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Περίληψη 

Σήμερα, οι μικροεπεξεργαστές και μικροελεγκτές έχουν φθάσει σε τόσο 

προχωρημένο στάδιο, ώστε να έχουν σημαντική επίπτωση στα επιστημονικά και 

τεχνολογικά πεδία των ηλεκτρονικών μηχανικών και των μηχανικών υπολογιστών. 

Συνεπώς, είναι σημαντικό οι μηχανικοί να εξοικειωθούν με τις έννοιες των 

ψηφιακών σημάτων και τις τεχνολογίες των ψηφιακών συστημάτων επικοινωνιών 

και ελέγχου και ακόμα πιο σημαντικό να εκμεταλλευτούν τις  τεχνικές ψηφιακής 

επεξεργασίας σήματος (DSP). 

Η παρούσα πτυχιακή εργασία σχεδιάζει ένα συμπαγές αλλά περιεκτικό σύνολο από 

διαφάνειες διαλέξεων για ένα, σε μεταπτυχιακό επίπεδο, εισαγωγικό μάθημα 

Ψηφιακής Επεξεργασίας Σήματος (DSP). Καλύπτει τις γενικές έννοιες του DSP, το 

θεώρημα δειγματοληψίας, τα αναλογικά anti-aliasing και anti-image χαμηλής 

διέλευσης φίλτρα, την ανασύσταση του αναλογικού σήματος, την μετατροπή από 

αναλογικό σε ψηφιακό, τα θεμελιώδη στοιχεία της αναλογικής επεξεργασίας 

σήματος (σειρά Fourier, μετασχηματισμοί Fourier και Laplace), τον διακριτό 

μετασχηματισμό Fourier (DFT) και τους αλγορίθμους του γρήγορου 

μετασχηματισμού Fourier και ολοκληρώνεται με μια επισκόπηση των φίλτρων 

Butterworth και Chebyshev. Όλη η έκταση του θεωρητικού περιεχομένου 

εμπλουτίζεται με ενδεικτικά παραδείγματα. 

 

Abstract 

Nowdays, microprocessors and microcontrollers have become so advanced that they 

have significant impact on the disciplines of electronics and computer engineering. 

Consequently, it is essential the engineers to become familiar with the concepts of 

digital signals and the technologies of digital systems for communications and 

controls and most important to exploit the digital signal processing (DSP) 

techniques. 

The present graduate thesis designs compact yet comprehensive lecture slides for a 

postgraduate level introductory lesson on Digital Signal Processing (DSP). It covers 

the general concepts of DSP, the sampling theorem, analog anti-aliasing and anti-

image lowpass filters, the signal reconstruction, analog-to-digital conversion, 

fundamentals of analog signal processing (Fourier series, Fourier and Laplace 

transforms), discrete Fourier transform (DFT) and fast Fourier transform (FFT) 

algorithms and ends with an overview of Butterworth and Chebyshev filters. The 

theoretical content is enriched with indicative examples. 



Σύνοψη 

Οι διαφάνειες 1 έως 5 εισάγουν τις βασικές έννοιες του DSP και παρουσιάζουν το 

σχηματικό διάγραμμα της ψηφιακής ανάλυσης σήματος. Επίσης, εξηγείται το 

ψηφιακό φιλτράρισμα και παρουσιάζεται η διαδικασία της φασματικής 

ανάλυσης σήματος. 

Οι διαφάνειες 6 έως 13 καλύπτουν το θεώρημα δειγματοληψίας που 

περιγράφεται στο πεδίο του χρόνου και στο πεδίο της συχνότητας, 

παρουσιάζονται πρακτικές εκτιμήσεις για το σχεδιασμό αναλογικών anti-aliasing 

και anti-image χαμηλής διέλευσης φίλτρων και επεξηγείται η ανασύσταση του 

αναλογικού σήματος. 

Οι διαφάνειες 14 έως 20 περιγράφουν τις αρχές μετατροπής σήματος αναλογικού 

σε ψηφιακό και ψηφιακού και σε αναλογικό και την κβαντοποίηση του σήματος. 

Στις διαφάνειες 21-23 ορίζονται τα γραμμικά, χρονικά αναλλοίωτα, αιτιατά 

συστήματα. 

Στις διαφάνειες 24 έως 42 εκτελείται μία σύνοψη της αναλογικής επεξεργασίας 

σήματος, όπου παρουσιάζονται η περιγραφή περιοδικού σήματος με οι σειρές 

Fourier (sine-cosine form, amplitude-phase form, exponential form), οι 

μετασχηματισμοί Fourier και Laplace, η συνάρτηση μεταφοράς και η κρουστική 

απόκριση γραμμικού αναλογικού συστήματος, η ευστάθεια συστήματος, η 

συνέλιξη και η ημιτονική απόκριση σταθερής κατάστασης. 

Στις διαφάνειες 43 έως 63 παρουσιάζονται συνοπτικά αναλογικά και ψηφιακά 

φίλτρα χαμηλής διέλευσης και ζώνης διέλευσης Butterworth και Chebyshev, με 

παραδείγματα. 

Στις διαφάνειες 64 έως 79 καλύπτεται ο διακριτός μετασχηματισμός Fourier 

(DFT) και η ψηφιακή φασματική ανάλυση σήματος, ενώ εισάγεται η τεχνική του 

προσδιορισμού του φάσματος σήματος με τη χρήση παραθυρικών συναρτήσεων 

(window functions) με εφαρμογές. 

Στις διαφάνειες 80 έως 88 περιγράφεται εποπτικά ο γρήγορος μετασχηματισμός 

Fourier (FFT) με τους αλγορίθμους του decimation-in-frequency και decimation-

in-time. 

Στις τελευταίες διαφάνειες παρατίθενται προβλήματα ανακεφαλαίωσης με τις 

λύσεις τους. 
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Digital Signal Processing (DSP) technology and its advancements have dramatically impacted our 
modern society everywhere. 

 Internet (wire and wireless networks)

 digital audio and/or video

 digital recording/playing (CD, DVD, Blu Ray, MP3, MPEG4 etc)

 digital cameras

 digital and cellular telephones

 digital satellite and TV

 medical instruments

Without DSP, scientists, engineers, and technologists would have no powerful tools to analyze and 
visualize data and perform their design.

Digital Signal Processing (DSP) scheme

2

MSc Level Lecture Design

on DSP

Technological Educational Institute of Crete
Department of Electronic Engineering
Anna Daskalaki | d_anna-13-ntora@windowslive.com



DSP Advantages

 minimum analog processing

 variety of processing algorithms

 flexibility

 less noise interference

 no signal distortion

There are many real-world DSP applications that do not require DAC, such as data acquisition and 
digital information display, speech recognition, data encoding, etc.

Similarly, there are many real-world DSP applications that need no ADC, such as CD players, text-
to-speech synthesis, digital tone generators etc.
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Digital Filtering

Since the useful signal contains

the low-frequency component,

the high frequency components

above that of our useful signal

are considered as noise, which

can be removed by using a digital

low-pass filter.
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Signal Frequency (Spectrum) Analysis

Spectral estimation of a digitally recorded 
speech waveform using the FFT algorithm

Digital speech waveform versus its
digitized sample number, from a speech
signal produced by a human in the time
domain.

Frequency content information of speech

for a range up to to 4kHz. It can be

identified about ten speech formants,

which can be used for applications such

as speech modeling, speech coding,

speech synthesis and recognition etc.
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Sampling of Continuous Signal

Digital Signal Processing
System

The analog filter processes the analog input to obtain the band-limited signal, which is sent to the
analog-to-digital conversion unit, which samples the analog signal, quantizes the sampled signal,
and encodes the quantized signal levels to the digital signal.

Analog (continuous-time) signal, defined at every point

over the time axis and amplitude axis, that is sampled at

a fixed time interval, T, termed as the sampling period.

Sample-and-Hold analog voltage for ADC. Each

sample maintains its voltage level during the

sampling interval T to give the ADC enough time to

convert it.
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Sampling of Continuous Signal

appropriately sampled signals and non-appropriately

sampled (aliased) signals.
Shannon sampling theorem: For a uniformly

sampled DSP system, an analog signal can be

perfectly recovered as long as the sampling rate

is at least twice as large as the highest-frequency

component of the analog signal to be sampled:

𝒇𝒔 ≥ 𝟐𝒇𝒎𝒂𝒙

For a given sampling interval T, which is defined as the time span between two sample points, the
sampling rate (sampling frequency) is therefore given by:

𝒇𝒔 =
𝟏

𝑻
samples / second (Hz)

Half of the sampling frequency, fs/2, is usually
called the Nyquist frequency (Nyquist limit), or
folding frequency.

The sampling theorem indicates that a DSP
system with a sampling rate of fs can ideally
sample an analog signal with its highest
frequency up to half of the sampling rate
without introducing spectral overlap (aliasing).
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Sampling of Continuous Signal
(frequency domain)

Sampled signal xs(t) obtained by sampling the

continuous signal x(t) at a sampling rate of fs

samples per second.

