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IepiAnyn

Znuepa, oL UIKPOETEEEPYAOTEG Kal UIKPOEAEYKTEC Exouv @Odocel o€ TOOO
TPOYWPNUEVO OTASL0, WOTE VA EYOUV OCNUAVTIKY EMIMTWON OTA EMOTNUOVIKA KAl
TEYVOAOYIKA TTESIA TWV NAEKTPOVIKWV UNXAVIKWV KAL TWV UNXAVIKWV UTTOAOYLOTWV.
JUVeEnwe, elval onuUavtiko ot unxavikol va eéolkelwBolv ue TIC EVVOLES TwWV
YNPLAKWOV ONUATWV KAL TIG TEXVOAOYIES TWV YPNPLAKWY CUCTNUAT WY ETLKOLVW VLWV
Kal EAEYYOU Kal akOUQ TILO ONUAVTIKO VX EKUETAAAEVTOUV TIC TEXVIKES YNPLAKNG
eneéepyaoiag onuatog (DSP).

H mapovoa mtuytakn epyacia oxedialel Eva ovumayés aAdd TEPLEKTIKO oUVOAO amo
Slapaveles SLaAEEewY YIa €va, 0 UETATTUXLAKO ETMIMENO, ELOAYWYIKO UdOnua
Pneilakng Eneéepyacias Znuatoc (DSP). KaAvmtel Ti yevikég évvoles Tov DSP, To
Oswpnua SetyuatoAnpiag, ta avadoyika anti-aliasing kat anti-image yaunAng
SLédevong pIATpa, TNV avacvoTaon Tov avaloytkoU OUATOS, THV UETATPOTH ATTO
avaloyiko o€ Ynelako, ta OgueAiwdn otoiyeia ¢ avaloyikng emeéepyaoiag
onuatog (oewpa Fourier, uetaoynuatiouol Fourier kat Laplace), tov Stakpito
uetaoynuatiouo Fourier (DFT) kat toug adyoplBuovs Tov  ypriyopou
uetaoynuatiouov Fourier kat odokAnpwvetal pe pia emokomnon twv QIATpwv
Butterworth kat Chebyshev. 0OAn n éktaon Tov OcwpnTikoU TEPLEYOUEVOU
eUTAoUTI(eTaL UE EVOEIKTIKA TAPASEYUATA.

Abstract

Nowdays, microprocessors and microcontrollers have become so advanced that they
have significant impact on the disciplines of electronics and computer engineering.
Consequently, it is essential the engineers to become familiar with the concepts of
digital signals and the technologies of digital systems for communications and
controls and most important to exploit the digital signal processing (DSP)
techniques.

The present graduate thesis designs compact yet comprehensive lecture slides for a
postgraduate level introductory lesson on Digital Signal Processing (DSP). It covers
the general concepts of DSP, the sampling theorem, analog anti-aliasing and anti-
image lowpass filters, the signal reconstruction, analog-to-digital conversion,
fundamentals of analog signal processing (Fourier series, Fourier and Laplace
transforms), discrete Fourier transform (DFT) and fast Fourier transform (FFT)
algorithms and ends with an overview of Butterworth and Chebyshev filters. The
theoretical content is enriched with indicative examples.



2Uvoyn

OLSwax@aveles 1 £wg 5 elodyovv TiS Baoikég évvoleg Tou DSP kat mapovotdlovv To
OYMUATIKO Saypappa ™S Unelakng avaivong onpatog. Emiong, e&nyeital to
ynelakd @Ttpaplopa kat mapovolaletal 1 Sadikacio TNG QACUATIKNG
avaAvong o HaToG.

Ot Swapaveleg 6 €wg 13 kaAvmtouv TOo Oewpnua SetypatoAnyiog Tov
TEPLYPA@ETAL 0TO TeSl0 TOU XPOVOU KAl oOTO eSO TNG OULXVOTNTAG,
TAPOUOLALOVTAL TIPAKTLKEG EKTIUTOELS YL TO OXESLA0NO avaAoyKwV anti-aliasing
kol anti-image yaunAng SlEAsvong @ATpwV kal emegnyelital 1 AVvaoLOTAOCT TOV
avVaA0YLKoU GT|LATOG,

OLSla@aveleg 14 €wg 20 TEPLYPAPOLV TIG APYEG LETATPOTING O LATOG XVAAOYLKOU
o€ PneLako kal YmeLakov Kat 0€ avaAoyLKO Kal TV KPavTomoinorn Tov ofpuaTtog.
Ytig Swapdveleg 21-23 opillovtal Ta YPAUUIKA, XPOVIKA aVOAAOIWTA, XLTIATA
OUCTNHATA.

Y116 Sapaveleg 24 wg 42 ektedeital pla ovoym ™G avadoyikng emegepyaciog
ONUATOG, OTIOV TAPOVCLALOVTAL 1) TIEPLYPAPT] TIEPLOSIKOV ONUATOG UE Ol CELPES
Fourier (sine-cosine form, amplitude-phase form, exponential form), ot
uetaoxnuatiopol Fourier kot Laplace, 1 ouvaptnomn HETA@POPAS KL 1] KPOUGTLIKT)
ATOKPLOT YPAUUIKOU aVOAOYIKOU GUOGTHUATOG, 1 €VOTADEIQ OUCTNHUATOS, 1)
OUVEALEN KAL 1) ULTOVIKT) ATTOKPLOT) 0TABEPNG KATAGTAOTS.

Itig Stapdveleg 43 €wg 63 TAPOLOLA{OVTAL CUVOTITIKA AVAAOYLKA KAl Yn@Lokd
@ Tpa xaunAng SteAsvong kat {wvng dtéAevong Butterworth kot Chebyshev, pe
Tapadelypata.

ITIS Saaveleg 64 €wg 79 KAAVTITETAL 0 SLAKPLTOG peTaoNUatTiopdg Fourier
(DFT) kot n ymeLakn @aopatiky avadAuon oNHaTog, V) ELCAYETAL 1] TEXVLKN TOU
TPOGSLOPLOUOV TOU PACUATOG GNLATOG UE TT) XP1|0T TApabUPLKWY GLUVAPTICEWY
(window functions) pe e@apuoyEs.

116 Stapaveleg 80 £wg 88 TEPLYpAPETAL ETOTITIKA O YP1YOPOG LETACYN LATLOUOG
Fourier (FFT) pe toug aiyopiBupovg touv decimation-in-frequency kot decimation-
in-time.

Y11 TeAevtaleg Sta@aveleg apatiBevtal TPoBANUATA AVAKEPAAXIWONG UE TIG
AVOELS TOVG.
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Band-limited Digital Processed Output
signal signal digital signal signal

Analog DS Reconstruction
filter processor filter

Digital Signal Processing (DSP) scheme

Digital Signal Processing (DSP) technology and its advancements have dramatically impacted our
modern society everywhere.

Internet (wire and wireless networks)

digital audio and/or video

digital recording/playing (CD, DVD, Blu Ray, MP3, MPEG4 etc)
digital cameras

digital and cellular telephones

digital satellite and TV

medical instruments

Without DSP, scientists, engineers, and technologists would have no powerful tools to analyze and
visualize data and perform their design.
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DSP Advantages

v" minimum analog processing

v' variety of processing algorithms
v flexibility

v"less noise interference

v no signal distortion

There are many real-world DSP applications that do not require DAC, such as data acquisition and
digital information display, speech recognition, data encoding, etc.

