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Abstract 

Over the past few years, VR environments have been widely adopted in numerous 

domains as the de facto artificial reality solution for the immersive experience of simulated 

worlds. Moreover, their practicality was further enhanced with their integration in HTML5-

capable browsers via X3DOM framework, while the introduction of Semantic Web gave birth to 

various technologies for their attribution with semantic metadata. However, all these additional 

layers of information focused into the sufficient representation of geometric, textural, or 

ontological concepts, dismissing an efficient spatial representation mechanism. This thesis aims 

to provide such a mechanism with the proposal of a 3D R-tree data structure for the spatial 

indexing of X3DOM scenes and the establishment of a computational model for the automated 

implication of 3D content’s spatial relations. Finally, the indexed dataset can also be queried by a 

set of spatial predicates, laying in this way the foundations for a spatial query language on the 

Web based on X3D standard and X3DOM framework. 
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Preface 

Having worked in the area of semantics before, I have become quite familiar with the 

current state of art in Semantic Web and virtual reality frameworks. The majority of these 

implementations focused into the efficient semantic representation of specific aspects from 

various domains. Amongst them, only a few immature works dealt with the 3D spatial 

arrangement between the objects of virtual environments. Such a lack is not only thoroughly 

elucidated in this thesis, but it is also resolved with the provision of a computational model for 

the implication of spatial relationships in X3DOM framework. 
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Chapter 1 - Introduction 

In our days, an immeasurable amount of visual information is enclosed in digital form, 

which is mainly broadcasted through World Wide Web. This kind of information is usually 

rendered with a virtual reality (VR) environment according to the underlying application's needs. 

Typical domains of use for such applications range from complex simulations and video games, 

to realistic representation scenes and interactive learning environments. However, one problem 

that quickly arises is the quality of the conveyed information, since in the majority of the 

situations it does not contain any semantic description. Moreover, the current 3D visualization 

formats come across various problems as concerns this semantic annotation, since their main 

purpose is the modeling of 3D content rather than the definition of a semantic description 

scheme. A characteristic example regards the adequate annotation of the objects' geometry, 

which however comes at the cost of the logical or functional semantics. In order not to suffer 

such losses, the definition and integration of the semantic information had to be decided before 

the implementation of the environment itself. 

However, the authoring of such environments comes along with a set of restrictions in its 

interoperability and extensibility, making its future modification difficult if not impossible at all. 

This lies to the fact that each VR environment has particular requirements regarding its 

functionality and performance. To fulfill these requirements in the best possible manner, a 

variety of diverse data models and network protocols are utilized in each occasion. This 

heterogeneity makes difficult to develop or adapt an existing software system based on each type 

of environment, since such a thing would not only require the modification of the system's 

interface, but also radical changes in its backend services. 

Previous attempts to resolve the aforementioned issues have already been performed 

using various technologies. In [1] the MPEG-7 standard has been deployed in order to enhance 

the querying and navigation processes, while in [2] and [3] the standard itself was extended with 

various descriptors, in order to efficiently annotate complex X3D scenes. On the other hand, 

there were other approaches, which proposed platforms either for the efficient indexing and 

retrieval of XML-based annotated 3D scenes [4], or for the annotation of 3D scene objects with 

semantic descriptions closely related to their conceptual meaning and functionality [5]. The 
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majority of these research works explored successfully the semantic conceptualization of the 3D 

objects in a virtual environment, along with their corresponding functions and relationships. 

Moreover, they emphasized the main idea behind any semantic representation scheme, which is 

none other than the efficient semantic annotation of a 3D scene with linguistic predicates. 

However, all of them failed -or didn't intend- to deliver a spatial representation of the underlying 

content. Thus, a standard generic tool has to be developed for the description of multimedia 

content, capable of filtering a VR environment through specific criterions and attribute its 

contained objects with the appropriate spatial semantics. This study encounters with the 

challenge of describing a virtual environment and its 3D contents, through the indexing of the 

latter in a tree data structure for the implication of their relative spatial relations and spatial 

reasoning purposes. In the upcoming sections is thoroughly discussed the algorithmic approach 

followed in this work, while experimental results from various developed use cases are explained 

and evaluated in the last section of this thesis. 
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Chapter 2 - Motivation 

Today, virtual reality is available to everyone thanks to the exponential advances in Web 

and its support from various devices and platforms. Such factors broadened the scope of 3D 

applications, making their publishing and sharing a practical requirement [6]. However, the latter 

two requirements are difficult to be met, since all these numerous environments are thriving from 

3D content that lacks of a high-level description layer. Moreover, each one of them has been 

authored according to a specific 3D graphic format, which usually comes with an unfriendly 

web-based interface. So, it is crucial more than ever, the enrichment of these environments with 

semantic concepts relative to what kind of environment is being presented, what objects are 

contained, their spatial placement compared to others, etc. The most of research works have 

already provided a solid foundation for the semantic representation of geometric and textural 

aspects of these environments, but there is a significant gap in the literature regarding a sufficient 

spatial reasoning methodology between their 3D contents. 

This thesis aims to deal with the above mentioned issues by providing a 3D R-tree data 

structure –implemented with JavaScript language- for the spatial reasoning and semantic 

representation of the objects contained into such environments. The spatially indexed VR 

environments comply with the X3D standard [7], which is a widely used XML-based 

presentation format for the creation and visualization of interactive 3D content. X3D alone is 

powerful enough to describe the majority of virtual environments, but it does not specifically 

define a way to semantically annotate or reuse the objects that compose such environments. Due 

to this inability, it was deemed necessary the creation of a semantic concepts layer which was 

able to extract spatial relations between numerous objects in a virtual environment. The spatial 

reasoning process is coupled with X3DOM framework for presentation and ease-of-use 

purposes. This spatially semantic description can find appliance to a wide range of domains 

ranging from the creation of more realistic 3D scenarios, or the execution of advanced queries 

with proximal and faster content searching. Lastly, the definition of such spatial relationships not 

only provides complex and richer capabilities to the content providers, but also boosts the virtual 

potentials of the end-users. 
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Chapter 3 - Related work 

A lot of research has been conducted since the introduction of Semantic Web [8] about 

the enhancement of the existing Web information in a machine-understandable way. The 

majority of these works took advantage of various Semantic Web technologies, like RDF, OWL 

and SPARQL to semantically describe and retrieve any kind of information. However, because 

the use of such semantic languages is clearly based on the selection of specific domain concepts 

and the correlation between these concepts and the underlying information, different routes of 

defining and exploiting the wide range of semantic knowledge had to be found. Most of them 

made use of the MPEG-7 standard thanks to its diverse content description and retrieval 

capabilities, while considerably less resorted to extending a 3D presentation standard or 

embedding metadata into the objects of the 3D world. Other approaches turned to more advanced 

-but specific purpose- solutions, like the implementation of platforms for the efficient semantic 

annotation of patrimony buildings and urban scenes, or the extraction of spatial semantics from 

real-world scanned environments. The latest and most noteworthy studies in these areas are 

described in the upcoming chapters, where each one has been classified by the underlying 

standard being used for the semantic representation of virtual environments. Last but not least, 

they not only record the current state of art among these technologies, but they also denote the 

practicality of the implemented frameworks in various domains. 

 Semantic Web solutions 

In the most cases, VR environments are designed in such a way that favors the human 

perception capabilities by laying emphasis on presentation and interaction features. However, 

such technical approaches along with the diversity of data models which are traversed through 

various network protocols, narrow down the usability of the underlying information from a 

machine scope. Over the past decade various Semantic Web technologies emerged in order to 

address this problem, with RDF (Resource Description Framework) proving to be the 

cornerstone of Semantic Web, capable of applying an abstraction layer to the underlying 

information. With the use of RDF terminology we are able not only to attribute semantic 

information to 3D content, but also guarantee the utilization of such information in a machine-
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readable way. The whole procedure is based on the efficient mapping of the information 

contained into a VR environment, in the form of subject-predicate-object statements. These 

statements known as RDF triples are capable of describing conceptual and abstract information 

amongst the objects of this scene. Moreover, thanks to its high-level representation syntax and a 

variety of serialization formats, RDF also proved quite efficient in the development of 

application logic systems that deal with protocol messages, which were expressed as common 

events in order to conceal unnecessary low-level complexity [9]. This work pointed out the 

potential usability of separating the development of VR environments into high and low-level 

phases that both make use of an ontology language. Such an approach was followed in [10], 

where a DAML+OIL ontology -a language which was later replaced by OWL- was used as a 

modeling tool to represent various concepts of a specific domain along with a finite set of 

relationships between these concepts. This mapping of the domain knowledge to an ontology 

terminology, led to an explicit distinction of the presented objects and an improved 

comprehension of the properties that take place into a 3D scene from the scope of the end-user. 

Ultimately, this high-level ontological representation where concepts and terminology have been 

borrowed from a specific domain, gave birth to various semantically designed applications. 

Sometimes, such applications made use of additional standards for the exploitation of the 

underlying semantics. In [11], the X3D standard was used thanks to its presentation and 

interaction features as the intermediate interface between the system and the user, while at the 

same time, all the semantic information of this environment was subsumed in an MPEG-7 file 

allowing its future utilization. 

From the above research works, it is quite evident that regardless of the application’s 

goals the semantic representation of a virtual environment is vividly based on an ontology, which 

contains the very basics and most commonly used features that can be attributed in such 

environments such as name, color, size, etc. [12] [13]. These features along with a predefined set 

of conceptual relationships coming in the form of ontology properties, form a content-oriented 

semantic model that is capable of sufficiently annotating objects, but unable to describe the VR 

environments’ interactions, communications and behaviors. To resolve such issues, various 

platforms have been implemented using a wide range of technologies, from hardware-based 

approaches to the following MPEG-7 standard. 
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 Leveraging MPEG-7 features 

The MPEG-7 standard has been widely accepted as the best multimedia description tool, 

making it the perfect candidate to annotate audio, image and video elements. However, the first 

versions of the standard lacked the ability to sufficiently annotate the elements of a 3D scene 

from a pure semantic scope. In [14], the newly (at that time) presented MPEG-7 was chosen as 

the appropriate language to semantically annotate X3D, VRML or SVG scenes. Their semantic 

description was heavily based on the Semantic Entity, Semantic Attribute and Semantic Relation 

tools provided by MPEG-7 standard, where they were used for the creation and storing of 

metadata about the spatial relationships between the objects of the scene. Their implementation 

also involved the translation of the generated MPEG-7 graphs into an interactive visual 

application, as an alternative visualization solution to the textual nature of MPEG-7 which can 

become quite difficult to comprehend in complex 2D/3D scenes. Besides that notable attempt, 

throughout the last years various amendments have been added to the standard in order to 

guarantee a semantic conceptualization. 

A different indexing procedure of a VR environment using MPEG-7 was proposed in 

[15], where MPEG-7 Descriptors and a Description Definition Language (DDL) were used. 

Their work adopted the notion of segment for the hierarchical indexing and attribution of 

semantic information. MPEG-7 MediaLocatorType was used to structurally localize 3D objects, 

while RegionLocatorType introduced geometric localizations. The link between those two 

Descriptors was made feasible through 3DSEAM (3D Semantics Annotation Model), a platform 

which made use of various concepts to define real-world objects, semantic profiles, properties 

and relations with the use of the before mentioned 3D region/object locators. However, the 

proposed framework [16] [17] had to surpass a number of obstacles, such as the implementation 

of an automatic localization and annotation system, and the definition of a query language 

capable of applying semantic-based queries on the generated instances of this model. 

After some years, motivated by the necessity of improving the annotation effectiveness of 

3D models and embracing once more MPEG-7 Descriptors, [2] implemented an efficient and 

complete description mechanism for the semantic annotation of X3D nodes. The proposed 

annotation scheme dealt exclusively with X3D scenes and it was capable of describing not only 

the geometrical and appearance characteristics of the 3D content, but also its animation and 

interactivity features. The description mechanism was based on the addition of several 
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Descriptors, extending the original MPEG-7 Visual and Metadata Descriptors of the standard 

and defining a new MPEG-7 Schema Definition for the validation of the description file. The 

latter file was generated through the employment of an XSLT algorithm, capable of automatically 

transforming any X3D object into its corresponding MPEG-7 description. Fig. 3-1 depicts a 

simplified version of the algorithmic process that takes place for the annotation of an X3D table. 

 

 

Figure 3-1 Annotating an X3D object using MPEG-7 Descriptors 

 

At first, a Profile3D datatype is used to identify the X3D profile being used. Afterwards, the 

scene is scanned for Transform nodes, where each one is represented by a ContentCollection 

Descriptor. The latter ones retrieve all the information that can be found inside these nodes, like 

geometric shape, color, material, etc. In the case that a Material node comes with a texture, its 

path is recorded with the assistance of the MediaURI element. In addition to the displayed 

example, plenty of other Descriptors and elements are provided to annotate complex scenes. 

Moreover, the extended MPEG-7 framework was used in conjunction with other MPEG 

standards (MPEG-21, MPEG-4) enhancing the indexing, retrieval and reusability capabilities of 

an online advertising platform [3]. Finally, this research work still remains in continuous 

progress aiming to annotate even more X3D nodes, such as Sound or AudioClip nodes. 
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 Designing semantically-rich VR environments 

Besides the MPEG-7 area of solutions, there were also a few remarkable works with 

mixed results on the direct manipulation of the 3D content found in a VR environment. One of 

the first works in this area [18] proposed a new X3D profile dedicated to the description of 

interaction techniques and the design issues met in such environments. The proposed profile 

named InTml -which stands for Interaction Technique Markup Language- composed of various 

components which guaranteed the co-existence of developer and designer roles under the same 

application. However, the presented description language gave birth to serious defects, such as 

underperformance during the scene’s navigation and the software's inability to detect non-pc 

devices, affairs that come in conflict with the expeditious and interoperability traits established 

from the X3D standard. 

Staying in design territory but extending the applicability of semantics to various 3D 

presentation formats, [19] implemented an annotation model for the enhancement of 

communication and knowledge management between the developers and end-users. The 

presented model was composed from three separate but interconnected components which were 

respectively responsible for the presentation format of the annotation, the placement of the 

annotation in VR environment, and the storing of additional data (i.e. metadata) about the 

annotation. Such annotations were able to be placed directly in any object of the scene, but their 

indexing procedure was based on an ontology unable to cover the domain knowledge 

sufficiently, resulting to the continuously adjustment of the presented model each time a new 

visual concept had to be added. Taking into account this deficiency and using a novel UML 

modeling approach, MASCARET Framework [20] went one step further in the semantic 

representation of 3D content by covering system-oriented semantics. Unlike the content-oriented 

solutions provided by the Semantic Web stack of technologies, MASCARET focused into the 

creation of intelligent semantically environments comprising not only the classical domain 

knowledge, but also the available set of interactions along with the relative behavior of 

participant entities. The framework developed a number of scenarios, which emphasized the 

simulation of human activities and interaction tasks in a typical VR environment. The same 

scenarios were later used for validation purposes, providing quite satisfactory results in the 

proposed semantic modeling methodology. 
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 Dealing semantically with real-world problems 

An alternative path to the above mentioned multimedia protocol-driven solutions lies to 

the use of advanced AI techniques for the semantic representation of specific 3D content. The 

semantic description and 3D representation of patrimony buildings [21] showed that it was 

deemed necessary the met of two conditions, in order to mine all the necessary information 

without losing any semantics inscribed on architectural shapes. The first condition relates to an 

immature but realistic 3D representation of the patrimony building based on the existing 

architectural patterns, while the second one concerns the deduction of the appropriate semantic 

information stemming from this 3D model. The combination of these two conditions was able to 

formalize the architectural knowledge within a finite number of architectural objects, where each 

one was qualified by various domain concepts. In the end, these objects composed a VR 

environment enriched with architectural semantic information, accessible via the GUI of a 

utilitarian platform. After a few years and changing the domain of interest from heritage 

buildings to urban scenes, it was presented a system [22] capable of adding semantics for the 

efficient skyline and windows detection. Their purpose was to imitate the human brain 

perspective capabilities, which lay into the fact that humans are able to immediately dissociate 

similar or intersecting objects even when their point of view suffers from distortion or obstacles. 

