Design, analysis and presentation of Intrusion Detection Systems.

by

SFAKIANAKIS IOANNIS

A THESIS

Submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF INFORMATICS ENGINNERING

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

June 2015

Approved by:

Supervisor
Ass. Prof. Harry Manifavas

[2]

Abstract

It is very significant to maintain a high level security to ensure safe and trusted
communication of information exchanged between various organizations. Computer security
has become a major problem in our society. But secured transfer packets over internet and any
other network are always under threats caused by intrusions and misuses. Intrusion Detection
System has become a useful component in terms of computer and network security.

Security threats have become more sophisticated and are now able to pass basic security
solutions such as firewalls and antivirus programs. Further protection is therefore required to
enhance the overall security of the network.

This thesis thus acts as documentation for setting up an Intrusion Detection System evaluation
tests. We explore IDS models that are being used for detecting attacks. We analyze two main
types of IDS: the Network IDS and Host-Based IDS. The main goal of this thesis is to point
how typical intrusion attacks might be detected.

3]

20voyn

Tn onuepwn emoyn €ival oAV onpavtikd vo datnpeitor Eva vynAd eninedo aceoieiog To
omoio va eEac@alilel TNV acedieln Kot TV 0&lOTIOTIO TOV VTOAOYICTIK®V Kol OIKTLOK®V
GLOTNUATOV.AKOUO eivar TOAD onpavtikd va dtatnpndel Eva vyniod eninedo aSlomotiog otV
emkowvovia.H petagopd 0edopévov HECH TNAETIKOIVOVIOK®OV GLGTNUATOV Onuovpyel
mpofAnuata kabmg avtd Kabiotavtor evtpocPinta oe KakdPovAeg evépyetes. H acpdieia
TOV VTOAOYIOTIKOV CLOTNUATOV Kol TV emkowvoviov el egelybel oe éva peilov

TPOPAN QL.
Mo Aom oto mapomdve TpoPAnuata eivor ta cvatipato aviyvevong ewofoiav (IDS). Ta

OCLGTNUATO VTGO OTOTEAOVV €vo. YPNCIUO epYoAeio kot éva emmAéov emimedo yuo TV
AGPAAELNL TOV VITOAOYIGTIKAOV KOl OIKTLOKADV GUGTNUATOV.

Ot amethéc Yo v ac@arela £xovv yivel mo epimiokeg kot givorl TAéov o Béom va mepdoovv
TG Pacikég Moelg acedielng o0nmg ta firewalls kou to antivirus. Q¢ ex TovTOL, K
mpochetn Avon aceoaieiog amarteitan yioo va gvioyvBel 1 cuvoAKn ac@dAeld TOVv SKTHOV.
Muw mBoaviy Aon vy v evioyvon g acedielng sivar va mpocBécovpe €va cuoTNUA
aviyvevong egfoing (IDS) wg éva emmAéov eminedo TV Ace®V acareiog.

2V mopovGa TTLYLOKY YIVETOL peAéTn,aviivon kot tapovsioon tov IDS. Ta cvotiuota
aviyvevong ewPfordv mov ypnoipomodnkay eivar too Snort,Suricata,Bro.ITio cuykekpiuéva,
N HEAETN Kol O GYESOGUOC TOV GUOTHLOTOG OV avamtLxOnKe aEopd dvo Katnyopieg TV
IDS ta HIDS ot NIDS.

[4]

Acknowledgements

I would like to express my deep gratitude to Professor Harrys Manifavas, my supervisor, for
his patient guidance, enthusiastic encouragement and useful critiques on this work. His
willingness to give his time so generously has been very much appreciated.

Last but not least, | would like to thank my wife, Eleni, for her patience and support she has
shown during the past one year it has taken me to finalize this thesis.

[5]

Contents

AADSTIFACT ... b ettt b e bbb et e 3
ACKNOWIEAGEMENL ...ttt et e et e re e teeaeaneesreeneennes 5
LISt OF TADIES ..t bbbttt bbbt 8
LSE OF FIQUIES ...ttt b bbbt 9
Chapter 1: INTrOTQUCTIONc..oiiiiiiiieiee et 12
0 10T [T 4 o o USSP 12
A |V [0 Y= (oo PSSP 13
1.3 Growth Of the INTEINELo 13
1.4 Growth of INternet attaCkS........ccovviieiieeiie e 14
1.5 History of Intrusion Detection SYSEMSccoevveiiiriiiiiriieeeee e 15
1.6 FINANCIAI TISKS ..veieeieiet ettt sneenre e nnes 15
1.7 WRNY USE ID Sttt sttt e steenee s e beenteaneeneeeneennes 15
1.8 Limitations of Intrusion Detection SYSTEMcccooiiiiiiiiinieee e 16
Chapter 2: Intrusion DeteCtion SYSIEMSccuiiiiiieieiererie s 17
P20 R 1 oo [0 od o o OSSPSR 17
2.2 Free INtrusion Detection SYSLEMSc.cciviiieiiciiiic et 18
2.3 Problems With EXIStiNG SYSIEMSccveiiiiiiieie et 19
2.4 Process model for INtrusion DEtECLIONcveveiierieieiiiesieee e 19
2.5 EfeCtiVENESS OF IDS.... .o ettt 20
2.6 Network Intrusion Detection SYStEMS.........coveiviiieiiee e 20
2.7 Host Intrusion DeteCtion SYSTEMScciviiiiiiiicie et 22
2.8 IDS ANAIYSIS...ciiiiiie ittt e be e e re e 23
2.8.1 MISUSE DEEECLIONccueiiiiiiieie ettt ee e 24
2.8.2AN0MAlY DELECLIONcviiiiiieiie ittt e et e e 24
2.8.3 SPeCITICAtION DEIECTIONc.veveieeeiic sttt 26
2.8.4 HYDIIA. ..o e 26

2.9 IDS ATCNITECIUIE......eieeieeiie sttt e et e s teeteenaesraeneeneeaneenneans 26
Chapter 3: SYStemM MOc.oiiieee e 27
3.1 Overview of the PropoSsed SYSIEIMcciveiiiieiieie e 27
B0 oo 8 01 (0] 1o OSSR 27
3.2.1 Configuration Set UP SWILCH.........coviieiiee e 29

[6]

(O g FoT o) (= S 10 SO SS 31

o A 1 oo [0 Tod 1 o] PSSR PV URPRPRPRPRIN 31
4.2 SNOIT FRAIUIES ..ottt r e e nneeaneennee s 32
4.3 ArChIteCtUIE OF SNOKT ..ot 32
4.3.1 PACKET DECOUETcoeieeieciieiieee sttt sttt ettt steeseesreesbeenbeaneenreas 33
4.3.2 TNE PrEPIOCESSOIS.ueevviatetesteste ettt eie etttk sb bttt nbeab et b et nnes 33
4.3.3 DELECLION ENQINE ...ttt 33
4.3, SNOMT ALBITS ..ottt st e e e sre e beenbeeneenreas 34
4.3.5 SN0t PACKEE DALAc.vviiieiiieiiiie ettt nnes 34
4.4 Three MOAES OF SNOITccviiiiie et sreene e 34
4.5 SNOMT RUIBS ... et enbe e s reenteeneesreene e 34
4.5.1 RUIES HEAUBIS. ... ettt sttt st esneenteeneenneas 35
A.5.2 1P AQUIESSESvveveeiienie ettt stieste ettt e st te e s e s e e steeseesreesaeeneeaneesseebeaneenrees 35
4.5.3 ACtivate/DyNamiC RUIES..........ccoviiiiiiiiee e 35
4.5.4 General RUIE OPLIONSooiiiiiiiiieiee e 36
4.6 The Snort Configuration Fileccooieiiiiiie e 38
4.7 SNOM IDS MOUEccviiieie sttt ettt st besreene e e e e 40
4. 7.1 TESEIAS (PING) crveireeiteeieetie ettt ettt et e et e st e e e s beesreesesraesbeeeeennenres 41
A4.7. 1.1 RUIE PING ..ottt ettt re e ene s 42

4.8 POIt SCAN DEIECLIONc.viviiieiiieiieiieie ettt b et 42
4.8.1 RUIE SCAN FiN ..ottt ettt 43
4.9 DeteCt SYN FlOOM ..ot 43
4.9. 1 RUIE SYN FIOOU ..ottt et 45
4.10 DeteCt Drute-fOrce fLP ..ocvveiee e 45
4.10.1 RUIE DIULE-TOICTE ..o et 46
4.11 DEteCt UDP FIOOUocuieiiieie ettt sttt sne e enne e 46
4.11. 1 RUIE UDP FIOOQcoiiiiiiic ettt nee s 48
4.12 DeteCt Drute-fOrce SSHcviiii i 48
4.12.1 RUIE DrUte-TOrCE SSHccuiiiice ettt 48
CNAPLET 52 SUMCAIA ...ttt bbbttt 49
TN S TU L o%: 17 [0 3T SSSS 49
5.1.1Suricata configuration filesSccecviiiiiii e 51
5.1.2Max-pending-PaCKeLSc.erieiieiieeiie e e e 51

[7]

5.1.3Default-PaCKEL-SIZE.......ecveieeeie e e 51

DL AACHON-OFURE ..ttt bbbttt et b bbbt ne e e neas 51
5.1.5DEtECLION BNGINE......ueiiiiieite ettt e et e e e be e e e sreenreeneesreenreens 52
5.1.5.1Inspection CONFIGUIALION.........cc.eiieiieieiicre e 52

5.2 SUFICALA 1US MOUEc.vieiiiiieciie ettt neesreenne e 54
5.2.1 TSt SUMCALA 1US....eveeueeieieiiieie ettt sreenteeneesreenee e 55

5. 2. L. IRUIE PING ..ttt bbb 56

5.3 DEECTION POI SCANcoviiiieitieiiieie ettt ettt sreenne e 57
5.3.1RUIE PO SCAN....viiiiieie ettt neeeneenne e 57

5.4 Detection SYN FlO0coiiiiiiee et 57
5.4.1RUIE SYN FIOOMcoiiieiiiecic ettt et ee e 58

5.5 Detection UDP FlOOdooiiiieie et 58
5.5.1RUIE UDP FIOOUoiiiieiieccic ettt st sre e ne e 59

5.6 SUFMICALA VS SNOI......iiiiiiiiieiieie ettt ae e e te et e naesraeteeneesreenneans 59
CRAPLET B: B0 ..t b bbbt b bbbt 61
B.1 BrO IDS ...ttt ettt renns 61
6.1.1 Managing Bro with Bro controlcccccovoiiieiiiic e, 61
6.1.2 Browsing LOG FIlEScvoiieiicc ettt 61

I = (0T Tol o PSSR 61
8.3 BrO LOQ FIIES.....eeiieeee ettt ettt 63
6.3.1 SIgNAtUre MAIN.DIO ..c..eiiiiice e 65
6.3.2 REPOIEr MAIN.DIO.....cviiiiiicie et 66
6.3.3 CommuNication MAIN.DIO......c.coiiiiiiiic e 67

6.4 DELECE POIT SCAN......eiiiiiiiieiiee ettt ettt et e e nbeesaneenee e 68
B.4.1 SCAN.DIO....coiieieiie e et et 71

6.5 DELECt SYN FIOOMcciiiieiieci ettt te e sneenne e 75
6.6 DEteCt UDP FlOOMccuiiieiieceee et 77
6.7 DeteCt Brute FOICE SSHo e 79
B.7.1 BIULE-FOICE.I0Q .. .oviieiiieiiieiee et 81

5.8 BIO VS SNOI ...ttt ettt sb e et e et e nteenreeanbeenree s 83
Chapter 7: CONCIUSTONcuiiiiiiiieeee et b et 84
T L FULUIE WWOTK ...t bbbt b e bbbt 84

8]

List of Tables

Table 1-1: SNOrt Metadata KEYScv i
Table 1-2: General rule Option KEYWOITScoviiiiiiiiiic et et sae e

Table 5-1: Global Overview

[9]

List of figures

Figure 1-L1:Attack COMPIEXITY ..vveiiiiiieeieiiiee ettt et e e et e e e et e e e e s ttae e e e abae e e enbaeeeennsaeeeennrenas 13
Figure 1-2: Internet Per 100 INhabitants.......ccueiiiiiiiiiciiiee e 14
Figure 1-3:INtrusion DeteCtion SYSTEMcii ittt e e e e e e s s snree e e e e e e enas 16
Figure 2-1: Intrusion Detection SYSTEM 2... ... i aeaeaeaaaees 17
Figure 2-2: IPS In Complete Deployment MOE........ccoucuiiiiiiiiieiiiiee et eree e e s ree e 18
Figure 2-3:NIDS In Complete Deployment IMOE........cccuviiiiiiiieiiiiieee et ee e 20
Figure 2-4:NIDS Architecture With Mirror POtcooccuiiiiiciie ettt 22
Figure 2-5: Host Intrusion Detection SYStemueiiiiiiiiieeee e e e e 13
Figure 1-1: Attack COMPIEXITY .uveeeiciieeeciiiee ettt et e et e e e et e e e e tte e e e e abee e e ennbaeeeeenseeeeennsenas 13
Figure 1-1: Attack COMPIEXITY ..veeeiciieeeciiiie ettt e e e et e e e e tre e e e e ate e e e e abeeeeensbaeeeennseaeeeensenas 12

Chapter 1 Introduction

1.1 Introduction

In recent years, a gradually increasing number of intrusion detection systems are being in use.
An intrusion detection system is a device or a software application that monitors network or
system for malicious activities or policy violations that produces reports [1]. This has been
driven by numerous developments, including the growing e-business paradigm, the increasing
interconnection. These incidents highlight the increasing need for organizations to protect
their networks from attacks. Instead of a firewall that filters bad traffic, an IDS monitored
packets to detect malicious attack attempts. The use of secure protocols and the enforcement
of security attributes have the potential to prevent disadvantages from being exploited and
from having costly consequences [2].

IDSs are host-based, network-based and distributed IDSs [3]. Host based IDS monitors
specific host machines, network-based IDS identifies intrusions on key network points and
distributed IDS operates both on host as well as network [3].

Considering the damage caused by the attacks [4], it is important to detect attacks and take, if
it is feasible, appropriate actions to prevent them. Efficiency of IDS can be measured by its
high detection rate and a low false positive rate [5]. IDS can be correlate with fortress defense
against any intrusion where as firewall can act as a first line of defense against the attackers.

[10]

Firewalls can be by passed through attacks strategies with the help of e-mail based trojan
horse viruses by a concealed access through DNS or ICMP protocols [6].

We have two classes of intrusion detection systems [21]: anomaly and misuse detection.
Anomaly detection systems attempt to model the usual or acceptable traffic. They have high
false positive rates and usually have detection system delay. Misuse detection is an IDS
technique that follows defined patterns of attack that exploit disadvantages in the system.

Unfortunately, dependable IDS should continuously provide correct services [7]. Therefore,
two factors need to be considered to ensure IDS reliability. First, the IDS should deliver
reliable detection results. The IDS method should be effective in discovering intrusions since
poor detection performance ruins the trustiness of the IDS [7].

Furthermore, the IDS should be able to work in hostile environments or even under attack [8].
We can study also a determination based IDS that instruments a target application, and uses a
scheduler to confirm timing analysis results [9].

Today’s networks [10] are not only heterogeneous, but also dynamic. Therefore, intrusion
detection systems need to back up mechanisms to dynamically change their configuration as
the security state of the protected system evolves. Most intrusion detection systems [10] are
initialized with a set of signatures at startup time.

In the end, the ad hoc nature of IDSs [11] platforms does not permit one to dynamically
configure a running sensor so that a new packet stream can be used as input for the security
analysis.

1.2 Motivation

A big difficulty of the existing intrusion response systems is to build a system (IDS) model
[12]. This assigned value for the resources is used in the process of evaluating metrics like
intrusion damage cost. Any system topology can be divided into many parts that may be a
service. But it becomes a risk in general for the system administrator to assign values for a
specific system model. It is not only a difficult job for the system administrators but it may
not also be a secure estimate for that system [12].

We have implemented a breakthrough system model that will be a good solution to these
problems. We provide a procedural method to detect network attacks.

[11]

Required Attack Complexity
100%

80%

40%

20%

————-/\

1998 2000 2002 2004 2006 2008 2010 2012 2013

0%

FIGURE 0-1: ATTACK COMPLEXITY

1.3 Growth of the Internet

In a matter for very few years, the internet has been a very powerful platform [13] that has
changed the form of communication. It is the universal source of information and has given a
globalized dimension to the word.

The Internet continues to evolve [13], driven by ever greater amounts of online information
and social networking. The Internet allows greater advantage in working a lot and location,
specifically when it comes to high-speed networks. The Internet can be accessed in most cases
by using mobile, tablet pc and other Internet devices. Mobile phones, data cards, tablet pc,
handheld game machines and routers allow users to connect to the Internet Wi-Fi. Within the
constraints imposed by small screens and other limited facilities of such electronic devices,
the services of the Internet, including email and the web, may be available [13].

E-commerce is trying to add revenue streams using the Internet to build and enhance
relationships with clients and partners [13].

[12]

80
77*

70

Developed world
60 V World globally
<= Developing world

50

40 V3o+

1
1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

* Estimate

Figure 0-2: Internet Per 100 Inhabitants

1.4 Growth of Internet attacks

The attacks on the net have become both more complicated and easier to implement because
of the ubiquity of the Internet and the ease of use operating systems and development
environments [13].

There are multiple points for intrusions to take place in a network system. For instance, at the
network level carefully created malicious IP packets can crash a victim host at the host level,
disadvantages of system software can be exploited to yield an illegal root shell. The security
attacks have exploited all kinds of networks ranging from traditional computers to point to
point and distributed network systems. There are operating systems that regularly publish
updates, but its association of administered machines, uninformed number of targets, and
ever-present software bugs has allowed exploits to remain ahead of patches [13].

When attacks occur specifically against infrastructure [13] then important internet resources
are being targeting. Malicious exploits are having access to web hosting and name servers,
and data centers. This means that forming that seek high-reputation and resource-rich assets.
Buffer errors are a top threat, at 21 percent of the Common Weakness Enumeration threat
categories.