Similarly, there are many real-world DSP applications that need no ADC, such as CD players, text-
to-speech synthesis, digital tone generators etc.
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y(n) o o . .
Digitized noisy input D{Iean digital signal Dlgltal Fllterlng

MNoisy signal

Since the useful signal contains

the low-frequency component,
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can be removed by using a digital
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Time domain display
Analog DSP

filter algorithms Frequency content display

Spectral estimation of a digitally recorded

Speech data: We lost the golden chain. . ]
speech waveform using the FFT algorithm

Digital speech waveform versus its
digitized sample number, from a speech
signal produced by a human in the time
domain.

Frequency content information of speech
for a range up to to 4kHz. It can be
identified about ten speech formants,
which can be used for applications such
TR R 000 as speech modeling, speech coding,
Frequency (Hz) speech synthesis and recognition etc.
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Band-limited Digital Processed Qutput Analog
signal signal digital signal signal output Dlgltal Slgnal Processing

DS Reconstruction
processor filter Syste m

The analog filter processes the analog input to obtain the band-limited signal, which is sent to the
analog-to-digital conversion unit, which samples the analog signal, quantizes the sampled signal,
and encodes the quantized signal levels to the digital signal.

Analog (continuous-time) signal, defined at every point  Sample-and-Hold analog voltage for ADC. FEach

over the time axis and amplitude axis, that is sampled at = sample maintains its voltage level during the

a fixed time interval, T termed as the sampling period. sampling interval T to give the ADC enough time to
convertit.

Signal samples
,Voltage for ADC

/ Analog signal/continuous-time signal /" Analog signal

12T 12T
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For a given sampling interval T, which is defined as the time span between two sample points, the
sampling rate (sampling frequency) is therefore given by:

1
fs= - samples / second (Hz)

appropriately sampled signals and non-appropriately
sampled (aliased) signals.

Sampling condition is satisfied

0.02 003 004 005 006 0.07 008 0.09 01

Time (sec)

Sampling condition is not satisfied

0.02 003 004 0.05 006 0.07
Time (sec)

0.08 0.09

For a uniformly
sampled DSP system, an analog signal can be
perfectly recovered as long as the sampling rate
is at least twice as large as the highest-frequency
component of the analog signal to be sampled:

fSZmeax

Half of the sampling frequency, f,/2, is usually
called the (Nyquist limit), or
folding frequency.

The sampling theorem indicates that a DSP
system with a sampling rate of fs can ideally
sample an analog signal with its highest
frequency up to half of the sampling rate
without introducing spectral overlap (aliasing).
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Mathematically, this process can be written as the
product of the continuous signal and the sampling
pulses (pulse train):

X(s) (©) =x(Op(t)
x(t) / ADC with a period T =1/f..
encoding

i = X(OP(D Sampled signal spectrum:

1 (0.0]
X() =5 ). X —nf)

n=—oo

where X(7) the original baseband spectrum, while
Sampled signal x,/(t) obtained by sampling the X(f #nf) its replicas, so:

continuous signal x(t) at a sampling rate of f e 1 1 X 1 X(f —
samples per second. Xs(H) + TX(f +fs) + T () + T (f = fs)--.
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Given the original signal spectrum X(7) three
possible sketches are classified for X (7):

%X(f it fs)»%X(f),%X(f — f) have separations

f,-B -f, —f,+B
s s T+ between .

%X(f + fs),%X(f),%X(f — fs) are just connected.

%X(f + fs),%X(f),%X(f — f) are overlapped.
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Example

uppose that an analog signal is given as
((f)=5cos(2m 1000t)for = 0

\nd is sampled at the rate of 8,000Hz

. Sketch the spectrum for the original signal

sketch the spectrum for the sampled signal from O to 20 kHz.

).

Solution: Since the analog signal is sinusoid with a peak value of 5 and frequency of 1,000Hz ,we can
write the sine wave using Euler’s identity:

GIRESLIVUE | = i 10001 21000t —j2mx1000t
=25 ¢J +2,5e7/

5cos (21T % 1,000t)=5 ( >

ceffician

151617
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Signal Reconstruction

» The digitally processed data y(n) are
converted to the ideal impulse train y,(t)

Digital signal Lowpass _ _ _ _
reconstruction » impulse has its amplitude proportional to

flter digital output y(n), and two consecutive
Js(t) impulses are separated by a sampling period
Ys(0)4.. ye(T) of T second.,

» the analog reconstruction filter is applied to
the ideally recovered sampled signal y;(t) to
obtain the recovered analog signal.

A Digital signal processed B Sampled signal recovered C Analog signal recovered

y(h
1.0
/\\ frax = B
f

1
-8 0 B

D Recovered signal spectrum
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The possible three cases for the recovery of the original signal spectrum

X(f).

fS‘ > meax

f,-B -f, -L+B -B 0 B f-B f f+B

fs = 2fmax

fS' < meax
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Example on Signal Recovery

Assuming that an analog signal given dye

X(t)=5cos (2m 2000t)+3cos(2m 3000t), for t= 0
And it is sampled at the rate of 8kHz
a.  Sketch the spectrum of the sampled signal up to 20 kHz

b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff frequency of
4kHz is used to filter the sampled signal (y(n)=x(n))to recover the original signal.

» Using Euler’s identity

3 5 _; 5 3
X(t)=Ee ]2n3000t+ze ]2n2000t_|_Ee]2n2000t+5812n3000t

a. sampled signal b. recovered signal

-11-10 6-5-3-2
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization

Anti- I I Quantization I Digital
Sample

aligsing and hold binary signal
filter encoder processor

The antialiasing filter is designed to block the frequency components beyond the folding
frequency before the ADC operation, while the reconstruction filter is to block the frequency
components beginning at the lower edge of the first image after the DAC.

There are several ways to implement ADC. The most common ones are
flash ADC,
successive approximation ADC, and

sigma-delta ADC.
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,

and Quantization

» the 2-bit flash ADC unit consists
of a serial reference voltage
created by the equal value
resistors, a set of comparators,

logic 0 11| Encoding and logic units.
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization

» The DAC contains the R-2R
ladder circuit

» aset of single-throw switches, a
summer

» aphase shifter

If a bit is logic 0, the switch
connects a 2R resistor to
ground

» Ifabitislogic1,the
corresponding 2R resistor is
connected to the branch to the
input of the operational
amplifier
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization
» Vg =5,b,b; = 10 the ADC output :
Vo =5x (53 X 1+ ;% 0)=2.5volts

» As we can see, the recovered voltage of VO = 2.5 volts introduces
voltage error as compared with Vin = 3, discussed in the ADC stage.
Vo —Vin =25—-3=-0,5V

» Next, we focus on quantization development

The notations and general rules for quantization are:

A= (*max—Xmin)
L
x_xmin)

i=round(
A

b=
Xqg = Xmin +iAfori=0,1,...,L—1

»  X;,acand X,,nare the maximum and minimum values
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization (Example)

» Xnmin = 0, X34y =8A, m =3

x,=0+iA,i=0,1,...,L-1
Binary code e

L=23=8

e e FA== cccecerececs et .'

vV v V

BA— e == i is the integer corresponding to
T ot A the 3-bit binary code

R T e R AL -
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization (Example)

where we have ymin =-44, X;max =44, and m =3. The corresponding
quantization table is given in Table

Binary code

Binary Code Quantization Level x, (V) Input Signal Subrange (V)
000 —4A

. 001 —3A
L 010 —2A

011 —A
100 0
101 A
110 2A
111 3A
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Analog-to-Digital Conversion,
Digital-to-Analog Conversion,
and Quantization (Example)

If the analog signal to be quantized is a sinusoidal waveform, that is
X(t)=a sin(2mx 1000¢t)

And if the bipolar quantizes use m bits , determine the SMR in terms of m bits.

