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Abstract

The objective of this project is the development of an Audio to Score Alignment

(ASA) system, which is a computer program that, given a score of a music piece and a

recording of that same piece, it can detect the point in the signal that corresponds to

each musical event of the score. In other words, it can 'follow' the score by 'listening' to

the recording,  similarly to  human listener.  There are several  applications sought by

ASA,  such as  assisting digital  audio editing and post-processing that  often requires

knowledge  of  the  location  of  a  particular  note  or  phrase  in  the  score,  allowing

automatic annotation in music libraries hence permitting efficient search and retrieval,

assisting  musical  education,  or  more  generally  providing  automatic  audio

segmentations,  a  task  that  is  a  prerequisite  to  most  applications  exploring  musical

content. 

ASA is one of the several tasks targeted by Music Information Retrieval research, an

interdisciplinary scientific field aiming at retrieving semantic information from digital

music  representations.  The  first  chapter  provides  an  introduction  to  basic  music

concepts and a description of several Music Information Retrieval tasks. The second

chapter provides a review of relevant research initiatives on ASA and showcases some

representative software applications. The third chapter is an introduction to the basic

pattern  recognition  and  machine  learning  techniques  used  by  the  system  under

investigation, emphasizing on the use of Hidden Markov Models (HMM).

Following chapter 4 presents the overall methodology and the implementation of

the ASA system developed in the context of this work. Chapter 5 presents the evaluation

of the implemented software and the final chapter discusses conclusions, shortcomings

and future work. 



Περίληψη

Ο  σκοπός  αυτής  της  πτυχιακής  εργασίας  είναι  η  ανάπτυξη  ενός  συστήματος

Στοίχισης Ήχου και Παρτιτούρας (ΣΗΠ), το οποίο είναι ένα πρόγραμμα για υπολογιστή

που, δεδομένης μιας παρτιτούρας ενός μουσικού κομματιού και μιας ηχογράφησής του,

μπορεί να ανιχνεύσει το σημείο του ηχητικού σήματος που αντιστοιχεί σε κάθε μουσικό

γεγονός της παρτιτούρας.  Με άλλα λόγια,  μπορεί να “ακολουθήσει”,  την παρτιτούρα,

“ακούγοντας” την ηχογράφηση, ακριβώς όπως θα έκανε, ένας  μουσικά εκπαιδευμένος,

ακροατής.  Υπάρχουν,  διάφορες  εφαρμογές  της  ΣΗΠ,  όπως  η  διευκόλυνση  της

επεξεργασίας  ψηφιακού ήχου που  συχνά απαιτεί  την γνώση της  ακριβούς θέσης μιας

συγκεκριμένης νότας ή φράσης της  παρτιτούρας πάνω σε ένα ηχογραφημένο σήμα,  η

αυτόματη επισημείωση σε μουσικές βιβλιοθήκες με στόχο την εστιασμένη πρόσβαση σε

μουσικό περιεχόμενο,  η  βοήθεια  στην  μουσική  εκπαίδευση,  ή  γενικότερα η  αυτόματη

τεμαχιοποίηση ηχητικών σημάτων, μια εργασία απαραίτητη στις περισσότερες εφαρμογές

που εξερευνούν μουσικό περιεχόμενο. 

Στο γραπτό μέρος της εργασίας, το πρώτο κεφάλαιο παρουσιάζει μια εισαγωγή σε

βασικές  μουσικές  έννοιες,  καθώς  και  μια  περιγραφή  των  διάφορων  υπολογιστικών

διεργασιών  που  μελετώνται  στο  ερευνητικό  πεδίο  της  Ανάκτησης  Μουσικής

Πληροφορίας, στις οποίες ανήκει και η ΣΗΠ. Το δεύτερο κεφάλαιο παρέχει μια εποπτεία

συναφών ερευνητικών  πρωτοβουλιών  στη  ΣΗΠ  και  παρουσιάζει  κάποιες  ενδεικτικές

εφαρμογές  λογισμικού.  Το  τρίτο  κεφάλαιο  είναι  μια  εισαγωγή  στις  βασικές  μεθόδους

αναγνώρισης  προτύπων  και  μηχανικής  μάθησης,  που  χρησιμοποιούνται  από  το  υπό

υλοποίηση  σύστημα,  δίνοντας έμφαση στη χρήση  των Κρυμμένων Μοντέλων  Markov

(Hidden Markov Models, HMMs).

Εν συνεχεία, το κεφάλαιο 4 παρουσιάζει τη μεθοδολογία που ακολουθήθηκε για την

υλοποίηση  ενός  συστήματος  ΣΗΠ.  Το  κεφάλαιο  5  περιγράφει  τα  πειράματα  που

διεξήχθησαν για την αξιολόγηση της αλγοριθμικής απόδοσης του συστήματος αυτού και

τέλος στο κεφάλαιο 6 συζητιόνται συμπεράσματα, προτεινόμενες βελτιώσεις στο σύστημα

που έχει αναπτυχθεί και μελλοντικές προοπτικές έρευνας στον τομέα αυτό.
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Music and Music Information Retrieval

1. Music and Music Information Retrieval

1.1. Introduction

Ever wondered if it is possible to play a song along with your computer? Interpreting a

musical piece on the piano and having your computer “listen” to your interpretation and

follow your playing, providing accompaniment? Or did you ever imagine you could hum to

your cellphone, a song stuck into your mind, and it would reply the song title, the artist as

well as other songs and artists that share the same music genre or mood with your song?

What about having a recorded piece of music and having your computer recognize all the

instruments playing and print you the score of it?

Recent technological advances and the vast digitization of music have led to the

development  of  a  new,  interdisciplinary  research  field  known  as  Music  Information

Retrieval (MIR). Questions such as the above are addressed by MIR research by means of

musicology  and  signal  processing  in  combination  with  information  theory  and  pattern

recognition techniques. MIR research has presented major technological achievements in a

short period of time, many impressive results and promising perspectives. The work of this

field, and more specifically one of its most basic tasks, Audio to Score Alignment, is the

main topic of this thesis.

1.2. Music Fundamentals

1.2.1. Basic Concepts

Music consists mainly of what we call musical sounds or musical tones. Musical tones

are sounds produced by musical instruments with an almost steady periodic vibration and
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usually it is a sum of a fundamental frequency and a number of integer multiples of it,

called harmonics.

All musical tones have four basic features: pitch, intensity, timbre and duration [1].

Pitch is the feature associated with the perception of the fundamental frequency of the

sound. It depicts the “height” of the sound, ordering the sounds into a range of “low” and

“high” or “deep” and “acute”. Although it can be expressed as a frequency, its perception is

not  straightforward  and  objective,  since  the  human  auditory  system  has  a  non  linear

behavior as far as pitch recognition is concerned. 

Intensity is the feature associated with the perception of the amplitude of the vibration

and can express how “soft” and “quiet” or how “loud” and “intense” a sound is. Loudness,

which is another word for intensity, is also a subjective measure, since it is related with the

non linearity of the human ear, as well as other psychoacoustic phenomena, but the basis

for its approximation is the sound energy.

The physical characteristic of a sound that is associated with timbre is mainly that of its

frequency spectrum and secondary that of its envelope. Its perception is the most difficult

to be defined, but we could say that it is the feature that enables the listener to distinguish

two sounds of the same pitch and intensity but different sound source. This could be a piano

and a violin or the human voice of two different persons. Other information a listener can

draw from pitch include the playing technique of the instrumentalist (a plucked or bow

playing of a string instrument), the surrounding acoustics of the sound source (a small room

or a cathedral) and the equipment used for recording or transmitting of a sound (cassette,

telephone, etc.).

Duration is the amount of time the certain sound lasts. The beginning point is called

onset time, while the ending point, offset time.

However,  music  may  also  be  generated  by  percussive  sounds,  not  necessarily

associated with a clear perception of pitch [1].  The spectrum of percussive sounds does not

have a harmonic structure and is characterized by dominating noise components. 
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Musical sounds can be divided into two broad categories, according to their musical

content:  monophonic and polyphonic sounds [1].

Monophonic sounds are those for which there is a single pitch value (musical tone) at

any time. These pieces consist of one and only melody.

Polyphonic sounds are those that include more than one parallel lines of independent

melody, usually performed by different musical instruments, or instruments that are capable

of  producing  chords.  Chords  are  formed  by the  simultaneous  playing  of  two  or  more

musical tones and they express a different quality, depending on the distance between the

included pitches. They consist of a core element in most musical genres.

There are also four more concepts that are used to characterize a musical piece: tempo,

tonality, time signature and key signature [1].

Tempo is the speed of the playing of a piece. It plays a significant role in music and it is

measured in Beats Per Minute (BPM.).

Tonality feature is used to describe the “tonal center” of a musical work,  which is

defined by the note and chord that play a central role and is related to the role played by

each chord and the relations between them.

Time signature defines  the  number  of  the  beats  included  in  each  measure  and  is

usually in the form of a fraction. It is related to the note accent and divides the various beats

into “weak” and “strong” (arsis and thesis).

Key signature is in the form of note alterations (sharp and flat symbols) and informs

the performer of the notes to be played constantly altered. It is a sign of the tonality of the

musical piece.

3
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1.2.2. Music Forms

Music  is  an  art,  involving  composition  as  well  as  performance.  A person  can  be

interested in any of these two procedures, when he is coming to contact with music, while

their combination is of the most usual interest. Thus, communication in music, is carried

out in two different levels [1],  [2].

The first level is the  symbolic level. At this level the composer, communicates to the

musicians all  the musical gestures that are required for the piece to be performed. The

symbolic  representation  of  all  these  gestures  is  called  the  score.  There  are  numerous

symbolic  representation systems proposed through the centuries,  but  the one associated

with western musical tradition and the most popular one is the one introduced by Guido

d'Arezzo on the 11th century and was established in its current form on the 14th century. A

formal definition of what a score is, follows [1]:

The  information  contained  in  a  musical  score  can  be  divided  into  two  sets  of

parameters: the general parameters and the local parameters.

The general parameters concern the universal properties of the musical piece that never

or  not  often  change.  These  include  main  tonality,  modulations,  time  signatures,  tempi,

musical  form,  number  of  voices  and instruments  and repetitions.  These  parameters  are

usually not distinctive of the musical piece, since there is a wide number of pieces having

the same or similar general parameters such as tonality or time signature.

The local parameters contain the sequence of the notes that have to be played by each

musical  instrument,  along  with  their  correct  time  positions  and  durations  and  maybe

4

A musical  score  is  a  structured  organization  of  symbols,  which  correspond  to
acoustic events and describe the gestures needed for their production. 



Music and Music Information Retrieval

intensity indications. These are the parameters that enable us to extract information about

the melody, the rhythm and the harmony of the piece. The intensity indicators are presented

in a subjective way, ranging from “very soft” to “very loud” while information about the

timbre  are  only  partially  suggested  through  instrumentation  and  playing  technique

indications, when present, and are not clearly carried out.

Therefore,  although  the  musical  score  works  as  a  representation  of  the  ideal

performance, it is clearly only an approximation of the musical work, since it is impossible

to represent all the parameters required.

 

The second level is the  performance level. At this level, the musicians interpret the

symbols of the musical score and perform the piece, communicating their interpretation to

the audience. This is done by producing a personal realization of the gestures proposed

within the score,  that  results  in what  is  called the performance.  It  is  the conversion of

symbols into sounds, through the musicians, and a formal definition is the following [1]:

A music  score is  the  means used by composers  to  communicate  their  intentions  to

music  performers.  However,  it  is  nowadays  considered  common  sense  that  precise

interpretation  of  a  music  score  sounds  mundane  and  machine-like.  Expressive  music

performance necessitates deviating from the score of a music piece in a number of ways

including, tempo deviations, intensity and occasionally melodic and harmonic alterations.

A recording of a performance is often the only means of reference to a specific musical

work, due to the lack of a score. This happens a lot in jazz and folk music, as well as other

genres with an emphasis on improvisation.

A performance can generate a more universal interest than a musical score, since it does

not  require  the  knowledge of  the  symbolic  language,  in  order  to  be understood.  But  a
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performance can generate special interest to specific categories of people. Such may be the

musicologists,  interested  in  studying  the  characteristics  of  the  interpretation,  or  audio

engineers, interested in studying the acoustics or the recording techniques.

On the other side, from the musician's point of view, it is far more difficult to learn how

to play or study the structure of a musical piece, only by listening to a performance of it,

without having access to its score.

1.2.3. Facets of Music

According  to  [3],  music  can  be  viewed  in  seven  different  facets:  pitch,  temporal,

harmonic, timbral, editorial, textual and bibliographic facet. Each one of them plays various

roles in the concept of understanding music. They are often correlated between them and

there is a number of combinations of them, that can result in a meaningful descriptor of the

musical work. These are useful for the tasks described in 1.4.2.

Pitch,  as mentioned above, is associated with the fundamental frequency of a note.

There is a variety of methods for depicting pitch, with note names (A, B, C, …), scale

degrees (I, II, III, …) or solfege (do, re, mi, …) being among the most popular. What is

worth  mentioning,  is  the  highest  significance  of  the  intervals  between the  pitches  in  a

melody, over the actual pitches. This means that the distances between each note within a

note sequence is what makes it distinguishable, and not the actual notes themselves. These

intervals are measured in semitone distances and each interval has a specific name, such as

“Major third”, “Minor second”, “Diminished fourth”, etc.

All information of a musical piece, related to the time axis falls into the temporal facet

and is related to the horizontal dimension of music. This information includes tempo, meter,

pitch duration, harmonic duration and accents and they shape the rhythmic components of

the piece. Some information access problems arise in this facet, due to the various notations

of tempo (absolute, general, relative).

6
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Harmony exists  when  two  or  more  sounds  are  played  simultaneously  (chords).

Harmony facet  is  linked  with  polyphonic  musical  pieces  and  is  related  to  the  vertical

dimension of music (the simultaneous sounds are aligned vertically on the time axis since

they are played on overlapping times). A big branch of music theory is devoted to codifying

specific combinations of notes, according to their intervals and their relation to the key of

the musical work, as well as their sequencing (chord progression). Again, there is a number

of methods for depicting chords and chord progressions, just like pitches (F major, F+, IV,

etc.). In this facet, access problems arise because of the non explicit notation of chords, and

the investigation of them is not always an easy task.

The timbral facet involves all information having a relation with tone color. One of the

most  important  of  them is  orchestration,  which  is  the  enumeration  of  all  the  musical

instruments that participate into the musical piece and the part each one plays. However,

this  information  is  often  attributed  to  the  bibliographic  facet,  which  will  be  examined

below. Other information, related to the timbral facet is the style of playing the instrument

(pizzicato, muted, etc.), but again, this is related to the editorial facet too.

All information given to the performer as instructions are contained in the  editorial

facet.  Such information include fingerprints,  ornamentation,  dynamic instructions,  slurs,

articulations, staccati, bowings, etc. There are several problems associated with the access

to the editorial  information of a musical piece.  Firstly,  the information can be given in

either textual or iconic form. Secondly, some of the editorial information are references to

the music to be played itself (e.g. basso continuo). Finally, the lack of editorial information,

assuming the performer can determine them himself, only adds to the difficulties.

Textual facet is mostly referring to the lyrical content of the songs and musical works,

as well as the libretti (the text of operas and musicals). What may not seem obvious is the

non strict association of a lyrical snatch to a specific melody. This occurs due to the various

translations or other lyrical variations of songs, as well as the different musical settings of

the same lyrics.

