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Abstract

Over the past few years, VR environments have been widely adopted in numerous
domains as the de facto artificial reality solution for the immersive experience of simulated
worlds. Moreover, their practicality was further enhanced with their integration in HTML5-
capable browsers via X3DOM framework, while the introduction of Semantic Web gave birth to
various technologies for their attribution with semantic metadata. However, all these additional
layers of information focused into the sufficient representation of geometric, textural, or
ontological concepts, dismissing an efficient spatial representation mechanism. This thesis aims
to provide such a mechanism with the proposal of a 3D R-tree data structure for the spatial
indexing of X3DOM scenes and the establishment of a computational model for the automated
implication of 3D content’s spatial relations. Finally, the indexed dataset can also be queried by a
set of spatial predicates, laying in this way the foundations for a spatial query language on the
Web based on X3D standard and X3DOM framework.
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Preface

Having worked in the area of semantics before, | have become quite familiar with the
current state of art in Semantic Web and virtual reality frameworks. The majority of these
implementations focused into the efficient semantic representation of specific aspects from
various domains. Amongst them, only a few immature works dealt with the 3D spatial
arrangement between the objects of virtual environments. Such a lack is not only thoroughly
elucidated in this thesis, but it is also resolved with the provision of a computational model for

the implication of spatial relationships in X3DOM framework.



Chapter 1 - Introduction

In our days, an immeasurable amount of visual information is enclosed in digital form,
which is mainly broadcasted through World Wide Web. This kind of information is usually
rendered with a virtual reality (VR) environment according to the underlying application’s needs.
Typical domains of use for such applications range from complex simulations and video games,
to realistic representation scenes and interactive learning environments. However, one problem
that quickly arises is the quality of the conveyed information, since in the majority of the
situations it does not contain any semantic description. Moreover, the current 3D visualization
formats come across various problems as concerns this semantic annotation, since their main
purpose is the modeling of 3D content rather than the definition of a semantic description
scheme. A characteristic example regards the adequate annotation of the objects’ geometry,
which however comes at the cost of the logical or functional semantics. In order not to suffer
such losses, the definition and integration of the semantic information had to be decided before
the implementation of the environment itself.

However, the authoring of such environments comes along with a set of restrictions in its
interoperability and extensibility, making its future modification difficult if not impossible at all.
This lies to the fact that each VR environment has particular requirements regarding its
functionality and performance. To fulfill these requirements in the best possible manner, a
variety of diverse data models and network protocols are utilized in each occasion. This
heterogeneity makes difficult to develop or adapt an existing software system based on each type
of environment, since such a thing would not only require the modification of the system's
interface, but also radical changes in its backend services.

Previous attempts to resolve the aforementioned issues have already been performed
using various technologies. In [1] the MPEG-7 standard has been deployed in order to enhance
the querying and navigation processes, while in [2] and [3] the standard itself was extended with
various descriptors, in order to efficiently annotate complex X3D scenes. On the other hand,
there were other approaches, which proposed platforms either for the efficient indexing and
retrieval of XML-based annotated 3D scenes [4], or for the annotation of 3D scene objects with

semantic descriptions closely related to their conceptual meaning and functionality [5]. The



majority of these research works explored successfully the semantic conceptualization of the 3D
objects in a virtual environment, along with their corresponding functions and relationships.
Moreover, they emphasized the main idea behind any semantic representation scheme, which is
none other than the efficient semantic annotation of a 3D scene with linguistic predicates.
However, all of them failed -or didn't intend- to deliver a spatial representation of the underlying
content. Thus, a standard generic tool has to be developed for the description of multimedia
content, capable of filtering a VR environment through specific criterions and attribute its
contained objects with the appropriate spatial semantics. This study encounters with the
challenge of describing a virtual environment and its 3D contents, through the indexing of the
latter in a tree data structure for the implication of their relative spatial relations and spatial
reasoning purposes. In the upcoming sections is thoroughly discussed the algorithmic approach
followed in this work, while experimental results from various developed use cases are explained

and evaluated in the last section of this thesis.



Chapter 2 - Motivation

Today, virtual reality is available to everyone thanks to the exponential advances in Web
and its support from various devices and platforms. Such factors broadened the scope of 3D
applications, making their publishing and sharing a practical requirement [6]. However, the latter
two requirements are difficult to be met, since all these numerous environments are thriving from
3D content that lacks of a high-level description layer. Moreover, each one of them has been
authored according to a specific 3D graphic format, which usually comes with an unfriendly
web-based interface. So, it is crucial more than ever, the enrichment of these environments with
semantic concepts relative to what kind of environment is being presented, what objects are
contained, their spatial placement compared to others, etc. The most of research works have
already provided a solid foundation for the semantic representation of geometric and textural
aspects of these environments, but there is a significant gap in the literature regarding a sufficient
spatial reasoning methodology between their 3D contents.

This thesis aims to deal with the above mentioned issues by providing a 3D R-tree data
structure —implemented with JavaScript language- for the spatial reasoning and semantic
representation of the objects contained into such environments. The spatially indexed VR
environments comply with the X3D standard [7], which is a widely used XML-based
presentation format for the creation and visualization of interactive 3D content. X3D alone is
powerful enough to describe the majority of virtual environments, but it does not specifically
define a way to semantically annotate or reuse the objects that compose such environments. Due
to this inability, it was deemed necessary the creation of a semantic concepts layer which was
able to extract spatial relations between numerous objects in a virtual environment. The spatial
reasoning process is coupled with X3DOM framework for presentation and ease-of-use
purposes. This spatially semantic description can find appliance to a wide range of domains
ranging from the creation of more realistic 3D scenarios, or the execution of advanced queries
with proximal and faster content searching. Lastly, the definition of such spatial relationships not
only provides complex and richer capabilities to the content providers, but also boosts the virtual
potentials of the end-users.



Chapter 3 - Related work

A lot of research has been conducted since the introduction of Semantic Web [8] about
the enhancement of the existing Web information in a machine-understandable way. The
majority of these works took advantage of various Semantic Web technologies, like RDF, OWL
and SPARQL to semantically describe and retrieve any kind of information. However, because
the use of such semantic languages is clearly based on the selection of specific domain concepts
and the correlation between these concepts and the underlying information, different routes of
defining and exploiting the wide range of semantic knowledge had to be found. Most of them
made use of the MPEG-7 standard thanks to its diverse content description and retrieval
capabilities, while considerably less resorted to extending a 3D presentation standard or
embedding metadata into the objects of the 3D world. Other approaches turned to more advanced
-but specific purpose- solutions, like the implementation of platforms for the efficient semantic
annotation of patrimony buildings and urban scenes, or the extraction of spatial semantics from
real-world scanned environments. The latest and most noteworthy studies in these areas are
described in the upcoming chapters, where each one has been classified by the underlying
standard being used for the semantic representation of virtual environments. Last but not least,
they not only record the current state of art among these technologies, but they also denote the

practicality of the implemented frameworks in various domains.

