

SEMANTIC DESCRIPTION OF SCENES IN VIRTUAL REALITY ENVIRONMENTS

by

KONTAKIS KONSTANTINOS

Bachelor Honours Degree in Applied Information Technology & Multimedia, Technological

Educational Institute of Crete, 2011

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF INFORMATICS ENGINEERING

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2015

Approved by:

Major Professor

Dr. Athanasios G. Malamos

Copyright © 2015

KONTAKIS KONSTANTINOS

All rights reserved. No part of this material may be reproduced, displayed, modified or

distributed without prior written permission from the author or author’s institute – except in the

cases of noncommercial research and nonprofit education which has to be accompanied by the

appropriate citation.

Abstract

Over the past few years, VR environments have been widely adopted in numerous

domains as the de facto artificial reality solution for the immersive experience of simulated

worlds. Moreover, their practicality was further enhanced with their integration in HTML5-

capable browsers via X3DOM framework, while the introduction of Semantic Web gave birth to

various technologies for their attribution with semantic metadata. However, all these additional

layers of information focused into the sufficient representation of geometric, textural, or

ontological concepts, dismissing an efficient spatial representation mechanism. This thesis aims

to provide such a mechanism with the proposal of a 3D R-tree data structure for the spatial

indexing of X3DOM scenes and the establishment of a computational model for the automated

implication of 3D content’s spatial relations. Finally, the indexed dataset can also be queried by a

set of spatial predicates, laying in this way the foundations for a spatial query language on the

Web based on X3D standard and X3DOM framework.

Keywords: R-tree, Semantic Web, Spatial Relations, Spatial Searching, X3D, X3DOM

iv

Table of Contents

Copyright © 2015 ... ii

Abstract .. iii

Table of Contents ... iv

List of Figures .. vi

List of Tables .. vii

Acknowledgements .. viii

Dedication .. ix

Preface... x

Chapter 1 - Introduction .. 1

Chapter 2 - Motivation .. 3

Chapter 3 - Related work .. 4

Semantic Web solutions .. 4

Leveraging MPEG-7 features ... 6

Designing semantically-rich VR environments .. 8

Dealing semantically with real-world problems ... 9

Contribution of semantics to spatial arrangement .. 10

Chapter 4 - Components ... 13

Extensible 3D (X3D) Graphics ... 13

X3DOM .. 16

JavaScript .. 18

Chapter 5 - Implementation .. 21

The R-tree spatial data structure ... 23

A brief state-of-art in R-trees .. 25

An R-tree for indexing X3DOM scenes ... 28

R-tree operations ... 31

Insertion .. 32

Splitting ... 34

Searching... 38

v

Point Query ... 39

Region Query .. 40

k-NN Query .. 41

A computational model for spatial relations ... 45

Topological relations .. 46

Directional relations .. 50

Semantic annotation of spatial relations ... 53

Chapter 6 - Experimental evaluation .. 56

R-tree taxonomy & stretch tests .. 56

Performing spatial queries .. 61

Implication of spatial relations ... 66

Chapter 7 - Conclusion ... 69

Chapter 8 - Future work .. 70

References ... 71

Appendix A - Glossary of Terms .. 77

vi

List of Figures

Figure 3-1 Annotating an X3D object using MPEG-7 Descriptors .. 7

Figure 3-2 Spatial relations disclosure in DEC-O framework .. 11

Figure 4-1 The tiered architecture of X3D profiles .. 14

Figure 4-2 The current state of X3DOM’s fallback model... 17

Figure 5-1 A simple k-d tree bisection ... 21

Figure 5-2 Octree subdiving a hypothetical cuboid search space ... 22

Figure 5-3 Comparison of R-tree variants overlap ratio ... 26

Figure 5-4 An indicative R-tree taxonomy ... 29

Figure 5-5 Each MBR is an AABB container .. 30

Figure 5-6 Splitting & Adjustment operations on tree structure... 37

Figure 5-7 The MBR face property .. 42

Figure 5-8 Semantic spatial properties of DEC-O .. 55

Figure 6-1 Various levels of an R-tree instance .. 57

Figure 6-2 Indexing a Shopping Mall for location identification purposes 61

Figure 6-3 Estimating location based on a chosen object ... 62

Figure 6-4 Execution steps for a region query .. 63

Figure 6-5 The result set of a region query ... 64

Figure 6-6 Searching for 2-NN candidates with BFS algorithm .. 65

Figure 6-7 Automatic implication of spatial relations between three objects 67

file:///D:/Thesis/SEMANTIC%20DESCRIPTION%20OF%20SCENES%20IN%20VIRTUAL%20REALITY%20ENVIRONMENTS.doc%23_Toc432809710
file:///D:/Thesis/SEMANTIC%20DESCRIPTION%20OF%20SCENES%20IN%20VIRTUAL%20REALITY%20ENVIRONMENTS.doc%23_Toc432809712

vii

List of Tables

Table 5-1 Traversing R-tree to find out the best leaf node for Insertion 33

Table 5-2 Inclusion condition in 3D space between point and rectangular parallelepiped 39

Table 5-3 Overlap condition in 3D space between two rectangular parallelepipeds 40

Table 5-4 k-NN BFS algorithm pseudocode .. 43

Table 5-5 DE-9IM topological relations ... 47

Table 5-6 Disjoint or Touch condition for rectangular parallelepipeds in 3D space 48

Table 5-7 Equal condition for rectangular parallelepipeds in 3D space 49

Table 5-8 Contains condition for rectangular parallelepipeds in 3D space 49

Table 5-9 Left & Right conditions for rectangular parallelepipeds in 3D space 51

Table 5-10 Above & Below conditions for rectangular parallelepipeds in 3D space 52

Table 5-11 Over condition for rectangular parallelepipeds in 3D space 52

Table 5-12 Front & Behind conditions for rectangular parallelepipeds in 3D space 52

Table 6-1 Time measurement pseudocode ... 58

Table 6-2 Time costs for each R-tree operation.. 59

viii

Acknowledgements

At this point, I would like to express my gratitude to Dr. Athanasios G. Malamos,

Associate Professor in the Informatics Engineering Dept. of Technological Educational Institute

of Crete and Head of Multimedia Content Laboratory, for providing me with the opportunity to

pursue this thesis under his valuable supervision. The accomplishment of this work wouldn’t be

possible without his helpful guidance and contribution. Special thanks also deserves to my close

friends and laboratory colleagues, who supported me all the way during this work, even in its

hardest of times.

ix

Dedication

I would like to dedicate this thesis to my parents for supporting and encouraging me all

these years, being the reason of what I have achieved and become today. Last but not least, to all

friends and colleagues who had to pursue a thesis in order to further enhance their research and

IT skills, like it happened to me.

x

Preface

Having worked in the area of semantics before, I have become quite familiar with the

current state of art in Semantic Web and virtual reality frameworks. The majority of these

implementations focused into the efficient semantic representation of specific aspects from

various domains. Amongst them, only a few immature works dealt with the 3D spatial

arrangement between the objects of virtual environments. Such a lack is not only thoroughly

elucidated in this thesis, but it is also resolved with the provision of a computational model for

the implication of spatial relationships in X3DOM framework.

1

Chapter 1 - Introduction

In our days, an immeasurable amount of visual information is enclosed in digital form,

which is mainly broadcasted through World Wide Web. This kind of information is usually

rendered with a virtual reality (VR) environment according to the underlying application's needs.

Typical domains of use for such applications range from complex simulations and video games,

to realistic representation scenes and interactive learning environments. However, one problem

that quickly arises is the quality of the conveyed information, since in the majority of the

situations it does not contain any semantic description. Moreover, the current 3D visualization

formats come across various problems as concerns this semantic annotation, since their main

purpose is the modeling of 3D content rather than the definition of a semantic description

scheme. A characteristic example regards the adequate annotation of the objects' geometry,

which however comes at the cost of the logical or functional semantics. In order not to suffer

such losses, the definition and integration of the semantic information had to be decided before

the implementation of the environment itself.

However, the authoring of such environments comes along with a set of restrictions in its

interoperability and extensibility, making its future modification difficult if not impossible at all.

This lies to the fact that each VR environment has particular requirements regarding its

functionality and performance. To fulfill these requirements in the best possible manner, a

variety of diverse data models and network protocols are utilized in each occasion. This

heterogeneity makes difficult to develop or adapt an existing software system based on each type

of environment, since such a thing would not only require the modification of the system's

interface, but also radical changes in its backend services.

Previous attempts to resolve the aforementioned issues have already been performed

using various technologies. In [1] the MPEG-7 standard has been deployed in order to enhance

the querying and navigation processes, while in [2] and [3] the standard itself was extended with

various descriptors, in order to efficiently annotate complex X3D scenes. On the other hand,

there were other approaches, which proposed platforms either for the efficient indexing and

retrieval of XML-based annotated 3D scenes [4], or for the annotation of 3D scene objects with

semantic descriptions closely related to their conceptual meaning and functionality [5]. The

2

majority of these research works explored successfully the semantic conceptualization of the 3D

objects in a virtual environment, along with their corresponding functions and relationships.

Moreover, they emphasized the main idea behind any semantic representation scheme, which is

none other than the efficient semantic annotation of a 3D scene with linguistic predicates.

However, all of them failed -or didn't intend- to deliver a spatial representation of the underlying

content. Thus, a standard generic tool has to be developed for the description of multimedia

content, capable of filtering a VR environment through specific criterions and attribute its

contained objects with the appropriate spatial semantics. This study encounters with the

challenge of describing a virtual environment and its 3D contents, through the indexing of the

latter in a tree data structure for the implication of their relative spatial relations and spatial

reasoning purposes. In the upcoming sections is thoroughly discussed the algorithmic approach

followed in this work, while experimental results from various developed use cases are explained

and evaluated in the last section of this thesis.

3

Chapter 2 - Motivation

Today, virtual reality is available to everyone thanks to the exponential advances in Web

and its support from various devices and platforms. Such factors broadened the scope of 3D

applications, making their publishing and sharing a practical requirement [6]. However, the latter

two requirements are difficult to be met, since all these numerous environments are thriving from

3D content that lacks of a high-level description layer. Moreover, each one of them has been

authored according to a specific 3D graphic format, which usually comes with an unfriendly

web-based interface. So, it is crucial more than ever, the enrichment of these environments with

semantic concepts relative to what kind of environment is being presented, what objects are

contained, their spatial placement compared to others, etc. The most of research works have

already provided a solid foundation for the semantic representation of geometric and textural

aspects of these environments, but there is a significant gap in the literature regarding a sufficient

spatial reasoning methodology between their 3D contents.

This thesis aims to deal with the above mentioned issues by providing a 3D R-tree data

structure –implemented with JavaScript language- for the spatial reasoning and semantic

representation of the objects contained into such environments. The spatially indexed VR

environments comply with the X3D standard [7], which is a widely used XML-based

presentation format for the creation and visualization of interactive 3D content. X3D alone is

powerful enough to describe the majority of virtual environments, but it does not specifically

define a way to semantically annotate or reuse the objects that compose such environments. Due

to this inability, it was deemed necessary the creation of a semantic concepts layer which was

able to extract spatial relations between numerous objects in a virtual environment. The spatial

reasoning process is coupled with X3DOM framework for presentation and ease-of-use

purposes. This spatially semantic description can find appliance to a wide range of domains

ranging from the creation of more realistic 3D scenarios, or the execution of advanced queries

with proximal and faster content searching. Lastly, the definition of such spatial relationships not

only provides complex and richer capabilities to the content providers, but also boosts the virtual

potentials of the end-users.

4

Chapter 3 - Related work

A lot of research has been conducted since the introduction of Semantic Web [8] about

the enhancement of the existing Web information in a machine-understandable way. The

majority of these works took advantage of various Semantic Web technologies, like RDF, OWL

and SPARQL to semantically describe and retrieve any kind of information. However, because

the use of such semantic languages is clearly based on the selection of specific domain concepts

and the correlation between these concepts and the underlying information, different routes of

defining and exploiting the wide range of semantic knowledge had to be found. Most of them

made use of the MPEG-7 standard thanks to its diverse content description and retrieval

capabilities, while considerably less resorted to extending a 3D presentation standard or

embedding metadata into the objects of the 3D world. Other approaches turned to more advanced

-but specific purpose- solutions, like the implementation of platforms for the efficient semantic

annotation of patrimony buildings and urban scenes, or the extraction of spatial semantics from

real-world scanned environments. The latest and most noteworthy studies in these areas are

described in the upcoming chapters, where each one has been classified by the underlying

standard being used for the semantic representation of virtual environments. Last but not least,

they not only record the current state of art among these technologies, but they also denote the

practicality of the implemented frameworks in various domains.

 Semantic Web solutions

In the most cases, VR environments are designed in such a way that favors the human

perception capabilities by laying emphasis on presentation and interaction features. However,

such technical approaches along with the diversity of data models which are traversed through

various network protocols, narrow down the usability of the underlying information from a

machine scope. Over the past decade various Semantic Web technologies emerged in order to

address this problem, with RDF (Resource Description Framework) proving to be the

cornerstone of Semantic Web, capable of applying an abstraction layer to the underlying

information. With the use of RDF terminology we are able not only to attribute semantic

information to 3D content, but also guarantee the utilization of such information in a machine-

5

readable way. The whole procedure is based on the efficient mapping of the information

contained into a VR environment, in the form of subject-predicate-object statements. These

statements known as RDF triples are capable of describing conceptual and abstract information

amongst the objects of this scene. Moreover, thanks to its high-level representation syntax and a

variety of serialization formats, RDF also proved quite efficient in the development of

application logic systems that deal with protocol messages, which were expressed as common

events in order to conceal unnecessary low-level complexity [9]. This work pointed out the

potential usability of separating the development of VR environments into high and low-level

phases that both make use of an ontology language. Such an approach was followed in [10],

where a DAML+OIL ontology -a language which was later replaced by OWL- was used as a

modeling tool to represent various concepts of a specific domain along with a finite set of

relationships between these concepts. This mapping of the domain knowledge to an ontology

terminology, led to an explicit distinction of the presented objects and an improved

comprehension of the properties that take place into a 3D scene from the scope of the end-user.

Ultimately, this high-level ontological representation where concepts and terminology have been

borrowed from a specific domain, gave birth to various semantically designed applications.

Sometimes, such applications made use of additional standards for the exploitation of the

underlying semantics. In [11], the X3D standard was used thanks to its presentation and

interaction features as the intermediate interface between the system and the user, while at the

same time, all the semantic information of this environment was subsumed in an MPEG-7 file

allowing its future utilization.

From the above research works, it is quite evident that regardless of the application’s

goals the semantic representation of a virtual environment is vividly based on an ontology, which

contains the very basics and most commonly used features that can be attributed in such

environments such as name, color, size, etc. [12] [13]. These features along with a predefined set

of conceptual relationships coming in the form of ontology properties, form a content-oriented

semantic model that is capable of sufficiently annotating objects, but unable to describe the VR

environments’ interactions, communications and behaviors. To resolve such issues, various

platforms have been implemented using a wide range of technologies, from hardware-based

approaches to the following MPEG-7 standard.

6

 Leveraging MPEG-7 features

The MPEG-7 standard has been widely accepted as the best multimedia description tool,

making it the perfect candidate to annotate audio, image and video elements. However, the first

versions of the standard lacked the ability to sufficiently annotate the elements of a 3D scene

from a pure semantic scope. In [14], the newly (at that time) presented MPEG-7 was chosen as

the appropriate language to semantically annotate X3D, VRML or SVG scenes. Their semantic

description was heavily based on the Semantic Entity, Semantic Attribute and Semantic Relation

tools provided by MPEG-7 standard, where they were used for the creation and storing of

metadata about the spatial relationships between the objects of the scene. Their implementation

also involved the translation of the generated MPEG-7 graphs into an interactive visual

application, as an alternative visualization solution to the textual nature of MPEG-7 which can

become quite difficult to comprehend in complex 2D/3D scenes. Besides that notable attempt,

throughout the last years various amendments have been added to the standard in order to

guarantee a semantic conceptualization.

A different indexing procedure of a VR environment using MPEG-7 was proposed in

[15], where MPEG-7 Descriptors and a Description Definition Language (DDL) were used.

Their work adopted the notion of segment for the hierarchical indexing and attribution of

semantic information. MPEG-7 MediaLocatorType was used to structurally localize 3D objects,

while RegionLocatorType introduced geometric localizations. The link between those two

Descriptors was made feasible through 3DSEAM (3D Semantics Annotation Model), a platform

which made use of various concepts to define real-world objects, semantic profiles, properties

and relations with the use of the before mentioned 3D region/object locators. However, the

proposed framework [16] [17] had to surpass a number of obstacles, such as the implementation

of an automatic localization and annotation system, and the definition of a query language

capable of applying semantic-based queries on the generated instances of this model.

After some years, motivated by the necessity of improving the annotation effectiveness of

3D models and embracing once more MPEG-7 Descriptors, [2] implemented an efficient and

complete description mechanism for the semantic annotation of X3D nodes. The proposed

annotation scheme dealt exclusively with X3D scenes and it was capable of describing not only

the geometrical and appearance characteristics of the 3D content, but also its animation and

interactivity features. The description mechanism was based on the addition of several

7

Descriptors, extending the original MPEG-7 Visual and Metadata Descriptors of the standard

and defining a new MPEG-7 Schema Definition for the validation of the description file. The

latter file was generated through the employment of an XSLT algorithm, capable of automatically

transforming any X3D object into its corresponding MPEG-7 description. Fig. 3-1 depicts a

simplified version of the algorithmic process that takes place for the annotation of an X3D table.

Figure 3-1 Annotating an X3D object using MPEG-7 Descriptors

At first, a Profile3D datatype is used to identify the X3D profile being used. Afterwards, the

scene is scanned for Transform nodes, where each one is represented by a ContentCollection

Descriptor. The latter ones retrieve all the information that can be found inside these nodes, like

geometric shape, color, material, etc. In the case that a Material node comes with a texture, its

path is recorded with the assistance of the MediaURI element. In addition to the displayed

example, plenty of other Descriptors and elements are provided to annotate complex scenes.