Bibliographic facet contains all the information that cannot be derived from the content

of the musical piece, and instead are about the piece. Such information include the title of

7
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the piece, the composer, the lyric author, the publisher, the edition, the catalog number, the

publication date, the performer, etc. The difficulties associated with this facet are the same

with the difficulties associated with traditional bibliography.

The first  four  of  these  seven facets  are  related  to  another  way to examine musical

content, proposed in [1]. This is by dividing it into seven dimensions, each of which falls

into a category of short-term, mid-term or long-term information. Briefly, these are:

Short-term:

• Timbre, quality of the produced sound.

• Orchestration, sources of sound production.

• Acoustics, quality of the recorded sound.

Mid-term:

• Rhythm, patterns of sounds onsets.

• Melody, sequences of notes.

• Harmony, sequences of chords.

Long-term:

• Structure, form and organization of the musical work.

1.3. Digital music

When it comes to the digital domain, there is a wide variety of formats for representing

music. All these representations fall into two main categories, with regard to the levels of

communication  described  above.  The  first  category  is  the  symbolic  formats,  and  is

obviously related to the symbolic level of communication. The second one is the audio or

sampled formats, and is the one that captures the performance level.

8
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1.3.1. Symbolic formats

The range of the formats for representing digital music on the symbolic level is wide,

and is similar to the variety of music editing software.  The formats can be categorized

according to the use of a graphical representation system and the use of a markup language.

Finale and Sibelius are among the most popular choices of music notation processing

software. Software of this kind, usually try to imitate the format of printed music through

the graphical representation of the musical sheet.

The  sequencers  of  Digital  Audio  Workstations  (DAW),  such as  Cubase,  Logic  and

Ableton, while usually offering the choice of representing music in a similar to the printed

sheet form, offer alternative representation forms too. One of the most popular of these is

the one called  piano roll  (Figure 2). The term originates from the storage mediums that

were used to control automated pianos. Music is depicted in a two-axis graphical system, in

perfect match to the horizontal and vertical dimensions of music, described above. The

horizontal axis stands for time, while the vertical axis stands for pitch. Notes are indicated

as horizontal lines of the correct height, according to their pitch and of the correct size,

according  to  their  duration.  Some software,  offer  the  ability  of  representing  one  more

dimension, usually the note intensity, through the variation of the line color.

As one can guess, problems arise when it comes to the compatibility and the portability

9
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between the various formats. This has been partially covered by a format called Enigma [4].

It has publicly available specifications and a number of tools for converting between that

and other formats have been developed.

Markup languages is the latest advance in digital music notation. Its rising popularity

is attributed mainly to the public digital music libraries. Examples of such languages are

GUIDO [5], whose basic idea is representation adequacy, or the free and open-source GNU

LilyPond [6]. Another attempt has been MuseData [7], but the markup language that seems

to be of the most interest, is the one built upon it, MusicXML [8]. It is an extended version

of  XML with  the  aim  of  representing  musical  notation,  and  it  is  publicly  and  fully

documented and available for use by anyone.

Finally,  Musical Instruments Digital Interface (MIDI), whilst more than a notation

system, is  one of the most  popular  choices  for saving and editing digital  music in  the

symbolic form. It was firstly introduced in 1982, as a means of communicating between

electronic  musical  instruments  such  as  keyboards  and  sequencers  and  the  information

exchanged,  were  among  others,  which  key  was  played,  its  intensity  and  the  channel

(voice/instrument). These, along with other information stored in meta-data, such as the

author, title, etc. formulate the Standard Midi File (SMF) which can be used as a medium of

storage, editing and reproduction of all the musical instructions for a specific musical work.

Mainly, due to the great amount of available MIDI documents, this format is still one of the

most popular choices for both users and musicians.

Additional information on the symbolic formats of music may be found in [1] and [2].

1.3.2. Audio formats

The goal of these formats is to digitally represent the sound of a music piece. This is

achieved by the procedure called digitization of the audio signal and it includes sampling

the signal at  a specific sampling rate,  quantizing it  according to a specific bit  rate and

encoding its value. The sampling rate is the number of samples taken in an amount of time

10
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and bit rate is the resolution (number of bits) available for encoding the amplitude value.

According to the Nyquist-Shannon sampling theorem, the sampling rate should be at least

two times greater than the highest frequency being sampled. Since the highest pitch, the

human ear can perceive is about 20 kHz, the most popular choice of a sampling rate is 44.1

kHz. Although, the bit rate which has the greater signal-to-noise ratio is 24 bit, the most

popular choice is still 16 bit. The standard method for representing a digitized audio signal

is the Pulse Code Modulation (PCM). This is the one used in computers, Compact Discs

and digital telephony. This is the method also used by the most popular digital audio file

formats, such as WAVE, AIFF and AU.

The main disadvantage of these file formats is the great amount of information stored in

them and therefore, their size. The sampling properties and the duration of the file are the

only factors on that, while its content, whether it is silence or a loud noise, do not affect the

size  of  the  file.  This  creates  the  need  for  compression  methods,  which  exploit

psychoacoustic phenomena in order to reduce the amount of data within the file, removing

information  that  seem to  not  be  noticeable  by the  human  auditory  system.  The  most

common file format of compressed audio is MPEG-1 Audio Layer III (MP3) [9], while an

open  source  alternative  is  the  OGG  Vorbis  format.  Despite  all  the  sophisticated

compression algorithms used by these formats, there is a certain amount of loss in quality

of audio, the human ear can perceive, depending on how skilled the listener is. Lossless

compression formats such as Free Lossless Audio Codec (F.L.A.C.)  [10] and  Monkey's

Audio APE [11] give solution to this problem, although the ratios of the compressed to the

uncompressed file sizes are much  bigger.  Finally, there is another category of audio file

formats that achieve a great compression rate. They are those that describe the synthesis

instructions for the sound to be produced instead of the actual sampled sound. This can be

perceived as the equivalent of the vector graphics files in the audio domain. Such formats

have been included in the MPEG-4 and MPEG-7 standards [9]. 

Sampled formats are covered in [1] and [2].
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1.4. Music Information Retrieval

The  objective  of  Music  Information  Retrieval  research  is  to  provide  efficient

mechanisms  for  analyzing musical  material  (represented  either  on  the  symbolic  or  the

performance level), so as to derive meaningful information that is useful for a number of

user applications relating to music access, music performance or music composition.

The increasing availability of affordable information storage, computational processing

and network technologies has largely permitted experimentation with MIR research. This

translates to increased amounts of locally stored data, faster and more powerful methods of

processing them, as well as increased availability and access of musical data remotely. [12]

1.4.1. Context vs Content

First of all, the various queries set for MIR, as well as the various approaches for giving

answers to them are divided into two main categories: the context-based approaches and

the content-based approaches.

In the category of context, the query is based on textual information describing the

object. These can be the meta-data information that comes with the audio object. There are

many services whose purpose is to provide the correct meta-data for music tracks. Typical

examples of them are services such as Gracenote, Musicbrainz and freedb, which try to

recognize a music album that the user has encoded in audio files from a compact disc or

other source, relying on the number of tracks and their duration, and provide him with the

accompanying  information  such  as  artist  name,  title,  etc.  These  are  objectively  true

information about the album and the music tracks, and are called factual meta-data.

In  addition,  there are  other  subjective information that  can describe music,  such as

mood, emotion, style. They are called  cultural meta-data and they implicate a personal

perception  of  the  user.  In  any case,  the  clarity,  comprehensibility  and  accuracy of  the
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attached meta-data  are  essential  for  an  MIR system.   Web  2.0  and the  rise  of  on-line

communities  have  contributed  considerably  to  outreach  such  problems  throughout  a

democratic process. Users, as members of the community, attach tags with either factual or

cultural information to music, which provides at least a partial validity, within the limits of

the  community.  These  information  are  often  used  by  services,  such  as  Last.fm,  for

categorizing and recommendation purposes. However in user provided meta-data, there is

often the problem of mismatching spellings or mistaken orderings of names between users,

to be surpassed. Community meta-data can also be time-aware, depicting for example the

change of an artists' style or his listeners' perception.

The category of content is based on information gathered directly from the object. This

means that meaningful descriptors are derived by the analysis of the various audio features.

These features  are  extracted from the audio information using digital  signal  processing

techniques.  These  can  be  high-level  descriptors,  referring  to  music  elements  easily

perceived  by  humans  such  as  musicians  or  even  casual  music  listeners,  or  low-level

descriptors referring to particular physical measurements of the signal.

There is a number of MIR tasks associated with the various music elements, that can

result in a high-level descriptor. These include instrument recognition for timbre, melody

extraction  for  melody,  onset  detection  and  tempo  tracking  for  rhythm,  fundamental

frequency estimation for pitch, chord label extraction for harmony, modulation tracking for

key,  verse/chorus  extraction for structure,  lyrics  identification and singing detection for

lyrics, etc. Each of these tasks is based either on the symbolic or the sampled form of music

and they will be described further on 1.4.2. 

Low-level descriptors are either measurements made upon time frames of the signal

(with fixed interval or aligned to beats) or statistical values of the features. Many of them

are based on the spectral  analysis  of a windowed Fast  Fourier Transform (FFT) of the

signal:
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X k=∑
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where X k  is the k -indexed sample of the signal in the frequency domain and xn  is

the  n -indexed sample of the signal  in the time domain. Some of the most often used

low-level  features  include  Short-time  magnitude  spectrum,  constant-Q  /  mel  spectrum,

chromagram, onset detection, Mel/log Frequency Cepstral Coefficients (MFCC), spectral

flux, log power and beat tracking.

Further information on the content-based and context-based approaches of MIR can be

found in [2] and [13].

1.4.2. Techniques / Tasks

As mentioned above, the first stage of an MIR system involves the extraction of the

various descriptors applying the several MIR tasks either on the symbolic or the sampled

form of music. In the early years of MIR the focus on the symbolic format was stronger,

due to the easier concentration and transferring of MIDI files. However, the vast advances

in file storage and transfer speeds, as well as the development of sophisticated algorithms

have resulted in a shift towards focusing on the sampled form too. Here, we will examine

how both of these forms are related to some of the main music dimensions described in

1.2.3.

The descriptors that can be easily extracted from the symbolic form of music are related

to the dimensions of melody and harmony.

Melody can be derived easily when the musical piece is monophonic, since the whole

symbolic  sequence  is  a  direct  depiction  of  the  melody.  Problems  arise  together  with

polyphony. The easier case is that of the multiple parallel melodies, as in pieces with the

element of counterpoint. These pieces are handled in a similar manner, as containing many
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independent monophonic melodies. However, there are more difficult cases that require the

automatic recognition of the main voice of the piece. These cases include most of the pop

songs, where the main melody is usually sung by a human voice, while each of the other

instruments plays  an accompanying line.  One of the proposed approaches is the use of

statistical  means  associated  with  pitch,  range,  difference  of  subsequent  notes  and  the

relation of the voice length and the total  length,  based on a training set  of pieces with

predefined melodies. The problem becomes more difficult when voices are mixed together

and there  is  simultaneous  playing  of  chords  and  single  notes.  In  this  case,  the  use  of

listeners perception and composers organization rules have to be taken into consideration.

Although not necessary to all MIR applications that use the melody descriptor, another

important task is the  segmentation of the extracted melody. This involves sectioning the

melody into basic sequences to be used as meaningful indexes, similar to sectioning a text

into  lexical  units.  However,  this  is  not  an  easy  process,  since  single  notes  cannot  be

considered as useful segments and pauses do not play the role of limits  indications, as

spaces do in a text. One approach is to segment all the notes sub-sequences of a specific

length or  to  segment  all  the sub-sequences  that  are  repeated a  number of times.  Other

approaches  include  again  the  knowledge  of  human  listeners  perception  rules  and  the

attempt to emulate them.

Harmony can be extracted from the symbolic form of a musical piece in the sense of

chord sequences. This is a difficult and fatiguing process even for humans, but more so, the

design  of  a  system for  the  automatic  recognition  of  chord  progressions  involves  some

complicated computations. The fact that the duration of a chord is usually equivalent to the

duration of a sequence of single notes makes obvious why recognition and segmentation

are usually applied together. The task of chord recognition involves again statistical means

and the use of training sets.

The  sampled  form of  a  musical  piece  offers  the  ability  to  apply tasks  such as  the

extraction of features related to the dimensions of timbre, orchestration, rhythm, melody

and harmony. 
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As aforementioned,  timbre is  maybe the most ambiguous dimension of music.  The

relatively loose timbre related instructions to instrument performers,  written on musical

pieces  by  composers,  is  indicative.  That  makes  the  tasks  related  to  the  extraction  of

meaning from it, challenging. The graph of timbre over time is called spectrogram and is

derived by the FFT of the audio signal. Spectrogram itself cannot be considered as an ideal

descriptor, since it contains large amounts of data and it provides little meaning. However,

many  low-level  descriptors,  such  as  spectral  flux,  spectral  centroid  and  MFCC's  are

exploiting the extraction of the spectrogram. The creation of other meaningful descriptors

that are computed using the spectrogram is possible and is done in accordance with the

particularities of each specific MIR application.

The recognition of orchestration, which is the recognition of the musical instruments

participating in a musical piece is one of the most difficult tasks of MIR The results are

more  satisfactory when the  piece  is  monophonic,  or  when it  is  polyphonic  but  all  the

instruments are of the same type. There are also some instrument types, such as the flute,

that are more easily recognizable, while others, such as the cello, are more difficult. The

approaches usually involve training, based on a set of recordings of the various timbres and

analysis of the MFCC features.

Although rhythm is considered to be the most easily recognized music dimension, in

fact, this only applies to western classical music and its contemporary derivatives, due to

their main focus on melody and harmony. In the eastern and African music cultures, rhythm

plays a significant role and its recognition is often a much more complicated task. Tempo

tracking, which is the identification of the BPM of the musical piece is the easiest task,

related  to  rhythm,  but  it  is  significantly  important  in  many  MIR  applications,.  More

complicated approaches that also take into consideration periodicity histograms can result

in a classification of musical pieces or parts of them, according to its rhythm patterns.

The extraction of the main  melody is a task that can be performed on the sampled

domain too. The difficulty rises when the musical piece is not monophonic and the various

musical  instruments  interfere,  exactly  as  it  does  in  the  symbolic  domain.  The  task  of

tracking the fundamental frequency of a musical piece is called f0-estimation. However,
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there are often several problems encountered,  that cause mistaken results.  Such are the

recognition of the wrong octave of a note (one higher or one lower), the addition of extra

notes when vibrato or glissando is present and the mistaken recognition of a single note as a

sequence of repeating the same note or vice versa. Other factors that, at least in pop music

genres, contribute in the task of the main melody extraction is the assumption that the main

melody is of greater amplitude than other music parts and that it is usually centrally panned

between the left and the right audio channels.

The  extraction  of  descriptors  from the  harmony dimension  is  another  task  that  is

performed on both the symbolic and the sampled domain. On the sampled domain, it is a

difficult task, and the harmonic content descriptors that are first computed, can then be used

to perform the chord progression recognition task. This is done by mapping the several

spectral  components  to  the  twelve  steps  of  a  chromatic  scale  and  comparing  to  some

predefined chord templates. 

The extraction of features related to the two remaining dimensions of music, structure

and acoustics, is not so often but it consists of one of the challenges of forthcoming MIR

applications.

The alignment of the symbolic and the sampled form of a musical piece is often one of

the  first  tasks  that  have  to  be  performed  on  an  MIR system and is  necessary  for  the

realization of many other tasks. This task is the topic of this thesis and it will be fully

described in the following chapters.

The techniques and tasks of MIR, as well as their relation to the dimensions of music

are fully covered in [1].

