer at the top of the diagram is the
user-space, where the training and validation of the proposed ML model happens, the second layer is the

15 https://www.kali.org/
16 https://www.wireshark.org/
17 https://www.tcpdump.org/
18 https://www.tcpdump.org/manpages/pcap.3pcap.html
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kernel,  which contains the proposed eBPF based IDS/IPS module. Finally, there is also the Data Link
Layer, where lies the NIC card, which is responsible for the ingress and egress traffic.

Figure 9 eIDPS Conceptual Diagram

4.2.  Architectural Diagram

This section expands on the conceptual diagram. In  Figure  10, the Operating System (OS),  kernel, and
Data Link Layer are depicted in a more detailed way, serving as the foundation of the proposed security
solution. In the user space there is a script that compiles the eBPF program and hooks it to the kernel.
Moreover, there is a Dataset that acts as an input to the training module, which means that during training
the ML model  traverses all  the entries and tries to learn which packets are malicious and which are
benign. The dataset used has a variety of entries of network packets that are either labeled as benign or
malicious packets.  This  results  in  ML model  training with  adequate  data.  Finally,  the  output  of  the
training module, which is the weights and the bias gets inserted into the kernel.
Furthermore, inside the kernel, there is the eBPF program that functions as a network IDS/IPS module.
More specifically,  this  module contains the Security and Tracing sub-modules.  The Security Module
accesses the trained model, which is the weights and the bias of the ML model and gives instructions to
NIC to drop and/or let a packet go through the system.  The Tracing Module is constantly running and
checking every packet the NIC receives to see if it is malicious or not. Lastly, the network card in the
Data Link Layer plays a pivotal role in the system’s security as it is connected to the Tracing Module
through XDP. In a nutshell, the NIC handles Network Traffic and, when the eIDPS gives the instruction,
it drops a packet without allowing it to reach the kernel. Consequently, packet prevention - intervention -
happens in the NIC based on the instruction of the Security module. 
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Figure 10 eIDPS Architecture Diagram

4.3.  ML Model

This section refers to the implementation of ML model that is part of the solution proposed in this thesis.
The NSL-KDD Dataset  was selected as  the  training dataset  because it  is  a  simple-class  dataset  that
categorizes packets as anomalies or normal traffic. First, a preprocessing procedure needs to be performed
to clean, transform, and prepare the raw data prior to feeding it into the model for training. Afterwards,
the newly transformed dataset is fed to the ML model where the training and validation takes place. 
More specifically, the NSL-KDD dataset is loaded by using the Pandas library. Then, the column “class”,
which is the dependable value that needs to be predicted, is defined. According to the dataset, the label of
column “class” is 0 if the packet is benign and 1 if it is malicious. Then the columns that refer to the
independent values “protocol_type”, “service”, and “flag” are dropped, through the function “df_drop”,
which is a function that excludes these columns from the computations. This happens because the values
of these columns are defined as string format,  so they cannot be computed.  Later,  the values of the
remaining columns of the dataset are normalized, to bring them in a similar range before feeding them to
the ML model. Additionally, the dataset has to be split into two sets, namely a training set and a test set,
as  it  is  required  for  later  performance  evaluation.  The  split  of  the  dataset  is  performed  by  the
“train_test_split” function with a batch test size of 0.25, which means that 75% of the data are assigned to
the training set and 25% of the data will constitute the test set that will be used for later testing. This can
be seen in Appendix I. The random state that determines how the data is shuffled prior to the split is set to
forty-two (42). 
Afterwards,  a sequential  model  is  created with the Keras framework.  This means that  the layers are
created in a linear stack. The developed Neural Network has sixty-four (64) neurons with Relu activation,
which helps a node to learn complex patterns and it returns binary output, and Adam optimizer, which
dynamically adjusts the learning rate for each parameter and it results in faster convergence and better
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performance, while training neural networks, in the first layer. In addition to that, ), in the second layer
there is one neuron with sigmoid activation (it maps the input values to a range between 0 and 1). 
Finally, the training begins after the configuration of the model ends with a batch size (the number of
samples per gradient  update)  of 250 and 100 epochs (number of iterations that  are happening in the
Dataset). Immediately upon the end of training the weights get extracted and inserted into an array along
with the bias, thus it is easy to be extracted and inserted into the eBPF program.