Moreover, the extended MPEG-7 framework was used in conjunction with other MPEG

standards (MPEG-21, MPEG-4) enhancing the indexing, retrieval and reusability capabilities of

an online advertising platform [3]. Finally, this research work still remains in continuous

progress aiming to annotate even more X3D nodes, such as Sound or AudioClip nodes.

8

 Designing semantically-rich VR environments

Besides the MPEG-7 area of solutions, there were also a few remarkable works with

mixed results on the direct manipulation of the 3D content found in a VR environment. One of

the first works in this area [18] proposed a new X3D profile dedicated to the description of

interaction techniques and the design issues met in such environments. The proposed profile

named InTml -which stands for Interaction Technique Markup Language- composed of various

components which guaranteed the co-existence of developer and designer roles under the same

application. However, the presented description language gave birth to serious defects, such as

underperformance during the scene’s navigation and the software's inability to detect non-pc

devices, affairs that come in conflict with the expeditious and interoperability traits established

from the X3D standard.

Staying in design territory but extending the applicability of semantics to various 3D

presentation formats, [19] implemented an annotation model for the enhancement of

communication and knowledge management between the developers and end-users. The

presented model was composed from three separate but interconnected components which were

respectively responsible for the presentation format of the annotation, the placement of the

annotation in VR environment, and the storing of additional data (i.e. metadata) about the

annotation. Such annotations were able to be placed directly in any object of the scene, but their

indexing procedure was based on an ontology unable to cover the domain knowledge

sufficiently, resulting to the continuously adjustment of the presented model each time a new

visual concept had to be added. Taking into account this deficiency and using a novel UML

modeling approach, MASCARET Framework [20] went one step further in the semantic

representation of 3D content by covering system-oriented semantics. Unlike the content-oriented

solutions provided by the Semantic Web stack of technologies, MASCARET focused into the

creation of intelligent semantically environments comprising not only the classical domain

knowledge, but also the available set of interactions along with the relative behavior of

participant entities. The framework developed a number of scenarios, which emphasized the

simulation of human activities and interaction tasks in a typical VR environment. The same

scenarios were later used for validation purposes, providing quite satisfactory results in the

proposed semantic modeling methodology.

9

 Dealing semantically with real-world problems

An alternative path to the above mentioned multimedia protocol-driven solutions lies to

the use of advanced AI techniques for the semantic representation of specific 3D content. The

semantic description and 3D representation of patrimony buildings [21] showed that it was

deemed necessary the met of two conditions, in order to mine all the necessary information

without losing any semantics inscribed on architectural shapes. The first condition relates to an

immature but realistic 3D representation of the patrimony building based on the existing

architectural patterns, while the second one concerns the deduction of the appropriate semantic

information stemming from this 3D model. The combination of these two conditions was able to

formalize the architectural knowledge within a finite number of architectural objects, where each

one was qualified by various domain concepts. In the end, these objects composed a VR

environment enriched with architectural semantic information, accessible via the GUI of a

utilitarian platform. After a few years and changing the domain of interest from heritage

buildings to urban scenes, it was presented a system [22] capable of adding semantics for the

efficient skyline and windows detection. Their purpose was to imitate the human brain

perspective capabilities, which lay into the fact that humans are able to immediately dissociate

similar or intersecting objects even when their point of view suffers from distortion or obstacles.

Their system was based on the combination of the FIT3D Matlab toolbox and a skyline detection

algorithm, producing satisfactory results after being tested on various 3D urban scenes. Even

though the derived semantics were quite limited compared to the human perception abilities, it

was proved a valuable start towards the distinction of intersecting objects in real-world

environments.

On the other hand, the rapid development of hardware over the last years led to more

advanced and interactive approaches as concerned the mining of semantic information from 3D

environments. In [23] was firstly presented the idea of a semantic net which contains and

implements general knowledge of indoor environments. However, even though that their

approach was able to represent the majority of indoor environments, they dealt with the 3D

scanned representations of real world environments. The initial feature extraction was done with

a 3D laser scanner using a combination of ICP algorithm and RANSAC approach -and then-

nodes of the semantic net represent the entities of these environment, which are accompanied

with relationships and constraints between them. Despite the fact that their semantic concepts

10

were well-defined and well-structured, this semantic interpretation was purely boosted through

the 3D analysis of the extracted features. Moreover, ICP implementations tend to find appliance

in shape registration problems [24], where the former is combined with various types of data

structures for the registration of nearest neighbor queries.

After almost a decade and following the same pattern, it was developed a system capable

of modeling real world indoor environments with the assistance of an RGBD camera [25]. At

first, it was taking place the segmentation and labeling of the captured images, which

differentiated the models that this indoor environment was composed of. Afterwards, a 3D shape

matching algorithm replaced each segmented region with the most identical 3D model found in a

database, ultimately leading to a 3D representation of the captured real world environment.

However, the recognition accuracy of the system was clearly depending on the quality of the

captured depth data, and the final reconstructed environment lacked of some significant semantic

features (such as the geometrical information of the objects).

 Contribution of semantics to spatial arrangement

As we can see, the majority of research works focused into the rendition of a VR

environment and its objects with semantic terminology, paying little attention to an efficient

space interpretation scheme. A recent work [26] in this area adopted various spatial relations in

order to qualitatively represent a 3D space. A spatial relation is any relation that specifies how an

object is located into the space in relation to another object according to a topological,

directional, or distance relation. A finite set of spatial relations drawn from these three types of

relations defined two distinct modes of semantic spatial knowledge:

 The topological spatial knowledge composed of on, in, at, near and surrounded spatial

relations

 The view-point dependent spatial knowledge composed of right, left, between, in front of,

behind, above and below spatial relations

The selection and demarcation of these spatial relations were based on the human

reasoning capabilities, aiming at a faster and more accurate settlement of reasoning procedures

(such as guiding a visual object search). However, some of the chosen topological relations come

in contrast to the space relation theory, which states that any topological relation should be

invariant to rotation, translation and scaling transformation [27]. Keeping in mind the latter one

11

and taking into consideration that not all types of semantic frameworks have to categorize their

corresponding spatial relations, DEC-O [28] [29], an ontological framework for interior

decoration applied a more generic spatial arrangement. In this work, the semantic spatial

knowledge of the implemented OWL-DL ontology was based on the definition of various object

properties reflecting a wide range of spatial relations, without being necessary their grouping to

one of the three most commonly used spatial relations types. A small subset of these spatial

relations is presented in the following Fig 3-2, where each one corresponds to a different OWL

object property of the instantiated interior room-space. The room-space is cooperating with

X3DOM framework to enhance the presentation and interactivity capabilities of the application,

while Apace Jena framework is used to traverse the underlying OWL ontology. In this example,

the end-user of the application has selected the desired X3D object, which in turn returns its

spatial relationships with the rest of the objects. Doing so, it was made feasible a fast and reliable

mapping of the location of objects that coexist in the 3D scene. However, this approach lacked

the ability to automatically attribute space annotations to the existing objects or to efficiently

represent the correlation of these objects compared to the 3D space itself. Its primary target was

the implementation of an ontological framework for the annotation of interior room-spaces,

rather than providing an automated spatial reasoning mechanism.

Figure 3-2 Spatial relations disclosure in DEC-O framework

12

Among others, this study takes into consideration the lack of the latter feature in DEC-O’s

annotation mechanism, implementing and providing an efficiently methodology for the

deduction of such spatial relationships, which is thoroughly described in the following chapters

of this thesis. Last but not least, the presented approach is not only independent of the underlying

platform being used, but it can be also easily integrated in various systems to enhance their

corresponding automated capabilities, like supplementing the spatial relations of DEC-O without

any input or further action from the end-user of the application.

13

Chapter 4 - Components

It is common knowledge that the VR representations of real world environments are far

more attractive and realistic than their corresponding 2D. This notion has been further

acknowledged over the last years through the elevation of various multimedia software products

and the increased rendering of 3D content, thanks to the graphics hardware acceleration. Today,

X3D standard provides advanced virtual and augmented reality capabilities that cover a wide

range of domains, leaving far behind other 3D visualization technologies. It has been publicly

acclaimed as the mainstream visualization format on the Web, while the last years its usability

was further boosted due to its adoption from the X3DOM framework. X3DOM makes possible

the publishing and manipulation of X3D scenes as DOM elements in any HTML5-capable

browser, turning X3D standard also into an interchange format for the declaration of 3D

interactive content on the same medium. The rendering process is supported by various back

ends, including WebGL, which is the latest tech trend for the plugin-less rendering of 3D content

assisted only by the graphics processing unit of the system. The smooth cooperation between

these standards and their interoperability amongst various operating systems and devices

(desktop computers, smartphones, etc.) are guaranteed through the usage of JavaScript as the

main programming language. Its platform independence, ease of use and scalability features do

not only meet the requirements set by this study, but they also enhance the implemented

algorithm’s future potentialities. A short introduction to the capabilities of the aforementioned

technologies is described in the following subchapters.

 Extensible 3D (X3D) Graphics

Today, X3D is the most widely used standard for the presentation of 3D content on the

web, defining a runtime environment and a delivery mechanism encoded usually in XML format

and represented as an n-ary tree. The architecture of the standard complies with various ISO

standards, providing three different encoding options, ensuring its applicability to a wide range

of areas and supporting every browser on the Web. One of the most remarkable characteristics of

its architecture lies to the existence of variform profiles, where each one defines explicit

functionalities for closely related target groups. This architectural layout enabled not only the

14

rapid expansion of X3D to mobile devices such as smartphones and tablets, but also gave the

opportunity to software developers to choose amongst a subset of the implemented

functionalities, absolving them from the necessity of conforming with the entire specification

sheet of the standard. The majority of these profiles [7] along with a brief description of their

functionality and possible areas of use are briefly described below, accompanied by an

illustration of the tiered architecture in Fig. 4-1:

 Core is the profile comprised of the absolutely minimum required components that compose

any X3D scene. However, because of its extremely minimal nature it is rarely met in

applications.

 Interchange is one of the most widely used profiles of the X3D standard. It supports a variety

of features -such as geometry, textures, lighting and animation- for the rendition of geometric

models, while at the same time its applicability is a trivial procedure since it does not define

any runtime rendering model.

 CAD Interchange contains the majority of Interchange

profile, plus a few additions targeting at the efficient

compilation and integration of CAD application’s data as

an interactive X3D application.

 Interactive is a slightly component-richer X3D profile

compared to the Interchange one, specializing at the

interaction of the end-user with the 3D environment via

the provision of advanced lighting, motion detection and

navigation nodes.

 MPEG4-Interactive combines the capabilities of Interactive profile with the standards set by

MPEG-4 for the efficient usage of X3D environments in broadcast and mobile applications.

 Immersive profile not only implements the same components as the Interactive profile, but

also offers several features, such as the audio support, weather effects nodes and script

functionality (X3D-EcmaScript). These features maximize the total immersion and

effectiveness of simulation and gaming applications, making this type of profile to

continuously gaining ground amongst the others.

 Full profile contains the entire set of components determined by the X3D specification. This

profile extends the Immersive profile with four different components, the Distributed

Figure 4-1 The tiered

architecture of X3D profiles

15

Interactive Simulation (DIS), Humanoid Animation (H-Anim), Non-Uniform Rational B-

spline Surfaces (NURBS) and GeoSpatial. These components find appliance to very specific

and complex domains, such as the synchronized 3D simulations, character animations,

medical implementations and GIS applications, respectively.

The latest stable release of the X3D standard is the version 3.3 enumerating 41

components that constitute the aforementioned profiles. Each component provides a set of nodes

with similar functionalities, designating an articulation of different levels based on the

characteristics of these nodes that range from the definition of geometric primitives and their

corresponding transformations, up to the settlement of alternate content and multi-level

representation. Thereby, plain applications are free to use a low-level profile without serious

trade-off on the performance of the underlying 3D content, while demanding applications can

chose according to their presentation and interaction needs, amongst the available high-level

profiles. On the other hand, regardless of the chosen profile, X3D offers a flexible mechanism

for the inclusion of additional data about the relative X3D scene. These data are enclosed in

metatags, which are in turn encapsulated into the unique head tag of the XML serialization. The

X3D specification provides a finite number of metatags that can sufficiently annotate any scene

with the most commonly used information, such as the name of the creator, date created, title of

the environment, license file, etc. Even when these tags are deemed inadequate, the standard

always allows to the user to define his own tags, guaranteeing in that way a decent metadata

description scheme of the X3D scene. However, its capabilities do not stop here since the

standard also defines SAI (Scene Access Interface), an abstract API responsible for the

cooperation of X3D with different technologies. SAI is a programming interface used for the

establishment of connection between the X3D language and an external programming language,

like Java or JavaScript. The utilization of such languages provides powerful interaction features

and improved behavior on the scene’s elements, while any communication that takes place is

achieved through the exchange of specific events among the participating languages.

All of the above point out the X3D standard's rich and polymorphic nature, making it the

ideal representation format for a wide range of domains from engineering and scientific to

architecture, multimedia and entertainment. Moreover, the X3D standard has already made great

strides compared to its predecessor VRML, being adopted by various XML-based languages

(HTML5, XHTM, SVG, etc.) and the last years strives to become the 3D standard for the World

16

Wide Web. However, its 3D scenes tend to provide sufficient information only on the geometric

features of its contents, since the standard itself does not provide any medium to incorporate any

semantic information. With the passage of time this inability became quite troublesome in the

majority of the X3D scenes, since not only primary goals of the standard (like the precise and

rich presentation) were left behind, but also the idea of a Semantic Web made inevitable the use

of such information. The attribution of semantics in X3D scenes enhances the overall

representation capabilities of the any application, provides advanced identification techniques

amongst its objects and guarantees its reuse in a more sophisticated way (fidelity applications

that need improved degree of accuracy and reduced search time).

 X3DOM

X3DOM is an HTML5/X3D integration model that makes feasible the publishing and

updating of declarative X3D content into any HTML DOM tree [30]. This model has been

implemented with an open-sourced architecture which is available to the public as a JavaScript

framework. The most distinctive feature of its architecture lies to the definition of a modular

backup approach for the rendering of the 3D content, which is ultimately supported by a variety

of back ends, like native, X3D plugin, WebGL and Flash. Amongst them, WebGL stands out

since it allows the rendering of interactive 3D content without the need of installing any plugin

for the majority of the latest desktop and mobile browsers. Moreover, its rendering capabilities

include physics and shading support, while the overall procedure is accelerated with the

Graphical Processing Unit. WebGL and the rest of back ends may vary in functionality and

performance terms, but each one of them is available during X3DOM’s runtime. By doing so, the

3D content being presented in the specific browser is the one that sets the necessary

requirements, which in turn lead to the selection of the appropriate backend for the rendering of

this content. On top of that, the subjected architecture is able to undergo the integration of

additional back ends, filling in possible needs that may arise in the near future. In the following

Fig. 4-2 is displayed this intermediate fallback model provided by X3DOM framework.

17

1

Figure 4-2 The current state of X3DOM’s fallback model

As concerns the 3D declarative content, X3D language was chosen as the appropriate

one, because it is a mature ISO standard coming with an XML encoding similar to that of

XHTML’s. Based on this feature, X3DOM defined an integration methodology for the

declaration of these X3D scenes in any XHTML document and a mechanism for the direct live

manipulation and updating of the underlying DOM tree. In other words, X3DOM serves as a gap

cover between the X3D language and the participating web specifications. However, in order to

sufficiently integrate an X3D scene in the DOM tree of a XHTML document, X3DOM had to

modify the Interchange profile of the X3D standard. The available nodes were increased by the

addition of various higher-profiled nodes, like the Inline, Switch and LOD nodes, while any

scripting capabilities are clearly left to the DOM/HTML side by eliminating the Script and the

declaration of prototyped node types. Although this profile fulfills the requirements met in a

wide range of applications, X3DOM provided the means for a richer and more realistic

1
 source: http://www.x3dom.org/wp-content/uploads/2009/10/x3dom-fallback-Release-1.2.png

http://www.x3dom.org/wp-content/uploads/2009/10/x3dom-fallback-Release-1.2.png

18

presentation with the introduction of the Texture and Mesh nodes. The first one makes use of

specific HTML tags (img, video and canvas) for the integration of their content into specific

X3D nodes, while the second one can take advantage of the latest shaders found today. Besides

these characteristics, software developers are free to use the native JavaScript methods or any

JavaScript library they may like for the addition, removal or update of the X3D nodes and their

relative properties. Even though that X3DOM supports all the methods defined in the HTML

DOM specification, there are a number of drawbacks concerning its integration model. Amongst

them, a minor drawback is the appliance of CSS language on the HTML canvas element alone,

since CSS modules are hardly usable in the elements of an X3D scene. On the other hand, a more

notable drawback resides in the utilization of the X3D format as its unique 3D presentation

format, bringing forth the need of converting every 3D content into this type of file format.

Finally, the most worth mentioning drawback lies to the lack of an efficient progressive

transmission mechanism [31], since the only one implemented is capable of receiving batches of

geometry data over multiple HTTP requests which can lead to network congestion and low

performance issues in case of immense 3D content.

Summarizing, X3DOM not only incorporates 3D content on the Web without the use of

plugins but this integration also takes advantage of existing Web standards instead of defining

new ones. Its innovation lies to the concatenation of the HTML5 and X3D standards through the

provision of a robust programming interface and a flexible fallback model. At the same time, its

versatile architecture allows not only the adoption of the X3D standard from the majority of

browsers, but also guarantees the integration of future amendments to this model. With features

like these, X3DOM is definitely one of a kind 3D visualization technology which can be applied

to a variety of areas desiring an open source plugin-less 3D content presentation solution.