Solution:

a. Since X,;s=0,707A and A= 2A/2m

SMRy, = 10,79 + 20 log g;’;ﬁ =10,79+20 logy, 0,707 /2420, logy, 2

SMRdb: 1,76+6,02m db
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Linear Time-Invariant, Causal
Systems(Linearity)

> Alinear system is illustrated in Figure

> using an input x4 (n), and x,(n) is the
system output using an input x, (n).

> corresponding inputs : y(n)=ay; (n) +

By, (n)

> where a and (3 are constants.

aXy(n)+ fxo(n) ays(n)+ Bya(n)
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Xoln)=x,(n- )

}"n_{}"| Shifted by n, samples

Time Invariance

» where y;(n) is the system
output for the input x; (n). Let
X,(n) = x;(n n,) be the shifted
version of x4 (n) by n, samples

» The output y,(n) obtained with
the shifted input x, (n) =x; (n-

, o)
Yol)=y4(n-ny)

T Shifted by nysamples
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Causality

if a system output depends on the future input values, such as x(n + 1), x(n +2), ..., the system is
noncoastal. The noncoastal system cannot be realized in real time.

Example: Given the following linear system
a.y(m)=0,5x(n)+2,5x(n-2)for n= 0
b. 0,25x(n-1)+0,5x(n+1)-0,4y(n-1) for n= 0 determine whether each is causal

Solution: a. for n= 0 the output y(n ) depends on the current input x(n)and its past value x(n-
2),the system is causal.

b. For n> 0,the output y(n) depends on the current input x(n) and its past value x(n+2) ,the
system is noncausal.
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Fourier Series and Fourier Transform

Periodic signals, such as the square wave, rectangular wave, triangular wave, sinusoid, sawtooth
Wave etc, can be analyzed in frequency domain with the help of the Fourier series expansion.

According to Fourier theory, a periodic signal can be represented by a Fourier series that
contains the sum of a series of sine and/or cosine functions (harmonics) plus a direct-current

(dc) term.

There are three forms of Fourier series:
sine-cosine
amplitude-phase

complex exponential
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Sine-cosine form is given by:

Sine-Cosine Form  xy=ao+ ) aycosmat) + Y by sin(newot)
n=1 i=0

Magnitude .
where wq- 2’T/Tols the fundamental angular freque-

ncy in radians/second, while the fundamental
frequency, in terms of Hz, is: fqo = 1/T0.

Fourier coefficients :

1
a, = — | x(t)dt
Ty Jr,

Cosine wave” a, = To x(t) cos(nwyt)dt
Ty

2
b, = — | x(t)sin(nwyt)dt
Ty Jr,
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The amplitude-phase form:
X(t)= A4, + Ypeq Ap cos(nwyt + P,,)

DC term is the same: Ay = ay.
omega =1.00

The amplitude and phase of nt"-harmonic
are given by:

A sin{wt + phi)

i = \/anz +b,”

1 —by

an

D, = tan™

The amplitude-phase form provides very
useful information for spectral analysis.
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Euler’s formula is given by:

CompleX P . (s tn(x)
Exponential Form can be written as two separate forms:
Example: x(1n)=0.9%e/0-3 L= —
sin(x) = eix;;_jx

the complex exponential form is expressed as:

4(2) = R Ny

imaginary part

1 .
C, =— | x(t)eIn@oldt

Ty
Ty
an _jbn
Co = Qo Cn 5
an + jby
C_n=0C = 2
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Time domain sine-cosine form complex exponential form

Positive square wave y 2. . 1 . A A A _.
A +— | sIn wyl + = 5N 3wyl )= — g gt 4
w 3 FEL S i

100

Ty !

1 1 p; A 4
+— sin Swyf + = sin Tagt + - - ) i e e A R S
5 7 Jjm NEL J5m

Square wave
mlinln
L]

—A

44 1 . : 1 ;
x(f) = — | coswygl — — cos Jay - et —g — g Pt et
m 3 - 3

l l
+zcos Sagt — = cos Tayt +---

Triangular wave

AN

7 : 1 1
\}ﬁ v ——ut:sSu.x.:—EuusTmu:—---)

A 1 "
x(1) = = COs gl + atc)s:u.m:

25

A I . 1 . .
1. 1) = e _pflemt o —jlant L —fent
5 sin Zwy? x(t)=— _7‘? ¢ £

Sawtooth wave -

24 ( .
x(f) = — | sinangf —
T
/]

1 l
/ : +— sin 3agt —— sindayt + - -
A : 3 4

Rectangular wave

1|

sin wd
(1) = Ad + 2.-14'(““ u ) coswot
wd

sin 2ord
2md

sin 3mrd Tt
cos Jagl + - -
d

e —2.4:2'( )L'U!-L Zeogt
v o
Duty cycle = d =E

! —2.44(

Im

Ideal impulse train - 1, ] . )
1 2 () = — (-~ + Pt 4 gl et )
X =—+ ?l._l.'(}!éwu! + cos 2agt k To

T ....... Feriigaeaan L Ty 0

iy 2t T
+cos 3wyt + cosdagt +---) e B e L] |
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Fourier Transform

Fourier transform is a mathematical function
that provides the frequency spectral analysis for
a non-periodic signal. The Fourier transform
pair is defined as:

X(w) = foox(t)e‘j“’tdt

Inverse Fourier transform:

x(D)=5— [ X(w) &*dw

The spectrum is a complex function that can be
further written as:

X(w)=[X(w)| £®(w)

where —o0 < w < oo, |X(w)| is the continuous
amplitude spectrum, while 2®(w) designates
the continuous phase spectrum.

-10r -6 41 -2r 0 2r 4r 6z 10x¢
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Fourier transform for some common signals

Time domain Fourier Spectrum
Rectangular pulse

X [r-,’ — Ar sinwf T

nfr

Sawtooth pulse

A
4##
T
1

Exponential function o« = -

A \,..x
T

Impulse function
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Properties of Fourier Transform
Time Function Fourier Transform
ax(t) + Bxs(1) aX(f)+ BXa(f)
) J2mfX(f)

I*. x(r)ds

xf—T1)

o 27 “x(1)

x(ar)
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Exercise:

Let x(2) be an exponential function given by:

_2t
x(t) = 10e~2ty(¢) = {10€ t=0
(3) (1) { sl - o

Find its Fourier transform.