Wireless Sensor Networks [14] are vulnerable to many types of security attacks due to open
wireless medium, decentralized communication and deployment physically non protected
areas. In mote-class attacks, the attacker accommodates few of the sensor nodes inside a
Wireless Sensor Networks. In laptop-class attacks, the attacker has more powerful devices to
launch more intense attack against WSNSs.

[13]

1.5 History of Intrusion Detection Systems

In the early ‘90s [15], researchers created real-time intrusion detection systems that reviewed
audit data as it was produced.

Currently attacks on computer systems is continuously growing and in 2000 it was a fact [16]
that the incident numbers of attacks reported to CERT was parallel to the growth of the
internet. The Audit Data Analysis and Mining IDS in 2001 used tcp dump to create profiles of
rules for classification.

In 2003, Dr. Yong guang Zhang and Dr. Wenke Lee argue about the importance of IDS in
networks with mobile nodes [17, 18].

In our days, Wireless Wide Area Networks are being implemented in organizations. The
usefulness of these technologies is only showing the increased need for an organization in
implementing an intrusion detection system within their infrastructure [19].

1.6 Financial risks

The threats on the Internet can cause essential losses resulting from business disruption, loss
of time and money, and damage the brand name. The cost of application downtime and lost
productivity caused by the increasing number of attacks.

The most important cost of network viruses comes from its financial damage to company
performance and to national economies. Network virus damages trade, brand name, novelty,
and global economic growth.

The costs of network viruses for the world are:

« Will continue to increase as more business operates move online and as more companies and
people around the world connect to the Internet.

* Losses from the theft of highbrow property will also increase.

1.7 Why use IDS?

The companies have installed IDS outside of the firewall and routers have done this in order
to see the full breadth of attempted attacks against their organization. Intrusion detection
allows protecting organization systems against attacks that appear with increasing network
connectivity and the interdependency of information systems.

Most companies have developed IDS devices on their network. This means that the IDS exist
on a shared media and captures as many traffic packets as it can handle in a mixed mode and
reports this data back to a management console. One benefit of using IDS is that avoid
problems by dissuading hostile individuals and detect attacks that not prevented by other
protection systems.

[14]

Company
Network

[l

Company
Network

FIGURE 0-3: INTRUSION DETECTION SYSTEM

1.8 Limitations of Intrusion Detection System

e IDS cannot give a unique solution for all security problems.
e False positives [37]: False alarms when there is not real intrusion taking place.
e False negatives [37]: When a real attack or intrusion remains undetected [20].

e Resources [28]: The process of analysis and data logging, especially in real-time,
makes intrusion detection systems have important requisites on system resources such
as process time or stored space in data bases.

e Defense against new attacks: In most cases, intrusion detection systems cannot detect
recently appeared attacks or variants of existing ones. This happens with most
commercial products that have detectors based on signature technique, with attack
patterns.

e Ciphering: The use of encrypted communication may disable the use of an intrusion
detector based on network, because it cannot interpret what it is monitoring.

Chapter 2 Intrusion Detection Systems

2.1 Introduction

Intrusion detection [22] has the ability of checking the events occurring in a computer system
or network and analyzes them for signs of reasonable incidents, which are violations attacks

[15]

of computer security rules, acceptable usage of rules, or standard security practices. An
intrusion detection system is software that automates the intrusion detection process [22]. The
goal of IDS is to detect intrusions. Incidents have many causes, such as malware, attackers are
getting unauthorized access to systems from the Internet, and authorized users of systems
who misuse their privileges or attempt earning additional privileges for which they are not
authorized .

An intrusion detection system is a device or software application that observes network or
system activities for malicious activities or policy violations and produces reports to a
management station [22]. Detection precision and detection stability are two basic indicators
to evaluate intrusion detection system [23]. Also, flow-based techniques can be used to detect
scans, worms, Botnets and Denial of Service attacks [24]. Security always remains a
challenge in Ad Hoc Networks [56] and becomes a goal to detect the activities of those
networks.

There are network [22] (NIDS) and host (HIDS) intrusion detection systems. Intrusion
detection and prevention systems [1, 22, 25] (IDPS) are mainly in used on identifying
possible incidents, logging information about them, and reporting attempts. In addition,
organizations use IDPSs for various reasons, such as detecting problems with security
policies, documenting existing threats. IDPSs have become necessarily addition to the
security infrastructure of nearly every organization [22].

/ Intrusion Detection System

E H " . Internet
IDS

v,
JE:. Switch Firew all

Server

. J

FIGURE 2-1: INTRUSION DETECTION SYSTEM 2

An intrusion prevention system [25] (IPS) has all the functions of an intrusion detection
system and can also attempt to prevent possible threats. IDS and IPS technologies offer many
of the same functions, and administrators can often disable prevention function in IPS
products, causing them to be IDS.

[16]

IPS

Intusion Pravention Syalern

NI/

Company Systems

All traffic
passes through
the IPS
Router I ﬁl
Firewall fo
Internet

Company Employees

FIGURE 2-2: IPS IN COMPLETE DEPLOYMENT MODE

2.2. Free Intrusion Detection Systems

Snort: An open source and free network intrusion detection and prevention system was
created by Martin Roesch in 1998 and now is developed by Sourcefire. In 2009, Snort entered
InfoWorld's Open Source Hall of Fame as one of the “greatest open source software of all
time” [26, 27].

Ossec: An open source host based intrusion detection system executes log analysis, integrity
checking, rootkit detection, time-based alerting and active response [28, 29].

Ossim: The aim of Open Source Security Information Management is to provide an integrated
compilation of tools to administrators with a detailed view over each and every aspect of
networks, hosts, physical access devices, and servers [29].

Suricata: An open source based intrusion detection system was developed by the Open
Information Security Foundation (OISF) [30].

Bro: An open-source, Unix-based network intrusion detection system [31]. Bro detects
intrusions by first analyze network traffic to extract its application-level semantics and then
performing event-oriented analyzers that compare the activity with patterns deemed
troublesome [31].

Base: The Basic Analysis and Security Engine, BASE [28] is a PHP-based analysis engine to
search and procedure a database of security events generated by various IDSs, firewalls and
network monitoring tools.

Sguil: Sguil is built by network security analysts for network security analysts [29].

Acarm-ng : ACARM-ng [28] is an alert correlation software which can significantly facilitate
analyses of traffic in computer networks. It is responsible for collection and analyze of alerts
sent by network and host sensors, also referred to as NIDS and HIDS respectively.

[17]

2.3 Problems with Existing Systems

Most of intrusion detection systems have at least two of the following disadvantages [32].

First, the data used by the intrusion detection system is taken from audit trails or from
network packets. Data packets have to pass through a longer path from its origin to the
IDS but during this an attack may destroy them. Furthermore, the intrusion detection
system has to be informed of the functionality of the system from the data collected,
which can lead misconception or missed events.

Second, the intrusion detection system continuously uses additional resources in the
system and it is monitoring even when there are no intrusions happening, because the
data of the intrusion detection system have to be running all the time. This is the main
problem of use resource.

Third, because the elements of the intrusion detection system are applicable as
separate programs, they are not appropriate for changes. An intruder administrator can
turn off or modify the programs running on a system, which can make the intrusion
detection system useless or unreliable. This is the credibility problem.

2.4 Process model for Intrusion Detection

Most of IDSs can be described in terms of three fundamental functional ingredients [35]:

Information Sources: The different systems of event information used to define
whether an intrusion has taken place. These elements are from different parts of the
system, with network, host, and application tracking most common.

Analysis: The part of intrusion detection systems that decides when intrusions are
occurring or have already taken place. The most common analysis approaches are
misuse and anomaly detection.

Response: The set of actions that the system doing in intrusion detection. These
actions are pooled into active and passive measures, with measure actions participate
in some automated intervention on the part of the system, and passive actions
participate in reporting IDS findings to humans, who are then expected to take action
based on those reports.

2.5 Effectiveness of IDS

The functionality of an intrusion detection system is the rate at which audit events are
processed. Incompleteness happens when the intrusion detection system can’t manage to
detect an attack [33]. An intrusion detection system has to perform and take its analysis as
quickly as possible to enable the security system. An intrusion detection system should itself

[18]

be not vulnerable, particularly denial of service, and should be designed with this aim in mind
[34].

2.6 Network Intrusion Detection Systems

Network Intrusion Detection Systems (NIDS) are fitted at a basic point within the network to
monitor packet traffic on the network [51]. It performs an analysis of passing packets on the
entire subnet, works in a promiscuous mode, and checks the flow that is passed on the subnets
to the library of known attacks. Once an attack is identified, or threat is detected, the
administrator receives an alert. Ideally one would scan all incoming and outcoming traffic,
however doing so might make a bottleneck that would damage the overall speed of the
network [35].

In [58], they proposed a FPGA based deep packet inspection of NIDS that cab support both
static and dynamic patterns. Therefore [59], an intrusion detection and security system on
virtual machines. For secondary users in Cognitive Radio Networks [60] to quickly detect
whether they are being attacked, a simple yet effective IDS is also proposed. In [61], they
prevent virtual machines from being compromised in the cloud system with a multi-phase
distributed vulnerability detection, measurement and counter measure selection.

web server database cr Itlu.;l| back-end servers N[L_}._S:____*__‘_;:‘
ys [S
S T 1

LA .
Firewall Firewall H-*H_‘ NIDS

FIGURE 2-3: NIDS IN COMPLETE DEPLOYMENT MODE

A NIDS has the following advantages and disadvantages [35]:
Advantages
» Many well placed network based IDSs can monitor a huge network.

» The NIDSs have a small impact on the network, usually remaining passive and not
interfering with normal operations of the latter.

[19]

* Network-based IDSs can be made very secure against attack and even made unnoticeable to
many attackers.

Disadvantages

* The sensors not only analyze the headers of the packages, they also analyze their content, so
they may have difficulties processing all packages in a large network or with much traffic and
may fail to recognize attacks during periods of high traffic. Some vendors are trying to solve
this problem by implementing IDSs completely in hardware, which makes them much faster.

* The network based IDSs do not analyze the encrypted information. In environments where
communication is encrypted it is unfeasible to examine the package contents and therefore
unable to evaluate whether this is a package with malicious contents or not. This problem is
increased when the organization uses encryption in the network topology, but can be solved
with a more relaxed security policy.

» The network-based IDSs do not know whether the attack was successful or not, the only
thing known is that it was launched. This means that after a Network IDS detects an attack,
administrators must manually explore every host attacked to determine if the attempt was
successful or not.

* Some NIDSs have problems dealing with network-based attacks travelling in fragmented
packages. These packages make the IDS not notice the attack or be volatile and may even get
to fail.

* Due to their general configuration, NIDSs may have a high false acceptance or false positive
rate. They may report a lot of normal activities identified as attacks. The problem comes when
the number of such alarms is very high.

* Perhaps the biggest disadvantage of NIDSs is their implementation of the stack for network
protocols that may differ from the stack of the systems they protect. Many servers and
desktop systems do not follow in some aspects the current TCP / IP standards, thus it is
possible to have them block packages the NIDS has accepted.

= M { D
%_—Jﬂ ﬁ ‘@»‘ ‘—/

GW Router
Switch NIDS
Firewall
Server
« Place IDS before the firewall to get maximum detection
il . | - In a switched network, place IDS on a mirrored port
~ ! - Make sure all network traffic passes the IDS host
———— « Best to run IDS in bridge mode for transparent network operation

FIGURE 2-4: NIDS ARCHITECTURE WITH MIRROR PORT

[20]

2.7 Host Intrusion Detection Systems

Host Intrusion Detection Systems (HIDS) are installed on hosts or devices on the network
[55]. A HIDS monitors the inbound and outbound traffic from the device only and will alert
the user or the administrator if suspicious traffic is detected. It takes a part of existing system
files and matches it to the previous system. If the crucial system files were modified or
deleted, an alert is sent to the administrator. An example of HIDS usage can be seen on
mission crucial machines, which are not expected to change their conformations [55].

Host Based IDS

g = r/

Firewallf
; Router

I
HRIRLLE

Intermet

FIGURE 2-5: HOST INTRUSION DETECTION SYSTEM

HIDS has the following advantages and disadvantages [55]:

Advantages

* The HIDS, having the ability to monitor local events of a host, can detect attacks that cannot
be seen by NIDS.

« HIDS can often operate in an environment in which network traffic pass encrypted, since the
source of information is analyzed before the data is encrypted on the host and after the data is
decrypted on the end host.

* HIDSs are uninfluenced by switched networks.

* When HIDSs operate on operating system audit trails, they can help detect attacks that
involve software integrity breaches. These appear as inconsistencies in process execution.

Disadvantages

» HIDSs are more costly to administer as they must be managed and configured at each
monitored host. While the NIDSs have an IDS for whole monitored systems, HIDSs have an
IDS for each of them.

[21]

« If the analysis station is within the monitored host, the IDS can be disabled if an attack
achieves success on the machine.

* They are not sufficient for detecting attacks on a network since the IDS only analyses those
network packets sent to it.

 HIDSs use resources of the host that they are monitoring, influencing its performance.

INTERNET

Firewall

FIGURE 2-6: HOST INTRUSION DETECTION SYSTEM 2

2.8 IDS Analysis

There are two basic features [36, 40] to analyzing events to detect attacks: misuse detection
and anomaly detection. Misuse detection, in which the analysis aims something known to be
bad, is the technique used by most popular systems. Anomaly detection, in which the analysis
searches for unusual patterns of activity, has been, and continues to be, the subject of a great
research. Anomaly detection is used in specified form by a number of IDSs. There are
advantages and disadvantages with each approach, and it appears that the most effective IDSs
use mainly misuse detection methods with a smattering of anomaly detection components.

2.8.1 Misuse Detection

Misuse detectors [39] examine system activity, looking for functions that match a specified
pattern which describe a known attack. As the patterns equivalent to known attacks are termed
signatures, misuse detection is sometimes termed signature based detection. However, there
are more advanced functions to doing misuse detection that can leverage a single signature to
detect groups of network and host attacks. Also, Hybrid intrusion detection systems [57] use
misuse detection technique.

Advantages [39]:

[22]

* Misuse detectors are very efficient at detecting attacks without make the vast number of
false alarms.

* Misuse detectors can quickly and reliable detect the use of a specific attack tool or
technique. This can help security administrators prioritize corrective measures.

* Misuse detectors can permit system administrators independently of their security level, to
detect security problems on their systems, initiating handling procedures.

Disadvantages [39]:

» Misuse detectors can only detect popular and are being updated with signatures of new
attacks.

* A lot of misuse detectors are designed to use signatures that prevent them from detecting
variations of popular attacks.

FN

Response
1

True
attack state

ES

Yes

S — N, True No
—[5s 1 I e
Yes

Upadate False
Profile attack state

Fig.2: Misuse Detection Model [1]

FIGURE 2-7: MISUSE DETECTION MODEL

2.8.2Anomaly Detection

Anomaly detectors [38] identify unusual traffic on a host or network. Anomaly intrusion
detection identifies differences from the normal usage conduct patterns to identify the
intrusion. There are two types of anomaly detection [39]. The first is static anomaly detection,
which supposes that the behavior of monitored targets never change, the second type is
dynamic anomaly detection. They function on the case that attacks are different from normal
activity and can therefore be detected by systems that detect these differences. Anomaly
detectors make profiles representing normal behavior of hosts or networks traffic. These
profiles are making from data collected over a period of usual function. The detectors then
gather event data and use some measurements to determine when monitored activity deviates
from the usual.

Anomaly detection uses some measures and techniques, which include:

* Threshold detection, in which some features of user and system behavior are denominated in
terms of counts, with some level established as allowable. Such behavior trait can include the
number of files accessed by a user in a certain period of time, the number of unsuccessful
system logins, the amount of CPU utilized by a process. This level can be static.

[23]

« Statistical measures, in which allotment of the profiled features is supposed to fit a specific
pattern, and non-parametric, where the distributions of the profiled features are drawn from a
set of historical values, observed over time.

* Rule based measurements, which are similar to non-parametric statistical measurements in
that observed data defines eligible usage patterns.

 Other measurements, including neural networks, genetic algorithms, and immune system
models. Only the first two measures are used in current commercial 1DSs.

Unfortunately, in some cases [39] a number of false alarms are produced by anomaly
detectors and the IDSs based on them, due to variation of a system behavior or normal
patterns of users. Despite this drawback, unlike signature-based IDSs that rely on matching
patterns of past attacks, researchers affirm that anomaly-based IDSs are able to detect new
attack forms.

Furthermore [39], some misuse detectors may acquire information sources which are
produced from certain forms of anomaly detection. For example, a threshold-based anomaly
detector can generate a figure representing the number of files accessed by a certain user. The
misuse detector can use this figure as an element of a detection signature.

Advantages [39]:

+ IDSs using anomaly detection detect unusual traffic and thus have the ability to detect
attacks without specific knowledge of details.

» Anomaly detectors can generate elements that can in turn be used to define signatures for
misuse detectors.

Disadvantages [39]:

» Anomaly detection usually triggers a large number of false alarms due to the unusual
behaviors of users and networks.

» Anomaly detection often requires extensive training sets of system event files in order to
characterize normal behavior patterns.

2.8.3 Specification Detection

Specification approaches [33] takes the middle ground between misuse and anomaly
detection. The aim is to create a system behavioral determination under the affair that a
rightful and well-behaved system will only operate within these confines, and any outside
traffic can be considered an intrusion. This is functionally different from anomaly detection as
it identifies a list of functions a system may not do, rather than identifying unusual activities.

[24]

2.8.4 Hybrid

Due to the advantages of each of these hosts and networks systems, it is clear that a
combination of misuse and anomaly would provide better detection results, for example,
allowing anomaly detection to manage unknown events while misuse detection specifies
known attack signatures [57]. Such an approach should reduce the level of false positives if an
appropriate method of checking conflicting decisions from multiple detection approaches can
be properly managed. Some approaches have also two anomaly detection engines together in
order to try to balance the false positive rate of one against the other [57].

2.9 IDS ARCHITECTURE

All intrusion detection systems have some well-known elements that are described more
detailed below [39]:

* Application data collection sources: The place where the collection of data for current or
later analysis are gathered.