Semantic Web solutions

In the most cases, VR environments are designed in such a way that favors the human
perception capabilities by laying emphasis on presentation and interaction features. However,
such technical approaches along with the diversity of data models which are traversed through
various network protocols, narrow down the usability of the underlying information from a
machine scope. Over the past decade various Semantic Web technologies emerged in order to
address this problem, with RDF (Resource Description Framework) proving to be the
cornerstone of Semantic Web, capable of applying an abstraction layer to the underlying
information. With the use of RDF terminology we are able not only to attribute semantic

information to 3D content, but also guarantee the utilization of such information in a machine-



readable way. The whole procedure is based on the efficient mapping of the information
contained into a VR environment, in the form of subject-predicate-object statements. These
statements known as RDF triples are capable of describing conceptual and abstract information
amongst the objects of this scene. Moreover, thanks to its high-level representation syntax and a
variety of serialization formats, RDF also proved quite efficient in the development of
application logic systems that deal with protocol messages, which were expressed as common
events in order to conceal unnecessary low-level complexity [9]. This work pointed out the
potential usability of separating the development of VR environments into high and low-level
phases that both make use of an ontology language. Such an approach was followed in [10],
where a DAML+OIL ontology -a language which was later replaced by OWL- was used as a
modeling tool to represent various concepts of a specific domain along with a finite set of
relationships between these concepts. This mapping of the domain knowledge to an ontology
terminology, led to an explicit distinction of the presented objects and an improved
comprehension of the properties that take place into a 3D scene from the scope of the end-user.
Ultimately, this high-level ontological representation where concepts and terminology have been
borrowed from a specific domain, gave birth to various semantically designed applications.
Sometimes, such applications made use of additional standards for the exploitation of the
underlying semantics. In [11], the X3D standard was used thanks to its presentation and
interaction features as the intermediate interface between the system and the user, while at the
same time, all the semantic information of this environment was subsumed in an MPEG-7 file
allowing its future utilization.

From the above research works, it is quite evident that regardless of the application’s
goals the semantic representation of a virtual environment is vividly based on an ontology, which
contains the very basics and most commonly used features that can be attributed in such
environments such as name, color, size, etc. [12] [13]. These features along with a predefined set
of conceptual relationships coming in the form of ontology properties, form a content-oriented
semantic model that is capable of sufficiently annotating objects, but unable to describe the VR
environments’ interactions, communications and behaviors. To resolve such issues, various
platforms have been implemented using a wide range of technologies, from hardware-based

approaches to the following MPEG-7 standard.



Leveraging MPEG-7 features

The MPEG-7 standard has been widely accepted as the best multimedia description tool,
making it the perfect candidate to annotate audio, image and video elements. However, the first
versions of the standard lacked the ability to sufficiently annotate the elements of a 3D scene
from a pure semantic scope. In [14], the newly (at that time) presented MPEG-7 was chosen as
the appropriate language to semantically annotate X3D, VRML or SVG scenes. Their semantic
description was heavily based on the Semantic Entity, Semantic Attribute and Semantic Relation
tools provided by MPEG-7 standard, where they were used for the creation and storing of
metadata about the spatial relationships between the objects of the scene. Their implementation
also involved the translation of the generated MPEG-7 graphs into an interactive visual
application, as an alternative visualization solution to the textual nature of MPEG-7 which can
become quite difficult to comprehend in complex 2D/3D scenes. Besides that notable attempt,
throughout the last years various amendments have been added to the standard in order to
guarantee a semantic conceptualization.

A different indexing procedure of a VR environment using MPEG-7 was proposed in
[15], where MPEG-7 Descriptors and a Description Definition Language (DDL) were used.
Their work adopted the notion of segment for the hierarchical indexing and attribution of
semantic information. MPEG-7 MediaLocatorType was used to structurally localize 3D objects,
while RegionLocatorType introduced geometric localizations. The link between those two
Descriptors was made feasible through 3DSEAM (3D Semantics Annotation Model), a platform
which made use of various concepts to define real-world objects, semantic profiles, properties
and relations with the use of the before mentioned 3D region/object locators. However, the
proposed framework [16] [17] had to surpass a number of obstacles, such as the implementation
of an automatic localization and annotation system, and the definition of a query language
capable of applying semantic-based queries on the generated instances of this model.

After some years, motivated by the necessity of improving the annotation effectiveness of
3D models and embracing once more MPEG-7 Descriptors, [2] implemented an efficient and
complete description mechanism for the semantic annotation of X3D nodes. The proposed
annotation scheme dealt exclusively with X3D scenes and it was capable of describing not only
the geometrical and appearance characteristics of the 3D content, but also its animation and
interactivity features. The description mechanism was based on the addition of several



Descriptors, extending the original MPEG-7 Visual and Metadata Descriptors of the standard
and defining a new MPEG-7 Schema Definition for the validation of the description file. The
latter file was generated through the employment of an XSLT algorithm, capable of automatically
transforming any X3D object into its corresponding MPEG-7 description. Fig. 3-1 depicts a

simplified version of the algorithmic process that takes place for the annotation of an X3D table.

€ mayTanisx ] wyTamier |
EF [Foe: MjTebiesa Fie| EIf [ File: MyTablamp?  Fue| Lt
ILE.E{:.,{:D LLE-EJHMM? LL
s = DTS LL B4} Description Tvee| LL
} E{ynsan - E14} DescriptionMstansts LL
@4y somne ¢ b y ProTESID
} L@{} shape "E{} MuibmedizContent Tre| LL
lL L4} Transform LL o =W LL
lL v = DEF - E4 } Mutbimedia E
IL = transiation LL @14 ¥ StructursdColiection LL
IL LE 4 ) shaps ‘B4 ) Colection rvre|
IL ..... =DEF LL ..... =u LL
IL ..... = containsrFisid ‘B4 § ContantColection %
IL 14} Appearancs b =M
} £ = containerFiia o = name LLE
[ 4 § ImageTaxturs Contant rvrel
i @4 Material Eﬂ: b o LL
l( £... = containsrFisk LE ¢y Muttimeds
lL =UsE @4} FtructursdColisction
IL = DEF ‘@4 § DescriptorColisction
IL = ambsntintensity | LL
IL = shininsss e = NEMS LLE
= transparsncy H
} i = OITUBSCOIOT HI?“ DB;:,?:;BDEI E
L. = speularColor =on
‘m{}Box = DEJme LL
[ 4 » Cylindsr ) DominantColoriD T
; BoundingBox3D sizs
“[E4 } BoundingBoxs0Cantsr
‘@ 4 b DescriptorColisction et
----- 4} Relationships s

Figure 3-1 Annotating an X3D object using MPEG-7 Descriptors

At first, a Profile3D datatype is used to identify the X3D profile being used. Afterwards, the
scene is scanned for Transform nodes, where each one is represented by a ContentCollection
Descriptor. The latter ones retrieve all the information that can be found inside these nodes, like
geometric shape, color, material, etc. In the case that a Material node comes with a texture, its
path is recorded with the assistance of the MediaURI element. In addition to the displayed
example, plenty of other Descriptors and elements are provided to annotate complex scenes.
Moreover, the extended MPEG-7 framework was used in conjunction with other MPEG
standards (MPEG-21, MPEG-4) enhancing the indexing, retrieval and reusability capabilities of
an online advertising platform [3]. Finally, this research work still remains in continuous

progress aiming to annotate even more X3D nodes, such as Sound or AudioClip nodes.



Designing semantically-rich VR environments

Besides the MPEG-7 area of solutions, there were also a few remarkable works with
mixed results on the direct manipulation of the 3D content found in a VR environment. One of
the first works in this area [18] proposed a new X3D profile dedicated to the description of
interaction techniques and the design issues met in such environments. The proposed profile
named InTml -which stands for Interaction Technique Markup Language- composed of various
components which guaranteed the co-existence of developer and designer roles under the same
application. However, the presented description language gave birth to serious defects, such as
underperformance during the scene’s navigation and the software's inability to detect non-pc
devices, affairs that come in conflict with the expeditious and interoperability traits established
from the X3D standard.