Solution:
X(w)=J, 10e~'u(t) e @tde = [;" 10e-Z)dt

(0¢]

10e~(2Hw)t 10
 —2He) | 24w
== ¢ —tan” ()
X(w)= T 4 —tan™" (5
For w=2mf
10 10

2z —tan~(xtf)

X(w)=2+j2T[f = /22_'_(2”)0)2
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Exercise:

» Find the Fourier transforms of the following functions

> a. Xy = O where 0 in an impulse function defined

o 0 t=0
< 5“)—{0 elsewhere

» with a property given as
> [0 fudt—vdt=fq
> b.xpy =48(t—1)
» Solution:
0 Xy = [ Speiotde = et =1

b Kewy=J0, 8(t — DeIoldt = e~iot| = g~
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Laplace Transform

Laplace transform plays an important role in analysis of continuous signals and systems.
We define Laplace transform pairs as:

X(s)= L{x(@®)}=[, x()e~tdt

+joo

x(t)=L—1{X(s)}=zin]_ [ X(s)estds

Notice that the symbol L{} denotes the forward Laplace operation, while the symbol
L~1{} indicates the inverse Laplace operation.



Technological Educational Institute of Crete MSc Level Lecture Design
v) Department of Electronic Engineering on DSP
Anna Daskalaki | d_anna-13-ntora@windowslive.com 3 5

Time domain 's' domain

af(t) + by(t) aF(s) + bG(s)
(1) _F'(s)
(~1)"F®(s)
sF(s) — £(0)
*F(s) = s1(0) ~ £(0)
SnF(S) _ Z sn—kf(k—l)(o)
k=1

/:G F(o)do
11

SF(s)
f(at) - (2)

a \a
_e“'f(t_) F(s—a)
f(t —a)u(t - a) e P F(s)

1 c+iT :
F(t)g(t) 5— lim /  F(0)G(s— o) do|
[ c—iT |

(Fr)®) = [ F(glt ~7)dr F(s)-G(s)

(@) F*(s")

f(t) x9(t) F(=5") - G(5)
. : 1 T
f(t) periodic function m/ﬂ e ' f(t)dt




sin (at)

tsin(at)

sin 1 at)—atcos {:ar:}
cos(at)—atsin(at)
sin(at +b) —
5 +a
sinh( at)

e sin (bt Tesaram
b

(s—a) -b°

F(s—c)

1‘.‘ F(u)du

Technological Educational Institute of Crete

) Department of Electronic Engineering
s’ Anna Daskalaki | d anna-13-ntora@windowslive.com

ssin(b)+acos(b)

tcos(at)

sin| at |+ at cos| at )

scos| b} —asin(b)

s'+a’

dlt—c)

Dhirac Delta Function

u (t)g(t)

t"flt). n=123 ..

.'. [: f 1 v b dv

f(t+T)=f(1)

MSc Level Lecture Design

on DSP

Reference Table
of
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Laplace Transform
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Transtfer Function

A linear analog system can be described using the Laplace transfer function. The transfer
function, relating the input and output of the linear system, is defined as a ratio of the
Laplace response of the system to the Laplace input given by:

Y
H()=30

If X(s)=1, the output of the linear system due to the impulse function is:
Y(s)=H(s)X(s)=H(s)

Therefore, the response in time domain is called the impulse response of the system and
can be expressed:

h(=L""{H(s)}
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Transfer Function example

—10t

Canside a linear system y(t)=0,5u(t)-0,5¢ u(t) designate the system imput and

system output respectively.
a.  Derive the transfer function and the impulse response of the system.
Solution:

a. Tacking the Laplace transform on both sides the differential equation yields

L{dﬁt)} +L{10y (D)} = L{x(t)}

Applying the differential property and substituting the initial condition, we have
Y(s)(s +10)=X(s)

(), 00 e

X(s) s+10

Thus, the transfer function is given by H(s)

The impuls response can be found by taking the inverse Laplace transform as
_y-1({_1 ]__-10t
h(t) =L {s+10 }—e ul
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Poles, Zeros, and Stability

To study system behavior, the transfer function is written in the general form:

N(S) _ bys™+bpm—_1s™ 1+--bg
D(s) aps"+a,_1s"1+-ag

H(s) =

Given a system transfer function, the poles [roots of D(s)] and zeros [roots of N(s)] can be
found. Notice that zeros and poles can be real or complex numbers.

Stability of the system is determined by the following rules:

> The linear system is stable if the rightmost pole(s) is(are) on the left-hand half plane
(LHHP) on the s-plane.

> The linear system is marginally stable if the rightmost pole(s) is(are) simple (first
order) on the jw axis, including the origin on the s-plane.

> The linear system is unstable if the rightmost pole(s) is(are) on the righthand half plane
(RHHP) of the s-plane or if the rightmost pole(s) is(are) multiple order on the jw axis on
the s-plane.

> Zeros do not affect the system stability.
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Poles, Zeros, and Stability
example

Determine whether each of following transfer function is stable marginally stable ,or unstable

s+1
. H(S)—(s+1,5 )(s2+25+5)
Solution :
1. A zero is found to be s= -1

The poles are calculated ass =-1,5 ,s =-14+j2,s = -1 -j2

The poles-zero plot is show in figure .Since all the poles are located an the LHHP, the system is
stable.
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Convolution

Y — () Sasl ) 5, — 101, 7o .
1) = 0.5u(t) — 0.5¢™u(?). In the Laplace domain, the system output is the

x(q) product of the Laplace input and the transfer
function:

Y(s)=H(s)-X(s)

But in time domain, the system output is given
as:

y(@) = h(t) * x(¢)

The linear convolution is further expressed as:

y(t) = jooh(t)x(t —1)dt
0

x(t—1)=5u(t—1)
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Sinusoidal Steady-State Response

For linear analog systems, if the input is a
sinusoid of radian frequency w, the steady-state
response of the system will also be a sinusoid of
the same frequency and the transfer function is
called the steady-state transfer function:

H(jw) = H(s)|s = jw

) (1) Thus for a system in sinusoidal steady state:
fime ShiTk—d'n Sinusoidal steady state ] ] )
Y(jw) =H(jw) - X(jjw)

The complex steady-state transfer function, can
be written in phasor form:

~ Homogeneous solution

Particjar solution H(i(l)) = A(i(l))Lﬁ((l))

where A(jw) = |H(jw)| and B(w) is the phase
response of the system.
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Specifications for analog low pass
and band pass filters.

Lowpass filter Bendpass ier g fo, 0,

Hipljo) Hgpljol| W= gph= gy

0 0y 0y Oy gy 0

v Frequency edge notations for analog low pass and band pass filters. The
notations for analog high pass and band stop filters can be defined
correspondingly.
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Low pass Prototype Function and Its
Order

BLT design requires obtaining the analog filter with prewrapped frequency
specifications.

These analog filter design requirements include the ripple specification at the
passband frequency edge

the attenuation specification at the ,stopband frequency edge

type of low pass prototype, and its order
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Function

Butterw orth Chebyshew type |

I I I I
4 (.6 . 2 0.4 L6

Chebyshey type 2 Elliptic

—




>
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Butterworth low pass

The magnitude response function of the Butterworth low pass prototype with an
order of n is shown

1
ol D=

the given passband ripple 4, dB at the normalized passband frequency edge

v, =1, and the stopband attenuation AgdB at the normalized stopband frequency

1
Ade = —20 10g10< 1 o 82)

1
ASdB = —20 10g10< >
J1+ e2p2n

Low pass prototype order as : =< = 10%*4r — 1

1001451
logio|——

[2 logq0(vs)]

)

¢ is the absolute ripple specification



Technological Educational Institute of Crete MSc Level Lecture Design
) Department of Electronic Engineering on DSP
¥ Anna Daskalaki | d_anna-13-ntora@windowslive.com 47

Normalized Butterworth magnitude response function,
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Table 1 lists the
Butterworth

v prototype functions
with 3 dB passband
ripple specification

MSc Level Lecture Design
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transfer functions (e = 1)
Hyls)

N

§41

b
2414142541

1
P2 204

1

.¢4+?..Erl31.&3+3.4141¢11+?..5131.¢+1

P+123616 452361545 2361743, 236 L+
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Normalized Butterworth Function

The normalized Butterworth sauared magnitude function
1
|Pn(@)|*=

 1+£2(w)2n

» nisthe order and « is the specified ripple on filter passband.

specified ripple in dB €45 = 20log1o( /1 + £€2) dB.