4.4.  eBPF Program

In this section the eBPF program initialization and startup is described. The eBPF starts with two BPF
map  type  arrays.  These  arrays  keep  track  of  packets  that  were  dropped  or  passed  into  the  system.
Additionally, the weights of the ML model are extracted alongside the bias, and they are both inserted as
an  array,  as  it  is  easier  to  do  mathematical  computations  with  arrays.  In  the  end,  two  pointers  are
initialized to assist in keeping track of the beginning and the end of a packet. 
In addition to the above, the program receives the incoming network packet and extracts the Ethernet
header through the function “parse_eth”. In  Figure 10, the Ethernet packet frames’ headers are shown.
The header that the program extracts is the Data header, as it contains the information that the program
needs to analyze.

 
Figure 11 Ethernet Packet headers

Afterwards, the eBPF program checks if the content (data) of the packet is less than the length of the
packet, as defined in the headers of the packet. If the result after differentiation is greater than the length,
then it  allows  the packet  through to the  system,  so it  will  be  considered as  a  non-valid  packet  i.e.,
corrupted, incomplete,  or  improperly formatted.  Moreover,  this  happens to protect  the program from
running in an infinite loop,  thus crashing the kernel.  After that,  the eBPF program extracts the IPv4
header from the Data header extracted before, through the "parse_ipv4” function, to recognize if it is an
IP packet. If it is not, it lets it through so the system will oversee it. In Figure 11, the IP packet headers are
shown along with their length in bytes. More details are provided in Appendix I.
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Figure 12 IP Packet Headers

If the header is an IP protocol19 packet, it goes through a bounded loop that starts iterating the packet
headers with the help of the previously mentioned pointers. It begins with the 4th byte until the 54th byte,
as the first three bytes are not that important in detecting malicious activity as they contain headers like
VoIP, etc. Identification, which is the header in the 4th byte, helps identifying the IP diagrams aiding in
detecting malicious activity, thus it is important in identifying if the packet is malicious. Next, inside the
loop it multiplies the packets data with the weights and adds the bias ( y=bias+weight∗x [i ]), as resulted
through  consulting  paper  in  [9].  The  result  stemming  from  the  computation  is  the  Maliciousness
Indication Number (MIN). If MIN is greater than 0 it drops the packet through “XDP_DROP”, while in
any other case it lets it go through in the system as the packet is defined as benign, through “ XDP_PASS”
function. 

4.5.  Compile/Attach script

This section analyzes the script module that hooks the eBPF script inside the kernel to the NIC driver.
The bash script that is used compiles the program using Clang and LLVM and hooks it to the kernel using
a network interface of the user's choice. 
More specifically, it uses the command “-g -c -02 -S” to compile the program as follows: (-g) enables the
compiler to generate debugging information; (-c)  instructs the compiler only to compile the program
without linking; (-02) means that it has an optimization level 2, thus better performance when running; (-
S) instructs the compiler to make an assembly file and not an object file, which happens because the
proposed solution works in a very low level field. Also, it uses the “-emit-llvm xdp.c” command that
instructs Clang to emit the LLVM IR code (which is a code that sits between the C code and the Machine
code). 
Afterwards, the command “-o -|clang_llc -march=bpf -filetype=obj -0 xdp.o” is used. This command
invokes the LLVM backend compiler and specifies the bpf architecture as well as the output object file. 
Lastly, the program is hooked to the network interface using the “ ip link set dev $1 xdp obj xdp.o”
command. 