Mathematically, this process can be written as the
product of the continuous signal and the sampling
pulses (pulse train):

𝒙(𝒔) (t) =x(t)p(t)

with a period T =1/fs.

Sampled signal spectrum:

𝑿𝒔 𝒇 =
𝟏

𝑻
 

𝒏=−∞

∞

𝑿(𝒇 − 𝒏𝒇𝒔)

where X(f) the original baseband spectrum, while
X(f ±nfs) its replicas, so:

𝑿𝒔 𝒇 = ⋯ +
𝟏

𝑻
𝑿 𝒇 + 𝒇𝒔 +

𝟏

𝑻
𝑿 𝒇 +

𝟏

𝑻
𝑿 𝒇 − 𝒇𝒔 …
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Sampling of Continuous Signal
(frequency domain)

Given the original signal spectrum X(f) three
possible sketches are classified for Xs(f):

𝟏

𝑻
𝑿 𝒇 + 𝒇𝒔 ,

𝟏

𝑻
𝑿 𝒇 ,

𝟏

𝑻
𝑿 𝒇 − 𝒇𝒔 have separations 

between .

𝟏

𝑻
𝑿 𝒇 + 𝒇𝒔 ,

𝟏

𝑻
𝑿 𝒇 ,

𝟏

𝑻
𝑿 𝒇 − 𝒇𝒔 are just connected.

𝟏

𝑻
𝑿 𝒇 + 𝒇𝒔 ,

𝟏

𝑻
𝑿 𝒇 ,

𝟏

𝑻
𝑿 𝒇 − 𝒇𝒔 are overlapped .
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Example
Suppose that an analog signal is given as 

X(t)=5cos(2π 1000t)for t≥ 0

And is sampled at the rate of 8,000Hz

a. Sketch the spectrum for the original signal

b. sketch the spectrum for the sampled signal from 0 to 20 kHz.

Solution: Since the analog signal is sinusoid with a peak value of 5 and frequency of 1,000Hz ,we can 

write the sine wave using Euler’s identity:  

5cos (2π × 1,000𝑡)=5 
𝑒𝑗2𝜋×1000𝑡+𝑒−𝑗2𝜋×1000𝑡

2
=2,5 𝑒𝑗2𝜋×1000𝑡 + 2,5 𝑒−𝑗2𝜋×1000𝑡

We can identify the Fourier series coefficients as 𝑐1 = 2,5 𝑎𝑛𝑑𝑐−1 = 2,5

Spectrum of the analog signal                                             Spectrum of the sampled signal
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Signal Reconstruction

 The digitally processed data y(n) are 
converted to the ideal impulse train 𝑦𝑠(𝑡)

 impulse has its amplitude proportional to 
digital output y(n), and two consecutive 
impulses are separated by a sampling period 
of T second.,

 the analog reconstruction filter is applied to 
the ideally recovered sampled signal 𝑦𝑠(t) to 
obtain the recovered analog signal.
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The possible three cases for the recovery of the original signal spectrum

X( f ).

𝑓𝑠 = 2𝑓𝑚𝑎𝑥

𝑓𝑠 > 2𝑓𝑚𝑎𝑥

𝑓𝑠 < 2𝑓𝑚𝑎𝑥
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Example on Signal Recovery 

Assuming that an analog signal given dye

X(t)=5cos (2π 2000t)+3cos(2π 3000t), for t≥ 0

And it is sampled at the rate of 8kHz

a. Sketch the spectrum of the sampled signal up to 20 kHz

b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff  frequency of 
4kHz is used to filter the sampled signal  (y(n)=x(n))to recover the original signal.

 Using Euler’s identity 

X(t)=
3

2
𝑒−𝑗2𝜋 3000𝑡 +

5

2
𝑒−𝑗2𝜋 2000𝑡 +

5

2
𝑒𝑗2𝜋 2000𝑡 +

3

2
𝑒𝑗2𝜋 3000𝑡

a. sampled signal                                           b. recovered signal
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,

and Quantization

 The antialiasing filter is designed to block the frequency components beyond the folding
frequency before the ADC operation, while the reconstruction filter is to block the frequency 
components beginning at the lower edge of the first image after the DAC.

 There are several ways to implement ADC. The most common ones are

 flash ADC,

 successive approximation ADC, and

 sigma-delta ADC.

14

MSc Level Lecture Design

on DSP

Technological Educational Institute of Crete
Department of Electronic Engineering
Anna Daskalaki | d_anna-13-ntora@windowslive.com



Analog-to-Digital Conversion,
Digital-to-Analog Conversion,

and Quantization
 the 2-bit flash ADC unit consists 

of a serial reference voltage 
created by the equal value 
resistors, a set of comparators, 
and logic units.
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,

and Quantization
 The DAC contains the R-2R 

ladder circuit

 a set of single-throw switches, a 
summer

 a phase shifter

 If a bit is logic 0, the switch 
connects a 2R resistor to 
ground

 If a bit is logic 1, the 
corresponding 2R resistor is 
connected to the branch to the 
input of the operational 
amplifier
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,

and Quantization 

 𝑉𝑅 = 5, 𝑏1𝑏1 = 10 the ADC output :

𝑉0 = 5 ×
1

21 × 1 +
1

22 × 0 =2.5volts

 As we can see, the recovered voltage of V0 = 2.5 volts introduces 
voltage error as compared with Vin = 3, discussed in the ADC stage. 
𝑉0 − 𝑉𝑖𝑛 = 2.5 − 3 = −0,5𝑉

 Next, we focus on quantization development

 The notations and general rules for quantization are:

Δ=
(𝑥𝑚𝑎𝑥−𝑥min)

𝐿

i=round
𝑥−𝑥𝑚𝑖𝑛

Δ

L=2𝑚

𝑥𝑞 = 𝑥𝑚𝑖𝑛 + 𝑖Δ for i = 0,1,… . , L − 1

 𝑥𝑚𝑎𝑥and 𝑥𝑚𝑖𝑛are the maximum and minimum values
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization (Example)

 𝑥𝑚𝑖𝑛 = 0, 𝑥𝑚𝑎𝑥 = 8Δ , m = 3

 𝑥𝑞=0+iΔ,i=0,1,….,L-1 

 L=23 = 8

 i is the integer corresponding to 
the 3-bit binary code 
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization (Example)

where we have 𝜒𝑚𝑖𝑛 =-4Δ, 𝑥𝑚𝑎𝑥 =4Δ, and m =3. The corresponding
quantization table is given in Table 
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization (Example)

If  the analog signal to be quantized is a sinusoidal waveform, that is 

X(t)=a sin(2π× 1000𝑡)

And if the bipolar quantizes use m bits , determine the SMR in terms of m bits.

Solution: 

a. Since 𝑥𝑟𝑚𝑠=0,707A  and Δ= 2A/2m  

𝑆𝑀𝑅𝑑𝑏 = 10,79 + 20 log
0,707𝐴

2𝐴/2𝑚 =10,79+20 log10 0,707/2+20𝑚 log10 2

𝑆𝑀𝑅𝑑𝑏= 1,76+6,02m db
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Linear Time-Invariant, Causal
Systems(Linearity)

 A linear system is illustrated in Figure

 using an input 𝑥1(n), and 𝑥2(n) is the 
system output using an input 𝑥2(n).

 corresponding inputs : y(n)=a𝑦1 𝑛 +
β𝑦2(𝑛)

 where a and β are constants.
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Time Invariance

 where 𝑦1(n) is the system
output for the input 𝑥1(n). Let 
𝑥2(n) = 𝑥1(n  𝑛𝑜) be the shifted 
version of 𝑥1(n) by 𝑛𝑜 samples

 The output 𝑦2(n) obtained with 
the shifted input 𝑥2(n) =𝑥1(n-
𝑛𝑜)
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Causality

Solution:  a. for n≥ 0 the output y(n ) depends on the current input x(n)and its past value  x(n-
2),the system is causal.

b. For n≥ 0,the output y(n) depends   on the current input x(n) and its past value x(n+2) ,the 

system is noncausal.

if a system output depends on the future input values, such as x(n + 1), x(n +2), . . . , the system is 
noncoastal. The noncoastal system cannot be realized in real time.

23
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Fourier Series and Fourier Transform

Periodic signals, such as the square wave, rectangular wave, triangular wave, sinusoid, sawtooth

Wave etc, can be analyzed in frequency domain with the help of the Fourier series expansion.

According to Fourier theory, a periodic signal can be represented by a Fourier series that

contains the sum of a series of sine and/or cosine functions (harmonics) plus a direct-current

(dc) term.

