
DMA Controller for a Custom Embedded

System

Technological Educational Institute
of Crete

Department of Informatics Engineering

by

Spyros Chiotakis

30 October, 2015



i



Abstract

A Direct Memory Access (DMA) Controller o�oads a processor from tasks that
involve transferring of data inside the computing system. The processor commands
the DMA controller to initiate the appropriate transactions. While the transactions
are done by the DMA Controller on the background the Central Processing Unit
(CPU) is free to return to the tasks it has to complete until it gets interrupted by
the DMA when the transfers �nish.

An implementation of a DMA Controller was done during this Bachelor thesis
on a Zynq-7000 System on Chip (SoC). It's intended use is for systems that support
Advanced Microcontroller Bus Architecture (AMBA) and it's Advanced eXtensible
Interface (AXI).

Features of the controller include an AXI4-Lite slave interface in order to be pro-
grammed by the processor and an AXI4-Full master interface for maximum band-
width in the transactions. Additionally a Scatter-Gather interface is included for
descriptor-based transfers from scattered memory addresses. Furthermore, multi-
ple channels are implemented with priority scheduling in order to accommodate
more than one transactions requests. Lastly, implementation of interrupt support
to inform the CPU when transactions �nish.

Thesis Supervisor: George Kornaros

Title: Assistant Professor at Department of Informatics Engineering, TEI of Crete
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Σύνοψη

΄Ενας ελεγκτής άμεσης προσπέλασης μνήμης έχει ως στόχο, την ελάφρυνση του επεξ-

εργαστή, από τις μεταφορές δεδομένων μέσα στο σύστημα. Ο επεξεργαστής διατάζει

τον ελεγκτή άμεσης προσπέλασης μνήμης να ξεκινήσει της μεταφορές που πρέπει να

γίνουν. ΄Οσο γίνονται οι μεταφορές από τον ελεγκτή ο επεξεργαστής είναι ελεύθερος

να κάνει άλλες δουλειές που του έχουν ανατεθεί μέχρι ο ελεγκτής να τον διακόψει και

να τον ενημερώση ότι οι μεταφορές έγιναν επιτυχώς.

Μία υλοποίηση ενός τέτοιου ελεγκτή έγινε κατά την διάρκεια αυτής της πτυχιακής

εργασίας πάνω στο σύστημα Zynq-7000 System on Chip. Η προβλεπόμενη χρήση του
είναι για συστήματα που υποστηρίζουν το πρωτόκολλο AMBA και το AXI4 interface
του.

Τα χαρακτηριστικά του ελεγκτή περιλαμβάνουν μία διεπαφή AXI4-Lite slave με
σκόπο τον προγραμματισμό των καταχωριτών της μέσω του επεξεργαστή, και μία

διεπαφή AXI4-Full master για μέγιστο εύρος ζώνης στις μεταφορές. Επιπλέον περ-
ιλαμβάνεται μία διεπαφή για Scatter-Gather μέσω της οποίας γίνονται μεταφορές από
διάσπαρτες θέσεις μνήμης με την βοήθεια των descriptors. Ακόμη, υλοποιήθηκαν
πολλαπλά κανάλια με προγραμματισμό προτεραιότητας για να μπορεί ο ελεγκτής να

λαμβάνει εντολές για παραπάνω από μία μεταφορές. Τέλος, υλοποιήθηκε υποστήριξη

για διακοπές για να ενημερώνεται ο επεξεργαστής για το πότε τελείωσαν οι μεταφορές

από τον ελεγκτή.

Επιβλέπων Πτυχιακής: Γεώργιος Κορνάρος

Τίτλος: Επίκουρος Καθηγητής του τμήματος Μηχανικών Πληροφορικής, ΤΕΙ Κρήτης
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Chapter 1

Introduction

This chapter describes the knowledge background to accomplish this thesis. Also,
motivation and related work for the completion of this thesis is discussed. Lastly,
follows a brief overview of the thesis structure.

1.1 Background

DMA controller o�oads the processor from tasks that involve memory transfers.
CPU initiates transfers by programming the DMA controllers registers. DMA per-
forms the memory transfers on the background, which liberates the CPU to operate
on other assigned tasks. When transfers complete, DMA informs the CPU with an
interrupt generation.