4.6.  The Remove Script

This section describes the purpose of the second script, the “remove.sh” script. Firstly, this script is used
to detach the XDP program from the given network interface. The script begins by checking the number,

19 https://www.impactcybertrust.org/dataset_view?idDataset=945
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of interface names that the user has provided. If the number of interfaces is not 1, it displays a message
indicating how to use the script and then it exits with message “Usage: ./compile_attach.sh <interface>”.
If the number of interfaces is 1, the XDP program gets removed from the kernel by using the internal
command “sudo ip link set dev $1 xdp off”. 
Later, the script checks the exit status of the previous command, using “$? -eq 0”. If the exit status is 0, it
means the XDP program was successfully detached from the specified interface and prints a message
stating “XDP Prog removed from <interface>” where “<interface>” is the name of the network interface
the user provided before.
Following, a flow chart and a sequence diagram are provided for laying a better understanding of the
procedures followed by the proposed eIDPS solution.

4.7.  Flowchart Diagrams

The proposed solution can be divided into two workflow scenarios. The first one, as depicted in Figure
13, shows the flow of the pre-configuration of the proposed solution. More specifically, the flow begins
with the insertion of the NSL-KDD Dataset as an input into the neural network model which serves as the
ML algorithm in the proposed solution. Afterwards, the dataset is split and used to train and validate the
model. Later, the hook script is executed, which compiles and attaches the program to the kernel. At the
same time,  the  output  of  the neural  network,  which is  the  weights  and the bias,  is  inserted into the
network IDS/IPS module, which is found inside the kernel.

Figure 13 pre-configuration workflow

In the  diagram presented in Figure  14,  the  workflow of the eIDPS when egress or ingress traffic  is
captured in the NIC is depicted. As can be observed, the internet traffic passes through the NIC card,
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where all of the incoming packets are processed. After the processing, the retrieval of weights and bias
from the eIDPS module, which resides in the kernel, is performed. Afterwards, a computation is made to
extract the MIN number in order to determine whether the network packet is malicious or not. If the MIN
number is greater than zero (0) then the network packet is classified as malicious and gets dropped, while
if it is equal or less than the zero (0) then the packet is let through.

Figure 15 eIDPS intrusion detection and prevention workflow

4.8.  Sequence Diagram

The diagram in Figure 13 depicts how the different components of the program work together. There are
four columns, the user space, the kernel, the hardware, and the network traffic. The User-space column
has two items: the ML model’s weights and bias that get inserted into the eBPF program, and the hook
script that is also inserted to the eBPF program in order to hook the program to the Kernel, which serves
as the second column of the sequence diagram. It is shown that the kernel communicates with the third
column, which is the Hardware, through the “XDP_DROP” and the “XDP_PASS” functions of the XDP
program. These functions dictate if the packet should go into the system or not, based on the input of the
weights that got inserted to the program from the ML model. The Hardware column is where the Network
Interface Card is found. The NIC communicates with the last column, which is “Network Traffic”, by
allowing the incoming network packets in if the traffic is benign or simply dropping the packet assuming
that it is malicious. 
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Figure 16 eIDPS Sequence Diagram
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5.  Evaluation
5.1.  Experiments

In this section the eIDPS efficiency and the effectiveness in detecting and preventing malicious activities
will be evaluated, namely, if the experiments that were conducted had the results that we expected.
The metrics were measured with mpstat20 and iostat21, which are pre-built programs in Kali distribution
of Linux and generally in all Linux distributions. These tools measure the  CPU and the  Input/Output
metrics,  which  are  the  operations  performed  by  the  system  when  it  transports  data,  respectively.
Furthermore, the packets that were transmitted and received were captured in both the attacker and the
victim computer system’s using Wireshark. Lastly, the training and validation accuracy and loss of the
neural network model were measured during the training and validation processes, while they were also
plotted into figures that are presented further below.

5.2.  Methods - Scenarios

For the evaluation of the proposed solution two scenarios were developed, one with an already developed
solution for network intrusion detection and prevention and one with the proposed eIDPS. The aim is to
compare  these  scenarios  to  find  the  least  heavy  solution  for  system resources  along  with  the  most
efficiency in preventing attacks. In addition to that, the ML model was trained before the experiments
were conducted. Moreover, several cyber-attacks were selected for the conduction of the experiments,
stemming from the following two attack categories: Network Reconnaissance and Distributed Denial of
Service (DDOS).