1.4.3. Applications

The various MIR applications can be classified into three categories, according to their

approach of managing information. These categories are music searching, music filtering

and music browsing, classification and visualization, as proposed in [1].
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Searching for music is the most basic application of MIR This is done by giving an

example of any of the dimensions of the musical piece to look for, such as timbre, structure

or harmony. However the dimension that most of the MIR work has been done, regarding

music searching, is that of melody. The three approaches of a melody retrieval system are

the use of index terms, the sequence matching and the geometric methods.

Searching  based  on  index  terms,  offers  the  advantage  that  computations  are  not

performed at the time of the query and instead,  the query is being matched with some

predefined indexes assigned to the files of the data base. This method exploits the lexical

units  methods  described  above,  which  can  be  also  applied  in  audio  information,  in

combination with other methods, also originating from the text information retrieval field.

The sequence matching approach consists of matching an excerpt of a piece provided

by the user to the correct piece from the data base. The advantage of this approach is that it

can cover the possible mismatches between the two, which is the main problem of the

based  on  index  terms  approach.  Such  mismatches  can  be  the  insertion,  deletion  or

modification of a note in the melody sequence.  Several techniques for music searching

through  sequence  matching  have  been  proposed,  including  Dynamic  Time  Wrap  and

Hidden Markov Models (described in 2.3.2 and 3.2).

Geometric methods consider the melody as a graph on a two-dimensional space with

the horizontal axis being that of time and the vertical axis being that of pitch. Each note of

the melody is depicted as a dot on this space. This approach is suitable for polyphonic

music, because it does not require the extraction of the main melody.

Music filtering is an application of recommender systems, such as on-line music stores,

discography data bases and music communities. These services have the ability to suggest

music to the user that he is supposed to be interested in, according to some criteria. The

system can result in such a suggestion, applying a technique called collaborative filtering

on gathered information concerning the user profile.

Content-based approaches are also used by filtering systems. They look for similarities
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between the items that have been rated in some way by the user, and the items of the data

base. The similarity can be examined in either low or high level features. Some services

take advantage of the timbre features such as MFCC's, while others use descriptors such as

rhythm and harmony.

A particular MIR application, associated with music filtering is the one of automatic

play-list generation. This can be applied to music collections owned by users or by on-line

services,  like  Internet  radios.  Each song is  linked to  the  songs  that  appears  to  have  a

similarity with, in one of its dimensions, and the play-list is created, listing songs in a way

that each subsequent pair of songs have such a similarity.

Apart  from searching,  a music collection can be accessed in  terms of  browsing its

items,  classifying them in certain categories and using  visual cues to access them. These

approaches  offer  the  user  alternatives  in  case,  for  example,  a  query-by-example  is  not

sufficiently effective.

Browsing through music is  carried again in terms of similarity between the various

items, either they are in the symbolic or the sampled form. It is a very useful approach in

cases that the user has not the ability to satisfactorily describe the item he is looking for.

The  navigation  through  the  various  categories  of  music  can  be  organized  in  terms  of

content, such as low-level descriptors.

The most basic approach of audio classification is the separation of the audio signal into

the parts where speech, music, or environmental sounds exist. What latest MIR work tries

to add, is the separation of music itself, into several other classes. The classification can be

applied, based on any of the dimensions of the items such as their orchestration. However,

the most usual classification task is the genre classification. Pieces are separated into the

various genres and sub-genres, which is the way that most users tend to understand and

classify music. The size of the audio data that are necessary to have good classification

results is the main concern, regarding this task.

Visualization  of  music  can  be  applied  on  either  single  documents,  or  on  whole

collections of music. In the first case, the visual depiction of the musical piece works for
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the user in  a similar way with a thumbnail  of a picture.  In the case of a collection,  it

provides the user with a memorable picture of its collection, making it easier for him to

access documents.

1.4.4. Research / Challenges

Music Information Retrieval is an ongoing research field. The number of applications

and services that show up steadily is great, and so is the number of related researches and

publications. Although the advances are rapid and the solutions to problems comes one

after another, there is a great amount of challenges for the future.

Two  major  constitutions  in  MIR  today  are  the  International  Society  for  Music

Information Retrieval (ISMIR) and the Music Information Retrieval Evaluation eXchange

(MIREX). ISMIR is an international forum on MIR research topics, which holds an annual

conference since 2000. Its purpose is the gathering of researchers, educators, students and

professionals and the presentation and exchange of the latest news, ideas and results on

MIR.  MIREX  is  the  annual  contest  that  is  taking  place  along  with  ISMIR,  where

researchers propose their approaches to MIR tasks such as the following [14]:

• Audio Train/Test Tasks 

◦ Audio Artist Identification 

◦ Audio Genre Classification 

◦ Audio Music Mood Classification 

◦ Audio Classical Composer Identification 

• Symbolic Genre Classification 

• Audio Onset Detection 

• Audio Key Detection 
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• Symbolic Key Detection 

• Audio Tag Classification 

• Audio Cover Song Identification 

• Real-time Audio to Score Alignment (a.k.a Score Following) 

• Query by Singing/Humming 

• Multiple Fundamental Frequency Estimation & Tracking 

• Audio Chord Estimation 

• Audio Melody Extraction 

• Query by Tapping 

• Audio Beat Tracking 

• Audio Music Similarity and Retrieval 

• Symbolic Melodic Similarity 

• Structural Segmentation 

• Audio Drum Detection 

• Audio Tempo Extraction 

Although, the list of challenges for MIR is never ending, an attempt to enumerate the

current and ongoing research direction, according to [13] and [3], follows:

• The  magnification  of  data  bases  for  content-based  searches  from thousands  of

pieces to millions of pieces.

• The integration of the already existing tools and frameworks.

• The separation of the sources in polyphonic music.

• The  bridging  of  the  remaining  gap  between  the  objective  measurements  of

acoustical properties and the semantic listeners' perception.

• A stronger focus on the user side and the subjective user preferences.

• The identification of all the relevant to music kinds of information, other than audio.
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• A unification  of  data  formats  and  protocols  and  an  agreement  on  the  required

quality requirements.

• The maintenance of large, open and legal data bases of accurate music data for users

and researchers.
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2. Audio to Score Alignment

2.1. Definition

The goal of the Audio to Score Alignment (ASA) task is the matching of each musical

event  of  a  given musical  score to  a  point  in  a  given recording of  it,  thus  aligning,  or

synchronizing the audio with the score (Figure 3). It can be considered as a linking between

the symbolic level and the performance level, with regard to the alterations between those

two, as they were defined and described in 1.2.2. 

In simpler words, it can give the computer the ability to “listen” to a performance and

track the performer's position in the score, exactly as a human being could do. The real-

time version of ASA, where the synchronization is taking place live,  along the musical

piece being performed, is called Score Following.

The biggest challenge of the creators of such a system is the invention of techniques
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and approaches of coping with the different kinds of errors,  omissions or interpretation

variations of the performer.

2.2. Applications

There  is  a  wide  number  of  different  activities,  ASA can  apply  to.  Each  of  them,

concerns different fields, related to music and sound, and may be useful to a professional

specialist or a casual user.

First of all, ASA can be considered as a beginning stage of an integrated MIR system.

In this case, it can provide indexes and note labels for the sections of a large continuous

audio recording, making the content-based retrieval for each section possible. It can also

provide a distance measure between couples of notes in the sequence, thus contributing in a

matching task.

An alignment between the score and the performance of a musical piece is also very

useful from a  musicological  point  of view. Researchers of this  field,  are able  to study

performances  at  time  positions  of  their  interest  easily,  as  well  as  compare  the  unique

characteristics of different performances of a piece. Music education has a lot to gain from

ASA too. For example a musical instrument student can track his position in the score,

while the system can offer him error locating, page turning etc.

Sound analysis is another field, to which ASA has a lot to contribute. Score following,

the  on-line  version  of  audio  to  score  synchronization,  can  be  used  in  musical  pieces,

composed for both a computer and a human performer, giving the performer the possibility

to  differentiate  his  playing  in  some  ways,  and  have  the  computer  follow him.  In  this

occasion, the computer system works as a virtual accompaniment performer, simulating a

human musician. This can also apply in music education, since an accompanying performer

for a musical instrument student will be always available. Another application related to

sound analysis, is the contribution in a fundamental frequency estimation, by offering a

limited number of possible note values, which has resulted from the alignment to the score.
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The sectioning of a performance in separate notes, can also help in the source separation

task, although this works in reverse too.

Finally,  segmentation  and  indexing  of  audio  performances,  through  the  means  of

aligning it to its score, has many applications in  music creation and composing. The re-

transcription of  a  score,  in  accordance to a  specific  performance of it,  is  one of  them.

Furthermore, the musical units that can be derived from a segmentation of a performance,

can be used to re-synthesize a musical piece in terms of concatenative synthesis. In similar

manners the musical units can be used to create a virtual musical instrument.

Further discussion on ASA applications can be found in [15] and [16].

2.3. History / Approaches

The problem of audio to score alignment, has a long history of research of almost 30

years.  Throughout  all  these  years,  although  perfection  has  not  been  achieved,  many

different solutions have been proposed, most of which with satisfactory results. The real-

time factor has been a major concern, since the beginnings of the related researches. What

follows  is  an  overview,  as  well  as  a  time-line,  of  the  milestone  projects,  divided  into

categories, according to their technical approach. For a full review of ASA history, one can

address to [17] and [18].

2.3.1. String matching and pitch detection

The first attempts took place in the early years of the decade of the 1980's. Researcher

Barry Vercoe  was  one  of  the  first  to  define  the  problem and  try to  approach it.   The

computer  model  he  proposed in  1984,  was called  “Synthetic  Composer”  [19] and was

supposed to be able to replace a human performer in a group of musicians, without the

others  understanding  the  difference.  His  approach  was  taking  into  consideration  the

positions of the fingers of a performer on a flute, in order to understand the pitch being
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played and be able to follow his performance. This system was also the first to include a

“learning to improve” method, based on rehearsals. According to Vercoe, the three main

stages of the system were: Listen, Perform, Learn [20].

Roger Dannenberg also made use of the performer pitch to propose a solution to the

real-time accompaniment problem  [21].  His algorithm considered the musical events as

string  sequences  and  used  dynamic  programming  techniques  for  finding  the  longest

common  sub-sequence.  This  system was  divided  in  these  three  tasks:  recognizing  the

playing of the performer, matching it with a score, and providing an accompaniment. The

performance mistakes it took into consideration are omitted and extra notes.

The following years, Dannenberg and his students made several extensions of the string

matching algorithms first used [22], [23]. They introduced new matching algorithms, with

the use of multiple matchers at the same time that attempted to deal with chords, trills,

grace notes and glissandi. They also added a temporal delay before any matching decision

is made, to prevent false matchings.

In the early 1990's, the development of Score Following at IRCAM was introduced,

starting with EXPLODE, a system proposed by Miller Puckette, firstly in 1990  [24] and

further described in 1992, together with Cort Lippe [25]. This system was designed, taking

into consideration specific musical pieces, specially composed for being performed with

Score  Following.  Such  pieces  include  Philippe  Manoury's  “Pluton”  and  Pierre  Boulez'

“...Explosante-fixe...”. The algorithm of EXPLODE was based on pitch detection, taking

advantage of MIDI symbols as performance input and providing pointers to the current and

not-matched notes. It was tempo-independent and made no predictions for the forthcoming

notes.

While  EXPLODE  had  relatively  good  results  when  used  with  the  compositions

mentioned  above,  a  new  piece  called  “An  echo”  by  Phillippe  Manoury,  placed  new

challenges for Miller Puckette. The piece was composed for a soprano and a computer and

gave rise to a new system proposal in 1995 [26]. While it was still based on pitch detection,

it had to use the real performance audio data to do that, so it was the first time a real audio

to score alignment system was introduced. The audio analysis was done, dividing the signal
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into frames, and trying to estimate the fundamental frequency of the singing voice, through

the accelerated constant Q transform, surpassing, in this manner the difficulties such as the

vibrato of the voice. The system also gave a strong emphasis on the elimination of the delay

between the musician's performance and the response of the computer.

At about the same time, another system was proposed by Baird, Blevins and Zahler

[27]. This system was based on Dannenberg's and Vercoe's publications. The novelty of it

was  that,  instead  of  focusing  on  single  music  events,  such  as  notes,  it  performed  the

matching, on segments of predefined length.

2.3.2. Dynamic Time Warping

One of the matching approaches, introduced for audio to score synchronization in the

early 2000's  was  Dynamic  Time Warping (DTW).  It.  is  a  popular  and highly efficient

algorithm  for  finding  the  optimal  alignment  between  two  time-series,  taking  into

consideration  the  possible  time  shifting,  deformation  and  variations  in  speed.  The

sequences are warped in time and determine a similarity measure. It has been used as a

sequence alignment method in various data mining and information retrieval applications,

such as  in  video and graphics,  while  it  has  played a  major  role  in  audio  applications,

especially those concerning speech, such as speech recognition.

From a more technical aspect, DTW computes the best path by:

p m ,n=min {p m−1,n−12d m ,n}
p m , n=min {p m−1,nd m ,n}
p m , n=min {p m−1, nd m , n}

(2)

where,  p m ,n  is the cost for a path up to m ,n ,  d  is the local distance and

initial cost p 1,1=d 1,1 [28].

DTW  was  first  applied  in  audio  to  score  alignment  by  IRCAM  researchers,  and

specifically Nicola Orio  [28]. The system he proposed, introduced a new low-level audio

27



Audio to Score Alignment

feature called Peak Structure Distance (PSD), which was used as the local distance in the

DTW algorithm. This feature was used, in place of the pitch measurements of the previous

alignment systems. Orio considered that pitch is an error-prone feature and is not suitable to

polyphonic  pieces.  PSD  instead,  analyzes  the  structure  of  the  peaks  of  the  expected

harmonics of the notes, providing a reliable and versatile way to recognize single notes as

well as chords. The audio feature of Peak Structure Distance and Peak Structure Match will

be further described in 4.2.2. 

This system, had the advantages of having a good memory resources management as

well  as achieving good results  on pieces containing complex musical elements such as

polyphony,  multiple  instruments,  trials,  vibrato  and  fast  sequences.  However,  its

requirement of having access to the knowledge of both the whole sequences before it was

able to do the alignment computations, gave it the important drawback of working only off-

line.

An attempt to overcome this obstacle, was done by Simon Dixon in 2005  [29], who

proposed an on-line version of the DTW algorithm. This was achieved by using linear time

and space costs, computing only the minimal path to the current position and performing

calculations only to the latest fixed-length window of the performance.

2.3.3. Stochastic Approaches

During the second half of the 1990's, a new probabilistic approach emerged in the audio

to  score  alignment  researches.  This  approach  attempted  to  cope  with  the  amount  of

uncertainty,  provoked  by  the  variation  and  the  mistakes  that  take  place  during  a

performance.

The first to provide a stochastic proposal for a solution to the audio to score alignment

problem was Roger Dannenberg, this time with Lorin Grubb, in 1997  [30],  [31]. In this

system, the position in the score, is represented as a PDF, with the probabilities referring to

the variation of the audio features having been formally set or empirically derived. The
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position of the performer is represented as a continuous density function over the position

in the score.

Bryan Pardo and William Birmingham, in 2001  [32] and 2002  [33],  provided some

publications  on  a  simpler  stochastic  approach,  extending  some  of  the  older  work  of

Dannenberg and Puckette. They defined a match score that was being trained off-line from

a data base of sounds, as well as a skip penalty. However, in this case, they were modeled

according to a probability distribution.