There are three forms of Fourier series:

 sine-cosine

 amplitude-phase

 complex exponential
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Sine-Cosine Form

Sine-cosine form is given by:

𝒙(𝒕) = 𝒂𝟎 +  

𝒏=𝟏

∞

𝒂𝒏 𝒄𝒐𝒔(𝒏𝝎𝟎𝒕) +  

𝒊=𝟎

∞

𝒃𝒏 𝒔𝒊𝒏(𝒏𝝎𝟎𝒕)

where 𝝎𝟎=  𝟐𝝅
𝜯𝟎

is the fundamental angular freque-

ncy in radians/second, while the fundamental
frequency, in terms of Hz, is: 𝒇𝟎 =  𝟏 𝑻𝒐

.

Fourier coefficients :

𝒂𝟎 =
𝟏

𝑻𝟎
 
𝑻𝟎

𝒙 𝒕 𝒅𝒕

𝒂𝒏 =
𝟐

𝑻𝟎
 
𝑻𝟎

𝒙(𝒕) 𝒄𝒐𝒔 𝒏𝝎𝟎𝒕 𝒅𝒕

b𝒏 =
𝟐

𝑻𝟎
 
𝑻𝟎

𝒙(𝒕) sin 𝒏𝝎𝟎𝒕 𝒅𝒕
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The amplitude-phase form:

x(t)= 𝑨𝒐 +  𝒏=𝟏
∞ 𝑨𝒏 𝒄𝒐𝒔 𝒏𝝎𝟎𝒕 + 𝜱𝒏

DC term is the same: 𝑨𝟎 = 𝒂𝟎.

The amplitude and phase of nth-harmonic
are given by:

𝑨𝒏 = 𝒂𝒏
𝟐 + 𝒃𝒏

𝟐

𝜱𝒏 = 𝒕𝒂𝒏−𝟏 −𝒃𝒏

𝒂𝒏

The amplitude-phase form provides very
useful information for spectral analysis.

Amplitude-Phase Form
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Complex 
Exponential Form

Euler’s formula is given by:

𝒆±𝒋𝒙=𝒄𝒐𝒔(𝒙) ± 𝒋 𝒔𝒊𝒏(𝒙)

can be written as two separate forms:

𝒄𝒐𝒔(𝒙) =
𝒆𝒋𝒙+𝒆−𝒋𝒙

𝟐

𝒔𝒊𝒏(𝒙) =
𝒆𝒋𝒙−𝒆−𝒋𝒙

𝟐𝒋

the complex exponential form is expressed as:

𝒙 𝒕 = 𝒏=−∞
∞ 𝒄𝒏𝒆𝒋𝒏𝝎𝟎𝒕

𝒄𝒏 =
𝟏

𝑻𝟎
 

𝑻𝟎

𝒙(𝒕)𝒆−𝒋𝒏𝝎𝟎𝒕dt

𝒄0 = 𝑎0 𝒄𝒏=
𝑎𝑛 − 𝑗𝑏𝑛

2

𝒄−𝒏 = 𝑐𝑛 =
𝑎𝑛 + 𝑗𝑏𝑛

2

𝒄𝒏 = 𝑐𝑛 ∠𝜑𝑛

Research Methodology

and Computing

Technological Educational Institute of Crete
Anna Daskalaki| Crete | Greece
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Fourier series expansions for some common signals
Time domain                         sine-cosine form                           complex exponential form
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Fourier Transform

Fourier transform is a mathematical function
that provides the frequency spectral analysis for
a non-periodic signal. The Fourier transform
pair is defined as:

X 𝜔 =  
−∞

∞

𝒙(𝒕)𝒆−𝒋𝝎𝒕𝒅𝒕

Inverse Fourier transform:

x(t)=
𝟏

𝟐𝝅
 −∞

∞
X(𝝎) 𝒆𝒋𝝎𝒕dω

The spectrum is a complex function that can be
further written as:

X(ω)= X(ω) ∠Φ(ω)

where −∞ < ω < ∞, X(ω) is the continuous
amplitude spectrum, while ∠Φ(ω) designates
the continuous phase spectrum.
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Fourier transform for some common signals

Time domain                         Fourier Spectrum
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Properties of Fourier Transform
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Exercise:

Let x(t) be an exponential function given by:

𝒙 𝒕 = 𝟏𝟎𝒆−𝟐𝒕𝒖 𝒕 =  𝟏𝟎𝒆−𝟐𝒕 𝒕 ≥ 𝟎
𝟎 𝒕 < 𝟎

Find its Fourier transform.

Solution:

X(ω)= 𝟎

∞
𝟏𝟎𝒆−𝟐𝒕𝒖(𝒕) 𝒆−𝒋𝝎𝒕𝒅𝒕 =  𝟎

∞
𝟏𝟎𝒆− 𝟐+𝒋𝝎 𝒕𝒅𝒕

=  
𝟏𝟎𝒆− 𝟐+𝒋𝝎 𝒕

− 𝟐+𝒋𝝎
𝟎

∞

=
𝟏𝟎

𝟐+𝒋𝝎

X(ω)=
𝟏𝟎

𝟐𝟐+𝝎𝟐
∠ − 𝒕𝒂𝒏−𝟏 𝝎

𝟐

For ω=2πf

X(ω)=
𝟏𝟎

𝟐+𝒋2π𝒇
=

𝟏𝟎

𝟐𝟐+(𝟐𝝅𝒇)𝟐
∠ − 𝒕𝒂𝒏−𝟏 𝝅𝒇
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Exercise:

 Find the Fourier transforms of the following functions 

 a. 𝒙(𝒕) = 𝜹(𝒕) where 𝛿(𝑡) in an impulse function defined 

 𝛿(𝑡)= 
≠ 𝟎 𝒕 = 𝟎

𝟎 𝒆𝒍𝒔𝒆𝒘𝒉𝒆𝒓𝒆

 with  a property given as 

  −∞

∞
𝒇(𝒕)𝜹 𝒕 − 𝝉 𝒅𝒕 = 𝒇(𝝉)

 b. 𝒙(𝒕) = 𝜹(𝒕 − 𝝉)

 Solution:

a. 𝑿(𝝎) =  −∞

∞
𝛿(𝑡)𝒆

−𝒋𝝎𝒕𝒅𝒕 =  𝑒−𝑗𝜔𝑡
𝒕=𝟎

= 𝟏

b. 𝑿(𝝎)= −∞

∞
𝛿 𝑡 − 𝜏 𝑒−𝑗𝜔𝑡𝒅𝒕 =  𝑒−𝑗𝜔𝑡

𝑡=𝝉
= 𝑒−𝑗𝝎𝝉
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Laplace Transform

Laplace transform plays an important role in analysis of continuous signals and systems.
We define Laplace transform pairs as:

X(s)= L 𝒙(𝒕) = 𝟎

∞
𝒙(𝒕)𝒆−𝒔𝒕𝒅𝒕

x(t)=𝑳−𝟏 𝑿(𝒔) =
𝟏

𝟐𝝅𝒋
 𝜸−𝒋∞

𝜸+𝒋∞
X(s)𝒆𝒔𝒕𝒅𝑠

Notice that the symbol L denotes the forward Laplace operation, while the symbol
𝑳−𝟏 indicates the inverse Laplace operation.
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Properties of Laplace Transform

periodic function
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Reference Table
of

Laplace Transform
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Transfer Function

A linear analog system can be described using the Laplace transfer function. The transfer
function, relating the input and output of the linear system, is defined as a ratio of the
Laplace response of the system to the Laplace input given by:

H(s)=
𝒀(𝒔)

𝑿(𝒔)

If X(s)=1, the output of the linear system due to the impulse function is:

Y(s)=H(s)X(s)=H(s)

Therefore, the response in time domain is called the impulse response of the system and
can be expressed:

h(t)=𝑳−𝟏 𝑯(𝒔)
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Transfer Function example 

Canside a linear system y(t)=0,5u(t)-0,5𝑒−10𝑡𝑢(𝑡) designate the system imput and 
system output respectively.

a. Derive the transfer function and the impulse response of the system.

Solution:

a. Tacking the Laplace transform on both sides the differential equation yields 

L
𝑑𝑦(𝑡)

𝑑𝑡
+L 10𝑦(𝑡) = 𝐿 𝑥(𝑡)

Applying the differential property and substituting the initial condition, we have             
Y(s)(s +10)=X(s)

Thus, the transfer function is given by  H(s) 
𝑌(𝑠)

𝑋(𝑠)
=

1

𝑠+10

The impuls response can be found by taking the inverse Laplace transform as  

h(t) =𝐿−1 1

𝑠+10
=𝑒−10𝑡u(t)
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Poles, Zeros, and Stability

To study system behavior, the transfer function is written in the general form:

H(s) = 
𝑵(𝒔)

𝑫(𝒔)
= 

𝒃𝒎𝒔𝒎+𝒃𝒎−𝟏𝒔𝒎−𝟏+⋯𝒃𝟎

𝒂𝒏𝒔𝒏+𝒂𝒏−𝟏𝒔𝒏−𝟏+⋯𝒂𝟎

Given a system transfer function, the poles [roots of D(s)] and zeros [roots of N(s)] can be
found. Notice that zeros and poles can be real or complex numbers.