Staying in design territory but extending the applicability of semantics to various 3D
presentation formats, [19] implemented an annotation model for the enhancement of
communication and knowledge management between the developers and end-users. The
presented model was composed from three separate but interconnected components which were
respectively responsible for the presentation format of the annotation, the placement of the
annotation in VR environment, and the storing of additional data (i.e. metadata) about the
annotation. Such annotations were able to be placed directly in any object of the scene, but their
indexing procedure was based on an ontology unable to cover the domain knowledge
sufficiently, resulting to the continuously adjustment of the presented model each time a new
visual concept had to be added. Taking into account this deficiency and using a novel UML
modeling approach, MASCARET Framework [20] went one step further in the semantic
representation of 3D content by covering system-oriented semantics. Unlike the content-oriented
solutions provided by the Semantic Web stack of technologies, MASCARET focused into the
creation of intelligent semantically environments comprising not only the classical domain
knowledge, but also the available set of interactions along with the relative behavior of
participant entities. The framework developed a number of scenarios, which emphasized the
simulation of human activities and interaction tasks in a typical VR environment. The same
scenarios were later used for validation purposes, providing quite satisfactory results in the

proposed semantic modeling methodology.



Dealing semantically with real-world problems

An alternative path to the above mentioned multimedia protocol-driven solutions lies to
the use of advanced Al techniques for the semantic representation of specific 3D content. The
semantic description and 3D representation of patrimony buildings [21] showed that it was
deemed necessary the met of two conditions, in order to mine all the necessary information
without losing any semantics inscribed on architectural shapes. The first condition relates to an
immature but realistic 3D representation of the patrimony building based on the existing
architectural patterns, while the second one concerns the deduction of the appropriate semantic
information stemming from this 3D model. The combination of these two conditions was able to
formalize the architectural knowledge within a finite number of architectural objects, where each
one was qualified by various domain concepts. In the end, these objects composed a VR
environment enriched with architectural semantic information, accessible via the GUI of a
utilitarian platform. After a few years and changing the domain of interest from heritage
buildings to urban scenes, it was presented a system [22] capable of adding semantics for the
efficient skyline and windows detection. Their purpose was to imitate the human brain
perspective capabilities, which lay into the fact that humans are able to immediately dissociate
similar or intersecting objects even when their point of view suffers from distortion or obstacles.
Their system was based on the combination of the FIT3D Matlab toolbox and a skyline detection
algorithm, producing satisfactory results after being tested on various 3D urban scenes. Even
though the derived semantics were quite limited compared to the human perception abilities, it
was proved a valuable start towards the distinction of intersecting objects in real-world
environments.

On the other hand, the rapid development of hardware over the last years led to more
advanced and interactive approaches as concerned the mining of semantic information from 3D
environments. In [23] was firstly presented the idea of a semantic net which contains and
implements general knowledge of indoor environments. However, even though that their
approach was able to represent the majority of indoor environments, they dealt with the 3D
scanned representations of real world environments. The initial feature extraction was done with
a 3D laser scanner using a combination of ICP algorithm and RANSAC approach -and then-
nodes of the semantic net represent the entities of these environment, which are accompanied

with relationships and constraints between them. Despite the fact that their semantic concepts



were well-defined and well-structured, this semantic interpretation was purely boosted through
the 3D analysis of the extracted features. Moreover, ICP implementations tend to find appliance
in shape registration problems [24], where the former is combined with various types of data
structures for the registration of nearest neighbor queries.

After almost a decade and following the same pattern, it was developed a system capable
of modeling real world indoor environments with the assistance of an RGBD camera [25]. At
first, it was taking place the segmentation and labeling of the captured images, which
differentiated the models that this indoor environment was composed of. Afterwards, a 3D shape
matching algorithm replaced each segmented region with the most identical 3D model found in a
database, ultimately leading to a 3D representation of the captured real world environment.
However, the recognition accuracy of the system was clearly depending on the quality of the
captured depth data, and the final reconstructed environment lacked of some significant semantic

features (such as the geometrical information of the objects).

Contribution of semantics to spatial arrangement
As we can see, the majority of research works focused into the rendition of a VR
environment and its objects with semantic terminology, paying little attention to an efficient
space interpretation scheme. A recent work [26] in this area adopted various spatial relations in
order to qualitatively represent a 3D space. A spatial relation is any relation that specifies how an
object is located into the space in relation to another object according to a topological,
directional, or distance relation. A finite set of spatial relations drawn from these three types of
relations defined two distinct modes of semantic spatial knowledge:
% The topological spatial knowledge composed of on, in, at, near and surrounded spatial
relations
s The view-point dependent spatial knowledge composed of right, left, between, in front of,
behind, above and below spatial relations
The selection and demarcation of these spatial relations were based on the human
reasoning capabilities, aiming at a faster and more accurate settlement of reasoning procedures
(such as guiding a visual object search). However, some of the chosen topological relations come
in contrast to the space relation theory, which states that any topological relation should be

invariant to rotation, translation and scaling transformation [27]. Keeping in mind the latter one

10



and taking into consideration that not all types of semantic frameworks have to categorize their
corresponding spatial relations, DEC-O [28] [29], an ontological framework for interior
decoration applied a more generic spatial arrangement. In this work, the semantic spatial
knowledge of the implemented OWL-DL ontology was based on the definition of various object
properties reflecting a wide range of spatial relations, without being necessary their grouping to
one of the three most commonly used spatial relations types. A small subset of these spatial
relations is presented in the following Fig 3-2, where each one corresponds to a different OWL
object property of the instantiated interior room-space. The room-space is cooperating with
X3DOM framework to enhance the presentation and interactivity capabilities of the application,
while Apace Jena framework is used to traverse the underlying OWL ontology. In this example,
the end-user of the application has selected the desired X3D object, which in turn returns its
spatial relationships with the rest of the objects. Doing so, it was made feasible a fast and reliable
mapping of the location of objects that coexist in the 3D scene. However, this approach lacked
the ability to automatically attribute space annotations to the existing objects or to efficiently
represent the correlation of these objects compared to the 3D space itself. Its primary target was
the implementation of an ontological framework for the annotation of interior room-spaces,

rather than providing an automated spatial reasoning mechanism.
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Choose an object from a list
soden Coffee Table »  Show Properties

den
Property Name
e, Wehing _ Of

Wo

Figure 3-2 Spatial relations disclosure in DEC-O framework
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Among others, this study takes into consideration the lack of the latter feature in DEC-O’s
annotation mechanism, implementing and providing an efficiently methodology for the
deduction of such spatial relationships, which is thoroughly described in the following chapters
of this thesis. Last but not least, the presented approach is not only independent of the underlying
platform being used, but it can be also easily integrated in various systems to enhance their
corresponding automated capabilities, like supplementing the spatial relations of DEC-O without
any input or further action from the end-user of the application.
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Chapter 4 - Components

It is common knowledge that the VR representations of real world environments are far
more attractive and realistic than their corresponding 2D. This notion has been further
acknowledged over the last years through the elevation of various multimedia software products
and the increased rendering of 3D content, thanks to the graphics hardware acceleration. Today,
X3D standard provides advanced virtual and augmented reality capabilities that cover a wide
range of domains, leaving far behind other 3D visualization technologies. It has been publicly
acclaimed as the mainstream visualization format on the Web, while the last years its usability
was further boosted due to its adoption from the X3DOM framework. X3DOM makes possible
the publishing and manipulation of X3D scenes as DOM elements in any HTML5-capable
browser, turning X3D standard also into an interchange format for the declaration of 3D
interactive content on the same medium. The rendering process is supported by various back
ends, including WebGL, which is the latest tech trend for the plugin-less rendering of 3D content
assisted only by the graphics processing unit of the system. The smooth cooperation between
these standards and their interoperability amongst various operating systems and devices
(desktop computers, smartphones, etc.) are guaranteed through the usage of JavaScript as the
main programming language. Its platform independence, ease of use and scalability features do
not only meet the requirements set by this study, but they also enhance the implemented
algorithm’s future potentialities. A short introduction to the capabilities of the aforementioned
technologies is described in the following subchapters.