A major milestone in the development of audio to score alignment, was the introduction

of Hidden Markov Models. This was done by Chrostopher Raphael through a series of

publications,  starting  with  that  of  1999  [34].  Much of  the  later  work  done by various

researchers on this field was based on this publication, including the work on the IRCAM

Score Follower, on which this thesis is based. Another proposal based on HMM's was done

by Pedro Cano, Alex Loscos and Jordi Bonada in 1999  [35].  Anna Jordanous  and Alan

Smaill also implemented a system based on HMM's in 2008 [36], although it used MIDI

data as the performance input, instead of analyzing audio data. The technical specificities of

how  HMM's  and  their  algorithms  can  apply  to  the  problem  of  audio  to  score

synchronization will be fully described in 3.2 and 4.2.

Other developments on the probabilistic approaches domain is a combination of HMM's

with  Bayesian  belief  networks,  proposed  by  Raphael  in  2001  [37],  providing  a  more

reliable way of handling time issues, based on training from a specific performance.

2.3.4. Anticipatory approaches

The  latest  advances  in  the  audio  to  score  alignment  researches  include  the  use  of

anticipatory modeling. Artificially intelligent agents are used to make predictions about the

future behavior of the real-time music data. Specifically, Arshia Cont, starting in 2008 [38],

has further developed the IRCAM Score Follower in this direction.

The focus is on better temporal modeling and automatic tempo decoding. For this to be

achieved,  an  occupancy distribution  for  the  system states  is  defined.  Thus,  the  use  of
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Hidden semi-Markov Models is imposed. The states of this type of models are dependent,

not only on the previous states, but also on the occupancy distributions. However, the usual

algorithms applied in HMM's, such as Forward-Backward and Viterbi (described in 3.2.3)

have  to  be  adapted  to  fit  to  this  new type  of  models  and  the  complexity  of  the  new

algorithms has important effects on the real-time performance of the system. The solution

to this problem is the creation of hybrid Markov/semi-Markov models,  since the actual

need for a semi-Markov model is relatively rare.

This approach is believed by its creators to be a better extension of the previous systems

proposed, because instead of borrowing techniques that were applied in speech processing,

it tries to adapt to the real needs and specificities of music. The main intended application

of the system is the use for live music performances, and in this domain, it has been used

many times and with satisfactory results.

Further information on anticipatory approaches of ASA, can be found in [39] and [40].

2.3.5. Other approaches

Finally, there are some approaches to the audio to score alignment task, that cannot be

included in any of the previous categories.

One  of  them was  conducted  by  Jason  Vantomme  in  1990.  This  system was  using

temporal patterns as the main cue for recognition. Although the creator reports that the

system is robust and able to cope with performance errors, there is a number of limitations

this technical approach is bound to. The most important of them is that the focus on the

performer's rhythmic patterns limits the diversity of the musical pieces the system can work

with, into those with no complex rhythm patterns.

Another proposed system, is ComParser, developed by Schreck Ensemble and  Pieter

Suurmond in 2001 [41]. Although strongly related to the audio to score alignment issue, it

is described by its authors as a pseudo-scorefollowing system, while their intention was to

create a system for use in the ensemble's performances. Technically, it makes no use of
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symbolic score information. Instead, the user manually sets some cue information on audio

data, which is used as an input. The neural network technology which is applied, requires

supervised training.

2.4. Available software

Although  not  explicitly  stated,  there  are  a  number  of  commercial  applications

implementing  some  ASA algorithm  so  as  to  achieve  their  intended  functionality.  The

following section  presents  some application  examples  having ASA at  the  core  of  their

functionality.

2.4.1. Tonara

“Music  that  listens  to  you”  is  the  main  marketing  motto  of  the  Tonara  software

company.  It  was launched in September of  2011 as an application for  the iPad mobile

computer. It falls into the category of intelligent sheet music readers and its functionality

can be basically described as a digital sheet music book, similar to an electronic book, with

the special feature of being able to follow your playing and behave interactively. A cursor is

showing your progress on the score and when you reach at the end of the page, that turns

automatically. While there is other similar software that do that, usually that is achieved,

relying  on a  fixed  pre-defined tempo,  and not  by actually  “listening”  to  your  playing,

coping with your mistakes etc. It is supposed to work well with polyphonic music, even

with more than one instrument,  while it is able to ignore environmental sounds. It  also

shows  the  tempo  changes  you  do,  while  you  are  playing.  Additional  features,  include

recording and sharing of your  music playing as  well  as making notes on the score on

different layers. Tonara, together with a basic set of music scores are free, while you can

purchase a music score you are interested in, in the appropriate format from the Tonara

library.

The software has gained a good coverage by mainstream media. It has been used in a
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number of concerts, while it was selected as “App of the week” by Apple in October 2011

in four countries.

[42]

2.4.2. Miso Music: Plectrum

Another similar application, compatible with the iPhone, iPod and iPad is Plectrum,

developed by Miso Media  Inc.  The difference  in  this  application is  that  it  works  with

tablatures,  instead  of  sheet  music.  It  is  intended  to  work  as  an educational  software,

offering  error  locating  and  giving  instant  feedback  to  the  instrument  player.  While

considered  a  guitar-learning  application,  the  company  claims  that  their  software  also

support other instruments, including ukulele, bass, banjo, tenor banjo and mandolin.

The credits of the software include the TechCrunch Disrupt SF People’s Choice Award

for 2010, as well as a nomination for App of the Year at the Siemer Silicon Beach Summit

in 2011.

[43]

2.4.3. antescofo~

The  long research on Score Following by the people at IRCAM have resulted in the

modular  system called  “antescofo~”.  It  is  distributed  through the  IRCAM forum since

November 2009. The research & development team includes: Arshia Cont, Jose Echeveste,

Jean-Lous Giavitto,  Florent  Jacquemard and Thomas Coffy,  while  its  development  was

achieved  in  cooperation  with  composer  Marco  Stroppa.  It  is  published  as  an  external

module for the Max/MSP ad PureData graphical audio programming environments.

It makes use of the latest technological advances described above, such as anticipation

(from which its name derives) and includes of a synchronous programming language for
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musical composition. It is able to automatically recognize the score position as well as the

tempo, while it is supposed to work as a plug and play module, meaning that it requires no

off-line training.

While  the  antescofo~  creators'  intentions  were  to  create  a  tool,  useful  for  the  live

performance of  electro-acoustic  musical pieces,  synchronizing a computer with a musical

instrument performer, they do not end to that. IRCAM mentions that the further evolution

of the software should be expected,  focusing on  interaction in computer music, for both

composition and performance.

There are tens of musical pieces that are written or adapted for being performed with

the use of antescofo~ and presentations of the software through concerts are often. The

work of IRCAM has also been awarded by the French Ministry of Industry. 

Antescofo~ has finally been a part of MuSET IMuSE, a system that, apart from audio, it

takes advantage of live performance gestures data from standard controllers, move trackers,

video trackers, etc.

[40]

2.4.4. PROBADO

PROBADO is a framework, that offers digital library services for non-textual data. Its

focus is mainly on 3D graphics and music, while it allows browsing and accessing of the

various documents.

As far as music is concerned, the system offers the ability to browse and playback the

documents in an audio viewer or a score viewer. The user can switch between these views

at any time, as well as move through the score, by choosing specific parts of it and listen to

the corresponding parts of the performance immediately.

[44]
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2.4.5. SampleSumo Music Following

SampleSumo is a “music technology and interactive multimedia” company. Their aim is

to develop products and technological packages to cover the specific need of end-users as

well  as  companies,  taking  advantage  of  some  of  the  latest  advances  in  MIR.  The

technologies they offer, other than melody transcription, percussive sound recognition etc.,

also include music following.

According to the creators' description of their technology, their software offers all the

basic features of a real-time audio to score synchronization system, such as following the

position of a performer in the score with robustness, filtering environmental noise, while it

is supposed to work with multiple musical instruments.

Music  notation  software  MuseScore  and  NeoScores  have  integrated  audio  to  score

alignment features, based upon SampleSumo.  The system has  also  been showcased with

live performances in various concerts, conventions and television shows.

[45]
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3. Pattern Recognition & Machine Learning

3.1. Introduction

Pattern recognition is an important field of computer science and artificial intelligence,

whose goal is the automatic identification of observed objects. 

Pattern recognition has made its first successful achievements long ago, such as the

discovery  of  the  regulations  of  the  planetary  motions,  by  Johannes  Kepler  in  the  17 th

century, or the work related to the atomic spectra, at the beginnings of the 20 th century. The

related theoretical research in the field of statistics has a long history too. However, it was

only after the 1960's and the explosion of the computer use, that the number of applications

of pattern recognition, as well as the demand for additional theoretical development have

been raised enormously. [46]

A general recognition system, usually, receives some input data, which is then given a

label out of a given set of classes, according to a scheme, applied on feature values that

have been extracted from the data. The objects to be identified, could be anything, such as

an  audio  recording  of  a  voice,  images  of  fingerprints,  or  any  other  collection  of

measurements and there is a wide variety of pattern recognition example tasks, including

machine  vision,  optical  character  recognition,  speech  recognition,  musical  genre

classification and many more.

The stages of the development of a pattern recognition system could be pointed out as
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the following: 

1. The feature generation and selection stage, at which a set of meaningful descriptors

and their values are extracted from the input data and the most useful out of them

are chosen to be taken into consideration for the classification task.

2. The classifier design stage, at which the relationships between the features and the

system estimations of the objects identities are set out.

3. The system evaluation stage, at which the classification errors are enumerated and

the system performance is evaluated.

The  key  point,  in  the  development  of  pattern  recognition  systems  is,  instead  of

providing the system with all the rules needed to be able to recognize each object, giving it

a set of real examples of objects and making it able to “learn”  the rules from them.  The

branch of artificial intelligence, related with these tasks is called Machine Learning and a

definition of it, is the following [47]: 

Here, we will try to describe the task of learning in terms of some functions. Consider

36
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f is the function our system is trying to learn. The function we use to approximate f ,

will be h , so that, when it accepts vector-valued input X=x1 , x2 ,... , xN  , it  returns

vector-valued output h X  . We select function h , from a class of functions H , of

which f could  be  also  a  member,  and  we  do  this  choice,  based  on  a  training  set

Ξ=x1 , x2 ,... , xM  .

More  introductory information  on pattern  recognition  and machine  learning  can  be

accessed in [47], [46], [48] and [49].

3.1.1. Supervised and Unsupervised Learning

The types of learning are divided in two main categories. At first, we will examine the

setting we use to learn a function, called supervised learning. In this type of learning, the

output values of f for the input values of the training set Ξ , are known. This allows us

to assume that if we find a function h  that, given the same input Ξ , returns output

values close to those of f , then it is a good guess of f . Also, the greater the size of our

training set, the better the guess of the function will be.

In more practical terms, having supervised learning, means that we give our program a

collection of data  that have been already labeled with their  identity,  and we expect the

program to find out the rules of identification, so that it can use it on other, unlabeled, data.

There are many ways of finding out such a function. Fitting a polynomial curve onto
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the given points, is the simplest example (Figure 7, Figure 6).

The other type is the one called  unsupervised learning. In this type, the training set

Ξ is provided without the function values of f . The problem in this case, is to find an

appropriate way to divide the training set Ξ into some sub-sets Ξ1 ,Ξ2 ,…,ΞR , and the

function we search for it, the one that returns the sub-set that the input vector belongs to.

Again, in more practical terms, having unsupervised learning, means that we give our

program a collection of  data  that  are  not  characterized in  any way,  and we expect  the

program to divide them in groups of similar, in some way, content.

Supervised and unsupervised learning are fully described in [47], [46], [48] and [49].

3.1.2. Probability Theory 

The most important branch of mathematics that pattern recognition makes use of and

one of its central foundations, is the one concerned with uncertainty, random phenomena

and probability of events.

The marginal probability of an event X is denoted as pX  . The joint probability

of X and Y is denoted as pX ,Y   and the conditional probability of Y given X

is denoted as pY∣X .

Given that, we can deliver the two fundamental rules of probability theory.

The sum rule:

pX =∑
Y

p X ,Y  (3)

And the product rule:

pX ,Y =pY∣X  p X  (4)
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The  Bayes  theorem derives  from  the  product  rule  and  the  symmetry  property

pX ,Y =pY , X  and plays a central role in pattern recognition and machine learning:

pX∣Y =
pY∣X  pX 

p Y 
(5)

The Bayesian interpretation of the theorem links the probability of an event X before and

after  the  observation  of  event  Y . pX  is  called  the  prior  and  it  is  the  initial

probability before the observation, pX∣Y  is called the posterior and it is the probability

after the observation of Y , the conditional probability pY∣X  is called likelihood and

pY  is the normalization factor.

Furthermore, two  probabilities pX  and pY  can  be  characterized  as

independent, when  the probability of event X does not affect the probability of event

Y , and

pX ,Y =pX  p Y  (6)

The conditional independence of the probabilities of two events X and Y , given a third

event Z , exists when given the knowledge of the occurrence of Z ,  X and Y are

independent, while if given that Z does not occur, X and Y are not independent:

 

p(X ,Y∣Z)=p(X∣Z ) p(Y∣Z ) (7)

All the basic probability theory is covered in [47], [46], [48] and [49].

3.1.3. Statistical models

The observable outputs that are produced by real-world processes can be characterized
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as signals of values over time. These real-world signals can be described by signal models,

thus making the realization of recognition systems for those processes able.

There are two types of signal models. The deterministic models which are specified by

taking advantage of the known properties of the signal, and the statistical models, in which

we consider the real-world process a stochastic process, thus it can be described only by

statistical properties.

The  idea  behind  a  statistical  model  is  uniting  the  elegance  and  generality  of

mathematics with the statistical developments emerging from data. Building a statistical

model  of  a  phenomenon,  involves  collecting  all  available  data  from  the  real-world

phenomena, and drawing all possible conclusions, interpreting the data in a senseful way. If

the statistical model is a precise representation of the real-world process, it will enable us to

make useful predictions about how the process will behave in the real-world, under certain

circumstances we are interested in. Such a model is called a good fit, while the opposite is

called a poor fit.

The  building  blocks  of  which  a  statistical  model  is  made,  are  the  probability

distributions. These distributions represent both the random and the systematic variance,

and the success of modeling lies in finding the balance that makes the answering to the

problems occurred, possible. The same datasets can be used for building different models,

depending on the problems and questions of interest.

In  mathematical  terms,  a  statistical  model  is  a  collection  of  probability distribution

functions.  If  each distribution is  indexed by a  unique finite-dimensional  parameter,  the

model  is  called  parametric.  All  parameters  are  collected  together  and  form  a  k -

dimensional  parameter  vector θ=θ1 ,…,θk  .  If  the  model  has  infinite  dimensional

parameters, it is called non-parametric. Finally, if the model is made of both parametric and

non-parametric components, it is called semi-parametric.

Statistical models are further covered in [50] and [51].
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3.1.4. Probability densities, the Gaussian distribution and Gaussian 
Mixture Models

The concept of probabilities for discrete events,  examined in  3.1.2, can be extended,

taking into account probabilities of continuous variables. A Probability Density Function

(PDF) of a variable is the function that gives us the probability of the variable to take on a

given value. Its integral over a region gives us the probability of the variable to fall into this

region.