 JavaScript

JavaScript is a structured object-oriented programming language that conforms to the

ECMAScript Language Specification, inheriting from it powerful scripting capabilities and

making JavaScript a constantly evolving ISO standard. The interpretation and execution of the

language scripts is done with the assistance of an independent JavaScript interpreter or engine,

which is usually contained into the relative web application, browser or plugin. The latest version

of the language (1.8.5) introduced new functions, a new object (Proxy), strict mode support and

19

it was aligned fully with the 5.1 edition of the before mentioned specification. This rapid and

widespread adoption of JavaScript forced it to extend the core objects and elements vocabulary

[32], in order to sufficiently provide support for client and server side scripting on the web:

 Client-side scripting provides advanced capabilities for the manipulation of web pages,

enabling in that way a dynamically changing content depending on a set of environment

variables, like the user's interactions, system conditions, etc. The authoring of client-side

JavaScript (CSJS) is assisted by the definition of additional objects and event handlers

compared to the core language specification. Typical examples are the Window object which

represents the browser's window and various mouse events that indicate special user actions

(i.e. MouseUp event indicates that a mouse button has been released). This type of scripting

occupies the largest portion of use and is usually met on browser implementations where the

asynchronous communication is a main asset.

 Server-side scripting involves operations that are performed by the server in order to lighten

the workload of client and/or shelter sensitive information. The employment of server-side

JavaScript (SSJS) is achieved through the extension of the core language with various

functions, classes and objects, like the write, Connection and database elements respectively.

One of the most commonly used scripts deals with the communication attainment of an

application with a database for storage and retrieval purposes, while more complex

implementations provide runtime environments for the development of games or

applications.

In addition to client and server side scripting, there are numerous implementations that

define their own JavaScript engines which play the role of an embedding scripting language or a

distinct application platform. Even though such implementations make use of an exclusive

object-oriented interface, their basic set of objects and elements is borrowed from the

JavaScript’s core. Typical applications of this kind are met into Adobe Systems products, where

in Adobe CS scripting is available with the use of JavaScript language and Adobe Flash works

with a dialect of ECMAScript as its main programming language, known as ActionScript.

However, the last years JavaScript surpassed the software barrier and geared with

microcontrollers, serving as an alternative solution to the reliable and power-efficient control of

hardware in embedded devices.

20

However, JavaScript’s nature comes with a number of serious security vulnerabilities that

have to be taken into account by any web application or browser that deals with the authoring

and execution of JavaScript code. Amongst them, the two most commonly used exploits are the

cross-site scripting which involves the injection of malicious script on end-user's system to steal

his personal data, and the cross-site request forgery, which corresponds to the execution of

unauthorized commands from a trusted web page or application. JavaScript addresses such

exposures incorporating a couple of security mechanisms, like the same-origin policy and virtual

sandbox environment. The first one prevents the execution of scripts that provide access to data

between pages that do not reside under the same protocol, port and host combination, while the

second one sets up a virtual environment for the execution of scripts having limited access to

hardware and network resources. Besides the security issues, there is also quite limited support

from the majority of the existing JavaScript engines as concerns their compliance with the latest

JavaScript version. This state of affairs compels programmers into taking special precautions

during the software development process, by testing and validating the underlying JavaScript

code on multiple environments (i.e. amongst the varied versions of browsers) through the

utilization of the relative script debugger.

Today, JavaScript is being used as a general purpose programming language to a variety

of domains, from web-based implementations and web browsers to electronic documents and

standalone applications. It is considered to be the scripting language of World Wide Web thanks

to its dynamic cross-platform capabilities, while at the same time, its unperceived presence in

almost every computer transfuses a lightweight and reliable character into the language itself.

21

Figure 5-1 A simple

k-d tree bisection

Chapter 5 - Implementation

In this chapter it will be thoroughly described the implementation process of each

individual part, which has been assigned a particular task for the semantic representation of VR

environments. Even though that the implementation approach followed is independent of the

underlying platform, any 3D scene that desires to be indexed must comply with the X3D

standard and X3DOM framework. In this way, a common frame of reference is used to not only

spatially query the indexed objects, but to also record any spatial relationships that take place

between these objects. These parts come with a set of key objectives that can be divided into the

implementation of a spatial indexing data structure and a sample OWL ontology for the

translation of these relationships into semantic concepts. At first takes place an introduction to

the most commonly used hierarchical representation types for the spatial annotation of a 3D

virtual environment, which are none other than the Spatial Partitioning and the Bounding

Volume Hierarchy.

A Spatial Partitioning data structure continuously sections a 3D space into distinct

regions which are used to convey one or more objects. The splitting direction and the number of

produced regions is depending on the segmentation methodology being used, while the recursive

subdivisions terminate when certain criteria are satisfied. Even though that both of these

conditions differ from one data structure to another, the generic pattern of the hierarchical

representation remains similar to either. Today, plenty of data structures are based on spatial

decomposition solutions, but k-d trees and Octrees are the two most widely known and used out

there:

 k-d tree is a widely used BST space partitioning algorithm capable

of bisecting a space into two separate parts, where each one contains

half of the dimensional points existing into the original space. The

search space is split along a specific axis each time and this

procedure keeps repeating until every leaf node of the tree contains

only one point of the primary space. The dimensional points can be

queried with the assistance of pre-order or level-order search

algorithms, while their query time is heavily depending on the distribution of the points in the

22

search space. In Fig. 5-1 to the right, it is displayed a 3D k-d tree which bisects an area of

four data points. At first, it takes place a split on axis X, creating in that way two distinct

areas with two data points each one. Afterwards, a second -and final- split along axis Y

creates four leaf nodes containing a single point each one.

 Octree is a tree data structure which consecutively partitions the search space into octants in

order to enhance common tree operations. Octrees make use of point or matrix region

techniques to subdivide the space and allocate the corresponding 3D points inside the octants.

Their ease of construction and update made them widely accepted in dynamic 3D space

problems like collision detection and range search problems. Some of the most advanced

octree implementations can be seen in 3D game industry, enhancing collision detection

accuracy between objects thanks to the multiple-boxes approach provided by this data

structure. However, octrees lack of an efficient mechanism for the manipulation of static

search spaces, while at the same time, they tend to subdivide the given space based on a

single point each time.

Figure 5-2 Octree subdiving a hypothetical cuboid search space

The above mentioned data structures primarily aim at the efficient clustering of 3D space,

leaving in second place a satisfactory indexing mechanism for virtual environment’s objects.

Despite the fact that this kind of clustering guarantees a sufficient query performance for static

datasets, interactive environments with deformable objects seriously suffer [33] from the lack of

such a mechanism. So, applications that wish to resolve these deficiencies make use of the

following hierarchical representation type instead.

A Bounding Volume Hierarchy, is a collection of nodes where each node is a data

structure composed of a bounding volume and a list of node pointers. Any leaf node of the tree

makes use of its bounding volume to enclose a different geometric object, while at the same

time, it points to its parent node and keeps track of the recorded object’s location (which is

23

usually stored in a database system). On the contrary, any internal node points to its parent node

and a set of children nodes, while its bounding volume perfectly envelops the total area occupied

by the bounding volumes of these children. This hierarchical clustering of volumes is carried on

until an orphaned node is reached, which indicates that it is the root of the tree structure and its

bounding volume has to enclose the entire set of geometric volumes under a recursively mode.

This kind of organization is usually met in physics and graphics domains, while the majority of

its implementations make use of axis-aligned bounding boxes (AABB) and spheres, or oriented

bounding boxes (OBB).

For the purposes of this work, an AABB tree data structure has been compounded to

efficiently annotate the spatial characteristics of a virtual environment’s objects. Its design was

entirely based on the R-tree spatial structure, which is a hybrid space partitioning solution that

borrows concepts from both of the afore-mentioned hierarchical representation types. The

implemented R-tree algorithm defines a fixed number of node entries and pointers, which are

used to subdivide the 3D space into hierarchically nested set of nodes. Each node is represented

by a bounding box crafted in such a way as to reduce its corresponding spatial redundancy. The

leaf nodes designate a cluster of objects, while internal nodes tend to cluster particular parts of

the search space. This hierarchical clustering of nodes aids to the efficient management of the

object-subdivided search space, since a few only simple mathematical calculations are enough to

decide for the usefulness of an entire cluster of 3D space.

 The R-tree spatial data structure

R-tree’s roots are found back in ‘70s due to their origination from the B-tree data

structure [34], where many concepts of the latter were left intact and adopted in the former. At

that time, many variants of B-trees were brought to life in order to sufficiently deal with the

increased need for storing in, or retrieving from RDBMS large datasets. However, this data

structure was unable to provide an efficient mechanism for the indexing of multidimensional

datasets. A few years later, a counterpart solution for two-dimensional applications was proposed

by Guttman in [35], a spatial index structure capable of indexing, removing and retrieving

thousands of spatial data. The relative algorithms for these operations partition each time a

specific only subset of the primary space, forming in that way many rectangular regions which

24

are ultimately represented as tree nodes. This data structure is characterized as R-tree due to the

definition of such regions of rectangles.

R-tree can be seen as a height balanced tree data structure that consists of a set of

connected but acyclic nodes. These nodes contain a predefined range of entries, which can be

either more nodes or indexed records. In the first occasion, these nodes are known as internal

nodes, while in the second one are known as leaf nodes. Based on this basic tree terminology,

any data structure that wishes to be considered as a valid R-tree implementation has to at least

comply with the following set of properties:

 M is the maximum number of entries that any node can contain

 m is the lowest number of entries that any node can contain

 Any node contains between m and M entries, unless it is R-tree’s root

 If the root node is an internal node, then it must points to at least two other nodes

 All leaves of the R-tree are piled all together at its lowest possible level

Each node of the tree is represented by a rectangular area, known as minimum bounding

rectangle or minimum bounding region (MBR). The dimensions of this area are depending on

two factors, the size and the placement of its entries in the search space. Node’s entries are

accessed one by one to retrieve their corresponding size, which is used to calculate the size of the

parent area by aggregating these individual sizes. At the same moment, entries’ coordinates are

also retrieved to record their lowest and highest values, which are in turn used to properly

collocate this area. Thereby, any node’s MBR totally encloses its children, while each child’s

MBR totally encloses node’s grandchildren. This nesting procedure keeps going on until a leaf

node is reached, where its children contain the actual spatial data and do not point to more nodes.

Such spatial data are consecutively indexed to the smallest sized leaf node and tend to represent

an explicit point or various geometric shapes. This organized structure is independent from the

distribution of the spatial data in the correlated application, even in the case of a sporadically

distributed dataset, where changing the maximum and lowest number of allowed entries can

reduce the size of MBRs and the overlaps between them. As an additional consequence of such

changes, the execution time of spatial queries can improve drastically, since their functionality is

closely related to the number of overlaps.

Most of the time, an R-algorithm will create many overlaps between the entries which

have been indexed during the Insertion and Splitting operations on the dataset. Such overlaps are

25

represented in a hierarchically structured tree, where the MBR of a child node is partially or

totally covered by the MBR of more than one parent. However, these duplicate entries are

eliminated by storing the child record to the least enlarged parent. In this way, not only the space

utilization remains in high levels -it has been estimated to be at least 50%- but the Insertion and

Splitting algorithms are also easier to authored and maintained. Moreover, R-tree's carefully

design and open architecture allows the acceleration of spatial queries by skipping nonessential

subtrees of the search space during the Searching operation. At the same time, they are capable

of improving queries accuracy by supporting several distance metrics according to the setup of

the tested application. So, the appropriate pathfinding algorithm for multi-angle indexed objects

is definitely the Euclidean distance, while the Manhattan distance would be preferred by

quadrangular records. Finally, even a Chebyshev distance metric could be implemented in order

to be applied on Moore neighboring datasets.

The advantages derived from such traits gave birth to numerous R-tree variants, where

each one comes with special characteristics in order to satisfy the requirements set in various

applications [36]. Even up to these days, R-tree implementations are being silently used in the

background of both theoretical and technical domains, as their main data structure for the

indexing of multi-dimensional datasets. In this work, a slightly modified version of the original

R-tree data structure has been developed to deal with the indexing of X3D objects through the

X3DOM framework and proceed to their spatial retrieval for future use.

 A brief state-of-art in R-trees

R-trees have evolved through the passage of time, bringing forth many variants of the

original proposal. All of them aimed to achieve optimality on various aspects of the data

structure, like lower insertion cost and better query performance, or guarantee its applicability on

specific areas of interest. A detailed report on the latest and most widely used R-tree variants is

described in [37], where it has been also defined a classification system that takes place

according to each variant’s implementation and scope. Following the heels of this fission, there

are variants that consist of slight modifications of the R-tree's construction methodology, hybrid

variants that take advantage of other index structures and partially apply them into R-tree, and

extended variants of R-trees which are used in specific domains by incorporating extra

information and richer features. In the upcoming paragraph, the most notable R-tree variant from

26

each category is shortly described, in order to highlight the supple structure of R-trees and their

usability in various areas.

The most widely known R-tree variant is none other than the R*-tree, which makes use of

advanced heuristic strategies for the insertion and splitting of spatial information [38]. Its novelty

lies to the minimization of area coverage and overlapping MBRs, composing in that way a more

rectangular R-tree structure. This is feasible thanks to its reinsertion algorithm, which first tries

to find out the fittest node to place a new entry, instead of immediately splitting a leaf node and

reassign its overflowing entries. Even in cases where a Splitting operation is deemed necessary,

R*-tree will perform this split with various topological variables, like the node's axis and

perimeter values. In Fig. 5-3 has been deployed an R-tree instance to index a large dataset of

differential points, which can be possibly spatially accessed for future use. In the image on the

left side is displayed the generated R-tree structure, which was relied on the Quadratic algorithm

[35] for the splitting of its nodes. Conversely, in the image on the right side is shown an R*-tree

structure which has been created with the assistance of a topological split algorithm. It can be

easily perceived that the overlapping MBRs in the second image are much less compared to the

first.

2

Figure 5-3 Comparison of R-tree variants overlap ratio

2
 source: https://upload.wikimedia.org/wikipedia/commons/0/0e/Zipcodes-Germany-GuttmanRTree.svg &

 https://upload.wikimedia.org/wikipedia/commons/c/c7/Zipcodes-Germany-RStarTree.svg

https://upload.wikimedia.org/wikipedia/commons/0/0e/Zipcodes-Germany-GuttmanRTree.svg
https://upload.wikimedia.org/wikipedia/commons/c/c7/Zipcodes-Germany-RStarTree.svg

27

The most obvious and valuable aftereffect of the aforementioned optimizations lies to the

improvement of the query performance, despite the fact that its final structure resembles a typical

height-balanced R-tree. However, all these techniques not only increase the insertion complexity,

but they also introduce a negative impact on the total complexity and maintenance of the

underlying algorithms. Because of these traits, it must be carefully investigated the possibility of

adopting (or developing) a lighter R-tree variant, for applications that do not have to make use of

such special characteristics.

Regarding hybrid variants, R k-d tree [39] is particularly interesting since it applies

methodologies that take into account both the spatial data and the space partitioning. At first, the

search space is partitioned using a slightly modified k-d tree algorithm capable of supporting

overlaps between distinct partitions. Every time an intersecting partition is detected, a finite set

of bounding rectangles is utilized to represent any overlaps. In this way, the initial BST structure

is further enhanced with R-tree's insertion and deletion techniques, acting as a middle ground for

a wide range of applications. On the other hand, DR-tree [40] is an extension to the modal R-tree

algorithm, which comes with the particularity of storing application specific information to

hasten queries performance. Such information is attributed with one of the four cardinal

directions, which ultimately form additional entries to each internal node of the tree. The regions

represented by these child nodes are used during k-NN distance calculations in order to eschew

needless computational burden. The only drawback of this approach lies to the low space

utilization, which results from the addition of these four cardinal pointing nodes.

Taken into consideration the research outcomes of the above mentioned variants, the R-

tree which has been implemented for the purposes of this work comes with a special set of

features. The Splitting operation is based on the Quadratic algorithm, which remains a fast and

reliable solution to cope with the needs of VR environments on the Web. Even though that R*-

tree has very attractive properties, it would be an overkill to set up and run it under these

circumstances. Moreover, it was not deemed necessary to massively change the data structure

presented in the original version of R-tree. Only slight modifications to support X3D content and

to secure cooperation with X3DOM framework were carried out. Lastly, a number of spatial

properties has been authored to enable an efficient semantic representation of the search space,

which has been integrated in such a way that any node and its entries are attributed with these

semantic concepts.

28

 An R-tree for indexing X3DOM scenes

The original R-tree data structure and the majority of its variants were developed to deal

with various 2D applications of specific domains. In the following subchapters however, it will

be presented a novel R-tree structure which has been designed to efficiently index 3D virtual

environments. The indexed records of these environments can be spatially queried at a later time,

while the entire procedure is independent of the environment’s origination domain. The only

constraint that is imposed on the inputted dataset, lies to the inability of the underlying

algorithms to quickly output moving objects, when the latter ones exceed a few hundreds.

The generic data layout of the implemented R-tree is based on the same key features that

comprise any R-tree variant. Such features include the set of properties which was reported in the

earlier subchapter “The R-tree spatial data structure” and a hierarchically organized structure of

logn height. This structure dissociates the usage of its entries depending on which type of node

they are located. So, the entries of a leaf node are represented by an array of spatial objects,

where each one is attributed with an id value and a bounding container for the stigmatization of

its boundaries into the 3D space. These id values point to the actual X3D objects of a virtual

environment, which have been chosen beforehand by the user as the desired dataset to be

spatially indexed and processed. Even though that the user is free to define its own identification

mechanism according to application’s needs, a couple of fast and reliable approaches are already

provided during the Insertion operation. The first one affiliates each inputted object with its

corresponding DEF value -a uniquely referencable attribute used by the X3D standard- while the

second one employs the order of insertion, which is used to ascribe the current increment value

to the inputted object. On the contrary, the entries of an internal node are represented by an array

of other nodes, where each one is attributed with an identifier pointing to a rectangular

parallelepiped and a bounding container which encloses this node’s children. These identifiers

are automatically produced during the construction of the R-tree with the assistance of a counter.

The counter starts from R1 which points to the rectangular area representing the root node and its

value is increased each time a new node is created. This numbering methodology is quite useful

for presentation and debugging purposes, since it monitors and reveals the subjacent updates that

take place after the execution of any operation on an R-tree instance. In the following Fig 5-4 is

depicted a simple X3DOM scene composed of five unrelated objects. These objects are

afterwards indexed to an R-tree instance, creating the set of MBRs which is displayed in the

29

image underneath. The black-colored MBR denotes the root node of the R-tree, while the red-

colored ones denote internal nodes of the data structure. On the other hand, a green-colored

MBR denotes a leaf node which points to an indexed object. In the same figure is also presented

the R-tree’s taxonomy, which contains various information about its underlying data. The most

important of them are the registration of each MBR’s coordinates into the 3D space and the

attribution of singular identifiers to each node and spatial object of the tree structure.