Stability of the system is determined by the following rules:

 The linear system is stable if the rightmost pole(s) is(are) on the left-hand half plane
(LHHP) on the s-plane.

 The linear system is marginally stable if the rightmost pole(s) is(are) simple (first
order) on the jω axis, including the origin on the s-plane.

 The linear system is unstable if the rightmost pole(s) is(are) on the righthand half plane
(RHHP) of the s-plane or if the rightmost pole(s) is(are) multiple order on the jω axis on
the s-plane.

 Zeros do not affect the system stability.
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Poles, Zeros, and Stability 
example

Determine whether each of following transfer function is stable marginally  stable ,or unstable 

1. H(s)=
𝑠+1

(𝑠+1,5 )(𝑠2+2𝑠+5)

Solution :

1. A zero is found to be s= -1 

The poles are calculated as s = -1,5 ,s = -1+j2 , s = -1 –j2 

The poles-zero plot is show in figure .Since all the poles are located an the LHHP, the system is 
stable.
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Convolution

In the Laplace domain, the system output is the
product of the Laplace input and the transfer
function:

Y(s)=H(s)X(s)

But in time domain, the system output is given
as:

𝒚 𝒕 = 𝒉 𝒕 ∗ 𝒙 𝒕

The linear convolution is further expressed as:

𝒚 𝒕 =  
𝟎

∞

𝒉 𝝉 𝒙(𝒕 − 𝝉) 𝒅𝝉
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Sinusoidal Steady-State Response

For linear analog systems, if the input is a
sinusoid of radian frequency ω, the steady-state
response of the system will also be a sinusoid of
the same frequency and the transfer function is
called the steady-state transfer function:

𝑯 𝒋𝝎 = 𝑯 𝒔  𝒔 = 𝒋𝝎

Thus for a system in sinusoidal steady state:

𝒀 𝒋𝝎 = 𝑯 𝒋𝝎 ∙ 𝑿 𝒋𝝎

The complex steady-state transfer function, can
be written in phasor form:

𝑯 𝒋𝝎 = 𝑨 𝒋𝝎 ∠𝜷 𝝎

where 𝑨 𝒋𝝎 = 𝑯 𝒋𝝎 and 𝜷 𝝎 is the phase
response of the system.
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Specifications for analog low pass 
and band pass filters.

 Frequency edge notations for analog low pass and band pass filters. The 

notations for analog high pass and band stop filters can be defined 

correspondingly.
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Low pass Prototype Function and Its
Order

 BLT design requires obtaining the analog filter with prewrapped frequency 
specifications. 

 These analog filter design requirements include the ripple specification at the 
passband frequency edge

 the attenuation specification at the ,stopband frequency edge

 type of low pass prototype, and its order
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Butterworth low pass 

 The magnitude response function of the Butterworth low pass prototype with an 
order of n is shown

𝐻𝑝 (𝜈)=
1

1+𝜀2𝜈2𝑛

 the given passband ripple 𝐴𝑝 dB at the normalized passband frequency edge  

𝑣𝑝 =1, and the stopband attenuation 𝐴𝑆dB at the normalized stopband frequency 

𝐴𝑝𝑑𝐵 = −20 log10

1

1 + 𝜀2

𝐴𝑠𝑑𝐵 = −20 log10

1

1 + 𝜀2𝑣𝑠
2𝑛

 Low pass prototype order as : 𝜀2 = 100,1𝐴𝑝 − 1

n≥
log10

100,1𝐴𝑠−1

𝜀2

2 log10(𝑣𝑠)
, 

 ε is the absolute ripple specification
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Butterworth low pass 
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Table 1 lists the 
Butterworth

 prototype functions 
with 3 dB passband 
ripple specification
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Normalized Butterworth Function

• The normalized Butterworth squared magnitude function 

𝑷𝒏(𝝎) 𝟐=
𝟏

𝟏+𝜺𝟐(𝝎)𝟐𝒏

 n is the order and « is the specified ripple on filter    passband.

• specified ripple in dB  𝜺dB = 𝟐𝟎 log𝟏𝟎( 𝟏 + 𝜺𝟐) dB .

• To develop the transfer function𝑷𝒏(s) we first let s=jω and then 
substitute 𝝎𝟐 = −𝒔𝟐.

 𝑷𝒏(𝒔)𝑷𝒏(−𝒔) =
𝟏

𝟏+𝜺𝟐(−𝒔𝟐)𝒏 (1)

• (1):has 2n poles, 𝑷𝒏(𝒔) has n poles on the left-hand half plane (LHHP) 
on the s-plane, while 𝑷𝒏(−𝒔)has n poles on the right-hand half plane 
(RHHP) on the s-plane. 

• Solving for poles leads to (−𝟏)𝒏𝒔𝟐𝒏 = −  𝟏 𝜺𝟐.
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Normalized Butterworth Function

• and the corresponding poles are solved as

 𝑷𝒌=𝜺  −𝟏
𝒏𝒆𝒋

𝟐𝝅𝒌

𝟐𝒏 =𝜺  −𝟏
𝒏 𝒄𝒐𝒔  𝟐𝝅𝒌

𝟐𝒏 + 𝒋𝒔𝒊𝒏  𝟐𝝅𝒌
𝟐𝒏

 k=1,2,….2n, r= 𝜺  −𝟏
𝒏, 𝜽𝜿 = 𝟐𝝅𝒌/(𝟐𝒏) for k= 0,1,….,2n-1

• and from a factor from the real pole (s + r), it follows that 

 𝑷𝒏 𝒔 =
𝑲

(𝒔+𝒓)  
𝒌=𝟏
(𝒏−𝟏)/𝟐

𝒔𝟐+(𝟐𝒓𝒄𝒐𝒔 𝜽𝒌 𝒔+𝒓𝟐

• 𝜽𝒌=2πk/(2n) for k=1,….,(n-1)/2

• K=𝒓𝒏 = 𝟏/𝜺

• When n is an even number, we can identify the poles on the LHHP as

 𝒑𝒌 = −𝒓𝒄𝒐𝒔(𝜽𝒌)+jrsin (𝜽𝒌),k=1,…..,n/2 - 1
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Normalized Butterworth Function 
Example 1

• Complete the normalized Butterworth transfer function for the following 
specifications 

1. Ripple=3db

2. N=2

Solution: 

• n/2=1

• 𝜽𝒌 =
𝟐𝝅×𝟎+𝝅

𝟐×𝟐
= 𝟎, 𝟐𝟓𝝅

• 𝜺𝟐 = 𝟏𝟎𝟎,𝟏×𝟑 − 𝟏

• Applying  equation leads to

 𝑷𝟐 𝒔 =
𝟏

𝒔𝟐+𝟐×𝟏×𝒄𝒐𝒔 𝟎,𝟐𝟓𝝅 𝒔+𝟏𝟐 =
𝟏

𝒔𝟐+𝟏,𝟒𝟏𝟒𝒔+𝟏
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Normalized Chebyshev magnitude 
response function

 where the magnitude response versus the normalized frequency v is given by

𝐻𝑝 (𝑣)=
1

1+𝜀2𝐶𝑛
2(𝑣)

𝐶𝑛(𝑣𝑠)=cosh 𝑛 cosℎ−1(𝑣𝑠)

cosℎ−1(𝑣𝑠)=ln ln 𝑣𝑠 + 𝑣𝑠
2 − 1

 As shown in Figure 8.14, the magnitude response for the Chebyshev  low pass prototype with 
the order of an odd number begins with the filter DC gain of 1.

𝐴𝑝𝑑𝐵 = −20 log10

1

1 + 𝜀2

𝐴𝑠𝑑𝐵 = −20 log10

1

1 + 𝜀2𝐶𝑛
2 𝑣𝑠

𝜀2 = 100,1𝐴𝑝 − 1

n≥
cosℎ−1 100,1𝐴𝑠−1

𝜀2

0,5

cosℎ−1(𝑣𝑠)
, cosℎ−1 𝑥 = ln(𝑥 + 𝑥2 − 1) , ε is the 

absolute ripple parameter
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Normalized Chebyshev magnitude 
response function
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Tables  2,3 and 
contain the Chebyshev 

prototype functions

 with 1 dB and 0.5 dB 
passband ripple 
specifications, respectively

 Other low pass prototypes 
with different ripple 
specifications

 order can be computed 
using the methods 
described

 The Chebyshev type II filter 
design can be found in 
Proakis and Manolakis 
(1996) and Porat (1997).
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Normalized Chebyshev Function

• The Chebyshev magnitude response function with an order  of n and the normalized cutoff 
frequency ω = 1 radian per second is given by

 𝑩𝒏(𝝎) =
𝟏

𝟏+𝜺𝟐𝑪𝒏
𝟐(𝝎)

, n ≥ 1

• where the function 𝑪𝒏(𝝎) is defined as

 𝑪𝒏(𝝎) = 
𝒄𝒐𝒔 𝒏𝒄𝒐𝒔−𝟏 𝝎 𝝎 ≤ 𝟏

𝒄𝒐𝒔𝒉 𝒏𝒄𝒐𝒔𝒉−𝟏 𝝎 𝝎 > 𝟏
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Normalized Chebyshev Function

• ε is the ripple specification on the filter passband.