Extensible 3D (X3D) Graphics
Today, X3D is the most widely used standard for the presentation of 3D content on the
web, defining a runtime environment and a delivery mechanism encoded usually in XML format
and represented as an n-ary tree. The architecture of the standard complies with various 1ISO
standards, providing three different encoding options, ensuring its applicability to a wide range
of areas and supporting every browser on the Web. One of the most remarkable characteristics of
its architecture lies to the existence of variform profiles, where each one defines explicit

functionalities for closely related target groups. This architectural layout enabled not only the
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rapid expansion of X3D to mobile devices such as smartphones and tablets, but also gave the

opportunity to software developers to choose amongst a subset of the implemented

functionalities, absolving them from the necessity of conforming with the entire specification

sheet of the standard. The majority of these profiles [7] along with a brief description of their

functionality and possible areas of use are briefly described below, accompanied by an

illustration of the tiered architecture in Fig. 4-1:
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Core is the profile comprised of the absolutely minimum required components that compose
any X3D scene. However, because of its extremely minimal nature it is rarely met in
applications.

Interchange is one of the most widely used profiles of the X3D standard. It supports a variety
of features -such as geometry, textures, lighting and animation- for the rendition of geometric
models, while at the same time its applicability is a trivial procedure since it does not define
any runtime rendering model.

CAD Interchange contains the majority of Interchange
profile, plus a few additions targeting at the efficient geract,
compilation and integration of CAD application’s data as
an interactive X3D application.

Interactive is a slightly component-richer X3D profile

compared to the Interchange one, specializing at the

interaction of the end-user with the 3D environment via

Figure 4-1 The tiered

architecture of X3D profiles

the provision of advanced lighting, motion detection and
navigation nodes.

MPEG4-Interactive combines the capabilities of Interactive profile with the standards set by
MPEG-4 for the efficient usage of X3D environments in broadcast and mobile applications.
Immersive profile not only implements the same components as the Interactive profile, but
also offers several features, such as the audio support, weather effects nodes and script
functionality (X3D-EcmaScript). These features maximize the total immersion and
effectiveness of simulation and gaming applications, making this type of profile to
continuously gaining ground amongst the others.

Full profile contains the entire set of components determined by the X3D specification. This

profile extends the Immersive profile with four different components, the Distributed
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Interactive Simulation (DIS), Humanoid Animation (H-Anim), Non-Uniform Rational B-
spline Surfaces (NURBS) and GeoSpatial. These components find appliance to very specific
and complex domains, such as the synchronized 3D simulations, character animations,
medical implementations and GIS applications, respectively.

The latest stable release of the X3D standard is the version 3.3 enumerating 41
components that constitute the aforementioned profiles. Each component provides a set of nodes
with similar functionalities, designating an articulation of different levels based on the
characteristics of these nodes that range from the definition of geometric primitives and their
corresponding transformations, up to the settlement of alternate content and multi-level
representation. Thereby, plain applications are free to use a low-level profile without serious
trade-off on the performance of the underlying 3D content, while demanding applications can
chose according to their presentation and interaction needs, amongst the available high-level
profiles. On the other hand, regardless of the chosen profile, X3D offers a flexible mechanism
for the inclusion of additional data about the relative X3D scene. These data are enclosed in
metatags, which are in turn encapsulated into the unique head tag of the XML serialization. The
X3D specification provides a finite number of metatags that can sufficiently annotate any scene
with the most commonly used information, such as the name of the creator, date created, title of
the environment, license file, etc. Even when these tags are deemed inadequate, the standard
always allows to the user to define his own tags, guaranteeing in that way a decent metadata
description scheme of the X3D scene. However, its capabilities do not stop here since the
standard also defines SAI (Scene Access Interface), an abstract API responsible for the
cooperation of X3D with different technologies. SAl is a programming interface used for the
establishment of connection between the X3D language and an external programming language,
like Java or JavaScript. The utilization of such languages provides powerful interaction features
and improved behavior on the scene’s elements, while any communication that takes place is
achieved through the exchange of specific events among the participating languages.

All of the above point out the X3D standard's rich and polymorphic nature, making it the
ideal representation format for a wide range of domains from engineering and scientific to
architecture, multimedia and entertainment. Moreover, the X3D standard has already made great
strides compared to its predecessor VRML, being adopted by various XML-based languages
(HTML5, XHTM, SVG, etc.) and the last years strives to become the 3D standard for the World
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Wide Web. However, its 3D scenes tend to provide sufficient information only on the geometric
features of its contents, since the standard itself does not provide any medium to incorporate any
semantic information. With the passage of time this inability became quite troublesome in the
majority of the X3D scenes, since not only primary goals of the standard (like the precise and
rich presentation) were left behind, but also the idea of a Semantic Web made inevitable the use
of such information. The attribution of semantics in X3D scenes enhances the overall
representation capabilities of the any application, provides advanced identification techniques
amongst its objects and guarantees its reuse in a more sophisticated way (fidelity applications

that need improved degree of accuracy and reduced search time).

X3DOM

X3DOM is an HTML5/X3D integration model that makes feasible the publishing and
updating of declarative X3D content into any HTML DOM tree [30]. This model has been
implemented with an open-sourced architecture which is available to the public as a JavaScript
framework. The most distinctive feature of its architecture lies to the definition of a modular
backup approach for the rendering of the 3D content, which is ultimately supported by a variety
of back ends, like native, X3D plugin, WebGL and Flash. Amongst them, WebGL stands out
since it allows the rendering of interactive 3D content without the need of installing any plugin
for the majority of the latest desktop and mobile browsers. Moreover, its rendering capabilities
include physics and shading support, while the overall procedure is accelerated with the
Graphical Processing Unit. WebGL and the rest of back ends may vary in functionality and
performance terms, but each one of them is available during X3DOM'’s runtime. By doing so, the
3D content being presented in the specific browser is the one that sets the necessary
requirements, which in turn lead to the selection of the appropriate backend for the rendering of
this content. On top of that, the subjected architecture is able to undergo the integration of
additional back ends, filling in possible needs that may arise in the near future. In the following

Fig. 4-2 is displayed this intermediate fallback model provided by X3DOM framework.
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Figure 4-2 The current state of X3DOM’s fallback model

As concerns the 3D declarative content, X3D language was chosen as the appropriate
one, because it is a mature I1SO standard coming with an XML encoding similar to that of
XHTML’s. Based on this feature, X3DOM defined an integration methodology for the
declaration of these X3D scenes in any XHTML document and a mechanism for the direct live
manipulation and updating of the underlying DOM tree. In other words, X3DOM serves as a gap
cover between the X3D language and the participating web specifications. However, in order to
sufficiently integrate an X3D scene in the DOM tree of a XHTML document, X3DOM had to
modify the Interchange profile of the X3D standard. The available nodes were increased by the
addition of various higher-profiled nodes, like the Inline, Switch and LOD nodes, while any
scripting capabilities are clearly left to the DOM/HTML side by eliminating the Script and the
declaration of prototyped node types. Although this profile fulfills the requirements met in a
wide range of applications, X3DOM provided the means for a richer and more realistic

L source: http://www.x3dom.org/wp-content/uploads/2009/10/x3dom-fallback-Release-1.2.png
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presentation with the introduction of the Texture and Mesh nodes. The first one makes use of
specific HTML tags (img, video and canvas) for the integration of their content into specific
X3D nodes, while the second one can take advantage of the latest shaders found today. Besides
these characteristics, software developers are free to use the native JavaScript methods or any
JavaScript library they may like for the addition, removal or update of the X3D nodes and their
relative properties. Even though that X3DOM supports all the methods defined in the HTML
DOM specification, there are a number of drawbacks concerning its integration model. Amongst
them, a minor drawback is the appliance of CSS language on the HTML canvas element alone,
since CSS modules are hardly usable in the elements of an X3D scene. On the other hand, a more
notable drawback resides in the utilization of the X3D format as its unique 3D presentation
format, bringing forth the need of converting every 3D content into this type of file format.
Finally, the most worth mentioning drawback lies to the lack of an efficient progressive
transmission mechanism [31], since the only one implemented is capable of receiving batches of
geometry data over multiple HTTP requests which can lead to network congestion and low
performance issues in case of immense 3D content.