The  probability  density  can  be  expressed  as  the  derivative  of  a  Cumulative

Distribution Function (CDF), which is the probability P z  of the variable to be found

at a value less than or equal to z , that is to say to lie in the interval [−∞ , z ] :

P z =∫
−∞

z
px dx (8)

The  Gaussian,  or  Normal  distribution  is  one  of  the  most  widely  used  models  for

representing the distributions of the continuous variables. It is defined on the entire real-line

and its Probability Density Function is given by the Gaussian function:

f (x∣μ ,σ2
)=

1
σ √2π

e
−(

1
2
)(

x−μ
σ

)
2

(9)

μ is  the  mean,  σ2 is  the  variance,  σ is  the  standard  deviation  and
1

σ2 is  the

precision.
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However, simple Gaussian functions are not always able to sufficiently model complex

data distributions. This limitation is often surpassed by using a Mixture Model, which is the

linear  combination  of  a  number  of  sub-populations.  When  each  of  these  populations

correspond to the Gaussian distribution, then the mixture is called a  Gaussian Mixture

Model (GMM) and is given by the following equation:

p (x )=∑
k =1

K

πk f ( x∣μk , σ k
2
) (10)

Where  k  is the component index,  K  is the number of Gaussian components and

π k  is called the mixing coefficient, for which:

∑
k =1

K

πk=1 (11)
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In  Figure 11 and  Figure 10, we can see an example of how a GMM is constructed by

superposing three different Gaussian functions.

Further information on probability densities, the Gaussian distribution and GMM's can

be found in [47], [46], [48] and [49].

3.1.5. The Expectation-Maximization algorithm for GMM's

The  Expectation-Maximization (EM)  algorithm is  an  iterative  process  which  can

estimate the parameters of a statistical model, such as the means and variances of each

component of a GMM. It has many applications in machine learning.

The Baum-Welch algorithm, often used for training Hidden Markov Models, is also

using the EM algorithm and will be covered in 3.2.3.

The steps of the process, when applied to GMM's, are the following:

1. Initialization of the parameters ( μ , σ 2 , π ) and log likelihood.

2. E step: Evaluation of the probabilities
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Figure 10: A GMM consisting of three 
components
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γ ( znk)=
π k f ( xn ; μk , σk

2
)

∑
j=1

K

π j f (xn ; μ j , σ j
2
)

(12)

3. M step: Re-estimation of the parameters using the current probabilities.

μk
new=

1
N k

∑
n=1

N

γ ( znk) xn (13)

σ k
2new=

1
N k

∑
n=1

N

γ (z nk)( xn−μk
new)(xn−μκ

new)Τ (14)

π k
new=

N k

N
, N k=∑

n=1

N

γ (znk ) (15)

4. Evaluation of log likelihood

ln( p( X ; μ ,σ 2, π ))=∑
n=1

N

ln(∑
k=1

K

π k f (xn ; μκ , σ k
2)) (16)

Return to step 2 if the convergence criterion is not satisfied for either the parameters or

log likeliood.

The  EM algorithm was  introduced  and  fully  covered  in  1977  in  [52],  while  other

sources for further information on it are [46] and [53].

3.1.6. Generative & Discriminative Models 

Statistical  models  can  fall  into  two  main  categories:  those  of  the  generative  and

discriminative models, both of which are useful in solving the classification problem by
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learning a rule to map input X (data) to output Y (labels). A generative model is able to

generate random data, obeying certain rules defined by the model. A discriminative model

is used only for the tasks of classification and regression of data, while not being able to

generate sample datasets. The main difference between these two types of models is that, in

the case of the generative models, the joint probability distribution PX ,Y  is specified,

while in the case of the discriminative models, the conditional probability PY∣X is the

one modeled. This makes easy to understand why having a generative model gives us the

possibility of generating likely pairs of  ( X ,Y )  but also using the Bayes theorem to

transform PX ,Y  to PY∣X ,  while  discriminative  models  can  only  be  used  for

predicting Y given X . 

However, each type of modeling has its own advantages and disadvantages and it is the

specific  application  requirements  that  define  the  choice  of  the  model.  Assuming  the

problem in discussion is classification,  discriminative models are considered to perform

better from a computational point of view since

[54]

On the other hand, a generative model is more flexible and capable of handling missing

data as well as it can express more complicated relationships of variables.

Examples  of  generative  models  include  Gaussians,  Mixtures  of  Gaussians  (3.1.4),

Mixtures  of  multinomial,  Mixtures  of  experts,  Sigmoid  Belief  Networks,  Bayesian

Networks  (3.1.8),  Markov  Random  Fields  and  Hidden  Markov  Models  (3.2),  while

examples  of  discriminative  models  include  Logistic  Regression,  Gaussian  Processes,

Regularization networks, Support Vector Machines and Neural Networks.

Further details on generative and discriminative models can be found in and [46] and

[55].
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3.1.7. Probabilistic Graphical Models 

Graphical Models or Probabilistic Graphical Models (PGM's) constitute a framework

for manipulating large-scale numbers of variables connected to each other with complicated

relationships, making use of the ideas of  logical structures from computer sciences  and

ending with a powerful and flexible way of representing real world phenomena as large

networks, available for performing learning and inference. For this to occur, we consider a

complex  system  as  a combination  of  simpler  parts.  This  idea  of  modularity,  is  the

fundamental  notion  behind  the  framework. PGM's are  based  on  the  combination  of

probability theory with graph theory, thus, they provide tools for dealing with uncertainty

and complexity.  Probability theory makes sure that  each module is connected in a stable

and meaningful way with the others, while graph theory provides us with an appealing and

motivating representation of the network.

In  more  practical  terms,  Graphical  Models  are  graphs  with  nodes,  connected  with

edges. The nodes represent the various random variables, or a group of random variables,

while the  edges show the conditional independence  between them.  Graphical models are

divided  into  directed (Figure  12) and  undirected (Figure  13) ones,  according  to  the

existence of directionality or not  within the edges,  indicated by arrows or not.  Markov

random fields are undirected models, while bayesian networks, the details of which will be

examined later, are directed ones. 
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Figure 12: Directed graphical model

A B

C D

Figure 13: Undirected graphical model
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Finally, the concept of Graphical Models allows applying the same statistical models

and computational techniques in different application domains, as different instances of a

common  underlying  formalism.  In  this  way,  techniques  and  models  developed  in  one

research domain can be easily transferred to another, while permitting at the same time the

design of new models using the same development frameworks.

Additional information on PGM's can be accessed in [56], [57], [58] and [59].

3.1.8. Bayesian Networks 

A Directed Acyclic Graph (DAC) is the one, in which all nodes are connected to each

other with directed edges in a way that starting from a specific node X, there is no possible

sequence to be followed that can lead to node X again. The joint probability distribution of

a network with a structure of the DAC category, can be factored into the product of all its

conditional dependencies as follows:

P  X 1, ... , X n=∏
i=1

n

P X i∣Pa i (17)

where X 1, … , X i are  all  the  nodes  and Pai is  the  parent  node  to X i .  The  above

equation is called the chain rule. In the example above, this can be expressed as:

P A , B ,C , D=P  A P B∣A P C∣AP D∣A , B ,C  (18)

Such  a  type  of  model  is  called  a  Bayesian  Network,  and  it  is  the  graphical

representation of a specific factorization of a joint probability distribution.

Bayesian Networks are fully described in [60], [56] and [57].
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3.1.9. Dynamic Bayesian Networks

The extension of bayesian networks, so that they can model time series data is called

Dynamic Bayesian Networks (DBN).  They model  probability distributions  over  semi-

infinite sets of variables  Z t={Z1, Z 2,…} .  Every time a new observation arrives,  time

index t increases by one.

More complete descriptions of DBN theory can be found in [61] and [62].

3.2. Hidden Markov Models

3.2.1. Definition

A Markov process is a type of statistical model, in which the system being modeled,

satisfies the Markov property. The property is true when the future values of the system

output signal depend only on the present state of the system and not to any of the previous

states.

Hidden Markov Models  (HMM's) are Markov processes, of which, the state sequence

is hidden, and the observable output is a probabilistic function of the state. HMM's are

considered the simplest form of DBN's (3.1.9).

Here are all the required definitions used to describe an HMM:

N  is the number of all the distinct states the system can be in.

M  is the number of all the distinct observable symbols the system can output.

S={S1 , S2 , ... , SN}  is the set of all the distinct states.

V={V 1 ,V 2 , ... ,V M }  is the set of all the distinct observation symbols.

A={a ij}  is the transition probability matrix for the system transmitting from state
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S i to state S j

B={b jk }  is the emission probability matrix for the system being at state S j

emitting observation symbol V k

π={π i}  is the initial probability of the system being at state S i

t={1,2,3,... , T }  are the time instants we examine

Q={q t}  is the sequence of states of the system at each time instant

O={Ot}  is the sequence of observable symbols at each time instant

The complete parameter set used to describe an HMM is λ= Α , Β ,π  .

Lawrence Rabiner's 1989 tutorial on HMM's  [63] remains one of the most complete

introductory resources today,  while many additional useful information can be found in

[64], [65] and [57].

3.2.2. Types of HMM's

HMM's  cam  be  divided  in  many  different  categories,  depending  on  the  transition

matrix, that is to say the permitted connections between the states.

The standard type of an HMM is the ergodic or fully connected model. In this type, any

state can be reached directly from any other state (Table 1, Figure 14). Using the definitions

above, this means that {aij} is positive for any i and j .

S1 S2 S3 S4

S1 a11 a12 a13 a14

S2 a21 a22 a23 a24

S3 a31 a32 a33 a34

S4 a41 a42 a43 a44

Table 1: Transition probability matrix of an ergodic HMM,
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However, judging from the observable outputs of the signals, the ergodic type is not the

ideal choice for all applications. So the following variations are also often used.

In the  left-right,  or Bakis model,  the state index increases as time instant increases

(Table 2,  Figure 15). This means that no transitions to states with indexes lower than the

current index are allowed, as well as that the state sequence begins with state S1 and ends

with state S N .

a ij=0, ji π i=1, i=1 π i=0, i≠1

This makes the states move from left to right. It is easy to understand that such a model

works ideally for applications with signals with properties that change over time.

S1 S2 S3 S4

S1 a11 a12 0 0

S2 0 a22 a23 0

S3 0 0 a33 a34

S4 0 0 0 a44

Table 2: Transition probability matrix of a left to right HMM

50

Figure 14: Graphical model of an ergodic HMM
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There  are  several  variations  of  the  left-right  model,  based  on  different  constraints

placed on the transition matrix. One of them includes a jump transition (Table 3, Figure

16).

a ij=0, jiΔ

where Δ is the number of states, more of which, a jump is not allowed.

S1 S2 S3 S4

S1 a11 a12 a13 0

S2 0 a22 a23 a24

S3 0 0 a33 a34

S4 0 0 0 a44

Table 3: Transition probability matrix of a left to right HMM with a jump transition

Another variations is the addition of  parallel paths to a left-right model such as that
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Figure 15: Graphical Model of a left to right 
HMM
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Figure 16: Graphical Model of a left to right HMM with a jump transition
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of :

S1 S2 S3 S4 S5 S6 S7

S1 a11 a12 0 0 a15 0 0

S2 0 a22 a23 0 0 a26 0

S3 0 0 a33 a34 0 0 a37

S4 0 0 0 a44 0 0 0

S5 0 a52 0 0 a55 0 0

S6 0 0 a63 0 0 a66 0

S7 0 0 0 a74 0 0 a77

Table 4: Transition probability matrix of an HMM with a parallel path

It should be also noted that, regardless of the type of HMM, the last state of the model

can only lead to itself:

a NN=1 a¿=0,i< N
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Figure 17: Graphical Model of an HMM with a parallel path
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3.2.3. The three problems of HMM's

Here is a real-world example of an HMM. Consider a model that describes the state of

the weather at each day. In the simplest form, the weather can vary from sunny to rainy.

Thus, the system possible states are N=2  and the states set is S={' Sun' ,' Rain '} .

The state of the weather affects the choice of a person about how to spend the day. His

choices could be taking a walk outside, or staying at home and study. His choice is the

system observable output  V={' Walk ' ,' Study '} and the number of output symbols is

M=2 .

This could be the probability matrix for transitions between weather states A={a ij} ,

as shown in Table 4 and Figure 18.

Sun j=1 Rain j=2

Sun i=1 0.7 0.3

Rain i=2 0.8 0.2

Table 5: Transition matrix of the Sun/Rain HMM

Table  6 could  be  the  probability  matrix B={b jk } for  emitting  choices  of  action,

depending on the weather states.
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Figure 18: Graphical Model of the Sun/Rain HMM
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Walk k=1 Study k=2

Sun j=1 0.6 0.4

Rain j=2 0.1 0.9

Table 6: Emission matrix of the Sun/Rain HMM

Also, Table 7 could be the initial state probability π={π i} :

Sun i=1 0.8

Rain i=2 0.2

Table 7: Initial state probability of the Sun/Rain HMM

Summarizing, we have the following:

A=[0.7 0.3
0.8 0.2] B=[0.6 0.4

0.1 0.9] π=[0.8
0.2]

These are all the parameters required to describe our model. If we examine our system

for  T=5  days,  we  will  observe  an  output  sequence  such  as

O={' Walk ' ,' Study ' , ' Study ' ,' Walk ' , ' Study '} , generated by a hidden state sequence

Q={q1, q2 , q3, q4 , q5}

Given this specific model, we may come with the following questions: 

• What is the probability of the person having a specific sequence of choices such as

O above? 

• If the person's choices sequence is O , what is the most probable weather state

sequence Q that caused that? 

• What  the  transition  and  emission  probability  matrices  should  be,  so  that  the

probability of the specific sequence of choices O could be maximized?

These three questions correspond to the three basic problems for HMM's that will be
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described and be given solutions below.

• First Problem: Forward-Backward Algorithm

O={Ot}

λ= Α , Β ,π 

PO∣λ=?

The solution to this problem will give us the probability of a specific observation, given

the model. It will also make us able choose from many competing models, the one that

describes best this specific observation.

If Q={q t} is the state sequence, as defined above, then:

PO∣λ= ∑
q1 , q2 ,... , qT

PO∣Q , λPQ , λ= ∑
q1 , q2 ,... ,qT

bq1
O1bq2

O2 ... bqT
OT ⋅π q1

aq1q2
... aqT−1qT(19)

In  order  to  avoid  the 2T⋅NT calculations  needed  (which  in  our  simplest  weather

example of N=2 and T=5 , corresponds to 320 calculations), we will make use of the

Forward-Backward algorithm.

At first, we define the forward variable:

α ti =PO1O2 ...Ot , qt=S i∣λ (20)

which can be described as the probability of having the partial observation O1 ,…Ot until

time t  and having state S i at that time. The procedure consists of 3 steps:

Step 1: Initialization
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α 1i=π i biO1, 1iN (21)

Step 2: Induction

α t1 j=[∑
i=1

N

αt i aij ] b jOt1, 1tT−1, 1 jN (22)

Step 3: Termination

PO∣λ=∑
i=1

N

α T i  (23)

We can have exactly the same results, by defining a  backward variable, in the same

way:

β t=P Ot1O t2...OT∣q t=S i , λ (24)

The procedure, in this case, is as follows:

Step 1: Initialization

βΤ i =1, 1iN (25)

Step 2: Induction

β ti =∑
j=1

N

a ijb jOt1β t1 j , t=T−1, T−2 , ... ,1 1iN (26)
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Step 3: Termination

PO∣λ=∑
j=1

N

π i b jO1 β1 j  (27)

Either using the forward or the backward procedure, for  the solution to our problem,

the  number  of  calculations  needed,  reduce  to N2
⋅T (which  in  the  example  mentioned

above, is just 20 in contrast to 320 needed before).

• Second Problem:  Viterbi Algorithm

O={Ot}

λ= Α , Β ,π 

OptimalQ={qt}=?