Figure 5-4 An indicative R-tree taxonomy

30

Leaving aside the identification variable, both types of nodes abide by the predefined

range of minimum and maximum entries, denoted by the variables m and M, respectively.

Another common point of reference between internal and leaf nodes lies to the projection of their

location into the 3D space adopting a specific bounding container. The majority of R-tree

variants make use of bounding boxes or bounding spheres [41] thanks to their simple and

lightweight arithmetic computations compared to other bounding containers, like the bounding

diamond, octagon and convex hull. Despite the fact that these containers can be also applied to

any X3D shape, they are shipped with increased algorithmic complexity and gravely higher cost

of computation power for web-based applications. Moreover, X3DOM’s runtime environment

comes with a concise API capable of inferring the raw coordinates of diaphanous bounding

boxes, where the latter ones have been strictly implemented according to the X3D specification.

The specification sheet states that all these boxes are oriented in the same direction with the axis,

making inequality comparisons between these precomputed coordinates an easier procedure,

compared to OBBs or the rest of bounding containers. Fig. 5-5 demonstrates the use of such

bounding boxes for various geometric shapes in a 3D virtual environment, emphasizing at the

unchanged orientation of the displayed MBRs, regardless of their relative enclosed object’s plane

angle. This figure is also accompanied by a schematic representation of the right-handed

Cartesian coordinate system used by X3D standard, where +X points to the right, +Y points

straight up and +Z towards the viewer.

Figure 5-5 Each MBR is an AABB container

31

The reasons described in the previous paragraph are more than enough to choose

bounding boxes as the appropriate medium for indexing external information. However, the

implemented R-tree takes advantage of bounding boxes not only for its structural purposes, but

to also perform spatial queries on a given instance. The Searching operation –which is described

in a later subchapter- provides three types of queries that involve space availability checking on a

generated R-tree data structure. Intersection and overlap conditions constitute typical use cases

of such tests and they are used to ascertain the sole existence of a bounding box in a finite search

space. The only parameter that has to be checked is the integrity of its boundaries, where a non-

trespassed perimeter validates successfully these two conditions. In this way, computationally

heavy collision tests between the geometric figurines of X3D objects are avoided and they are

instead reduced to simple inequalities relations between their corresponding MBRs (otherwise

the number of possible collisions is factorial to the number of these X3D objects).

Summarizing, an R-tree data structure has been implemented for the efficient spatial

indexing of 3D virtual environments. These environments have been fully integrated into the

content of any modern Web browser thanks to X3DOM framework, which in this work is

employed for information retrieval and presentation purposes. Any object of the 3D space that

can be indexed is represented by one of the geometric shapes that are defined by the X3D

standard, the 3D visualization technology used by X3DOM. The selected X3D objects’

boundaries are approximated by a rectangular parallelepiped area which totally encloses this

object. The indexing of objects takes place in the leaf nodes of R-tree, while internal nodes tend

to reference their underlying set of nodes. After the insertion of the desired objects is finished,

the compiled R-tree instance can be spatially queried and translate the result set to the

appropriate X3D identifiers. In the following subchapters is extensively described the

functionality of each operation used by the implemented R-tree data structure.

 R-tree operations

The original R-tree data structure demonstrated satisfactory indexing and retrieval

capabilities thanks to the utilization of a spatially modulated operation kit. That kit was

composed of a set of cornerstone operations -like the Insertion, Deletion, Update, Splitting, and

Searching- which were backed by more procedural routines. The usefulness of each operation

was weighted according to the purposes of this study, in order to eliminate those routines that

32

could possibly be of no match for the tested 3D content. The Insertion and Splitting operations

are inextricably linked to each other and their functionality is a must for any R-tree

implementation. At first, it takes place the Insertion of the appropriate X3D objects, which have

been chosen beforehand according to application’s needs. Such objects are always indexed under

a single leaf node, favoring the one which has to conduct the least enlargement of its area. In

case this node has run out of records, then the Splitting operation is commenced to create the

necessary space in this leaf and propagate the required changes upward. In this way, the primary

space is constantly partitioned in several MBRs after an Insertion or Splitting algorithm fulfills

its tasks, improving the space utilization factor and the execution time of spatial queries. On the

other hand, a Deletion operation along with its Update routine were not deemed necessary to be

implemented, since this work exclusively deals with virtual environments that contain static 3D

content. Even though that the dynamic insertion of objects may violate the height-balanced leaf

nodes, the underlying Splitting algorithm makes use of heuristic techniques to not only reduce

the overlapping MBRs and their corresponding size, but to also provide a self-balancing feature

to R-tree structure.

All of the above mentioned operations have as ultimate objective the spatial retrieval of

the indexed objects at a later time. These objects’ retrieval is accomplished with the help of the

Searching operation. The implemented R-tree structure supports three of the most commonly

used queries on spatial datasets, which are none others than the Point, Region and k-NN queries.

Each one of them comes with a carefully designed algorithm for the swift deduction of accurate

results under various scenarios, e.g. a location-based search. Such a scenario could involve a

search on a finite collection of X3D objects, which have been attributed with a unique identifier

and are spatially represented by an MBR and a set of Cartesian coordinates. The interrelated

processes of this area and the rest of the algorithmic procedures have been classified in the

following three subchapters, where each one describes in detail a major operation of the

implemented R-tree data structure.

 Insertion

Insertion can be defined as the operation of indexing a new entry to the appropriate leaf

node of an R-tree instance. Such entries represent the objects that can be found in a virtual

environment and they have marked for spatial registration. Each time that an entry insertion is

requested, the corresponding algorithm has to traverse the tree in a recursively manner starting

33

from the root node. At this point, a well-founded and agile tree traversal methodology had to be

implemented. However, even though that there is a variety of tree traversal options, R-tree can

work flawlessly with only a few of them. So, an in-order traversal is rendered useless in front of

an R-tree instance, since the data structure of the latter is not necessarily a binary tree. On the

other hand, a level-order traversal would definitely spend much time on visiting inappropriate

nodes, despite the fact that it could be applied to an R-tree structure. Such potentially

inefficiencies led to the authoring of a pre-order algorithm, which makes it the perfect candidate

for traversing any R-tree during an Insertion operation.

N = R-tree root;

E; //Entry to be inserted in a given R-tree instance

WHILE (N != typeof LeafNode) {

 FOR (each Node child of N) {

 xMBR = MAX(N.xMax, E.xMax) - MIN(N.xMin, E.xMin); //Axis X boundary

yMBR = MAX(N.yMax, E.yMax) - MIN(N.yMin, E.yMin); //Axis Y boundary

zMBR = MAX(N.zMax, E.zMax) - MIN(N.zMin, E.zMin); //Axis Z boundary

newMBRArea = (xMBR * zMBR) * 2 +

 (yMBR * zMBR) * 2 +

 (xMBR * yMBR) * 2;

enlargedArea = newMBRArea - originalMBRArea;

 }

 N = leastEnlargedAreaNode; //Follow least enlarged Node to next level

}

Table 5-1 Traversing R-tree to find out the best leaf node for Insertion

The implemented pre-order traversal starts from the 1
st
 level of the R-tree, which is none

other than its root. If the root node is also a leaf node, then the entry is assigned to it and the

Insertion operation is terminated. At this point, the insertion of an entry may violate the

maximum number of allowed entries for the selected node, a property defined by the variable M

and attributed to the R-tree structure during its design stage. If such a thing happens, then a

Splitting operation is initiating for that particular node, an operation described in the upcoming

subchapter. However, in contrast to this extreme scenario, the root node can alternatively contain

a finite number of internal nodes which can be seen as subtrees. These subtrees are checked one

by one in order to find out which one needs the least area enlargement to include the new entry.

34

The most optimal subtree amongst them is returned and the same algorithmic process is

addressed to its internal nodes. This operation is iteratively repeated for each R-tree level,

returning each time a single internal node pointing to a new subtree. The overall procedure

finishes when the best matching leaf node is reached and the relative entry is indexed into it.

Afterwards, this newly enlarged area has to be propagated till the root, updating the MBRs of all

ancestor nodes one by one. This propagation of changes starts from the leaf node and terminates

to the root, following the entire subtree in an opposite route to reform the space utilization and to

ensure the integrity of the generated R-tree instance.

In this study, the Insertion algorithm was executed numerous times for various use cases,

bringing forward a special feature of the implemented R-tree structure. These tests revealed that

the space utilization which is clearly depending on the nodes’ MBRs, it is also directly related to

the order in which entries are indexed to an R-tree instance. However, García et al in [42] proved

that there was no trade-off between the chosen node to insert an entry and the performance of the

R-tree. For that reason, they focused into developing an incremental refinement strategy to

accelerate the Splitting operation, leaving aside the Insertion algorithm's functionality. On the

other hand, a different approach was followed in [43], where insertion and splitting algorithms

had both to be re-authored and optimized for the efficient management of 3D virtual geographic

environments. In the following subchapter is thoroughly described the important role that such

splitting algorithms play in order to maintain the balance of R-tree instances.

 Splitting

The Splitting operation can be definitely designated as the most important component

found in any R-tree data structure. All splits that take place on an R-tree instance occur when a

node is about to overflow, after reaching its maximum number of allowed entries. At first, this

special occasion results from the necessity of inserting a new entry to an already full leaf node.

Since this specific leaf node has been selected from the Insertion algorithm as the best fitting

node, there is no other option than partitioning it into two distinct nodes. In this way, not only the

requested space is successfully created, but the primary node's MBR has been also demarcated

and must be recalculated for the new leaf nodes. So, the already existing entries and the new one

are distributed amongst these two nodes according to strict splitting policies. Such policies take

into account a set of parameters and try to minimize the area coverage and the overlapping

MBRs. The first one guarantees that the time complexity for the construction of the tree is kept

35

steadily at low levels, while the second one reduces as much as possible the number of visited

nodes during the execution of queries. In short time after the introduction of R-trees, a couple of

remarkable strategies [44] [45] were proposed to improve these two contradicting policies.

However, there were applications where the algorithms beneath these strategies performed bad

splits between nodes, resulting in turn to higher area coverage and slower query response. This

thing demonstrated that a multitudinously parameterized splitting algorithm is not the only

criterion which has to be taken into consideration, in order to wield the best possible space

utilization and query performance. Instead, external factors like the domain which is going to be

spatially indexed and the dataset's size are also deemed crucial to be known beforehand for the

selection of the appropriate splitting strategy.

In this work, the underlying framework and its provided functionalities remain the same,

despite the fact that the domain may vary according to the user's desires. Moreover, since this

study is focused into the spatial annotation of VR environments on the Web, the dataset size will

rarely exceed a few hundred when the latest splitting strategies target on tens of thousands of

samples. So, the implemented splitting algorithm is based on Quadratic methodology, one of the

three foremost and most frequently used splitting strategies proposed by Guttman back in 1984.

As its name suggests, it takes quadratic time to split and readjust the tree after a split operation,

guarantying satisfactory bipartition utilization and query performance. Each time a split at a leaf

node is performed, Quadratic algorithm picks over the most wasteful pair of entries from this

node in terms of area coverage. The first entry of that pair is inputted as the primary entry in the

split node, while the second paired-entry is inputted in the newly created node. Afterwards, all

remaining entries are checked one by one against the area covered from these two nodes. This

involves the addition of the entry's and node's MBRs for the calculation of the area enlargement,

denoted in the algorithm by a special preference value. This value is used to determine the least

expanded node, which is the one who absorbs the inquired entry and updates its primary MBR

dimensions. At this point, it was deemed necessary to define a set of alternative solutions in

order to successfully cover the range of diverse paths that arise from the comparison

computations made upon the nodes' MBRs:

 A non-expanded node points out that the entry totally falls into the MBR boundaries of the

node, which in turn implies that entry's MBR is smaller than or equal to node's MBR.

36

 In case both nodes have been evenly expanded, then it is chosen the node with the smaller

area coverage amongst them.

 In case both nodes have been evenly expanded and their area coverage has the same size,

then it is chosen the node with the fewer entries.

 In case both nodes have been evenly expanded, and their area coverage and number of entries

is the same, then the entry is randomly assigned to any node.

 Finally, if the minimum filled requirement is successfully satisfied for a node, then the

remaining entries are led to the other node.

Of all these cases, only the last one can cause unreliable distribution of entries, leading to

redundant increment of the search space, since such entries are inputted into a single node

without any geometry checks. However, if a node reaches the maximum number of possible

entries indicated by the equation M-m+1, there is no other option left for this greedy splitting

strategy. The same tactic is repeated recursively from the leaf node to the root of the tree,

following in that way the entire subtree which was chosen in the previous stage of the R-tree

algorithm. This process is necessary in order to update the MBR dimensions of the parent node

and check for available space in case both nodes are full. The overall procedure is known as

Adjustment and preserves the integrity of any R-tree data structure after the completion of a split

operation. This is rendered feasible by verifying that each R-tree property is successfully fulfilled

at any given instance of its structure. In Fig. 5-6 below is displayed the bipartition criterion that

takes place during a split operation, along with the appliance of an auto-balance trait used on

every R-tree’s leaf node. Both of these operations are concealed to the user and they are silently

running into the background of the relative application. The next paragraph describes in detail

the use case being deployed and tested on account of this subchapter. Moreover, its relative

splitting and adjustment methodologies are followed step by step in order to demonstrate their

practicality and usefulness into the implemented R-tree data structure. A virtual environment

mapping a plain 3D city has been authored for the purposes of this use case. The landscape

layout is composed of a grassy area with several streets leading to inhabitable areas. Each of

these areas contains a set of standard residences which may coexist with a skyscraper building.

37

Figure 5-6 Splitting & Adjustment operations on tree structure

In this hypothetical scenario, we want to index such skyscrapers in an R-tree data

structure in order to conduct spatial queries regarding their topology. In Fig. 5-6(a) is depicted

the schematic model and the tree hierarchy at this specific stage of indexing procedure. The red-

colored boxes represent an internal or leaf node, while the green-colored boxes represent the

spatial object being indexed. In favor of simplicity, the color of each skyscraper is used as the

unique identifier between the recorded spatial objects. Thus far, the majority of skyscrapers has

been indexed apart from the orange and aqua colored ones. In Fig. 5-6(b) both of them are

sequentially inserted into the R-tree, modifying its initial tree structure to the one illustrated in

the same subfigure. It is evident that a few splits took place in order to rearrange the spatial

objects according to the least enlargement area criterion. Such splits were boosted due to the fact

that the maximum number of allowed entries per node was set to two, while the minimum

number was retained to one. In this way, R2 and R4 nodes lose their pairs since the newcomer

skyscrapers are in closer distance with both of them. So, the R7 and R8 nodes are created from

scratch through the Quadratic splitting methodology, while at the same time, an adjustment

operation takes care of balancing R-tree’s leaf nodes. The latter one is based on the propagation

of the affected MBRs to their corresponding ancestor node in a bottom-up strategy. Wherever is

deemed necessary more splits occur in order to update these changes and maintain the integrity

38

of the data structure. The internal nodes R3, R9 and R5 in the second subfigure suggest a typical

example of this process. All these splitting and adjustment operations immediately cease after

such changes are successfully propagated to the root of the tree, forming in this way different

clusters of nodes each time a new skyscraper is inserted.

For sake of reference, the other two rejected splitting methodologies are the Exponential

and Linear methodologies. The first one is the most optimal solution that can be found on R-

trees -since it iteratively checks for the best possible combination of nodes- but it comes with the

worst complexity times due to its brute force nature. The second one tries to maintain a uniform

distribution amongst entries, outpointing the rest methodologies in terms of running time, at the

expense of memory management and bipartition optimality. So, Quadratic methodology not only

wields the best ratio between time complexity and space utilization compared to the before

mentioned approaches, but it is also the ideal partner for static memory-confined virtual

environments. Lastly, despite the employment of the latter methodology for the implementation

of the splitting algorithm, R-tree can be always extended to support additional parameters found

on other R-tree variants, like a perimeter-based split axis [46] and/or the reduction of pruning

overheads [47]. However, such sophisticated heuristic solutions tend to find appliance only in

very specific domains, due to the fact that R-tree's construction and maintenance rates are

seriously suffer from the complexity of these algorithms.

 Searching

The implemented R-tree algorithm takes as input a set of geometric objects which are

organized in differential rectangular areas to answer various types of spatial queries. Its versatile

structure not only guarantees its interoperability with large datasets of spatial objects, but it is

also capable of representing any kind of geometry. In this way, any X3D object can be spatially

indexed and queried, from the most widely used primitives (Box, Sphere, Cylinder, etc.) to the

most complex IndexedFaceSet shapes. The supported queries can be divided according to their

scope of use and their functionality, which may involve intersection, overlapping or nearest

neighbor distance calculations. These data mining algorithms are summarized into three distinct

subcategories and are eventually made available as point, region or k-NN queries [48]. On each

occasion, a specific formula serves as the selection criterion that has to be satisfied, taking into

consideration the spatial relationships between the engaged indexed objects. However, compared

with other data structures, R-trees cannot be attributed with good and/or worst case searching

39

complexity, since the overall performance of their queries is heavily depending on the

distribution of the objects in the search space and their relative geometry. Nonetheless, an

average complexity for search algorithms is estimated to be around O(logMn), where M is the

maximum number of records allowed into a single node. In the following subchapters are

described in detail the implemented queries, accompanied by their corresponding formulas that

serve as the catalyst for their successful execution.