5.2.1. Snort Scenario

In the  first  scenario the  NIPS that  was used was Snort  with custom rules for dropping packets.  For
instance, the following rule detects a SYN stealth scan by comparing the incoming packet information,
such as the flag of the packet and its signature id  with values set in the rule;
“drop  tcp  any  any  ->  $HOME_NET  any  (msg:"Nmap  SYN  Scan  detected";  flags:S;
detection_filter:track by_src, count 5, seconds 10; sid:1000001; rev:1;)”. 

If the information included in the packet are matched with the values set in the rule, then the packet is
dropped. In addition to that, a custom plug-in was used that enabled Snort utilizing ML. 
The same ML model and Dataset that was used with the eIDPS was also used with Snort. After validating
all the rules, attacks were launched from a secondary Kali Linux operating system (VM). The following
attacks were used: SYN Flood22, SYN scan23, UDP Scan24, XMAS Scan25, and OS Fingerprint26.

20 https://man7.org/linux/man-pages/man1/mpstat.1.html
21 https://man7.org/linux/man-pages/man1/iostat.1.html
22 https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
23 https://nmap.org/book/synscan.html
24 https://nmap.org/book/scan-methods-udp-scan.html
25 https://nmap.org/book/scan-methods-null-fin-xmas-scan.html
26 https://nmap.org/book/man-os-detection.html
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5.2.2. eIDPS Scenario

In the second scenario, the proposed eIDPS solution was deployed for detecting and preventing malicious
activities.  Afterwards, the same attacks were launched from the secondary Kali system, namely  SYN
Flood, SYN scan, UDP Scan, XMAS Scan, and OS Fingerprint. 

5.3.  Conducting the Experiments

When the attacks  were made in both scenarios,  “iostat  2” and  “mpstat  -p  ALL 1” commands were
executed,  to display the  I/O metrics and the  CPU usage on the terminal  respectively.  Furthermore,
Wireshark was running on both the attacker and the victim side to display the transmitted and received
packets. 
Additionally, the training and validation accuracy and loss of the ML model were also measured during
training and validation. While validation accuracy evaluates the model's effectiveness in generalizing on
fresh, untested data, training accuracy analyzes how well the model performs on the training data. In other
words, the training accuracy serves as a measure of how well the model fits the training data, while the
validation accuracy assesses the model's ability to generalize and fit new, previously unseen data, both of
which play vital roles in evaluating the model's performance and potential overfitting concerns. 
Finally, the training and validation loss measurements displayed “how efficiently” the model predicts if a
packet is malicious or benign, and “how reliable” its performance is on a separate validation dataset, that
was not used in the training process. 
Considering that Snort runs in the user space and detects and processes packets in this space, it is only
logical that it will utilize more system resources than the proposed eIDPS solution, which runs directly in
the kernel. More specifically, eBPF offloads the network traffic in the NIC, which drops the packets at a
very early stage, after low level packet analysis. This enables the system to calculate very fast if a packet
is malicious and drop it without using any of the system’s resources.

5.4.  Testbed 

The testbed host computer  had an Intel i7-3770 (with 4 cores - 8 threads) processor ,  32 Gigabytes of
RAM and a 500 Gigabyte Samsung 870 EVO solid state disk. In addition to that, the testbed included an
ethernet Peripheral Component Interconnect Express (PCIe) network card, named NetLink BCM57781,
that  supported  XDP  and  eBPF  functionality,  as  some  older  NIC  cards  do  not  support  these  novel
technologies. 
The experiments were conducted between 2 VMs, utilizing the VirtualBox as hypervisor and the Kali
Linux distribution as the operating system. Both VMs had assigned two virtual cores of processing power
and 8 Gigabytes of RAM. Moreover, the VMs were connected with an internal network, to isolate them
from outside network packets and possible interference. 