Their system was based on the combination of the FIT3D Matlab toolbox and a skyline detection 

algorithm, producing satisfactory results after being tested on various 3D urban scenes. Even 

though the derived semantics were quite limited compared to the human perception abilities, it 

was proved a valuable start towards the distinction of intersecting objects in real-world 

environments. 

On the other hand, the rapid development of hardware over the last years led to more 

advanced and interactive approaches as concerned the mining of semantic information from 3D 

environments. In [23] was firstly presented the idea of a semantic net which contains and 

implements general knowledge of indoor environments. However, even though that their 

approach was able to represent the majority of indoor environments, they dealt with the 3D 

scanned representations of real world environments. The initial feature extraction was done with 

a 3D laser scanner using a combination of ICP algorithm and RANSAC approach -and then- 

nodes of the semantic net represent the entities of these environment, which are accompanied 

with relationships and constraints between them. Despite the fact that their semantic concepts 
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were well-defined and well-structured, this semantic interpretation was purely boosted through 

the 3D analysis of the extracted features. Moreover, ICP implementations tend to find appliance 

in shape registration problems [24], where the former is combined with various types of data 

structures for the registration of nearest neighbor queries. 

After almost a decade and following the same pattern, it was developed a system capable 

of modeling real world indoor environments with the assistance of an RGBD camera [25]. At 

first, it was taking place the segmentation and labeling of the captured images, which 

differentiated the models that this indoor environment was composed of. Afterwards, a 3D shape 

matching algorithm replaced each segmented region with the most identical 3D model found in a 

database, ultimately leading to a 3D representation of the captured real world environment. 

However, the recognition accuracy of the system was clearly depending on the quality of the 

captured depth data, and the final reconstructed environment lacked of some significant semantic 

features (such as the geometrical information of the objects). 

 Contribution of semantics to spatial arrangement 

As we can see, the majority of research works focused into the rendition of a VR 

environment and its objects with semantic terminology, paying little attention to an efficient 

space interpretation scheme. A recent work [26] in this area adopted various spatial relations in 

order to qualitatively represent a 3D space. A spatial relation is any relation that specifies how an 

object is located into the space in relation to another object according to a topological, 

directional, or distance relation. A finite set of spatial relations drawn from these three types of 

relations defined two distinct modes of semantic spatial knowledge: 

 The topological spatial knowledge composed of on, in, at, near and surrounded spatial 

relations 

 The view-point dependent spatial knowledge composed of right, left, between, in front of, 

behind, above and below spatial relations 

The selection and demarcation of these spatial relations were based on the human 

reasoning capabilities, aiming at a faster and more accurate settlement of reasoning procedures 

(such as guiding a visual object search). However, some of the chosen topological relations come 

in contrast to the space relation theory, which states that any topological relation should be 

invariant to rotation, translation and scaling transformation [27]. Keeping in mind the latter one 
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and taking into consideration that not all types of semantic frameworks have to categorize their 

corresponding spatial relations, DEC-O [28] [29], an ontological framework for interior 

decoration applied a more generic spatial arrangement. In this work, the semantic spatial 

knowledge of the implemented OWL-DL ontology was based on the definition of various object 

properties reflecting a wide range of spatial relations, without being necessary their grouping to 

one of the three most commonly used spatial relations types. A small subset of these spatial 

relations is presented in the following Fig 3-2, where each one corresponds to a different OWL 

object property of the instantiated interior room-space. The room-space is cooperating with 

X3DOM framework to enhance the presentation and interactivity capabilities of the application, 

while Apace Jena framework is used to traverse the underlying OWL ontology. In this example, 

the end-user of the application has selected the desired X3D object, which in turn returns its 

spatial relationships with the rest of the objects. Doing so, it was made feasible a fast and reliable 

mapping of the location of objects that coexist in the 3D scene. However, this approach lacked 

the ability to automatically attribute space annotations to the existing objects or to efficiently 

represent the correlation of these objects compared to the 3D space itself. Its primary target was 

the implementation of an ontological framework for the annotation of interior room-spaces, 

rather than providing an automated spatial reasoning mechanism. 

 

 

Figure 3-2 Spatial relations disclosure in DEC-O framework 
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Among others, this study takes into consideration the lack of the latter feature in DEC-O’s 

annotation mechanism, implementing and providing an efficiently methodology for the 

deduction of such spatial relationships, which is thoroughly described in the following chapters 

of this thesis. Last but not least, the presented approach is not only independent of the underlying 

platform being used, but it can be also easily integrated in various systems to enhance their 

corresponding automated capabilities, like supplementing the spatial relations of DEC-O without 

any input or further action from the end-user of the application. 
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Chapter 4 - Components 

It is common knowledge that the VR representations of real world environments are far 

more attractive and realistic than their corresponding 2D. This notion has been further 

acknowledged over the last years through the elevation of various multimedia software products 

and the increased rendering of 3D content, thanks to the graphics hardware acceleration. Today, 

X3D standard provides advanced virtual and augmented reality capabilities that cover a wide 

range of domains, leaving far behind other 3D visualization technologies. It has been publicly 

acclaimed as the mainstream visualization format on the Web, while the last years its usability 

was further boosted due to its adoption from the X3DOM framework. X3DOM makes possible 

the publishing and manipulation of X3D scenes as DOM elements in any HTML5-capable 

browser, turning X3D standard also into an interchange format for the declaration of 3D 

interactive content on the same medium. The rendering process is supported by various back 

ends, including WebGL, which is the latest tech trend for the plugin-less rendering of 3D content 

assisted only by the graphics processing unit of the system. The smooth cooperation between 

these standards and their interoperability amongst various operating systems and devices 

(desktop computers, smartphones, etc.) are guaranteed through the usage of JavaScript as the 

main programming language. Its platform independence, ease of use and scalability features do 

not only meet the requirements set by this study, but they also enhance the implemented 

algorithm’s future potentialities. A short introduction to the capabilities of the aforementioned 

technologies is described in the following subchapters. 

 Extensible 3D (X3D) Graphics 

Today, X3D is the most widely used standard for the presentation of 3D content on the 

web, defining a runtime environment and a delivery mechanism encoded usually in XML format 

and represented as an n-ary tree. The architecture of the standard complies with various ISO 

standards, providing three different encoding options, ensuring its applicability to a wide range 

of areas and supporting every browser on the Web. One of the most remarkable characteristics of 

its architecture lies to the existence of variform profiles, where each one defines explicit 

functionalities for closely related target groups. This architectural layout enabled not only the 
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rapid expansion of X3D to mobile devices such as smartphones and tablets, but also gave the 

opportunity to software developers to choose amongst a subset of the implemented 

functionalities, absolving them from the necessity of conforming with the entire specification 

sheet of the standard. The majority of these profiles [7] along with a brief description of their 

functionality and possible areas of use are briefly described below, accompanied by an 

illustration of the tiered architecture in Fig. 4-1: 

 Core is the profile comprised of the absolutely minimum required components that compose 

any X3D scene. However, because of its extremely minimal nature it is rarely met in 

applications. 

 Interchange is one of the most widely used profiles of the X3D standard. It supports a variety 

of features -such as geometry, textures, lighting and animation- for the rendition of geometric 

models, while at the same time its applicability is a trivial procedure since it does not define 

any runtime rendering model. 

 CAD Interchange contains the majority of Interchange 

profile, plus a few additions targeting at the efficient 

compilation and integration of CAD application’s data as 

an interactive X3D application. 

 Interactive is a slightly component-richer X3D profile 

compared to the Interchange one, specializing at the 

interaction of the end-user with the 3D environment via 

the provision of advanced lighting, motion detection and 

navigation nodes. 

 MPEG4-Interactive combines the capabilities of Interactive profile with the standards set by 

MPEG-4 for the efficient usage of X3D environments in broadcast and mobile applications.  

 Immersive profile not only implements the same components as the Interactive profile, but 

also offers several features, such as the audio support, weather effects nodes and script 

functionality (X3D-EcmaScript). These features maximize the total immersion and 

effectiveness of simulation and gaming applications, making this type of profile to 

continuously gaining ground amongst the others. 

 Full profile contains the entire set of components determined by the X3D specification. This 

profile extends the Immersive profile with four different components, the Distributed 

Figure 4-1 The tiered 

architecture of X3D profiles 
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Interactive Simulation (DIS), Humanoid Animation (H-Anim), Non-Uniform Rational B-

spline Surfaces (NURBS) and GeoSpatial. These components find appliance to very specific 

and complex domains, such as the synchronized 3D simulations, character animations, 

medical implementations and GIS applications, respectively. 

The latest stable release of the X3D standard is the version 3.3 enumerating 41 

components that constitute the aforementioned profiles. Each component provides a set of nodes 

with similar functionalities, designating an articulation of different levels based on the 

characteristics of these nodes that range from the definition of geometric primitives and their 

corresponding transformations, up to the settlement of alternate content and multi-level 

representation. Thereby, plain applications are free to use a low-level profile without serious 

trade-off on the performance of the underlying 3D content, while demanding applications can 

chose according to their presentation and interaction needs, amongst the available high-level 

profiles. On the other hand, regardless of the chosen profile, X3D offers a flexible mechanism 

for the inclusion of additional data about the relative X3D scene. These data are enclosed in 

metatags, which are in turn encapsulated into the unique head tag of the XML serialization. The 

X3D specification provides a finite number of metatags that can sufficiently annotate any scene 

with the most commonly used information, such as the name of the creator, date created, title of 

the environment, license file, etc. Even when these tags are deemed inadequate, the standard 

always allows to the user to define his own tags, guaranteeing in that way a decent metadata 

description scheme of the X3D scene. However, its capabilities do not stop here since the 

standard also defines SAI (Scene Access Interface), an abstract API responsible for the 

cooperation of X3D with different technologies. SAI is a programming interface used for the 

establishment of connection between the X3D language and an external programming language, 

like Java or JavaScript. The utilization of such languages provides powerful interaction features 

and improved behavior on the scene’s elements, while any communication that takes place is 

achieved through the exchange of specific events among the participating languages. 

All of the above point out the X3D standard's rich and polymorphic nature, making it the 

ideal representation format for a wide range of domains from engineering and scientific to 

architecture, multimedia and entertainment. Moreover, the X3D standard has already made great 

strides compared to its predecessor VRML, being adopted by various XML-based languages 

(HTML5, XHTM, SVG, etc.) and the last years strives to become the 3D standard for the World 
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Wide Web. However, its 3D scenes tend to provide sufficient information only on the geometric 

features of its contents, since the standard itself does not provide any medium to incorporate any 

semantic information. With the passage of time this inability became quite troublesome in the 

majority of the X3D scenes, since not only primary goals of the standard (like the precise and 

rich presentation) were left behind, but also the idea of a Semantic Web made inevitable the use 

of such information. The attribution of semantics in X3D scenes enhances the overall 

representation capabilities of the any application, provides advanced identification techniques 

amongst its objects and guarantees its reuse in a more sophisticated way (fidelity applications 

that need improved degree of accuracy and reduced search time). 

 X3DOM 

X3DOM is an HTML5/X3D integration model that makes feasible the publishing and 

updating of declarative X3D content into any HTML DOM tree [30]. This model has been 

implemented with an open-sourced architecture which is available to the public as a JavaScript 

framework. The most distinctive feature of its architecture lies to the definition of a modular 

backup approach for the rendering of the 3D content, which is ultimately supported by a variety 

of back ends, like native, X3D plugin, WebGL and Flash. Amongst them, WebGL stands out 

since it allows the rendering of interactive 3D content without the need of installing any plugin 

for the majority of the latest desktop and mobile browsers. Moreover, its rendering capabilities 

include physics and shading support, while the overall procedure is accelerated with the 

Graphical Processing Unit. WebGL and the rest of back ends may vary in functionality and 

performance terms, but each one of them is available during X3DOM’s runtime. By doing so, the 

3D content being presented in the specific browser is the one that sets the necessary 

requirements, which in turn lead to the selection of the appropriate backend for the rendering of 

this content. On top of that, the subjected architecture is able to undergo the integration of 

additional back ends, filling in possible needs that may arise in the near future. In the following 

Fig. 4-2 is displayed this intermediate fallback model provided by X3DOM framework. 

 



17 

 

1
 

Figure 4-2 The current state of X3DOM’s fallback model 

 

As concerns the 3D declarative content, X3D language was chosen as the appropriate 

one, because it is a mature ISO standard coming with an XML encoding similar to that of 

XHTML’s. Based on this feature, X3DOM defined an integration methodology for the 

declaration of these X3D scenes in any XHTML document and a mechanism for the direct live 

manipulation and updating of the underlying DOM tree. In other words, X3DOM serves as a gap 

cover between the X3D language and the participating web specifications. However, in order to 

sufficiently integrate an X3D scene in the DOM tree of a XHTML document, X3DOM had to 

modify the Interchange profile of the X3D standard. The available nodes were increased by the 

addition of various higher-profiled nodes, like the Inline, Switch and LOD nodes, while any 

scripting capabilities are clearly left to the DOM/HTML side by eliminating the Script and the 

declaration of prototyped node types. Although this profile fulfills the requirements met in a 

wide range of applications, X3DOM provided the means for a richer and more realistic 

                                                 

1
 source: http://www.x3dom.org/wp-content/uploads/2009/10/x3dom-fallback-Release-1.2.png 

http://www.x3dom.org/wp-content/uploads/2009/10/x3dom-fallback-Release-1.2.png
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presentation with the introduction of the Texture and Mesh nodes. The first one makes use of 

specific HTML tags (img, video and canvas) for the integration of their content into specific 

X3D nodes, while the second one can take advantage of the latest shaders found today. Besides 

these characteristics, software developers are free to use the native JavaScript methods or any 

JavaScript library they may like for the addition, removal or update of the X3D nodes and their 

relative properties. Even though that X3DOM supports all the methods defined in the HTML 

DOM specification, there are a number of drawbacks concerning its integration model. Amongst 

them, a minor drawback is the appliance of CSS language on the HTML canvas element alone, 

since CSS modules are hardly usable in the elements of an X3D scene. On the other hand, a more 

notable drawback resides in the utilization of the X3D format as its unique 3D presentation 

format, bringing forth the need of converting every 3D content into this type of file format. 

Finally, the most worth mentioning drawback lies to the lack of an efficient progressive 

transmission mechanism [31], since the only one implemented is capable of receiving batches of 

geometry data over multiple HTTP requests which can lead to network congestion and low 

performance issues in case of immense 3D content. 

Summarizing, X3DOM not only incorporates 3D content on the Web without the use of 

plugins but this integration also takes advantage of existing Web standards instead of defining 

new ones. Its innovation lies to the concatenation of the HTML5 and X3D standards through the 

provision of a robust programming interface and a flexible fallback model. At the same time, its 

versatile architecture allows not only the adoption of the X3D standard from the majority of 

browsers, but also guarantees the integration of future amendments to this model. With features 

like these, X3DOM is definitely one of a kind 3D visualization technology which can be applied 

to a variety of areas desiring an open source plugin-less 3D content presentation solution. 