 𝒄𝒐𝒔𝒉−𝟏 𝒙 = 𝒍𝒏(𝒙 + 𝒙𝟐 − 𝟏)

• a factor from the real pole [s + sinh(β)], it follows that

 𝑩𝒏(𝒔) =
𝑲

[𝒔+𝒔𝒊𝒏𝒉 𝜷 ]  
𝒌=𝟎

 𝒏−𝟏
𝟐−𝟏(𝒔𝟐+𝒃𝒌𝒔+𝒄𝒌)

 𝒂𝒌 =
𝟐𝒌+𝟏 𝝅

𝟐𝒏
𝒇𝒐𝒓 𝒌 = 𝟎, 𝟏, … … ,  𝒏−𝟏

𝟐−𝟏

 𝒃𝒌=2sin (𝜶𝒌)sinh(β)

 𝒄𝒌 = [𝒔𝒊𝒏 𝜶𝜿 𝒔𝒊𝒏 (𝜷)]𝟐 +[𝒄𝒐𝒔 𝜶𝒌 𝒄𝒐𝒔𝒉(𝜷)]𝟐
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Normalized Chebyshev Function

• For the unit passband gain and the filter order as an odd number, we set : 𝑩𝒏(𝟎)=1

 K= sinh (β)  
𝑲=𝟎

 𝒏−𝟏
𝟐−𝟏 𝒄𝒌

 β= 𝒔𝒊𝒏𝒉−𝟏 (   𝟏
𝜺

𝒏)

 𝒔𝒊𝒏𝒉−𝟏(x)=ln( 𝒙 + 𝒙𝟐 + 𝟏)

• Following a similar procedure for the even number of n, we have

 𝑩𝒏(𝒔)= 
𝒌

 
𝒌=𝟎

 𝒏
𝟐−𝟏 𝒔𝟐+𝒃𝒌𝒔+𝒄𝒌

 𝜶𝒌=(2k+1)π/(2n) for k = 0,1,……,n/2 – 1

 𝒃𝒌=2sin (𝜶𝒌)sinh(β)

 𝒄𝒌 = [𝒔𝒊𝒏 (𝜶𝒌𝒔𝒊𝒏𝒉 (𝜷))] 𝟐+ [cos(𝜶𝒌𝒄𝒐𝒔𝒉(𝜷))] 𝟐
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Normalized Chebyshev Function

• For the unit passband gain and the filter order as an even 

 number, we require that 𝑩𝒏(0)=  𝟏
𝟏+𝜺𝟐

so that the maximum 

 magnitude of the ripple on passband equals 1.

 K =  
𝒌=𝟎

 𝒏
𝟐−𝟏

 
𝒄𝒌

𝟏+𝜺𝟐

 Β=𝒔𝒊𝒏𝒉−𝟏(   𝟏
𝜺

𝒏)

𝒔𝒊𝒏𝒉−𝟏 𝒙 = 𝒍𝒏(𝒙 + 𝒙𝟐 + 𝟏)
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Conversion from analog filter specifications 
to low pass prototype
specifications(table 4)

 The normalized stopband frequency vs can be determined from the frequency specifications of 
an analog filter in Table
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Lowpass and Highpass Filter Design
Examples

a. Design a digital lowpass Butterworth filter with the following

specifications:

1. 3 dB attenuation at the passband frequency of 1.5 kHz

2. 10 dB stopband attenuation at the frequency of 3 kHz

Solution : 1.First ,we obtain the digital frequencies in radians per second:

ω𝑑𝑝=2πf= 2π(1500)=3000π rad/sec

ω𝑑𝑠= 2πf= 2π(3000)=6000π rad/sec

• T=1/𝑓𝑠 =
1

8000
sec

We apply the warping equation as  

𝜔𝑎𝑝 =
2

𝑇
𝑡𝑎𝑛

𝜔𝑑𝑇

2
=16000× 𝑡𝑎𝑛

3000𝜋/8000

2
=1,0691× 104rad/sec

𝜔𝑎𝑠 =
2

𝑇
𝑡𝑎𝑛

𝜔𝑑𝑇

2
=16000× 𝑡𝑎𝑛

6000𝜋/8000

2
=3,8627× 104rad/sec

We then find the lowpass prototype specifications usinig the Table 4.
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Lowpass and Highpass Filter Design
Examples

vs = ωas/ωap =3,862×
104

1,0691×104

= 3,6130 rad/sec and 𝐴𝑠 =10dB

• The first order is computed as 

𝜀2 = 1 , 𝑛 = 0,8553

2 . Rounding n up ,we choose n=1 for the lowpass  prototype .From table 3 we have 𝐻𝑝 𝑠 =
1

𝑠+1

• yields the analog filter :

H(s)=  𝐻𝑝(𝑠) 𝑠

𝜔𝑎𝑝

=
1

𝑠

𝜔𝑎𝑝
+1

=
𝜔𝑎𝑝

𝑠+𝜔𝑎𝑝
=

1,0691×104

𝑠+1,0691×104
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Bandpass and Bandstop Filter Design
Examples

 Design a second-order digital bandpass Butterworth filter with the following

specifications:

 an upper cutoff frequency of 2.6 kHz and

 a lower cutoff frequency of 2.4 kHz,

 a sampling frequency of 8,000 Hz

 Let us find the digital frequencies in radians per second:

 𝜔ℎ 2π𝑓ℎ = 2π(2600) = 5200π rad/sec

 𝜔𝑙2π 𝑓𝑙 =2π(2400) = 4800π rad/sec, and T = 1/ fs =1/8000 sec.
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Bandpass and Bandstop Filter Design
Examples

Following the steps of the design procedure, we have the following:

𝜔𝑎ℎ =
2

𝑇
tan

𝜔ℎ Τ

2
=16000× tan

5200𝜋/8000

2
= 2,6110 × 104𝑟𝑎𝑑/𝑠𝑒𝑐

𝜔𝑎𝑙 =16000× tan
𝜔𝑙𝑇

2
= 16000 × tan 0,3𝜋 = 2,2022 × 104𝑟𝑎𝑑/𝑠𝑒𝑐

W=𝜔𝑎ℎ- 𝜔𝑎𝑙=26110-22022=4088 rad/sec

𝜔0
2 = 𝜔𝑎ℎ × 𝜔𝑎𝑙 = 5,7499 × 108

lowpass prototype with the order of 1 to produce the bandpass filter with the order

of 2, as 𝐻𝑃 𝑠 =
1

𝑠+1

the lowpass-to-bandpass transformation, it follows that

H(s)= 
𝑊𝑠

𝑠2+𝑊𝑠+𝜔0
2 =

4088𝑠

𝑠2+4088𝑠+5,7499×108

Hence we apply the BLT  to yield

H(z)=  
𝑊𝑠

𝑠2+4088𝑠+5,7499×108
𝑠=16000(𝑧−1)/(𝑧+1)

Via algebra work, we obtain the digital filter as :  H(z)=
0,0730−0,0730−2

1+0,7117𝑧−1+0,8541𝑧−2
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Discrete Fourier Transform

In time domain, representation of digital
signals describes the signal amplitude
versus the sampling time instant or the
sample number.

In a vast number of applications, signal
frequency content is very useful.

The representation of the digital signal in
terms of its frequency components in the
frequency domain, the signal spectrum,
needs to be developed.

The algorithm transforming the time
domain signal samples to the frequency
domain components is known as the
Discrete Fourier Transform, (DFT).

Sampled signal x(n) obtained by sampling the continuous

signal x(t) at a sampling rate of fs=8kHz.
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Periodic Digital Signals
It is supposed that we estimate the spectrum of a
periodic digital signal x(n) resulted from the
signal x(t) sampled at a rate of fs Hz (T=  𝟏 𝒇𝒔

is
the sampling period) with fundamental period
𝑻𝟎:

𝑻𝟎 = 𝑵𝑻

where there are N samples within the duration
of the fundamental period.

The periodic digital signal is assumed to be band
limited to have all harmonic frequencies less
than the folding frequency 𝒇𝒔/𝟐.