* Rules: These rules are often those that describe the violations that may be bound and which
the data obtained in the previous point are compared to.

» Filter: This part handles the applied rules concerning the obtained data.

» Anomaly detectors: When in use of an IDSs based on anomaly analysis, they are those that
detect threats in the system or monitored resources.

* Alarm or report generator: Once the data have been processed with the filter rules, if there is
any situation that gives the impression that the system security has been compromised, this
part of the intrusion detector informs the administrator about this fact.

[25]

Chapter 3
System Model

L e

—

Monitoring PC

Figure 3-1: IDS Scenario

3.1 Overview of the proposed system

Setup involves three hosts generating the different kinds of application and system log traffic
and sending it to the central log collector (Monitoring PC). Specifically, IDS is installed on
the Monitoring PC which logs the network inbound and outbound traffic into the database.

Furthermore, we use three PCs (virtual machines). The packets are examined in real-time by
the intrusion detection system. The switch has been configured with a mirrored port for the
detect operability. Tests run on my local network.

3.2 Port mirroring

Port mirroring is configured on a network switch to send a copy of network packets seen on
one switch port to a network monitoring connection on another switch port [41]. This is
ordinarily used for network hosts that require monitoring of network traffic like an intrusion
detection system technology that is used to support application performance management.
Port mirroring enables the system manager to keep close track of switch performance by
placing a protocol analyzer on the port that's receiving mirroring data [42].

An administrator configures port mirroring by assigning a port from which will send a copy
of all packets and another port in which those packets will be sent [41]. A packet bound for
heading away from the first port will be sending to the second port as well.

[26]

Destination
E; mirraring port ‘
Source

mirraring port

N

Host

Data monitoring device

FIGURE 3-2: MIRRORED PORT

=—4

&= ok Port 4 traffic mirrored
1 23 4 56 7 8 on Port8

1 8

Network analyzer
FIGURE 3-3: NETWORK ANALYZER

87833

In this figure, the sniffer is attached to a port that is configured to receive a copy of every
packet that host ascends. This port is called a SPAN port.

1 =1
I |

[
gl
-
.

Sniff er '

FIGURE 3-4: SNIFFER MODE

[27]

A monitored port has these characteristics [41] [42]:

e It can be any port type.

e It can be tracked in multiple SPAN sessions.

e |t cannot be a destination port.

e Each port of switch can be configured with a direction to monitor.
e Source ports can be in the same or not the same VLANS.

® All active ports in the source VLAN are included as source ports.

3.2.1 Configuration set up switch

File Edit Setup Control Window Help

IDS 1

13

IDSHconf

1DSHiconf igure te

1DSHconfigure terminal

Enter configuration commands, one per line. End with CNIL-/Z.
IDS{configdl#monitor session 2 source interface FaBl/1 — 8
IDS<{configl#no sh

1D§<{conf ig)tno shutdoun

% Incomplete command.

IDS{config)#Ssion 2 destination interface GiB/1 encapsulation replicate

ID§<configrHtend

IDS ks

AAz14:15: ESYS—E—CONFIG_I: Configured from console by consoleh
s,

she

no

monitor se
monitor session 2

Session 2
Type : Local Session
Source Ports :
ot : FaBs1-8
Destination Ports 1 GiB/A
Encapsulation : Replicate
ngress : Disahled

End with CNIL/Z.

1DS{config)Hshow vl

I1DS<configdishow vl

I1DS<conf ig)ishow vl

1DS(configd#show vl

IDS {configilexit

[IDSftsh

[1DS tshow

AA:19:11: »8YS-5-CONFIG_I: Configured from console by consolevl

1DSH#show vlan

LAN Hame Status Ports

FIGURE 3-5: CONFIGURATION SWITCH

Main Code

switch>enable

switch#configure terminal

Enter configuration commands, one per line. End with
CNTL/Z.

switch (confiqg) #monitor session 1 source interface
fastEthernet 0/1

switch (config) #monitor session 1 source interface
fastEthernet 0/2

switch (config) #monitor session 1 source interface

fastEthernet 0/3

[28]

switch (config) #monitor session 1 source
fastEthernet 0/4

switch (config) #monitor session 1 source
fastEthernet 0/5
switch (config) #monitor session 1 source
fastEthernet 0/6
switch (config) #monitor session 1 source
fastEthernet 0/7
switch (config) #monitor session 1 source

fastEthernet 0/8
switch (config) #monitor session 1 destination
gigabit Ethernet 0/1

switch#show monitor session 1
Session 1

Type: Local Session

Source Ports

Both : Fa0/1-8

Destination Ports : Gi0/1
Encapsulation: Native

[29]

interface

interface

interface

interface

interface

interface

Chapter 4 Snort

4.1 Introduction

Snort is a signature based IDS [46] that allows to manage the status of a network topology. Its
operation has some common functions with sniffers, because Snort assays all the network
traffic looking for any type of intrusion. Snort is a detection machine that allows registering,
warning, and responding to any attack previously defined. It is one of the most defaults used,
has a large number of preset signatures and constantly updated.

The basic data of its architecture are [46]:

e The module of capture of traffic that allows capturing all the network packages the
decoder, which is reliable of creating data structures with the packages and identifying
the network protocols.

e The pre-processors that allow extending the system parts.
e The detection engine that analyzes the packages pursuant the signatures.
e The file of signatures where the popular attacks are defined for their detection.

e The detection plugins that allow modifying the functionality of the detection engine
and finally, the output plugins for determining what, how and where the alerts are
saved.

In last years, some significantly projects have been proposed to extend the abilities of Snort
[43, 44, 45]. For instance, [43] models only the http traffic, [44] models the network traffic as
a set of events and look for disadvantages in these events, [45] enhance the functionalities of
Snort automatically create patterns of misuse from attack data, and the ability of detecting
successive intrusion behaviors, that is a pre-processor based on studying the reconstruction of
package in the network to avoid popular attacks in the IDS.

Snort [46] is the most popular open source detection intrusion system. It is able to analyze the
TCP/IP datagram traffic on a network in real time. It is network based and can be used either
as a sniffer or as IDS. It is flexible software which can be connected to the most important
databases such as Oracle, MySQL. It is consists of an attack detection engine as well as a port
scanner, which allows alerting or responding to any kind of previously defined attack.

Furthermore, Snort [46] has other possible supplements to make the analysis easier to the
user. There can be found GUI interfaces such as IDS center or a web application such ACID
or BASE that will get data from the database and will show it in a friendlier html format.
Snort implements an easy rule creation language, powerful and clean.

Snort can work [46] as a sniffer so the traffic in the network can be shown. But the side we
want to use is the IDS. When a packet matches some rule pattern it is logged. Afterwards or at
that moment the user knows when, how and from where the attack was performed.

[30]

Detection

- Output
engine

alerts/log

Sniffer Preprocessors

determine
packets / paclet
behaviour

HTTP plug-in
sfPortscan

rulesets

FIGURE 4-1: SNORT

4.2 Snort Features

Snort uses an ordered set of behaviors [47] to define what network traffic matches its rules
and should be alerted on. Much of this behavior is customizable. Inbound data is decoded first
by the packet decoder. If we are using Snort only as a packet sniffer, the decoded data will be
formatted for the console display and shown. If we’re using Snort as a packet logger, the
packets will be put into either ASCII format in a directory tree or a binary file, which ever one
we clarified on the command line, and saved to disk. If we are using Snort as a NIDS, the
function is somewhat complex. When using Snort as a NIDS, after the inbound packets are
analyzed by the packet decoders, the data is then sent through any preprocessors that we may
have enabled in our snort configuration file. That data are being sent to the detection machine,
which matches it against the rules in any ruleset enabled in our snort configuration file.
Matches are sent to the alerting and logging levels, to be passed through whatever output
plug-ins we have selected [47].

4.3 Architecture of Snort

The Snort processes the data in one thread and in five stages [46]. The first step is a
compilation of packets that pass through the decoder of Snort, and with suitable adjustment
can be made and detects attacks using the decoder alerts. Then activated all preprocessors that
beyond decoding and further processing of the packets may also detect attacks and send
alerts. This is the point where the Snort, although it belongs to the IDS signatures, enters with
its own way the concept of detecting abnormalities. Then, the intrusion detection mechanism

[31]

Is activated by applying signatures and Snort rules in processed packets. Finally, made known
to the user the results of the operation of Snort from different output units.

Log file or
Database to
store alerts

Packet Pre- Detection Alerting or
Sniffer processor engine Logging

[
| =
o]
0
7 4
o
5]
o
>
|~
(]
2
e
L]
e

FIGURE 4-2: ARCHITECTURE OF SNORT

4.3.1 Packet Decoder

The packets [46] enter through the network card and are decoded off the wire by the packet
decoder, which defines which protocol is in use for a given packet and fits the data against
allow able behavior for packets of their protocol. The packet decoder can generate alerts of its
own based on malformed protocol headers, exceedingly long packets, unusual or incorrect
TCP options that are contained in the headers, and other such behavior. We can enable or
disable more verbose alerting for all of these fields in your snort.conf file.

4.3.2 The Preprocessors

Preprocessors [46] are plug-ins to Snort that allows us to parse incoming data in different
ways that may be useful. If we run Snort without any preprocessors given in our snort.conf
configuration file, we will only look at each packet as it comes in over the wire. This is
probably going to cause missing some attacks, since many popular attacks aim to functions
like overwriting data in overlapping fragments, purposeful IDS evasion techniques such as
putting part of a malicious application request in one packet and the rest in a different packet,
and other such practices.

4.3.3 Detection Engine

The Detection Engine [46] achieves the actual attack detection by matching various values
taken in the previous steps against a set of rules that encodes patterns of known attacks. If a

[32]

match is found, the corresponding action that is defined in rule will be executed, e.g. drop and
log the packet, generate alert to system administrator.

4.3.4 Snort Alerts

In most cases, the first part of information [46] that an analyst reviews is an alert. An alert
packet passed from a detection machine when it matches an event to a well-known pattern.
This message can take many forms: pager message, syslog entry, ticket system entry.

4.3.5 Snort Packet Data

Snort can use packet data in three base formats [47]: ASCII, Pcap binary format, and Unified
binary format. ASCII logs, are easier to read using a text editor, are not as useful as the binary
logs for analysis. Pcap binary logs can be processed by many tools that have been designed
with analysis network traffic. A few examples of tools that can read Pcap format files are
tcpdump, ethereal, ngrep, tcpreplay, logsorter, ethereape, and many, many more.

4.4 Three modes of Snort

* Sniffer mode, which analyze the packets off of the network traffic and displays them for a
continuous Stream on the console [47].

* Packet Logger mode, which logs the packets to disk [47].

* Network Intrusion Detection System (NIDS) mode, which does detection and analysis
functions on network traffic. This is the most complex and configurable mode [47].

4.5 Snort Rules

Snort uses straightforward rules [48] description language that is versatile and quite useful.
There are a number of straightforward guidelines when writing Snort rules that will help
safeguard our logic.

Most Snort rules are written [48] in a single line. A snort rule has two parts, the header and the
logical. The rule header includes the rule's action, protocol, source and destination IP
addresses and netmasks, and the source and destination ports details. The rule option section
includes alert messages and information on which parts of the packet should be shall inspect
to determine if the rule action should be used.

[33]

alert tcp any any -> 192.168.1.0/24 111 \
(content:" |00 01 86 a5|"; msg:"mountd access";)

Figure 4-3: Sample Snort Rules

4.5.1 Rules Headers

The rule header [46, 48] contains the information that defines the function of a packet, as well
as what to do in the event that a packet with all the properties indicated in the rule should
show up. The first part in a rule is the rule action. The action of rule tells Snort what to do
when it finds a packet that meets the rule criteria. There are five known standard actions in
Snort, alert, log, pass, activate, and dynamic. In addition, if we are running Snort in inline
mode, we have additional options which include drop, reject, and sdrop.

o alert

e pass

e activate
e dynamic

4.5.2 IP Addresses

Arule header [46, 48] contains IP address and port information for a given rule. The keyword
could be used to describe any address. Snort does not have a function to provide host name
lookup for the IP address fields in the configuration file. The addresses are created by a
straight numeric IP address and a CIDR block. The CIDR block includes the net mask that
should be applied to the rule's address and any inbound packets that are tested against the rule.

alert tcp 1182.168.1.0/24 any -> 192.168.1.0/24 111 \
(content:" |00 01 86 a5|"; msg:"external mountd access";)

FIGURE 4-4: EXAMPLE IP ADDRESS NEGATION RULE

alert tcp ![192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content:"|00 01 86 ab|"; \
msg:"external mountd access";)

FIGURE 4-5: EXAMPLE IP ADDRESS LIST

4.5.3 Activate/Dynamic Rules

Activate/dynamic rule [46, 48] pairs give Snort a powerful function. We can now have one
rule activate another when its action is executed for a set number of packets. This is very
useful if we want to set Snort up to execute follow on recording when a particular rule does
not work. Activate rules operate just like alert rules, unless they have a required option field
activate.

[34]

activate tcp !$HOME_NET any -> $HOME_NET 143 (flags:PA; \
content : " |EBCOFFFFFF|/bin"; activates:1; \
msg:"IMAP buffer overflow!";)
dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by:1; count:50;)

FIGURE 4-6: ACTIVATE DYNAMIC RULES

4.5.4 General Rule Options

The msg rule [46, 48] option tells the logging and alerting engine the message to print along
with a packet dump or to an alert. It is only a text string that utilizes the \ as an escape
character to show a discrete character that might otherwise confuse Snort's rules parser.

msg:"<message text>";

The reference keyword [46, 48] permit rules to include references to outer attack
identification systems. The plugin currently supports different specific systems as well as
unique URLs. This plugin is to be used by outer plugins to provide a link to additional
information about the alert packets.

The gid keyword [46, 48] is used to recognize what parts of Snort produce the event when a
particular rule happens. For example gid 1 is associated with the rules subsystem and some
gids over 100 are designated for specific preprocessors and the decoder. To evade difficult
conflict with gids defined in Snort, it is proposed that values starting at 1,000,000 be used. For
overall rule writing, it is not proposed that the gid keyword be utilized. This option should be
utilized with the sid keyword.

gid:<generator id>;

The sid [46,48] keyword is used to uniquely recognize Snort rules. This information allows
output plugins to recognize rules easily. This option should be used with the rev keyword.

sid:<snort rules id>;

The rev keyword [46, 48] is used to uniquely recognize revisions of Snort rules. Revisions,
along with Snort rule ids, allow signatures and characteristics to be refined and replaced with
updated information. This option should be used with the sid keyword.

rev:<revision integer>;

The class type keyword [46, 48] is used to classify a rule as detecting an attack that is part of
a more overall type of attack class. Snort provides a standard set of attack classes that are used
by the standard set of rules it provides. Defining classifications for rules provides a way to

better organize the event data Snort produces.

[35]

The class type [46, 48] option can only use registrations that have been defined
in snort.conf by using the config registration option. Snort provides a standard set of
classifications in classification. Config that are used by the rules it provides.

The metadata tag [46, 48] allows a rule writer to incorporate more information about the rule,
typically in a key-value format. Some metadata keys and values have meaning to Snort and
are classify in Table. Keys other than those listed in the table are efficiently ignored by Snort
and can be free form.

Table: Snort Metadata Keys

Key Description Value Format
engine Indicate a Shared Library| "
shared

Rule

soid Shared Library Rule |
Generator and SID gid sid

service |Target-Based Service "hito"
Identifier P

Table 1-1: Snort Metadata Keys

The examples [46, 48] below show a stub rule from a shared library rule. The first uses
multiple metadata keywords, the second a unified metadata keyword, with keys divided by
commas.

metadata:keyl valuel;
metadata:keyl valuel, key2 value2;

alert tcp any any -> any 80 (msg:"Shared Library Rule Example"; \
metadata:engine shared; metadata:soid 3[12345;)

alert tcp any any -> any 80 (msg:"Shared Library Rule Example"; \
metadata:engine shared, soid 3112345;)

Table: General rule option keywords [48]

Keyword |Description

msg
The msg keyword tells the logging and alerting
engine the message to print with the packet dump
or alert.

reference

The reference keyword allows rules to include
references to external attack identification
systems.

[36]

gid
The gid keyword (generator id) is used to identify
what part of Snort generates the event when a
particular rule fires.

sid
The sid keyword is used to uniquely identify
Snort rules.

rev
The rev keyword is used to uniquely identify
revisions of Snort rules.

classtype
The classtype keyword is used to categorize a
rule as detecting an attack that is part of a more
general type of attack class.

priority
The priority keyword assigns a severity level to
rules.

metadata
The metadata keyword allows a rule writer to
embed additional information about the rule,
typically in a key-value format.

Table 1-2: General rule option keywords

4.6 The Snort Configuration File

Snort uses a configuration file [46, 48] at begin time. A sample configuration file is included
in the snort program.

There are other benefits to using the configuration file name as a command line argument to
snort. For example, it is feasible to invoke multiple Snort instances on different network
interfaces with different configuration. This configuration file of snort contains six basic parts
[46, 48]:

e Variable definitions, where we define different variables. These variables are used in
snort rules as well as for other aims, like specifying the location of rule files.

e Config parameters. These parameters recognize different snort configuration options.
Some of them can also be used on the command line.

[37]

e Preprocessor configuration file. Preprocessors are performing a few actions before a
packet is operated by the main snort detection engine.

e Output module configuration. Output modules check how snort data will be logged.

e Defining new action parts. If the default action parts are not adequate for our
environment, we can define custom action types in the configuration file of snort.

e Rules files and configurations. Although we can add any rules in the main file, the
agreement is to use different files for rules. These files are then included inside the
main configuration file using the include keyword.

Using a List of Networks in Variables.

We can also define variables [46, 48] that contain different items. Consider that we have
multiple networks in the company. Intrusion detection system is right back of the company
firewall connecting to the Internet.

Var HOME_NET []
Using Interface Names in Variables.