 Point Query

A point query is the procedure of searching for and mapping a specifically located point

to one or more spatial objects. The coordinates of the query point are translated in R-tree’s index

structure, where the MBRs of the latter one are successively checked for possible matching

entries. In this work, such single points are defined by the classic three dimensional Cartesian

coordinate system and the distance metric system used is the Euclidean distance. However, other

distance metrics can be also authored for this category of queries, according to the needs of the

underlying application. Moreover, it is worth mentioning that this type of queries -compared to

NN queries- do not have to wage unnecessary and heavy distance calculations, but to simply

satisfy the following inequality equation for each dimension:

(Point.x >= Rect.xMin && Point.x <= Rect.xMax) &&

(Point.y >= Rect.yMin && Point.y <= Rect.yMax) &&

(Point.z >= Rect.zMin && Point.z <= Rect.zMax)

Table 5-2 Inclusion condition in 3D space between point and rectangular parallelepiped

Besides the axiomatic variables Point and Rect which respectively stand for a query point

and a rectangular parallelepiped area, the coordinates’ variables x, y, z, xMin, yMin, zMin, xMax,

yMax and zMax are used as upper and lower boundaries for nodes' MBRs. In this way, the given

query point is simply comprised into a set of internal nodes, which are further traversed until

their corresponding leaf nodes. This traversal is done with the assistance of a Depth-First

algorithm that iterates R-tree’s nodes level by level. However, making use of the aforementioned

equation, DFS visits only those nodes that meet such inequalities, skipping a large subset of

nodes at each level. This procedure keeps repeating until the algorithm reaches the lowest level

MBRs, which are the ones that contain various spatial objects that may intersect the query point.

40

In case there are higher level nodes that have to be visited due to the existence of overlapping

nodes, then DFS traverses their relative subtrees to scan for possible extra intersecting objects.

The overall procedure finishes when there are no more paths to be searched for in algorithm’s

list.

 Region Query

A region query -which is also known as a window query- is the procedure of searching

for index records in a particularly located and shaped area of the 3D space. The placement of

such an area is simply done by setting up its Euclidean coordinates, while its representation is

feasible with various 3D geometric shapes. In this work we have implemented the most widely

known search area, which is none other than the rectangular parallelepiped (a common rectangle

in the corresponding 2D space). The coordinates resulting from the vertices of this rectangular

area are inputted into a DFS algorithm that descends the R-tree in a certain order starting from

the root in a top-down strategy. The algorithm’s traversal order is based on a depth first tree

search, where the appropriate node is purely chosen by this set of coordinates. The same set is

also the responsible one for determining the rectangular parallelepiped overlap criterion in 3D

space, which ultimately takes the form of the following formula:

(SearchRect.xMin < Rect.xMax && SearchRect.xMax > Rect.xMin) &&

(SearchRect.yMin < Rect.yMax && SearchRect.yMax > Rect.yMin) &&

(SearchRect.zMin < Rect.zMax && SearchRect.zMax > Rect.zMin)

Table 5-3 Overlap condition in 3D space between two rectangular parallelepipeds

Based on this formula, DFS algorithm is capable of checking if the current node's MBR

overlaps with the rectangular parallelepiped search area. In case it does, the search algorithm

descends even further, to the children of the relative R-tree node. This procedure is continuously

repeating until a leaf node is found, something which directs the search algorithm to focus into

this node’s entries. At this point, the validity of each entry is once more determined by their

successful overlap with the predefined search area. Only those records that satisfy this

requirement will be indicated as qualified, unmasking and returning their corresponding spatial

objects. These objects can be further used for future processing according to the underlying

application's needs or any way the end-user desires. Despite that the results coming from any

41

query would remain the same and integrally correct, the number of paths visited by DFS

algorithm may change dramatically depending on m and M values of the R-tree instance. In case

the virtual environment being indexed does not contain thousands of objects, it is not necessary

to deal with these values. However, there are applications where query execution speed or space

utilization are deemed especially crucial and these two values have to be checked for optimal

results. Last but not least, it has been also eliminated the possibility of returning duplicate

records of the same spatial object. Such a feature is feasible by implementing R-tree algorithm in

such a way that although it allows the reflection of each object in many nodes, its indexing is

exclusively done into a unique only leaf node.

 k-NN Query

k-NN can be defined as the optimization problem of finding the nearest k points from a

specific query point, amongst a finite set of points calculated by a distance measurement system.

Today, numerous applications adopt a nearest neighbor or nearest neighborhood algorithm for

the efficient manipulation of their datasets. Some of the latest research works in 3D point cloud

domain came up with a set of novel methodologies for the space division, aiming either at the

definition and decomposition of a cubic area [49], or an arbitrary usage of cell grids for the

reduction of computational and reduction costs [50]. On the other hand, even though that various

k-NN techniques have been presented through the passage of time, only a few of them have been

widely adopted in R-trees. One of the most worth mentioning techniques is the MBR Face

Property proposed in [51]. This technique consists of a branch and bound algorithm relying on

the fact that every face of any MBR in an R-tree data structure contains at least one point of a

spatial object. During a k-NN search the MBR face property makes use of two interconnected

metrics to discover and order possible nearest neighbors of a query point P. Moreover, the

algorithm is also capable of pruning unnecessary nodes, further improving its performance. The

image below displays a query point and a MBR which encloses a set of smaller MBRs that point

to either internal nodes or spatial objects. In the same image becomes also evident the usage of

the two metric variables, MINDIST and MINMAXDIST, for the calculation of the faces’ distance

between the query point and the given MBR.

42

Figure 5-7 The MBR face property

In contrast with MBR Face Property, G. R. Hjaltason and H. Samet proposed the most

optimal k-NN technique that can be found today on this area [52]. Their Global Order point of

view traverses only the closest node at each round skipping unnecessary branches of R-tree,

while at the same time, maintains a priority queue with the distances of the already visited nodes.

Based on their work, a novel pathfinding Best-First algorithm has been developed to match the

needs of the implemented R-tree version and be applicable to a 3D search space. The only metric

being used is the MINDIST, which can be defined as the minimum distance between a query

point P and a MBR. If the query point is overlapped by -or intersects with- the given MBR, then

MINDIST equals to 0. This checking is based on the hypothesis that point's coordinates have to

be between the coordinates given by the upper left corner and lower right corner of the

rectangular parallelepiped’s perimeter. In any other case MINDIST denotes the minimum

distance from the query point to either the MBR's perimeter or a nested spatial object. In this

way, MINDIST guarantees a lower bound for every spatial object, discarding MBRs that come

with higher bounds than the current best NN candidate. Such candidates are stored into a priority

queue which allows only the highest priority nodes to be visited first. The queue utilizes an

efficient binary min-heap data structure, which partially orders the already visited nodes

according to their distance correlation between the given query point. By doing so, the queue

does not contain any duplicate record and algorithm's greedy nature is overlooked by minimizing

43

its backtracking. As concerns the selection criterion for which node to visit next, this is overseen

by the calculation of the lowest path cost between node's distances. The code segment in Table

5-3 below takes into consideration all the above mentioned facts and displays the methodology

being used to determine the distance between a given query point and the rectangular

parallelepipeds of an R-tree data structure.

priorityQueue = NewBinaryMinHeap(); //Priority queue starts at position 1

enqueue(priorityQueue, R-tree root, Infinity);

WHILE (k != 0) { //Return such records as the number of sample k

 element = dequeue(priorityQueue);

 IF (element typeof InternalNode) {

 FOR (each Node child of element) {

 enqueue(priorityQueue, Node, Node.MINDIST);

 }

 }

 ELSE IF (element typeof LeafNode) {

 FOR (each SpatialObject child of element) {

 enqueue(priorityQueue, SpatialObject, SpatialObject.MINDIST);

 }

 }

 ELSE { //If it was a SpatialObject, return it as the best NN

 RETURN (element);

 k--; //Decrease k by 1 and search for the next NN

 }

}

MINDIST(Node, Point) {

 x = MAX(Node.xMin - Point.x, Point.x - Node.xMax); //Axis X differential distance

 y = MAX(Node.yMin - Point.y, Point.y - Node.yMax); //Axis Y differential distance

 z = MAX(Node.zMin - Point.z, Point.z - Node.zMax); //Axis Z differential distance

 dist = SQRT(x^2 + y^2 + z^2); //Or another square root approximation formula

 RETURN dist;

}

Table 5-4 k-NN BFS algorithm pseudocode

At first, a binary min-heap data structure is initialized in order to keep track of the visited

nodes, while the user-defined sample of k nearest neighbors is inputted to the BFS algorithm.

Each time an R-tree node is visited, it is also inserted into the heap data structure. All these nodes

are sorted in ascending order based on their distance correlation between the closest node's MBR

and the given query point's coordinates. This distance approximation is backed by a second

44

algorithmic function, which is none other than the MINDIST formula presented in the same

segment. The latter formula is responsible for the calculation of any requested distance between

two points in the Cartesian coordinate system. Moreover, the same formula is supplied with the

necessary invoke and return modules for the smooth cooperation with these fields of the priority

queue that asked for its assistance. Ultimately, the resulting distance returns back to priority

queue for storing and indexing purposes. The implemented MINDIST metric had to adopt a fast

and efficient heuristic for the distance measurement between data points. The most widely

known is the Pythagorean formula which not only guarantees accurate results, but it is also easy

to comprehended and be applied in a 3D space. So, BFS algorithm takes advantage of the

classical Euclidean distance and slightly modifies it to calculate the distance of a given query

point and its nearest MBR. However, the rest of the distance calculations that were taking place

during the construction of the tree and the execution of queries, made use only of inequality

equations and/or squared distances. In this way, the usage of the classical squared root metric is

kept at the minimum, saving both computational power and time.

At this point is evident that MINDIST can anytime be replaced by other distance metric

systems, as long as they are capable of providing sufficient precision and satisfying computation

speed. For example, MINDIST metric could be attributed with the capability to imitate a specific

reciprocal square root computation known as Fast Inverse Square Root. Its functionality is

analytically described in [53], proving to be a bit faster than Euclidean distance -while at the

same time- remaining quite accurate. However, even though that the main concepts behind this

methodology can easily be conserved, there are a few parts of the original function that have to

be modified in order to run seamlessly under a JavaScript environment. Since the introduction of

Typed Arrays in the latest JavaScript specifications and their corresponding affiliation by today’s

modern browsers, it is now possible to exploit binary data in raw memory. Yet, and in contrast

with the majority of programming languages, JavaScript does not differentiate numeric

arguments amongst its variants (integer, short, etc.), but it always treats them as 64-bit floating

numbers of the international IEEE 754 floating point representation. So, initializing the relative

Array buffers and setting the mathematically optimal constant for 64-bit number size to the

hexadecimal 0x5fe6eb50c7b537a9, a first guess for the reciprocal square root of a given floating

point number is feasible. Moreover, there is always the option to use successive Newton-

Raphson steps [54] to further improve the pre-calculated approximation at the expense of

45

performance. On the other hand, if performance comes with higher priority cost, then alternative

solutions like Heron's method [55] or Bakhshali approximation [56] can be adopted to enhance

the application's speed at the expense of approximation. No matter the case, it still remains a

flavor of precision against speed, denoting that parameters like the underlying platform, the

programming language and the application's needs have to be seriously taken into account for

adopting the best possible solution amongst them. Finally, it is noteworthy that DFS and R-tree

algorithms have been developed in such a way that are capable of deducting optimal solutions

from repetitive nearest neighbor queries with slight only modifications. Doing so, the range of

applicable domains is expanded much more, compared to the ones presented in the examples of

the current chapter.

 A computational model for spatial relations

Spatial relations can be seen as a data mining procedure capable of inferring additional

knowledge from a spatially indexed dataset. Such knowledge comes in the form of a linguistic

vocabulary, where each one of its words defines a different spatial relationship between an object

and another reference object of this dataset. The reasoning process is comprised of various

factors (like the size, volume, position, etc.), which are ultimately used to structure a unified

framework of relationships. This framework borrows concepts from psychology and computer

science theories according to their perspective semantic views, contributing in that way to the

specification of its underlying relations. However, no matter the composed framework or the

type of standard being adopted, the general idea behind the spatial representation of a space of

interest, lies to the abstract correlation of its objects’ position, or this space segmentation into a

finite set of regions.

Today, spatial relations can be applied into various domains, where each one of them

tends to exclusively deal with a specific only subset of these relations. The most widely known

classification scheme of the latter ones relies on the representation needs of the underlying space

and its corresponding objects. In this way, three separate but closely affiliated categories were

generated for the sufficient spatial annotation of a geometric space, namely the topological,

directional and –the less paid attention- distance metric category, respectively. The majority of

this work deals with directional relations, although there are a few topological relations which

are occasionally used in specific stages of the R-tree algorithm. Although such topological

46

relations are briefly described in the upcoming subchapter, any spatial relation that is tested

between two objects of an X3DOM scene is based on the directional type. The participating

objects are associated with the Cartesian coordinate system, a three-dimensional distance metric

which specifies an object's position with a signed triplet of numerical coordinates. These

coordinates denote the distance of this object from a fixed location of three mutually vertical

axes in the 3D space. Moreover, the minimum and maximum values from this set of coordinates

are used to define the boundaries of a bounding container. The latter one is known as MBR and

comes in the form of a rectangular parallelepiped. The vertices deriving from this type of

geometry provide the necessary semantics for the deduction of spatially directional relationships.

In the following subchapters, each spatial relation that takes place into the implemented data

structure is comprehensively described, accompanied by the appropriate mathematical formula

that results from the variable parts (i.e. object’s geometry, algorithm’s bounding container,

number of planes, etc.) of the participating entities and the 3D space itself.

 Topological relations

Nowadays, numerous applications [57] [58] come with a dedicated set of spatial

operations for the implication of topological relationships between their objects. Most of them

make use of Oracle Spatial and Oracle Locator extensions for the spatial reasoning of their

dataset, adopting various intersection patterns defined in [59]. The latter one can be considered

as a specification sheet which complies with the principles of a nine-intersection model for the

topological classification of a geometric region. On the other hand, many commercial and open

source RDBMS provide a mechanism for the spatial indexing of their stored records. Despite the

fact that their spatial operators and integration level may vary from one implementation to

another, their relative data mining mechanism is based on either OGC or SQL/MM spatial

standards [60]. Both of these standards support a wide range of geometry types, which are

attributed with a fixed set of properties for the manipulation of spatial information. These

properties define and delimit three different regions for each spatial object (namely the boundary,

interior and exterior regions), where their relative topological interconnection is inferred based

on a spatial predicate representation method [61].

Such predicates, however, had to take into consideration the human spatial cognition in

order to sufficiently define this kind of relations. In [62], human subjects were assigned with

47

miscellaneous tasks that involved the identification and grouping of topological spatial relations

between two objects. The results of these case studies showed that the linguistic representation of

space concepts used by the majority of subjects, concurred with the topological factors and

geometry criterions used by the 9-Intersection model. In Table. 5-4 below are delineated all these

spatial predicates between two predefined geometries, along with their semantic representation

that corresponds to either a Equals, Disjoint, Intersects, Touches, Crosses, Overlaps, Contains,

Covers, CoveredBy or Within human linguistic predicate. Even though that such topological

relations are coming with various forms depending on the application domain, their classification

methodology remains the same and is extensively described in DE-9IM [27] standard. In this

way, it was granted an interoperable and practical topological model for a wide range of

domains. In this work, the implemented R-tree data structure takes advantage of intersecting

within and overlap formulas to perform spatial queries upon an R-tree instance, while an area

coverage criterion is silently used during the construction of the tree. These extensions have been

thoroughly presented in previous subchapters and they are similar to the topological predicates

provided by DE-9IM.

Use Case Associated Relations Implicated Relations

Geometry A contains Geometry B Geometry B is within Geometry A

Geometry A covers Geometry B Geometry B is covered by Geometry A

Geometry A intersects Geometry B Geometry B intersects Geometry A

Geometry A touches Geometry B Geometry B touches Geometry A

Geometry A overlaps Geometry B Geometry B overlaps Geometry A

Geometry A equals Geometry B Geometry B equals Geometry A

Geometry A contains Geometry B Geometry B is within Geometry A

Geometry A and B are disjoint Geometry B and A are disjoint

Geometry A crosses Geometry B Geometry B crosses Geometry A

Table 5-5 DE-9IM topological relations

48

Besides these MBR-related functionalities, the developed computational model is also

capable of inferring the most commonly used topological relations in 3D space. As it has been

stated before, the R-tree data structure consists of a multi-level hierarchy of rectangular

parallelepiped containers known as MBRs. Their contents may be more lower-level MBRs or a

family of spatial objects. The placement of such objects in 3D space derives from the leaf nodes

of any R-tree instance, where their MBR coordinates are being recorded down, in order to

proceed into an efficient spatial reasoning between them [63]. The spatial correlation procedure

comes in pairs of MBRs and involves the appliance of a basic set of topological relations upon

them. These relations come with a carefully designed taxonomy in order to prevent incorrect or

nonessential implication of spatial annotations, since only one of the former can hold at a given

time and space. For that reason, the implemented topological relations are serially tested one by

one against every MBR pair, where the first valid occurrence amongst them points to the best

fitting topological relation. This series of relationships and their corresponding allocation

formulas between RectA and RectB rectangular parallelepipeds are presented below:

 At first, it is tested the possibility that these two MBRs are disjoint. Such a thing implies that

neither the boundaries nor the interior regions of these MBRs are in contact. However, for

the purposes of this work, the equality operator has been included into the formula shown in

Table 5-5, since the intersection of a part of their boundaries alone does not affect the result

set of the upcoming directional relations. In this way, we can also safely deduct a touch

spatial predicate from the same category of relations.

 (RectA.xMax <= RectB.xMin || RectA.xMin >= RectB.xMax) ||

(RectA.yMax <= RectB.yMin || RectA.yMin >= RectB.yMax) ||

(RectA.zMax <= RectB.zMin || RectA.zMin >= RectB.zMax)

Table 5-6 Disjoint or Touch condition for rectangular parallelepipeds in 3D space

 In case that the above mentioned formula fails to satisfy a topological relation between two

given MBRs, it is initiated the next closest spatial relation which is none other than the equal.

In this occasion, the participating rectangular parallelepipeds must have in common not only

their relative boundaries, but also their entire interior region. However, this kind of relation is

rarely met in applications due to its strict constraints, which are shown in Table 5-6. So, the

49

majority of objects immediately proceed to the within criterion, where its formula has been

displayed in Table 5-1 and thoroughly explained in a previous subchapter.