According to Fourier series, the periodic signal x(t) in exponential complex form is:

𝒙 𝒕 = 𝒌=−∞
∞ 𝒄𝒌𝒆𝒋𝒌𝝎𝟎𝒕

𝒄𝑘 =
𝟏

𝑻𝟎
 

𝑻𝟎

𝒙(𝒕)𝒆−𝒋𝑘𝜔0𝒕dt − ∞ < 𝒌 < ∞

where k is the number of harmonics corresponding to the harmonic frequency of kf0 , where 𝑓0 =

 𝟏 T0
is the fundamental frequency.
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Fourier coefficients of Periodic Digital Signals
Substituting 𝝎𝟎 =  𝟐𝝅

T𝟎
, 𝑻𝟎 = 𝑵𝑻 , 𝑡 = 𝑛𝑻, 𝑑𝑡 = 𝑻 we obtain:

𝒄𝒌 =
𝟏

𝑵
 

𝒏=𝟎

𝑵−𝟏

𝒙(𝒏)𝒆−𝒋
𝟐𝝅𝒌𝒏

𝑵 − ∞ < 𝒌 < ∞

The resultant spectrum of complex 𝒄𝒌 will be two-sided. Very
important feature is:

𝒄𝒌+𝑵 =
𝟏

𝑵
 𝒏=𝟎

𝑵−𝟏 𝒙(𝒏)𝒆−𝒋
2𝜋(𝑘+𝑁)𝑛

𝑁 =
𝟏

𝑵
 𝒏=𝟎

𝑵−𝟏 𝒙(𝒏)𝒆−𝒋
𝟐𝝅𝒌𝒏

𝑵 𝒆−𝒋𝟐𝝅𝒏

Due to the fact that: 𝒆−𝒋𝟐𝝅𝒏 = 𝒄𝒐𝒔 𝟐𝝅𝒏 − 𝒋𝒔𝒊𝒏 𝟐𝝅𝒏 = 1

𝒄𝒌+𝑵= 𝒄𝒌

Thus, we may compute the spectrum over the
range from 0 to fs Hz with nonnegative indices:

𝒄𝒌 =
𝟏

𝑵
 

𝒏=𝟎

𝑵−𝟏

𝒙(𝒏)𝒆−𝒋
𝟐𝝅𝒌𝒏

𝑵 𝒌 = 0, 1, … 𝑁 − 1

For k harmonic the corresponding frequency is
kf0 , and 𝒇𝟎 is the frequency resolution.
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Fourier coefficients of Periodic Digital 

Signals example

Given a sequence x(n) for 0≤ 𝑛 ≤ 3 ,whwre x(0)= 1,x(1)= 2, x(2)=3 and x(3)=4,

a. Evaluate its DFT X(k)

Solution :

Since N=4 and 𝑊4 = 𝑒−𝑗
𝜋

2

X(k)= 𝑛=0
3 𝑥(𝑛)𝑊4

𝑘𝑛= 𝑛=0
3 𝑥(𝑛)𝑒−𝑗

𝜋𝑘𝑛

2

For k=0

X(0)= 𝑛=0
3 𝑥 𝑛 𝑒−𝑗0 = 𝑥 0 𝑒−𝑗0 + 𝑥(1)𝑒−𝑗0+𝑥(2)𝑒−𝑗0 +𝑥(3)𝑒−𝑗0=

=x(0)+ x(1)+ x(2)+x(3)

=1+2+3+4=10

For k=1 

X(1)= 𝑛=0
3 𝑥 𝑛 𝑒−𝑗

𝜋𝑛

2 = 𝑥 0 𝑒−𝑗0 + 𝑥(1)𝑒−𝑗
𝜋

2+𝑥(2)𝑒−𝑗𝜋 +𝑥(3)𝑒−𝑗
3𝜋

2 =

=x(0)-j x(1)+ x(2)+j x(3)

=1 – j2 -3 +j4 =-2 +j2
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Fourier coefficients of Periodic Digital 

Signals example

For k=2 

X(2)= 𝑛=0
3 𝑥 𝑛 𝑒−𝑗𝜋𝑛 = 𝑥 0 𝑒−𝑗0 + 𝑥(1)𝑒−𝑗𝜋+𝑥(2)𝑒−𝑗2𝜋 +𝑥(3)𝑒−j3π=

=x(0)- x(1)+ x(2)-x(3)

=1-2+3-4=-2

For k=3

X(3)= 𝑛=0
3 𝑥 𝑛 𝑒−𝑗

3𝜋𝑛

2 = 𝑥 0 𝑒−𝑗0 + 𝑥(1)𝑒−𝑗
3𝜋𝑛

2 +𝑥(2)𝑒−𝑗3𝜋 +𝑥(3)𝑒−j
9𝜋

2 =

=x(0)+ξ x(1)- x(2)-jx(3)

=1+j2-3-j4 = -2-j2

Let us verify the result using the MATLAB function fft():

 X = fft([1 2 3 4])

 X = 10.0000 2.0000 + 2.0000i -2.0000 2.0000 -2.0000i
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Procedure: The process acquires data samples by
digitizing the interested continuous signal x(t) for a
duration of 𝑻𝟎 = 𝑵𝑻 seconds.

It is assumed that a periodic signal x(n) is obtained by
copying the acquired N data samples, with duration 𝑻𝟎,
to itself repetitively.

Further, it is assumed continuity between the N data
sample frames (not true in practice…).

From Fourier coefficients, using one-period N data
samples, we compute the DFT coefficients:

𝑿 𝒌 = 𝑵𝒄𝒌 =  
𝒏=𝟎

𝑵−𝟏

𝒙(𝒏)𝒆−𝒋
𝟐𝝅𝒌𝒏

𝑵 𝒌 = 0, 1, … 𝑁 − 1

DFT with N data samples of x(n), at a sampling rate of
fs Hz (T=  𝟏 𝒇𝒔

), produces N complex DFT coefficients

𝑿 𝒌 . For k harmonic the corresponding frequency is

𝒌
𝒇𝒔

𝑵
and

𝒇𝒔

𝑵
is the frequency resolution.

Discrete Fourier Transform formulas
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Discrete Fourier Transform (DFT) definition
Given a sequence x(n), 0≤ n ≤ N − 1 its DFT is defined as:

X 𝒌 =  𝒏=𝟎
𝑵−𝟏 𝒙(𝒏) 𝒆−𝒋

𝟐𝝅𝒌𝒏

𝑵 =  𝒏=𝟎
𝑵−𝟏 𝒙(𝒏) 𝑾𝑵

𝒌𝒏 𝒌 = 0, 1, … 𝑁 − 1

the factor 𝑊𝑁 (termed also twiddle factor) is defined as: 𝑾𝑵=𝒆−𝑗
2𝜋

𝑁 = 𝒄𝒐𝒔
𝟐𝝅

𝜨
- j sin

𝟐𝝅

𝑵

The inverse DFT is given by:

x 𝒏 =
𝟏

𝑵
 𝒌=𝟎

𝑵−𝟏 𝑿 𝒌 𝒆𝒋
𝟐𝝅𝒌𝒏

𝑵 =
𝟏

𝑵
 𝒌=𝟎

𝑵−𝟏 𝑿 𝒌 𝑾𝑵
−𝒌𝒏 𝒏 = 0, 1, … 𝑁 − 1

In time domain we use the sample number or time index n for indexing the digital sample
sequence x(n). However, in frequency domain, we use index k for indexing N calculated DFT
coefficients X(k). We also refer to k as the frequency bin number. The frequency bin k can be

mapped to its corresponding frequency:

𝜔 =
𝑘𝜔𝑠

𝑁
 𝑓 =

𝑘𝑓𝑠
𝑁

Similarly, frequency resolution is defined:

∆𝜔 =
𝜔𝑠

𝑁
 ∆𝑓 =

𝑓𝑠
𝑁
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Amplitude Spectrum and Power Spectrum

refer to them as the amplitude spectrum and phase spectrum, respectively). We define the amplitude
spectrum as:

𝑨𝒌 =
𝟏

𝑵
𝑿(𝒌) =

𝟏

𝑵
(𝑹𝒆𝒂𝒍 𝑿(𝒌) )𝟐+(𝑰𝒎𝒂𝒈 𝑿(𝒌) )𝟐 𝒌 = 0, 1, … 𝑁 − 1

The amplitude spectrum can be modified to a one-sided amplitude spectrum by doubling the
amplitudes, but keeping the original DC term:

 𝐴𝑘 =

1

𝑁
𝑋 0 , 𝑘 = 0

2

𝑁
𝑋 𝑘 , 𝑘 = 1, …  𝑁

2

By applying the DFT to the truncated
sequence x(n), with range 0≤ n ≤ N − 1,
we get the N DFT coefficients:

X 𝒌 =  𝒏=𝟎
𝑵−𝟏 𝒙(𝒏) 𝑾𝑵

𝒌𝒏 𝒌 = 0, 1, … 𝑁 − 1

Since each calculated DFT coefficient is a
complex number, the magnitude and phase
of each DFT coefficient can be determined
and plotted versus its frequency index (we
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Amplitude Spectrum and Power Spectrum

Correspondingly, the phase spectrum is given by: 𝜑𝑘 = 𝑡𝑎𝑛−1 𝐼𝑚𝑎𝑔 𝑋(𝑘)

𝑅𝑒𝑎𝑙 𝑋(𝑘)
𝒌 = 0, 1, … 𝑁 − 1

Besides the amplitude spectrum, the power spectrum is also used. The DFT power spectrum is defined
as:

𝑷𝒌 =
𝟏

𝑵𝟐
𝑿(𝒌) 𝟐 =

𝟏

𝑵𝟐
(𝑹𝒆𝒂𝒍 𝑿(𝒌) )𝟐+(𝑰𝒎𝒂𝒈 𝑿(𝒌) )𝟐 𝒌 = 0, 1, … 𝑁 − 1

The power spectrum can be also modified to a one-sided amplitude spectrum by doubling the
amplitudes, but keeping the original DC term:

 𝑃𝑘 =

1

𝑵𝟐
𝑿(𝒌) 𝟐, 𝑘 = 0

2

𝑵𝟐
𝑿(𝒌) 𝟐, 𝑘 = 1, …  𝑁

2

MSc Level Lecture Design

on DSP

Technological Educational Institute of Crete
Department of Electronic Engineering
Anna Daskalaki | d_anna-13-ntora@windowslive.com



Spectral Estimation Using Window  Functions

When apply DFT to sampled data, we
theoretically imply the following
assumptions:

 the sampled data are periodic to
themselves, and

 the sampled data are continuous
to themselves and band limited to
the folding frequency.