E�orts to design such IP's are known by ARM DMA-330[1], Xilinx CDMA
v4.1[2], Xilinx AXI DMA v7.1[3], Lattice DMA[4] and Nilsson's LEON3 DMA[5].

Summary of features that these DMA include are:

1. Interrupt Generation

2. Scatter-Gather Interface

3. Multiple Channels

The features above are supported by the DMA of this thesis. It also supports the
ARM AMBA protocol[6] and it's AXI4 interface[7], to get validated and debugged
on a Zynq SoC[8]. The boards, which are used throughout this thesis, are ZyBo[9]
and Zedboard[10].

None of the AXI4 compliant DMA controllers [1],[2],[3],[5] supports a dynamic
burst length calculation. Burst length indicates the number of words (4 bytes
each) transferred per AXI4 handshake for incremental bursts. The AXI4 lengths
are 1,2,4,8,16,32,64,128,256 according to [7]. Current AXI DMA's are obliged to
have one of the previous burst length's and cannot change throughout it's use. We
proposed an algorithm that dynamically attributes the optimum burst length on the
transaction depending on the bytes the DMA has to transfer.
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1.2 Thesis Structure

Chapter 1 contains general information about DMA Controllers and the features
which were implemented. Then follows discussion about the motivation and related
work about this thesis.

Chapter 2 contains theory about DMA Controllers, how they evolved and are used
nowadays.

Chapter 3 includes implementation details for the DMA Controller. Multiple chan-
nels, registers and �nite-state machines.

Chapter 4 contains the results of the DMA Controller.

Chapter 5 contains the conclusions about the bachelor thesis and some thoughts
about future optimizations and features.
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Chapter 2

Theory

This chapter contains theory about DMA controllers. It also includes information
about AMBA, the AHB bus that is connected to the DMA, and the AXI4 interface.
Furthermore, Zynq SoC architecture will be covered and some brief coverage of the
tools that are used to program this SoC's.

2.1 DMA Controller

DMA controllers were born when computer architects noticed that the CPU could
either transfer data or execute tasks. They looked for ways to make these things
to happen in parallel and that's how the DMA idea came. The concept back then
was to let the CPU use the data that are in the cache and let the DMA perform the
memory transfers. That's how both the memory cache and the system's single bus
was exploited and parallelized.

The problem was when the CPU needed the bus the DMA was using to fetch
data for the memory cache, resulting to a system halt until the memory transactions
where �nished. Techniques where invented to avoid this problems (i.e. DMA cycle
stealing mode) temporarily until new technology was available.

Introduction of Network on Chips and evolution of PCIe turned the system from
a single bus - that all peripherals arbitrarily used to communicate - to a packet-
switched, point-to-point architecture network inside the system (similar to how
packet-switched computer networks operate). Concurrent full duplex DMA trans-
fers of multiple devices are possible through NoC's and PCIe without occupying the
bus that another peripheral is using.

This resulted to a shift in the structure of the DMA controllers. They changed
from a DMA that serves all peripherals - Third-Party DMA - to a DMA that is
embedded inside peripherals in need of heavy data transfers - First-Party DMA.
Both are explained in the below sections.

2.1.1 Third-Party DMA

Third-Party DMA is an IP that performs data transfers for IP's that don't have a
DMA engine on their own. An example of such IP is the 8237 DMA controller[11] in

3



intel South Bridge and the DMA of this thesis. These DMA controllers have multiple
channels that can be programmed to transfer data between peripheral devices and
system memory.

2.1.2 First-Party DMA

First-Party DMA are IP's which reside inside peripheral devices that wish to perform
transfers. They are also called bus-mastering DMA. These peripherals take the
control of the system bus to perform the transfer and don't go through a third-
party DMA to ask for transfers. Examples of �rst-party DMA are a wireless card,
a PCI Express device and the Gigabit Controller.

2.2 AMBA

The AMBA speci�cation [ARM, 1999] de�nes an on-chip communications standard
for designing high-performance embedded microcontrollers.

Three distinct buses are de�ned within the AMBA speci�cation:

• the Advanced High-performance Bus (AHB)

• the Advanced System Bus (ASB)

• the Advanced Peripheral Bus (APB)

2.2.1 AHB

AHB is recommended by ARM for all new designs not only because it provides a
higher bandwidth solution, but also because the single-clock-edge protocol results
in a smoother integration with design automation tools used during a typical ASIC
development. As a result this bus was used for the implementation of the DMA
controller.