The solution to this problem will give us the “optimal” state sequence Q that may

have  caused  the  observation O ,  given  model λ .  One  way  of  interpreting  this

“optimality” is by finding individually each most probable state q t . In order to do that,

we will define another variable:

γ t i =Pq t=S i∣O , λ (28)

which is the probability of being at state S i  at time t , given the observation and the

model.  Making use  of  the  forward  and  backward  variables  defined above,  and after  a

normalization, this can also be expressed as:
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γ t i =
αt iβ t i

∑
i=1

N

α ti β t i 
(29)

 Thus, the most probable state for each time will be

q t=argmax [γ t i] (30)

The  problem  with  this  solution  is  that  finding  each  most  probable  state  qt  and

combining each one of them in a state sequence Q , may result in a sequence not valid by

the  transition  matrix,  which  will  contain  successions  of  states  with  zero  transition

probabilities.  Again,  to  avoid  this  problem we will  make  use  of  an  available  dynamic

programming procedure, called the Viterbi algorithm.

What we need is to define a variable that describes the highest probability of having a 

state sequence that ends with state Si at time t , and a specific observation O , given 

the model. That is:

δ ti =max P[q1q2…q t=S i ,O1O2…Ot∣λ ] (31)

The Viterbi algorithm is similar to the forward-backward algorithm, but it differs in 

maximizing instead of summing, in the induction and termination steps. It also keeps track 

of the maximized argument in the matrix ψ t i  . The steps of the procedure are the 

following:

Step 1: Initialization

δ ti=π ιb iO1 , 1iN (32)

ψ1i=0 (33)
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Step 2: Induction

δ t j=max [δ t−1iaij ]b jOt, 2tT , 1i , jN (34)

ψ t  j =argmax [δ t−1i a ij] , 2tT , 1 jN (35)

Step 3: Termination

ṗ=max [δt i ] , 1iN (36)

q̇T=argmax[δΤ i ] , 1iN (37)

Step 4: State sequence backtracking

q̇ t=ψ t1 ˙qt1 , t=T−1,T−2, ... , 1 (38)

• Third Problem: Baum-Welch Algorithm

Ο={Οt}

MaximumP O∣λ

λ= Α , Β ,π =?

The solution to this problem will give us a re-estimation of the model parameters, so

that  the  probability of  a  specific  observation  sequence  is  maximized.  This  is  the  most

difficult, out of the three HMM problems and there is no optimal way of solving it. The

most widely accepted procedure for solving it is the Baum-Welch algorithm, which is a

generalized EM algorithm (3.1.5) and is the most widely used HMM training algorithm.

First, we have to define again a variable:

ξ ti , j =Pq1=S i , qt1=S j∣O ,λ  (39)
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which describes the probability of, being at state S i at time t , and state S j at time

t1 , given the observation and the model. It can also be rewritten in terms of the 

forward and backward variables, and normalized:

ξ ti , j =
αt iaij b j Ot1 β t1 j 

PO∣λ
=

αt iaij b j Ot1 β t1 j 

∑
i=1

N

∑
j=1

N

αt iaij b j O t1β t1 j 
(40)

If this is summed over j, it gives us the probability of being at state S i at time t , 

defined previously as γ t i  :

γ t i =∑
j=1

N

ξ t i , j  (41)

Also, we can get the expected number of transitions from S i , by summing γ t i  over

t :

∑
t=1

T−1

γt i (42)

and the expected number of transitions from S i to S j , by summing ξ ti , j  over t

:

∑
t=1

T−1

ξt i , j  (43)

These lead us to to the following method of re-estimating each one of the model 

parameters:
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π i=γ1i  (44)

aij=
∑
t=1

T−1

ξt i , j

∑
t=1

T−1

γ ti 
(45)

b jk =
∑
t=1

T

γ t  j
*

∑
t=1

T

γt  j 

, * so thatΟt=V k (46)

• Real-time implementation: Online Viterbi Algorithm

The Viterbi algorithm shown above is applied on the whole sequence and requires 

access to both the previous and the next time instants. In order to use Viterbi decoding in 

real-time applications, we must use a variation of it, proposed in [66], which will use only 

the values of the previous states that are available at the current time instant.

Step 1: Initialization

δ ti=π ιb iO1 , 1iN (47)

ψ1i=0 (48)

Step 2: Induction

δ t j=max [δ t−1iaij ]b jOt, 2tT , 1i , jN (49)

ψ t  j =argmax [δ t−1i a ij] , 2tT , 1 jN (50)

Step 3: Termination
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ṗ=max [δt i ] , 1iN (51)

Step 4: State sequence backtracking

q̇ t=ψ t1 ˙qt1 , t=T−1,T−2, ... , 1 (52)
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4. System Implementation

4.1. Choice of methodology

This section outlines the reasons for choosing the stochastic HMM methodology for the

system under implementation, as opposed to the alternative computational approaches that

were presented in section 2.3

Firstly,  the early approaches of string matching and pitch detection have long been

regarded as outdated, because of their limited functionality and relatively poor results. The

two main competitor approaches were Dynamic Time Warp and Hidden Markov Models.

While DTW has been applied by several researchers with good results,  it  preserves the

basic disadvantages of not being able to work in real-time and offers no possibility of a

training of the system based on a performances dataset.

On the contrary, the use of Hidden Markov Models seems to have become the standard

approach for coping with the ASA task for at least the last decade.  Although it was firstly

introduced on the second half of the 1990's, the latest advances in the ASA field, such as the

anticipatory approaches,  are still  based on those systems and the use of HMM's.  Thus,

building an ASA system based upon HMM's can be of good functionality, while it can be

the basis for a further developed system in the future. 

In  addition,  there is  a  wide bibliography available,  not  only on the basic  theory of

HMM's but also on the specific application of them in the ASA domain. This makes the

first contact with the implementation of an ASA system much more convenient.

Finally,  HMM's  is  a  technology  widely  used  on  the  contemporary  and  ongoing

Information Retrieval and specifically MIR research fields. Thus, the learning of its theory

and the familiarization with its use offered us with a good understanding of how similar

approaches are used in other fields of interest.

The choice of the implementation details, such as the selection and number of audio

features, their interaction, the training process etc. was made after carefully studying the

63



System Implementation

available  bibliography and  after  several  tests  and  experimentation  which  will  be  fully

described in 5.2.

The work on which our system was mainly based was the publications concerning the

IRCAM score follower and more specifically the publication of Ashia Cont, “Improvement

of  Observation  Modeling  for  Score  Following”  [18].  The studying of  the  source  code,

written by Antoine Gomas for his master thesis “Audio to Score Alignment for Educational

Software”  [16],  which  was  also  based  on  IRCAM's  work,  was  also  helpful  for

understanding some basic implementation issues.

4.2. HMM Architecture

4.2.1. Transition matrix

The transition matrix of the HMM is a direct translation of the score. For each note of

the score, three states (Attack,  Sustain and  Rest) are created and transition probabilities

between them and between these states and those of the other notes are set. Thus, it is a

square  matrix  with  both  dimensions  equal  to  the  number  of  note  events  in  the  score,

multiplied by three, plus one extra beginning rest state.

We can consider a score with three notes: 60, 64 and 67 (in MIDI note numbers).

In the simplest case of the transition matrix, transitions from each state to itself and to

64

Figure 19: Example of a simple transition matrix between three notes

RestAttack 60 Sustain 60 RestAttack 64 Sustain 64 RestAttack 67 Sustain 67

http://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&ved=0CFQQFjAE&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.104.4970%26rep%3Drep1%26type%3Dpdf&ei=I2LVUd_oL4XaPJbWgLAG&usg=AFQjCNGX3xebqJnJxMefiAQ5f8A_eX5V3w&sig2=FU5G_c9BOnWIBz3hUIB_YA&bvm=bv.48705608,d.ZWU
http://www.google.gr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&ved=0CFQQFjAE&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.104.4970%26rep%3Drep1%26type%3Dpdf&ei=I2LVUd_oL4XaPJbWgLAG&usg=AFQjCNGX3xebqJnJxMefiAQ5f8A_eX5V3w&sig2=FU5G_c9BOnWIBz3hUIB_YA&bvm=bv.48705608,d.ZWU
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the next state are created. Transitions from each Sustain state, straight to the next Attack,

skipping Rest, are also created, in case the notes are played continuously (legato).

Probabilities are calculated,  dividing 1 with the number of allowed transitions from

each state. For example, each of the couple of allowed transitions from Attack will have a

probability of 0.5, while each of the three allowed transitions from Sustain will have a

probability of 1/3.

Figure 19 showcases the transitions, in the case we expect the performer to play the

exact notes of the score, with no skipping or wrong notes, and the goal of the algorithm is

just to spot the exact time positions of them in the recording. This transition matrix will be

used for the test in 5.2.1

However, for the algorithm to be able to spot mistakes of the performer, some  extra

transitions must be added, that correspond to the mistakes expected. There is also another

reason for these extra transitions to be included: the ability for the algorithm to overcome

its own errors and continue with the recognition of the rest of the sequence without letting

one error destroy the whole process.

Transitions of this kind are the following:

In Figure 20, there is the addition of transitions from each Sustain and Rest, 5 and 4 

states forward correspondingly (to second next Attack) for the case the next note is 

skipped.
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Figure 20: Transitions between three notes with a note jump transition added
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In Figure 21, there is the addition of transitions from each Sustain and Rest, 1 and 2 

states backward correspondingly (to the Attack of the same note) for the case the same note 

is repeated.

The transition matrix of Figure 21, will be used for the error handling tests in 5.2.2.

4.2.2. Audio Features

While the score of the piece to be performed, is read and translated into the transition

matrix, the audio signal of the performance is read and analyzed into a number of  audio

features. Each of these features is linked to the probability of the existence of one or more

states.

The audio features are split into two categories: the pitch independent features and the

pitch dependent features. The features of the first category are extracted once for the whole

audio signal, while those of the second category are extracted in respondence to a specific

note, thus they are extracted as many times as the number of notes of interest.

The signal is segmented into time windows of 512 samples. For each of these widows,

each feature takes one value. This results into a considerable reduction of data. The first

step for their extraction is the transformation of the signal from the time domain to the

frequency domain, through the FFT, as aforementioned in 1.4.1. This results in a picture of

the spectra of each of the time frames.

The signal of  Figure 22 will  be used as an example to showcase the various audio
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Figure 21: Transitions between three notes with a note repeat transition added
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features.

The pitch independent features are the following:

• The log energy feature is related to the amplitude of the signal and the dimension of

loudness. The function from which it is extracted is the following:

logEnergy=10 log(
1
N
∑
n=1

N

xn
2) (53)

xn  is the n th  sample of the audio signal, and N  is the length of the audio signal in

samples.
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Figure 22: The waveform of a performance of four different notes
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Comparing Figure 22 to Figure 23, we can assume that log energy is a good evident of note

activity.

• The  delta log energy feature, is the difference between the log energy value of a

frame and the value of the previous frame.  It is an indication of sudden amplitude

changes. The equation for its extraction is the following:

deltaLogEnergy=logEnergy (n)−logEnergy(n−1) (54)
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Figure 23: LogEnergy feature

Figure 24: Delta LogEnergy feature
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Judging from  Figure 24, we can see that delta log energy reaches its peak values at the

beginnings of each note.

• The  spectral activity  feature,  is a weighted calculation of the energy of different

spectral bands and can be considered as an indication of the spectral burstiness [18].

Its function follows:

SpectralActivity=

∑
m=1

M /3

ym
2 −2 ∑

(M /3)+1

2M/3

y m
2 + ∑

(2M/3)+1

M −1

y m
2

∑
m=0

M −1

y m
2

(55)

where ym  is the  mth sample of the spectra and  M is the length of the spectra in

samples.

As Figure 25 suggests, the feature has sudden declines at note onsets.

The pitch dependent features are the following:
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Figure 25: Spectral Activity feature
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• The  Peak  Structure Match (PSM)  feature  is  a  measurement of  the  energy of

specific spectral bands that correspond to the harmonics of the note for which it is

calculated. Thus, it is a good indication of the existence of the specific note. [15]

PSM (w ,z )=
∑
i=1

K

S i P i
2

∑
i=1

K

Pi
2

(56)

This is the Peak Structure Match for note z in time frame w . S i  is the ith sample

of the filter spectra and P i is the ith sample of the original spectra. Both spectras have a

length of K  samples.

As shown in Figure 26, a digital filter is applied on the full spectra of each frame, so that

only the energy included in the specific bands of the harmonics of the note is left. This is an

example of a matching note, where the two highest peaks of the full spectra are fitting
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Figure 26: PSM Filter (red) over a spectra (blue) and the remaining spectra 
(green) for a matching note
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inside two of the bands of the filter.

In  Figure 27, PSM values for all the notes of two octaves are depicted (24 notes). It is

obvious that at each of the four notes performed, the value of a different PSM function is

the highest, being an indication of the current note.

• The  delta  Peak  Structure  Match feature  is,  exactly  as  delta  log  energy,  the

difference of two consequent  PSM values. It indicates the sudden changes in the

pitch dimension.

dPSM (w , z)=PSM (w ,z )−PSM (w−1, z) (57)
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Figure 27: PSM feature for 24 pitches
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Similarly to  PSM, Figure 28 shows how a different  delta PSM function achieves its peak

value at the beginning of each performed note.

4.2.3. Emission matrix

The emission matrix of the model, defines the probabilities of the existence of each of

the model states included in the transition matrix, in any of the audio performance time

frames. Thus, it is not a square matrix and on one axis there are the states, according to the

score, while on the other, there is an index to each frame of the performance.

The probability for a state to exist in a specific frame of the recording is the result of

taking into consideration a combination of audio features.  The choice of the right final

combination of features, is done after several tests (described in  5.2.1) and after studying

the  semantics  of  each  feature,  as  aforementioned (4.2.2).  Although,  each  audio  feature

carries information that indicate the probability of the existence of a specific state, this

information has to be extracted by “clearing up” the audio feature signal. This is achieved

by mapping the features to the states probabilities according to some Gaussian PDF's and

CDF's.
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Figure 28: Delta PSM for 24 pitches
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This is done, in order to filter specific value ranges of the feature and map these ranges

to the probabilities of the states of interest. In this way boundaries are set for the values a

feature can get, within which, it provides a different meaning. For example, we could say

that “when energy is within this range or over this value, the probability of having a note

sustain  is  higher,  while  when  energy is  within  another  range  or  below this  value,  the

probability of having a rest increases”. The correct values that set the boundaries are very

important,  are  expressed  by the  mean  and  variance  of  the  Gaussian  functions  and  are

derived after the training stage (4.2.4).

The mapping functions we examine are three: the normal PDF, the normal CDF and the

inverse normal CDF. In this way, we have the ability to limit the probabilities, within, over

or under some specific boundaries respectively.

Here is a showcase example of how different kinds of Gaussian functions can be used

to map the delta log energy feature of the example in Figure 22 above.

In Figure 29 the feature is mapped according to a normal CDF, with μ=10  and σ 2
=2

.  What we end up with is an indication of the beginning of each note.
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Figure 29: An audio feature (blue) and its mapping according to a CDF 
(red)
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In  Figure  30,  a  normal  PDF  function  is  used  to  map  the  feature,  with  μ=0  and

σ 2
=2 . The derived probability is indicative of the main body of each note.

In  Figure 31, an inverse CDF with  μ=−10  and  σ 2
=2 is applied with the resulting

yellow signal, being indicative of the pauses between each note.
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Figure 30: An audio feature (blue) and its mapping according to a PDF 
(green)

Figure 31: An audio feature (blue) and its mapping according to an inverse CDF 
(yellow)
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Putting these all together, when we look at  Figure 32, it  is obvious that at different

times, another probability function is the highest, each of which has derived by a different

mapping function of the same audio feature. In this simple example, we can suppose that

the red signal  can be considered as an attack probability,  the green signal  as a sustain

probability and the yellow signal as the rest probability.