 JavaScript 

JavaScript is a structured object-oriented programming language that conforms to the 

ECMAScript Language Specification, inheriting from it powerful scripting capabilities and 

making JavaScript a constantly evolving ISO standard. The interpretation and execution of the 

language scripts is done with the assistance of an independent JavaScript interpreter or engine, 

which is usually contained into the relative web application, browser or plugin. The latest version 

of the language (1.8.5) introduced new functions, a new object (Proxy), strict mode support and 
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it was aligned fully with the 5.1 edition of the before mentioned specification. This rapid and 

widespread adoption of JavaScript forced it to extend the core objects and elements vocabulary 

[32], in order to sufficiently provide support for client and server side scripting on the web: 

 Client-side scripting provides advanced capabilities for the manipulation of web pages, 

enabling in that way a dynamically changing content depending on a set of environment 

variables, like the user's interactions, system conditions, etc. The authoring of client-side 

JavaScript (CSJS) is assisted by the definition of additional objects and event handlers 

compared to the core language specification. Typical examples are the Window object which 

represents the browser's window and various mouse events that indicate special user actions 

(i.e. MouseUp event indicates that a mouse button has been released). This type of scripting 

occupies the largest portion of use and is usually met on browser implementations where the 

asynchronous communication is a main asset. 

 Server-side scripting involves operations that are performed by the server in order to lighten 

the workload of client and/or shelter sensitive information. The employment of server-side 

JavaScript (SSJS) is achieved through the extension of the core language with various 

functions, classes and objects, like the write, Connection and database elements respectively. 

One of the most commonly used scripts deals with the communication attainment of an 

application with a database for storage and retrieval purposes, while more complex 

implementations provide runtime environments for the development of games or 

applications. 

In addition to client and server side scripting, there are numerous implementations that 

define their own JavaScript engines which play the role of an embedding scripting language or a 

distinct application platform. Even though such implementations make use of an exclusive 

object-oriented interface, their basic set of objects and elements is borrowed from the 

JavaScript’s core. Typical applications of this kind are met into Adobe Systems products, where 

in Adobe CS scripting is available with the use of JavaScript language and Adobe Flash works 

with a dialect of ECMAScript as its main programming language, known as ActionScript. 

However, the last years JavaScript surpassed the software barrier and geared with 

microcontrollers, serving as an alternative solution to the reliable and power-efficient control of 

hardware in embedded devices. 
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However, JavaScript’s nature comes with a number of serious security vulnerabilities that 

have to be taken into account by any web application or browser that deals with the authoring 

and execution of JavaScript code. Amongst them, the two most commonly used exploits are the 

cross-site scripting which involves the injection of malicious script on end-user's system to steal 

his personal data, and the cross-site request forgery, which corresponds to the execution of 

unauthorized commands from a trusted web page or application. JavaScript addresses such 

exposures incorporating a couple of security mechanisms, like the same-origin policy and virtual 

sandbox environment. The first one prevents the execution of scripts that provide access to data 

between pages that do not reside under the same protocol, port and host combination, while the 

second one sets up a virtual environment for the execution of scripts having limited access to 

hardware and network resources. Besides the security issues, there is also quite limited support 

from the majority of the existing JavaScript engines as concerns their compliance with the latest 

JavaScript version. This state of affairs compels programmers into taking special precautions 

during the software development process, by testing and validating the underlying JavaScript 

code on multiple environments (i.e. amongst the varied versions of browsers) through the 

utilization of the relative script debugger. 

Today, JavaScript is being used as a general purpose programming language to a variety 

of domains, from web-based implementations and web browsers to electronic documents and 

standalone applications. It is considered to be the scripting language of World Wide Web thanks 

to its dynamic cross-platform capabilities, while at the same time, its unperceived presence in 

almost every computer transfuses a lightweight and reliable character into the language itself. 
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Figure 5-1 A simple 

k-d tree bisection 

 

Chapter 5 - Implementation 

In this chapter it will be thoroughly described the implementation process of each 

individual part, which has been assigned a particular task for the semantic representation of VR 

environments. Even though that the implementation approach followed is independent of the 

underlying platform, any 3D scene that desires to be indexed must comply with the X3D 

standard and X3DOM framework. In this way, a common frame of reference is used to not only 

spatially query the indexed objects, but to also record any spatial relationships that take place 

between these objects. These parts come with a set of key objectives that can be divided into the 

implementation of a spatial indexing data structure and a sample OWL ontology for the 

translation of these relationships into semantic concepts. At first takes place an introduction to 

the most commonly used hierarchical representation types for the spatial annotation of a 3D 

virtual environment, which are none other than the Spatial Partitioning and the Bounding 

Volume Hierarchy. 

A Spatial Partitioning data structure continuously sections a 3D space into distinct 

regions which are used to convey one or more objects. The splitting direction and the number of 

produced regions is depending on the segmentation methodology being used, while the recursive 

subdivisions terminate when certain criteria are satisfied. Even though that both of these 

conditions differ from one data structure to another, the generic pattern of the hierarchical 

representation remains similar to either. Today, plenty of data structures are based on spatial 

decomposition solutions, but k-d trees and Octrees are the two most widely known and used out 

there: 

 k-d tree is a widely used BST space partitioning algorithm capable 

of bisecting a space into two separate parts, where each one contains 

half of the dimensional points existing into the original space. The 

search space is split along a specific axis each time and this 

procedure keeps repeating until every leaf node of the tree contains 

only one point of the primary space. The dimensional points can be 

queried with the assistance of pre-order or level-order search 

algorithms, while their query time is heavily depending on the distribution of the points in the 
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search space. In Fig. 5-1 to the right, it is displayed a 3D k-d tree which bisects an area of 

four data points. At first, it takes place a split on axis X, creating in that way two distinct 

areas with two data points each one. Afterwards, a second -and final- split along axis Y 

creates four leaf nodes containing a single point each one. 

 Octree is a tree data structure which consecutively partitions the search space into octants in 

order to enhance common tree operations. Octrees make use of point or matrix region 

techniques to subdivide the space and allocate the corresponding 3D points inside the octants. 

Their ease of construction and update made them widely accepted in dynamic 3D space 

problems like collision detection and range search problems. Some of the most advanced 

octree implementations can be seen in 3D game industry, enhancing collision detection 

accuracy between objects thanks to the multiple-boxes approach provided by this data 

structure. However, octrees lack of an efficient mechanism for the manipulation of static 

search spaces, while at the same time, they tend to subdivide the given space based on a 

single point each time. 

 

Figure 5-2 Octree subdiving a hypothetical cuboid search space 

 

The above mentioned data structures primarily aim at the efficient clustering of 3D space, 

leaving in second place a satisfactory indexing mechanism for virtual environment’s objects. 

Despite the fact that this kind of clustering guarantees a sufficient query performance for static 

datasets, interactive environments with deformable objects seriously suffer [33] from the lack of 

such a mechanism. So, applications that wish to resolve these deficiencies make use of the 

following hierarchical representation type instead. 

A Bounding Volume Hierarchy, is a collection of nodes where each node is a data 

structure composed of a bounding volume and a list of node pointers. Any leaf node of the tree 

makes use of its bounding volume to enclose a different geometric object, while at the same 

time, it points to its parent node and keeps track of the recorded object’s location (which is 
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usually stored in a database system). On the contrary, any internal node points to its parent node 

and a set of children nodes, while its bounding volume perfectly envelops the total area occupied 

by the bounding volumes of these children. This hierarchical clustering of volumes is carried on 

until an orphaned node is reached, which indicates that it is the root of the tree structure and its 

bounding volume has to enclose the entire set of geometric volumes under a recursively mode. 

This kind of organization is usually met in physics and graphics domains, while the majority of 

its implementations make use of axis-aligned bounding boxes (AABB) and spheres, or oriented 

bounding boxes (OBB). 

For the purposes of this work, an AABB tree data structure has been compounded to 

efficiently annotate the spatial characteristics of a virtual environment’s objects. Its design was 

entirely based on the R-tree spatial structure, which is a hybrid space partitioning solution that 

borrows concepts from both of the afore-mentioned hierarchical representation types. The 

implemented R-tree algorithm defines a fixed number of node entries and pointers, which are 

used to subdivide the 3D space into hierarchically nested set of nodes. Each node is represented 

by a bounding box crafted in such a way as to reduce its corresponding spatial redundancy. The 

leaf nodes designate a cluster of objects, while internal nodes tend to cluster particular parts of 

the search space. This hierarchical clustering of nodes aids to the efficient management of the 

object-subdivided search space, since a few only simple mathematical calculations are enough to 

decide for the usefulness of an entire cluster of 3D space. 

 The R-tree spatial data structure 

R-tree’s roots are found back in ‘70s due to their origination from the B-tree data 

structure [34], where many concepts of the latter were left intact and adopted in the former. At 

that time, many variants of B-trees were brought to life in order to sufficiently deal with the 

increased need for storing in, or retrieving from RDBMS large datasets. However, this data 

structure was unable to provide an efficient mechanism for the indexing of multidimensional 

datasets. A few years later, a counterpart solution for two-dimensional applications was proposed 

by Guttman in [35], a spatial index structure capable of indexing, removing and retrieving 

thousands of spatial data. The relative algorithms for these operations partition each time a 

specific only subset of the primary space, forming in that way many rectangular regions which 
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are ultimately represented as tree nodes. This data structure is characterized as R-tree due to the 

definition of such regions of rectangles. 

R-tree can be seen as a height balanced tree data structure that consists of a set of 

connected but acyclic nodes. These nodes contain a predefined range of entries, which can be 

either more nodes or indexed records. In the first occasion, these nodes are known as internal 

nodes, while in the second one are known as leaf nodes. Based on this basic tree terminology, 

any data structure that wishes to be considered as a valid R-tree implementation has to at least 

comply with the following set of properties: 

 M is the maximum number of entries that any node can contain 

 m is the lowest number of entries that any node can contain 

 Any node contains between m and M entries, unless it is R-tree’s root 

 If the root node is an internal node, then it must points to at least two other nodes 

 All leaves of the R-tree are piled all together at its lowest possible level 

Each node of the tree is represented by a rectangular area, known as minimum bounding 

rectangle or minimum bounding region (MBR). The dimensions of this area are depending on 

two factors, the size and the placement of its entries in the search space. Node’s entries are 

accessed one by one to retrieve their corresponding size, which is used to calculate the size of the 

parent area by aggregating these individual sizes. At the same moment, entries’ coordinates are 

also retrieved to record their lowest and highest values, which are in turn used to properly 

collocate this area. Thereby, any node’s MBR totally encloses its children, while each child’s 

MBR totally encloses node’s grandchildren. This nesting procedure keeps going on until a leaf 

node is reached, where its children contain the actual spatial data and do not point to more nodes. 

Such spatial data are consecutively indexed to the smallest sized leaf node and tend to represent 

an explicit point or various geometric shapes. This organized structure is independent from the 

distribution of the spatial data in the correlated application, even in the case of a sporadically 

distributed dataset, where changing the maximum and lowest number of allowed entries can 

reduce the size of MBRs and the overlaps between them. As an additional consequence of such 

changes, the execution time of spatial queries can improve drastically, since their functionality is 

closely related to the number of overlaps. 

Most of the time, an R-algorithm will create many overlaps between the entries which 

have been indexed during the Insertion and Splitting operations on the dataset. Such overlaps are 



25 

 

represented in a hierarchically structured tree, where the MBR of a child node is partially or 

totally covered by the MBR of more than one parent. However, these duplicate entries are 

eliminated by storing the child record to the least enlarged parent. In this way, not only the space 

utilization remains in high levels -it has been estimated to be at least 50%- but the Insertion and 

Splitting algorithms are also easier to authored and maintained. Moreover, R-tree's carefully 

design and open architecture allows the acceleration of spatial queries by skipping nonessential 

subtrees of the search space during the Searching operation. At the same time, they are capable 

of improving queries accuracy by supporting several distance metrics according to the setup of 

the tested application. So, the appropriate pathfinding algorithm for multi-angle indexed objects 

is definitely the Euclidean distance, while the Manhattan distance would be preferred by 

quadrangular records. Finally, even a Chebyshev distance metric could be implemented in order 

to be applied on Moore neighboring datasets. 

The advantages derived from such traits gave birth to numerous R-tree variants, where 

each one comes with special characteristics in order to satisfy the requirements set in various 

applications [36]. Even up to these days, R-tree implementations are being silently used in the 

background of both theoretical and technical domains, as their main data structure for the 

indexing of multi-dimensional datasets. In this work, a slightly modified version of the original 

R-tree data structure has been developed to deal with the indexing of X3D objects through the 

X3DOM framework and proceed to their spatial retrieval for future use. 

 A brief state-of-art in R-trees 

R-trees have evolved through the passage of time, bringing forth many variants of the 

original proposal. All of them aimed to achieve optimality on various aspects of the data 

structure, like lower insertion cost and better query performance, or guarantee its applicability on 

specific areas of interest. A detailed report on the latest and most widely used R-tree variants is 

described in [37], where it has been also defined a classification system that takes place 

according to each variant’s implementation and scope. Following the heels of this fission, there 

are variants that consist of slight modifications of the R-tree's construction methodology, hybrid 

variants that take advantage of other index structures and partially apply them into R-tree, and 

extended variants of R-trees which are used in specific domains by incorporating extra 

information and richer features. In the upcoming paragraph, the most notable R-tree variant from 
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each category is shortly described, in order to highlight the supple structure of R-trees and their 

usability in various areas. 

The most widely known R-tree variant is none other than the R*-tree, which makes use of 

advanced heuristic strategies for the insertion and splitting of spatial information [38]. Its novelty 

lies to the minimization of area coverage and overlapping MBRs, composing in that way a more 

rectangular R-tree structure. This is feasible thanks to its reinsertion algorithm, which first tries 

to find out the fittest node to place a new entry, instead of immediately splitting a leaf node and 

reassign its overflowing entries. Even in cases where a Splitting operation is deemed necessary, 

R*-tree will perform this split with various topological variables, like the node's axis and 

perimeter values. In Fig. 5-3 has been deployed an R-tree instance to index a large dataset of 

differential points, which can be possibly spatially accessed for future use. In the image on the 

left side is displayed the generated R-tree structure, which was relied on the Quadratic algorithm 

[35] for the splitting of its nodes. Conversely, in the image on the right side is shown an R*-tree 

structure which has been created with the assistance of a topological split algorithm. It can be 

easily perceived that the overlapping MBRs in the second image are much less compared to the 

first. 

2
 

Figure 5-3 Comparison of R-tree variants overlap ratio 

 

                                                 

2
 source: https://upload.wikimedia.org/wikipedia/commons/0/0e/Zipcodes-Germany-GuttmanRTree.svg &  

 https://upload.wikimedia.org/wikipedia/commons/c/c7/Zipcodes-Germany-RStarTree.svg 

https://upload.wikimedia.org/wikipedia/commons/0/0e/Zipcodes-Germany-GuttmanRTree.svg
https://upload.wikimedia.org/wikipedia/commons/c/c7/Zipcodes-Germany-RStarTree.svg
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The most obvious and valuable aftereffect of the aforementioned optimizations lies to the 

improvement of the query performance, despite the fact that its final structure resembles a typical 

height-balanced R-tree. However, all these techniques not only increase the insertion complexity, 

but they also introduce a negative impact on the total complexity and maintenance of the 

underlying algorithms. Because of these traits, it must be carefully investigated the possibility of 

adopting (or developing) a lighter R-tree variant, for applications that do not have to make use of 

such special characteristics. 

Regarding hybrid variants, R k-d tree [39] is particularly interesting since it applies 

methodologies that take into account both the spatial data and the space partitioning. At first, the 

search space is partitioned using a slightly modified k-d tree algorithm capable of supporting 

overlaps between distinct partitions. Every time an intersecting partition is detected, a finite set 

of bounding rectangles is utilized to represent any overlaps. In this way, the initial BST structure 

is further enhanced with R-tree's insertion and deletion techniques, acting as a middle ground for 

a wide range of applications. On the other hand, DR-tree [40] is an extension to the modal R-tree 

algorithm, which comes with the particularity of storing application specific information to 

hasten queries performance. Such information is attributed with one of the four cardinal 

directions, which ultimately form additional entries to each internal node of the tree. The regions 

represented by these child nodes are used during k-NN distance calculations in order to eschew 

needless computational burden. The only drawback of this approach lies to the low space 

utilization, which results from the addition of these four cardinal pointing nodes. 