We can also use interface names in defining variables [46, 48]. The following two statements
define HOME_NET and EXTERNAL_NET variables on a Linux unit.

var HOME NET SethO ADDRESS

var EXTERNAL_NET $ethl_ADDRESS

The any keyword could also be a variable [46, 48]. It fits to everything, just as it does in.
var EXTERNAL_NET any

The config directives [46, 48] in the snort.conf file permit a user to configure many general
settings for snort.

config directive name[: value]

Preprocessors or input plug-ins [46, 48] operate on received packets before snort rules being
in use. The preprocessor configuration is the second important part of the configuration file.
This part provides basic details about adding or removing Snort preprocessors. The general
format of configuring a preprocessor is for example:

[38]

preprocessor <preprocessor name>[: <configuration options>]

Output modules [46, 48], also called output plug-ins, manipulate output from snort rules. For
example, if we want to log information to a database or send SNMP traps, we need output
modules.

output <output module name>[: <configuration options>]

4.7 Snort IDS mode

sudo /usr/local/snort/bin/snort -A console -c¢ /usr/local/snort/etc/snort.conf -i ethO

master@master-virtual-machinel=l8 sudo /usr/local/snort/bin/snort -c /usr/local/|
snort/etc/snort.conf -i eth® -A consol

FIGURE 4-7: START SNORT

[39]

FIGURE 4-8: SNORT IDS MODE

4.7.1 Test ids (ping)

Tests run on my local network.

ICMP} 192.168.1.9 192.168.1.3

[**] [1:1e08861:

192.168.1.9

[**] [1:1000081:

192.168.1.3

[**] [1:1e88861:

192.168.1.9

[**] [1:1000081:

192.168.1.3

:30.04041€ [#*] [1l:1000081:

ICMP} 192.168.1.3 192.168.1.9

11/27-13:02:31.0836583 [#**] [1:1000001:

ICMP} 192.168.1.9 -= 192.168.1.3
ICMP} 192.168.1.3 -> 192.168.1.9
ICMP} 192.168.1.9 -= 192.168.1.3
ICMP} 192.168.1.3 -> 192.168.1.9
ICMP} 192.168.1.9 -= 192.168.1.3
ICMP} 192.168.1.3 -> 192.168.1.9

ICMP} 192.168.1.9 -= 192.168.1.3

ICMP} 192.168.1.3 -> 192.168.1.9

11/27-13:02:35.048011 [**] [1:1888881:

ICMP} 192.168.1.9 192.168.1.3

11/27-13:082:35.05 [**] [1:1e00861:

ICMP} 192.168.1.3 192.168.1.9

11/27-13:02:36.0850015 [**] [1:1888881:

11/27-13:02:31.042178 [#*] [1l:1000881:
11/27-13:02:32.040020 [#**] [1:10808001:
11/27-13:02:32.046175 [#*] [1l:1000881:
11/27-13:02:33.043680 [#**] [1:1080001:
11/27-13:02:33.056740 [#*] [1l:1000881:
11/27-13:02:34.046051 [#**] [1:10808001:

11/27-13:02:34.094535 [**] [1:1e00001:

1]

1]
1]
1]
1]
1]

1]

Terminal

ICMP

ICcMpP

ICMP

IcMpP

ICMP

IcMpP

ICMP

Testing
Testing
Testing
Testing
Testing
Testing

Testing

Rule
Rule
Rule
Rule
Rule
Rule

Rule

FIGURE 4-9: IcCMP ALERT

[40]

[#=*]
[*=*1]
[**]
[*=*]
[#=*]
[*=*]
[#=*]

[Priority:

[Priority:

[Priority:

[Priority:
[Priority:
[Priority:
[Priority:
[Priority:
[Priority:
[Priority:
[Priority:
[Priority:
[Priority:

[Priority:

[Priority:

[Priority:

0]
0]
0]
0]
0]
0]

0]

e e R Tl - A e P e e

4.7.1.1 Rule Ping

alert icmp any any -> any any (msg:"ICMP Testing Rule"; sid:1000001; rev:1;)

4.8 Port Scan Detection

The part when scanning a computer's ports [64]. Port is used as a mean of transferring data in
and out of a computer system, port scanning recognizes open doors to a computer. Also, port
scanning has legitimate uses in managing networks, but port scanning also can be malicious
by default if someone is looking for a weakened access point to break into our computer.

The attacker checks if there are any open ports with the help of a particular software tool, a
port scanner [64]. This program tries to connect with several ports on the destination
computer. If it is successful, the tool informs about the specific ports as open and the attacker
has the necessary information, showing which network services are available on the
destination computer.

Tests run on my local network.

MOON@KEN ;54 nnap -sF 192.168.1.9

Starting Nmap 6.47 (http://nmap.org | at 2014-11-26 15:43 EST
Nmap scan report for 192.168.1.9

FIGURE 4-10: PORT ScAN

The following figure shows the alerts that have produced the snort with message SCAN FIN.

FIGURE 4-11: ALERT PORT SCAN

[41]

4.8.1 Rule Scan Fin

alert tcp SEXTERNAL_NET any -> $HOME_NET any (msg:"SCAN FIN"; flow:stateless;
flags:F,12; classtype:attempted-recon; sid:621; rev:7;)

4.9 Detect SYN flood

ASYN flood [65] is a type of denial-of-service attack in which an attacker transmits a
sequence of SYN requests to a target's system in an effort to use enough server resources to
make the system unresponsive to network traffic.

a

SYN

U

SYN-ACK

SYN

/

Bt B3

FIGURE 4-12: SYN FLOOD

In a normal [65] three-way handshake, the client would return an ACK (acknowledged)
packet to confirm that the server's SYN/ACK packet was received, in order that
communications could begin. Although, in a SYN flood, the ACK packet is never sent back
by the enemy client. Instead, the client program sends repeated SYN requests to all the
server's ports. An enemy client always knows a port is open when the server responds with a
SYN/ACK packet.

The enemy [65] client makes the SYN requests all appear reliable, but because the IP
addresses are fake ones, it is difficult for the server to terminate the connection by sending
RST packets back to the client. Instead, the connection stays open. Before time-out can occur,
another SYN packet comes from the inimical client. A connection of this type is called a half-
open connection. Under these circumstances, the server becomes completely or almost
completely busy with the enemy client and communications with rightful clients is difficult or
impossible.

[42]

hping3 --flood -S -p 80 192.168.1.68

¢ Flood: sends as many packets as can the network card.

e -S:The TCP packet has flag SYN.

® -p 80: Packets are sent to port 80.

Tests run on my local network.

hping3 --flood -S -p 80 192.168.1.68

--- 192.168.1.68 hping statistic ---
07308 packets transmitted, 0 packets
round-trip min/avg/max = 0.0/0.0/0.0 ms

be shown

received,

FIGURE 4-13: SYN FLOOD

100% packet loss

HPING 192.168.1.68 (ethD 15&:168.1.68): S set, 40 headers + 0 data bytes
, No replies will

04/27-19:26:
CP} 192.168.
04/27-19:26:
CP} 192.168.
04/27-19:26:
CP} 192.168.
04/27-19:26:
CP} 192.168.
04/27-19:26:
CP} 192.168.
04/27-19:26:
CP} 192.168.
:36.585791
CP} 192.168.
:36.585796
CP} 192.168.
:36.585804
CP} 192.168.
04/27-19:26:

04/27-19:26

04/27-19:26

04/27-19:26

04/27-19:26:

04/27-19:26:

36.585756
1.76:608559
36.585762
1.76:60560
36.585768
1.76:60561
36.585773
1.76:608562
36.585779
1.76:60563
36.585785
1.76:60696

1.76:60697

1.76:60698

1.76:60699
36.585804

36.586058

36.586070

Terminal

[**] [1:1008002:
-> 192.168.1.68:
[**] [1:1008002:
-> 192.168.1.68:
[**] [1:1000002:
-> 192.168.1.68:
[1:1800002:
-> 192.168.1.68:
[1:1800002:
-> 192.168.1.68:
[1:1860002:
-> 192.168.1.68:
[#*] [1:10608802:
-> 192.168.1.68:
[##] [1:1068002:
-> 192.168.1.68:
[**] [1:1008002:
-> 192.168.1.68:

[*+]
[*+]
[*+]

1]
80
1]
80
1]
80
1]
80
1]
80
1]
80
1]
80

TCP Testing Rule

TCP Testing Rule
TCP Testing Rule
TCP Testing Rule
TCP Testing Rule
TCP Testing Rule
TCP Testing Rule
TCP Testing Rule

TCP Testing Rule

[Priority:
[Priority:
[Priority:
[Priority:
[Priority:
[Priority:
[Priority:

[Priority:

[Priority:

0]
0]
0]
0]
0]
0]
8]
8]

0]

[#*] [1:12121:8] DDoS SYN flood attack detected! [#*] [Pr
iority: @] {TCP} 192.168.1.76:60699 -> 192.168.1.68:80
[##] [1:1000002:1] TCP Testing Rule [**] [Priority: @] {
CP} 192.168.1.76:60700 -> 192.168.1.68:80
[*#] [1:1000002:1] TCP Testing Rule [#**] [Priority: @] {T
CP} 192.168.1.76:60701 -> 192.168.1.68:80

FIGURE 4-14:ALERT SYN FLOOD

4.9.1 Rule Syn Flood

alert tcp any any -> $HOME_NET any (flags:S; threshold: type threshold, track by_dst, count
20, seconds 3; msg:"DDoS SYN flood attack detected!";sid:12121;)

[43]

4.10 Detect brute-force FTP

In cryptography, a brute-force attack [53] is a cryptanalytic attack that can, theoretically, use
any encrypted dataexcept when data are encrypted in an information-theoretically
secure way. An attack like this might be used when it is hard to exploit other weaknesses in an
encryption system that would make the work easier. It consists of systematically checking all
possible keys or passwords until the right one is found.

Brute-force attacks [54] might not be that efficient when obfuscating the data to be encoded,
something that makes it more difficult for an attacker to acknowledge whether the code has
been cracked. An encryption system can also calculate the time an attacker takes to
successfully mount a brute-force attack against it.

Brute-force attacks are an application of brute-force search, the common problem-solving
technique used for enumerating all candidates and checking each one [54].

Tests run on my local network.

b ncrack -p 21 -user root -P 500-worst-password.txt 192.168.0

FIGURE 4-15 BRUTE FORCE

[44]

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptanalytic_attack
http://en.wikipedia.org/wiki/Information-theoretically_secure
http://en.wikipedia.org/wiki/Information-theoretically_secure
http://en.wikipedia.org/wiki/Key_(cryptography)
http://en.wikipedia.org/wiki/Passwords
http://en.wikipedia.org/wiki/Obfuscation
http://en.wikipedia.org/wiki/Brute-force_search

11/28-17:41:20.918830 [**] [1:3441:1] FTP Brute force attackgumenDRT/smi [**]
Classification: Misc Attack] [Priority: 2] {TCP} 192.168.0.18:34977 -= 192.168.0
222:21
11/28-17:41:20.918838 [**] [1:3441:1] FTP Brute force attackgumenORT/smi [**]
Classification: Misc Attack] [Priority: 2] {TCP} 192.168.0.18:34977 -= 192.168.0
L222:21
11/28-17:41:21.914617 [**] [1:3441:1] FTP Brute force attackgumenORT/smi [**]
Classification: Misc Attack] [Priority: 2] {TCP} 192.168.0.18:34977 -= 192.168.0
222:21
11/28-17:41:21.914626 [**] [1:3441:1] FTP Brute force attackgumenORT/smi [**]
Classification: Misc Attack] [Priority: 2] {TCP} 192.168.0.18:34977 -= 192.168.0
222:21
11/28-17:41:23.9124601 [**] [1:3441:1] FTP Brute force attackgumenORT/smi [**]
Classification: Misc Attack] [Priority: 2] {TCP} 192.168.0.18:34977 -= 192.168.0
L222:21
11/28-17:41:23.912410 [**] [1:3441:1] FTP Brute force attackgumenDRT/smi [**]

Classification: Misc Attack] [Priority: 2] {TCP} 192.168.0.18:34977 -= 192.168.0
27721 k

—

—

—

—

—

—

FIGURE 4-16 ALERT BRUTE FORCE FTP

4.10.1 Rule Brute Force Ftp

alert tcp SEXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP Brute force attack™;
content: "PASS"; nocase; offset:0; depth:4; content:"|0a|"; within:3;
flow:from_client,established; sid:10491;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP Brute force
attackgumenORT/smi"; classtype:misc-attack; sid:3441; rev:1;)

4.11 Detect UDP Flood

AUDP flood [53] attack is a denial-of-service (DoS) attack using the UDP protocol, a
connectionless computer networking protocol.

UDP when it comes to denial-of-service attacks [53] can be more complicated than TCP
protocol. However, a UDP flood attack sends a large number of UDP network packets to
random ports on a remote host.

For numerous UDP packets [53], the system that is under attack will be forced into sending
many ICMP packets, thus leading it to be unreachable by other clients. The attackers might
also be able to spoof the IP address of the UDP packets, securing that the ICMP return packets
do not arrive them, and hiding their network locations [49].

hping3 --udp --flood -p 80 192.168.1.68

e Udp: sends udp packets.
e -p 80: Packets are sent to port 80.

[45]

Tests run on my local network.

: hping3 --udp --flood -p B0 192.168.1.68
HPFING 192.168.1.68 (eth® 152.168.1.68): udp mode set, 28 headers + 0 data bytes
hping in flood mode, no r%plies will be shown
~C
--- 152.168.1.68 hping statistic ---
65860 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 9.0/0.0/0.0 ms

FIGURE 4-17 UDP FLOOD

Terminal -+ x
B4/27-19:43:37.685338 [#**] [1:10088083: esting *3 [Priority: @]
DP} 192.168.1.76:58296 -> 192.168.1.68:

B84/27-19:43:37.685341 [*#] [1:1000003: esti *#*] [Priority:
DP} 192.168.1.76:58297 -> 192.168.1.68:
:37.685344 [*#] [1:1000003:
.1.76:58298 -> 192.168.1.68:
:37.685346 [**] [1:1000003:1] UDP Testing Rule [*#*] [Priority: 8] {U
.1.76:58299 -> 192.168.1.68:860

:37.685349 [#*] [1:1000803:1] UDP Testing Rule [#**] [Priority: @] {U
.1.76:58300 -> 192.168.1.68:80

:37.685351 [#*] [1:1000803:1] UDP Testing Rule [#**] [Priority: ©] {U
.1.76:58301 -= 192.168.1.68:80 2
:37.685353 [*#] [1:1000003:1] UDP Testing Rule [*#] [Priority: 0] {U||
.1.76:58302 -> 192.168.1.68:80 1
:37.685356 [**] [1:1000803:1] UDP Testing Rule [*#*] [Priority: 8] {U
.1.76:58303 -= 192.168.1.68:80

:37.685358 [*#] [1:10000803:1] UDP Testing Rule [*#*] [Priority: 8] {U
.1.76:58304 -> 192.168.1.68:860

:37.686724 [#*] [1:1000803:1] UDP Testing Rule [#**] [Priority: @] {U
.1.76:58305 -> 192.168.1.68:
:37.686732 [*AEMRERCIELILER esting #*] [Priority:
DP} 192.168.1.76:58306 -= 192.168.1.68:

B4/27-19:43:37.686735 [**] [1:1000003: esti #*] [Priority:

Testing [Priority:

DP} 192.168.1.76:58307 -= 192.168.1.68:

FIGURE 4-18 ALERT UDP FLOOD

4.11.1 Rule UDP Flood

alert udp $EXTERNAL_NET any -> $HOME NET any (msg:“UDP Testing Rule ";
threshold: type threshold, track by_src, count 10000, seconds 5; sid: 10000002; rev: 1;)

[46]

4.12 Detect Brute Force ssh

In cryptography, a brute-force attack [53] is a cryptanalytic attack that can, theoretically, use
any encrypted data except when data are encrypted in an information-theoretically secure
way. Such an attack might be used when it is not easy to take advantage of other inability in
an encryption system that would make the task easier. It consists of systematically checking
all possible keys or passwords until the right one is found.

Tests run on my local network.

B6/13-11:33:32.567931 [#*] [1:2001219:4] Potential SSH Brute Force Attack [#%]
[Classification: Attempted Denial of Service] [Priority: 2] {TCP} 192.168.0.14:6
0916 -= 192.168.0.11:22
B6/13-11:33:33.195454 [#+*] [1:2001219:4] Potential S55H Brute Force Attack [##]
[Classification: Attempted Denial of Service] [Priority: 2] {TCP} 192.168.08.14:6
0919 -= 192.168.0.11:22

FIGURE 4-19 ALERT BRUTE FORCE SSH

4.12.1 Rule Brute-Force SSH

alert tcp any any -> $SHOME_NET (msg:"Potential SSH Brute Force Attack™; flow:to_server;
flags:S; threshold:type threshold, track by_src, count 3, seconds 60; classtype:attempted-dos;
sid:2001219; \ rev:4; resp:rst_all;)

[47]

Chapter 5 Suricata

5.1 Suricata ids

Suricata is a rule-based IDS/IPS [50] program that uses externally developed rule sets to
monitor network traffic and warns the admin by using alerts when suspicious events occur.
Designed to be compatible with existing network security components, The Suricata Engine is
a fairly new open-source intrusion detection and prevention engine. It is developed by Open
Information Security Foundation. Suricata features unified output functionality and pluggable
library options to accept calls from other applications. As a multi-threaded engine, Suricata
offers increased speed and efficiency in network traffic analysis. Furthermore to hardware
acceleration the engine is build to utilize the increased processing power offered by the latest
multi-core CPU chip sets.

The operation modes of Suricata [50] are the same as Snort’s. It can be used either as an IDS
or IPS system. There are no differences when connecting Suricata to the network. Suricata
even has basically the same rule syntax as Snort, which means that both systems can use more
or less the same rules.

The general data flow through Suricata [50] is similar to Snort. Packets are captured, decoded,
processed and analyzed. However, when it comes to the internals of the Suricata Engine,
differences become apparent.

Suricata also features the HTP Library [50] that is a HTTP normalizer. This incorporates and
provides advanced processing of HTTP streams for Suricata.

Suricata [50] uses a multi-threaded approach opposed to the Snort’s single threaded engine.
Threads use one or more thread modules for this. Threads have an inbound queue handler and
an outbound queue handler. These are used to get packets from other threads, or from the
global packet pool.