The last assumption is often violated,

thus the discontinuity produces undesired harmonic frequencies. This effect is termed spectral
leakage. The amount of spectral leakage is close related to amplitude discontinuity in time domain.
The bigger the discontinuity, the more the leakage.
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Spectral Estimation Using Window  Functions 
example

In Figure given 

 x(2) = 1and w(2)= 0,2265

 x(5)= - 0,7071 and w(5) = 0,7008

a. Calculate the windowed sequence data 
point 𝑥𝑤 2 𝑎𝑛𝑑 𝑥𝑤(5).
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Spectral Estimation Using Window  
Functions example 

Applying the window function 
operation leads to 

𝑥𝑤(2)=x(2)× 𝑤 2 = 1 × 0,2265 =
0,2265

𝑥𝑤(5)=x(5)× 𝑤 5 = 0,701 × 0,7008 =
− 0,4956

The common windows functions are 
listed as follows. The common 
window(no window function): 𝑤𝑅 𝑛 =
1 0 ≤ 𝑛 ≤ 𝑁 − 1

The triangular window 

𝑤𝑡𝑟𝑖 𝑛 = 1 −
2𝑛−𝑁−1

𝑁−1
,0 ≤ 𝑛 ≤ 𝑁 − 1

The Hamming window :

𝑛 = 0,54 − 0,46 cos
2𝜋𝑛

𝑁 − 1

,0 ≤ 𝑛 ≤N-1
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To reduce the effect of spectral leakage, a window
function can be used whose amplitude tapers smoothly
and gradually toward zero at both ends.

We apply the window function w(n) to a data sequence
x(n) to obtain a windowed sequence, 𝒙𝒘 𝒏 :

𝒙𝒘 𝒏 = 𝒙 𝒏 ∙ 𝒘(𝒏) 𝒏 = 0, 1, … 𝑁 − 1

Spectral Estimation Using Window  Functions
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Spectral Estimation Using Window  Functions

Rectangular window (no window function):

𝒘𝒓𝒆𝒄 𝒏 = 𝟏 𝟎 ≤ 𝒏 ≤ 𝑁 − 1

Triangular window:

𝒘𝒕𝒓𝒊 𝒏 = 𝟏 −
𝟐𝒏−𝑵+𝟏

𝑵−𝟏
𝟎 ≤ 𝒏 ≤ 𝑁 − 1

Hamming window:

𝒘𝒉𝒂𝒎 𝒏 = 𝟎. 𝟓𝟒 − 𝟎. 𝟒𝟔 𝐜𝐨𝐬
𝟐𝝅𝒏

𝑵−𝟏
𝟎 ≤ 𝒏 ≤ 𝑁 − 1

Hanning window:

𝒘𝒉𝒂𝒏 𝒏 = 𝟎. 𝟓 − 𝟎. 𝟓 𝐜𝐨𝐬
𝟐𝝅𝒏

𝑵−𝟏
𝟎 ≤ 𝒏 ≤ 𝑁 − 1
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Application to Speech Spectral
Estimation

• the comparisons of amplitude spectral 
estimation for speech data (we.dat) with 
2,001 samples and a sampling rate of 
8,000 Hz using the rectangular window 
(no window) function and the Hamming 
window function. 

• one-sided spectrum

• when data length is short reduction of 
spectral leakage using a window function 

will come to be prominent.
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Application to Speech Spectral
Estimation

• the comparisons of amplitude spectral 
estimation for speech data (we.dat) 
with 2,001 samples and a sampling rate 
of 8,000 Hz using the rectangular 
window (no window) function and the 
Hamming window function.

• two-sided spectrum

• the data length of the sequence 
increases, the frequency resolution will 
be improved and spectral leakage will 
become less significant.
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Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) is a very efficient algorithm in computing DFT coefficients and can
reduce a very large amount of computational complexity (multiplications). For a data length of N:

 Complex multiplications of DFT: 𝑵𝟐

 Complex multiplications of FFT:
𝑵

𝟐
𝒍𝒐𝒈𝟐(𝑵)

Prerequisite of FFT is that the digital sequence
x(n) consists of 𝟐𝒎 samples, where m is a positive
integer. If x(n) contain 𝑵 ≠ 𝟐𝒎 samples, then we
simply append it with zeros (zero padding) until
the number of the appended sequence is  𝑵 = 𝟐𝒎

samples:

 𝒙 𝒏 =  
𝒙 𝒏 𝟎 ≤ 𝒏 ≤ 𝑁 − 1

𝟎 𝑵 ≤ 𝒏 ≤  𝑁 − 1

We focus on two FFT formats that are referred
to as the radix-2 FFT algorithms:
Decimation-in-frequency algorithm
Decimation-in-time algorithm
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Method of Decimation-in-Frequency
Recall the DFT definition, provided that 𝑵 = 𝟐𝒎:

X 𝒌 =  𝒏=𝟎
𝑵−𝟏 𝒙(𝒏) 𝒆−𝒋

𝟐𝝅𝒌𝒏

𝑵 =  𝒏=𝟎
𝑵−𝟏 𝒙(𝒏) 𝑾𝑵

𝒌𝒏 𝒌 = 0, 1, … 𝑁 − 1

The above equation is split into:

X 𝒌 =  
𝒏=𝟎

𝑁
2

−𝟏

𝒙(𝒏) 𝑾𝑵
𝒌𝒏 +  

𝒏=
𝑁
2

𝑵−𝟏

𝒙(𝒏) 𝑾𝑵
𝒌𝒏

Modifying the second term:

X 𝒌 =  
𝒏=𝟎

𝑁
2

−𝟏

𝒙(𝒏) 𝑾𝑵
𝒌𝒏 + 𝑾𝑵

𝑁
2

𝒌
 

𝒏=𝟎

𝑁
2

−𝟏

𝒙(𝒏 +
𝑁

2
) 𝑾𝑵

𝒌𝒏

and due to the fact that 𝑾𝑵

𝑁

2 = −1, it results:

X 𝒌 =  
𝒏=𝟎

𝑁

2
−𝟏

𝒙 𝒏 + −1 𝑘𝒙(𝒏 +
𝑁

2
) 𝑾𝑵

𝒌𝒏

DFT algorithm is now split to even and odd frequency bins, 𝒌 = 𝟐𝒒 and 𝒌 = 𝟐𝒒 + 𝟏 :

X 𝟐𝒒 =  
𝒏=𝟎

𝑵

𝟐
−𝟏

𝜶(𝒏) 𝑾
 𝑵
𝟐

𝒒𝒏
= DFT {𝜶(𝒏) with

𝑁

2
points}, 𝜶(𝒏) = 𝒙 𝒏 + 𝒙 𝒏 +

𝑁

2

X 𝟐𝒒 + 𝟏 =  
𝒏=𝟎

𝑵

𝟐
−𝟏

𝒃(𝒏)𝑾𝑵
𝒏 𝑾

 𝑵
𝟐

𝒒𝒏
= DFT {𝒃 𝒏 𝑾𝑵

𝒏 with
𝑁

2
points}, 𝒃 𝒏 = 𝒙 𝒏 − 𝒙 𝒏 +

𝑁

2

using that: 𝑾𝑵
𝟐 =𝒆−𝒋

𝟐π×𝟐

𝑵 = 𝒆
−𝒋

𝟐𝜋

 𝑁
2 = 𝑾  𝑵
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Method of Decimation-in-Frequency

Bit reversal process in FFT
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Method of Decimation-in-Frequency

The  first and second iteration of eight-point FFT

The eight-point FFT (3 iterations, 12  complex multiplications)
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Compare DFT and inverse DFT definitions:

X 𝒌 =  𝒏=𝟎
𝑵−𝟏 𝒙(𝒏) 𝑾𝑵

𝒌𝒏 𝒌 = 0, 1, … 𝑁 − 1

x 𝒏 =
𝟏

𝑵
 

𝒌=𝟎

𝑵−𝟏

𝑿 𝒌 𝑾𝑵
−𝒌𝒏 =

𝟏

𝑵
 

𝒌=𝟎

𝑵−𝟏

𝑿 𝒌  𝑊𝑵
𝒌𝒏 𝒏 = 0, 1, … 𝑁 − 1

The main differences are that, for inverse FFT, the twiddle factor 𝑊𝑁 is changed to be  𝑾𝑵 = 𝑾𝑵
−𝟏,

and the sum is multiplied by a factor of
𝟏

𝑵
. Thus, by modifying accordingly the previous FFT block

diagram, the inverse FFT block diagram is achieved:

Method of Decimation-in-Frequency

The eight-point  inverse FFT
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Method of Decimation-in-Frequency Example 

Given the DFT sequence x(k) for 0≤ k ≤ 3

a. Evaluate its inverse DFT  x(n) using the  decimation  in  frequency 

FFT method.