A typical AMBA AHB system design contains the following components:

AHB master

A bus master is able to initiate read and write operations by providing
an address and control information. Only one bus master is allowed to
actively use the bus at any one time.

AHB slave

A bus slave responds to a read or write operation within a given address-
space range. The bus slave signals back to the active master the success,
failure or waiting of the data transfer.

4



AHB arbiter

The bus arbiter ensures that only one bus master at a time is allowed
to initiate data transfers. Even though the arbitration protocol is �xed,
any arbitration algorithm, such as highest priority or fair access can
be implemented depending on the application requirements. An AHB
would include only one arbiter, although this would be trivial in single
bus master systems.

AHB decoder

The AHB decoder is used to decode the address of each transfer and
provide a select signal for the slave that is involved in the transfer. A
single centralized decoder is required in all AHB implementations.

2.2.2 AXI4

For the master and slave part of the AHB components we have the AXI4 interface.
AXI4 is part of ARM AMBA [Xilinx, 2011], a family of micro controller buses �rst
introduced in 1996. The �rst version of AXI was �rst included in AMBA 3.0, released
in 2003. AMBA 4.0, released in 2010, includes the second version of AXI, AXI4.

There are three types of AXI4 interfaces:

• AXI4-Full for high-performance memory-mapped requirements.

• AXI4-Lite for simple, low-throughput memory-mapped communication (for
example, to and from control and status registers).

• AXI4-Stream for high-speed streaming data.

The DMA controller uses AXI4-Lite interface for the slave part of the design and
AXI4-Full interface for it's master part. The slave part has no need for high-
performance and as such it uses the AXI4-Lite interface which is less complex and
takes up less space on the FPGA board.

5



Figure 2.1: AXI4-Lite interface

On the other hand the master part is responsible for the data transfers and high-
performance is beyond questioning. The price to be paid resides in the complexity
of the design and space consumption on the FPGA board.

Figure 2.2: AXI4-Full interface
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2.3 Zynq

Zynq SoC was used to implement the DMA controller. It consists of one ASIC
part that contains a dual ARM Cortex-A9 MPCore CPUs with ARM v7, and a
programmable logic part where the user can create his own IP cores. The two parts
communicate with each other through the usage of AMBA interconnects.

Figure 2.3: Zynq SoC insiders
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Chapter 3

Implementation

This chapter contains details for the implementation of the DMA controller. The
details that will be discussed here are registers, �nite-state machines, descriptor
internals, multiple channel operation. Lastly a small presentation of the tools and
language used to implement the IP and the internals above will be given.

3.1 DMA Channels

The DMA Controller consists of 7 channels each one with it's own register address
space. The processor can program and initiate transfers from whichever channel it
wants. Each register has size of 4 bytes.

Figure 3.1: DMA Channels

9



3.1.1 DMA Channel Arbitration Algorithm

The algorithm for the multiple DMA channels is displayed on �gure 3.2. It checks if
any channel has requested a DMA transfer always starting the checks from channel
1 going downto channel 7. The less the number of the channel the greater priority
it has to be serviced (channel 1 highest / channel 7 lowest).

Figure 3.2: DMA Channel Arbitration Algorithm

3.2 DMA Registers

In this section the operation of DMA registers will be discussed. Control register
a�ects the operation of the DMA, and status register is a�ected by the current
DMA state. Lastly the register organization of Channel #1 will be discussed. The
remaining channels operate the same as channel #1 with the only di�erence being
the address o�set.

10



3.2.1 Control Register (O�set 0x00)

This register controls operations of the DMA controller.

Figure 3.3: Control Register

Table 3.1: Control Register Details

Bits Field Name Default Value Description
[31:9] Reserved 0 These bits are reserved for

future use.
[8] Acknowledgement Bit 0 This bit when set to 1 ac-

knowledges (by the routine
that is written in software)
that the processor received
the interrupt and that the
DMA can continue servic-
ing the next channels or de-
scriptors.

[7:1] Active Channels bin(1111111) These bits control which
channels are active. For
example if the bits are
0000001 then only Channel
#1 is active (By default all
channels are active).