To develop the transfer functionP,,(s) we first let s=jw and then

substitute w? = —s?2.

1
1+£2(—s2)n <)

> Pp(s)Pyp(=5s) =

(1):has 2n poles, P,,(s) has n poles on the left-hand half plane (LHHP)
on the s-plane, while P,,(—s)has n poles on the right-hand half plane
(RHHP) on the s-plane.

Solving for poles leads to  (—1)"s*" = —1 £2-
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Normalized Butterworth Function

and the corresponding poles are solved as

VA Y 21k : cin 21K
» P,=¢c /mélan=g /n[cos ?"K/, + jsin?7k/, ]

k=1,2,..2n,r=€ /n 0, = 2wk/(2n) for k=0,1,...,2n-1

and from a factor from the real pole (s + r), it follows that

K
P —
g 0 (s47) gty (s2 +(2rcos(@p) s+

0,=21nk/(2n) for k=1,....,(n-1)/2
K=r"=1/¢

When n is an even number, we can identify the poles on the LHHP as

» py = —rcos(0;)+jrsin (0;)k=1,....n/2 -1
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Normalized Butterworth Function

Example 1
-  Complete the normalized Butterworth transfer function for the following
specifications
1. Ripple=3db
2. N=2

Solution:

n/2=1

Oy = " = 0,25m

2 — 1091%3 _ 1

Applying equation leads to

1 1

> P,(s) = =

s242x1xc0s(0,25m)s+1%2  s%2+1,414s+1
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Normalized Chebyshev magnitude
response functi

> where the magnitude respénse versus the normahze?g%quency v is given by
1

H,|(v)=

C,,(vs)=cosh[n cosh™1(v,)]
cosh‘l(vs)=ln(ln U U2 — 1)

» Asshown in Figure 8.14, the magnitude response for the Chebyshev low pass prototype with
the order of an odd number begins with the filter DC gain of 1.

1
A.,dB = —20 lo
P . (m)
1
ASdB - —20 loglo
\/1 + £2C, % (vy)

g2 = 10%4 — 1

0,
_1| (1001451
cosh >
&

5
l, cosh™1(x) = In(x + Vx2 — 1), eis the

n=

cosh—1(vy)
absolute ripple parameter
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Normalized Chebyshev magnitude
response function

n (odd) n (even)

)= -

V1 +£2C3v)

{:us[ncns—1 {u}] v
Cnlv)=

msh[ncash—1 {v}] v>1
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Tables 2,3 and
contain the Chebyshev
prototype functions

v with 1 dBand 0.5 dB
passband ripple
specifications, respectively

v" Other low pass prototypes
with different ripple
specifications

v order can be computed
using the methods
described

v The Chebyshev type Il filter
design can be found in

Proakis and Manolakis
(1996) and Porat (1997).

MSc Level Lecture Design
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functions with 0.5 dB ripple (¢ = 0.3493)

314
#+1.42565+1.5162
0.7157
£41.2529541.53495+0.7157
0.3579
A4+1.19748 4+ 1.716952+1.02555+0.3791

F4+1172558441.93745+1.30

0.0895
S 115926 42171857 +1.5898 5 +1.17195-4+-0.432454+-0.0948

Chebyshev lowpass prototype transfer
functions with 1 dB ripple (¢ = 0.5088)

Hp(s)
1.9652

26

S4+1.09775+1.1025

0.4913

#+0.988357+1.23845+0.4913

AH095284+1.4 14265+0.2756
).1228
F4+0.936854+1.6888 ¢ +0.974452+0.58055+0.1228
0.0614
S00283 £ 1.9308 57 1.20121 £ +0.9393s7+0.30715+-0.0680
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Normalized Chebyshev Function

The Chebyshev magnitude response function with an order of n and the normalized cutoff
frequency w = 1 radian per second is given by

1

|Bn(w)|= )
f1+£26n2(w)

where the function C,,(w) is defined as

> n=1

cos (ncos‘l(w)) w<1
b Co(w) = k:
cosh (ncosh (w)) w>1
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Normalized Chebyshev Function

*  ¢eisthe ripple specification on the filter passband.

» cosh™1(x) =In(x+x2-1)

a factor from the real pole [s + sinh([3)], it follows that

K
> Bn(S) = n—1/
[s+sinh(B)] [T,y 2~ “(s2+brs+cy)

_ 2k+D)m
> ap — o

» b,=2sin (a;)sinh(p)

> ¢ = [sin (a,)sin (B)]* +[cos(ay)cosh(B)]?
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Normalized Chebyshev Function

For the unit passband gain and the filter order as an odd number, we set: B,,(0)=1
» K=sinh (B) [T,_/2 " ci
» B=sinh~! (/)
» sinh '(x)=In(x++Vx2+ 1

Following a similar procedure for the even number of n, we have
k

> B,(s)=

r[:/= 2L s2+bys+cy
» ap=2k+1)n/(2n) fork=0,1,......n/2 -1
» byp=2sin (a)sinh(f3)
> ¢y = [sin (aysinh (B))] %+ [cos(aicosh(B))] >
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Normalized Chebyshev Function

For the unit passband gain and the filter order as an even

. =1 .
> number, we require that B,,(0) / v so that the maximum
> magnitude of the ripple on passband equals 1.
_ 17 /2-1¢k
> K= Hk=0 /m
» B=sinh 17/

sinh™1(x) = In(x + Vx2 + 1)



Technological Educational Institute of Crete MSc Level Lecture Design
v) Department of Electronic Engineering on DSP
Anna Daskalaki | d_anna-13-ntora@windowslive.com 5 9

Conversion from analog filter specifications
to low pass prototype
specifications(table 4)

v The normalized stopband frequency vs can be determined from the frequency specifications of
an analog filter in Table

Analog Filter Specifications Lowpass Prototype Specifications

Lmﬂ.-pﬂss: Wap, Way Vp 1, vi = Wy ,-"' Wap
Highpass: wgp, wy vy = 1, vy = wyp [ @y
Bﬂ“dpﬂSS: Wapls Waph, Wasl, Wagh Vp = 11"’.&' = —ash—ad
wpy — 1.,.-" Wap] Waph, W) — ‘I.,,.-"' (W] 00 o)y

Bandstop: @upi. @uph, @asis @agh - lve =

iy — 1.,‘.-" Wap] Waph, W) — ‘u" W] O gy

bty — () !