Summarizing, X3DOM not only incorporates 3D content on the Web without the use of
plugins but this integration also takes advantage of existing Web standards instead of defining
new ones. Its innovation lies to the concatenation of the HTML5 and X3D standards through the
provision of a robust programming interface and a flexible fallback model. At the same time, its
versatile architecture allows not only the adoption of the X3D standard from the majority of
browsers, but also guarantees the integration of future amendments to this model. With features
like these, X3DOM is definitely one of a kind 3D visualization technology which can be applied
to a variety of areas desiring an open source plugin-less 3D content presentation solution.

JavaScript
JavaScript is a structured object-oriented programming language that conforms to the
ECMAScript Language Specification, inheriting from it powerful scripting capabilities and
making JavaScript a constantly evolving I1SO standard. The interpretation and execution of the
language scripts is done with the assistance of an independent JavaScript interpreter or engine,
which is usually contained into the relative web application, browser or plugin. The latest version

of the language (1.8.5) introduced new functions, a new object (Proxy), strict mode support and
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it was aligned fully with the 5.1 edition of the before mentioned specification. This rapid and

widespread adoption of JavaScript forced it to extend the core objects and elements vocabulary

[32], in order to sufficiently provide support for client and server side scripting on the web:

% Client-side scripting provides advanced capabilities for the manipulation of web pages,
enabling in that way a dynamically changing content depending on a set of environment
variables, like the user's interactions, system conditions, etc. The authoring of client-side
JavaScript (CSJS) is assisted by the definition of additional objects and event handlers
compared to the core language specification. Typical examples are the Window object which
represents the browser's window and various mouse events that indicate special user actions
(i.e. MouseUp event indicates that a mouse button has been released). This type of scripting
occupies the largest portion of use and is usually met on browser implementations where the
asynchronous communication is a main asset.

% Server-side scripting involves operations that are performed by the server in order to lighten
the workload of client and/or shelter sensitive information. The employment of server-side
JavaScript (SSJS) is achieved through the extension of the core language with various
functions, classes and objects, like the write, Connection and database elements respectively.
One of the most commonly used scripts deals with the communication attainment of an
application with a database for storage and retrieval purposes, while more complex
implementations provide runtime environments for the development of games or
applications.

In addition to client and server side scripting, there are numerous implementations that

define their own JavaScript engines which play the role of an embedding scripting language or a

distinct application platform. Even though such implementations make use of an exclusive

object-oriented interface, their basic set of objects and elements is borrowed from the

JavaScript’s core. Typical applications of this kind are met into Adobe Systems products, where

in Adobe CS scripting is available with the use of JavaScript language and Adobe Flash works

with a dialect of ECMAScript as its main programming language, known as ActionScript.

However, the last years JavaScript surpassed the software barrier and geared with

microcontrollers, serving as an alternative solution to the reliable and power-efficient control of

hardware in embedded devices.
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However, JavaScript’s nature comes with a number of serious security vulnerabilities that
have to be taken into account by any web application or browser that deals with the authoring
and execution of JavaScript code. Amongst them, the two most commonly used exploits are the
cross-site scripting which involves the injection of malicious script on end-user's system to steal
his personal data, and the cross-site request forgery, which corresponds to the execution of
unauthorized commands from a trusted web page or application. JavaScript addresses such
exposures incorporating a couple of security mechanisms, like the same-origin policy and virtual
sandbox environment. The first one prevents the execution of scripts that provide access to data
between pages that do not reside under the same protocol, port and host combination, while the
second one sets up a virtual environment for the execution of scripts having limited access to
hardware and network resources. Besides the security issues, there is also quite limited support
from the majority of the existing JavaScript engines as concerns their compliance with the latest
JavaScript version. This state of affairs compels programmers into taking special precautions
during the software development process, by testing and validating the underlying JavaScript
code on multiple environments (i.e. amongst the varied versions of browsers) through the
utilization of the relative script debugger.

Today, JavaScript is being used as a general purpose programming language to a variety
of domains, from web-based implementations and web browsers to electronic documents and
standalone applications. It is considered to be the scripting language of World Wide Web thanks
to its dynamic cross-platform capabilities, while at the same time, its unperceived presence in

almost every computer transfuses a lightweight and reliable character into the language itself.
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Chapter 5 - Implementation

In this chapter it will be thoroughly described the implementation process of each
individual part, which has been assigned a particular task for the semantic representation of VR
environments. Even though that the implementation approach followed is independent of the
underlying platform, any 3D scene that desires to be indexed must comply with the X3D
standard and X3DOM framework. In this way, a common frame of reference is used to not only
spatially query the indexed objects, but to also record any spatial relationships that take place
between these objects. These parts come with a set of key objectives that can be divided into the
implementation of a spatial indexing data structure and a sample OWL ontology for the
translation of these relationships into semantic concepts. At first takes place an introduction to
the most commonly used hierarchical representation types for the spatial annotation of a 3D
virtual environment, which are none other than the Spatial Partitioning and the Bounding
Volume Hierarchy.

A Spatial Partitioning data structure continuously sections a 3D space into distinct
regions which are used to convey one or more objects. The splitting direction and the number of
produced regions is depending on the segmentation methodology being used, while the recursive
subdivisions terminate when certain criteria are satisfied. Even though that both of these
conditions differ from one data structure to another, the generic pattern of the hierarchical
representation remains similar to either. Today, plenty of data structures are based on spatial
decomposition solutions, but k-d trees and Octrees are the two most widely known and used out
there:

%+ k-d tree is a widely used BST space partitioning algorithm capable
of bisecting a space into two separate parts, where each one contains
half of the dimensional points existing into the original space. The .
search space is split along a specific axis each time and this o —

procedure keeps repeating until every leaf node of the tree contains

only one point of the primary space. The dimensional points can be Figure 5-1 A simple
queried with the assistance of pre-order or level-order search  K-d tree bisection

algorithms, while their query time is heavily depending on the distribution of the points in the
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search space. In Fig. 5-1 to the right, it is displayed a 3D k-d tree which bisects an area of
four data points. At first, it takes place a split on axis X, creating in that way two distinct
areas with two data points each one. Afterwards, a second -and final- split along axis Y
creates four leaf nodes containing a single point each one.

Octree is a tree data structure which consecutively partitions the search space into octants in
order to enhance common tree operations. Octrees make use of point or matrix region
techniques to subdivide the space and allocate the corresponding 3D points inside the octants.
Their ease of construction and update made them widely accepted in dynamic 3D space
problems like collision detection and range search problems. Some of the most advanced
octree implementations can be seen in 3D game industry, enhancing collision detection
accuracy between objects thanks to the multiple-boxes approach provided by this data
structure. However, octrees lack of an efficient mechanism for the manipulation of static
search spaces, while at the same time, they tend to subdivide the given space based on a

single point each time.

1st 2nd
subdlws.lon subdlws.lon

8x . 64x .

Figure 5-2 Octree subdiving a hypothetical cuboid search space

The above mentioned data structures primarily aim at the efficient clustering of 3D space,

leaving in second place a satisfactory indexing mechanism for virtual environment’s objects.