[0] Reset Bit 0 When this bit is set to '1'
it sets all channel registers
values to '0'.

11



3.2.2 Status Register (O�set 0x04)

This register displays the status of the DMA controller.

Figure 3.4: Status Register

Table 3.2: Status Register Details

Bits Field Name Default Value Description
[31:3] Reserved 0 These bits are reserved for

future use.
[2:0] Channel#n Active 0 These bits display which

channel is getting serviced
by the DMA. If for example
the value is 010 then chan-
nel 2 is active. 000 means
no channel is active (DMA
is Idle).

3.2.3 Source Register (O�set 0x20)

This register holds the source address for where the DMA should fetch data from.

Figure 3.5: Source Register

Table 3.3: Source Register Details

Bits Field Name Default Value Description
[31:0] Source address regis-

ter Ch#N
0 Source address for the DMA

controller

12



3.2.4 Destination Register (O�set 0x24)

This register holds the destination address for where the DMA should sent the data
to.

Figure 3.6: Destination Register

Table 3.4: Destination Register Details

Bits Field Name Default Value Description
[31:0] Destination address

register Ch#N
0 Destination address for the

DMA controller

3.2.5 Bytes to Transfer Register (O�set 0x28)

This register holds the number of bytes to be transferred.

Figure 3.7: Bytes to Transfer Register

Table 3.5: Bytes to Transfer Register Details

Bits Field Name Default Value Description
[31:0] Bytes to transfer reg-

ister Ch#N
0 Number of bytes to be

transferred from source to
destination address

13



3.2.6 DMA Request Register (O�set 0x2C)

This register is responsible for DMA transfer requests from the particular channel.

Figure 3.8: DMA Request Register

Table 3.6: DMA Request Register Details

Bits Field Name Default Value Description
[31:1] Reserved Ch#N 0 These bits are reserved for

future use.
[0] DMA Request 0 If this bit is set to '1'

a DMA transaction is re-
quested from the speci�c
channel

3.2.7 DMA Scatter Gather Mode Register (O�set 0x30)

This register holds the number of bytes that the user wants to transfer.

Figure 3.9: DMA Scatter Gather Mode Register

Table 3.7: DMA Scatter Gather Mode Register Details

Bits Field Name Default Value Description
[31:1] Reserved 0 These bits are reserved for

future use.
[0] SG Mode 0 If this bit is set to '1' and

DMA requests for a transfer
the transfer will be a Scatter
Gather. If the bit is '0' then
on DMA request the trans-
fer will be a simple DMA
one.
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3.2.8 DMA Scatter Gather Head Pointer Register (O�set
0x34)

This register holds the number of bytes that the user wants to transfer.

Figure 3.10: DMA Scatter Gather Head Pointer Register

Table 3.8: DMA Scatter Gather Head Pointer Register Details

Bits Field Name Default Value Description
[31:0] DMA Scatter Gather

Head Pointer Ch#N
0 Address of the �rst node on

the linked list of descriptors
in memory.

3.2.9 DMA Scatter Gather Tail Pointer Register (O�set 0x38)

This register holds the number of bytes that the user wants to transfer.

Figure 3.11: DMA Scatter Gather Tail Pointer Register

Table 3.9: DMA Scatter Gather Tail Pointer Register Details

Bits Field Name Default Value Description
[31:0] DMA Scatter Gather

Tail Pointer Ch#N
0 Address of the last node on

the linked list of descriptors
in memory.
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3.3 Finite State Machines

The DMA has 2 FSM's. The "Master Interface FSM" is responsible to make the
transfers depending on the bytes it has to transfer. The "Master Scatter Gather
Interface FSM" works in conjunction with the master FSM, by bringing the descrip-
tors and feeding them to the master FSM to make the transactions described by the
descriptor. Both FSM's are explained in more detail below.

3.3.1 DMA Master Interface FSM

Figure 3.12: DMA Master Interface FSM

IDLE

This is the starting state of the FSM following a reset from the system
or the �nish of a transaction. If a channel wants to initiate a DMA
transaction then the state moves to CALC_BURSTS.
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CALC_BURSTS

This state is responsible to calculate the optimum burst for the bytes
that have to be transferred. The burst lengths available from AXI4 are
1,2,4,8,16,32,64,128,256.