"'-'-".u-,r.-.r'.- —iw apl

bl — 2 g

wgp, passband frequency edge; wy. stopband frequency edge: wgup, lower cutofl frequency in
passband; @gpn, upper cutolfl frequency in passband: way, lower cutoll frequency m stopband;
wgash, Upper cutoff frequency in stopband; w,., geometric center frequency.
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Lowpass and Highpass Filter Design
Examples

d. Design a digital lowpass Butterworth filter with the following
specifications:
1. 3 dB attenuation at the passband frequency of 1.5 kHz

2. 10 dB stopband attenuation at the frequency of 3 kHz

Solution : 1.First,we obtain the digital frequencies in radians per second:
wqp=2mf= 21(1500)=3000T rad/sec
wgs= 2mf= 2m(3000)=60001 rad/sec

1
T=1/f; = 5000 S€€

We apply the warping equation as

2 w

Wy = = tan 2=16000x% tan (w)=1,0691x 10%rad/sec
p T y) 2

2

T
Wgs = Ztan=“=16000x tan
T 2

(w)=3,8627x 10%rad/sec

We then find the lowpass prototype specifications usinig the Table 4.
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Lowpass and Highpass Filter Design
Examples

10%
1,0691x10%

Vs = Was/Wap =3,862X
= 3,6130 rad/sec and A; =10dB
The first order is computed as
g2 =1,n=0,8553

2 . Rounding n up ,we choose n=1 for the lowpass prototype .From table 3 we have H,(s) = i

yields the analog filter :
1 Wgp _ 1,0691x10*

H(s)= HP(S)|L=L+1=s+a)ap_s+1,0691><104
wap wap
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Bandpass and Bandstop Filter Design
Examples

» Design a second-order digital bandpass Butterworth filter with the following
specifications:

O  an upper cutoff frequency of 2.6 kHz and

O alower cutoff frequency of 2.4 kHz,

O asampling frequency of 8,000 Hz

O Letus find the digital frequencies in radians per second:
O wy 2nfy, =2n(2600) = 5200m rad/sec
O w;2n f; =2n(2400) =4800m rad/sec,and T =1/ fs =1/8000 sec.
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Bandpass and Bandstop Filter Design
Examples

Following the steps of the design procedure, we have the following:

wp T

Wan = > tan 2T =16000x tan 2

= 2,6110 x 10*rad/sec

wq =16000x tanT = 16000 X tan(0,3m) = 2,2022 X 10%*rad/sec
W=wgn-wq=26110-22022=4088 rad/sec

w2 = wgp X Wy = 5,7499 X 108
lowpass prototype with the order of 1 to produce the bandpass filter with the order

of 2, asHp(s) = i

the lowpass-to-bandpass transformation, it follows that

(s)= W o 4088s
S24+Ws+wo?2  s2+4088s+5,7499%x108
Hence we apply the BLT to yield

W,
(} . | —
H(z > 08
54+4+4088s5+5,7499%1 s_16000(Z 1)/(Z+1)

0,0730—0,07302
1+0,7117z-140,8541z 2

Via algebra work, we obtain the digital filter as : H(z)=
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In time domain, representation of digital
signals describes the signal amplitude
versus the sampling time instant or the
sample number.

In a vast number of applications, signal
frequency content is very useful.

15 20
Sample number n

The representation of the digital signal in
terms of its frequency components in the
frequency domain, the signal spectrum,
needs to be developed.

The algorithm transforming the time
domain signal samples to the frequency
domain components is known as the

T 1000 1500 2000 2500 3000 3500 4000 QD HeGRTNNe @i g E) YR
Freguency (HZ)

Sampled signal x(n) obtained by sampling the continuous
signal x(t) at a sampling rate of {.=8kHz.
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It is supposed that we estimate the spectrum of a
x(N+1)=x(1) periodic digital signal x(;) resulted from the
signal x(%) sampled at a rate of f, Hz (T= 1/fs is
the sampling period) with fundamental period
Tol

To = NT

where there are N samples within the duration
of the fundamental period.

The periodic digital signal is assumed to be band
limited to have all harmonic frequencies less
than the folding frequency f/2.

According to Fourier series, the periodic signal x(%)in exponential complex form is:

xX(D)=Xg-_ o el ot

1 :
", = T x(t)e Jk@otdt — oo < k < o

Ty
where kis the number of harmonics corresponding to the harmonic frequency of &7,, where f, =
1/T0 is the fundamental frequency.
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Substituting wg = *™/1,To = NT , t = nT, dt = T we obtain:
x(N+1)=x(1) 1 N-1 _.2mkn
ckz—z x(n)e’ N —0o< k<o
N n=0

The resultant spectrum of complex c¢; will be two-sided. Very
important feature is:

.21t(k+N)n 1 .2mkn

1$N- - N-1 == ]
-\ Cian = 2 oNzax(me” v =iyNAxmye W ez
x(N)=x(0)

Due to the fact that: e /2™ = cos(2mn) — jsin(2mn) = 1

Cr+N— Ck

DC component kfy=0xf;=0 Hz
] 1st harmonic kfy= 1xfp=1, Hz Thus, we may compute the spectrum over the

/ Other harmonics ... range from 0 to f, Hz with nonnegative indices:
1 N-1 _.2mkn

Ck=—z x(n)e’ N k=0,1,..N—1
N n=0

For & harmonic the corresponding frequency is
kf,, and f is the frequency resolution.
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Given a sequence x(n) for 0< n < 3 ,whwre x(0)= 1,x(1)= 2, x(2)=3 and x(3)=4,
a. Evaluate its DFT X (k)

Solution :

. TT

Since N=4 and W, = e /2

.Tkn

X =23 _o x()WS=Y2_  x(n)e /=

For k=0

X(0)=X3-0x(m)e™7° = x(0)e™7° + x(1)e™°+x(2)e™/° +x(3)e /0=
=x(0)+ x(1)+ x(2)+x(3)

=1+4+2+3+4=10

For k=1

,3TC

X(D)=F3-x(e 2 = x(0)e° + x(1)e T2 4x(2)e /™ +x(3)e 2 =
=x(0)-j x(D+ x(2)+j x(3)
=1-j2-3 +j4 =-2 +j2
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For k=2

X(2)=Xs-0 x(m)e™™ = x(0)e~/° + x(1)e " +x(2)e *" +x(3)e FT=
=x(0)- x(1)+ x(2)-x(3)

=1-243-4=-2

For k=3

.31Tn .3TNn 97T

X(3)=Li=0x(Me 2 = x(0)e/® + x(e /2 +x(2)e °" +x(3)e 2 =
=x(0)+8x(1)- x(2)-jx(3)

=1+j2-3-j4 = -2-j2

Let us verify the result using the MATLAB function fft():

> X =fft([1 2 3 4))
» X =10.0000 2.0000 + 2.0000i -2.0000  2.0000 -2.0000i
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Procedure: The process acquires data samples by
This portion of the signal is used for 3 Rl ; : 3

DFT and spactrum saloition dlgltl?lng the interested continuous signal x(%) for a
duration of Ty = NT seconds.

[t is assumed that a periodic signal x(n) is obtained by
copying the acquired N data samples, with duration T,
AT ‘ to itself repetitively.

x(n) XN+ 1)=x(1) _ Further, it is assumed continuity between the N data
N LY sample frames (not true in practice...).