Taken into consideration the research outcomes of the above mentioned variants, the R-

tree which has been implemented for the purposes of this work comes with a special set of 

features. The Splitting operation is based on the Quadratic algorithm, which remains a fast and 

reliable solution to cope with the needs of VR environments on the Web. Even though that R*-

tree has very attractive properties, it would be an overkill to set up and run it under these 

circumstances. Moreover, it was not deemed necessary to massively change the data structure 

presented in the original version of R-tree. Only slight modifications to support X3D content and 

to secure cooperation with X3DOM framework were carried out. Lastly, a number of spatial 

properties has been authored to enable an efficient semantic representation of the search space, 

which has been integrated in such a way that any node and its entries are attributed with these 

semantic concepts. 
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 An R-tree for indexing X3DOM scenes 

The original R-tree data structure and the majority of its variants were developed to deal 

with various 2D applications of specific domains. In the following subchapters however, it will 

be presented a novel R-tree structure which has been designed to efficiently index 3D virtual 

environments. The indexed records of these environments can be spatially queried at a later time, 

while the entire procedure is independent of the environment’s origination domain. The only 

constraint that is imposed on the inputted dataset, lies to the inability of the underlying 

algorithms to quickly output moving objects, when the latter ones exceed a few hundreds. 

The generic data layout of the implemented R-tree is based on the same key features that 

comprise any R-tree variant. Such features include the set of properties which was reported in the 

earlier subchapter “The R-tree spatial data structure” and a hierarchically organized structure of 

logn height. This structure dissociates the usage of its entries depending on which type of node 

they are located. So, the entries of a leaf node are represented by an array of spatial objects, 

where each one is attributed with an id value and a bounding container for the stigmatization of 

its boundaries into the 3D space. These id values point to the actual X3D objects of a virtual 

environment, which have been chosen beforehand by the user as the desired dataset to be 

spatially indexed and processed. Even though that the user is free to define its own identification 

mechanism according to application’s needs, a couple of fast and reliable approaches are already 

provided during the Insertion operation. The first one affiliates each inputted object with its 

corresponding DEF value -a uniquely referencable attribute used by the X3D standard- while the 

second one employs the order of insertion, which is used to ascribe the current increment value 

to the inputted object. On the contrary, the entries of an internal node are represented by an array 

of other nodes, where each one is attributed with an identifier pointing to a rectangular 

parallelepiped and a bounding container which encloses this node’s children. These identifiers 

are automatically produced during the construction of the R-tree with the assistance of a counter. 

The counter starts from R1 which points to the rectangular area representing the root node and its 

value is increased each time a new node is created. This numbering methodology is quite useful 

for presentation and debugging purposes, since it monitors and reveals the subjacent updates that 

take place after the execution of any operation on an R-tree instance. In the following Fig 5-4 is 

depicted a simple X3DOM scene composed of five unrelated objects. These objects are 

afterwards indexed to an R-tree instance, creating the set of MBRs which is displayed in the 



29 

 

image underneath. The black-colored MBR denotes the root node of the R-tree, while the red-

colored ones denote internal nodes of the data structure. On the other hand, a green-colored 

MBR denotes a leaf node which points to an indexed object. In the same figure is also presented 

the R-tree’s taxonomy, which contains various information about its underlying data. The most 

important of them are the registration of each MBR’s coordinates into the 3D space and the 

attribution of singular identifiers to each node and spatial object of the tree structure. 

 

 

Figure 5-4 An indicative R-tree taxonomy 
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Leaving aside the identification variable, both types of nodes abide by the predefined 

range of minimum and maximum entries, denoted by the variables m and M, respectively. 

Another common point of reference between internal and leaf nodes lies to the projection of their 

location into the 3D space adopting a specific bounding container. The majority of R-tree 

variants make use of bounding boxes or bounding spheres [41] thanks to their simple and 

lightweight arithmetic computations compared to other bounding containers, like the bounding 

diamond, octagon and convex hull. Despite the fact that these containers can be also applied to 

any X3D shape, they are shipped with increased algorithmic complexity and gravely higher cost 

of computation power for web-based applications. Moreover, X3DOM’s runtime environment 

comes with a concise API capable of inferring the raw coordinates of diaphanous bounding 

boxes, where the latter ones have been strictly implemented according to the X3D specification. 

The specification sheet states that all these boxes are oriented in the same direction with the axis, 

making inequality comparisons between these precomputed coordinates an easier procedure, 

compared to OBBs or the rest of bounding containers. Fig. 5-5 demonstrates the use of such 

bounding boxes for various geometric shapes in a 3D virtual environment, emphasizing at the 

unchanged orientation of the displayed MBRs, regardless of their relative enclosed object’s plane 

angle. This figure is also accompanied by a schematic representation of the right-handed 

Cartesian coordinate system used by X3D standard, where +X points to the right, +Y points 

straight up and +Z towards the viewer. 

 

 

Figure 5-5 Each MBR is an AABB container 
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The reasons described in the previous paragraph are more than enough to choose 

bounding boxes as the appropriate medium for indexing external information. However, the 

implemented R-tree takes advantage of bounding boxes not only for its structural purposes, but 

to also perform spatial queries on a given instance. The Searching operation –which is described 

in a later subchapter- provides three types of queries that involve space availability checking on a 

generated R-tree data structure. Intersection and overlap conditions constitute typical use cases 

of such tests and they are used to ascertain the sole existence of a bounding box in a finite search 

space. The only parameter that has to be checked is the integrity of its boundaries, where a non-

trespassed perimeter validates successfully these two conditions. In this way, computationally 

heavy collision tests between the geometric figurines of X3D objects are avoided and they are 

instead reduced to simple inequalities relations between their corresponding MBRs (otherwise 

the number of possible collisions is factorial to the number of these X3D objects). 

Summarizing, an R-tree data structure has been implemented for the efficient spatial 

indexing of 3D virtual environments. These environments have been fully integrated into the 

content of any modern Web browser thanks to X3DOM framework, which in this work is 

employed for information retrieval and presentation purposes. Any object of the 3D space that 

can be indexed is represented by one of the geometric shapes that are defined by the X3D 

standard, the 3D visualization technology used by X3DOM. The selected X3D objects’ 

boundaries are approximated by a rectangular parallelepiped area which totally encloses this 

object. The indexing of objects takes place in the leaf nodes of R-tree, while internal nodes tend 

to reference their underlying set of nodes. After the insertion of the desired objects is finished, 

the compiled R-tree instance can be spatially queried and translate the result set to the 

appropriate X3D identifiers. In the following subchapters is extensively described the 

functionality of each operation used by the implemented R-tree data structure. 

 R-tree operations 

The original R-tree data structure demonstrated satisfactory indexing and retrieval 

capabilities thanks to the utilization of a spatially modulated operation kit. That kit was 

composed of a set of cornerstone operations -like the Insertion, Deletion, Update, Splitting, and 

Searching- which were backed by more procedural routines. The usefulness of each operation 

was weighted according to the purposes of this study, in order to eliminate those routines that 
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could possibly be of no match for the tested 3D content. The Insertion and Splitting operations 

are inextricably linked to each other and their functionality is a must for any R-tree 

implementation. At first, it takes place the Insertion of the appropriate X3D objects, which have 

been chosen beforehand according to application’s needs. Such objects are always indexed under 

a single leaf node, favoring the one which has to conduct the least enlargement of its area. In 

case this node has run out of records, then the Splitting operation is commenced to create the 

necessary space in this leaf and propagate the required changes upward. In this way, the primary 

space is constantly partitioned in several MBRs after an Insertion or Splitting algorithm fulfills 

its tasks, improving the space utilization factor and the execution time of spatial queries. On the 

other hand, a Deletion operation along with its Update routine were not deemed necessary to be 

implemented, since this work exclusively deals with virtual environments that contain static 3D 

content. Even though that the dynamic insertion of objects may violate the height-balanced leaf 

nodes, the underlying Splitting algorithm makes use of heuristic techniques to not only reduce 

the overlapping MBRs and their corresponding size, but to also provide a self-balancing feature 

to R-tree structure. 

All of the above mentioned operations have as ultimate objective the spatial retrieval of 

the indexed objects at a later time. These objects’ retrieval is accomplished with the help of the 

Searching operation. The implemented R-tree structure supports three of the most commonly 

used queries on spatial datasets, which are none others than the Point, Region and k-NN queries. 

Each one of them comes with a carefully designed algorithm for the swift deduction of accurate 

results under various scenarios, e.g. a location-based search. Such a scenario could involve a 

search on a finite collection of X3D objects, which have been attributed with a unique identifier 

and are spatially represented by an MBR and a set of Cartesian coordinates. The interrelated 

processes of this area and the rest of the algorithmic procedures have been classified in the 

following three subchapters, where each one describes in detail a major operation of the 

implemented R-tree data structure. 

 Insertion 

Insertion can be defined as the operation of indexing a new entry to the appropriate leaf 

node of an R-tree instance. Such entries represent the objects that can be found in a virtual 

environment and they have marked for spatial registration. Each time that an entry insertion is 

requested, the corresponding algorithm has to traverse the tree in a recursively manner starting 
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from the root node. At this point, a well-founded and agile tree traversal methodology had to be 

implemented. However, even though that there is a variety of tree traversal options, R-tree can 

work flawlessly with only a few of them. So, an in-order traversal is rendered useless in front of 

an R-tree instance, since the data structure of the latter is not necessarily a binary tree. On the 

other hand, a level-order traversal would definitely spend much time on visiting inappropriate 

nodes, despite the fact that it could be applied to an R-tree structure. Such potentially 

inefficiencies led to the authoring of a pre-order algorithm, which makes it the perfect candidate 

for traversing any R-tree during an Insertion operation. 

 

N = R-tree root; 

E;      //Entry to be inserted in a given R-tree instance 

WHILE (N != typeof LeafNode) { 

 FOR (each Node child of N) { 

  xMBR = MAX(N.xMax, E.xMax) - MIN(N.xMin, E.xMin); //Axis X boundary 

yMBR = MAX(N.yMax, E.yMax) - MIN(N.yMin, E.yMin); //Axis Y boundary 

zMBR = MAX(N.zMax, E.zMax) - MIN(N.zMin, E.zMin); //Axis Z boundary 

newMBRArea = (xMBR * zMBR) * 2 + 

   (yMBR * zMBR) * 2 + 

   (xMBR * yMBR) * 2; 

enlargedArea = newMBRArea - originalMBRArea; 

 } 

 N = leastEnlargedAreaNode;  //Follow least enlarged Node to next level 

} 

Table 5-1 Traversing R-tree to find out the best leaf node for Insertion 

 

The implemented pre-order traversal starts from the 1
st
 level of the R-tree, which is none 

other than its root. If the root node is also a leaf node, then the entry is assigned to it and the 

Insertion operation is terminated. At this point, the insertion of an entry may violate the 

maximum number of allowed entries for the selected node, a property defined by the variable M 

and attributed to the R-tree structure during its design stage. If such a thing happens, then a 

Splitting operation is initiating for that particular node, an operation described in the upcoming 

subchapter. However, in contrast to this extreme scenario, the root node can alternatively contain 

a finite number of internal nodes which can be seen as subtrees. These subtrees are checked one 

by one in order to find out which one needs the least area enlargement to include the new entry. 
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The most optimal subtree amongst them is returned and the same algorithmic process is 

addressed to its internal nodes. This operation is iteratively repeated for each R-tree level, 

returning each time a single internal node pointing to a new subtree. The overall procedure 

finishes when the best matching leaf node is reached and the relative entry is indexed into it. 

Afterwards, this newly enlarged area has to be propagated till the root, updating the MBRs of all 

ancestor nodes one by one. This propagation of changes starts from the leaf node and terminates 

to the root, following the entire subtree in an opposite route to reform the space utilization and to 

ensure the integrity of the generated R-tree instance. 

In this study, the Insertion algorithm was executed numerous times for various use cases, 

bringing forward a special feature of the implemented R-tree structure. These tests revealed that 

the space utilization which is clearly depending on the nodes’ MBRs, it is also directly related to 

the order in which entries are indexed to an R-tree instance. However, García et al in [42] proved 

that there was no trade-off between the chosen node to insert an entry and the performance of the 

R-tree. For that reason, they focused into developing an incremental refinement strategy to 

accelerate the Splitting operation, leaving aside the Insertion algorithm's functionality. On the 

other hand, a different approach was followed in [43], where insertion and splitting algorithms 

had both to be re-authored and optimized for the efficient management of 3D virtual geographic 

environments. In the following subchapter is thoroughly described the important role that such 

splitting algorithms play in order to maintain the balance of R-tree instances. 

 Splitting 

The Splitting operation can be definitely designated as the most important component 

found in any R-tree data structure. All splits that take place on an R-tree instance occur when a 

node is about to overflow, after reaching its maximum number of allowed entries. At first, this 

special occasion results from the necessity of inserting a new entry to an already full leaf node. 

Since this specific leaf node has been selected from the Insertion algorithm as the best fitting 

node, there is no other option than partitioning it into two distinct nodes. In this way, not only the 

requested space is successfully created, but the primary node's MBR has been also demarcated 

and must be recalculated for the new leaf nodes. So, the already existing entries and the new one 

are distributed amongst these two nodes according to strict splitting policies. Such policies take 

into account a set of parameters and try to minimize the area coverage and the overlapping 

MBRs. The first one guarantees that the time complexity for the construction of the tree is kept 
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steadily at low levels, while the second one reduces as much as possible the number of visited 

nodes during the execution of queries. In short time after the introduction of R-trees, a couple of 

remarkable strategies [44] [45] were proposed to improve these two contradicting policies. 

However, there were applications where the algorithms beneath these strategies performed bad 

splits between nodes, resulting in turn to higher area coverage and slower query response. This 

thing demonstrated that a multitudinously parameterized splitting algorithm is not the only 

criterion which has to be taken into consideration, in order to wield the best possible space 

utilization and query performance. Instead, external factors like the domain which is going to be 

spatially indexed and the dataset's size are also deemed crucial to be known beforehand for the 

selection of the appropriate splitting strategy. 

In this work, the underlying framework and its provided functionalities remain the same, 

despite the fact that the domain may vary according to the user's desires. Moreover, since this 

study is focused into the spatial annotation of VR environments on the Web, the dataset size will 

rarely exceed a few hundred when the latest splitting strategies target on tens of thousands of 

samples. So, the implemented splitting algorithm is based on Quadratic methodology, one of the 

three foremost and most frequently used splitting strategies proposed by Guttman back in 1984. 

As its name suggests, it takes quadratic time to split and readjust the tree after a split operation, 

guarantying satisfactory bipartition utilization and query performance. Each time a split at a leaf 

node is performed, Quadratic algorithm picks over the most wasteful pair of entries from this 

node in terms of area coverage. The first entry of that pair is inputted as the primary entry in the 

split node, while the second paired-entry is inputted in the newly created node. Afterwards, all 

remaining entries are checked one by one against the area covered from these two nodes. This 

involves the addition of the entry's and node's MBRs for the calculation of the area enlargement, 

denoted in the algorithm by a special preference value. This value is used to determine the least 

expanded node, which is the one who absorbs the inquired entry and updates its primary MBR 

dimensions. At this point, it was deemed necessary to define a set of alternative solutions in 

order to successfully cover the range of diverse paths that arise from the comparison 

computations made upon the nodes' MBRs: 

 A non-expanded node points out that the entry totally falls into the MBR boundaries of the 

node, which in turn implies that entry's MBR is smaller than or equal to node's MBR. 
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 In case both nodes have been evenly expanded, then it is chosen the node with the smaller 

area coverage amongst them. 