(RectA.xMin == RectB.xMin && RectA.xMax == RectB.xMax) &&

(RectA.yMin == RectB.yMin && RectA.yMax == RectB.yMax) &&

(RectA.zMin == RectB.zMin && RectA.zMax == RectB.zMax)

Table 5-7 Equal condition for rectangular parallelepipeds in 3D space

 In contrast to the latter topological relation, there is a chance that the first MBR totally

contains the second one, both in terms of its boundary and interior regions. This encasement

also takes into consideration the possibility of intersecting boundaries, since the onus of

containment focuses into comprising the relative interior region. Table 5-7 displays the

inequalities operations that take place in order to determine if two rectangular parallelepipeds

fall into this category of relation.

 (RectA.xMin <= RectB.xMin && RectA.xMax >= RectB.xMax) &&

(RectA.yMin <= RectB.yMin && RectA.yMax >= RectB.yMax) &&

(RectA.zMin <= RectB.zMin && RectA.zMax >= RectB.zMax)

Table 5-8 Contains condition for rectangular parallelepipeds in 3D space

However, there is one option left for a specific pair of MBRs that does not satisfy any of the

afore-mentioned topological relations. This option lies to the validation of the overlapping

criterion presented in Table 5-2, which denotes that a part only of their interior regions are

successfully met in 3D space. At this point, it is worth mentioning that the rest of non-

implemented relations (Intersects, Crosses, Covers and CoveredBy) are complementary to some

of the implemented relations, providing in that way an efficient spatial representation of the 3D

virtual environments.

This part of reasoning finishes when each spatial object has been uniquely attributed with

a specific topological relationship. In cases of evenly arranged or overlapped entries becomes

evident that this spatial representation is sufficient enough from a semantic spatial mapping of

space. However, the disjoint topological relation is a special type of annotation which unlocks

more spatial features on the underlying dataset. These features are represented by a different

directional relation and their application is deemed necessary for any objects that are classified as

disjoint. The following subchapter describes in detail the implicated directional relations, along

50

with the conditions that have to be met in each occasion, for the adequate provision of access to

this kind of annotations.

 Directional relations

Directional relations refer to another major type of spatial analysis, where the reasoning

predicates incorporate direction constraints between two objects. From early times, there were

works that took into account the human perception in directional management, involving either

context sensitivity or psychological factors for the spatial reasoning of a space. In [64] was

observed that this linguistic representation sometimes contradicted not only with the spatial

relation term chosen by an artificial intelligence system, but also with various comparative

concepts, like the orientation plane, the objective technique used and others. This fuzzy state of

perception was based on the selection of a specific subset of vertices from a pair of objects.

These vertices were used to determine the appropriate directional relations between these two

objects. Over the passage of time, the latest technological advances allowed the automated

generation of such relations for indoor scenes with the utilization of a robotic mechanism [65].

The entire process was based on a novel computational model, where its leading spatial

quantities were the size and position of room's objects. These quantities gave birth to a set of

principles for the generation of directional relations between all possible pair of objects, while at

the same time unreliable relations were eliminated from the result set. The presented model was

assisted by a 3D sensor capable of dealing with alternative configurations of indoor scenes,

which have been loaded from a specific rooms' database.

All these studies pointed out that a visual representation of a space is always richer than

its corresponding linguistic representation. This quickly became evident in spatial annotation

applications, where qualities like shape and color were left aside compared to schematic traits

like the above, left, front, etc. A series of experiments [66] proved that neither a qualitative or

quantitative classification of a space were sufficient to capture similarities between spatial

representation and spatial language. However, there were specific spatial propositions that could

safely reflect a part of linguistic semantics in terms of applicability and accuracy. Such

commonly used identification patterns were encoded to the above, below, left and right spatial

relationships, which have been also adopted for the purposes of this work. On the other hand, a

formal representation of natural language’s spatial concepts was deemed quite a challenge,

51

mainly due to the fact that each interactive application can be addressed with complex and

variant semantics that point to more than one kind of spatial relations [67]. For that reason, the

composed computational model is capable of inferring various spatial relations between the

objects of a virtual environment. This reasoning procedure is based on the spatial analysis of R-

tree’s MBRs, where a set of topological relations is applied among them, followed by the

deduction of their corresponding directional relationships. These relations do not take into

account the current viewpoint of the user, but instead they automatically annotate with spatial

information any object of the 3D space, according to the Cartesian cardinal directions, which is

the default coordinate system used by X3D standard. Each directional pattern is bestowed with a

formula capable of testing spatial relationships between MBRs. In this way, complex and

heavyweight spatial relation algorithms are avoided, where a simple and efficient methodology is

used to significantly boost the reasoning performance. Moreover, even though that this technique

is an approximation of the best fitting relation amongst the available directional relations, its

anticipated outcomes are quite satisfactory in terms of accuracy.

The authored formulas act as a uniform classification rule for the categorization of an

MBR pair into one or more directional relation types. This stage of spatial reasoning is

exclusively accessed when this pair’s topological relation is derived to be disjoint. In this way, it

is guaranteed that the MBRs of any R-tree instance are used as the ground to indicate the

underlying directional relationships between their enveloped objects. Below, RectA and RectB

rectangular parallelepipeds represent the minimum bounding box of two different objects. The

first one points to the object which has to satisfy the following set of directional criterions

according to a second reference object, in order to be successfully categorized into the

appropriate spatial category:

 When the rightmost boundary region of the tested MBR has lower value than -or equal value

to- the leftmost boundary region of the reference MBR, then the first object is located on the

left side of the second object. On the other hand, if the leftmost boundary region of the tested

MBR has higher value than –or equal to- the rightmost boundary region of the reference

MBR, then the first object is located on the right side of the second object.

Left RectA.xMax <= RectB.xMin

Right RectA.xMin >= RectB.xMax

Table 5-9 Left & Right conditions for rectangular parallelepipeds in 3D space

52

 When the lowest boundary region of the tested MBR has higher value than the highest

possible boundary region of the reference MBR, then the first object is located above the

second object. On the other hand, if the highest boundary region of the tested MBR has lower

value than the lowest possible boundary region of the reference MBR, then the first object is

located below the second object.

Above RectA.yMin > RectB.yMax

Below RectA.yMax < RectB.yMin

Table 5-10 Above & Below conditions for rectangular parallelepipeds in 3D space

 When the lowest boundary region of the tested MBR is equal to the highest boundary region

of the reference MBR and these two boundaries are intersecting even at a single point in 3D

space, then the first object is over the second object. On the other hand, if the highest

boundary region of the tested MBR is equal to the lowest boundary region of the reference

MBR and these two boundaries are intersecting even at a single point in 3D space, then the

first object is below the second object, but the second object is over the first object.

(RectA.yMin == RectB.yMax || RectA.yMax == RectB.yMin) &&

(!((RectA.xMax <= RectB.xMin) || (RectA.xMin >= RectB.xMax))) &&

(!((RectA.zMax <= RectB.zMin) || (RectA.zMin >= RectB.zMax)))

Table 5-11 Over condition for rectangular parallelepipeds in 3D space

 When the most posterior boundary region of the tested MBR has higher value than -or equal

value to- the frontmost boundary region of the reference MBR, then the first object is located

in front of the second object. On the other hand, if the frontmost boundary region of the

tested MBR has lower value than –or equal to- the most posterior boundary region of the

reference MBR, then the first object is located behind the second object.

Front RectA.zMin >= RectB.zMax

Behind RectA.zMax <= RectB.zMin

Table 5-12 Front & Behind conditions for rectangular parallelepipeds in 3D space

53

Once more, boundary representation methodologies have been established in order to

imply the appropriate directional relations for each use case. The overall mechanism is also

capable of deriving the inverse spatial relationships, wherever they can be applied without

performing any needless reasoning procedures. Such a thing occurs when the second object

prevails over the first, according to the requirements set by the corresponding directional

relation. At this point, it’s worth mentioning that the number of implicated relations is massively

increased relative to the number of indexed objects. This phenomenon along with the upcoming

need of parallel programming in World Wide Web [68], prompted the use of web workers for the

purposes of this work. The computational model presented above has been implemented in a

separate JavaScript script with the assistance of a web worker [69], which silently runs in the

background and allows the user to freely interact with the rest of his platform. Last but not least,

web workers are capable of avoiding the deficiencies met in case of slow response times, while

at the same time, they are able to exploit multicore machines in a more efficient way than the

classic JavaScript programming methodologies.

 Semantic annotation of spatial relations

Up until this point, the implemented 3D R-tree data structure is not only browser-

independent, but it provides all of its indexing and spatial features under a single JavaScript

library. In this way, no plugins or additional programs have to be installed in client side,

incorporating faster response times and less resources burden on the machine. However, the

implicated spatial relations between the indexed objects of a 3D scene are available to the user

via a simple HTML element, instead of integrating them into some kind of Semantic Web

solution. Hence, an abstract semantic layer capable of reusing such relations was deemed

necessary in order to apply and reason with them from a semantic scope.

In [70] was presented a technique for the uniform application of spatial reasoning into

empty or vague regions of a topology. The proposed model was an extension of RCC5 and RCC8

schemes and helped to the mathematical formalization of a set of qualitative spatial relations

from a semantic scope. Such RCC8 predicates were also employed for the development of new

OWL-DL axioms [71] capable of dissociating ontology’s concepts into spatial regions and

applying a small subset of topological relations upon them. However, the implementation of such

spatial axioms was not only a quite complex procedure, but their representation capabilities were

54

also clearly depending on RCC scheme’s reasoning capacity. The latter fact comes in contrast

with the implemented R-tree's relations, which are based on DE-9IM, a totally different spatial

reasoning methodology. So, even though that these works are capable of building useful scene

descriptions, they are far apart from this study's cornerstones. For reasons like this, it had to be

authored an ontology that won’t unsettle the prototype state of axioms, but it would instead take

advantage of them, in order to represent the spatial relations coming from R-tree algorithm.

Moreover, its property characteristics had to be able to derive inverse semantic relations and

avoid needless computations, since the majority of spatial relations come with a counterpart

functionality which can be represented by an OWL axiom (reflexive, symmetric, anti-symmetric

and transitive). Such axioms could also be combined in a later time to express a VR environment

with advanced semantics.

For the purposes of this thesis, the ontological framework presented in [28] has been

utilized as the proposed semantic layer of information. The semantic composition of its ontology

is based on a specific domain (interior design and decoration), designating the appropriate

classes and their taxonomy, the relationships between the former, and ultimately defining

possible class and property restrictions. The development of the ontology was done in OWL

language, which is a W3C's recommendation with advanced capabilities in the description of

classes and properties. Specifically, it is going to be used the OWL-DL sublanguage of OWL

[72], in order to express first order logic and to ensure that the resulting statements are valid,

through the restrictive nature of this sublanguage. The development of this ontology led to a

detailed conceptualization of indoor scenes, identifying the essential semantic concepts for the

efficient description and reuse of such environments, along with their corresponding 3D content.

For the time being, DEC-O consists of the semantic spatial representation properties shown in

Fig. 5-8. It is evident that a part of these object properties is directly related to the directional

relations that are implicated through the presented computational model, while topological

relations have not been implemented in this kind of framework. However, the semantic

annotation of the latter leaves unaffected the result-set of the former, since all of them have to

satisfy the disjoint criterion in order to proceed to such a semantic supplement. In the last section

of the following chapter is employed a typical indoor scene for the deduction of spatial relations

between a specific subset of objects with the assistance of an R-tree instance and DEC-O's web

service.

55

Figure 5-8 Semantic spatial properties of DEC-O

Summarizing, the proposed R-tree data structure and its relative operations can be used as

the foundation for the construction of a formal ontology -or the cooperation with an existing one-

aiming at the efficient spatial description of VR environments. This semantic representation of

spatial knowledge can also be further enhanced with a query mechanism like SPARQL [73] or

Linked Data, in order to conceal the R-tree reasoning process and provide the end-user of the

application with a flexible and user-friendly environment. No matter the path chosen, each

ontology has to be carefully designed, in order to sufficiently classify the interested domain’s

concepts and adequately represent the relationships between these concepts.

56

Chapter 6 - Experimental evaluation

The implementation part was exhaustively confronted with numerous scenarios in order

to certify the unremitting functionality of the authored algorithms and the validity of their

corresponding results. In the previous chapter, a couple of simple examples were presented to

highlight certain aspects of the OWL ontology and R-tree’s data structure. In this chapter,

however, it takes place a systematic monitoring and review of a scenarios’ series. Each scenario

stands for a disparate use case which comes in the form of an X3DOM virtual environment. This

environment has been set up according to the outline of its relative scenario, while specific only

objects from the subjected 3D space have been spatially indexed based on the use case being

tested. The entire process of spatial annotation was carefully observed step by step, fixing a few

key issues that had arisen from inconsistencies in the logical system. Moreover, the result set of

each scenario was thoroughly examined and evaluated against the expected results, modifying

either the original structure of the R-tree, or optimizing the performance of the underlying

algorithms wherever that was deemed necessary. These scenarios have been divided according to

their spatial usability into the following subchapters, where each one addresses a specific state of

its runtime instance.

 R-tree taxonomy & stretch tests

At first, it will be presented a complex scenario which includes a finite set of randomly

distributed boxes across a 3D space. The scenario aims at mapping a typical city structure, where

the latter boxes are used as a representation mean for various city buildings. Even though that a

quick glance at the authored X3DOM scene may lead to the conclusion that it is a very simple

environment, it instead comes with a vague clustering sequence of about 180 objects into a set of

24 distinct Group nodes. This scattered distribution of objects creates many undefined areas of

jurisdiction that have to be taken into consideration during R-tree's indexing and splitting

operations. In order to highlight the taxonomy of nodes in this R-tree instance, a series of level-

layered approaches is presented below. All of them make use of the Insertion and Quadratic

algorithms to spatially index 24 groups of objects, where each R-tree node supports a fixed range

of entries with lowest possible value of m=2 and highest possible value of M=4.

57

The first level of this R-tree instance is depicted in Fig. 6-1(a), which is none other than

the root of the tree structure comprising of two only nodes. This level and its relative nodes

contain the most abstract layer of information, since the rest of levels come with an increased

number of nodes that target specific areas of the virtual environment. Fig. 6-1(b) displays the

second level of the same R-tree instance, which points this time to the internal nodes of the data

structure. The latter ones do not only compose the children of the aforementioned level, but they

also indicate next level's nodes. The third and final level of this data structure can be seen in Fig.

6-1(c) and refers to R-tree's leaf nodes, where it becomes obvious that the overlapping ratio of its

indexed objects is based on their insertion order and abnormal initial distribution in 3D space.

Ultimately, the entire R-tree taxonomy is highlighted in Fig. 6-1(d) by concatenating all the

generated nodes of each individual level.

Figure 6-1 Various levels of an R-tree instance

 This hierarchical representation of R-tree's nodes can be seen as an effective clustering

methodology aiming to improve the rest of its spatial operations. However, such a thing revealed

the need for a clarification of its indexing and reasoning capabilities in terms of computation

speed. For this reason, a brief -but extensive- stretch test took place upon the same scenario. The

58

generic structure of the virtual environment remained the same on purpose, in order to

sufficiently compare R-tree's performance and scalability features under a common pattern. The

only thing that varies is the definition of two distinct use cases, where each one comes with an

increased number of randomly distributed shapes of the original pattern. As concerns the core R-

tree parameters, the minimum and maximum node sizes were set to m=10 and M=20,

respectively. These two parameters were kept the same across all three use cases and R-tree

instances. On the same side of coding, the execution times of algorithms were validated

according to the Performance.now() method of JavaScript specification [74], where its relative

set up and functionality are shown and explained in the following table.

FOR (each operation in R-tree) {

startTime = new TIMER();

… //Main body of the relative operation

endTime = new TIMER();

elapsedTime = endTime – startTime; //Return elapsed time in milliseconds

}

TIMER() {

currentTime = performance.now(); //Make use of High Resolution Timer

RETURN currentTime;

}

Table 6-1 Time measurement pseudocode

At this point, it’s worth mentioning that there are various alternative solutions for the

measurement of time in a JavaScript-based implementation, like the Date.getTime() and

console.time() methods. However, the methodology presented above was tagged as the most

appropriate one, since it provides more accurate timing compared to the rest of JavaScript

functions. This function is used for all kinds of time measurements in this subchapter, regardless

of which browser is being used. In this experimental evaluation, all use cases took advantage of

X3DOM runtime 1.6.2 JavaScript library
3
, which cooperated with Firebox v47.0.2505.0 browser

and Windows 7 SP1 64bit OS. On the other hand, the hardware side of the test environment was

composed of a laptop computer with an Intel Core i5-2430M processor, 4GB RAM and an Intel

HD Graphics 3000 as the graphics processor unit of the system. Besides the aforementioned

3
 http://x3dom.org/download/

http://x3dom.org/download/

59

configurations, no further changes were made to the software or hardware components of the test

environment and its use cases.

 At first, the number of shapes and triangles from each use case were obtained with the

assistance of X3DOM environment's showStat parameter. Afterwards, an R-tree instance of each

use case was immediately created and its relative generation time was recorded with the above

mentioned JavaScript function. Then, the provided spatial queries were put to test in order to

check out their relative performance against all three use cases. Each one of these queries was

executed on a large volume of the given dataset, which have been indexed into an R-tree instance

at an earlier time. In this way, the presented measurements are as realistic as possible, since

searching operations have to visit not only overlapping entries, but also multiple branches of the

same subtree. Finally, the computational model for the automatic generation of spatial relations

is also put to test, recording down its implication time and the number of the returned relations.

The first two R-tree instances make use of the same VR environment and spatial predicates,

while in the third one is utilized a slightly modified version of a 500 components scene from

X3D archive list
4
. So, the implemented model itself is the only one responsible for the deduction

of all possible types of spatial relations that hold between the indexed objects. All three use cases

along with the computation costs of their corresponding operations have been collected and are

illustrated into Table 6-2.