Taking these few [50], but significant differences into account, it is probable that Snort and
Suricata perform differently when it comes to the speed and efficiency of network traffic
analysis.

[48]

1 2 3 4

Detect §
e
« \-‘
/(Y i Packel & /
(Network § o bcquisition] ~ [Sveamapp. | —> | Detect J- —»
layee
X
“
‘ :I «
/‘/
Detect /7

FIGURE 5-1 MULTI-THREAD DESIGN

CPU/CPU core-thveads set_cpu_alfinity: yes
{Core O PAQ DECODE STREAM DETECT. OUTPUT
} 1 S DETECT ==
| 2 DETECT
3 DETECT
set_cpu_allinity: no
Example
PAQ DETECT
_DECODE

_STREAM _ DETECT X2
DETECT OUTPUT

FIGURE 5-2 MULTI-CPU AFFINITY

Suricata Features [50]:

e High rate of performance, expandable through multi-threading.

e Protocol recognition.

e File recognition, extraction, on the fly MD5 calculation.

e TLS handshake analysis, detect/prevent operate like Diginotar.

¢ Rules and outputs compliant to Snort syntax.

e Helpful logging like HTTP request log, TLS certificate log, DNS logging.

[49]

5.1.1 Suricata configuration file

Suricata [50] uses the yaml format for configuration.

5.1.2 Max-pending-packets

With the max-pending-packets [50] setting we can set the number of packets we allow
Suricata to process at the same time. This can range from one packet to tens of
thousands/hundreds of thousands of packets. As a result have higher performance and more
use of memory, or lower performance and less use of memory. Numerous packets being
processed results in a higher performance and the use of more memory. A low number of
packets, leads to lower performance and less use of memory.

max-pending-packets: 1024

5.1.3 Default-packet-size

For the max-pending-packets option [50], Suricata has to retain packets in memory. With the
default-packet-size option, we can regulate the size of the packets on our network level. The
computer machine can still process these bigger packets, but processing it will lower the
performance.

default-packet-size: 1514

5.1.4 Action-order

All signatures [50] have different properties. Action property is one of those. A summary of
what will happen when a signature fits and includes one of those actions [50]:

[50]

Pass

If a signature contains the action pass, Suricata stops checking the packet and skips to the end
of all rules.

Drop

This action only uses the mode of IPS/inline. If the program checks a signature that matches,
containing drop, it stops instantly and the packet will not be sent any more.

Reject

This is an active dismiss of the packet. Both receiver and sender receive a dismiss packet.

Alert

If a signature fits include alert, the packet will be dealt like any other non-threatening packet,
excluding this one an alert will be created by Suricata.

5.1.5 Detection engine

5.1.5.1 Inspection configuration

The detection engine [51] builds internal groups of signatures. Suricata loads signatures
comparing all the network traffic. The truth is that many rules probably will not be needed.

For that reason, all signatures will be categorized in groups [51]. Although, a distribution
containing a lot of groups will make use of a certain amount of memory. Not every type of
signature will be categorized in the same group. There is a possibility that different signatures
with common properties will be placed together in a group. The number of groups [51] will
define the balance between memory and performance. A low amount of groups will lower the
performance yet uses a low amount of memory. The opposite counts for a higher number of
groups. The engine allows us to control the balance between memory and performance.

detect-engine:

-profile: medium #The balance between performance and memory usage.
This is the default setting.

- custom-values:
toclient src groups: 2

toclient dst groups: 2

[51]

toclient sp groups: 2

toclient dp groups: 3

toserver src groups: 2

toserver dst groups: 4

toserver sp groups: 2

toserver dp groups: 25
- sgh-mpm-context: auto

- inspection-recursion-limit: 3000

At all of these options, we can add a value. Most signatures have the ability to focus on one
direction, meaning focusing on the server, or focusing on the client [51].

src-group | dst-group | Sp-group | dp-group |signatures

/" dp
i =
sp I
4 P — dp |
/,/
dst S sp a
/ ™ dp
src [~ dst \ -
toclient |~
= Src 1 dst
Protocols / '\\
TCP &
Packet i ——— \'-.\ SIG
— \
b |
toserver

FIGURE 5-3 DETECTION ENGINE GROUPING TREE

[52]

src Stands for source IP-address.

dst Stands for destination IP-address.
sp Stands for source port.
dp Stands for destination port.

5.2 Suricata ids mode

FIGURE 5-4 START SURICATA

[53]

FIGURE 5-5 SURICATA IDS MODE

5.2.1 Test suricata ids
Tests run on my local network.

FIGURE 5-6 TEST SURICATA IDS

[54]

Test ping

Terminal - 4+ X
11/27/2014-16:96:41.039471 [#**] [1l:18000081:1] ICMP Testing Rule [*¥*] [Classificr]
ation: (null)] [Priority: 3] {ICMP} 192.168.1.3:8 -> 192.168.1.9:8 .3
i11,/27/2014-16:86:42.0356055 [**] [1l:18000081:1] ICMP Testing Rule [##*] [Classific
ation: (null)] [Priority: 3] {ICMP} 192.168.1.9:8 -> 192.168.1.3:0
11/27/2014-16:06:42.040947 [**] [1l:1000001:1] ICMP Testing Rule [**] [Classific
ation: (null)] [Priority: 3] {ICMP} 192.168.1.3:0 -=> 192.168.1.9:0
11/27/2014-16:86:43.035505 [**] [l:1000081:1] ICMP Testing Rule [##*] [Classific
ation: (null)] [Priority: 3] {ICMP} 192.168.1.9:8 -> 192.168.1.3:8
11/27/2014-16:96:43.041296 [**] [1l:1800001:1] ICMP Testing Rule [*##*] [Classific
ation: (null)] [Priority: 3] {ICMP} 192.168.1.3:8 -> 192.168.1.9:0
11/27/2014-16:06:44.0837344 [**] [1:18080801:1] ICMP Testing Rule [#*] [Classific
CAeLUEINNR] [Priority: 3] {ICMP} 192.168.1.9:8 -> 192.168.1.3:0
11/27/2014-16:06:44.043910 [**] [1l:1000001:1] ICMP Testing Rule [**]
ation: (null)] [Priority: 3] {ICMP} 192.168.1.3:0 -=> 192.168.1.9:0
11/27/2014-16:86:45.039285 [**] [1l:1000001:1] ICMP Testing Rule [#*#]
ation: (null)] [Priority: 3] {ICMP} 192.168.1.9:8 -> 192.168.1.3:8
11/27/2814-16:86:45.046035 [**] [1:18900001:1] ICMP Testing Rule [*#*]
ation: (null)] [Priority: 3] {ICMP} 192.168.1.3:8 -> 192.168.1.9:0

11/27/2014-16:06:46.041758 [**] [1:10086001:1] ICMP Testing Rule [#**]
ation: (null)] [Priority: 3] {ICMP} 192.168.1.9:8 -> 192.168.1.3:0
11/27/2014-16:06:46.047695 [**] [1:1800001:1] ICMP Testing Rule [**]
ation: (null)] [Priority: 3] {ICMP} 192.168.1.3:0 -> 192.168.1.9:0
11/27, 14-16:06:47.843754 [#*] [1:1000001:1] ICMP Testing Rule [#**]
ation: (null)] [Priority: 3] {ICMP} 192.168.1.9:8 -> 192.168.1.3:0

FIGURE 5-7 ICMP ALERT

Terminal - 4+ =
icmp seq=1168 ttl=128
icmp_seq=1169 ttl=128
icmp seg=117@ ttl=128
icmp seg=1171 ttl=128
icmp seg=1172 ttl=128
icmp seq=1173 ttl=128
icmp seq=1174 ttl=128 time=5.99 ms
icmp seq=1175 ttl=128 time=6.36 ms
icmp seq=1176 ttl=128 time=7.50 ms
icmp seq=1177 ttl=128 time=5.81 ms
icmp seq=1178 ttl=128 time=6.30 ms
icmp_seq=1179 ttl=128 time=6.14 ms
icmp seq=1186 ttl=128 time=7.17 ms
icmp seq=1181 ttl=128 time=6.18 ms
icmp seq=1182 ttl=128 time=6.66 ms
icmp seq=1183 ttl=128 time=5.98 ms
icmp segq=1184 ttl=128 time=6.03 ms
icmp seq=1185 ttl=128 ti
icmp seq=1186 ttl=128
icmp seq=1187 ttl=128
i =1188 ttl=128 c M

ttl=128 ti . ||
ttl=128 i . |
icmp seq=1191 ttl=128

bytef
64 bytes from 192.1685.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.
64 bytes from 192.168.

el el — - — = e e e e e R
Ll L L) L L L) NIRRT R WE I PR S R WO IR PRI IR FERR TR EE () Ly L L) L

FIGURE 5-8 ICMP ALERT2

5.2.1.1 Rule Ping

#alert icmp SEXTERNAL_NET any -> $HOME_NET any (msg:"GPL ICMP Information
Request undefined code™; icode:>0; itype:15; classtype:misc-activity; sid:2100418; rev:8;)

[55]

5.3 Detect Port Scan

Tests run on my local network.
:B# nmap -sF 192.168.1.68

Starting Nmap 6.47 (http://nmap.org) at 2015-04-27 14:49 EDT

Mmap scan report for 192.168.1.68

Tests run on my local network.

ROGEGKAI 54 nnap -SX p 80

192.168.1.68

FIGURE 5-9 PORT SCAN

Starting Nmap 6.47 (http://nmap.crg) at 2015-04-27 14:54 EDT

==> fast.log ===

04/28/20815-21:83:59.740530
tion: (null)] [Priority: 3]
04,/28/2015-21:04:02.460443
tion: (null)] [Priority: 3]
04/28/2015-21:04:07.482336
tion: (null)] [Priority: 3]
04/28/2015-21:04:08.591982
tion: (null)] [Priority: 3]

[1:1080083:
{UDP} 192.168.1.
[1:1800003:
{UDP} 192.168.1.
[1:1800002:
{TCP} 192.168.1.
[1:1800002:
{TCP} 192.168.1.

1]

69:

1]

76:

1]

76:

1]

76:

FIGURE 5-10 PORT SCAN 2

UDP Testing Rule
137 -= 192.168.1
UDP Testing Rule
52915 -= 192.168
TCP Testing Rule
62002 -= 192.168
TCP Testing Rule
620083 -> 192.168

[#**] [Classifica
.255:137
[#*] [Classifica
.1.1:53
[Classifica
180
[Classifica
;80

*
*

[*
.1.6
[*

.1.

00— 00—

]

5.3.1 Rule Port Scan

FIGURE 5-11 ALERT PORT SCAN

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"TCP Testing Rule™;
flow:stateless; flags:F,12; classtype:attempted-recon; sid:621; rev:7;)

5.4 Detect Syn flood

Tests run on my local network.

[56]

Terminal - + =

MACK resend with different ack [##*] [Classification: (null)] [Priority: 3] {TCP}
192.168.1.11:80 -= 192.168.1.14:33258

12/02/2014-16:46:53.452087 [**] [1:2210084:1] SURICATA STREAM 3way handshake SY
MACK resend with different ack [##*] [Classification: (null)] [Priority: 3] {TCP}
192.168.1.11:80 -= 192.168.1.14:33256

12/02/2014-16:46:53.453960 [**] [1:2210084:1] SURICATA STREAM 3way handshake SY|

MACK resend with different ack [**] [Classification: (null)] [Priority: 3] {TCP}
192.168.1.11:80 -= 192.168.1.14:33316

12/02/2014-16:46:53.649608 [#**] [1:2210084:1] SURICATA STREAM 3way handshake SY|

MACK resend with different ack [##*] [Classification: (null)] [Priority: 3] {TCP}
192.168.1.11:80 -= 192.168.1.14:33251

12/82/2014-16:46:53.650692 [#*] [1:2210084:1] SURICATA STREAM 3way handshake SY|

MACK resend with different ack [##] [Classification: (null)] [Priority: 3] {TCP}
192.168.1.11:80 -= 192.168.1.14:35120

12/82/2014-16:46:53.652102 [#*] [1:2210084:1] SURICATA STREAM 3way handshake SY|

MACK resend with different ack [##] [Classification: (null)] [Priority: 3] {TCP}
192.168.1.11:80 -= 192.168.1.14:33253

12/02/2014-16:46:53.652173 [**] [1:2210084:1] SURICATA STREAM 3way handshake SY|

MACK resend with different ack [##*] [Classification: (null)] [Priority: 3] {TCP}
192.168.1.11:80 -= 192.168.1.14:33259

12/02/2014-16:46:53.652491 [**] [1:2210084:1] SURICATA STREAM 3way handshake SY|-

MACK resend with different ack [#**] [Classification: (null)] [Priority: 3] {TCP}||
192.168.1.11:80 -= 192.168.1.14:33255 1
12/082/2014-16:46:53.6353071 [#*+*] [jErralllER

] SURICATA STREAM 3way handshake SY

FIGURE 5-12 ALERT SYN FLooD

5.4.1 Rule Syn Flood

alert tcp any any -> any any (msg:"SURICATA STREAM 3way handshake SYNACK resend
with different ack™; stream-event:3whs_synack resend_with_different_ack; sid:2210004;
rev:1;)

5.5 Detect UDP flood

Tests run on my local network.

: hping3 --udp --flood -p 8@ 192.168.1.68
HPING 192.168.1.68 (eth® 1592.168.1.68): udp mode set, 28 headers + 0 data bytes
hping in flood mode, no replies will be shown

--- 192.168.1.68 hping statistic ---
305017 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

FIGURE 5-13 UDP FLOOD

[57]

p4,/28/2015-21:

fion: (null)]

p4/28/2015-21:

fion: (null)]

04/28/2015-21:

tion: (null}]

04/28/2015-21:

tion: (null)]

04/28/20815-21:

tion: (null)]

04,/28/2015-21:

tion: (null)]

04/28/2015-21:

tion: (null}]

04/28/2015-21:

tion: (null}]

04/28/2015-21:

tion: (null}]

04/28/2015-21:

tion: (null}]

04/28/2015-21:

tion: (null)]

04,/28/20815-21:

tion: (null)]

15:408.167860
[Priority: 3]
15:408.167863
[Priority: 3]
15:408.167866
[Priority: 3]
15:408.167869
[Priority: 3]
15:40.167872
[Priority: 3]
15:40.167874
[Priority: 3]
15:48.167877
[Priority: 3]
15:408.167888
[Priority: 3]
15:408.167883
[Priority: 3]
15:408.169298
[Priority: 3]
15:408.169312
[Priority: 3]
15:408.169315
[Priority: 3]

Terminal

[*+]

[**]
{UDP} 192.168.1.

[*#]
[**]
[**]
[**]
[**]
[**]
[**]
[*#]
[*+]
[**]

[1:1008083:
{UDP} 192.168.1.
[1:1008083:

[1:1608083:
{UDP} 192.168.1.
[1:1000083:
{UDP} 192.168.1.
[1:10600803:
{UDP} 192.168.1.
[1:1000883:
{UDP} 192.168.1.
[1:1008083:
{UDP} 192.168.1.
[1:1008083:
{UDP} 192.168.1.
[1:1608083:
{UDP} 192.168.1.
[1:1008083:
{UDP} 192.168.1.
[1:1000083:
{UDP} 192.168.1.
[1:1000803:
{UDP} 192.168.1.

1]

76:

1]

76:

1]

16:

1]

76

1]

76:

1]

76:

1]

76:

1]

76:

1]

76:

1]

UDP Testing Rule
UDP Testing Rule

UDP Testing Rule
32294
UDP Testing Rule
32295
UDP Testing Rule
32296
UDP Testing Rule
32297
UDP Testing Rule
32298
UDP Testing Rule
32299
UDP Testing Rule
32300
UDP Testing Rule

32301 -= 192.168.

UDP Testing Rule
32302
UDP Testing Rule

FIGURE 5-14 ALERT UDP FLOOD

5.5.1 Rule UDP Flood

-= 192.168.

-=> 192.168.

-=> 192.168.

-> 192.168.

-» 192.168.1

-» 192.168.1

-= 192.168.1

132293 -= 192.168.1.

-» 192.168.1.6

132383 -> 192.168.1.

#] |
132292 -> 192.168.1.68:

8:80

8:80

8:80

8:80

8:80

180

180

;80

;80

180

[Classifica
[Classifica
[Classifica
[Classifica
[Classifica
[Classifica
[Classifica
[Classifica
[Classifica

[Classifica

[Classifile

alert udp $EXTERNAL_NET any -> $HOME NET any (msg:“UDP Testing Rule ";
threshold: type threshold, track by_src, count 10000, seconds 5; sid: 10000002; rev: 1;)

5.6 Suricata vs Snort

For a long time, Snort has been the standard for open source Intrusion Detection Systems
(IDS/IPS) [62]. Its engine combines the advantages of signatures, protocols, and anomaly-
based inspection and has become the most common deployed IDS/IPS in the world.

Suricata, a new and less widely product developed by the Open Information Security
Foundation (OISF) [62]. It is based on signatures but incorporates revolutionary techniques.
This engine embeds an http normalizer and parser that provide very advanced processing of

HTTP streams.

Both Snort and Suricata [62] are based on sets of rules. Most of the tests have shown that
VRT Snort and Emerging Threats rules are complementary and are both needed to optimize
the detection of all attack types. Furthermore, both Snort and Suricata have demonstrated their
ability to detect attacks based on signatures from rules.

[58]

http://www.aldeid.com/wiki/Snort
http://www.aldeid.com/wiki/Suricata

Suricata offers new features that Snort could implement in the future like multi-threading
support, capture accelerators but suffers from a lack of documentation [62]. In addition,
Suricata doesn't accept some rules from VRT::Snort and Emerging Threats due to
incompatibilities. The support of these missing keywords should be implemented in future
versions of Suricata.

On the other hand, Snort is mature [62]. It remains a very powerful and effectiveness
IDS/IPS, very well documented over the net and that properly detects most of the malwares
and evasion techniques. Its preprocessors are very useful powerful for reassembling
fragmented packets.