 In case both nodes have been evenly expanded and their area coverage has the same size, 

then it is chosen the node with the fewer entries. 

 In case both nodes have been evenly expanded, and their area coverage and number of entries 

is the same, then the entry is randomly assigned to any node. 

 Finally, if the minimum filled requirement is successfully satisfied for a node, then the 

remaining entries are led to the other node. 

Of all these cases, only the last one can cause unreliable distribution of entries, leading to 

redundant increment of the search space, since such entries are inputted into a single node 

without any geometry checks. However, if a node reaches the maximum number of possible 

entries indicated by the equation M-m+1, there is no other option left for this greedy splitting 

strategy. The same tactic is repeated recursively from the leaf node to the root of the tree, 

following in that way the entire subtree which was chosen in the previous stage of the R-tree 

algorithm. This process is necessary in order to update the MBR dimensions of the parent node 

and check for available space in case both nodes are full. The overall procedure is known as 

Adjustment and preserves the integrity of any R-tree data structure after the completion of a split 

operation. This is rendered feasible by verifying that each R-tree property is successfully fulfilled 

at any given instance of its structure. In Fig. 5-6 below is displayed the bipartition criterion that 

takes place during a split operation, along with the appliance of an auto-balance trait used on 

every R-tree’s leaf node. Both of these operations are concealed to the user and they are silently 

running into the background of the relative application. The next paragraph describes in detail 

the use case being deployed and tested on account of this subchapter. Moreover, its relative 

splitting and adjustment methodologies are followed step by step in order to demonstrate their 

practicality and usefulness into the implemented R-tree data structure. A virtual environment 

mapping a plain 3D city has been authored for the purposes of this use case. The landscape 

layout is composed of a grassy area with several streets leading to inhabitable areas. Each of 

these areas contains a set of standard residences which may coexist with a skyscraper building. 
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Figure 5-6 Splitting & Adjustment operations on tree structure 

 

In this hypothetical scenario, we want to index such skyscrapers in an R-tree data 

structure in order to conduct spatial queries regarding their topology. In Fig. 5-6(a) is depicted 

the schematic model and the tree hierarchy at this specific stage of indexing procedure. The red-

colored boxes represent an internal or leaf node, while the green-colored boxes represent the 

spatial object being indexed. In favor of simplicity, the color of each skyscraper is used as the 

unique identifier between the recorded spatial objects. Thus far, the majority of skyscrapers has 

been indexed apart from the orange and aqua colored ones. In Fig. 5-6(b) both of them are 

sequentially inserted into the R-tree, modifying its initial tree structure to the one illustrated in 

the same subfigure. It is evident that a few splits took place in order to rearrange the spatial 

objects according to the least enlargement area criterion. Such splits were boosted due to the fact 

that the maximum number of allowed entries per node was set to two, while the minimum 

number was retained to one. In this way, R2 and R4 nodes lose their pairs since the newcomer 

skyscrapers are in closer distance with both of them. So, the R7 and R8 nodes are created from 

scratch through the Quadratic splitting methodology, while at the same time, an adjustment 

operation takes care of balancing R-tree’s leaf nodes. The latter one is based on the propagation 

of the affected MBRs to their corresponding ancestor node in a bottom-up strategy. Wherever is 

deemed necessary more splits occur in order to update these changes and maintain the integrity 
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of the data structure. The internal nodes R3, R9 and R5 in the second subfigure suggest a typical 

example of this process. All these splitting and adjustment operations immediately cease after 

such changes are successfully propagated to the root of the tree, forming in this way different 

clusters of nodes each time a new skyscraper is inserted. 

For sake of reference, the other two rejected splitting methodologies are the Exponential 

and Linear methodologies. The first one is the most optimal solution that can be found on R-

trees -since it iteratively checks for the best possible combination of nodes- but it comes with the 

worst complexity times due to its brute force nature. The second one tries to maintain a uniform 

distribution amongst entries, outpointing the rest methodologies in terms of running time, at the 

expense of memory management and bipartition optimality. So, Quadratic methodology not only 

wields the best ratio between time complexity and space utilization compared to the before 

mentioned approaches, but it is also the ideal partner for static memory-confined virtual 

environments. Lastly, despite the employment of the latter methodology for the implementation 

of the splitting algorithm, R-tree can be always extended to support additional parameters found 

on other R-tree variants, like a perimeter-based split axis [46] and/or the reduction of pruning 

overheads [47]. However, such sophisticated heuristic solutions tend to find appliance only in 

very specific domains, due to the fact that R-tree's construction and maintenance rates are 

seriously suffer from the complexity of these algorithms. 

 Searching 

The implemented R-tree algorithm takes as input a set of geometric objects which are 

organized in differential rectangular areas to answer various types of spatial queries. Its versatile 

structure not only guarantees its interoperability with large datasets of spatial objects, but it is 

also capable of representing any kind of geometry. In this way, any X3D object can be spatially 

indexed and queried, from the most widely used primitives (Box, Sphere, Cylinder, etc.) to the 

most complex IndexedFaceSet shapes. The supported queries can be divided according to their 

scope of use and their functionality, which may involve intersection, overlapping or nearest 

neighbor distance calculations. These data mining algorithms are summarized into three distinct 

subcategories and are eventually made available as point, region or k-NN queries [48]. On each 

occasion, a specific formula serves as the selection criterion that has to be satisfied, taking into 

consideration the spatial relationships between the engaged indexed objects. However, compared 

with other data structures, R-trees cannot be attributed with good and/or worst case searching 
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complexity, since the overall performance of their queries is heavily depending on the 

distribution of the objects in the search space and their relative geometry. Nonetheless, an 

average complexity for search algorithms is estimated to be around O(logMn), where M is the 

maximum number of records allowed into a single node. In the following subchapters are 

described in detail the implemented queries, accompanied by their corresponding formulas that 

serve as the catalyst for their successful execution. 

 Point Query 

A point query is the procedure of searching for and mapping a specifically located point 

to one or more spatial objects. The coordinates of the query point are translated in R-tree’s index 

structure, where the MBRs of the latter one are successively checked for possible matching 

entries. In this work, such single points are defined by the classic three dimensional Cartesian 

coordinate system and the distance metric system used is the Euclidean distance. However, other 

distance metrics can be also authored for this category of queries, according to the needs of the 

underlying application. Moreover, it is worth mentioning that this type of queries -compared to 

NN queries- do not have to wage unnecessary and heavy distance calculations, but to simply 

satisfy the following inequality equation for each dimension: 

 

(Point.x >= Rect.xMin && Point.x <= Rect.xMax) && 

(Point.y >= Rect.yMin && Point.y <= Rect.yMax) && 

(Point.z >= Rect.zMin && Point.z <= Rect.zMax) 

Table 5-2 Inclusion condition in 3D space between point and rectangular parallelepiped 

 

Besides the axiomatic variables Point and Rect which respectively stand for a query point 

and a rectangular parallelepiped area, the coordinates’ variables x, y, z, xMin, yMin, zMin, xMax, 

yMax and zMax are used as upper and lower boundaries for nodes' MBRs. In this way, the given 

query point is simply comprised into a set of internal nodes, which are further traversed until 

their corresponding leaf nodes. This traversal is done with the assistance of a Depth-First 

algorithm that iterates R-tree’s nodes level by level. However, making use of the aforementioned 

equation, DFS visits only those nodes that meet such inequalities, skipping a large subset of 

nodes at each level. This procedure keeps repeating until the algorithm reaches the lowest level 

MBRs, which are the ones that contain various spatial objects that may intersect the query point. 
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In case there are higher level nodes that have to be visited due to the existence of overlapping 

nodes, then DFS traverses their relative subtrees to scan for possible extra intersecting objects. 

The overall procedure finishes when there are no more paths to be searched for in algorithm’s 

list. 

 Region Query 

A region query -which is also known as a window query- is the procedure of searching 

for index records in a particularly located and shaped area of the 3D space. The placement of 

such an area is simply done by setting up its Euclidean coordinates, while its representation is 

feasible with various 3D geometric shapes. In this work we have implemented the most widely 

known search area, which is none other than the rectangular parallelepiped (a common rectangle 

in the corresponding 2D space). The coordinates resulting from the vertices of this rectangular 

area are inputted into a DFS algorithm that descends the R-tree in a certain order starting from 

the root in a top-down strategy. The algorithm’s traversal order is based on a depth first tree 

search, where the appropriate node is purely chosen by this set of coordinates. The same set is 

also the responsible one for determining the rectangular parallelepiped overlap criterion in 3D 

space, which ultimately takes the form of the following formula: 

 

(SearchRect.xMin < Rect.xMax && SearchRect.xMax > Rect.xMin) && 

(SearchRect.yMin < Rect.yMax && SearchRect.yMax > Rect.yMin) && 

(SearchRect.zMin < Rect.zMax && SearchRect.zMax > Rect.zMin) 

Table 5-3 Overlap condition in 3D space between two rectangular parallelepipeds 

 

Based on this formula, DFS algorithm is capable of checking if the current node's MBR 

overlaps with the rectangular parallelepiped search area. In case it does, the search algorithm 

descends even further, to the children of the relative R-tree node. This procedure is continuously 

repeating until a leaf node is found, something which directs the search algorithm to focus into 

this node’s entries. At this point, the validity of each entry is once more determined by their 

successful overlap with the predefined search area. Only those records that satisfy this 

requirement will be indicated as qualified, unmasking and returning their corresponding spatial 

objects. These objects can be further used for future processing according to the underlying 

application's needs or any way the end-user desires. Despite that the results coming from any 
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query would remain the same and integrally correct, the number of paths visited by DFS 

algorithm may change dramatically depending on m and M values of the R-tree instance. In case 

the virtual environment being indexed does not contain thousands of objects, it is not necessary 

to deal with these values. However, there are applications where query execution speed or space 

utilization are deemed especially crucial and these two values have to be checked for optimal 

results. Last but not least, it has been also eliminated the possibility of returning duplicate 

records of the same spatial object. Such a feature is feasible by implementing R-tree algorithm in 

such a way that although it allows the reflection of each object in many nodes, its indexing is 

exclusively done into a unique only leaf node. 

 k-NN Query 

k-NN can be defined as the optimization problem of finding the nearest k points from a 

specific query point, amongst a finite set of points calculated by a distance measurement system. 

Today, numerous applications adopt a nearest neighbor or nearest neighborhood algorithm for 

the efficient manipulation of their datasets. Some of the latest research works in 3D point cloud 

domain came up with a set of novel methodologies for the space division, aiming either at the 

definition and decomposition of a cubic area [49], or an arbitrary usage of cell grids for the 

reduction of computational and reduction costs [50]. On the other hand, even though that various 

k-NN techniques have been presented through the passage of time, only a few of them have been 

widely adopted in R-trees. One of the most worth mentioning techniques is the MBR Face 

Property proposed in [51]. This technique consists of a branch and bound algorithm relying on 

the fact that every face of any MBR in an R-tree data structure contains at least one point of a 

spatial object. During a k-NN search the MBR face property makes use of two interconnected 

metrics to discover and order possible nearest neighbors of a query point P. Moreover, the 

algorithm is also capable of pruning unnecessary nodes, further improving its performance. The 

image below displays a query point and a MBR which encloses a set of smaller MBRs that point 

to either internal nodes or spatial objects. In the same image becomes also evident the usage of 

the two metric variables, MINDIST and MINMAXDIST, for the calculation of the faces’ distance 

between the query point and the given MBR. 
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Figure 5-7 The MBR face property 

 

In contrast with MBR Face Property, G. R. Hjaltason and H. Samet proposed the most 

optimal k-NN technique that can be found today on this area [52]. Their Global Order point of 

view traverses only the closest node at each round skipping unnecessary branches of R-tree, 

while at the same time, maintains a priority queue with the distances of the already visited nodes. 

Based on their work, a novel pathfinding Best-First algorithm has been developed to match the 

needs of the implemented R-tree version and be applicable to a 3D search space. The only metric 

being used is the MINDIST, which can be defined as the minimum distance between a query 

point P and a MBR. If the query point is overlapped by -or intersects with- the given MBR, then 

MINDIST equals to 0. This checking is based on the hypothesis that point's coordinates have to 

be between the coordinates given by the upper left corner and lower right corner of the 

rectangular parallelepiped’s perimeter. In any other case MINDIST denotes the minimum 

distance from the query point to either the MBR's perimeter or a nested spatial object. In this 

way, MINDIST guarantees a lower bound for every spatial object, discarding MBRs that come 

with higher bounds than the current best NN candidate. Such candidates are stored into a priority 

queue which allows only the highest priority nodes to be visited first. The queue utilizes an 

efficient binary min-heap data structure, which partially orders the already visited nodes 

according to their distance correlation between the given query point. By doing so, the queue 

does not contain any duplicate record and algorithm's greedy nature is overlooked by minimizing 
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its backtracking. As concerns the selection criterion for which node to visit next, this is overseen 

by the calculation of the lowest path cost between node's distances. The code segment in Table 

5-3 below takes into consideration all the above mentioned facts and displays the methodology 

being used to determine the distance between a given query point and the rectangular 

parallelepipeds of an R-tree data structure. 

 

priorityQueue = NewBinaryMinHeap(); //Priority queue starts at position 1 

enqueue(priorityQueue, R-tree root, Infinity);    

WHILE (k != 0) {              //Return such records as the number of sample k 

 element = dequeue(priorityQueue); 

 IF (element typeof InternalNode) { 

  FOR (each Node child of element) { 

   enqueue(priorityQueue, Node, Node.MINDIST); 

  } 

 } 

 ELSE IF (element typeof LeafNode) {  

  FOR (each SpatialObject child of element) {     

   enqueue(priorityQueue, SpatialObject, SpatialObject.MINDIST); 

  } 

 } 

 ELSE {            //If it was a SpatialObject, return it as the best NN 

  RETURN (element); 

  k--;          //Decrease k by 1 and search for the next NN 

 } 

} 

MINDIST(Node, Point) { 

 x = MAX(Node.xMin - Point.x, Point.x - Node.xMax);     //Axis X differential distance 

 y = MAX(Node.yMin - Point.y, Point.y - Node.yMax);     //Axis Y differential distance 

 z = MAX(Node.zMin - Point.z, Point.z - Node.zMax);      //Axis Z differential distance 

 dist = SQRT(x^2 + y^2 + z^2);         //Or another square root approximation formula 

            RETURN dist; 

} 

Table 5-4 k-NN BFS algorithm pseudocode 

 

At first, a binary min-heap data structure is initialized in order to keep track of the visited 

nodes, while the user-defined sample of k nearest neighbors is inputted to the BFS algorithm. 

Each time an R-tree node is visited, it is also inserted into the heap data structure. All these nodes 

are sorted in ascending order based on their distance correlation between the closest node's MBR 

and the given query point's coordinates. This distance approximation is backed by a second 
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algorithmic function, which is none other than the MINDIST formula presented in the same 

segment. The latter formula is responsible for the calculation of any requested distance between 

two points in the Cartesian coordinate system. Moreover, the same formula is supplied with the 

necessary invoke and return modules for the smooth cooperation with these fields of the priority 

queue that asked for its assistance. Ultimately, the resulting distance returns back to priority 

queue for storing and indexing purposes. The implemented MINDIST metric had to adopt a fast 

and efficient heuristic for the distance measurement between data points. The most widely 

known is the Pythagorean formula which not only guarantees accurate results, but it is also easy 

to comprehended and be applied in a 3D space. So, BFS algorithm takes advantage of the 

classical Euclidean distance and slightly modifies it to calculate the distance of a given query 

point and its nearest MBR. However, the rest of the distance calculations that were taking place 

during the construction of the tree and the execution of queries, made use only of inequality 

equations and/or squared distances. In this way, the usage of the classical squared root metric is 

kept at the minimum, saving both computational power and time. 