Despite the fact that this kind of clustering guarantees a sufficient query performance for static

datasets, interactive environments with deformable objects seriously suffer [33] from the lack of
such a mechanism. So, applications that wish to resolve these deficiencies make use of the

following hierarchical representation type instead.

A Bounding Volume Hierarchy, is a collection of nodes where each node is a data

structure composed of a bounding volume and a list of node pointers. Any leaf node of the tree

makes use of its bounding volume to enclose a different geometric object, while at the same

time, it points to its parent node and keeps track of the recorded object’s location (which is

22



usually stored in a database system). On the contrary, any internal node points to its parent node
and a set of children nodes, while its bounding volume perfectly envelops the total area occupied
by the bounding volumes of these children. This hierarchical clustering of volumes is carried on
until an orphaned node is reached, which indicates that it is the root of the tree structure and its
bounding volume has to enclose the entire set of geometric volumes under a recursively mode.
This kind of organization is usually met in physics and graphics domains, while the majority of
its implementations make use of axis-aligned bounding boxes (AABB) and spheres, or oriented
bounding boxes (OBB).

For the purposes of this work, an AABB tree data structure has been compounded to
efficiently annotate the spatial characteristics of a virtual environment’s objects. Its design was
entirely based on the R-tree spatial structure, which is a hybrid space partitioning solution that
borrows concepts from both of the afore-mentioned hierarchical representation types. The
implemented R-tree algorithm defines a fixed number of node entries and pointers, which are
used to subdivide the 3D space into hierarchically nested set of nodes. Each node is represented
by a bounding box crafted in such a way as to reduce its corresponding spatial redundancy. The
leaf nodes designate a cluster of objects, while internal nodes tend to cluster particular parts of
the search space. This hierarchical clustering of nodes aids to the efficient management of the
object-subdivided search space, since a few only simple mathematical calculations are enough to

decide for the usefulness of an entire cluster of 3D space.

The R-tree spatial data structure

R-tree’s roots are found back in ‘70s due to their origination from the B-tree data
structure [34], where many concepts of the latter were left intact and adopted in the former. At
that time, many variants of B-trees were brought to life in order to sufficiently deal with the
increased need for storing in, or retrieving from RDBMS large datasets. However, this data
structure was unable to provide an efficient mechanism for the indexing of multidimensional
datasets. A few years later, a counterpart solution for two-dimensional applications was proposed
by Guttman in [35], a spatial index structure capable of indexing, removing and retrieving
thousands of spatial data. The relative algorithms for these operations partition each time a

specific only subset of the primary space, forming in that way many rectangular regions which
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are ultimately represented as tree nodes. This data structure is characterized as R-tree due to the
definition of such regions of rectangles.

R-tree can be seen as a height balanced tree data structure that consists of a set of
connected but acyclic nodes. These nodes contain a predefined range of entries, which can be
either more nodes or indexed records. In the first occasion, these nodes are known as internal
nodes, while in the second one are known as leaf nodes. Based on this basic tree terminology,
any data structure that wishes to be considered as a valid R-tree implementation has to at least
comply with the following set of properties:

% M is the maximum number of entries that any node can contain

R/
A X4

m is the lowest number of entries that any node can contain

°

Any node contains between m and M entries, unless it is R-tree’s root

X4

If the root node is an internal node, then it must points to at least two other nodes

L)

>

L)

*

All leaves of the R-tree are piled all together at its lowest possible level

*,

Each node of the tree is represented by a rectangular area, known as minimum bounding
rectangle or minimum bounding region (MBR). The dimensions of this area are depending on
two factors, the size and the placement of its entries in the search space. Node’s entries are
accessed one by one to retrieve their corresponding size, which is used to calculate the size of the
parent area by aggregating these individual sizes. At the same moment, entries’ coordinates are
also retrieved to record their lowest and highest values, which are in turn used to properly
collocate this area. Thereby, any node’s MBR totally encloses its children, while each child’s
MBR totally encloses node’s grandchildren. This nesting procedure keeps going on until a leaf
node is reached, where its children contain the actual spatial data and do not point to more nodes.
Such spatial data are consecutively indexed to the smallest sized leaf node and tend to represent
an explicit point or various geometric shapes. This organized structure is independent from the
distribution of the spatial data in the correlated application, even in the case of a sporadically
distributed dataset, where changing the maximum and lowest number of allowed entries can
reduce the size of MBRs and the overlaps between them. As an additional consequence of such
changes, the execution time of spatial queries can improve drastically, since their functionality is
closely related to the number of overlaps.

Most of the time, an R-algorithm will create many overlaps between the entries which

have been indexed during the Insertion and Splitting operations on the dataset. Such overlaps are
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represented in a hierarchically structured tree, where the MBR of a child node is partially or
totally covered by the MBR of more than one parent. However, these duplicate entries are
eliminated by storing the child record to the least enlarged parent. In this way, not only the space
utilization remains in high levels -it has been estimated to be at least 50%- but the Insertion and
Splitting algorithms are also easier to authored and maintained. Moreover, R-tree's carefully
design and open architecture allows the acceleration of spatial queries by skipping nonessential
subtrees of the search space during the Searching operation. At the same time, they are capable
of improving queries accuracy by supporting several distance metrics according to the setup of
the tested application. So, the appropriate pathfinding algorithm for multi-angle indexed objects
is definitely the Euclidean distance, while the Manhattan distance would be preferred by
quadrangular records. Finally, even a Chebyshev distance metric could be implemented in order
to be applied on Moore neighboring datasets.

The advantages derived from such traits gave birth to numerous R-tree variants, where
each one comes with special characteristics in order to satisfy the requirements set in various
applications [36]. Even up to these days, R-tree implementations are being silently used in the
background of both theoretical and technical domains, as their main data structure for the
indexing of multi-dimensional datasets. In this work, a slightly modified version of the original
R-tree data structure has been developed to deal with the indexing of X3D objects through the

X3DOM framework and proceed to their spatial retrieval for future use.

A brief state-of-art in R-trees

R-trees have evolved through the passage of time, bringing forth many variants of the
original proposal. All of them aimed to achieve optimality on various aspects of the data
structure, like lower insertion cost and better query performance, or guarantee its applicability on
specific areas of interest. A detailed report on the latest and most widely used R-tree variants is
described in [37], where it has been also defined a classification system that takes place
according to each variant’s implementation and scope. Following the heels of this fission, there
are variants that consist of slight modifications of the R-tree's construction methodology, hybrid
variants that take advantage of other index structures and partially apply them into R-tree, and
extended variants of R-trees which are used in specific domains by incorporating extra

information and richer features. In the upcoming paragraph, the most notable R-tree variant from
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each category is shortly described, in order to highlight the supple structure of R-trees and their
usability in various areas.

The most widely known R-tree variant is none other than the R*-tree, which makes use of
advanced heuristic strategies for the insertion and splitting of spatial information [38]. Its novelty
lies to the minimization of area coverage and overlapping MBRs, composing in that way a more
rectangular R-tree structure. This is feasible thanks to its reinsertion algorithm, which first tries
to find out the fittest node to place a new entry, instead of immediately splitting a leaf node and
reassign its overflowing entries. Even in cases where a Splitting operation is deemed necessary,
R*-tree will perform this split with various topological variables, like the node's axis and
perimeter values. In Fig. 5-3 has been deployed an R-tree instance to index a large dataset of
differential points, which can be possibly spatially accessed for future use. In the image on the
left side is displayed the generated R-tree structure, which was relied on the Quadratic algorithm
[35] for the splitting of its nodes. Conversely, in the image on the right side is shown an R*-tree
structure which has been created with the assistance of a topological split algorithm. It can be
easily perceived that the overlapping MBRs in the second image are much less compared to the

first.