Taking  all  these  into  consideration,  we  are  trying  to  exploit  all  the  meaningful

information that can be derived from the audio features and map them and combine them in

the way that they can provide us all the probability functions we need for all the states to

fill the emission matrix. Probabilities are separated into states and all probabilities for a

specific  state  are  multiplied,  so  that  the  final  probability  results.  Pitch  dependent

probabilities  referring  to  the  same  note  are  also  multiplied  between  them.  Thus,  the

resulting emission matrix, for example, for a score including only 2 unique notes would

include  the  following  probabilities:  Attack  of  Note  X  probability,  Sustain  of  Note  X

probability, Attack of Note Y probability, Sustain of note Y probability, Rest probability.

The choice of the correct mapping functions is again reached after the several tests

(5.2.1), as well as semantics as those derived from the example above.
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Figure 32: Three different mappings of the same audio feature
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4.2.4. Training

The first stage of the system is the training stage. During this stage, we provide the

algorithm with a dataset of audio performances of known content to be used for training the

model,  hence  allowing  to  decode  and  align  additional  performances.  To  improve

performance alignment subsequent to training it is recommended that the training dataset

represents  the  same  instrument,   acoustic  environment  and  including  notes,  with  the

performance to be aligned in the decoding phase. This is the reason why prior rehearsals of

the piece to be performed is considered to be an ideal training dataset. 

The training process involves analysis of the distributions of each feature values on

previously  annotated  audio  performances.  This  means  that  the  algorithm  attempts  to

estimate the values of each feature for each HMM state, for example attack, sustain, rest of

specific notes. Based on the values of features for the audio segments corresponding to

each state,  the means and variances of Gaussian functions are estimated, using the EM

algorithm, as described in 3.1.5.

Figure  33 is  an  example  of  the  log  energy  feature  of  an  audio  performance,
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Figure 33: LogEnergy feature, with highlighted areas of rest (blue), attack (red) and 
sustain (green) frames
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discriminated into three different color areas according to the pre-labelled state of the note

of each time. This is used to train the pitch independent features. The distribution of the

feature values in each of these areas is shown in Figure 34, Figure 35 and Figure 36.
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Figure 34: The number of occurrences (vertical axis) of each feature value 
(horizontal axis) on all the frames labeled as attack

Figure 35: The number of occurrences (vertical axis) of each feature value 
(horizontal axis) on all the frames labeled as sustain
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These  distributions  result  in  the  Gaussian  functions  of  Figure  37.  The  means  and

variances of these functions are stored as the trained model. The trained model is used

during decoding (alignment) to infer the state that is more likely to be observed for a given

distribution of  feature values. 

In the same manner,  pitch dependent features are trained, taking into consideration

pitch annotations on  training  dataset. 
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Figure 36: The number of occurrences (vertical axis) of each feature value
(horizontal axis) on all the frames labeled as rest

Figure 37: Gaussians derived from the three distributions of the feature values on 
each frame group
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In  the  proposed  approach,  observation  probabilities  are  estimated  by  computing  a

separate Gaussian distribution for the values of each feature in each HMM state. Although

this neither a multivariate Gaussian nor a GMM, the estimation process is equivallent to

that of the Expectation-Maximization algorithm, which is conventionally used for training

HMMs,  however  reduced  to  a  single  component.  In  this  manner,  the  system  will  be

compatible with future developments concerning multidimensional models or GMM's with

more  components. This  type  of  simplified  training  has  been  adopted  in  previous

computational  methodologies  for  ASA, for  example   [18] and  [67],  where  it  has  been

referred to as Discriminative Training.

4.3. Algorithm / Data flow diagrams

The algorithm for  the audio  to  score alignment  system has  been developed for  the

MATLAB  environment.  This  is  a  popular  numeric  computing  and  programming

environment, which makes direct and easy experimentation and testing, easy. Its versatile

matrix manipulation and its easy graphical depiction functions, as well as the HMM and

signal processing toolboxes, were proven extremely useful for the implementation of our

system.

The main files of the system are the  train and  asalign functions. In addition, the

make_data_set and prepare function are used for the labeling and creation of the dataset

(5.1.3). Many processes that are repeated within these files are broken into smaller different

function files, such as  load_score,  fextract etc. Finally, functions for the watching of

graphical  depictions  of  the  various  stages  of  the  algorithm  are  included,  such  as

display_gaussians and display_classes.

Third party toolboxes and functions were also used in this project. MIDI Toolbox was

used for loading information from MIDI files [68].  Weka2matlab functions were used for

loading and saving ARFF files [69]. Function em1_dim [70] was used for the EM algorithm.

Finally, an implementation of the YIN algorithm was used for the creation of the dataset
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[71], [72].

4.3.1. Training

The first stage of the implemented system is that of the training and is called by the

train function as follows:

train(arff_file_names_list, trained_gaussians_file_name);

It takes two arguments: a cell array with all the names of the files of the dataset, and the

name  to  be  used  for  the  Comma  Separated  Values  (CSV)  file,  where  the  means  and

variances of every feature for every state will be saved. This will be used as the knowledge

for the trained algorithm.

The files of the dataset must be in the form of Attribute-Relation File Format (ARFF).

This  is  a  text  file  format  introduced  by the  University  of  Waikato,  for  their  machine

learning software WEKA. The structure of an ARFF file is divided into two sections: the

header and the data. The header contains the names of all the attributes, their types and the

class attribute.

In the case of the Audio to Score Alignment system, each ARFF file corresponds to an

audio performance. Each attribute corresponds to an audio feature, independent to pitch or

for a specified pitch.  The penultimate attribute is the note label in MIDI note numbers. The

class attribute corresponds to the note state. Each line of the data contains the values of all

the audio features for one frame and a label of the current note and state.  An example

follows:

@relation Ex1_V_take001
 
@attribute LogEnergy real
@attribute DeltaLogEnergy real
@attribute SpectralActivity real
@attribute PSM57 real
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@attribute DeltaPSM57 real
@attribute PSM58 real
@attribute DeltaPSM58 real
@attribute PSM61 real
@attribute DeltaPSM61 real
@attribute PSM62 real
@attribute DeltaPSM62 real
@attribute PSM64 real
@attribute DeltaPSM64 real
@attribute PSM65 real
@attribute DeltaPSM65 real
@attribute PSM67 real
@attribute DeltaPSM67 real
@attribute PSM69 real
@attribute DeltaPSM69 real
@attribute PSM70 real
@attribute DeltaPSM70 real
@attribute Note real
 
@attribute Class {Attack, Sustain, Rest} 
 
@data
-167.4266, -2.6188, 0.34157, 0.016061, 0.002689, 0.017311, 0.0023044, 

0.016641, 0.0038058, 0.015864, 0.0043779, 0.013588, 0.0017621, 
0.014051, 0.00010179, 0.016362, 0.0040728, 0.019718, 0.0077481, 
0.013634, 0.0053223, 0, Rest 

-45.9281, 5.9246, 33693.5115, 0.18096, 0.040343, 0.16726, 0.011531, 
0.16684, 0.001012, 0.39187, 0.043748, 0.18104, 0.018795, 0.11243, 
0.051482, 0.16719, 0.031699, 0.082242, 0.044748, 0.11041, 0.015902, 
62, Attack 

-41.8491, 4.079, 55024.818, 0.19551, 0.014553, 0.12148, 0.045783, 
0.14168, 0.02516, 0.35907, 0.032798, 0.16473, 0.016309, 0.13805, 
0.025617, 0.12351, 0.043686, 0.10234, 0.020095, 0.10711, 0.003297, 62,
Sustain 

-37.1183, 4.7309, 86481.6595, 0.15518, 0.040337, 0.11579, 0.0056918, 
0.13963, 0.0020565, 0.38033, 0.021255, 0.1709, 0.0061651, 0.11019, 
0.027862, 0.15769, 0.034183, 0.067156, 0.035181, 0.11748, 0.010371, 
62, Sustain 

...

The CSV file name attribute refers to the output file. The means and variances will be

saved there as follows:

-
54.623,10.523,1802.8,0.35923,0.10443,0.25016,0.064464,0.26253,0.054719
,0.44064,0.0516,0.35992,0.04029,0.33732,0.035154,0.49029,0.13334,NaN,N
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aN
18.684,6.5511,2338.7,0.095337,0.07363,0.056354,0.040655,0.020901,0.054397

,0.054314,0.049455,0.041275,0.030846,0.045914,0.03189,0.026304,0.14232
,NaN,NaN

...

Each  couple  of  lines  corresponds  to  a  state  mean  and  variance  and  each  comma

separated  value  within  a  line,  refers  to  a  feature.  The  values  denoted  as  NaN (Not  a

Number) correspond to features not related to the specific state. This information is saved

in a file named with the second argument, ending with “_TG.csv”.

After the algorithm loads the ARFF file, it proceeds to grouping together all the frames

of the same state, or same state and pitch, and calculating the mean and variance of the

distribution of each feature in them.

The following listing provides the pseudo-code of this process:

For each state
Find all the frames (lines) labeled as the current state and save 
their... indexes in “idx1”
For each feature
If the feature is pitch dependent

Find all the frames labeled with the note of this feature and... 
save their indexes in  “idx2”

Find all the reoccurring indexes in both “idx1” and “idx2” and... 
save them in “idx” Else if the feature is pitch

independent
“idx” is equal to “idx1

End if
End for

End for

All  the  frames  with  the  indexes contained in  “idx”  will  be  analyzed with  the  EM

algorithm.

It should be pointed out that the training can be accomplished, either based on a single

audio performance (one ARFF file), or a number of audio performances (list of multiple

ARFF files).
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4.3.2. Aligning

The second and main stage of the system is the aligning stage. It is called as follows:

[missed misaligned offset]=asalign(audio_file_name, score_file_name, 
trained_gaussians_file_name, transport)

It  takes  four  arguments.  The  first  stands  for  the  name  of  the  audio  file  of  the

performance to be aligned and it can be in WAV or AIF format. The second argument stands

for the file name of the score to be aligned and it  must  be in MIDI format.  The third
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Figure 38: Training function basic data flow diagram
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argument stands for the CSV file with the trained Gaussians knowledge that was created

after the training stage and will be used to map the features of the audio performance to the

desired state  probabilities.  Finally,  the last  argument refers to  the difference in the key

between the performance and the score in semitones,  in case the piece was transported

before performed.

There is also another file loaded with the ground truth positions of the notes of the

audio performance. This is used for the tests and the evaluation of the system and it will be

fully described on the following chapter. The function returns the percentage of the missed

and misaligned notes, as well as the offset, which is the mean distance between the correct

and the aligned positions of the notes.

At the beginning of the function a cell array is defined, inside which, there are declared

the number of features, their names, whether they are pitch dependent features or not and

the type of the gaussian functions according to which, they are related to each probability.

This makes easier the addition or removing of features, as well as the experimentation with

different gaussian functions. The features are defined as follows:

features{X,1}=[a, s, r, pd]; features{X,2}='FeatureName';

    

The variables a, s and r correspond to the mapping function of choice and can take one

of the following values:

0: the feature is not taken into consideration for this state

1: the feature is mapped according to a normal CDF

2: the feature is mapped according to an inverse normal CDF

3: the feature is mapped according to a normal PDF

The variable  pd corresponds to whether the feature is pitch dependent (1), so that it

should be extracted for all the notes contained into the score, or it is pitch independent (0),

so that it should be extracted only once.

An example of an audio feature definition is the following:
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features{1,1}=[1, 3, 2, 0]; features{1,2}='LogEnergy';

    
After  all  the files  are  loaded and the defined features are  extracted from the audio

signal, the calculation of the probabilities begins. 

This is achieved by mapping all the features, according to the directions of the features

cell array, resulting in probabilities for each state of each note coming from each feature.

Then, all the probabilities referring to the same state are multiplied, resulting in a final

probability. The rest probability is always pitch independent and is calculated only once.

For example if the score to be aligned contains three unique notes, the final probabilities

will be saved in a cell array similar to the following:

final_prob{1,1}, final_prob{1,2}, final_prob{1,3} 

for the attack probability for each of the three notes

final_prob{2,1}, final_prob{2,2}, final_prob{2,3} 

for the sustain probability for each of the three notes

final_prob{3,1} 

for the rest probability 

Afterward,  the  creation  of  the  HMM matrices  takes  place.  The transition  matrix  is

created according to what has been described in 4.2.1. The emission matrix is created, using

the final probabilities mentioned above.

Once, the matrices are filled, the Viterbi algorithm (3.2.3) is called to calculate the best

alignment  sequence,  and  the  separation  of  the  notes  of  the  performance  waveform is

graphically depicted.  The success  evaluation  is  also calculated,  according to  5.1.1, and

displayed.
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Figure 39: Alignment function basic data flow diagram
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5. System Evaluation

5.1. Evaluation process

5.1.1. Approaches / Measures

The evaluation stage of an ASA system is important for judging the success levels of

the algorithm. In this manner, the system can be compared with other aligning systems. For

this reason, there must be a standardization of the evaluation measures that are used by the

several  systems.  In  addition,  the  evaluation  stage  can  be  proven  essential  for  the

development  of  a  specific  system,  giving  the  developer  the  opportunity  to  compare

different methods, in order to reach to the optimal approach, as well as to verify the benefits

gained by the training stage.

An  ASA system can  be  evaluated  in  a  subjective or  an  objective manner.  While

subjective  evaluation  is  not  suitable  for  comparing  different  systems,  it  can  contribute

considerably in the development process of the system. Methods of subjective evaluation

include the displaying of the detected note onsets over the performance signal waveform

(Figure 40) or its spectrogram, listening

87

Figure 40: Example of detected note onsets graphically placed upon the 
performance waveform for subjective evaluation purposes



System Evaluation

 to each segmented note separately, or listening to the performance, accompanied by a short

click sound  at each point a note is detected. Finally, the alignment can be exported  as a

MIDI file, which when listened to, must be in accordance to the performance recording.

This last method can be also considered as a primary application of the system by itself.

However, all these subjective methods can be tiring, time consuming and inaccurate

when we are confronted with large datasets,  that are required for the exact evaluation of

ASA  systems  For  this  reason,  there  has  been  a  discussion  on  some  objective  and

standardized  measures  for  judging  the  aligning  algorithms.  The  objective  evaluation,

requires some references. Each audio performance to be aligned must be accompanied with

a  ground  truth  file,  which  includes  all  the  time  onsets  to  be  detected  by  the  aligning

algorithm. These time onsets is what the evaluation algorithm will use as a reference to

judge the success level of the aligning.

Regarding these, the following measures are used for the evaluation of the detection of

each note i in the ground truth file, as defined in [73]:

• Error 

e i=t i
e
−t i

r (58)

This measure shows the time difference between the estimated onset t i
e  in the ground

truth file and the onset t i
r estimated by the algorithm.

• Latency

l i=t i
d
−ti

e (59)

This measure is being used by real-time systems and shows the time difference between the

estimated onset t i
e and the time t i

d the algorithm detects it.

• Offset

oi=ti
d
−t i

r (60)

This measure is the final offset between the detection time t i
d  and the reference time t i

r

. In case of an offline system the offset is equal to the error.
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• Missed notes is  the number of note onsets in the ground truth file that are  not

detected by the algorithm and  misaligned notes is the number of notes that have

been detected, although their offset is bigger than a limit θe (e.g. 300 ms).