At this point is evident that MINDIST can anytime be replaced by other distance metric 

systems, as long as they are capable of providing sufficient precision and satisfying computation 

speed. For example, MINDIST metric could be attributed with the capability to imitate a specific 

reciprocal square root computation known as Fast Inverse Square Root. Its functionality is 

analytically described in [53], proving to be a bit faster than Euclidean distance -while at the 

same time- remaining quite accurate. However, even though that the main concepts behind this 

methodology can easily be conserved, there are a few parts of the original function that have to 

be modified in order to run seamlessly under a JavaScript environment. Since the introduction of 

Typed Arrays in the latest JavaScript specifications and their corresponding affiliation by today’s 

modern browsers, it is now possible to exploit binary data in raw memory. Yet, and in contrast 

with the majority of programming languages, JavaScript does not differentiate numeric 

arguments amongst its variants (integer, short, etc.), but it always treats them as 64-bit floating 

numbers of the international IEEE 754 floating point representation. So, initializing the relative 

Array buffers and setting the mathematically optimal constant for 64-bit number size to the 

hexadecimal 0x5fe6eb50c7b537a9, a first guess for the reciprocal square root of a  given floating 

point number is feasible. Moreover, there is always the option to use successive Newton-

Raphson steps [54] to further improve the pre-calculated approximation at the expense of 
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performance. On the other hand, if performance comes with higher priority cost, then alternative 

solutions like Heron's method [55] or Bakhshali approximation [56] can be adopted to enhance 

the application's speed at the expense of approximation. No matter the case, it still remains a 

flavor of precision against speed, denoting that parameters like the underlying platform, the 

programming language and the application's needs have to be seriously taken into account for 

adopting the best possible solution amongst them. Finally, it is noteworthy that DFS and R-tree 

algorithms have been developed in such a way that are capable of deducting optimal solutions 

from repetitive nearest neighbor queries with slight only modifications. Doing so, the range of 

applicable domains is expanded much more, compared to the ones presented in the examples of 

the current chapter. 

 A computational model for spatial relations 

Spatial relations can be seen as a data mining procedure capable of inferring additional 

knowledge from a spatially indexed dataset. Such knowledge comes in the form of a linguistic 

vocabulary, where each one of its words defines a different spatial relationship between an object 

and another reference object of this dataset. The reasoning process is comprised of various 

factors (like the size, volume, position, etc.), which are ultimately used to structure a unified 

framework of relationships. This framework borrows concepts from psychology and computer 

science theories according to their perspective semantic views, contributing in that way to the 

specification of its underlying relations. However, no matter the composed framework or the 

type of standard being adopted, the general idea behind the spatial representation of a space of 

interest, lies to the abstract correlation of its objects’ position, or this space segmentation into a 

finite set of regions. 

Today, spatial relations can be applied into various domains, where each one of them 

tends to exclusively deal with a specific only subset of these relations. The most widely known 

classification scheme of the latter ones relies on the representation needs of the underlying space 

and its corresponding objects. In this way, three separate but closely affiliated categories were 

generated for the sufficient spatial annotation of a geometric space, namely the topological, 

directional and –the less paid attention- distance metric category, respectively. The majority of 

this work deals with directional relations, although there are a few topological relations which 

are occasionally used in specific stages of the R-tree algorithm. Although such topological 
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relations are briefly described in the upcoming subchapter, any spatial relation that is tested 

between two objects of an X3DOM scene is based on the directional type. The participating 

objects are associated with the Cartesian coordinate system, a three-dimensional distance metric 

which specifies an object's position with a signed triplet of numerical coordinates. These 

coordinates denote the distance of this object from a fixed location of three mutually vertical 

axes in the 3D space. Moreover, the minimum and maximum values from this set of coordinates 

are used to define the boundaries of a bounding container. The latter one is known as MBR and 

comes in the form of a rectangular parallelepiped. The vertices deriving from this type of 

geometry provide the necessary semantics for the deduction of spatially directional relationships. 

In the following subchapters, each spatial relation that takes place into the implemented data 

structure is comprehensively described, accompanied by the appropriate mathematical formula 

that results from the variable parts (i.e. object’s geometry, algorithm’s bounding container, 

number of planes, etc.) of the participating entities and the 3D space itself. 

 Topological relations 

Nowadays, numerous applications [57] [58] come with a dedicated set of spatial 

operations for the implication of topological relationships between their objects. Most of them 

make use of Oracle Spatial and Oracle Locator extensions for the spatial reasoning of their 

dataset, adopting various intersection patterns defined in [59]. The latter one can be considered 

as a specification sheet which complies with the principles of a nine-intersection model for the 

topological classification of a geometric region. On the other hand, many commercial and open 

source RDBMS provide a mechanism for the spatial indexing of their stored records. Despite the 

fact that their spatial operators and integration level may vary from one implementation to 

another, their relative data mining mechanism is based on either OGC or SQL/MM spatial 

standards [60]. Both of these standards support a wide range of geometry types, which are 

attributed with a fixed set of properties for the manipulation of spatial information. These 

properties define and delimit three different regions for each spatial object (namely the boundary, 

interior and exterior regions), where their relative topological interconnection is inferred based 

on a spatial predicate representation method [61]. 

Such predicates, however, had to take into consideration the human spatial cognition in 

order to sufficiently define this kind of relations. In [62], human subjects were assigned with 
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miscellaneous tasks that involved the identification and grouping of topological spatial relations 

between two objects. The results of these case studies showed that the linguistic representation of 

space concepts used by the majority of subjects, concurred with the topological factors and 

geometry criterions used by the 9-Intersection model. In Table. 5-4 below are delineated all these 

spatial predicates between two predefined geometries, along with their semantic representation 

that corresponds to either a Equals, Disjoint, Intersects, Touches, Crosses, Overlaps, Contains, 

Covers, CoveredBy or Within human linguistic predicate. Even though that such topological 

relations are coming with various forms depending on the application domain, their classification 

methodology remains the same and is extensively described in DE-9IM [27] standard. In this 

way, it was granted an interoperable and practical topological model for a wide range of 

domains. In this work, the implemented R-tree data structure takes advantage of intersecting 

within and overlap formulas to perform spatial queries upon an R-tree instance, while an area 

coverage criterion is silently used during the construction of the tree. These extensions have been 

thoroughly presented in previous subchapters and they are similar to the topological predicates 

provided by DE-9IM. 

 
Use Case Associated Relations Implicated Relations 

 

Geometry A contains Geometry B Geometry B is within Geometry A 

Geometry A covers Geometry B Geometry B is covered by Geometry A 

 

Geometry A intersects Geometry B Geometry B intersects Geometry A 

Geometry A touches Geometry B Geometry B touches Geometry A 

 

Geometry A overlaps Geometry B Geometry B overlaps Geometry A 

 

Geometry A equals Geometry B Geometry B equals Geometry A 

Geometry A contains Geometry B Geometry B is within Geometry A 

 
Geometry A and B are disjoint Geometry B and A are disjoint 

 
Geometry A crosses Geometry B Geometry B crosses Geometry A 

Table 5-5 DE-9IM topological relations 
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Besides these MBR-related functionalities, the developed computational model is also 

capable of inferring the most commonly used topological relations in 3D space. As it has been 

stated before, the R-tree data structure consists of a multi-level hierarchy of rectangular 

parallelepiped containers known as MBRs. Their contents may be more lower-level MBRs or a 

family of spatial objects. The placement of such objects in 3D space derives from the leaf nodes 

of any R-tree instance, where their MBR coordinates are being recorded down, in order to 

proceed into an efficient spatial reasoning between them [63]. The spatial correlation procedure 

comes in pairs of MBRs and involves the appliance of a basic set of topological relations upon 

them. These relations come with a carefully designed taxonomy in order to prevent incorrect or 

nonessential implication of spatial annotations, since only one of the former can hold at a given 

time and space. For that reason, the implemented topological relations are serially tested one by 

one against every MBR pair, where the first valid occurrence amongst them points to the best 

fitting topological relation. This series of relationships and their corresponding allocation 

formulas between RectA and RectB rectangular parallelepipeds are presented below: 

 At first, it is tested the possibility that these two MBRs are disjoint. Such a thing implies that 

neither the boundaries nor the interior regions of these MBRs are in contact. However, for 

the purposes of this work, the equality operator has been included into the formula shown in 

Table 5-5, since the intersection of a part of their boundaries alone does not affect the result 

set of the upcoming directional relations. In this way, we can also safely deduct a touch 

spatial predicate from the same category of relations. 

 (RectA.xMax <= RectB.xMin || RectA.xMin >= RectB.xMax) ||  

(RectA.yMax <= RectB.yMin || RectA.yMin >= RectB.yMax) || 

(RectA.zMax <= RectB.zMin || RectA.zMin >= RectB.zMax) 

Table 5-6 Disjoint or Touch condition for rectangular parallelepipeds in 3D space 

 

 In case that the above mentioned formula fails to satisfy a topological relation between two 

given MBRs, it is initiated the next closest spatial relation which is none other than the equal. 

In this occasion, the participating rectangular parallelepipeds must have in common not only 

their relative boundaries, but also their entire interior region. However, this kind of relation is 

rarely met in applications due to its strict constraints, which are shown in Table 5-6. So, the 
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majority of objects immediately proceed to the within criterion, where its formula has been 

displayed in Table 5-1 and thoroughly explained in a previous subchapter. 

(RectA.xMin == RectB.xMin && RectA.xMax == RectB.xMax) && 

(RectA.yMin == RectB.yMin && RectA.yMax == RectB.yMax) && 

(RectA.zMin == RectB.zMin && RectA.zMax == RectB.zMax) 

Table 5-7 Equal condition for rectangular parallelepipeds in 3D space 

 

 In contrast to the latter topological relation, there is a chance that the first MBR totally 

contains the second one, both in terms of its boundary and interior regions. This encasement 

also takes into consideration the possibility of intersecting boundaries, since the onus of 

containment focuses into comprising the relative interior region. Table 5-7 displays the 

inequalities operations that take place in order to determine if two rectangular parallelepipeds 

fall into this category of relation. 

 (RectA.xMin <= RectB.xMin && RectA.xMax >= RectB.xMax) &&  

(RectA.yMin <= RectB.yMin && RectA.yMax >= RectB.yMax) &&  

(RectA.zMin <= RectB.zMin && RectA.zMax >= RectB.zMax) 

Table 5-8 Contains condition for rectangular parallelepipeds in 3D space 

 

However, there is one option left for a specific pair of MBRs that does not satisfy any of the 

afore-mentioned topological relations. This option lies to the validation of the overlapping 

criterion presented in Table 5-2, which denotes that a part only of their interior regions are 

successfully met in 3D space. At this point, it is worth mentioning that the rest of non-

implemented relations (Intersects, Crosses, Covers and CoveredBy) are complementary to some 

of the implemented relations, providing in that way an efficient spatial representation of the 3D 

virtual environments. 

This part of reasoning finishes when each spatial object has been uniquely attributed with 

a specific topological relationship. In cases of evenly arranged or overlapped entries becomes 

evident that this spatial representation is sufficient enough from a semantic spatial mapping of 

space. However, the disjoint topological relation is a special type of annotation which unlocks 

more spatial features on the underlying dataset. These features are represented by a different 

directional relation and their application is deemed necessary for any objects that are classified as 

disjoint. The following subchapter describes in detail the implicated directional relations, along 
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with the conditions that have to be met in each occasion, for the adequate provision of access to 

this kind of annotations. 

 Directional relations 

Directional relations refer to another major type of spatial analysis, where the reasoning 

predicates incorporate direction constraints between two objects. From early times, there were 

works that took into account the human perception in directional management, involving either 

context sensitivity or psychological factors for the spatial reasoning of a space. In [64] was 

observed that this linguistic representation sometimes contradicted not only with the spatial 

relation term chosen by an artificial intelligence system, but also with various comparative 

concepts, like the orientation plane, the objective technique used and others. This fuzzy state of 

perception was based on the selection of a specific subset of vertices from a pair of objects. 

These vertices were used to determine the appropriate directional relations between these two 

objects. Over the passage of time, the latest technological advances allowed the automated 

generation of such relations for indoor scenes with the utilization of a robotic mechanism [65]. 

The entire process was based on a novel computational model, where its leading spatial 

quantities were the size and position of room's objects. These quantities gave birth to a set of 

principles for the generation of directional relations between all possible pair of objects, while at 

the same time unreliable relations were eliminated from the result set. The presented model was 

assisted by a 3D sensor capable of dealing with alternative configurations of indoor scenes, 

which have been loaded from a specific rooms' database. 

All these studies pointed out that a visual representation of a space is always richer than 

its corresponding linguistic representation. This quickly became evident in spatial annotation 

applications, where qualities like shape and color were left aside compared to schematic traits 

like the above, left, front, etc. A series of experiments [66] proved that neither a qualitative or 

quantitative classification of a space were sufficient to capture similarities between spatial 

representation and spatial language. However, there were specific spatial propositions that could 

safely reflect a part of linguistic semantics in terms of applicability and accuracy. Such 

commonly used identification patterns were encoded to the above, below, left and right spatial 

relationships, which have been also adopted for the purposes of this work. On the other hand, a 

formal representation of natural language’s spatial concepts was deemed quite a challenge, 
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mainly due to the fact that each interactive application can be addressed with complex and 

variant semantics that point to more than one kind of spatial relations [67]. For that reason, the 

composed computational model is capable of inferring various spatial relations between the 

objects of a virtual environment. This reasoning procedure is based on the spatial analysis of R-

tree’s MBRs, where a set of topological relations is applied among them, followed by the 

deduction of their corresponding directional relationships. These relations do not take into 

account the current viewpoint of the user, but instead they automatically annotate with spatial 

information any object of the 3D space, according to the Cartesian cardinal directions, which is 

the default coordinate system used by X3D standard. Each directional pattern is bestowed with a 

formula capable of testing spatial relationships between MBRs. In this way, complex and 

heavyweight spatial relation algorithms are avoided, where a simple and efficient methodology is 

used to significantly boost the reasoning performance. Moreover, even though that this technique 

is an approximation of the best fitting relation amongst the available directional relations, its 

anticipated outcomes are quite satisfactory in terms of accuracy. 

The authored formulas act as a uniform classification rule for the categorization of an 

MBR pair into one or more directional relation types. This stage of spatial reasoning is 

exclusively accessed when this pair’s topological relation is derived to be disjoint. In this way, it 

is guaranteed that the MBRs of any R-tree instance are used as the ground to indicate the 

underlying directional relationships between their enveloped objects. Below, RectA and RectB 

rectangular parallelepipeds represent the minimum bounding box of two different objects. The 

first one points to the object which has to satisfy the following set of directional criterions 

according to a second reference object, in order to be successfully categorized into the 

appropriate spatial category: 

 When the rightmost boundary region of the tested MBR has lower value than -or equal value 

to- the leftmost boundary region of the reference MBR, then the first object is located on the 

left side of the second object. On the other hand, if the leftmost boundary region of the tested 

MBR has higher value than –or equal to- the rightmost boundary region of the reference 

MBR, then the first object is located on the right side of the second object. 

Left RectA.xMax <= RectB.xMin 

Right RectA.xMin >= RectB.xMax 

Table 5-9 Left & Right conditions for rectangular parallelepipeds in 3D space 
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 When the lowest boundary region of the tested MBR has higher value than the highest 

possible boundary region of the reference MBR, then the first object is located above the 

second object. On the other hand, if the highest boundary region of the tested MBR has lower 

value than the lowest possible boundary region of the reference MBR, then the first object is 

located below the second object. 

Above RectA.yMin > RectB.yMax 

Below RectA.yMax < RectB.yMin 

Table 5-10 Above & Below conditions for rectangular parallelepipeds in 3D space 

 

 When the lowest boundary region of the tested MBR is equal to the highest boundary region 

of the reference MBR and these two boundaries are intersecting even at a single point in 3D 

space, then the first object is over the second object. On the other hand, if the highest 

boundary region of the tested MBR is equal to the lowest boundary region of the reference 

MBR and these two boundaries are intersecting even at a single point in 3D space, then the 

first object is below the second object, but the second object is over the first object. 