Example: The user wants to transfer 5908 bytes. These bytes get
translated to words (4 bytes = 1 word) 5908 / 4 = 1477 words. The
number 1477 translates in 10111000101 in binary and the rest from the
32 bits are 0. Then we choose burst length according to �gure 3.13.

Figure 3.13: Optimum Burst Example

The table shows that we have to do 5 (101 binary = 5 decimal) transfers
of burst length 256; 1 transfer of 128, 64, 4, 1 burst length. Adding all
these bursts together 256 * 5 + 128 + 64 + 4 + 1 = 1477 words are
transferred.

The algorithm checks if any of the �rst 8 bits are 1 and makes a transfer
according to the length shown by the �gure above. The top 24 bits
display the number of 256 burst length transfers that have to be done.

INIT_READ

This state starts reading data from the source register given by the user
or descriptor. The number of data to be read are known from the
CALC_BURSTS state before. When all data are read and stored in
the FIFO then the FSM state changes to INIT_WRITE.

INIT_WRITE

This state starts writing the data existing in the FIFO to the destina-
tion indexed by the destination register. When FIFO empties the state
changes to either CALC_BURSTS or INIT_READ. CALC_BURSTS
when transfers of a speci�c burst length (1,2,4,8,16,32,64,128,256) are
�nished. INIT_READ if more speci�c burst length transfers need to be
completed.
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3.3.2 DMA Master Scatter Gather Interface FSM

Figure 3.14: DMA Master Scatter Gather Interface FSM

IDLE

This is the starting state of the FSM following a reset from the system
or the �nish of descriptor fetching. The initiation of a Scatter-Gather
transaction moves this state to SET_CURR_PTR.

SET_CURR_PTR

This state reads the head pointer register and puts it's value in a signal
which declares the start of a linked list. When this process �nishes the
state changes to INIT_READ.

INIT_READ

This state starts reading the descriptors from the address pointed by the
head pointer register. When the descriptor is read and decoded then the
state changes to START_DMA.

START_DMA

This state initiates the "DMA Master Interface FSM" by feeding the
source, destination and bytes to transfer that were read by the descrip-
tor. When the "DMA Master Interface FSM" �nishes the transaction
it informs "DMA Master Scatter Gather Interface FSM" and the state
changes to CHECK_SG_STATUS.
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CHECK_SG_STATUS

This state keeps track of the progress in the linked list of descriptors.
If the current head pointer matches the tail of the list then the FSM
changes to IDLE state. If the current head pointer fails to match the
tail pointer then the current head moves to the next node in the linked
list and the FSM starts reading the descriptor found in that address by
changing the FSM state to INIT_READ.

3.4 VHDL

VHDL (VHSIC Hardware Description Language) is a hardware description language
used in electronic design automation to describe digital and mixed-signal systems
such as �eld-programmable gate arrays and integrated circuits. This programming
language di�ers from a conventional one. A hardware description language is inher-
ently parallel, i.e. commands which correspond to logic gates are executed (com-
puted) in parallel, on new input arrival. A HDL program mimics the behavior of
a physical, usually digital system. It allows incorporation of timing speci�cations
(gate delays) as well as, a description of a system as an interconnection of di�erent
components. Every HDL language resides in the Register Transfer Level (RTL) of
the abstraction hierarchy.

Figure 3.15: Abstraction Hierarchy

3.5 Xilinx Vivado

Vivado allows the developers to create, debug, simulate and integrate IP's on FPGA.
A selection of proprietary IP's is readily available from Xilinx, but it also allows the
creation of custom IP's that can integrate with the previous ones. To glue the
components together Vivado uses the AXI4 interface. This interface is generated
automatically through Vivado IP packager and allows the developer to encapsulate
the IP inside the interface. The fusion of the IP and AXI4 interface allows inter-
communication with the whole programmable system - given that the rest of the
IP's are AXI4 compatible - and also with the ARM processor.

The DMA was �rst created using only a AXI4-Lite Slave interface (the less
complicated one). AXI4-Lite contains the registers which control the operations of
the DMA controller. After that, the DMA was placed an a Zynq SoC and it's register
where stimulated, checked and debugged with the use of ILA. When everything run
bug-free both master interfaces where added. Their actions are controlled by the
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AXI-4 Lite slave registers. Lastly, each master interface has it's own interrupt
generation on transaction completion. The routine that the ARM CPU will follow
after the interrupt is written in Xilinx SDK tool.