• The  missed notes  rate pm  and  misaligned  notes rate pr of  the  algorithm,

derive from the percentages of these two measures. These percentages constitute the

final success rate of the algorithm:

SuccessRate=100 – pm− pr (61)

Other useful measures include:

• Piece completion pc

This is  the percentage of the notes in the ground truth file,  that  are  recognized by the

algorithm before it hangs or stops detecting correctly notes.

• Average Latency μ l

This is the mean latency of the system (for real-time systems).

• Average absolute offset μo

This is the average offset of the system for all the performances it is tested on.

• Average imprecision μe

This is the average error of the system for all the performances.

• Variance of error σ e

This is the spread of the distribution of the this error.

For further discussion on ASA evaluation, one can address to [73], [15] and [74].

5.1.2. Performances dataset

The system developed for this thesis has been tested on a specific dataset of recorded
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performances. This dataset consists of two different short monophonic melody lines for

flute and for violin. These two monophonic lines are the two parallel voices of the same

polyphonic piece “Example 1”, composed for such purposes by Gabriel Negrin. Part of the

tests will be applied on the polyphonic performance too (5.2.3).

Each piece is performed ten times with several interpretation variations. The choice of

flute covers the case where the note envelope of the instrument has a strong attack, thus, the

detection of the note onsets relies mostly on the energy variation.  The choice of violin

covers the case where the instrument has no strong attack, thus the detection relies mostly

on the pitch variation. In addition, violin playing involves no stable pitch, which adds some

extra difficulty, the algorithm will be tested on.

Additionally, some alterations of these performances have been created automatically.

These alterations include some note repeats, while some notes are completely removed.

This is done for the tests of the error handling part of the algorithm (5.2.2). Specifically, for

the performances of each instrument, the first five have a random note repeated once and

the last five have a random note removed.

This dataset will not only be used for testing, but as the training set too. As mentioned

in 4.2.4, the trained Gaussians data base can be derived by one or more performance. Thus,

each of the ten performances of each piece, results in a trained data base. In addition, there

is a data base created by the whole set of the performances.

5.1.3. Dataset creation

The  creation  and  preparation of  the  dataset  includes  two  tasks.  Firstly,  all  the

performances must be labelled with the correct states and notes, and the ground truth files

must be created. Secondly, their signals must be analysed to all audio features of interest,

and their values are saved in A.R.F.F. files. These files are reduced versions of the original

performances, and will be used for the training procedure.
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The labelling of the performances is achieved a combination of automatic and manual

means.  YIN  [71],  a  pitch  detection  algorithm,  is  firstly  applied  in  each  signal.  This

algorithm returns a value of aperiodicity. The existence of a note in a specific frame of the

signal can be considered as positive, when the aperiodicity falls under a predefined limit.

All other frames are labelled as rest. When a note is detected on a frame following a rest,

this frame and a number of the following frames are labelled as attack.

The next stage for the  labelling of the performances is the manual correction of the

automatically detected states. The performance is graphically displayed in an application

called Sonic Visualizer. This application gives the user the ability to listen to waveforms,

and at the same time have  graphical depictions  of audio features  in various ways, either

detected by the program itself, or imported. In this case, we import the data detected by our

preparation algorithm. What follows is the careful by hand correction of the detected states,

watching and listening to the waveform. We consider as rest frames, the frames where the

instrument  has  paused.  We  also  try  to  mark  as  attacks  the  first  frames  of  each  note

performed, as long as there is a rise in amplitude.

The dataset  for  the  error  handling tests  (5.2.2) has  derived from the  editing  of  the

previously  used  performances.  The  same  flute  and  violin  recordings  have  been

automatically processed, and a unique random note has been repeated (for recordings 1-5)

or  missed  (for  recordings  6-10)  in  each  file.  The  new files  including the  performance

mistakes are saved as the new dataset to be used for the following testings.

The creation of the training set simply includes the conversion of each audio file into an

ARFF file, which instead of the signal itself, includes all the audio features describing it.

The state and pitch labels are also included in the files, as described in 4.2.4.

5.2. Tests and results

Each  test  comprises  applying  the  aligning  algorithm  to  each  one  of  the  ten
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performances included in our dataset. The result of the test is the overall success rate of all

the alignments. The tests that were performed are divided into three groups. 

Firstly, we have to specify the optimal combination of features that are associated with

each state  probability,  as well  as  the Gaussian function,  according to  which,  it  will  be

mapped.  This is done by altering the variables in the features definitions described in 4.3.2,

according to Table 9 and running the align function for each signal.

Secondly, we edit the transition matrix, so that it includes the extra transitions required

for coping with playing mistakes and aligning errors (as showcased in 4.2.1 and Figure 21)

and  perform the  align  function  for  all  the  signals  again,  as  well  as  the  edited  signals

including mistakes.

Finally, the algorithm is tested on mixed signals of both flute and violin.

5.2.1. Features & Gaussians

At first, we examine how only the energy related features behave. The first test makes

use of the LogEnergy and DeltaLogEnergy features. In this first attempt, we apply normal

PDF's for the extraction of all probabilities from the features. The results are extremely

poor, since the algorithm failed  completely on most of the  performances. This happened

because there are frames where the probabilities derived from the PDF's have zero values

for all three states, giving no option to the algorithm for a transition. (Test 1)

We try to eliminate this problem by applying normal CDF's instead. We use the inverse

CDF for the rest state on both features, since we expect a fall of the energy when there is no

note played. There is a great improvement on the results.  As expected, we notice that the

detection based on energy related features have very good results on  flute, an instrument

with sudden dynamic variations, but it seems not suitable for instruments like violin, where

the note onsets are not accompanied by sudden raises of the energy. (Test 2)

We also try a combination of CDF's and PDF's for a better discrimination between the

probabilities of each state. Although, the results of the tests on flute have a small decrease,
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there is a significant increase on the results of the tests on violin, since the use of both a

CDF and a PDF seems to contribute remarkably on the discrimination between attack and

sustain. (Test 3)

Afterwards, we test how the addition of the spectral activity feature affects the results.

We use a CDF for the sustain and rest states, and an inverse CDF for the attack state, since

the feature has such a behaviour, as shown Figure 25. The detection of flute is improved in

some small amount, since spectral activity is supposed to detect attacks with high frequency

rich spectras. On the other hand, violin has no such spectral characteristic, thus the addition

of this features seems to deteriorate the results considerably. (Test 4)

Subsequently,  the algorithm is tested, making use of only the pitch related features.

Again, we firstly apply normal PDF's to all the features and states. The use of the PSM

features gives the best results until this point. This is an indication of how important role

the detection of  the pitch content  plays  in  comparison to  the detection of the dynamic

content. Moreover, it is the first test that the detection of violin has such a success rate,

which is  completely attributed to  the pitch  related  feature.  Violin  note changes  can be

detected mainly by the changes in pitch. (Test 5)

Next, we test these features, mapped according to CDF's. Only a small improvement on

the results has been achieved on the violin performances. (Test 6)

Followingly, we test the combination of PDF's and CDF's. Only a small variation on the

results  of  both  instruments  has  been  noted,  when  using  the  combination  of  gaussian

functions. (Test 7)

Finally we test the algorithm, making use of both the energy and PSM derived features. 

We use the PSM derived features just for the attack and sustain states, since the rest

state has no relation to pitch. The use of both energy and pitch features rgives us very good

results.  (Test 8)

On our next test, we use a combination of PDF's and CDF's, this time for both types of

features. The use of PDF's for the sustain probability seems to give a small rise on the
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overall success rate. (Test 9)

Finally, we add the Spectral Activity feature. The success rate remains the same, while

the overall offset for the violin decreases slightly. (Test 10)

Test Flute Violin Average 

1 10,00% 10,00% 10.00% 

2 97,08% 24,09% 60.59% 

3 92,92% 91,82% 92.37% 

4 95,83% 49,55% 72.69% 

5 99,17% 94,55% 96.86% 

6 93,33% 97,73% 95.53% 

7 99,58% 93,18% 96.38% 

8 100,00% 98,18% 99.09% 

9 100,00% 98,64% 99.32% 

10 100,00% 98,64% 99.32% 

Table 8: Overall success rates of each set of tests
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Table 9: Combinations of features and Gaussians used in each test

1 2 3 4 5 6 7 8 9 10

A S R A S R A S R A S R A S R A S R A S R A S R A S R A S R

LogEnergy P P P C C iC C P iC C P iC . . . . . . . . . C C iC C P iC C P iC

DeltaLogEnergy P P P C C iC C P iC C P iC . . . . . . . . . C C iC C P iC C P iC

SpectralActiv ity . . . . . . . . . iC C C . . . . . . . . . . . . . . . iC C C

PSM . . . . . . . . . . . . P P P C C iC C P iC C C . C P . C P .

DeltaPSM . . . . . . . . . . . . P P P C C iC C P iC C C . C P . C P .

. None

P.D.F.

C.D.F.

inv. C.D.F.
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We can divide all the tests performed into three groups, as shown in  Table 9: those

using energy related features, those using pitch related features and those using both types

of features. Table 8 And Figure 41 informs us about the overall success rates of each test. It

is easy to see that pitch related features offer us better results than energy related ones. As

we expected, the use of PSM improves the alignment on the violin signals more than the

flute.  Finally,  the combination of all  the features  in the form of the last  test,  gives the

overall best results.

5.2.2. Error handling

The transition matrix of the algorithm for the tests performed so far, contain no extra

transitions,  as showcased in  Figure 19 of  4.2.1. This means that the performances in the

recordings are expected to correspond to the score with no mistakes, while only their timing

differs. In the following tests, extra transitions showcased in Figure 21 will be included in
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Figure 41: Results for each feautures and gaussians combination test for flute and 
violin
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an attempt to handle the case the performer makes mistakes such as missing or repeating a

note.

What we notice from Figure 42 is that there is a decrease on the overall success rate,

similar to that of the previous tests. This means that this small fail rate is not attributed to

not detecting the performer mistakes. Contrary, this decrease is expected, since now, the

algorithm has the ability to detect note repeats or missed notes on frames of the recording

where they do not exist, ending up with a small amount of “false alarms”.

5.2.3. Polyphonic performances

The algorithm has been also tested on the signals of the polyphonic performances of

both flute and violin playing together. However, it should be noted that when the algorithm
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Figure 42: Results for error handling tests on signals containing errors (1) and on 
the original signals (2)
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is tested on a polyphonic signal, the score given to it concerns only the line of one of the

two instruments. The trained Gaussians for this instrument are the ones to be used, and the

note onsets of this instrument will be detected. This means that the mixed signal of the

other instrument is considered as a background noise, the algorithm is trying to surpass.

This is a quite different task from providing the algorithm with the score of all instruments

playing and expecting the detection of the onsets of all the notes played.

Both test sets refer to the same audio performances of both flute and violin playing

together. However, in the first set, the flute is attempted to be detected, while the violin on

the second one.

The results are generally of medium success. An interpretation of them could be that,

the algorithm is not capable enough of following a single instrument, inside a polyphonic

performance, but part of unexpected background noises on a performance can be surpassed

without affecting the detection process.

97

Figure 43: Results for tests on the same polyphonic performance, detecting flute or 
violin on each test.
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6. Conclusions

6.1. Contributions

Although the goal of this thesis was to develop a basic ASA system, there are a few

small features of the system that differentiate it from previous related work and can be

regarded as possible small contributions.

Firstly, there is a key difference in the way the score is transcribed into the transition

matrix. The probabilities for each transition between the states are set by allocated equally

to  the  number  of  all  aloud  transitions.  Practically,  this  means  that  each note  duration

provided by the score is not taken into account. If this was the case, the number of sustain

states  for  each  note  would  vary  according  to  the  note  duration  and  so  would  be  the

probabilities  of  their  transitions.  Such  an  approach, is  described  in  detail  in   [34],

accompanied by the related equations. Although, with our approach, we ignore this factor,

which might contribute in a better detection, we come up with less biased results. In other

words,  the  score  provides us  only  the  right  sequence  of  the  events,  while  only  the

performance signal constitutes the  information  used for detecting the correct position of

each event on the time scale.

Another unique aspect of our work is the detailed research and testing procedure for the

optimal selection of the Gaussian functions for mapping the audio features to meaningful

probabilities. This reached a unique combination of PDF's as well as CDF's and inverse

CDF's associated with each feature and probability, that was proven to provide the most

faithful decoding results.

Finally, the system was tested on polyphonic signals, for which additional melodic lines

were not aligned, but instead treated as background noise to be surpassed. The test results

were not discouraging.
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6.2. Deficiencies / Future work

First of all,  we must regard that, although we attempted to cover some of the basic

performance characteristics one can be confronted with, the testing performances as well as

the training set cannot be considered fully sufficient, especially when compared with those

of the participants in competitions such as MIREX. This is the reason why, although the

success rates achieved  by our system are far larger than that of those systems, an actual

comparison with their success rates would not be accurate and meaningful.  A larger scale

dataset for the system to be trained and tested seems to be an imperative step towards its

further evolution.  However, the recordings used for this thesis, are realistic examples of

real-world music performances, even without trying to include the special cases of the most

rare and difficult to handle, characteristics. 

Some of the small fail rates  of the test results,  should be attributed  generally to the

training  stage,  and  more  specifically  to  the  training  set  creation.  The  combination  of

automatic and manual means for the pre-labelling of the performances leaves enough room

for tagging imperfections that can affect the trained Gaussians data base. 

Another reason could be that the range of audio features that could be used by such an

algorithm is much wider than those actually used  in our system. What we tried to do, is

focusing on the features that have been already proved to be useful for such a task, since an

attempt to examine the whole number of features or even trying to create new ones that

could capture useful details would be a long and difficult procedure. However, the testing

of more features, the creation of new ones and even the use of more than one dimensions of

features  for  one probability,  are  all  steps towards  the further  development  of  this  ASA

system.

Furthermore, part of  the  fail rates of the algorithm  might be avoided, if probabilities

distributions are applied in the transition matrix, instead of the straightforward division of

the probabilities, as mentioned in 6.1.

However,  maybe  the  most  important  element  that  our  audio  to  score  alignment

algorithm is missing, is that of being able to fully cope with polyphonic performances. This
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means  that  the  score  to  be  aligned  contains  chords  and  that  either  that  the  instrument

performing is a polyphonic instrument, such as a piano or a guitar, or that there are more

than one  instruments  performing.  From a technical  point  of  view,  the basis  for  such a

development  is  already included in the algorithm and is  that of the  PSM features.  The

difference is that the filters for each chord will be combinations of the harmonics of  all

notes included in the chord. The main structure of the transition matrix also remains the

same, with only small differences. Since the chord is not always played simultaneously, the

attack of one note may sound at the same time with the sustain of the other. This can occur

either because the score of the piece imposes so, or by a performer mistake or even because

of the instrument's nature. That creates the need for a slightly more complex structure of the

transition matrix.

The other element not found in our algorithm is that of the ability to run in real-time.

However, the variation of the Viterbi algorithm for such a case is cited and the only reason

it was not finally included in the algorithm is that the programming environment used is not

suitable for real-tme applications.

6.3. Summary

In general terms, the system developed for this thesis can be considered as a major first

step for the development of a complete and innovative ASA system. In this manner, the

main focus was to achieve all the basic features and functionality for such a system, where

further  work  can  be  applied  setting  the  development  in  several  different  and  more

specialized directions.

As a final conclusion, and taking consideration of all the above, we can assume that the

task  of  the  audio  to  score  alignment  has  been implemented  successfully,  including the

ability  to  detect  performer  mistakes  without  losing  track  of  the  evolution  of  the

performance,  as  well  as  working  without  being  affected  by  significant  amounts  of
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background sounds, either they are accompanying instruments or just other noise.
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