From Fourier coefficients, using one-period N data
samples, we compute the DFT coefficients:

N-1 2wkn

x(N)=x(0)

h X(k) = Ney, = z x(m)ed N k=0,1,.N—1
x(n) n=0
n=0,1,-N-1
DFT with N data samples of x(12), at a sampling rate of
o x(N=1) t=nT £, Hz (T=1/;), produces N complex DFT coefficients

X (k). For k¥ harmonic the corresponding frequency is
k% and % is the frequency resolution.
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Given a sequence x(n), 0< n < N —1 its DFT is defined as:

.21Tkn

X(k) =YNdxm)e? v =3N3Axm)Wk® k=0,1,..N—1

2T
the factor Wy (termed also twiddle factor) is defined as: Wy=e ’~ = cos (27”) -j sin(%n)

The inverse DFT is given by:
.21tkn
x(n) = TSNAX() &N = SNIAXM) W™ n=0,1,..N-1

In time domain we use the sample number or time index n for indexing the digital sample
sequence x(n). However, in frequency domain, we use index k for indexing N calculated DFT
coefficients X(k). We also refer to k as the frequency bin number. The frequency bin k can be
mapped to its corresponding frequency:
MATLAB FFT functions. k(l)s d kfs

X = Mx) % Calculate DFT coefficients W = N = N
x = UTuX) % Inverse DFT
x = input vector Similarly, frequency resolution is defined:
X = DFT coefficient vector f
S

A S5 A
= — (=) =
W= S
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By applying the DFT to the truncated
sequence x(n), with range 0<n <N —1,
Acor P af=fo/N we get the N DFT coefficients:

Xk) =YNAxm)wl* k=0,1,..N-1

processing spectrum of Since each calculated DFT coefficient is a
DFT or FFT ) complex number, the magnitude and phase
of each DFT coefficient can be determined
and plotted versus its frequency index (we
refer to them as the amplitude spectrum and phase spectrum, respectively). We define the amplitude
spectrum as:

A = % 1X(k)| = %\/(Real[X(k)])z+(Imag[X(k)])2 k=0,1,.N-1

The amplitude spectrum can be modified to a one-sided amplitude spectrum by doubling the
amplitudes, but keeping the original DC term:

(

—

1
—1X(0)], k=0
Ay =3 i

2
— N
FX@L k=1, 8/
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Imag[X (k)]

Real[x(k)]) k=01 .N—1

Correspondingly, the phase spectrum is given by: ¢, = tan™? (

Besides the amplitude spectrum, the power spectrum is also used. The DFT power spectrum is defined
as:

1 1
Pr =17 1X(k)|? = F{(Real[X(k)])Z+(Imag[X(k)])2} k=01,.N-1

The power spectrum can be also modified to a one-sided amplitude spectrum by doubling the
amplitudes, but keeping the original DC term:

[
2

le(k)l | k=0

2

Uk

X2,  k=1,.1N/
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When apply DFT to sampled data, we
theoretically imply the following
assumptions:

> the sampled data are periodic to
themselves, and

> the sampled data are continuous
to themselves and band limited to
the folding frequency.

0 5 m m m @ e s 2l The last assumption is often violated,

Window size: N =18 (not multiple of waveform cycles) Window size: N =18

thus the discontinuity produces undesired harmonic frequencies. This effect is termed spectral
leakage. The amount of spectral leakage is close related to amplitude discontinuity in time domain.
The bigger the discontinuity, the more the leakage.
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Spectral Estimation Using Window Functions
example

In Figure given
O x(2)=1landw(2)=0,2265
O x(5)=-0,7071 and w(5) = 0,7008

a. Calculate the windowed sequence data
point x,, (2)and x,,(5).

Window w(n)

P
c
—
=
x>
-
o
=
(o]
T
=

Time index n
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Spectral Estimation Using Window

Functions example

Applying the window function
operation leads to

X%, (2)=x(2)X w(2) = 1 X 0,2265 =
0,2265

x,,(5)=x(5)% w(5) = 0,701 x 0,7008 =
— 0,4956

x(n) (original signal)

The common windows functions are
listed as follows. The common
window(no window function): wg(n) =
1 0<n<N-1

The triangular window

|2n—N-1|

Weri(n) =1-————,0<n<N-1

The Hamming window :

(n) = 0,54 — 0,46 Zust
n) =0, 46 cos —

= X
= <
s ©
o @
= =
3 o
3 °
€ £
= <

,0 <n<N-1 Time index n Frequency index



Window win)

-
S
3
X
b=
0
2
2
3
-
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Time index n

To reduce the effect of spectral leakage, a window
function can be used whose amplitude tapers smoothly
and gradually toward zero at both ends.

We apply the window function w(n) to a data sequence
x(n) to obtain a windowed sequence, x,, (n):

x,(n) = x(n) -wn) n=0,1..N—-1

®(n) (original signal)

= a
= =
= B
2 =
2 [w]
=) O
z c
= =

Time index n Frequency index
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Rectangular window (no window function):

Wrec(n) =1 0<n<N-1

Triangular window:

=

=] =
= [=
= o
= =
g L4
- =
i [
5 o
=7 =
c =]
b =
o =
e =

2n—N+1
Wm00=1—L%jll 0<n<N-1

Hamming window:

Wham(n) = 0.54 — 0.46 cos (3~
0<n<N-1

Hamming window
Hanning window
+————|—-: ==l - = ———

Hanning window:

2nn

Whan(m) = 0.5 — 0.5 cos (ﬁ)
0<n<N-1

[ ) —
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Application to Speech Spectral
Estimation

- the comparisons of amplitude spectral
estimation for speech data (we.dat) with
2,001 samples and a sampling rate of
8,000 Hz using the rectangular window
(no window) function and the Hamming
window function.

500 1000 1500 2000 ’ - one-sided spectrum

Time index n

- when data length is short reduction of

spectral leakage using a window function

will come to be prominent.

3
S
2
o
=
E
E
m
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Application to Speech Spectral
Estimation

8

* the comparisons of amplitude spectral
estimation for speech data (we.dat)
with 2,001 samples and a sampling rate
of 8,000 Hz using the rectangular
window (no window) function and the

500 1000 1500 2000 2000 4000 6000 8000 Hamming window function.
Time index n Frequency (Hz)

8

Amplitude spectrum Ak
— n
8 8

o

- two-sided spectrum

8

- the data length of the sequence
increases, the frequency resolution will
be improved and spectral leakage will
become less significant.