3.6 Interrupts

When the DMA generates an interrupt it asserts the INTR pin of the processor.
The assertion of the bit is done indirectly through an intermediate interrupt router
which asserts the INTR CPU pin. This router handles a lot of interrupt requests
and each request has di�erent priority depending on the design and user choices.

When CPU sees the INTR pin asserted, it �nishes the instruction it was exe-
cuting, and stops processing any further instructions. Then based on the interrupt
number, it goes out and reads some values from a table, called interrupt vector
table. The interrupt vector table contains the address where the ISR is stored in
memory. The program execution jumps to the ISR starting address. Each interrupt
has its own separate ISR. After ISR takes care of the interrupting device, it executes
IRET instruction. The CPU comes back to its normal execution �ow and resumes
operation from where it had stopped.

Two interrupt routines are implemented in software using Xilinx SDK: The �rst
routine activates the acknowledgement bit of the control register to let the channel
know that the request for DMA is acknowledged and completed, and as a result the
DMA requesting device turns it's requesting bit to '0'. The second routine is for
the scatter gather channel. It checks if the channel is requesting a scatter gather
and prints a message to the user each time a descriptor is processed and �nished.
When the scatter gather �nishes with all the descriptors it informs the user with a
message and it activates the acknowledgement bit like the �rst routine.

3.7 Abstract Schematic

On the �gure below there is an abstract scenario of how the DMA worked with the
rest of the peripherals. This scenario is presented in order to get an idea of how the
transactions are made.

20



Figure 3.16: Abstract implementation of the DMA Controller

3.7.1 Example of a DMA operation

The steps followed in order to initiate a transaction are the following:

1. Processor programs DMA registers and initiates transfer.

2. DMA checks if it is in Simple DMA or Scatter Gather mode.

3. DMA performs the transactions depending on the mode.

4. When the transactions �nish there is an interrupt generation to inform the
processor.

The actual implementation in Vivado exists in Appendix A.
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Chapter 4

Results

This chapter veri�es that the DMA operates as expected. Code and simulations are
covered to prove how the DMA works. Results derived are compared to other DMA
controllers. Lastly, area of DMA is covered depending on the features it supports.

4.1 Simulations

We simulated both simple and scatter-gather DMA transactions to verify correct
operation. This was done using Xilinx Vivado ILA[13] core, and Xilinx SDK to
write a C program that programs the DMA controller to perform a transaction.

4.1.1 Simple DMA Transaction Simulation

A C-program was written to program the DMA, �gure 4.1, and the results are shown
in �gure 4.2.

Figure 4.1: Simple DMA Sample Code

Figure 4.2: Simple DMA simulation

From �gure 4.1 the C-code sets 0x40000000 address �rst 200 places to 0-199 so
we know that the DMA is fetching the correct data in correct order. After we set
the source address of the DMA to 0x40000000, and destination 0x40001000, and the
bytes to transfer to 64. 64 bytes correspond to 16 words that's why we see in the
aqua lines of �gure 4.2, 16 reads (values 0-15) and 16 writes (values 0-15). Lastly,
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the the red line from �gure 4.2 declares an interrupt generation to the processor
after all reads and writes are done.

4.1.2 Scatter-Gather DMA Transaction Simulation

Our DMA scatter-gather utility was checked for correct operation. The code snippet
below �lls FPGA's BRAM memory with incremental values from 0 to 199 in the cor-
responding addresses. Then we initialize 3 descriptors and use address 0x40000000 as
source which contains the incremental values explained above. Then these values are
copied to scattered destinations in memory (0x40001000, 0x40000200, 0x40000300).
The bytes that each descriptors has to transfer from the source to the destination are
1024 (256 words) for the �rst descriptors; 512 (128 words) for the second descriptor;
and 756 (189 words) for the third descriptor.

After a descriptor is processed the next one must be fetched until the linked
list reaches it's end. Descriptors maintain a pointer in their structure which points
to the next descriptor to be fetched. The �rst descriptor (address: 0xC0000000)
points to the second descriptor (address: 0xC0000020). The second points to the
third (address: 0xC0000040). The third points to the fourth (address: 0xC0000060).