(RectA.yMin == RectB.yMax || RectA.yMax == RectB.yMin) && 

(!((RectA.xMax <= RectB.xMin) || (RectA.xMin >= RectB.xMax))) &&  

(!((RectA.zMax <= RectB.zMin) || (RectA.zMin >= RectB.zMax))) 

Table 5-11 Over condition for rectangular parallelepipeds in 3D space 

 

 When the most posterior boundary region of the tested MBR has higher value than -or equal 

value to- the frontmost boundary region of the reference MBR, then the first object is located 

in front of the second object. On the other hand, if the frontmost boundary region of the 

tested MBR has lower value than –or equal to- the most posterior boundary region of the 

reference MBR, then the first object is located behind the second object. 

Front  RectA.zMin >= RectB.zMax 

Behind RectA.zMax <= RectB.zMin 

Table 5-12 Front & Behind conditions for rectangular parallelepipeds in 3D space 
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Once more, boundary representation methodologies have been established in order to 

imply the appropriate directional relations for each use case. The overall mechanism is also 

capable of deriving the inverse spatial relationships, wherever they can be applied without 

performing any needless reasoning procedures. Such a thing occurs when the second object 

prevails over the first, according to the requirements set by the corresponding directional 

relation. At this point, it’s worth mentioning that the number of implicated relations is massively 

increased relative to the number of indexed objects. This phenomenon along with the upcoming 

need of parallel programming in World Wide Web [68], prompted the use of web workers for the 

purposes of this work. The computational model presented above has been implemented in a 

separate JavaScript script with the assistance of a web worker [69], which silently runs in the 

background and allows the user to freely interact with the rest of his platform. Last but not least, 

web workers are capable of avoiding the deficiencies met in case of slow response times, while 

at the same time, they are able to exploit multicore machines in a more efficient way than the 

classic JavaScript programming methodologies. 

 Semantic annotation of spatial relations 

Up until this point, the implemented 3D R-tree data structure is not only browser-

independent, but it provides all of its indexing and spatial features under a single JavaScript 

library. In this way, no plugins or additional programs have to be installed in client side, 

incorporating faster response times and less resources burden on the machine. However, the 

implicated spatial relations between the indexed objects of a 3D scene are available to the user 

via a simple HTML element, instead of integrating them into some kind of Semantic Web 

solution. Hence, an abstract semantic layer capable of reusing such relations was deemed 

necessary in order to apply and reason with them from a semantic scope. 

In [70] was presented a technique for the uniform application of spatial reasoning into 

empty or vague regions of a topology. The proposed model was an extension of RCC5 and RCC8 

schemes and helped to the mathematical formalization of a set of qualitative spatial relations 

from a semantic scope. Such RCC8 predicates were also employed for the development of new 

OWL-DL axioms [71] capable of dissociating ontology’s concepts into spatial regions and 

applying a small subset of topological relations upon them. However, the implementation of such 

spatial axioms was not only a quite complex procedure, but their representation capabilities were 
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also clearly depending on RCC scheme’s reasoning capacity. The latter fact comes in contrast 

with the implemented R-tree's relations, which are based on DE-9IM, a totally different spatial 

reasoning methodology. So, even though that these works are capable of building useful scene 

descriptions, they are far apart from this study's cornerstones. For reasons like this, it had to be 

authored an ontology that won’t unsettle the prototype state of axioms, but it would instead take 

advantage of them, in order to represent the spatial relations coming from R-tree algorithm. 

Moreover, its property characteristics had to be able to derive inverse semantic relations and 

avoid needless computations, since the majority of spatial relations come with a counterpart 

functionality which can be represented by an OWL axiom (reflexive, symmetric, anti-symmetric 

and transitive). Such axioms could also be combined in a later time to express a VR environment 

with advanced semantics. 

For the purposes of this thesis, the ontological framework presented in [28] has been 

utilized as the proposed semantic layer of information. The semantic composition of its ontology 

is based on a specific domain (interior design and decoration), designating the appropriate 

classes and their taxonomy, the relationships between the former, and ultimately defining 

possible class and property restrictions. The development of the ontology was done in OWL 

language, which is a W3C's recommendation with advanced capabilities in the description of 

classes and properties. Specifically, it is going to be used the OWL-DL sublanguage of OWL 

[72], in order to express first order logic and to ensure that the resulting statements are valid, 

through the restrictive nature of this sublanguage. The development of this ontology led to a 

detailed conceptualization of indoor scenes, identifying the essential semantic concepts for the 

efficient description and reuse of such environments, along with their corresponding 3D content. 

For the time being, DEC-O consists of the semantic spatial representation properties shown in 

Fig. 5-8. It is evident that a part of these object properties is directly related to the directional 

relations that are implicated through the presented computational model, while topological 

relations have not been implemented in this kind of framework. However, the semantic 

annotation of the latter leaves unaffected the result-set of the former, since all of them have to 

satisfy the disjoint criterion in order to proceed to such a semantic supplement. In the last section 

of the following chapter is employed a typical indoor scene for the deduction of spatial relations 

between a specific subset of objects with the assistance of an R-tree instance and DEC-O's web 

service. 
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Figure 5-8 Semantic spatial properties of DEC-O 

 

Summarizing, the proposed R-tree data structure and its relative operations can be used as 

the foundation for the construction of a formal ontology -or the cooperation with an existing one- 

aiming at the efficient spatial description of VR environments. This semantic representation of 

spatial knowledge can also be further enhanced with a query mechanism like SPARQL [73] or 

Linked Data, in order to conceal the R-tree reasoning process and provide the end-user of the 

application with a flexible and user-friendly environment. No matter the path chosen, each 

ontology has to be carefully designed, in order to sufficiently classify the interested domain’s 

concepts and adequately represent the relationships between these concepts. 
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Chapter 6 - Experimental evaluation 

The implementation part was exhaustively confronted with numerous scenarios in order 

to certify the unremitting functionality of the authored algorithms and the validity of their 

corresponding results. In the previous chapter, a couple of simple examples were presented to 

highlight certain aspects of the OWL ontology and R-tree’s data structure. In this chapter, 

however, it takes place a systematic monitoring and review of a scenarios’ series. Each scenario 

stands for a disparate use case which comes in the form of an X3DOM virtual environment. This 

environment has been set up according to the outline of its relative scenario, while specific only 

objects from the subjected 3D space have been spatially indexed based on the use case being 

tested. The entire process of spatial annotation was carefully observed step by step, fixing a few 

key issues that had arisen from inconsistencies in the logical system. Moreover, the result set of 

each scenario was thoroughly examined and evaluated against the expected results, modifying 

either the original structure of the R-tree, or optimizing the performance of the underlying 

algorithms wherever that was deemed necessary. These scenarios have been divided according to 

their spatial usability into the following subchapters, where each one addresses a specific state of 

its runtime instance. 

 R-tree taxonomy & stretch tests 

At first, it will be presented a complex scenario which includes a finite set of randomly 

distributed boxes across a 3D space. The scenario aims at mapping a typical city structure, where 

the latter boxes are used as a representation mean for various city buildings. Even though that a 

quick glance at the authored X3DOM scene may lead to the conclusion that it is a very simple 

environment, it instead comes with a vague clustering sequence of about 180 objects into a set of 

24 distinct Group nodes. This scattered distribution of objects creates many undefined areas of 

jurisdiction that have to be taken into consideration during R-tree's indexing and splitting 

operations. In order to highlight the taxonomy of nodes in this R-tree instance, a series of level-

layered approaches is presented below. All of them make use of the Insertion and Quadratic 

algorithms to spatially index 24 groups of objects, where each R-tree node supports a fixed range 

of entries with lowest possible value of m=2 and highest possible value of M=4. 
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The first level of this R-tree instance is depicted in Fig. 6-1(a), which is none other than 

the root of the tree structure comprising of two only nodes. This level and its relative nodes 

contain the most abstract layer of information, since the rest of levels come with an increased 

number of nodes that target specific areas of the virtual environment. Fig. 6-1(b) displays the 

second level of the same R-tree instance, which points this time to the internal nodes of the data 

structure. The latter ones do not only compose the children of the aforementioned level, but they 

also indicate next level's nodes. The third and final level of this data structure can be seen in Fig. 

6-1(c) and refers to R-tree's leaf nodes, where it becomes obvious that the overlapping ratio of its 

indexed objects is based on their insertion order and abnormal initial distribution in 3D space. 

Ultimately, the entire R-tree taxonomy is highlighted in Fig. 6-1(d) by concatenating all the 

generated nodes of each individual level. 

 

 

Figure 6-1 Various levels of an R-tree instance 

 

 This hierarchical representation of R-tree's nodes can be seen as an effective clustering 

methodology aiming to improve the rest of its spatial operations. However, such a thing revealed 

the need for a clarification of its indexing and reasoning capabilities in terms of computation 

speed. For this reason, a brief -but extensive- stretch test took place upon the same scenario. The 
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generic structure of the virtual environment remained the same on purpose, in order to 

sufficiently compare R-tree's performance and scalability features under a common pattern. The 

only thing that varies is the definition of two distinct use cases, where each one comes with an 

increased number of randomly distributed shapes of the original pattern. As concerns the core R-

tree parameters, the minimum and maximum node sizes were set to m=10 and M=20, 

respectively. These two parameters were kept the same across all three use cases and R-tree 

instances. On the same side of coding, the execution times of algorithms were validated 

according to the Performance.now() method of JavaScript specification [74], where its relative 

set up and functionality are shown and explained in the following table. 

 

FOR (each operation in R-tree) { 

startTime = new TIMER(); 

…     //Main body of the relative operation 

endTime = new TIMER(); 

elapsedTime = endTime – startTime; //Return elapsed time in milliseconds 

} 

TIMER() { 

currentTime = performance.now(); //Make use of High Resolution Timer 

RETURN currentTime; 

} 

Table 6-1 Time measurement pseudocode 

 

At this point, it’s worth mentioning that there are various alternative solutions for the 

measurement of time in a JavaScript-based implementation, like the Date.getTime() and 

console.time() methods. However, the methodology presented above was tagged as the most 

appropriate one, since it provides more accurate timing compared to the rest of JavaScript 

functions. This function is used for all kinds of time measurements in this subchapter, regardless 

of which browser is being used. In this experimental evaluation, all use cases took advantage of 

X3DOM runtime 1.6.2 JavaScript library
3
, which cooperated with Firebox v47.0.2505.0 browser 

and Windows 7 SP1 64bit OS. On the other hand, the hardware side of the test environment was 

composed of a laptop computer with an Intel Core i5-2430M processor, 4GB RAM and an Intel 

HD Graphics 3000 as the graphics processor unit of the system. Besides the aforementioned 

                                                 

3
 http://x3dom.org/download/ 

http://x3dom.org/download/
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configurations, no further changes were made to the software or hardware components of the test 

environment and its use cases. 

 At first, the number of shapes and triangles from each use case were obtained with the 

assistance of X3DOM environment's showStat parameter. Afterwards, an R-tree instance of each 

use case was immediately created and its relative generation time was recorded with the above 

mentioned JavaScript function. Then, the provided spatial queries were put to test in order to 

check out their relative performance against all three use cases. Each one of these queries was 

executed on a large volume of the given dataset, which have been indexed into an R-tree instance 

at an earlier time. In this way, the presented measurements are as realistic as possible, since 

searching operations have to visit not only overlapping entries, but also multiple branches of the 

same subtree. Finally, the computational model for the automatic generation of spatial relations 

is also put to test, recording down its implication time and the number of the returned relations. 

The first two R-tree instances make use of the same VR environment and spatial predicates, 

while in the third one is utilized a slightly modified version of a 500 components scene from 

X3D archive list
4
. So, the implemented model itself is the only one responsible for the deduction 

of all possible types of spatial relations that hold between the indexed objects. All three use cases 

along with the computation costs of their corresponding operations have been collected and are 

illustrated into Table 6-2. 

 

Dataset Size 
R-tree 

index 
Spatial Queries Spatial Relations 

No. of 

components 

No. of 

triangles 

Index 

time (ms) 

Point 

(ms) 

Region 

(ms) 

1-NN 

(ms) 

10-NN 

(ms) 

Automatic 

implication 

(ms) 

No. of 

relations 

25 6564 15 0,53 1,53 0,57 1,32 2,1 1055 

178 6564 65 0,65 3,9 0,81 2,24 2,92 75376 

500 576000 132 0,45 0,15 0,72 1,61 6,03 602250 

Table 6-2 Time costs for each R-tree operation 

 

                                                 

4
http://www.web3d.org/x3d-

resources/content/examples/ConformanceNist/GroupingNodes/Collision/_pages/page01.html 

http://www.web3d.org/x3d-resources/content/examples/ConformanceNist/GroupingNodes/Collision/_pages/page01.html
http://www.web3d.org/x3d-resources/content/examples/ConformanceNist/GroupingNodes/Collision/_pages/page01.html
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As expected, R-tree’s generation time is steadily increasing in each use case, due to the 

larger number of indexed components. The number of triangles does not seem to affect the 

indexing procedure or the rest of spatial operations, but is displayed as a load criterion from the 

perspective of X3DOM framework. Even though that the first two cases may handle a different 

number of indexed components, they share the same badly distributed 3D space of objects. This 

comes with a negative impact on R-tree’s overlapping ratio and indexing performance. In 

contrast to these use cases, the third one is comprised of more components but a better tree 

structure, boosting in this way its spatial operations compared with the former. Regarding spatial 

queries, their performance was found outstanding on all three use cases, since their 

corresponding execution times were close to zero. In the first two cases, the number of 

overlapping entries was higher than the overlaps detected in third case, making each query 

algorithm to visit multiple subtree in order to reach the desired output. On the other hand, k-NN 

queries came in two flavors for the purposes of this test environment, where they had to discover 

the first closest neighbor and the top ten closest neighbors. Based on the experimental results, it 

was estimated that this increment into spatial reasoning process, led to the doubling of the 

initially recorded execution time. As concerns the computational model of spatial relations, its 

relative time costs remain equally low, but the number of implicated relations is rapidly growing 

according to the number of indexed components. It has been noticed that relations’ number is the 

second power of the indexed components multiplied by a real number, which is around 2.5 and is 

slowly increasing in each use case. 

Summarizing, all time costs remained in satisfying response times, even when the 

number of indexed components and spatial relations raised massively. It is also noteworthy that 

these times could be even better (or even worse) in case of different values in the core 

parameters of R-tree data structure, m and M. On the other hand, the test environment was 

composed of a moderate-performance computer for today’s standards, leading to an undeniable 

improvement of these execution times. Lastly, it has to be noted that the main concept of these 

stretch tests was to assess the functionality of each implemented operation and its underlying 

algorithm in generic use cases. In order to provide more accurate time costs for a wide range of 

applications, an advanced test environment with various computers and more use cases has to be 

set up and spatially analyzed. 
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 Performing spatial queries  

In a previous subchapter, three different types of queries were presented for the sufficient 

spatial reasoning on an indexed dataset of an R-tree instance. These queries are able to take 

advantage of the spatial relationships between the generated MBRs, in order to infer additional 

knowledge about the location or the state of an indexed object. The drawing of such conclusions 

is clearly depending on the geometric formation of the participating nodes, where disjoint sets of 

nodes are intentionally skipped to improve the query performance. In the following paragraphs 

are described in detail various scenarios, where each one comes with miscellaneous illustrations 

for maximal comprehension of its corresponding use case. In this way, it is accomplishable a 

conclusive demonstration of the provided searching capabilities, which are propelled by the 

intrinsic query algorithms. 