8

n
8
1
SR Bty S S

- 1
e S ———
'

8

£
X
3
g
o
c
3
o
S
E
E
q
3

Hamming windowed Ak

JLall

500 1000 1500 2000 2000
Time index n Frequency (Hz)

o
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Fast Fourier Transform (FFT) is a very efficient algorithm in computing DFT coefficients and can
reduce a very large amount of computational complexity (multiplications). For a data length of N

Complex multiplications of DFT: N*
Complex multiplications of FFT: g log,(N)

Prerequisite of FFT is that the digital sequence
x(n) consists of 2™ samples, where m is a positive
integer. If x(nn) contain N # 2™ samples, then we
simply append it with zeros (zero padding) until
the number of the appended sequence is N = 2™
samples:

J_c(n)={x(n) 0<n<N-1

Original data

50 100
Frequency (Hz)

' —— ——— . — . — ————
2.5 ~ o -! [n] '

Padding 4 zeros

0 N<n<N-1

We focus on two FFT formats that are referred

to as the radix-2 FFT algorithms:
Decimation-in-frequency algorithm
Decimation-in-time algorithm

Padding 20 zeros

E
E
E
[ &)
&
o
Ls]
@
o
3
2
=
E
=
=
E
3]
]
o
@
@
o
3
=
g
E
=
=
E
3]
]
=1
@
@
o
3
=
g

10 20
Mumber of samples
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Recall the DFT definition, provided that N = 2™:

2tkn

X(k) =Y¥NAxm)yed v =¥V Axmywl k=01..N-1
The above equation is split into:
N
7_1 kn = kn
X(k) = z x(n) Wn 4 Z L x(m) W
n=0 n=-~
Modifying the second term:
%—1 N, %—1 N
X(k) = Z x() Wi + W2 z x(n+—) Wkn
n=0 n=0 2

N
and due to the fact that Wﬁ, = —1, it results:

N
-1
X(k) = 32 _ |[x@) + (=DFx(n + )| whr
DFT algorithm is now split to even and odd frequency bins, k = 2q and k = 2q + 1 :

X(2q) = 3_0 a(n) W = DFT {a(n) withg points}, a(n) = x(n) + x (n + %)
X(2q+1) = $2_ b)W: Wi ¥} = DFT (b(m)W}, with 2 points}, b(n) = x(n) — x (n +7)

2TTX2 i
i S N | R "’2 —n_] AT — N/') — YA ..
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Input Data Index Bits Reversal Bits Output Data

x(0) 000 000 X(0)
x(1) 001 100 X(4)
x(2) 010 010 X(2)
x(3) 011 110 X(6)
x(4) 100 001 X(1)
x(5) 101 101 X(3)
x(6) 110 011 X(3)
x(7) 111 111 X(7)

Binary index 1st split 2nd split 3rd spiit Bit reversal
000 0 0 000

001 100
010
110
0o
101
011
111

The first iteration of the eight-point FFT.

Z=X+y
TN
¥ y o x—y

Definitions of the graphical operations.

= Wl =] P O

= @ N k& W M = O

Bit reversal process in FFT
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@D N RO

%]

22X X X X X X
[ —

~J

The eight-point FFT (3 iterations, 12 complex multiplications)
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Compare DFT and inverse DFT definitions:

X(k) =YNAdxm)wi® k=0,1,..N—1

1 ~—N-1 1 ~—N-1 i
x(n) = — X(B) Wkt = — X)W n=0,1,..N—1
N Laij=o N Lap=o

The main differences are that, for inverse FFT, the twiddle factor Wy is changed to be WN = W;,l,
and the sum is multiplied by a factor of % Thus, by modifying accordingly the previous FFT block
diagram, the inverse FFT block diagram is achieved:

The eight-point inverse FFT
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Given the DFT sequence Xy for 0<k < 3

a. Evaluate its inverse DFT x,) using the decimation in frequency
FFT method.

Solution :

a. Using the inverse FFT blocks diagram , we have

Bit index Bit reversal
00 X(0)=10 x(0)=1 00

01 X(1)=-2+]2 x(2)=3 10

10 X(2)=-2 x(1)=2 01
11 X(8)=-2-j2 - - x(4)=4 11
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The input sequence x(n) is split into the even indexed x(2q) and the odd indexed x(2q + 1)
sequences, each with g data points. The DFT definition becomes (using W12V=WN/2):

N N
) =1
Xk) = z xWI +wk 22 x2q+1DWT  k=0,1,..N—-1
q=0 / q=0 /
DFT algorithm is now expressed as follows:
N
>—1
Gk) = Y?_, x(2q)W{; = DFT {x(2q) with~ points}, G(k) = G (k + ﬂ) k=01,.%-1
q= /5 P y) 2

oy

Hk) = ¥2_ox(2q + 1)w,‘$}‘2 = DFT {x(2q) with > points}, H(k) = H (k n g) k=01 .%_1

X(k) = G(k) + WH()  k=0,1,.>—1

x(§+k) = Gk) —WEHK)  k=0,1,..2-1
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The FFT algorithm is obtained by performing backward iterations. For eight-point FFT:

The

o0 | = | oo == f oo = | o] = | ] =& |0 | = fon | —=| oo | —s

The eight-point FFT The eight-point inverse FFT
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Method of Decimation-in-Time
example(3)
» Given a sequence x(n ) for 0< n < 3 where x(0)=1, x(1)=2, x(2)=3 and x(3)=4
> a. Evaluate its DFT x(t) using the decimation in time FFT method

> Solution: block diagram
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(i) Solve the following differential equation using Laplace transform:

2

y(0) =0 D=0 x(t)=32u()

(i) Derive the impulse response of the system.
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Consider the signal: x(t) = 5 + 2 cos (Znt — g) + 3 cos(4mt)

Assuming that f,=4Hz, we take 4 samples in the first second.
(i) Calculate the DFT coefficients.

(ii) Evaluate the DFT by applying FFT and calculate the speed up.

"y
=]

FoN = R = =

3
ok
2

|
=
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dy
a. P + 12 —= + 32y= 32u(t)

32
s2Ys + 1251/(5) +321 =— =>

32
=> Y5 (s° + 125 + 32) ==

A=144-128=16=>VA=4p =——=—4  p="""=_8
7 — 220
(S) ™ s(s+4)(s+8) s | s+4 ' s+8
32 32 32
kl_(s+4) s+8)l g 1 'kz_s(s+8) ju., = 3 s(s+ )l __g 1
Yo = + (o))
© =5 5+4 548

o= Q)+ () o ()

4(t)-2e " *u(t) + e u(t)
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L 1 _ k1 ﬁzl(i_i)

b. H(s) "X, (s+4)(s+8) H(S)_s+4 & s+8 4 \s+4 s+8
i =1 i 2
17 (s+8) 4 (s __g 4

S=—4

| =

h()=L"'H)] = L7 (sﬁ) + L1 (%) ==
h(t) = %e““u(t) — %e‘stu(t)
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X(t) =5 +2cos (Zn — g) + 3 cos 4mt

X(n)= 5+ Zcos (g 7 — g) +3c0s Tn

.21Tkn 7T\ kn

X)=53 oo x () W =3 o x(me T W = T3 ox(m) (e72) = Zipx(m) ()"
X(0)=x(0)+x(1)+x(2)+x(3)=20
XD=x(O)+x(D(F)+x(2)-D+x(3) j=- 4
X(2)=x(0)+x(D(-D+x(2)(1)+x(3)(-1)=- 12
X(3)=x(0)+x(DG)+x(2)-D+x(3)(F)=4

AfE = 11z
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x(0)0 0 0 X(0) |x] 1
x(1)1 2 2 X(2) 20 12 /2
x(2)2 1 1. X(dh 1
x(3)3 :3 3 X(3) ’4 ‘4

Hz -m/2
() a(0)=x(0) +x(2)=16 «a'(0) a'(0) + a’(1)=20
X(1) \/ —  a(DH=x(D+xB)=4 a'(1) (@' (0) —a'(1) WP =12
X(2) M b(0) W, =(x(0) x(2)) (1) =0 pb’(0) b'(0) +b"(1) =-4]
X(3) / \ b(1) Wy =(x(0)-x(3)) ()=-4 b'(1) b'(0) —b'(1) ) W,'= 4

wp =1
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