Dataset Size
R-tree

index
Spatial Queries Spatial Relations

No. of

components

No. of

triangles

Index

time (ms)

Point

(ms)

Region

(ms)

1-NN

(ms)

10-NN

(ms)

Automatic

implication

(ms)

No. of

relations

25 6564 15 0,53 1,53 0,57 1,32 2,1 1055

178 6564 65 0,65 3,9 0,81 2,24 2,92 75376

500 576000 132 0,45 0,15 0,72 1,61 6,03 602250

Table 6-2 Time costs for each R-tree operation

4
http://www.web3d.org/x3d-

resources/content/examples/ConformanceNist/GroupingNodes/Collision/_pages/page01.html

http://www.web3d.org/x3d-resources/content/examples/ConformanceNist/GroupingNodes/Collision/_pages/page01.html
http://www.web3d.org/x3d-resources/content/examples/ConformanceNist/GroupingNodes/Collision/_pages/page01.html

60

As expected, R-tree’s generation time is steadily increasing in each use case, due to the

larger number of indexed components. The number of triangles does not seem to affect the

indexing procedure or the rest of spatial operations, but is displayed as a load criterion from the

perspective of X3DOM framework. Even though that the first two cases may handle a different

number of indexed components, they share the same badly distributed 3D space of objects. This

comes with a negative impact on R-tree’s overlapping ratio and indexing performance. In

contrast to these use cases, the third one is comprised of more components but a better tree

structure, boosting in this way its spatial operations compared with the former. Regarding spatial

queries, their performance was found outstanding on all three use cases, since their

corresponding execution times were close to zero. In the first two cases, the number of

overlapping entries was higher than the overlaps detected in third case, making each query

algorithm to visit multiple subtree in order to reach the desired output. On the other hand, k-NN

queries came in two flavors for the purposes of this test environment, where they had to discover

the first closest neighbor and the top ten closest neighbors. Based on the experimental results, it

was estimated that this increment into spatial reasoning process, led to the doubling of the

initially recorded execution time. As concerns the computational model of spatial relations, its

relative time costs remain equally low, but the number of implicated relations is rapidly growing

according to the number of indexed components. It has been noticed that relations’ number is the

second power of the indexed components multiplied by a real number, which is around 2.5 and is

slowly increasing in each use case.

Summarizing, all time costs remained in satisfying response times, even when the

number of indexed components and spatial relations raised massively. It is also noteworthy that

these times could be even better (or even worse) in case of different values in the core

parameters of R-tree data structure, m and M. On the other hand, the test environment was

composed of a moderate-performance computer for today’s standards, leading to an undeniable

improvement of these execution times. Lastly, it has to be noted that the main concept of these

stretch tests was to assess the functionality of each implemented operation and its underlying

algorithm in generic use cases. In order to provide more accurate time costs for a wide range of

applications, an advanced test environment with various computers and more use cases has to be

set up and spatially analyzed.

61

 Performing spatial queries

In a previous subchapter, three different types of queries were presented for the sufficient

spatial reasoning on an indexed dataset of an R-tree instance. These queries are able to take

advantage of the spatial relationships between the generated MBRs, in order to infer additional

knowledge about the location or the state of an indexed object. The drawing of such conclusions

is clearly depending on the geometric formation of the participating nodes, where disjoint sets of

nodes are intentionally skipped to improve the query performance. In the following paragraphs

are described in detail various scenarios, where each one comes with miscellaneous illustrations

for maximal comprehension of its corresponding use case. In this way, it is accomplishable a

conclusive demonstration of the provided searching capabilities, which are propelled by the

intrinsic query algorithms.

Figure 6-2 Indexing a Shopping Mall for location identification purposes

In Fig. 6-2(a) is displayed a complex X3D scene composed of a shopping center along with its

surrounding area. This virtual environment comes with a large dataset of X3D objects that have

been unified in numerous groups to ultimately form distinct activity areas. In this use case, R-

tree algorithm indexes specific objects from the original dataset in order to provide location

identification features. The overall mechanism is based on the definition of diverse areas of use,

which are differentiated by their records hierarchy in the tree. More specifically, these areas have

been attributed as Playground, Parking, Cafeteria, DVD Club, Cinema, Record Shop, Furniture

Store and Elevator. The relative data structure which is going to be traversed can be seen in Fig.

6-2(b) along with a quick glimpse of the drawn MBRs. From this moment on, a point query can

62

be raised against this R-tree structure to retrieve the characterization of a specific location, which

has been indicated by the audience of the virtual environment.

Figure 6-3 Estimating location based on a chosen object

At this point, it is feasible to navigate through the X3D scene and test the validity of algorithm’s

results, since the indexing procedure of the desired spatial objects has been successfully done.

The query point is represented by a small silver-colored X3D Sphere element, which acts as the

reference point for the derivation of the chosen object’s coordinates. In the first scenario shown

in Fig. 6-3(a), the top side of the fountain has been marked, returning its corresponding

coordinates and denoting that the selected spatial object belongs to the Playground area. On the

other hand, Fig. 6-3(b) displays a second scenario where the query point picks the front side of a

refrigerator on the 1
st
 floor of the shopping center. DFS algorithm traverses the data structure

once more, inferring that the refrigerator belongs to the Cafeteria area of the X3D scene. Hereby,

63

both scenarios make use of the coordinates picking buffer proposed by X3DOM framework

thanks to its ease of use and implementation simplicity. However, programmers and/or end-users

have always the option to define their own unique coordinates’ representation system, in order to

match their application needs and guarantee its interoperability.

On the other hand, Fig. 6.4 below displays a typical example of a region query, which is

followed by a brief description of this use case as concerns the algorithm’s functionality in the

underlying R-tree structure. For the purposes of this use case it was created the fictional war

scenario shown in Fig. 6-4(a), which is composed of a finite set of military vehicles and

helicopters in a tree scenery.

5

Figure 6-4 Execution steps for a region query

This X3D scene has been loaded into X3DOM framework and its depiction is feasible with the

assistance of the added Extrusion and ElevationGrid JavaScript components. Afterwards, the R-

tree algorithm initiates the suitable routines to annotate the scene's spatial objects as presented in

Fig. 6-4(b). At this point, the user is able to create the necessary instance of the transparent-red

5
 X3D models have been taken from Savage X3D Examples Archive (source: https://savage.nps.edu/Savage/)

https://savage.nps.edu/Savage/

64

rectangular parallelepiped and search for the desired spatial objects. In this use case, it is

assumed that the user wants to know how many -and what kind of- ground units have already

marched to the front. So, the search area has to be resized and relocated as shown in Fig. 6-4(c)

and Fig. 6-4(d), in order to match the requirements set by the user. Its defined dimensions for

each axis are presented in the following figure, narrowing down the search space to the

boundaries given by these three values.

Figure 6-5 The result set of a region query

The same figure presents the subjected overlapping entries of the R-tree, which are none other

than a subset of the spatial objects composing the X3D scene. In this use case, 5 x T72 main

battle tanks, 2 x MEFFV2 armored vehicles and 2 x M577 command post vehicles are considered

as qualified records and they are returned to the user's query. Moreover, it is worth mentioning

that the current R-tree made use of M=4 and m=2 for nodes' maximum and minimum filled

requirement, respectively. So, there could exist various alternative solutions to the one displayed

in Fig. 6-4(b), based on the fact that the geometric structure and the space utilization of the tree is

clearly depending on these two values. However, any changes on nodes’ size are only affect the

65

number of nodes that DFS algorithm has to visit, returning in that way an identical result set of

spatial objects with lower or higher query complexity.

Finally, in the Fig. 6-6 below, there are various subfigures that depict the use case being

spatially indexed along with its corresponding 2-NN execution steps. This use case is in fact a

simple non-interactive game which has been developed to test the real-time capabilities of the

implemented k-NN algorithm. The main concept of the game is defending the Earth from an

incoming shower of 9 asteroids by launching nuclear bombs against the two closest of them. The

defense module can be seen as a separate AI system composing of a maximum line of range and

the k-NN algorithm. Each asteroid's position is ceaselessly recorded to an R-tree instance, which

is latter queried in contrast with Earth’s position, in order to calculate their correlated distance

and deduct the two closest amongst them.

Figure 6-6 Searching for 2-NN candidates with BFS algorithm

The thumbnail image displayed in Fig. 6-6(a) follows a particular point of view being used for

the purposes of this scenario, while the corresponding inquired R-tree instance can be seen in

Fig. 6-6(b). The colored nodes of the graph denote the paths that have been followed from the k-

NN algorithm during its 2-NN deduction procedure. The overall process is thoroughly described

66

in Fig. 6-6(c), where it becomes evident that the nodes are visited according to their distance

compared to Earth's coordinates. Each one of them is further traversed until a spatial object is

found, which is eventually returned as the nearest neighbor of the query point. The results were

very satisfying in terms of speed and accuracy, taking into consideration not only that the scene

was continuously receiving add/remove node requests, but it had also to update them in real

time. Moreover, R-tree's performance and response were kept in acceptable levels, even though

that this specific R-tree version has not been optimized for indexing moving objects. The latter

one indicates that the implemented algorithm can also be a quite promising approach for

detecting and indexing moving objects in 3D space, through slightly modifying its structure

according to the requirements set by other domains.

In this subchapter, various use cases have been developed in order to present the spatial

reasoning capabilities of the implemented queries. Each one of these cases corresponds to a

carefully planned sui generis scenario, which has been attributed to a different spatial query type.

The reasoning process was thoroughly explained in each query, while their relative results were

checked against the expected outcomes. The latter ones were closely linked to the chosen filled

requirements of the R-tree instance and the indexed objects of the underlying X3DOM scene.

Generally, the implemented spatial query operations were found to be very accurate in their

topological and distance calculations, while at the same time, their execution times were deemed

very satisfying.

 Implication of spatial relations

Leaving aside the provided spatial queries, the implemented R-tree data structure has

been further extended to support advanced spatial reasoning features. Such features come in the

form of spatial predicates that are ultimately represented by topological and directional relations.

Both of these spatial reasoning categories are based on the definition of a flexible computational

model, which relies on various mathematical formulas for the deduction of the appropriate

spatial relations between two objects in 3D space. In Fig. 6-7 below is depicted a spatial

implication scenario, which involved the development of a realistically decorated indoor virtual

environment. The implemented computational model takes advantage of specific indexed objects

from a given R-tree instance, in order to automatically infer their corresponding spatial relations.

This model -of course- is relied on the validation of a predefined set of spatial predicates that

67

come with certain constraints upon these objects’ location. In the following paragraph, a unique

use case has been composed for the sake of experimental evaluation, where its indexing and

spatial reasoning procedures are thoroughly described.

Figure 6-7 Automatic implication of spatial relations between three objects

It quickly becomes clear that this scene provides numerous objects for indexing and spatial

reasoning. However, a small only subset of the available objects was used in order to present an -

as simple as possible- use case. This lies to the fact that the spatial indexing of the entire set

would return hundreds of spatial relationships, complicating thereby this scenario’s purpose and

demonstration. For such reasons, three different objects were chosen and indexed into an R-tree

instance, a dining table, a colorful orb and a shelf. These objects were preferred over the others

due to their special placement into the 3D space. Their corresponding locations allow a

straightforward presentation of the spatial reasoning capabilities provided by the implemented

computational model. At first, each object is found to satisfy the disjoint topological relation,

something that leads them to the deduction of their directional relations. For example, the dining

table is found to be on the right side of the colorful orb and the shelf, while at the same time, it is

placed in front of and below both of them. The inverse directional relationships, left, behind and

above, are automatically applied into the colorful orb and shelf without proceeding to any kind of

additional reasoning formula. On the other hand, the colorful orb and shelf share a common

68

boundary region, indicating a touch topological relation which is included into the mathematical

formula comprising the implemented disjoint set. In this special occasion, the colorful orb is

attributed with the over directional relation when it is compared to the shelf. The latter object

remains to be below the former, keeping the already defined relations unchanged for the rest of

the indexed objects. However, both of these two objects are positioned in a very particular way.

Even though that they are found to be disjoint too, there is no other directional relation that can

be satisfied for them, since their coordinates collection excludes the implication of a left, right,

front or behind relationship. Finally, the complete set of the automatically generated spatial

relations between these three objects is displayed in the same and sole figure of this subchapter.

Besides the before mentioned topological relations, within and overlap relations are

extensively used during the construction of an R-tree instance or the execution of point and

region queries. Moreover, there are still left a few topological relationships that have not been

presented in experimental evaluation chapter, since their placement into the current 3D space is a

bit paradoxical. Such relations are the equal, within and contains, which have been tested and

found to be fully functional for any scenario, but their use is quite limited in the majority of them

due to their complexity and unnecessary reasoning correlations. Finally, despite the fact that such

relations are utilized by an ontological system with SPARQL support, the GUI approach

presented for the purposes of this subchapter, it will significantly suffer in case of thousands or

millions of implicated relations. In case that application’s users desire to maintain such a

solution, they have to come up with an efficient dynamic JavaScript grid library [75] [76] [77],

which provides advanced features for real time manipulation of datasets from classifying and

applying CSS themes upon them, to sorting and searching a finite subset of data.

69

Chapter 7 - Conclusion

This thesis dealt with the problem of spatially reasoning a VR environment in X3DOM

framework. A fast and memory-efficient R-tree data structure has been implemented for the

indexing of 3D content from X3D authored environments. R-tree was chosen thanks to its wide

acceptance in various domains, as one of the best techniques to handle multi-dimensional

datasets. The proposed algorithm has been implemented in JavaScript language to preserve the

independent nature of X3D standard and the plugin-less feature of X3DOM framework. R-tree

provides a range of diverse operations –i.e. spatial queries and spatial relationships- that can

benefit various applications, like GIS, CAD and multimedia. Moreover, the experimental

evaluation results showed that it comes with a great medium between speed, reliability and

practicality, where its indexing and spatial reasoning subtasks support amortized run times based

on the dataset being tested.

By the same token, the agile architecture of the indexing algorithm makes feasible the

spatial registration of dynamic objects, through the provision of a propagation mechanism

tailored for tree topologies. The chosen objects are maintained under a common structure which

may be initialized only once, but it is automatically updated each time an operation perturbs the

spatial arrangement of its corresponding AABBs. This adjustment procedure can be seen as a

self-balancing feature, which not only avoids expensive reinsertion methodologies, but it also

guarantees R-tree’s spatial reasoning validity. The latter one is backed by various mathematical

and algorithmic optimizations that aim at reducing as much as possible the execution time of

spatial queries. Especially in the case of k-NN queries, various alternative solutions were

presented for the approximation of the distance between two objects, while a flexible binary heap

data structure was employed to serve as a partially ordered priority queue.

Lastly, despite the fact that the authored scenes have to comply with the X3D language

and the web-based X3DOM framework as the presentation middleware, the generic structure of

the R-tree instance remains independent of the front-end data format. In this way, there are

various alternatives for the presentation of the results coming from the spatial reasoning upon an

R-tree instance.

70

Chapter 8 - Future work

The implemented R-tree algorithm is heavily based on the classical R-tree data structure,

since its construction complexity and query performance were deemed adequate for the 3D

virtual environments being tested. However, in case of static environments with a large number

of moving objects or interactive environments with deformable objects, a different heuristic

splitting approach has to be adopted for the improvement of space utilization and the execution

of spatial queries. A couple of significant research works [38] [78] introduced new spatial

parameters or proposed light modifications upon the Quadratic algorithm, respectively, aiming to

minimize the overlapping entries and the coverage factor. The aspects of such variants can be

used as a starting point for the authoring of an appropriate splitting methodology, which could be

able to sufficiently deal with the majority of 3D virtual environments.

Finally, the spatial relationships have been optimized to favor rectangular objects in

contrast to other geometric shapes, where two different but interrelated points of interest bear the

responsibility of this phenomenon. The first one lies to the fact that primary target of this work

was a semantic representation of indoor environments. In this type of environments, a

rectangular parallelepiped is the best fitting form of shape for the majority of 3D objects that can

be found in it. The second factor comes to testify this empirical evidence by assigning to each R-

tree’s node a bounding box container, which is used to encapsulate a specific object and its

surrounding space. However, there are virtual environments that originate from delicate domains

with strict specifications that perform expensive geometric operations, from the collision

detection of 3D objects to the selective rendering and management of complex spatial scenes. In

these occasions, a large part of the data structure has to be remodeled to support an advanced

object-oriented geometry container for the unconditional performance of such applications. A

typical container of this kind could be the convex polyhedron, but the authoring of its algorithm

has to be done quite carefully in order to avoid enormous computation time gaps.

71

References

[1] Pittarello, F., & De Faveri, A. (2006, April). Semantic description of 3D environments: a

proposal based on web standards. In Proceedings of the eleventh international

conference on 3D web technology (pp. 85-95). ACM.

[2] Spala, P., Malamos, A. G., Doulamis, A., & Mamakis, G. (2012). Extending MPEG-7 for

efficient annotation of complex web 3D scenes. Multimedia Tools and Applications,

59(2), 463-504.

[3] Zampoglou, M., Spala, P., Kontakis, K., Malamos, A. G., & Ware, J. A. (2013, June).

Direct mapping of X3D scenes to MPEG-7 descriptions. In Proceedings of the 18th

International Conference on 3D Web Technology (pp. 57-65). ACM.

[4] Cao, X., & Klusch, M. (2013, September). Advanced Semantic Deep Search for 3D

Scenes. In Semantic Computing (ICSC), 2013 IEEE Seventh International

Conference on (pp. 236-243). IEEE.

[5] Bilasco, I. M., Gensel, J., Villanova-Oliver, M., & Martin, H. (2006, April). An MPEG-7

framework enhancing the reuse of 3D models. In Proceedings of the eleventh

international conference on 3D web technology (pp. 65-74). ACM.

[6] Zhang, X., Gračanin, D., & Matković, K. (2014, August). Using linked data for

interactive 3D web content integration. In Proceedings of the Nineteenth

International ACM Conference on 3D Web Technologies (pp. 147-147). ACM.

[7] Brutzman, D., & Daly, L. (2010). X3D: extensible 3D graphics for Web authors. Morgan

Kaufmann.

[8] Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific

american, 284(5), 28-37.