R-tree with quadratic split R*-tree with topological split
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Figure 5-3 Comparison of R-tree variants overlap ratio

2 source: https://upload.wikimedia.org/wikipedia/commons/0/0e/Zipcodes-Germany-GuttmanRTree.svg &

https://upload.wikimedia.org/wikipedia/commons/c/c7/Zipcodes-Germany-RStarTree.svg
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The most obvious and valuable aftereffect of the aforementioned optimizations lies to the
improvement of the query performance, despite the fact that its final structure resembles a typical
height-balanced R-tree. However, all these techniques not only increase the insertion complexity,
but they also introduce a negative impact on the total complexity and maintenance of the
underlying algorithms. Because of these traits, it must be carefully investigated the possibility of
adopting (or developing) a lighter R-tree variant, for applications that do not have to make use of
such special characteristics.

Regarding hybrid variants, R k-d tree [39] is particularly interesting since it applies
methodologies that take into account both the spatial data and the space partitioning. At first, the
search space is partitioned using a slightly modified k-d tree algorithm capable of supporting
overlaps between distinct partitions. Every time an intersecting partition is detected, a finite set
of bounding rectangles is utilized to represent any overlaps. In this way, the initial BST structure
is further enhanced with R-tree's insertion and deletion techniques, acting as a middle ground for
a wide range of applications. On the other hand, DR-tree [40] is an extension to the modal R-tree
algorithm, which comes with the particularity of storing application specific information to
hasten queries performance. Such information is attributed with one of the four cardinal
directions, which ultimately form additional entries to each internal node of the tree. The regions
represented by these child nodes are used during k-NN distance calculations in order to eschew
needless computational burden. The only drawback of this approach lies to the low space
utilization, which results from the addition of these four cardinal pointing nodes.

Taken into consideration the research outcomes of the above mentioned variants, the R-
tree which has been implemented for the purposes of this work comes with a special set of
features. The Splitting operation is based on the Quadratic algorithm, which remains a fast and
reliable solution to cope with the needs of VR environments on the Web. Even though that R*-
tree has very attractive properties, it would be an overkill to set up and run it under these
circumstances. Moreover, it was not deemed necessary to massively change the data structure
presented in the original version of R-tree. Only slight modifications to support X3D content and
to secure cooperation with X3DOM framework were carried out. Lastly, a number of spatial
properties has been authored to enable an efficient semantic representation of the search space,
which has been integrated in such a way that any node and its entries are attributed with these

semantic concepts.
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An R-tree for indexing X3DOM scenes

The original R-tree data structure and the majority of its variants were developed to deal
with various 2D applications of specific domains. In the following subchapters however, it will
be presented a novel R-tree structure which has been designed to efficiently index 3D virtual
environments. The indexed records of these environments can be spatially queried at a later time,
while the entire procedure is independent of the environment’s origination domain. The only
constraint that is imposed on the inputted dataset, lies to the inability of the underlying
algorithms to quickly output moving objects, when the latter ones exceed a few hundreds.

The generic data layout of the implemented R-tree is based on the same key features that
comprise any R-tree variant. Such features include the set of properties which was reported in the
earlier subchapter “The R-tree spatial data structure” and a hierarchically organized structure of
logn height. This structure dissociates the usage of its entries depending on which type of node
they are located. So, the entries of a leaf node are represented by an array of spatial objects,
where each one is attributed with an id value and a bounding container for the stigmatization of
its boundaries into the 3D space. These id values point to the actual X3D objects of a virtual
environment, which have been chosen beforehand by the user as the desired dataset to be
spatially indexed and processed. Even though that the user is free to define its own identification
mechanism according to application’s needs, a couple of fast and reliable approaches are already
provided during the Insertion operation. The first one affiliates each inputted object with its
corresponding DEF value -a uniquely referencable attribute used by the X3D standard- while the
second one employs the order of insertion, which is used to ascribe the current increment value
to the inputted object. On the contrary, the entries of an internal node are represented by an array
of other nodes, where each one is attributed with an identifier pointing to a rectangular
parallelepiped and a bounding container which encloses this node’s children. These identifiers
are automatically produced during the construction of the R-tree with the assistance of a counter.
The counter starts from R1 which points to the rectangular area representing the root node and its
value is increased each time a new node is created. This numbering methodology is quite useful
for presentation and debugging purposes, since it monitors and reveals the subjacent updates that
take place after the execution of any operation on an R-tree instance. In the following Fig 5-4 is
depicted a simple X3DOM scene composed of five unrelated objects. These objects are

afterwards indexed to an R-tree instance, creating the set of MBRs which is displayed in the
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image underneath. The black-colored MBR denotes the root node of the R-tree, while the red-
colored ones denote internal nodes of the data structure. On the other hand, a green-colored
MBR denotes a leaf node which points to an indexed object. In the same figure is also presented
the R-tree’s taxonomy, which contains various information about its underlying data. The most
important of them are the registration of each MBR’s coordinates into the 3D space and the
attribution of singular identifiers to each node and spatial object of the tree structure.
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Figure 5-4 An indicative R-tree taxonomy
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Leaving aside the identification variable, both types of nodes abide by the predefined
range of minimum and maximum entries, denoted by the variables m and M, respectively.
Another common point of reference between internal and leaf nodes lies to the projection of their
location into the 3D space adopting a specific bounding container. The majority of R-tree
variants make use of bounding boxes or bounding spheres [41] thanks to their simple and
lightweight arithmetic computations compared to other bounding containers, like the bounding
diamond, octagon and convex hull. Despite the fact that these containers can be also applied to
any X3D shape, they are shipped with increased algorithmic complexity and gravely higher cost
of computation power for web-based applications. Moreover, X3DOM’s runtime environment
comes with a concise API capable of inferring the raw coordinates of diaphanous bounding
boxes, where the latter ones have been strictly implemented according to the X3D specification.
The specification sheet states that all these boxes are oriented in the same direction with the axis,
making inequality comparisons between these precomputed coordinates an easier procedure,
compared to OBBs or the rest of bounding containers. Fig. 5-5 demonstrates the use of such
bounding boxes for various geometric shapes in a 3D virtual environment, emphasizing at the
unchanged orientation of the displayed MBRs, regardless of their relative enclosed object’s plane
angle. This figure is also accompanied by a schematic representation of the right-handed
Cartesian coordinate system used by X3D standard, where +X points to the right, +Y points
straight up and +Z towards the viewer.

+Y
4

v
-

Figure 5-5 Each MBR is an AABB container
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The reasons described in the previous paragraph are more than enough to choose
bounding boxes as the appropriate medium for indexing external information. However, the
implemented R-tree takes advantage of bounding boxes not only for its structural purposes, but
to also perform spatial queries on a given instance. The Searching operation —which is described
in a later subchapter- provides three types of queries that involve space availability checking on a
generated R-tree data structure. Intersection and overlap conditions constitute typical use cases
of such tests and they are used to ascertain the sole existence of a bounding box in a finite search
space. The only parameter that has to be checked is the integrity of its boundaries, where a non-
trespassed perimeter validates successfully these two conditions. In this way, computationally
heavy collision tests between the geometric figurines of X3D objects are avoided and they are
instead reduced to simple inequalities relations between their corresponding MBRs (otherwise
the number of possible collisions is factorial to the number of these X3D objects).