Param Suricata Snort
optional while compiling (--enable- [Snort_inline or snort used with -Q
IPS feature]
nfqueue) option
e VRT::Snort rules
Rul e VRT:Snort rules
ules
e SOrules
e EmergingThreats rules
e EmergingThreats rules
Threads Multi-thread Single-thread
) Not available from packages. Relatively straightforward. Installation
Ease of install ,])
Manual installation. also available from packages.

) \Well documented on the official website
Documentation Few resources on the Internet
and over the Internet

Event logging Flat file, database, unified2 logs for barnyard

Supported when compiled with --
IPv6 support Fully supported i i

enable-ipv6 option.
Capture PF_RING, packet capture i

None, use of libpcap
accelerators accelerator

]]] suricata.yaml, classification.config,
Configuration file] i snort.conf, threshold.conf
reference.config, threshold.config

Offline analysis

(pcap file)

Frontends Sguil, Aanval, BASE, FPCGUI (Full Packet Capture GUI), Snortsnarf
Table 5-1: Global Overview

yes

[59]

http://www.aldeid.com/wiki/Snort_inline
http://www.aldeid.com/wiki/Snort
http://www.aldeid.com/wiki/Suricata/Suricata-yaml-configuration-file

Chapter 6 Bro

6.1 Bro IDS

Bro is an open-source, [36, 63] Unix-based Network Intrusion Detection System (NIDS) that
passively monitors network traffic and looks for an abnormal action. Bro detects intrusions by
first parsing network traffic to extract its application level significant and then executing
event-oriented analyzers that correlate the activity with patterns deemed troublesome.

Bro uses a particular policy language [63] that permits a site to tailor Bro's operation, both as
site policies develop and as new attacks are discovered. If Bro detects something of interest, it
can be commandment to either produce a log entry, alert the operator in real-time.

A bro script [63] could be written to keep track of user attempts against the application and
create an alert if it overdraws a threshold value. This requires the intrusion detection system to
not only comprehend the protocol but also keep track of failed user sessions against the
application. This crucial feature of Bro to understand the higher order application details gives
it a distinct advantage against signature based intrusion detection systems.

6.1.1 Managing Bro with Bro control

Bro Control [63] is an interactive shell for easily operating or managing Bro installations on a
system or even across multiple systems in a traffic-monitoring cluster.

6.1.2 Browsing Log Files

By default, logs [63] are written out in human-readable (ASCII) format and data is organized
into columns.

6.2 Bro Scripts

Bro includes an event-driven scripting language [63] that provides the primary means for an
organization to extend and customize Bro’s operability. Virtually all of the output generated
by Bro is, in fact, generated by Bro scripts. It’s almost easier to think about that Bro will be an
entity behind the scenes processing connections and generating facts while Bro’s scripting
language is the medium through which we can succeed communication. Bro scripts
effectively shall notify Bro that should there be an event of a type we define, and then let us

[60]

have the information about the connection so we can execute some function on. .

Logs Notification

Policy Script Interpreter

Events

Event Engine

Packets

FIGURE 6-1 BRO ARCHITECTURE

Architecturally, Bro is layered into two major levels [63]. Its event engine decreases the
inbound traffic stream into a series of higher-level events. These events represent network
function in policy neutral terms, they describe what has been seen, but not why, or whether it
is considerable.

Such semantics [63] are instead derived by Bro’s second main element, the script interpreter,
which performs a set of event users written in Bro’s custom scripting language. These scripts
can implement a site’s security policy, i.e., what activities to take when the monitor detects
different types of activity. More generally they can log any desired properties and statistics
from the input traffic.

[61]

Start Bro

FIGURE 6-2 START BRO

6.3 Bro Log Files

Bro is shipped with an interactive shell for management purpose: Bro Control [63]. This
application is able to control and monitor the Bro installation. In a cluster and multi Bro
installation case Bro Control is crucial. When using Bro Control, Bro creates logs in the
directory $SBROHOME/log. The directory is $BROHOME/log/current but logs are often
moved to $SBROHOME/log/YYYY-MM-DD. These log files are in clear text ASCII unless
default configuration is changed [63].When running from CLI, all log files are created in
actual directory where we start Bro. The following log files are always created: conn.log,
loaded_scripts.log and notice_policy.log. These filenames reveal much of the actual log file
content, but some more description is necessary [63]:

e Conn.log consists of the complete connection log during Bro’s run time.
e Loaded_scripts.log shows Bro scripts that were loaded during Bro startup.
e Notice_policy.bro shows the current Bro Notice policy.

Bro create several new log files during run time. This overview shows more general and
internal log files [63]:

e Communication.log logs for Bro’s internal communication between remote and central
instances, clusters etc.

e Conn-summary.log generated when Bro is terminated. Post processing connection
summaries.

[62]

Known_hosts.log hosts that have performed complete TCP handshake.
Notice.log notices that Bro rises.
Reporter.log internal messages and warnings errors for troubleshooting.

Bro also creates a lot of log files that are protocol/service specific [63]:

Dns.log log over DNS queries.

Dpd.log log over what port/service dependent dynamic protocol detection analysis that
has been activated.

Http.log log over http request and responses including metadata.

Software.log reports known and recognized software detected from protocol
analyzers.

Weird.log notices that Bro has tagged as weird. Odd protocol behavior will be logged
here. A log of unexpected protocol-level activity.

loaded_scripts.19:21:50-19:22:24.log (/nsm/bro/logs/2015-04-29) - gedit -+ X

File Edit WView Search Tools Documents Help

ﬂﬁ()penvni!iave = w~ Undo w= x@ﬂ Q Q

=| loaded_scripts.19:21:50-19:22:24.log *

#separator \x09

/nsm/bro/share/bro/base/init-bare.bro
/nsm/bro/share/bro/base/bif/const.bif.bro
J/nsm/bro/share/bro/base/bif/types.bif.bro
/nsm/bro/share/bro/base/bif/strings.bif.bro
J/nsm/bro/share/bro/base/bif/bro.bif.bro
J/nsm/bro/share/bro/base/bif/reporter.bif.bro
/nsm/bro/share/bro/base/bif/plugins/Bro_SNMP.types.bif.bro
/nsm/bro/share/bro/base/bif/event.bif.bro
/nsm/bro/share/bro/base/bif/plugins/ load_ .bro

/nsm/bro/share/bro/base/bif/plugins/Bro_ARP.events.bif.bro
/nsm/bro/share/bro/base/bif/plugins/Bro_ AYIYA.events.bif.bro
/nsm/bro/share/bro/base/bif/plugins/Bro_BackDoor.events.bif.bro
/nsm/bro/share/bro/base/bif/plugins/Bro_BitTorrent.events.bif.bro
/nsm/bro/share/bro/base/bif/plugins/Bro_ConnSize.events.bif.bro
/nsm/bro/share/bro/base/bif/plugins/Bro_DCE_RPC.events.bif.bro
/nsm/bro/share/bro/base/bif/plugins/Bro_DHCP.events.bif.bro

/nsm/bro/share/bro/base/bif/plugins/Bro DNP3.events.bif.bro

Eempty]

loaded_scripts
20815-04-29-19-21-58

string

Plain Text ¥ Tab Width: 8 Ln 30, Col 33 INS

@ Menu [y

FIGURE 6-3 BRO SCRIPTS

[63]

6.3.1 Signature main.bro

Actions for a signature [63]:

&redef;

}

const actions: table[string] of Action = {

["unspecified"] = SIG IGNORE, # place-holder
} &redef &default = SIG ALARM;
Signature IDs that should always be ignored.
const ignored ids = /NO DEFAULT MATCHES/ &redef;
Generate a notice if, for a pair [orig, signature], the number of
different responders has reached one of the thresholds.
const horiz scan thresholds = { 5, 10, 50, 100, 500, 1000 } &redef;
Generate a notice if, for a pair [orig, respl], the number of
different signature matches has reached one of the thresholds.
const vert scan thresholds = { 5, 10, 50, 100, 500, 1000 } &redef;
Generate a notice if a :bro:enum: Signatures::SIG COUNT PER RESP"
signature is triggered as often as given by one of these thresholds.

const count thresholds = { 5, 10, 50, 100, 500, 1000, 10000, 1000000,

The interval between when :bro:enum: Signatures::Signature Summary’
notices are generated.

const summary interval = 1 day &redef;

This event can be handled to access/alter data about to be logged
to the signature logging stream.

rec: The record of signature data about to be logged.

global log signature: event (rec: Info);

if (action == SIG_ALARM ONCE)

{

if ([sig_id] !in did sig log)
{
notice = T;
add did sig log[sig id];
}

}

if (notice)
NOTICE ([$note=Sensitive Signature,
$conn=state$conn, $src=src_addr,
$dst=dst_addr, Smsg=fmt("%s: %s", src_addr, msg),
$sub=datal) ;

Log::write (Signatures::L0OG,

[$ts=network time(),
$note=Multiple Signatures,
$src_addr=orig,

[64]

$dst_addr=resp, $sig id=sig id,

6.3.2 Reporter main.bro

This framework is intended to create an output and filtering path internal
messages/warnings/errors. It should typically be loaded to log such messages to a file in a
standard way [63]:
export {
The reporter logging stream identifier.
redef enum Log::ID += { LOG };
An indicator of reporter message severity.
type Level: enum {
Informational, not needing specific attention.
INFO,
Warning of a potential problem.
WARNING,
A non-fatal error that should be addressed, but doesn't
terminate program execution.
ERROR
}i
The record type which contains the column fields of the reporter log.
type Info: record {
The network time at which the reporter event was generated.
ts: time &log;
The severity of the reporter message.
level: Level &log;
An info/warning/error message that could have either been
generated from the internal Bro core or at the scripting-layer.
message: string &log;
This is the location in a Bro script where the message originated.
Not all reporter messages will have locations in them though.

location: string &log &optional;

}
event bro init() é&priority=5
{

Log::create stream(Reporter::LOG, [Scolumns=Infol);

}
event reporter info(t: time, msg: string, location: string) é&priority=-5

{

[65]

Log::write (Reporter: :LOG, [$ts=t, $1level=INFO, Smessage=msg,
Slocation=location]) ;

}
event reporter warning(t: time, msg: string, location: string) &priority=-5
{

Log::write (Reporter: :LOG, [$ts=t, $1level=WARNING, Smessage=msg,
Slocation=location]) ;

event reporter error(t: time, msg: string, location: string) &priority=-5
{

Log::write (Reporter: :LOG, [$ts=t, $1level=ERROR, Smessage=msg,
$location=location]) ;

}

6.3.3 Communication main.bro

Main.bro [63]:

module Communication;
export {
The communication logging stream identifier.
redef enum Log::ID += { LOG };
Which interface to listen on. The addresses ""0.0.0.0°" and "~ [::]"°
are wildcards.
const listen interface = 0.0.0.0 &redef;
Which port to listen on. ©Note that BroControl sets this
automatically.
const listen port = 47757/tcp &redef;
This defines if a listening socket should use SSL.
const listen ssl = F &redef;
Defines if a listening socket can bind to IPv6 addresses.
Defines the interval at which to retry binding to
:bro:id: Communication::listen interface’ on
:bro:id: Communication::listen port’ if it's already in use.
const listen retry = 30 secs &redef;
Default compression level. Compression level is 0-9, with 0 = no
compression.
global compression level = 0 &redef;
A record type containing the column fields of the communication log.

event bro init() &priority=5

[66]

{
Log::create stream(Communication::LOG, [$Scolumns=Info]);

}

function do script log common (level: count, src: count, msg: string)

{

Log::write(Communication::LOG, [$ts = network time (),
$level = (level == REMOTE LOG_INFO ? "info"
"error"),
$src_name = src _names|[src],

$peer = get event peer () $descr,
Smessage = msqg]);
}
This is a core generated event.
event remote log(level: count, src: count, msg: string)
{
do_script_log_common(level, src, msgqg);

}

Actually initiate the connections that need to be established.
event bro_init() é&priority = -10 # let others modify nodes
{
if (|nodes]| > 0)
enable communication();

for (tag in nodes)

{
if (! nodes[tag]$connect)
next;

connect peer (tag);
}
}

6.4 Detect Port scan
Tests run on my local network.

conn-summary.19:26:34-19:50:38.log [Read-Only] (/nsm/bro/logs/2014-12-01) - gedit — +
File Edit View Search Tools Documents Help

L] i open ~ O Save | = | #~uUndo w~ | ¥ O & | & &

|=/| conn-summary.19:26:34-19:50:38.log x

>== Total === 2014-12-01-19-26-20 - 2014-12-81-19-58-89
- Connections 1.4k - Payload 7.9m -

Ports | Sources | Destinations | Services |
Protocols | States

5355 8.2% | 192.168.1.14#1 71.9% | 192.168.1.11#2 71.9% | - 75.6% |
6 84.5% | RE] 71.7% |

80 7.9% | 192.168.1.11#3 16.8% | ffe2::1:3#4 4.1% | dns 13.9% |
17 15.5% | SF 16.0% |

443 4.8% | 192.168.1.6#5 5.5% | 224.0.0.252#6 4.1% | http 5.5% |
1 8.1% | s@ 11.7% |

53 3.9% | fe80::9ded@:3a80:63a9:20e8#7 4.4% | 192.168.1.1#8 3.8% |
ssl 4.7% | | RSTO 0.4% |

137 1.9% | 192.168.1.3#9 0.5% | 70.42.23.121#10 2.8% | dhcp 0.1%
| | RSTR 0.1% |

138 0.6% | 192.168.1.15#11 0.4% | 192.168.1.255#12 2.6% |
| | OTH 8.1% |

1908 0.4% | 192.168.1.5#13 0.4% | 192.150.187.43#14 1.7% |
| | |

17588 0.2% | 0.0.0.8#15 09.1% | 131.243.2.77#16 1.3% |
| | |

547 0.2% | | 199.96.57.7#17 0.9% |
| | |

87 0.1% | | 216.58.208.99#18 0.5% |

FIGURE 6-4 CONN-SUMMARY.LOG

[67]

conn.19:26:34-19:50:38.log [Read-Only] (/nsm/bro/logs/2014-12-01) - gedit

File Edit View Search Tools Documents Help

£l EJOpen ~ Oz save | @ | ™ Undo | Y OB | a Q

|=| conn.19:26:34-19:50:38.log = |

D 2 144] 5] (empty)

1417454780.446524 CXfHg82nSQWT26pDUa 192.168.1.6 137 192.168.1.255 137
udp dns 5.998821 200 a s@ T 3] D 4 312
6] 6] (empty)

1417454798.685329 C6FzLfFYPeALQsax 192.168.1.11 41227 199.16.156.201 443
tecp ssl 0.385833 517 137 SF T] ShADFadRf 6
813 4 353 (empty)

1417454795.573376 CBZZg73vDIGQiIqQP7 192.168.1.11 57409 192.150.187.43 80
tcp http 5.485343 313 533 SF T] ShADadfF 5
581 5 801 (empty)

1417454796.224523 CFfVCHPP1LPhynWV3 192.168.1.11 37311 192.150.187.43 443
tcp 55l 6.004940 789 20849 SF T] ShADadfF 18
1653 21 21949 (empty)

1417454797 .746559 CCZLwL1nBgwCLTSSh 192.168.1.11 47325 192.168.1.1 53
udp dns B.024494 49 329 SF T] Dd 1 77
1 357 (empty)

1417454799.709849 CivTIJd1ValLufedsqgk? 192.168.1.11 54342 199.96.57.7 443
tcp 551 5.439424 599 141 SF T] ShADadFf 8
1823 7 513 (empty)

1417454799.708920 CwaGS121UuyP3zeud3 192.168.1.11 54341 199.96.57.7 443
tcp 551 5.443843 599 141 SF T] ShADadFf 8
1823 7 513 (empty)

1417454799.7080780 CeXGmw49Am7mE fHgKL 192.168.1.11 54340 199.96.57.7 443
tcp 551 5.446864 599 141 SF T] ShADadFf 8

FIGURE 6-5 CONN.LOG

communication.19:26:20-19:50:38.log [Read-Only] (/nsm/bro/logs/2014-12-01) - gedit — +

File Edit View Search Tools Documents Help

L] IJOpen ~ Di'.'wave| §| w Undo = | Y OB/ | Q <

|=| communication.19:26:20-19:50:38.log = |

#separator \x@9
#set separator

#empty field (empty)

#unset field -

#path communication

#open 2014-12-81-19-26-20

#fields ts peer src_name
connected peer port level message
#types time string string string addr
0.080008 bro parent - -
from 208K to 1824K

0.000008 bro parent - -
pid is 26896, child pid is 26698
1417454780.111839 bro child -
0.0.0.0:47760 (clear)

1417454780.111839 bro child -
(clear)

1417454783.341049 bro child -

accepted clear connection

1417454783.342245 bro parent -
added peer

1417454783 .342245 bro parent -
peer connected

1417454783.342245 bro parent -

phase: version

port

connected peer desc

string
info

info

connected peer addr

string
raised pipe's socket buffer size

communication started, parent

info listening on

info listening on [::]:47768
info [#10000/127.0.0.1:59472]
info [#10000/127.0.0.1:59472]
info [#10000/127.0.0.1:59472]
info [#106000/127.0.0.1:59472]

FIGURE 6-6 COMMUNICATION.LOG

[68]

notice.19:45:21-19:50:38.log (/nsm/bro/logs/2014-12-01) - gedit -
File Edit View Search Tools Documents Help

£ i open v D;Save| | o Undo | Y OR | Q Q

|=| notice.19:45:21-19:50:38.log x |

#separator \xe9
#set separator ,

#empty field (empty)

#unset field -

#path notice

#open 2014-12-81-19-45-21

#fields ts uid id.orig h id.orig p id.resp h id.resp p fuid
file mime_type file desc proto note msg sub Src dst p n
peer “descr actions suppress for dropped remote location.country code

remote location.region remote location.city remote location.latitude

remote location.longitude

#types time string addr port addr port string string string enum enum
string string addr addr port count string set[enum] interval bool
string string string double double

1417455921.272559 - - -
Scan::Port_Scan 192.168.1.14 scanned at least 15 unlque ports of host 192.168.1.11 in em@s
local 192.168.1.14 192.168.1.11 - bro Motice::ACTION LOG
3600.000000 F - - - - -