The descriptor pointer can pointed anywhere in the memory, as long as, in the
location pointed there is a valid descriptor. If not, the results are unpredictable. In
our example code we use address 0xC0000000 as head of the list and 0xC0000040 as
the tail. As a result, we start processing from the �rst descriptor then process the
second, and stop when we process the third (because it matches the tail address).

Figure 4.3: DMA Scatter Gather Sample Code

We simulated the results running the C code from �gure 4.3. Figure 4.4 shows
that the DMA fetched data from the source (address: 0x40000000) and stored them
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to the FIFO before forwarding them to the destinations (address: 0x40001000,
0x40000200, 0x40000300). We also see the words that needed to be transferred
256, 128, 189 which correspond to the bytes of the C code 1024, 512, 756. For
the 189 word transaction the DMA used the optimum burst algorithm described in
Figure 3.13. It split 189 into burst length transfers of 128, 32, 16, 8, 4, 1 to comply
with the AXI4 burst length protocol. Lastly, the red line is the interrupt that is
generated after all 3 descriptors are processed to inform the CPU for the end of the
Scatter Gather transaction.

Figure 4.4: DMA Scatter Gather Simulation

4.2 Comparisons

DMA was compared against Zynq Cortex-A9 CPU in performing a memory transfer.
Then it was compared against modern DMA solutions provided by Xilinx.

4.2.1 CPU vs Custom DMA

Figure 4.5 displays a C routine that emulates the way our DMA operates. It �rsts
reads the data from the source to a bu�er and then moves the data from the bu�er
to the destination address.

Figure 4.5: C Code for CPU Data Transfer

Figure 4.6 shows the assembly code for the �rst for-loop. The processor takes 19
cycles to copy one word (4 bytes) from source to the bu�er.
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Figure 4.6: CPU Data Fetch Code Disassembly

Figure 4.7 shows the assembly code for the second for-loop. The processor takes
19 more cycle to copy one word (4 bytes) from the bu�er to the destination address.

Figure 4.7: CPU Data Send Code Disassembly

As a result, every 38 cycles a word is copied from source to destination.

For the DMA controller a small overhead occurs. The DMAmust be programmed
�rst by the CPU before it initiates transfers. The cost of the CPU and the AXI4
protocol handshakes to program the DMA is about 88 clock cycles. After the DMA
is programmed for every 2 clock cycles (one read one write) new data are fetched
and sent to proper destination, through AXI burst transactions. Figure 4.8 shows a
comparison between the CPU and the DMA controller.
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Figure 4.8: CPU vs Custom DMA Graph

The graph above shows that the CPU is a lot slower than the DMA. For example
a 256 word transfer would take the CPU 256*39 cycles to complete while the DMA
only needs 256*2+overhead(about 88 cycles). It also suggests that the DMA is more
e�cient than the CPU after 3 word transfers. That's half true because the CPU
might be slower after 3 word transfers but the DMA also interrupts the processor
after each transactions is completed, and this causes many context switches(which
are costly). That adds more overhead to it's performance. Our suggestion is to use
a DMA controller when our transactions constitute mainly from >8 words. Else,
the CPU performs better without the DMA controller.

4.2.2 Xilinx CDMA vs Custom DMA

After the CPU was compared with the DMA of the thesis, the next comparison to
be made was against Xilinx CDMA. Figure 4.9 shows this comparison.

Figure 4.9: Xilinx DMA vs Custom DMA graph

We can see that the DMA of this thesis takes double the time to perform trans-
actions with the same amount of bytes. The reason is the technique used by the
CDMA of Xilinx which is to pipeline the data after they are read to the write bus.
Figure 4.10 shows the pipelining used by Xilinx and �gure 4.11 shows this thesis
DMA technique which is to �rst read all data to FIFO and then write them to
destination.
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Figure 4.10: Xilinx DMA Transfer Method Simulation

Figure 4.11: Custom DMA Transfer Method Simulation

While performance is crucial our Custom DMA is able to respond in situations
where Xilinx CDMA can't. An example is a BRAM controller[12] with one bus lane
like �gure 4.12.