Summarizing, an R-tree data structure has been implemented for the efficient spatial
indexing of 3D virtual environments. These environments have been fully integrated into the
content of any modern Web browser thanks to X3DOM framework, which in this work is
employed for information retrieval and presentation purposes. Any object of the 3D space that
can be indexed is represented by one of the geometric shapes that are defined by the X3D
standard, the 3D visualization technology used by X3DOM. The selected X3D objects’
boundaries are approximated by a rectangular parallelepiped area which totally encloses this
object. The indexing of objects takes place in the leaf nodes of R-tree, while internal nodes tend
to reference their underlying set of nodes. After the insertion of the desired objects is finished,
the compiled R-tree instance can be spatially queried and translate the result set to the
appropriate  X3D identifiers. In the following subchapters is extensively described the
functionality of each operation used by the implemented R-tree data structure.

R-tree operations
The original R-tree data structure demonstrated satisfactory indexing and retrieval
capabilities thanks to the utilization of a spatially modulated operation kit. That kit was
composed of a set of cornerstone operations -like the Insertion, Deletion, Update, Splitting, and
Searching- which were backed by more procedural routines. The usefulness of each operation

was weighted according to the purposes of this study, in order to eliminate those routines that
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could possibly be of no match for the tested 3D content. The Insertion and Splitting operations
are inextricably linked to each other and their functionality is a must for any R-tree
implementation. At first, it takes place the Insertion of the appropriate X3D objects, which have
been chosen beforehand according to application’s needs. Such objects are always indexed under
a single leaf node, favoring the one which has to conduct the least enlargement of its area. In
case this node has run out of records, then the Splitting operation is commenced to create the
necessary space in this leaf and propagate the required changes upward. In this way, the primary
space is constantly partitioned in several MBRs after an Insertion or Splitting algorithm fulfills
its tasks, improving the space utilization factor and the execution time of spatial queries. On the
other hand, a Deletion operation along with its Update routine were not deemed necessary to be
implemented, since this work exclusively deals with virtual environments that contain static 3D
content. Even though that the dynamic insertion of objects may violate the height-balanced leaf
nodes, the underlying Splitting algorithm makes use of heuristic techniques to not only reduce
the overlapping MBRs and their corresponding size, but to also provide a self-balancing feature
to R-tree structure.

All of the above mentioned operations have as ultimate objective the spatial retrieval of
the indexed objects at a later time. These objects’ retrieval is accomplished with the help of the
Searching operation. The implemented R-tree structure supports three of the most commonly
used queries on spatial datasets, which are none others than the Point, Region and k-NN queries.
Each one of them comes with a carefully designed algorithm for the swift deduction of accurate
results under various scenarios, e.g. a location-based search. Such a scenario could involve a
search on a finite collection of X3D objects, which have been attributed with a unique identifier
and are spatially represented by an MBR and a set of Cartesian coordinates. The interrelated
processes of this area and the rest of the algorithmic procedures have been classified in the
following three subchapters, where each one describes in detail a major operation of the

implemented R-tree data structure.

Insertion

Insertion can be defined as the operation of indexing a new entry to the appropriate leaf
node of an R-tree instance. Such entries represent the objects that can be found in a virtual
environment and they have marked for spatial registration. Each time that an entry insertion is

requested, the corresponding algorithm has to traverse the tree in a recursively manner starting
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from the root node. At this point, a well-founded and agile tree traversal methodology had to be
implemented. However, even though that there is a variety of tree traversal options, R-tree can
work flawlessly with only a few of them. So, an in-order traversal is rendered useless in front of
an R-tree instance, since the data structure of the latter is not necessarily a binary tree. On the
other hand, a level-order traversal would definitely spend much time on visiting inappropriate
nodes, despite the fact that it could be applied to an R-tree structure. Such potentially
inefficiencies led to the authoring of a pre-order algorithm, which makes it the perfect candidate

for traversing any R-tree during an Insertion operation.

N = R-tree root;
E; /[Entry to be inserted in a given R-tree instance
WHILE (N != typeof LeafNode) {
FOR (each Node child of N) {
XMBR = MAX(N.xMax, E.xMax) - MIN(N.xMin, E.xMin); //Axis X boundary
yMBR = MAX(N.yMax, E.yMax) - MIN(N.yMin, E.yMin); //AxisY boundary
ZMBR = MAX(N.zMax, E.zMax) - MIN(N.zMin, E.zMin);  //Axis Z boundary
newMBRArea = (XMBR * zMBR) * 2 +
(YMBR * zMBR) * 2 +
(XMBR * yMBR) * 2;
enlargedArea = newMBRArea - originalMBRArea;

}

N = leastEnlargedAreaNode; //Follow least enlarged Node to next level

Table 5-1 Traversing R-tree to find out the best leaf node for Insertion

The implemented pre-order traversal starts from the 1% level of the R-tree, which is none
other than its root. If the root node is also a leaf node, then the entry is assigned to it and the
Insertion operation is terminated. At this point, the insertion of an entry may violate the
maximum number of allowed entries for the selected node, a property defined by the variable M
and attributed to the R-tree structure during its design stage. If such a thing happens, then a
Splitting operation is initiating for that particular node, an operation described in the upcoming
subchapter. However, in contrast to this extreme scenario, the root node can alternatively contain
a finite number of internal nodes which can be seen as subtrees. These subtrees are checked one

by one in order to find out which one needs the least area enlargement to include the new entry.
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The most optimal subtree amongst them is returned and the same algorithmic process is
addressed to its internal nodes. This operation is iteratively repeated for each R-tree level,
returning each time a single internal node pointing to a new subtree. The overall procedure
finishes when the best matching leaf node is reached and the relative entry is indexed into it.
Afterwards, this newly enlarged area has to be propagated till the root, updating the MBRs of all
ancestor nodes one by one. This propagation of changes starts from the leaf node and terminates
to the root, following the entire subtree in an opposite route to reform the space utilization and to
ensure the integrity of the generated R-tree instance.

In this study, the Insertion algorithm was executed numerous times for various use cases,
bringing forward a special feature of the implemented R-tree structure. These tests revealed that
the space utilization which is clearly depending on the nodes’ MBRs, it is also directly related to
the order in which entries are indexed to an R-tree instance. However, Garcia et al in [42] proved
that there was no trade-off between the chosen node to insert an entry and the performance of the
R-tree. For that reason, they focused into developing an incremental refinement strategy to
accelerate the Splitting operation, leaving aside the Insertion algorithm's functionality. On the
other hand, a different approach was followed in [43], where insertion and splitting algorithms
had both to be re-authored and optimized for the efficient management of 3D virtual geographic
environments. In the following subchapter is thoroughly described the important role that such

splitting algorithms play in order to maintain the balance of R-tree instances.

Splitting

The Splitting operation can be definitely designated as the most important component
found in any R-tree data structure. All splits that take place on an R-tree instance occur when a
node is about to overflow, after reaching its maximum number of allowed entries. At first, this
special occasion results from the necessity of inserting a new entry to an already full leaf node.
Since this specific leaf node has been selected from the Insertion algorithm as the best fitting
node, there is no other option than partitioning it into two distinct nodes. In this way, not only the
requested space is successfully created, but the primary node's MBR has been also demarcated
and must be recalculated for the new leaf nodes. So, the already existing entries and the new one
are distributed amongst these two nodes according to strict splitting policies. Such policies take
into account a set of parameters and try to minimize the area coverage and the overlapping

MBRs. The first one guarantees that the time complexity for the construction of the tree is kept
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steadily at low levels, while the second one reduces as much as possible the number of visited
nodes during the execution of queries. In short time after the introduction of R-trees, a couple of
remarkable strategies [44] [45] were proposed to improve these two contradicting policies.
However, there were applications where the algorithms beneath these strategies performed bad
splits between nodes, resulting in turn to higher area coverage and slower query response. This
thing demonstrated that a multitudinously parameterized splitting algorithm is not the only
criterion which has to be taken into consideration, in order to wield the best possible space
utilization and query per