5.5.  Machine Learning training and validation results

As previously referred,  the  training and validation loss  gives  the  user  knowledge about  the  model’s
efficiency at predicting if the incoming packet is malicious or not. As it can be seen in  Figure 14, after
100  epochs the  training  and  validation  loss  is  at  0.02700% and  0.02685%, respectively,  in  both
scenarios. This means that the loss of training and validation is minimal, consequently the model has
great efficiency at predicting the network’s traffic malicious intentions. Moreover, the validation line in
the figure is under the training line, inferring that no overfitting or underfitting occurs.
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Figure 17 Training and Validation Loss

In  Figure 15, the training and validation accuracy of the ML model are plotted. This figure provides
information  about  the model’s efficiency at learning the dataset and  its performance when validating
itself. The  training accuracy is 0.9912% and the  validation accuracy is 0.98955%, meaning that, in
100 epochs ,in both scenarios, the model has a small amount of loss in training and validation. This
indicates that the model is learning the dataset efficiently and performs exceptionally well in validating
new data.

Figure 18 Training and validation accuracy
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5.6.  Experiment Results

In  this  section,  a  comprehensive  evaluation  of  the  experimental  findings  is  presented  to  determine
whether eIDPS is a better solution than a modified version of an open-source NIDS/NIPS.

5.6.1. Network Reconnaissance attacks

5.6.1.1.  CPU Usage

In Figure 16, the attacks that were launched are depicted together with the CPU Usage on each attack
regarding the Snort Scenario. In detail, the CPU percentage that Snort was using to detect and prevent the
attacks was as follows:

1. 18.70%, when it was attacked with an “OS Fingerprint” attack.
2. 15.60%, when it was attacked with a “SYN Scan” attack.
3. 16.30%, when it was attacked with an “UDP Scan” attack.
4. 23.80%, when it was attacked with a “XMAS Scan” attack.

Regarding the eIDPS Scenario, the system’s resources cannot be accurately measured according to [4],
because it is running in the kernel. One solution to this issue is to determine how many resources the
whole kernel consumes when the attacks are happening. From these metrics one can estimate the true
percentage of consumption. Consequently, the CPU usage of eIDPS is even less than the kernel’s as the
eIDPS lies inside the kernel .
Regarding the same attacks as in the Snort Scenario, the CPU usage of the whole kernel is as follows:

1. 1,55%, when it was attacked with an “OS fingerprint” attack.
2. 1,27%, when it was attacked with a “SYN Scan” attack.
3. 1.51%, when it was attacked with an “UDP Scan” attack.
4. 2.02%, when it was attacked with a “XMAS Scan” attack.
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Figure 19 CPU Usage

The percentages of CPU usage observed in the Snort Scenario are vastly higher in comparison with the
eIDPS Scenario, as it was anticipated. That is because the detection and prevention of the attacks in the
Snort Scenario are happening simultaneously in the user space, thus more CPU is used to process the
packet and then predict if it is malicious or not.

5.6.1.2.  Packets passed into the system.

In Figure 18, the packets that were transmitted throughout different attacks were plotted together with the
number of packets that passed into the system when Snort and eIDPS were deployed, respectively.
More specifically, eIDPS performed as follows:

1. SYN scan attack: it let through 290 packets out of 2002 that were transmitted.
2. OS Fingerprint attack: it let through 260 packets out of 2048 that were transmitted.
3. UDP Scan attack: it let through 644 packets out of 2032 that were transmitted.
4. XMAS Scan attack: it let through 270 packets out of 200 that were transmitted.

Snort on the other hand, did not perform as efficiently as eIDPS:

1. SYN scan attack: it let through 1103 packets out of 2002 that were transmitted.
2. OS Fingerprint attack: it let through 1003 packets out of 2048 that were transmitted.
3. UDP Scan attack: it let through 1678 packets out of 2032 that were transmitted.
4. XMAS Scan attack: it let through 1006 packets out of 2000 that were transmitted.