Solution  :

a. Using the inverse FFT blocks  diagram , we have 
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Method of Decimation-in-Time

The input sequence 𝒙 𝒏 is split into the even indexed 𝒙 𝟐𝒒 and the odd indexed 𝒙 𝟐𝒒 + 𝟏

sequences, each with
𝑁

2
data points. The DFT definition becomes (using 𝑾𝑵

𝟐 =𝑾  𝑵
𝟐
):

X 𝒌 =  
𝒒=𝟎

𝑵
𝟐

−𝟏

𝒙(𝟐𝒒)𝑾
 𝑵
𝟐

𝒒𝒌
+𝑾𝑵

𝒌  
𝒒=𝟎

𝑵
𝟐

−𝟏

𝒙(𝟐𝒒 + 𝟏)𝑾
 𝑵
𝟐

𝒒𝒌
𝒌 = 0, 1, … 𝑁 − 1

DFT algorithm is now expressed as follows:

G 𝒌 =  
𝒒=𝟎

𝑵

𝟐
−𝟏

𝒙(𝟐𝒒)𝑾
 𝑵
𝟐

𝒒𝒌
= DFT {𝒙(𝟐𝒒) with

𝑁

2
points}, G 𝒌 = 𝑮 𝒌 +

𝑵

𝟐
𝒌 = 0, 1, …

𝑁

2
− 1

H 𝒌 =  
𝒒=𝟎

𝑵

𝟐
−𝟏

𝒙(𝟐𝒒 + 𝟏)𝑾
 𝑵
𝟐

𝒒𝒌
= DFT {𝒙(𝟐𝒒) with

𝑁

2
points}, H 𝒌 = 𝑯 𝒌 +

𝑵

𝟐
𝒌 = 0, 1, …

𝑁

2
− 1

X 𝒌 = G 𝒌 + 𝑾𝑵
𝑘 H 𝒌 𝒌 = 0, 1, …

𝑁

2
− 1

X
𝑵

𝟐
+ 𝒌 = G 𝒌 − 𝑾𝑵

𝑘 H 𝒌 𝒌 = 0, 1, …
𝑁

2
− 1
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Method of Decimation-in-Time

The FFT algorithm is obtained by performing backward iterations. For eight-point FFT:

The eight-point  inverse FFTThe eight-point FFT

The  first and second backward iteration of eight-point FFTThe  first backward iteration of eight-point FFT
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Method of Decimation-in-Time 
example(3)

 Given a sequence x(n ) for 0≤ 𝒏 ≤ 𝟑 where x(0)=1, x(1)=2, x(2)=3  and x(3)=4 

 a. Evaluate its DFT x(t) using the decimation in time FFT method 

 Solution: block diagram
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Example Problems

Problem 1.

(i) Solve the following differential equation using Laplace transform:

𝑑2𝑦 𝑡

𝑑𝑡2
+ 12

𝑑𝑦 𝑡

𝑑𝑡
+ 32𝑦 𝑡 = 𝑥 𝑡

𝑦 0 = 0
𝑑𝑦 0

𝑑𝑡
= 0 𝑥 𝑡 = 32𝑢 𝑡

(ii) Derive the impulse response of the system.
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Example Problems

Problem 2.

Consider the signal: 𝑥 𝑡 = 5 + 2 cos 2𝜋𝑡 −
𝜋

2
+ 3 cos 4𝜋𝑡

Assuming that fs=4Hz, we take 4 samples in the first second.

(i) Calculate the DFT coefficients.

(ii) Evaluate the DFT by applying FFT and calculate the speed up.
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Problems Solutions
Problem 1.

a. 
𝑑2

𝑑𝑡2 + 12
𝑑𝑦

𝑑𝑡
+ 32y= 32𝑢(𝑡)

𝑠2𝑌𝑠 + 12𝑠𝑌(𝑠) + 32𝑌(𝑠) =
32

𝑠
=>

=> 𝑌(𝑠) 𝑠2 + 12𝑠 + 32 =
32

𝑠

Δ =144 -128=16 => Δ =4 𝑟1, =
−12+4

2
= −4 𝑟2 =

−12 −4

2
= −8

𝑌(𝑠) =
32

𝑠 𝑠+4 𝑠+8
=

𝑘1

𝑠
+

𝑘2

𝑠+4
+

𝑘3

𝑠+8

𝑘1=  
32

(𝑠+4) (𝑠+8) 𝑠=0
= 1 , 𝑘2=  

32

𝑠(𝑠+8) 𝑠=−4
=-2                 𝑘3=  

32

𝑠(𝑠+4) 𝑠=−8
= 1

𝑌(𝑠) =
1

𝑠
+

(−2)

𝑠 + 4
+

1

𝑠 + 8

𝑌(𝑡) = 𝐿−1 1

𝑠
+ 𝐿−1 −2

𝑠+4
+𝐿−1 1

𝑠+8
=

4(t)-2𝑒−4𝑡𝑢 𝑡 + 𝑒−8𝑡𝑢(𝑡)
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Problems Solutions
Problem 1

b. H(s) =
𝑌𝑠

𝑋𝑠
=

1

(𝑠+4)(𝑠+8 )
H(s)=

𝑘1

𝑠+4
+

𝑘2

𝑠+8
=

1

4

1

𝑠+4
−

1

𝑠+8

𝑘1=  
1

(𝑠+8) 𝑠=−4
=

1

4
𝑘2=  

1

(𝑠+4) 𝑠=−8
=-

1

4

h( t)=𝐿−1 𝐻(𝑠) = 𝐿−1
1

4

𝑠+4
+ 𝐿−1

−
1

4

𝑠+8
=>

ℎ 𝑡 =
1

4
𝑒−4𝑡𝑢 𝑡 −

1

4
𝑒−8𝑡𝑢(𝑡)
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Problems Solutions
Problem 2

Χ(t) =5 +2 cos 2𝜋 −
𝜋

2
+ 3 cos 4𝜋𝑡

X(n)= 5+ 2cos
𝜋

2
𝑛 −

𝜋

2
+3cos 𝜋𝑛

X(k)= 𝑛=0
3 𝑥(𝑛) 𝑊𝑁

𝑘𝑛= 𝑛=0
3 𝑥 𝑛 𝑒−𝑗

2𝜋𝑘𝑛

𝑁 =  𝑛=0
3 𝑥 𝑛 𝑒−𝑗

𝜋

2

𝑘𝑛

=  𝑛=0
3 𝑥 𝑛 (−𝑗)𝑘𝑛

X(0)=x(0)+x(1)+x(2)+x(3)=20

X(1)=x(0)+x(1)(-j)+x(2)(-1)+x(3) j=- 4j

X(2)=x(0)+x(1)(-1)+x(2)(1)+x(3)(-1)=- 12

X(3)=x(0)+x(1)(j)+x(2)(-1)+x(3)(-j)=4j

Δf=
𝑓𝑠

𝑁
= 1𝐻𝑧
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Problems Solutions
Problem 2

x(0) 0       0              0     X(0)              𝑥

x(1) 1      2                2     X(2)                 20              12                       π/2

x(2) 2       1                1    X(1)                              1        2        3

x(3)3       3                 3   X(3)                              4                4              

Hz -π/2

X(0)                                    α(0)=x(0) +x(2)=16    𝛼′(0) 𝛼′(0) + 𝛼′(1)=20

X(1) α(1)=x(1)+ x(3) =4 𝛼′(1) (𝛼′(0) − 𝛼′(1)) 𝑊4
0 = 12

X(2)                                    b(0) 𝑊4
0 =(x(o) –x(2)) (1) =0 𝑏′(0) 𝑏′(0) +𝑏′(1) =-4j 

X(3)                                    b(1) 𝑊4
1 =(x(0)-x(3)) (-j)=-4j  𝑏′(1) (𝑏′(0) −𝑏′(1) ) 𝑊4

0= 4j

𝑊4
0 =1
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