#close 2014-12-81-19-50-38

FIGURE 6-7 NOTICE.LOG

weird.19:26:34-19:50:38.log [Read-Only] (/nsm/bro/logs/2014-12-01) - gedit -
File Edit View Search Tools Documents Help

£ i:_'Open ~ [O= Sa-;e| = | e~ Undo =~ | ¥ O ﬁ | Q Q

=/ weird.19:26:34-19:50:38.log |

1417455531.450072 CFVTFHPQyo18fM3ub 192.168.1.11 56127 94.31.29.192 80
above hole data without any acks - F bro

1417455598.0846253 C39WB53toBLAdhITY 192.168.1.11 58072 129.241.16.59 868
above_hole data without any acks - F bro

1417455685.0802113 CDjYUVB7UlngozKk 192.168.1.11 41591 78.42.23.121 80

window recision - F bro

1417455612.678090 CUFgVo2vnxkdzpBvN2 192.168.1.11 41595 70.42.23.121 80
window recision - F bro

1417455616.738420 CyiZH122iFbXhhNEH4 192.168.1.11 41602 70.42.23.121 80
window_recision - E bro

1417455616.878073 Cs3JYtuluSrg2Dtbk 192.168.1.11 41626 70.42.23.121 80
window recision - F bro

1417455617.242115 CMCMQrAvRiAl®IjEL 192.168.1.11 41617 70.42.23.121 80
window recision - F bro

1417455617 .394258 CelpYI2iqcGlONTbXT 192.168.1.11 41623 70.42.23.121 80
window recision - E bro

1417455720.719327 - - - - - dns unmatched msg -

F bro

1417455725.830221 CK30B11590TIHHGX5k 192.168.1.11 37472 192.150.187.43 443
above hole data without any acks - F bro

1417455726.410344 C8jTL91T4KIRsQbEV4 192.168.1.11 37471 192.150.187.43 443
above hole data without any acks - F bro

1417455915.641937
F bro
1417455984 . 145880

FIGURE 6-8 WEIRD.LOG

[69]

dns unmatched msg

dns_unmatched msg

6.4.1 Scan.bro

Scan.bro [63]:

@load base/frameworks/notice
@load base/frameworks/sumstats
@load base/utils/time
module Scan;
export {
redef enum Notice::Type += {
Address scans detect that a host appears to be scanning some
number of destinations on a single port. This notice is
generated when more than :bro:id: Scan::addr scan_ threshold’
unique hosts are seen over the previous
:bro:id: Scan::addr_scan interval' time range.
Address_ Scan,
:bro:id: Scan::port scan threshold’
unique ports on a single host over the previous
:bro:id: Scan::port scan interval' time range.
Port Scan,
}i
Failed connection attempts are tracked over this time interval for
the address scan detection. A higher interval will detect slower
scanners, but may also yield more false positives.
const addr_ scan interval = 5min é&redef;
Failed connection attempts are tracked over this time interval for
the port scan detection. A higher interval will detect slower
scanners, but may also yield more false positives.
const port scan interval = 5Smin é&redef;
The threshold of the unique number of hosts a scanning host has to
have failed connections with on a single port.
const addr scan threshold = 25.0 &redef;
The threshold of the number of unique ports a scanning host has to
have failed connections with on a single victim host.
const port scan threshold = 15.0 &redef;

global Scan::addr scan policy: hook (scanner: addr, victim:
scanned port: port);

global Scan::port scan policy: hook (scanner: addr, victim:
scanned port: port);

[70]

addr,

addr,

event bro init() é&priority=5
{

local rl: SumStats: :Reducer = [$stream="scan.addr.fail",
Sapply=set (SumStats::UNIQUE), Sunique max=double to count (addr scan threshold+2)];

SumStats: :create ([$name="addr-scan",
$epoch=addr scan interval,
Sreducers=set (rl),

Sthreshold val (key: SumStats: :Key, result:
SumStats::Result) =

{

return result["scan.addr.fail"]Sunique+0.0;

}y
#Sthreshold func=check addr scan threshold,

$threshold=addr scan_threshold,

$threshold crossed(key: SumStats: :Key, result:
SumStats::Result) =
{
local r = result["scan.addr.fail"];
local side = Site::is local addr(keyShost) ? "local"

"remote";
local dur = duration to mins secs(r$end-r$begin);

local message=fmt ("%s scanned at least %d unique hosts on
port %$s in %s", keyS$host, r$unique, key$str, dur);

NOTICE ([Snote=Address_Scan,
S$Ssrc=keyS$Shost,
$p=to_port (key$str),
$sub=side,
Smsg=message,

$identifier=cat (keyShost)]);

Note: port scans are tracked similar to: table[src ip, dst _ip] of
set (port);
local r2: SumStats: :Reducer = [$Sstream="scan.port.fail",

Sapply=set (SumStats::UNIQUE), Sunique max=double to count (port scan threshold+2)];
SumStats::create ([$name="port-scan",
$epoch=port scan_interval,
Sreducers=set (r2),

Sthreshold val (key: SumStats: :Key, result:
SumStats: :Result) =

[71]

{

return result["scan.port.fail"]$Sunique+0.0;

b
S$threshold=port scan_ threshold,

Sthreshold crossed(key: SumStats: :Key, result:

SumStats: :Result) =

{

local r = result["scan.port.fail"];

local side = Site::is local addr (keyShost) ? "local"
"remote";

local dur = duration to mins secs(r$end-r$begin);

local message = fmt("%s scanned at least %d unique ports
of host %s in %s", keyS$Shost, rSunique, keyS$str, dur);

NOTICE ([$note=Port Scan,
$src=keyS$Shost,
$dst=to_addr (keySstr),
$Ssub=side,
Smsg=message,

Sidentifier=cat (key$host)]);

function add sumstats(id: conn_id, reverse: bool)

{

local scanner = idSorig h;

local victim idSresp_h;

local scanned port = idSresp p;

if (reverse)
{
scanner = id$resp h;
victim = idSorig h;
scanned port = idSorig p;

}

if (hook Scan::addr scan policy(scanner, victim, scanned port))

SumStats::observe ("scan.addr.fail", [Shost=scanner,
$str=cat (scanned_port)], [$str=cat(victim)]);

if (hook Scan::port scan policy(scanner, victim, scanned port))

[72]

SumStats: :observe ("scan.port.fail",
[$str=cat (scanned port)]);

}

[Shost=scanner, $str=cat(victim)],

function is failed conn(c

connection): bool

{

Sr || ((hR || ShR) && (data not sent in any direction))
if |

(cSorig$state == TCP SYN SENT && cSresp$state
(((cSorigS$state

TCP RESET) ||
TCP_RESET && cSresp$state

(cSorig$state =

TCP_SYN ACK_ SENT)
in cShistory)

I
TCP_RESET && cSrespSstate ==

TCP_ESTABLISHED &&

"S"
) && /[Dd]/

'in c$history)

return T;

return F;

}

function is_ reverse failed conn(c: connection): bool
{
reverse scan i.e.

conn dest is the scanner

sR || ((Hr || sHr) && (data not sent in any direction))
if ((cSresp$state == TCP_SYN SENT && cSorig$state == TCP_RESET) ||
(((cSrespS$state ==

TCP_RESET && cSorig$state
(cSrespSstate =

TCP_SYN ACK SENT)
in cShistory)

TCP_RESET && cSorigSstate TCP_ESTABLISHED &&

"S"
) && /[Dd]/ !in c$history)

return T;

return F;

}
event connection attempt(c: connection)
{
local is_reverse scan = F;

if ("H" in c$history)
is_reverse scan = T;
add sumstats(c$id, is reverse scan);

}
event connection rejected(c: connection)
{
local is reverse scan = F;

if ("s" in cShistory)

[73]

is reverse scan = T;

add sumstats(c$id, is reverse scan);
}
event connection reset(c: connection)
{
if (is_failed conn(c))
add sumstats(c$id, F);
else if (is_reverse failed conn(c))
add sumstats(cs$id, T);
}
event connection pending(c: connection)
{
if (is failed conn(c))
add_sumstats (c$id, F);
else if (is_reverse failed conn(c))

add sumstats(cs$id, T);

6.5 Detect Syn Flood

Tests run on my local network.

:B# hping3 --flood -5 -p B0 192.16B.1.68
4PING 192.168.1.68 (eth@ 192.168.1.68): S set, 40 headers + 0 data bytes
Aping in flood mode, no replies will be shown
~C
--- 192.168.1.68 hping statistic ---
250386 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

FIGURE 6-9 SYN FLOOD

[74]

|=/ conn.19:05:27-19:05:50.log %
parator : D

(empty)

conn
: 2015-04-29-19-085-27

#fields ts uid id.orig_h id.orig p id.resp_h id.resp_p proto
service duration orig_bytes resp_bytes conn_state local _orig

missed bytes history orig pkts orig ip bytes resp pkts resp_ip bytes

time string addr port addr port enum string interval
string bool count string count count count count set[string]
1430323522.076068 Cx50Q9Jx0Jz8KAMTUL 192.168.1.76 2967 192.168.1.68
0.014410] 5} RSTO T : ShR e
=
322 .076385 CqFewR4BEEQtEkLloc 192.168.1.76 2.168.1.68
- 0.014108 8] 2] RSTO T : sh 2
(empty)
1430323522.076502 CTSByDINTt2VoFXEX1 192.168.
tep - 0.813994 2] 8 RSTO
1 44 (empty)
1430323522.076736 C7kTIc44nGMudkNCNT 192.168.
tcp = 8.813761 0 g RSTO
1 44 (empty)
1430323522.076854

CCX7B63TBkj2j0e345 192.168.1.76 2971 192.168.1.68 8e

FIGURE 6-10 CONN.LOG

[% reporter.19:05:50-19:05:50.log *
#separator \x89

5 C)
#empty field (empty)
#unset field -
#path reporter
#open 2015-04-29-19-05

#fields ts level ssage location
time enum string string
Reporter::INFO received termination signal (empty)
Reporter::INFO 171082 packets received on interface eth®, 353575 dropped

#close 2015-84-29-19-0

FIGURE 6-11 REPORTER.LOG

[75]

|=| weird.19:05:19-19:05:50.log *

#separator \x09
jset separator ,
:PmpTy_flPld (empty)
#unset field =

#path weird

topen 2015-04-29-19-65-19

#fields ts uid
notice peer
time string

143932351q 929918

bro

1430323520.405300

F bro

1430323527.966540

active connection_reuse

1430323527.966551

active connection reuse

1430323527 .966557

active connection_reuse

1430323527 .966658

active connection reuse

1430323527.966671

active connection_reuse

1430323527.966676

active connection reuse

id.orig_h

addr port

addr

CQ4usB36xPgas074r5
= E bro
CXmPNJ3v9noaWSdRT9

- F bro
CqZNv124BaXz6vyubl
= E bro
CUQFz7n@J5ZAnf7Xf
- F bro
CjGwMmluFtPMStibIi
= E bro
CTPZjMHxmQwCrdli s
bro

id.orig_p

port

.168.1.76

string

id.resp_h

string bool

id.resp _p

truncated IP -

string

unknown packet type

4270

4271

4272

4273

4274

192.168.1.68

192.168.1.68

192.168.

192.168.

192.168.

FIGURE 6-12 WEIRD.LOG

6.6 Detect UDP flood

Tests run on my local network.

hping3 --udp --flood -p 80 192.168.1.68
4PING 192.168.1.68 (eth® 192.168.1.68): udp mode set,
Aping in flood mode, no replies will be shown
~C
--- 192.168.1.68 hping statistic ---
305017 packets transmitted, 0 packets received,
round-trip min/avg/max = 0.0/0.0/0.0 ms

28 headers + 0 data bytes

100% packet loss

FIGURE 6-13 UDP FLOOD

[%Jrepurter.19:14:40-19:14:40.bg x

#separator \x89

#set separator
#empty field (empty)
#unset field -

#path reporter

#open
#fields ts level
#types time enum
1439324@8@ 716244
1430324080.716244

'\ x0a (empty)
#close

2015-84-29-19-14-40

message location
string string
Reporter: :INFO
Reporter:

2015-84-29-19-14-46

received termination signal
:INFO 387914 packets received on interface ethe,

FIGURE 6-14 REPORTER.LOG

[76]

(empty)

8 dropped

|=| weird.19:14:15-19:1

4:40.0og x

#separator \x09
#set separator
#empty field
#unset field
#path weird
= 2015-84-29
ui
notice pe
#types time st
1430324055.242178
bro
1430324057.001764
DNS truncated len
1430324057.001764
DNS_truncated len_
1430324060.528547
F bro
1430324060.954421
DNS_truncated len_
1430324060.954421
binpac exception:
1430324060.958416
DNS_truncated len
1430324060.978230

hinnar eyrentinn:

I

(empty)

-19-14-15
d id.orig_h
er

ring addr

id.orig_p id.resp_h

port

port

string

addr string

CLPITI12TZRvzypYPVS
1t _hdr len F
CvOCjud4pLKoRaBioed
1t_hdr_len F

192.168.
bro
192.
bro

1.68 80

168.1.68 80

CgGzln20vfpYNK3vrd
1t_hdr_len F bro
C7Ns911bwHTSszPYGVk 192
out of bound: DHCP Message:giaddr: :
CJZ83y2ja2tgouvrlc 192
1t hdr len F bro
CJciG24wkihZeq3dL7 192

nut nf hound: Svelnn Prinritw:1t-

192. 80

8o

80

.168.

1=

.68

FIGURE 6-15 WEIRD.LOG

|=| conn.14:12:41-14:13:03.log

truncated IP

unknown_

id.resp p

bool string

192.168.1.76

192.168.1.76

packet type

192.168.1.76

192.168.1.76
F bro
192.168.1.76

192.168.1.76
F hrn

#unset field

#path conn

#open 2015-85-17-14-12-41

#fields ts uid id.orig h id.orig p id
id.resp p proto service duration orig bytes
resp bytes conn_state local orig missed byt
orig pkts orig ip bytes resp pkts resp ip by
#types time string addr port addr port en
interval count count string bool count st
count count count set[string]

1431861151.839949 CAVMSk45zL6ZV9qHVE 192.168.1.
224.08.0.252 5355 udp dns B.899705 44
50 T 7] D 2 1008]]
1431861151.839900 CbFfMA30GERMYMu9yc
Te80::7126:ccld:95b3:4efc 51711 ff@2::1:3

dns ©.099732 44 B 58 F

2 148] B (empty)

1431861162.138255 CQs5tL2g1TwWpizmzg
Te8b::7126:ccld:95b3::4efc 66658 ffB2::1:3

dns B.100295 44 B 56 F

2 1408]] (empty)

14318R116R2 . 138478 CN4vRv3I?ahl CWEnLIT4 192 _1R8.1.

FIGURE 6-16 CONN.LOG

[77]

.resp_h
es history
tes
um string
ring count
70 53897
]
(empty)

in

58713

tunnel parents

6.7 Detect Brute Force ssh
Tests run on my local network.

|=|ssh.12_30_00-12_31 42.log x |

1434187805.597359
lizilure OUTBOUND
Ubuntu-2ubuntu2 -
14341878606.157551
failure OUTBOUND
Ubuntu-2ubuntu2 -
1434187806.233071
failure OUTBOUND
Ubuntu-2ubuntu2 -
1434187806.257459
failure OUTBOUND
Ubuntu-2ubuntu2 -
1434187806.221096
failure OUTBOUND
Ubuntu-2ubuntu2 -
1434187806.213159
failure OUTBOUND
Ubuntu-2ubuntu2 -
1434187806.305150
failure OUTBOUND
Ubuntu-2ubuntu2 -
1434187806.121505
failure OUTBOUND
Ubuntu-2ubuntu2 -
1434187806.137002

CxBeNrd4ukKZ9a5Sb1lK4

SSH-2.8-1ibssh-8.5.:

CkzeBQ30MeFJoeKus4

SSH-2.6-1ibssh-8.5.:

CdQupz4RWc2sJIroxAc

SSH-2.@-1ibssh-8.5.:

CMvtPg41EAKBB6WXWd

SSH-2.6-1ibssh-8.5.:

CNFEPC1L15t50LjEH1

SSH-2.6-1ibssh-8.5.:

CVexbZ3iClyovepokf

SSH-2.6-1ibssh-8.5.:

CBkoch2m4H31rYcyui

SSH-2.8-1ibssh-0.5.:

CWvgGV3shj4DORZIiTF
55H-2.8-1ibssh-8.5.:

CMSWEwW1yEDYERE ST L

192.168.0.14

33273

S5H-2.8-0pen55H 6.6.1pl

w
;8]

2.168.0.14

w
=

[1+]
P

2.168.0.14

(73]
=

[1+]
3%

2.168.0.14

w
=

2.168.8.14

uw
=

[1=]
[3%]

2.168.0.14

w
=

[1=]
o8]

2.168.0.14

%3]
=

[1=]
o8]

2.168.0.14

Y T B ¥ T R ¥ B R 7 B R 7, B ST R 7 B STUR I ¥, QS iyt
w [1+]
== %]

192.168.0.14

33276

-2.0-0penS5H _6.6.1pl

33279

-2.0-0pensSH 6.6.1pl

33280

-2.8-0pensSH 6.6.1pl

33278

-2.8-0penssH 6.6.1pl

33277

-2.8-0penssH 6.6.1pl

EEPLE]

-2.8-0penssH 6.6.1pl

33274

-2.8-0pen5SH_6.6.1pl

33275

192.168.8.11

22

FIGURE 6-17 SSH.LoOG

= | software.12_29_43-12 31 42.log x |

#separator \x09

#set separator ,
#empty field
#unset field -
#path software
#open

version.minor2

1434187783.781529
1 -

p
1434187783.781529
2 = =

#close

(empty)

2815-86-13-12-29-43
#fields ts host
version.
#types time addr

host p
minor3

192.168.0. 22
OpenSSH 6
192.168.¢

2015-86-13-12-31-42

software type
rsion.addl
port ; string

name version.major

unparsed_version
count

count
SSH: : SERVER

SSH: : CLIENT

count
DpenssH

libssh

FIGURE 6-18 SOFTWARE.LOG

[78]

version.minor

count
5]