Finally, one interesting outcome is that Snort could hardly handle the  UDP Scan as it allowed in the
system much more than 50% of the packets that were transmitted.
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Figure 20 Packets Sent and Passed into the System

5.6.1.3.  I/O Metrics

This section refers to the Input/Output (I/O) measurements taken for Snort and eIDPs. In the  Table 1
below, someone can preview: 

● the transactions per second (tps), which are the malicious requests that the packets were made, 

● the kilobytes per second that was read (KB_read/s), 

● the kilobytes per second that was written (KB_wrtn/s), 

● the kilobytes per second that was discarded (KB_dscd/s) and 

● the total kilobytes per second (from KB_read, KB_wrtn, KB_dscd). 
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Table 1 I/O Metrics

Attacks
tps KB_read/s KB_wrtn/s KB_dscd/s KB_read KB_wrtn KB_dscd

eIDP
S Snort eIDP

S Snort eIDP
S Snort eIDP

S Snort eIDP
S Snort eIDP

S Snort eIDP
S Snort

OS 
Fingerprint 2 3 0 0 12 34 0 0 0 0 24 68 0 0

SYN Scan 2.5 3 0 0 26 26 0 0 0 0 52 52 0 0

UDP Scan 2.5 3 0 0 24 64 0 0 0 0 48 128 0 0

XMAS Scan 2.5 2 0 0 26 270 0 0 0 0 52 540 0 0

In Table 1 above, it can be seen that, when the system got attacked while Snort and eIDPS were running,
the  tps always had a value as transactions were happening during the attack. Also, the system in both
scenarios did not perform an input action in a storage device, so every value associated with KB_read/s,
KB_read,  KB_dscd/s and  KB_dscd  had a  value  of  0.  However,  as  the  table  indicates,  the  system
performed various output actions in the storage device; thus,  resulting in the KB_wrtn/s and KB_wrtn
columns to have values. 

Particularly, when the system got:

1. “OS Fingerprinted”,  3 transactions happened,  34 KB were written pers second and a
total of 68 KB were written. 

2. “SYN Scanned”,  3 transactions happened,  26 KB were written per second and 52 KB
were written in total. 

3. “UDP Scanned”, 3 transactions happened, 64 KB were written per second and 128 KB
in total.

4. “XMAS Scanned”,  2 transactions happened,  270 KB were written per second and 540
KB in total.

In the same table it can be seen that the eIDPS program had less transactions per second and less KB were
written  in  the  storage  device  as  it  used  buffers  inside  the  kernel to  store  packets.  

More specifically, when the system got:

1. “OS Fingerprinted”,  2 transactions happened,  12 KB were written per second and  24
KB in total.

2. “Syn Scanned”, 2.5 transactions happened, 26 KB were written per second and 52 KB in
total.

3. “UDP Scanned”, 2.5 transactions happened, 24 KB were written per second and 48 KB
in total. 

4. “XMAS Scanned”,  2.5 transactions happened,  26 KB were written per second and  52
KB in total.
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5.6.2. Distributed Denial of Service Experiment

5.6.2.1. Packets passed into the system

Distributed Denial of Service (DDOS) attack has to be analyzed separately, as there is  not  a way to
prevent it entirely. We can only detect the attack and redirect the traffic somewhere else, as Cloudflare 27

had done by utilizing eBPF or using a third-party security module like Cloudflare28, CISCO29 etc., for
DDOS attacks. For the scope of this thesis, we performed two DDOS attacks, one for the Snort Scenario
and one for the eIDPS Scenario. 
The DDOS attack, alternatively named SYN Flood attack, used the hping3 tool for sending 100 packets
of 120 bytes per second. In Figure 17, the packets that were sent and the packets that were passed into
the system, in both scenarios, are depicted. 
The result of this experiment depicted that Snort not only was unable to handle the SYN Flood attack and,
therefore, it let all the packets through into the system, but also it could not even recognize that it was
attacked. On the other  hand,  the  proposed eIDPS solution was able  to  recognize that  an attack was
happening, and an endeavor was conducted to prevent the DDOS attack. In the end, eIDPS  dropped
around 34.000 packets, in comparison with Snort that dropped none.
Last but not least, a CPU usage metric and an I/O metric would be useless, as Snort could not recognize
that it was attacked. This means that it was idle throughout the attack.

Figure 21 DDoS Attack

5.7.  Evaluation Results Discussion

From the results of the experiments that were conducted it is showcased that the eIDPS uses less system
resources and it is more efficient than Snort.  As predicted, the lighter kernel-based program utilizes the
fact that it is running inside the kernel and offloads the packet processing to NIC, so the packet processing
happens a lot faster.  It also uses less system resources as the kernel itself uses less resources opposed to
applications that run in the user space.  In addition to that, utilizing buffers inside the kernel for storing
packets helped a lot in the I/O transactions that happened during the attack.