[9] Otto, K. A. (2005, May). Semantic virtual environments. In Special interest tracks and

posters of the 14th international conference on World Wide Web (pp. 1036-1037).

ACM.

[10] Bille, W., Pellens, B., Kleinermann, F., & De Troyer, O. (2004). Intelligent Modelling of

Virtual Worlds Using Domain Ontologies. IVEVA, 97.

[11] Kleinermann, F., De Troyer, O., Mansouri, H., Romero, R., Pellens, B., & Bille, W.

(2005). Designing semantic virtual reality applications. In Proceedings of the 2nd

INTUITION International Workshop, Senlis, France (Vol. 61).

[12] Grüninger, M., & Fox, M. S. (1995). Methodology for the Design and Evaluation of

Ontologies.

72

[13] Davies, J., Duke, A., & Sure, Y. (2003, October). OntoShare: a knowledge management

environment for virtual communities of practice. In Proceedings of the 2nd

international conference on Knowledge capture (pp. 20-27). ACM.

[14] Halabala, P. (2003). Semantic metadata creation. In Proceedings of 7th Central European

Seminar on Computer Graphics CESCG (pp. 15-25).

[15] Bilasco, I. M., Gensel, J., Villanova-Oliver, M., & Martin, H. (2005, November). On

indexing of 3D scenes using MPEG-7. In Proceedings of the 13th annual ACM

international conference on Multimedia (pp. 471-474). ACM.

[16] Bilasco, I. M., Gensel, J., Villanova-Oliver, M., & Martin, H. (2005, December).

3DSEAM: a model for annotating 3D scenes using MPEG-7. In Multimedia, Seventh

IEEE International Symposium on (pp. 10-pp). IEEE.

[17] Bilasco, I. M., Gensel, J., Villanova-Oliver, M., & Martin, H. (2006, April). An MPEG-7

framework enhancing the reuse of 3D models. In Proceedings of the eleventh

international conference on 3D web technology (pp. 65-74). ACM.

[18] Figueroa, P., Green, M., & Hoover, H. J. (2002, February). InTml: a description language

for VR applications. In Proceedings of the seventh international conference on 3D

Web technology (pp. 53-58). ACM.

[19] Lenne, D., Thouvenin, I., & Aubry, S. (2009). Supporting design with 3D-annotations in

a collaborative virtual environment. Research in engineering design, 20(3), 149-155.

[20] Chevaillier, P., Trinh, T. H., Barange, M., De Loor, P., Devillers, F., Soler, J., & Querrec,

R. (2012, March). Semantic modeling of virtual environments using mascaret. In

Software Engineering and Architectures for Realtime Interactive Systems (SEARIS),

2012 5th Workshop on (pp. 1-8). IEEE.

[21] De Luca, L., Véron, P., & Florenzano, M. (2005). Semantic-based modelling and

representation of patrimony buildings. In SVE Worksop towards Semantic Virtual

Environments (pp. 1-11).

[22] Kostelijk, T. (2012). Semantic annotation of urban scenes: Skyline and window detection

(Doctoral dissertation, Universiteit van Amsterdam).

[23] Nüchter, A., Surmann, H., Lingemann, K., & Hertzberg, J. (2003). Semantic Scene

Analysis of Scanned 3D Indoor Environments. In VMV (pp. 215-221).

[24] Elseberg, J., Magnenat, S., Siegwart, R., & Nüchter, A. (2012). Comparison of nearest-

neighbor-search strategies and implementations for efficient shape registration.

Journal of Software Engineering for Robotics, 3(1), 2-12.

[25] Shao, T., Xu, W., Zhou, K., Wang, J., Li, D., & Guo, B. (2012). An interactive approach

to semantic modeling of indoor scenes with an rgbd camera. ACM Transactions on

Graphics (TOG), 31(6), 136.

73

[26] Maria Del Carmen Molla Garcia. (2013). Describing scenes by qualitative spatial

relations (Master’s thesis, Royal Institute of Technology, Stockholm, Sweden).

Retrieved from http://www.diva-

portal.org/smash/get/diva2:699637/FULLTEXT01.pdf

[27] Strobl, C. (2008). Dimensionally Extended Nine‐Intersection Model (DE-9IM). In

Encyclopedia of GIS (pp. 240-245). Springer US.

[28] Kontakis, K., Steiakaki, M., Kapetanakis, K., & Malamos, A. G. (2014, August). DEC-O:

an ontology framework and interactive 3D interface for interior decoration

applications in the web. In Proceedings of the Nineteenth International ACM

Conference on 3D Web Technologies (pp. 63-70). ACM.

[29] Kontakis, K., Steiakaki, M., Kalochrsitianakis, M., Kapetanakis, K., & Malamos, A. G.

(2015). Applying Aesthetic Rules in Virtual Environments by Means of Semantic

Web Technologies. In Augmented and Virtual Reality (pp. 344-354). Springer

International Publishing.

[30] Behr, J., Jung, Y., Keil, J., Drevensek, T., Zoellner, M., Eschler, P., & Fellner, D. (2010,

July). A scalable architecture for the HTML5/X3D integration model X3DOM. In

Proceedings of the 15th International Conference on Web 3D Technology (pp. 185-

194). ACM.

[31] Limper, M., Thöner, M., Behr, J., & Fellner, D. W. (2014, August). SRC-a streamable

format for generalized web-based 3D data transmission. In Proceedings of the

Nineteenth International ACM Conference on 3D Web Technologies (pp. 35-43).

ACM.

[32] Wikipedia – The Free Encyclopedia. (2015). JavaScript. Retrieved from

http://en.wikipedia.org/wiki/JavaScript

[33] Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann,

A., … & Volino, P. (2005, March). Collision detection for deformable objects. In

Computer graphics forum (Vol. 24, No. 1, pp. 61-81). Blackwell Publishing Ltd.

[34] Comer, D. (1979). Ubiquitous B-tree. ACM Computing Surveys (CSUR), 11(2), 121-137.

[35] Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching (Vol. 14,

No. 2, pp. 47-57). ACM.

[36] Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., & Theodoridis, Y. (2003). R-

trees have grown everywhere. Technical Report available at http://www. rtreeportal.

org.

[37] Balasubramanian, L., & Sugumaran, M. (2012). A state-of-art in R-tree variants for

spatial indexing. International Journal of Computer Applications, 42(20), 35-41.

http://www.diva-portal.org/smash/get/diva2:699637/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:699637/FULLTEXT01.pdf
http://en.wikipedia.org/wiki/JavaScript

74

[38] Beckmann, N., Kriegel, H. P., Schneider, R., & Seeger, B. (1990). The R*-tree: an

efficient and robust access method for points and rectangles (Vol. 19, No. 2, pp. 322-

331). ACM.

[39] AnandhaKumar, P., Priyadarshini, J., Monisha, C., Sugirtha, K., & Raghavan, S. (2010,

August). Location Based Hybrid Indexing Structure-R kd Tree. In Integrated

Intelligent Computing (ICIIC), 2010 First International Conference on (pp. 140-

145). IEEE.

[40] Li, G., & Tang, J. (2010, July). A new DR-tree K-nearest neighbor query algorithm based

on direction relationship. In Environmental Science and Information Application

Technology (ESIAT), 2010 International Conference on (Vol. 2, pp. 246-250). IEEE.

[41] White, D., & Jain, R. (1996, February). Similarity indexing with the SS-tree. In Data

Engineering, 1996. Proceedings of the Twelfth International Conference on (pp. 516-

523). IEEE.

[42] García, Y. J., Lopez, M. A., & Leutenegger, S. T. (1998, August). On optimal node

splitting for R-trees. In Proceedings of the 24rd International Conference on Very

Large Data Bases (pp. 334-344). Morgan Kaufmann Publishers Inc.

[43] Zhu, Q., Gong, J., & Zhang, Y. (2007). An efficient 3D R-tree spatial index method for

virtual geographic environments. ISPRS Journal of Photogrammetry and Remote

Sensing, 62(3), 217-224.

[44] Greene, D. (1989, February). An implementation and performance analysis of spatial data

access methods. In Data Engineering, 1989. Proceedings. Fifth International

Conference on (pp. 606-615). IEEE.

[45] Ang, C. H., & Tan, T. C. (1997, January). New linear node splitting algorithm for R-

trees. In Advances in Spatial Databases (pp. 337-349). Springer Berlin Heidelberg.

[46] Achtert, E., Kriegel, H. P., & Zimek, A. (2008, January). ELKI: a software system for

evaluation of subspace clustering algorithms. In Scientific and Statistical Database

Management (pp. 580-585). Springer Berlin Heidelberg.

[47] Kao, B., Lee, S. D., Lee, F. K., Cheung, D. W. L., & Ho, W. S. (2010). Clustering

uncertain data using voronoi diagrams and r-tree index. Knowledge and Data

Engineering, IEEE Transactions on, 22(9), 1219-1233.

[48] Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., ... & Steinberg, D.

(2008). Top 10 algorithms in data mining. Knowledge and Information Systems,

14(1), 1-37.

[49] Sankaranarayanan, J., Samet, H., & Varshney, A. (2007). A fast all nearest neighbor

algorithm for applications involving large point-clouds. Computers & Graphics,

31(2), 157-174.

75

[50] Zhao, J., Long, C., Xiong, S., Liu, C., & Yuan, Z. (2013). A New K Nearest Neighbours

Algorithm Using Cell Grids for 3D Scattered Point Cloud. Elektronika ir

Elektrotechnika, 20(1), 81-87.

[51] Roussopoulos, N., Kelley, S., & Vincent, F. (1995, June). Nearest neighbor queries. In

ACM sigmod record (Vol. 24, No. 2, pp. 71-79). ACM.

[52] Hjaltason, G. R., & Samet, H. (1999). Distance browsing in spatial databases. ACM

Transactions on Database Systems (TODS), 24(2), 265-318.

[53] Eberly, D. (2010). Fast inverse square root (revisited). Technical report, Geometric

Tools, LLC.

[54] Weisstein, Eric W. "Newton's Method." From MathWorld--A Wolfram Web

Resource. http://mathworld.wolfram.com/NewtonsMethod.html

[55] Tsai, C. F., & Lin, C. Y. (2010). A triangle area based nearest neighbors approach to

intrusion detection. Pattern Recognition, 43(1), 222-229.

[56] Banerjee, A., Ghosh, A., & Das, M. (2015). High Performance Novel Square Root

Architecture Using Ancient Indian Mathematics for High Speed Signal Processing.

Advances in Pure Mathematics, 5(08), 428.

[57] AUTODESK Knowledge Network. (2015). Data Model: Spatial Relationship Settings.

Retrieved from http://knowledge.autodesk.com/support/infrastructure-map-

server/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/MapServer-

Help/files/GUID-C628E985-0F7A-4FE3-B2C3-27630396E551-htm.html

[58] Koranne, S. (2011). Boost C++ libraries. In Handbook of Open Source Tools (pp. 127-

143). Springer US.

[59] Kothuri, R., Beinat, E., & Godfrind, A. (2004). Pro oracle spatial. Apress.

[60] Piórkowski, A. (2011). Mysql spatial and postgis–implementations of spatial data

standards. Electronic Journal of Polish Agricultural Universities, 14(1), 1-8.

[61] Daum, S., & Borrmann, A. (2014). Processing of Topological BIM Queries using

Boundary Representation Based Methods. Advanced Engineering Informatics, 28(4),

272-286.

[62] Mark, D. M., & Egenhofer, M. J. (1994). Modeling spatial relations between lines and

regions: combining formal mathematical models and human subjects testing.

Cartography and geographic information systems, 21(4), 195-212.

[63] Papadias, D., Sellis, T., Theodoridis, Y., & Egenhofer, M. J. (1995). Topological

relations in the world of minimum bounding rectangles: a study with R-trees (Vol.

24, No. 2, pp. 92-103). ACM.

http://mathworld.wolfram.com/NewtonsMethod.html
http://knowledge.autodesk.com/support/infrastructure-map-server/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/MapServer-Help/files/GUID-C628E985-0F7A-4FE3-B2C3-27630396E551-htm.html
http://knowledge.autodesk.com/support/infrastructure-map-server/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/MapServer-Help/files/GUID-C628E985-0F7A-4FE3-B2C3-27630396E551-htm.html
http://knowledge.autodesk.com/support/infrastructure-map-server/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/MapServer-Help/files/GUID-C628E985-0F7A-4FE3-B2C3-27630396E551-htm.html

76

[64] Freeman, J. (1975). The modelling of spatial relations. Computer graphics and image

processing, 4(2), 156-171.

[65] Johannsen, K., Swadzba, A., Ziegler, L., Wachsmuth, S., & De Ruiter, J. P. (2013). A

Computational Model for Reference Object Selection in Spatial Relations. In Spatial

Information Theory (pp. 358-376). Springer International Publishing.

[66] Hayward, W. G., & Tarr, M. J. (1995). Spatial language and spatial representation.

Cognition, 55(1), 39-84.

[67] Schwering, A., & Raubal, M. (2005). Spatial relations for semantic similarity

measurement (pp. 259-269). Springer Berlin Heidelberg.

[68] Herhut, S., Hudson, R. L., Shpeisman, T., & Sreeram, J. (2012, June). Parallel

programming for the web. In Proceedings of the 4th USENIX conference on Hot

Topics in Parallelism, HotPar (Vol. 12, p. 1).

[69] WHATWG HTML Living Standard. (2015). Web workers. Retrieved from

https://html.spec.whatwg.org/multipage/workers.html#workers

[70] Stell, J. G. (2004). Part and complement: Fundamental concepts in spatial relations.

Annals of Mathematics and Artificial Intelligence, 41(1), 1-17.

[71] Kong, H., Jung, K., Choi, J., Kim, W., Kim, P., & Park, J. (2003). Representing the

spatial relations in the semantic web ontologies. In AI 2003: Advances in Artificial

Intelligence (pp. 77-87). Springer Berlin Heidelberg.

[72] McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language overview.

W3C recommendation, 10(10), 2004.

[73] O'Connor, M. J., & Das, A. K. (2009, October). SQWRL: A Query Language for OWL.

In OWLED (Vol. 529).

[74] W3C Recommendation for “High Resolution Time” (2012). Performance Interface.

Retrieved from http://www.w3.org/TR/hr-time/

[75] Manricks, G. (2013). Instant JqGrid. Packt Publishing Ltd.

[76] DataTables. (2015). Table plug-in for jQuery. Retrieved from http://datatables.net/

[77] Slickgrid. (2014). A lighting fast JavaScript grid/spreadsheet. Retrieved from

https://github.com/mleibman/SlickGrid/wiki

[78] Al-Badarneh, A. F., Yaseen, Q., & Hmeidi, I. (2010). A new enhancement to the R-tree

node splitting. Journal of Information Science, 36(1), 3-18.

https://html.spec.whatwg.org/multipage/workers.html#workers
http://www.w3.org/TR/hr-time/
http://datatables.net/
https://github.com/mleibman/SlickGrid/wiki

77

Appendix A - Glossary of Terms

SPARQL (SPARQL Protocol and RDF Query Language): a Semantic Web standard and the

most widely used query language for RDF datasets. Its latest protocol provides improved

performance and advanced retrieval capabilities, thanks to a set of unique features like SPARQL

algebra, custom filter functions, aggregation, various storage systems support, etc.

XSLT (Extensible Stylesheet Language Transformations): a language that comes with a very

strict vocabulary for the generation of an XML document, based on a specific formatting and a

source XML-based document.

ICP (Iterative Closest Point): a closest point approximation algorithm which returns the most

optimal paths between clouds of points. Its efficiency and accuracy can be further improved by

consecutively repeating its algorithmic procedure.

RANSAC (Random Sample Consensus): an iterative approach for the estimation of a

mathematical model’s outcome based on the manipulation of a given dataset. It is still an active

area of research in computer vision domain.

WebGL: a novel OpenGL ES 2.0 approach for the rendering of 2D and 3D content, natively and

plugin-less in any typical browser and device. It provides a JavaScript API and is totally

independent of the underlying platform and operating system.

BST (Binary Search Tree): a tree data structure which boosts common tree operations by

defining that each non-leaf node must have at most two child nodes. Amongst them, the left node

holds a value less than the value of its parent, while the right node holds a value greater than the

value of its parent.

OBB (Oriented Bounding Box): an arbitrary oriented bounding box which makes use of

heuristic methodologies to calculate its rotation and perimeter based on its enclosed object or set

of objects.

78

MBR (Minimum Bounding Rectangle/Region): is defined as the smallest possible rectangular

area that successfully covers the total area of its node’s entries. The same algorithmic pattern is

followed for any type of entry, whether it is an internal node, leaf node, or spatially indexed

record.

Moore neighborhood: a widely used neighborhood algorithm for games and graphics editors,

which surrounds a target area with a predefined number of its cuboid siblings according to the

cellular automata theory.

Bounding Container: a methodology which applies for the inclusion of a geometric object in a

closed volume to improve the runtime speed of computationally expensive operations, like

collision detection or ray tracing.

Level-order traversal: a breadth-first tree traversal which visits every node level by level. It

starts from the root node and continues to its direct child nodes. Then, it traverses every

grandchildren, great grandchildren, and so goes on until all nodes have been successfully

traversed.

Pre-order traversal: a depth-first tree traversal which visits every parent node before its

children. It starts from the root node and then are recursively traversed the nodes of the left

subtrees before the nodes consisting the right subtrees.

OGC (Open Geospatial Consortium): an alliance of international organizations responsible for

developing data mining services and implementing interface specifications, which are ultimately

made available as open standards for geospatial information applications.

Vague region: a term which is used to imply that an object’s boundary alone, does not suffice to

spatially categorize it into a specific region. This uncertainty is usually overcome with the

introduction of additional spatial factors.

79

RCC (Region Connection Calculus): an alternative -and contradictory to DE-9IM- spatial

reasoning methodology, which segments the search space into various spatial regions based on a

fixed set of topological relations.

ElevationGrid: a special type of geometry defined in X3D standard for the generation of

polymorphic terrains. Its diversity is based on the definition of a set of grids, which are attributed

with a height value on specific row and column coordinates.