¢}

known_services.12_29 43-12_31_42.log (7,8 GB Volume) - gedit
File Edit Wiew Search Tools Documents Help

known_services.12_29 _43-12_31_42.log =

#separator \x09
#set separator
#empty field (empty)

#unset field -
known serwvices

2015-86-13-12-29-43
host port_num
addr port enum
E 192.168.08.11
2015-86-13-12-31-42

port_proto service
set[string]

22 tcp

FIGURE 6-19 SERVICES.LOG

conn-summary.12_29 48-12 31 42.log (7,8 GB Volume) - gedit
File Edit View Search Tools Documents Help

onn-summary.12 29 48-12 31 42.log =

| Services

»>== Total === 2015-06-13-12-29-34 - 2015-06-13-12-31-36
- Connections 179.8 - Payload 338.9k -
| Sources | Destinations
Protocols | States |
22 52.8% | 192.168.0.14#1 52.0% | 192.168.98.11#2 52.0% | dns
SF 96.1% |
45.3% | 192.168.08.11#3 45.8% | 192.168.0.1#4 45.3% | ssh
50 2.8% |
1.1% | feB0::55e0:5699:9f9c:e375#5 1.1% | ff02::1:ffdb:9217#6
- 8.4% | 1 8.6% | RSTO 0.6% |
6771 B.6% | 192.168.0.15#7 0.6% | ffo2::c#8 0.6% |
| | OTH 0.6% |
19600 8.6% | 192.168.08.7#9 8.6% | 239.192.152.143#10 0.6% |
I I I
136 0.6% | | 192.168.0.255#11 0.6% |
I I I
| | 192.168.0.15#12 0.6% |

FIGURE 6-20 CONN-SUMMARY.LOG

[79]

0.6% |

6.7.1 brute-force.bro

brute-force.bro [63] :

@load base/protocols/ssh
@load base/frameworks/sumstats
@load base/frameworks/notice
@load base/frameworks/intel
module SSH;
export {
redef enum Notice::Type += {
Indicates that a host has been identified as crossing the
:bro:id: SSH::password guesses_limit® threshold with
failed logins.
Password Guessing,
Indicates that a host previously identified as a "password
guesser" has now had a successful login
attempt. This is not currently implemented.
Login By Password Guesser,
}i
redef enum Intel::Where += {
An indicator of the login for the intel framework.
SSH: :SUCCESSFUL LOGIN,
}i
The number of failed SSH connections before a host is designated as
guessing passwords.
const password guesses limit: double = 30 &redef;
The amount of time to remember presumed non-successful logins to
build a model of a password guesser.
const guessing timeout = 30 mins &redef;
This value can be used to exclude hosts or entire networks from being
tracked as potential "guessers". The index represents
client subnets and the yield value represents server subnets.
const ignore guessers: table[subnet] of subnet &redef;
}
event bro init()
{

local rl: SumStats: :Reducer = [$Sstream="ssh.login.failure",
Sapply=set (SumStats::SUM, SumStats::SAMPLE), Snum samples=5];

SumStats::create ([$name="detect-ssh-bruteforcing",

[80]

Sepoch=guessing timeout,
Sreducers=set (rl),

Sthreshold val (key: SumStats: :Key, result:
SumStats::Result) =

{

return result["ssh.login.failure"]$sum;

by

Sthreshold=password guesses limit,

Sthreshold crossed(key: SumStats: :Key, result:
SumStats::Result) =
{
local r = result["ssh.login.failure"];
local sub msg = fmt("Sampled servers: ");
local samples = rS$samples;
for (i in samples)
{
if (samples[i]?S$str)
sub msg = fmt("%s%s %s", sub msg, 1i==0 2

mren, ", samples[i]$str);
}
Generate the notice.
NOTICE ([$note=Password Guessing,

Smsg=fmt ("%$s appears to be guessing SSH passwords
(seen in %d connections).", keyS$host, r$num),

$sub=sub_msg,
Ssrc=keyS$host,

Sidentifier=cat (keyShost)]);

event ssh auth successful(c: connection, auth method none: bool)

{

local id = c$id;
Intel::seen([Shost=idS$orig h,

Sconn=c,

Swhere=SSH: : SUCCESSFUL_LOGIN]) ;

event ssh auth failed(c: connection)

{

[81]

local id = c$id;
Add data to the FAILED LOGIN metric unless this connection should
be ignored.
if (! (idSorig h in ignore guessers &&
id$resp h in ignore guessers[id$orig h]))

SumStats::observe ("ssh.login.failure", [Shost=id$orig h],
[$str=cat (id$resp h)]);

}

6.8 Bro vs Snort

Contrast of Snort and Bro is made on the basis of different parameters such as speed,
signatures, flexibility, interface and operating system ability [52].

a. Speed: Bro IDS has the advantage to run in high-speed networks. Bro is very effective and
able to collect data from Gbps networks. This makes it suitable for Bro to run prefect in high
speed networks without losing packets or slowing down the traffic.

b. Signatures: When it comes to the signatures used for detecting intrusions, the Bro
signatures are more refined than the signatures used in Snort.

c. Flexibility: Bro is a flexible intrusion detection system with the ability of being configured
and then clarified for its intended computer network. Bro comes with policy scripts which can
be used right out of the box and these will detect the most well-known attacks.

d. Interface: Snort has a graphical user platform which makes it more sophisticated. Bro’s lack
of a user interface (GUI) can also be regarded as a disadvantage since one should have
expertise of how a UNIX system function and be able to handle shell commands to
understand this system.

e. Operating System Compatibility: The Snort can run on all of today’s most well known
operating systems and is not confined to a fully establishments server hardware platform
whereas Bro is confined to UNIX like operating systems.

[82]

Chapter 7 Conclusion

Network intrusion models based on detection events are able to detect real-time threats. In
addition, network intrusion models show a possibility of threat prediction by analyzing
correlation of intrusion detection events.

The IDSs are gaining importance in the field of internet security. It is not a tool intended to
replace firewalls or anti-viruses, but a basic tool for network security.

We have seen many projects of IDSs, which deduct the relevance of this tool in the computer
field. Many users are covered within the development of IDSs from administrators, who
install IDSs to defend its small network, to companies, who buy powerful security tools.

Although an intrusion detection system is a good way to keep our network safe from attacks,
this option is not useful at all if we do not take into account other aspects much more basic
such as having appropriate passwords in our systems, correct firewall settings and a backup.

IDSs are not autonomous systems but they are alert tools that must be interpreted by security
expertise to get knowledge of who attacks and how the attacks are performed to apply
measures so that the system cannot be compromised again.

We should accept that intrusion detection systems are not suitable for all organizations. If an
organization cannot afford a specialist on attack responses, having an intrusion detection
system will not provide any additional security. For the rest of the organizations, the use of
IDSs should be stated in their security policy, completely coordinated with the other
resources.

We have noticed that the intrusion detection systems are not perfect yet, since new malicious
codes are constantly coming up just as holes in new software. Those can be exploited by the
hacker to bypass the security system. Two very important recommendations can be given to
avoid bad things: Developers of software must carefully follow the rules to create secure
programmes and the security system must be always updated to prevent the zero day attacks.

An optimal IDS deployment should have some operational procedure behind it to gather
additional information and optimize the process. Many customers think that a given security
product like an IDS will protect them from 100% of the attacks. In a practical world, there
are no absolutes, instead IDS can significantly reduce the risk from network attacks, but they
are not perfect.

7.1 Future Work

Regarding future enhancement and development of certain IDS aspects some suggestions
might concern automatic generation of the dependency for the system as well as metrics
development when it comes to measuring system security policies, in general creating
standards to assess the system resources in terms of security policies. Additionally a

[83]

mechanism for transferring the knowledge of one response engine to another, so that it is
shared across all hosts would be essential.

Another proposal could be the development of standards to measure the success of a selected
response on different environments. By this the comparison between results of response
selected between one environment and another could be achieved.

Future IDS will also have to address scalability and distributed data collection issues in order
to achieve the level of effectiveness that is required.

[84]

BIBLIOGRAPHY

[1]

(2]

3]

[4]

[5]

(6]

[7]

(8]

(9]

K. Scarfone, P. Mell, “Guide to Intrusion Detection and Prevention Systems (IDPS)”. Computer
Security Resource Center (National Institute of Standards and Technology). February 2007.

Robin Berthier, William H. Sanders, and Himanshu Khurana, Intrusion Detection for Advanced
Metering Infrastructures: Requirements and Architectural Directions,IEEE,2010

Irfan Gul, M. Hussain, Distributed Cloud Intrusion Detection Mode, International Journal of
Advanced Science and Technology Vol. 34,2011

Computer Economics, “2007 malware report: The economic impact of viruses, spyware,
adware, botnets, and other malicious code,” 2008.

http://en.wikipedia.org/wiki/Intrusion detection system.

Giovanni Vigna. Fredrik Valeur Richard A. Kemmerer, Designing and Implementing a Family of
Intrusion. Detection Systems, Reliable Software Group, ACM New York,2003

M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of the
USENIX LISA *99 Conference, November 1999.

C. Wang and J. C. Knight. Towards survivable intrusion detection. In Proceedings of the 3rd
Information Survivability Workshop (ISW-2000), Boston, USA, October 2000.

C.Zimmer,B.Bhat,F.Mueller, and S.Mohan, “Time-based intrusion detection in cyber-physical
systems,”’inProc.1sStACM/IEEEInt.Conf. CyberPhysicalSyst.,Stockholm,Sweden,2010,pp.109-
118.

[10] A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of dependability. Technical

Report NO1145, LAAS-CNRS, 2001.

[85]

http://en.wikipedia.org/wiki/Intrusion_detection_system
http://www.acm.org/publications

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Joseph S. Sherif, Tommy G. Dearmond, “Intrusion Detection: Systems and Models”, Eleventh
IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE) 2002.

I. Balepin, S. Maltsev, J. Rowe, and K. Levit. “Using specification-based intrusion detection for
automated response,” in the 6th International Symposium on Recent Advances in Intrusion
Detection (RAID) 2003.

Cisco, Annual Security Report, 2014.

NabilAliAlrajeh S.Khan and BilalShams, Intrusion Detection Systems in Wireless Sensor
Networks: A Review, Hindawi, 2013.

Ashara Banu Mohamed ,Norbik Bashah Idris,Bharanidharan Shanmugum, A Brief Introduction
to Intrusion Detection System, First International Conference, IRAM 2012, Kuala Lumpur,
Malaysia, November 28-30, 2012.

Barbara, Daniel, Couto, Julia, Jajodia, Sushil, Popyack, Leonard, and Wu, Ningning, "ADAM:
Detecting Intrusions by Data Mining," Proceedings of the IEEE Workshop on Information
Assurance and Security, West Point, NY, June 5-6, 2001.

Intrusion Detection Techniques for Mobile Wireless Networks, ACM WINET 2003.

McHugh, J., Christie, A. & Allen J. Defending yourself: the role of intrusion detection
systems.|IEEE Software, 2000.

Thamilarasu, G., Balasubramanian, A., Mishra, S. & Sridhar, R. A cross-layer based intrusion
detection approach for wireless ad hoc networks.IEEE International Conference on Mobile
Adhoc and Sensor Systems Conference, 2005.

Daniele Sgandurra, A Survey of Intrusion Detection Systems, Istituto di Informatica e
Telematica, CNR, Pisa, Italy,2009.

[86]

[21] Svetlana Radosavac, John S. Baras, Detection and Classification of Network Intrusions Using
Hidden Markov Models, 2003 Conference on Information Sciences and Systems, The Johns
Hopkins University, March 12-14, 2003

[22] Scarfone, Karen, Mell, Peter (February 2007). "Guide to Intrusion Detection and Prevention
Systems (IDPS)". Computer Security Resource Center (National Institute of Standards and
Technology) (800-94). Retrieved 1 January 2010.

[23] Silva, L. D. S., Santos, A. C., Mancilha, T. D., Silva, J. D., & Montes, A. Detecting attack
signatures in the real network traffic with ANNIDA. Expert Systems with Applications, 34(4),
2326-2333.2008.

[24] Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian Morariu, Aiko Pras and Burkhard
Stiller, An Overview of IP Flow-Based Intrusion Detection, IEEE COMMUNICATIONS
SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010.

[25] Karen A. Scarfone, M. Mell,Guide to Intrusion Detection and Prevention Systems
IDPSACM,2007.

[26] Snort (software) http://en.wikipedia.org/wiki/Snort_%28software%29.

[27] InfoWorld, The greatest open source software of all time,
2009.http://mwww.infoworld.com/d/open-source/greatest-open-source-software-all-
time776?source=fssr.

[28] Sectools.Org: 2006 Results http://sectools.org/tools2006.html.

[29] SecTools.Org: Top 125 Network Security Tools; http://sectools.org/tag/ids/.

[30] Suricata (software), http://en.wikipedia.org/wiki/Suricata_(software).

[87]

http://en.wikipedia.org/wiki/Snort_%28software%29
http://sectools.org/tools2006.html
http://sectools.org/tag/ids/
http://en.wikipedia.org/wiki/Suricata_(software)

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

The Bro Network Security Monitor, http://bro-ids.org/.

R. Graham, “FAQ: Network Intrusion Detection Systems”. March 21, 2000.

P.A. Porras, A. Valdes, Live traffic analysis of tcp/ip gateway, Proc. ISOC Symp. on Network
and Distributed System Z . Z Security NDSS’98 , San Diego, CA, March 1998 .

Hervé Debar, Marc Dacier, Andreas Wesp, Towards a taxonomy of intrusion-detection
systems,ACM,1999.

http://en.wikipedia.org/wiki/Intrusion_detection system,2015.

Ganesh Kumar Varadarajan, Web Application Attack Analysis Using Bro IDS, SANS,2012.

Shevali Agarwal, Anurag Punde , Shubhi Kesharwani, Proposed Algorithm for Network Traffic
Classification Based On DB Scan, IJESRT,2013.

Sandhya Peddabachigaria, Ajith Abrahamb, Crina Grosanc, Johnson Thomas, Modeling
intrusion detection system using hybrid intelligent systems, Elsevier,2005.

S. Chebrolu, A. Abraham, and J. P. Thomas. Feature deduction and ensemble design of intrusion
detection systems. Computers & Security, 24(4):295-307, 2005.

Hung-Jen Liao a, Chun-Hung Richard Lin a,n, Ying-Chih Lin a,b , Kuang-Yuan Tung a,
Intrusion detection system: A comprehensive review,Elsevier, 2013.

http://searchnetworking.techtarget.com/.

http://en.wikipedia.org/wiki/Port_mirroring.

[88]

http://bro-ids.org/
http://en.wikipedia.org/wiki/Intrusion_detection_system,2015
http://searchnetworking.techtarget.com/
http://en.wikipedia.org/wiki/Port_mirroring

[43] Diaz-Verdejo, J.E., Garcia-Teodoro, P., Mufioz, P., Macia-Fernandez, G., De Toro, F.: Una
aproximacion basada en Snort para el desarrollo e implantacion de IDS hibridos (A Snort-based
approach for the development and deployment of hybrid IDS). IEEE Latin America Transactions
5(6), 386-392 (2007).

[44] Hwang, K., Cai,M., Chen, Y., Qin, M.: Hybrid Intrusion Detection with Weighted Signature
Generation Over Anomalous Internet Episodes. IEEE Transactions on Dependable and Secure
Computing 4(1), 41-55 (2007).

[45] Wuu, L.C., Hung, C.H., Chen, S.F.: Building intrusion pattern miner for Snort network intrusion
detection system. Journal of Systems and Software 80(10), 1699-1715 (2007) 12.

[46] http://www.snort.com.

[47] Jay Beale, Snort 2.1 Intrusion Detection, Syngress, 2004.

[48] http://manual.snort.org/.

[49] http://en.wikipedia.org/wiki/UDP_flood_attack.

[50] http://suricata-ids.org/.

[51] https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricatayaml.

[52] Pritika Mehra, A brief study and comparison of Snort and Bro Open Source Network Intrusion
Detection Systems, International Journal of Advanced Research in Computer and
Communication Engineering \Vol. 1, Issue 6, August 2012.

[53] Paar Christof, Pelzl Jan, Understanding Cryptography: A Textbook for Students and
Practitioners,ISBN 3-642-04100-0, Bart (2010).

[89]

http://www.snort.com/
http://manual.snort.org/
http://en.wikipedia.org/wiki/UDP_flood_attack
http://suricata-ids.org/
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricatayaml

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

http://en.wikipedia.org/wiki/Brute-force_attack.

V. Jaiganesh , S. Mangayarkarasi , Dr. P. Sumathi, Intrusion Detection Systems: A Survey and
Analysis of Classification Technigues, International Journal of Advanced Research in Computer
and Communication Engineering \Vol. 2, Issue 4, April 2013.

Neeraj Kumar Naveen Chilamkurti, Collaborative trust aware intelligent intrusion detection in
VANETS, Elsevier, August, 2014.

Gisung Kima, Seungmin Leeb,Sehun Kima, A novel hybrid intrusion detection method
integrating anomaly detection with misuse detection, Elsevier 2014.

Tran Ngoc Thinh, Tran Trung Hieu, Van Quoc Dung, Kittitornkun, S, A FPGA-based deep
packet inspection engine for Network Intrusion Detection System,|IEEE,2014.

Junaid Arshad, Paul Townend, Jie Xu, Junaid Arshad, A Novel Intrusion Severity Analysis
Approach for Clouds, Elsevier,2013.

Zubair Md. Fadlullah, Hiroki Nishiyama, Nei Kato, and Mostafa M. Fouda, Intrusion Detection
System (IDS) for Combating Attacks Against Cognitive Radio Networks, IEEE Network
Magazine, vol. 27, no. 3, pp. 51-56, MayJune 2013.

Chun-Jen Chung, Pankaj Khatkar, Tianyi Xing, Jeongkeun Lee, Dijiang Huang , Network
Intrusion Detection and Countermeasure Selection in Virtual Network Systems, IEEE,2013.

http://www.aldeid.com/wiki/Suricata-vs-snort.

www.bro.org

http://www.webopedia.com/TERM/P/port_scanning.html

http://en.wikipedia.org/wiki/SYN_flood

[90]

http://en.wikipedia.org/
http://www.aldeid.com/wiki/Suricata-vs-snort