27 https://blog.cloudflare.com/how-to-drop-10-million-packets/
28 https://www.cloudflare.com/network-services/products/
29 https://www.cisco.com/c/en/us/products/security/secure-ddos-protection/index.html
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The ML aspect of the program has a pivotal role in identifying malicious packets with great efficiency. In
the scenario where Snort was deployed, even though it was also utilizing the same ML model and dataset,
it  could  not  reach  the  efficiency  that  eIDPS  had  in  packet  processing,  detection and  in  attacking
prevention. Moreover, because it needed system resources to process the incoming packets and to decide
whether  to drop or not the packets  after the processing in the user space,  it resulted in a  higher CPU
usage, less efficiency in identifying the malicious packets and more I/O transactions.
Taking  all  the  above  into  consideration,  the  results  showed  that  the  eIDPS  is  a  better  solution,  in
comparison with an open-source NIDS/NIPS, such as Snort, even if the latter utilized an ML algorithm
for the detection of malicious traffic. eIDPS was observed as more lightweight and with greater efficiency
in malicious packet prevention and detection. 

6.  Conclusion and Discussion
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6.1.  Aims and Summary

Nowadays, software applications that protect computer network systems are essential, as the danger of a
cyber-attack is vastly high. eBPF is a novel technology that has already seen great growth and in the
future, will be the go-to not only in cybersecurity, but also for load balancing, etc. The same can be said
for  ML as  it  is  evolving  day-by-day.  With that  in  mind,  this  thesis  proposed  a  system that  is  very
lightweight and efficient in protecting a computer network system. After some Network Reconnaissance
attacks (SYN Scan, OS Fingerprint, UDP Scan, XMAS Scan) and a DDOS attack (SYN Flood) were
launched in two different security systems.
The eIDPS system had great results in detecting and dropping malicious packets, while it utilizes less
system resources. On the other hand, the modified version of Snort was able to drop some malicious
packets with some efficiency, as it also utilized ML, but in the bigger picture, not only used a lot more
system resources than eIDPS, but also did not have the same efficiency in preventing attacks. 

6.2.  Limitations

Keeping  in  mind  that  is  the  proposed  solution  includes  an  eBPF-based  program,  there  are some
limitations,  as  mentioned earlier  under the section “eBPF technology”.  In  particular, there  is  a fixed
number  of  maximum  lines  of  code  that  can  be  used,  at  one  million.  Furthermore,  it  cannot  have
unbounded loops inside the source code and no memory relocation can happen. Regarding the dataset and
the experiments, they were conducted in a closed environment with no outside interferences. Also, the
used dataset was launched in 2017, so a more up to date dataset could be used.
In conclusion, there are ways to make the experiments more concrete. For example, a more accurate and
up-to-date Dataset could be used for predicting malicious activities such as UGR’1630 and CTU-1331. In
addition, a wider range of attacks like malware, worms, DNS spoofing and man in the middle can be
included and tested to solidify the results. Also, virtual machines with more CPU cores and threads can be
used for the system resources metrics to be more accurate, as two or even four CPU cores are not enough
for modern systems nowadays.
The eBPF technology and especially XDP have a lot of potential and will evolve more in the future.
Direct packet processing inside the kernel is a great advantage in detecting and preventing packets and in
utilizing less system resources over other solutions that run in the user space. 

6.3.  Future work

In the future, an enhancement of this thesis  could be conducted, as several features and improvements
could be added to both eBPF and in the Linux kernel. Consequently, there could be developed a more
cultivated application that handles bigger network traffic and uses more intricated means for detection
and prevention of malicious activities. Furthermore, in the ML aspect of the eIDPS new datasets can be
used with the same ML model that has more modern cyber-attacks as entries. 

30 https://nesg.ugr.es/nesg-ugr16/
31 https://www.impactcybertrust.org/dataset_view?idDataset=945
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Appendix I - eBPF Code
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Appendix II - User Space Code
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