Figure 4.12: BRAM Controller

This BRAM controller has only one bus lane and it can either read or write. It
can't perform both concurrently. When Xilinx CDMA was used to read and write
using this BRAM controller it halted operation and the data where faulty. On the
other hand our DMA made the transfer without any errors. A solution we propose
is a bit which, when set, transforms the DMA transfer operations via pipeline and
when it's not it removes the pipeline technique.

4.3 DMA Area Occupation

Four DMA controllers where created for this thesis. First a simple DMA with one
channel; Second a DMA with Scatter-Gather utility; Third a DMA with multiple
channel support; Fourth a DMA with all the above features supported. Each one can
be used depending on the user needs. All the resulting tables in the next subsections
are without Xilinx tool performing it's optimizations. A 10% less area occupation
is expected if all the DMA's pass through the optimization phase.

4.3.1 Simple DMA Area

The simple DMA controller occupies the least area and it's simple in implementation
and usage. It can transfer data from one memory region to another through it's
channel.
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Figure 4.13: Simple DMA area table

4.3.2 Scatter-Gather DMA Area

The Scatter-Gather DMA occupies more space than the simple because of the ex-
tra AXI4-Lite interface that fetches the descriptors. It supports both simple and
Scatter-Gather transactions.

Figure 4.14: DMA with Scatter Gather area table

4.3.3 Multiple Channel DMA Area

DMA with multiple channels occupies almost twice the space of the simple DMA.
Main reason is the registers that each channel contains. This enables peripherals
to connect to di�erent channels dedicated to them and ask for transfers. These
channels don't support scatter gather utilities.
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Figure 4.15: DMA with multiple channels area table

4.3.4 Complete DMA Area

Complete DMA occupies the most space as it has the features of multiple and scatter
gather DMA fused together. It also has interrupt support to inform the processor
for the transactions. Each channel can do either simple DMA transaction or scatter
gather and the channels - 1 to 7 - have di�erent priority in getting serviced by the
DMA depending on the number of the channel; 1st has the most and 7th the least.

Figure 4.16: Complete DMA area table
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Chapter 5

Conclusions and Future Work

This chapter contains the conclusion of this thesis and also future work and expan-
sions for the DMA controller.

5.1 Conclusions

A DMA controller is an integral part of modern computing systems. It o�oads
the processor dramatically from tasks that involve data transfers throughout the
system and it also does them more e�ciently. The DMA of this thesis is able to
communicate with it's AXI4 counterparts in the system and perform transfers by it's
programmable interface. It outperformed the CPU on transfers that were greater
than 8 words, but it's performance was poor when compared to Xilinx's CDMA.
Although, this degradation in performance makes it usable in every situation pre-
sented, while Xilinx's CDMA requires at least two bus lanes from the sender/receiver
to perform error free.

5.2 Optimizations

The DMA Controller has a lot of room for optimizations by tweaking the design
choices that were made. Firstly, the FIFO bu�er can become signi�cantly smaller
(current size 256 words), by pipelining the read data to write data immediately. The
current DMA �rst stores the data to the FIFO and then proceeds on writing them
to the destination.

The Scatter-Gather interface is AXI4-Lite, so the descriptors are fetched a lot
slower than an AXI4-Full interface. This change will make the process of fetching
faster but at the cost of more complexity in the code and space allocated in the
FPGA. Also, a FIFO can be implemented on the Scatter-Gather interface in order
to fetch all the descriptors and then start the transactions. The current scenario is
fetch one descriptor and when it �nishes fetch the next.

5.3 Additional Functionality

The DMA supports only word-aligned transfers. An alignment algorithm [diva pa-
per/chapter] can be implemented to support half-word and byte-aligned transfers.
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DMA doesn't support error detection. If the user sends data to an address that
is not AXI4 compliant then the DMA doesn't inform the user that the address is
invalid. A possible method to solve this problem is to create a timer and wait for a
response for a set period of time (i.e. 30 cycles). The time can be set on the control
register, for example using 6 bits to indicate the max cycle time before signaling
an interrupt and declaring a bit on the status register that the transaction to the
speci�c address failed.
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Appendix A

Vivado Simple DMA Schematic

Figure 5.1: Simple DMA Schematic
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Vivado DMA Scatter Gather Schematic

Figure 5.2: DMA Scatter Gather Schematic
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