 

 

Figure 6-2 Indexing a Shopping Mall for location identification purposes 

 

In Fig. 6-2(a) is displayed a complex X3D scene composed of a shopping center along with its 

surrounding area. This virtual environment comes with a large dataset of X3D objects that have 

been unified in numerous groups to ultimately form distinct activity areas. In this use case, R-

tree algorithm indexes specific objects from the original dataset in order to provide location 

identification features. The overall mechanism is based on the definition of diverse areas of use, 

which are differentiated by their records hierarchy in the tree. More specifically, these areas have 

been attributed as Playground, Parking, Cafeteria, DVD Club, Cinema, Record Shop, Furniture 

Store and Elevator. The relative data structure which is going to be traversed can be seen in Fig. 

6-2(b) along with a quick glimpse of the drawn MBRs. From this moment on, a point query can 
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be raised against this R-tree structure to retrieve the characterization of a specific location, which 

has been indicated by the audience of the virtual environment. 

 

 

Figure 6-3 Estimating location based on a chosen object 

 

At this point, it is feasible to navigate through the X3D scene and test the validity of algorithm’s 

results, since the indexing procedure of the desired spatial objects has been successfully done. 

The query point is represented by a small silver-colored X3D Sphere element, which acts as the 

reference point for the derivation of the chosen object’s coordinates. In the first scenario shown 

in Fig. 6-3(a), the top side of the fountain has been marked, returning its corresponding 

coordinates and denoting that the selected spatial object belongs to the Playground area. On the 

other hand, Fig. 6-3(b) displays a second scenario where the query point picks the front side of a 

refrigerator on the 1
st
 floor of the shopping center. DFS algorithm traverses the data structure 

once more, inferring that the refrigerator belongs to the Cafeteria area of the X3D scene. Hereby, 
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both scenarios make use of the coordinates picking buffer proposed by X3DOM framework 

thanks to its ease of use and implementation simplicity. However, programmers and/or end-users 

have always the option to define their own unique coordinates’ representation system, in order to 

match their application needs and guarantee its interoperability. 

On the other hand, Fig. 6.4 below displays a typical example of a region query, which is 

followed by a brief description of this use case as concerns the algorithm’s functionality in the 

underlying R-tree structure. For the purposes of this use case it was created the fictional war 

scenario shown in Fig. 6-4(a), which is composed of a finite set of military vehicles and 

helicopters in a tree scenery. 

 

5
 

Figure 6-4 Execution steps for a region query 

 

This X3D scene has been loaded into X3DOM framework and its depiction is feasible with the 

assistance of the added Extrusion and ElevationGrid JavaScript components. Afterwards, the R-

tree algorithm initiates the suitable routines to annotate the scene's spatial objects as presented in 

Fig. 6-4(b). At this point, the user is able to create the necessary instance of the transparent-red 

                                                 

5
 X3D models have been taken from Savage X3D Examples Archive (source: https://savage.nps.edu/Savage/) 

https://savage.nps.edu/Savage/
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rectangular parallelepiped and search for the desired spatial objects. In this use case, it is 

assumed that the user wants to know how many -and what kind of- ground units have already 

marched to the front. So, the search area has to be resized and relocated as shown in Fig. 6-4(c) 

and Fig. 6-4(d), in order to match the requirements set by the user. Its defined dimensions for 

each axis are presented in the following figure, narrowing down the search space to the 

boundaries given by these three values. 

 

 

Figure 6-5 The result set of a region query 

 

The same figure presents the subjected overlapping entries of the R-tree, which are none other 

than a subset of the spatial objects composing the X3D scene. In this use case, 5 x T72 main 

battle tanks, 2 x MEFFV2 armored vehicles and 2 x M577 command post vehicles are considered 

as qualified records and they are returned to the user's query. Moreover, it is worth mentioning 

that the current R-tree made use of M=4 and m=2 for nodes' maximum and minimum filled 

requirement, respectively. So, there could exist various alternative solutions to the one displayed 

in Fig. 6-4(b), based on the fact that the geometric structure and the space utilization of the tree is 

clearly depending on these two values. However, any changes on nodes’ size are only affect the 



65 

 

number of nodes that DFS algorithm has to visit, returning in that way an identical result set of 

spatial objects with lower or higher query complexity. 

Finally, in the Fig. 6-6 below, there are various subfigures that depict the use case being 

spatially indexed along with its corresponding 2-NN execution steps. This use case is in fact a 

simple non-interactive game which has been developed to test the real-time capabilities of the 

implemented k-NN algorithm. The main concept of the game is defending the Earth from an 

incoming shower of 9 asteroids by launching nuclear bombs against the two closest of them. The 

defense module can be seen as a separate AI system composing of a maximum line of range and 

the k-NN algorithm. Each asteroid's position is ceaselessly recorded to an R-tree instance, which 

is latter queried in contrast with Earth’s position, in order to calculate their correlated distance 

and deduct the two closest amongst them. 

 

 

Figure 6-6 Searching for 2-NN candidates with BFS algorithm 

 

The thumbnail image displayed in Fig. 6-6(a) follows a particular point of view being used for 

the purposes of this scenario, while the corresponding inquired R-tree instance can be seen in 

Fig. 6-6(b). The colored nodes of the graph denote the paths that have been followed from the k-

NN algorithm during its 2-NN deduction procedure. The overall process is thoroughly described 
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in Fig. 6-6(c), where it becomes evident that the nodes are visited according to their distance 

compared to Earth's coordinates. Each one of them is further traversed until a spatial object is 

found, which is eventually returned as the nearest neighbor of the query point. The results were 

very satisfying in terms of speed and accuracy, taking into consideration not only that the scene 

was continuously receiving add/remove node requests, but it had also to update them in real 

time. Moreover, R-tree's performance and response were kept in acceptable levels, even though 

that this specific R-tree version has not been optimized for indexing moving objects. The latter 

one indicates that the implemented algorithm can also be a quite promising approach for 

detecting and indexing moving objects in 3D space, through slightly modifying its structure 

according to the requirements set by other domains. 

In this subchapter, various use cases have been developed in order to present the spatial 

reasoning capabilities of the implemented queries. Each one of these cases corresponds to a 

carefully planned sui generis scenario, which has been attributed to a different spatial query type. 

The reasoning process was thoroughly explained in each query, while their relative results were 

checked against the expected outcomes. The latter ones were closely linked to the chosen filled 

requirements of the R-tree instance and the indexed objects of the underlying X3DOM scene. 

Generally, the implemented spatial query operations were found to be very accurate in their 

topological and distance calculations, while at the same time, their execution times were deemed 

very satisfying. 

 Implication of spatial relations 

Leaving aside the provided spatial queries, the implemented R-tree data structure has 

been further extended to support advanced spatial reasoning features. Such features come in the 

form of spatial predicates that are ultimately represented by topological and directional relations. 

Both of these spatial reasoning categories are based on the definition of a flexible computational 

model, which relies on various mathematical formulas for the deduction of the appropriate 

spatial relations between two objects in 3D space. In Fig. 6-7 below is depicted a spatial 

implication scenario, which involved the development of a realistically decorated indoor virtual 

environment. The implemented computational model takes advantage of specific indexed objects 

from a given R-tree instance, in order to automatically infer their corresponding spatial relations. 

This model -of course- is relied on the validation of a predefined set of spatial predicates that 
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come with certain constraints upon these objects’ location. In the following paragraph, a unique 

use case has been composed for the sake of experimental evaluation, where its indexing and 

spatial reasoning procedures are thoroughly described. 

 

 

Figure 6-7 Automatic implication of spatial relations between three objects 

 

It quickly becomes clear that this scene provides numerous objects for indexing and spatial 

reasoning. However, a small only subset of the available objects was used in order to present an -

as simple as possible- use case. This lies to the fact that the spatial indexing of the entire set 

would return hundreds of spatial relationships, complicating thereby this scenario’s purpose and 

demonstration. For such reasons, three different objects were chosen and indexed into an R-tree 

instance, a dining table, a colorful orb and a shelf. These objects were preferred over the others 

due to their special placement into the 3D space. Their corresponding locations allow a 

straightforward presentation of the spatial reasoning capabilities provided by the implemented 

computational model. At first, each object is found to satisfy the disjoint topological relation, 

something that leads them to the deduction of their directional relations. For example, the dining 

table is found to be on the right side of the colorful orb and the shelf, while at the same time, it is 

placed in front of and below both of them. The inverse directional relationships, left, behind and 

above, are automatically applied into the colorful orb and shelf without proceeding to any kind of 

additional reasoning formula. On the other hand, the colorful orb and shelf share a common 
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boundary region, indicating a touch topological relation which is included into the mathematical 

formula comprising the implemented disjoint set. In this special occasion, the colorful orb is 

attributed with the over directional relation when it is compared to the shelf. The latter object 

remains to be below the former, keeping the already defined relations unchanged for the rest of 

the indexed objects. However, both of these two objects are positioned in a very particular way. 

Even though that they are found to be disjoint too, there is no other directional relation that can 

be satisfied for them, since their coordinates collection excludes the implication of a left, right, 

front or behind relationship. Finally, the complete set of the automatically generated spatial 

relations between these three objects is displayed in the same and sole figure of this subchapter. 

Besides the before mentioned topological relations, within and overlap relations are 

extensively used during the construction of an R-tree instance or the execution of point and 

region queries. Moreover, there are still left a few topological relationships that have not been 

presented in experimental evaluation chapter, since their placement into the current 3D space is a 

bit paradoxical. Such relations are the equal, within and contains, which have been tested and 

found to be fully functional for any scenario, but their use is quite limited in the majority of them 

due to their complexity and unnecessary reasoning correlations. Finally, despite the fact that such 

relations are utilized by an ontological system with SPARQL support, the GUI approach 

presented for the purposes of this subchapter, it will significantly suffer in case of thousands or 

millions of implicated relations. In case that application’s users desire to maintain such a 

solution, they have to come up with an efficient dynamic JavaScript grid library [75] [76] [77], 

which provides advanced features for real time manipulation of datasets from classifying and 

applying CSS themes upon them, to sorting and searching a finite subset of data. 
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Chapter 7 - Conclusion 

This thesis dealt with the problem of spatially reasoning a VR environment in X3DOM 

framework. A fast and memory-efficient R-tree data structure has been implemented for the 

indexing of 3D content from X3D authored environments. R-tree was chosen thanks to its wide 

acceptance in various domains, as one of the best techniques to handle multi-dimensional 

datasets. The proposed algorithm has been implemented in JavaScript language to preserve the 

independent nature of X3D standard and the plugin-less feature of X3DOM framework. R-tree 

provides a range of diverse operations –i.e. spatial queries and spatial relationships- that can 

benefit various applications, like GIS, CAD and multimedia. Moreover, the experimental 

evaluation results showed that it comes with a great medium between speed, reliability and 

practicality, where its indexing and spatial reasoning subtasks support amortized run times based 

on the dataset being tested. 

By the same token, the agile architecture of the indexing algorithm makes feasible the 

spatial registration of dynamic objects, through the provision of a propagation mechanism 

tailored for tree topologies. The chosen objects are maintained under a common structure which 

may be initialized only once, but it is automatically updated each time an operation perturbs the 

spatial arrangement of its corresponding AABBs. This adjustment procedure can be seen as a 

self-balancing feature, which not only avoids expensive reinsertion methodologies, but it also 

guarantees R-tree’s spatial reasoning validity. The latter one is backed by various mathematical 

and algorithmic optimizations that aim at reducing as much as possible the execution time of 

spatial queries. Especially in the case of k-NN queries, various alternative solutions were 

presented for the approximation of the distance between two objects, while a flexible binary heap 

data structure was employed to serve as a partially ordered priority queue. 

Lastly, despite the fact that the authored scenes have to comply with the X3D language 

and the web-based X3DOM framework as the presentation middleware, the generic structure of 

the R-tree instance remains independent of the front-end data format. In this way, there are 

various alternatives for the presentation of the results coming from the spatial reasoning upon an 

R-tree instance. 
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Chapter 8 - Future work 

The implemented R-tree algorithm is heavily based on the classical R-tree data structure, 

since its construction complexity and query performance were deemed adequate for the 3D 

virtual environments being tested. However, in case of static environments with a large number 

of moving objects or interactive environments with deformable objects, a different heuristic 

splitting approach has to be adopted for the improvement of space utilization and the execution 

of spatial queries. A couple of significant research works [38] [78] introduced new spatial 

parameters or proposed light modifications upon the Quadratic algorithm, respectively, aiming to 

minimize the overlapping entries and the coverage factor. The aspects of such variants can be 

used as a starting point for the authoring of an appropriate splitting methodology, which could be 

able to sufficiently deal with the majority of 3D virtual environments. 

Finally, the spatial relationships have been optimized to favor rectangular objects in 

contrast to other geometric shapes, where two different but interrelated points of interest bear the 

responsibility of this phenomenon. The first one lies to the fact that primary target of this work 

was a semantic representation of indoor environments. In this type of environments, a 

rectangular parallelepiped is the best fitting form of shape for the majority of 3D objects that can 

be found in it. The second factor comes to testify this empirical evidence by assigning to each R-

tree’s node a bounding box container, which is used to encapsulate a specific object and its 

surrounding space. However, there are virtual environments that originate from delicate domains 

with strict specifications that perform expensive geometric operations, from the collision 

detection of 3D objects to the selective rendering and management of complex spatial scenes. In 

these occasions, a large part of the data structure has to be remodeled to support an advanced 

object-oriented geometry container for the unconditional performance of such applications. A 

typical container of this kind could be the convex polyhedron, but the authoring of its algorithm 

has to be done quite carefully in order to avoid enormous computation time gaps. 
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Appendix A - Glossary of Terms 

SPARQL (SPARQL Protocol and RDF Query Language): a Semantic Web standard and the 

most widely used query language for RDF datasets. Its latest protocol provides improved 

performance and advanced retrieval capabilities, thanks to a set of unique features like SPARQL 

algebra, custom filter functions, aggregation, various storage systems support, etc. 

 

XSLT (Extensible Stylesheet Language Transformations): a language that comes with a very 

strict vocabulary for the generation of an XML document, based on a specific formatting and a 

source XML-based document. 

 

ICP (Iterative Closest Point): a closest point approximation algorithm which returns the most 

optimal paths between clouds of points. Its efficiency and accuracy can be further improved by 

consecutively repeating its algorithmic procedure. 

 

RANSAC (Random Sample Consensus): an iterative approach for the estimation of a 

mathematical model’s outcome based on the manipulation of a given dataset. It is still an active 

area of research in computer vision domain. 

 

WebGL: a novel OpenGL ES 2.0 approach for the rendering of 2D and 3D content, natively and 

plugin-less in any typical browser and device. It provides a JavaScript API and is totally 

independent of the underlying platform and operating system. 

 

BST (Binary Search Tree): a tree data structure which boosts common tree operations by 

defining that each non-leaf node must have at most two child nodes. Amongst them, the left node 

holds a value less than the value of its parent, while the right node holds a value greater than the 

value of its parent. 

 

OBB (Oriented Bounding Box): an arbitrary oriented bounding box which makes use of 

heuristic methodologies to calculate its rotation and perimeter based on its enclosed object or set 

of objects.  
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MBR (Minimum Bounding Rectangle/Region): is defined as the smallest possible rectangular 

area that successfully covers the total area of its node’s entries. The same algorithmic pattern is 

followed for any type of entry, whether it is an internal node, leaf node, or spatially indexed 

record. 

 

Moore neighborhood: a widely used neighborhood algorithm for games and graphics editors, 

which surrounds a target area with a predefined number of its cuboid siblings according to the 

cellular automata theory. 

 

Bounding Container: a methodology which applies for the inclusion of a geometric object in a 

closed volume to improve the runtime speed of computationally expensive operations, like 

collision detection or ray tracing. 

 

Level-order traversal: a breadth-first tree traversal which visits every node level by level. It 

starts from the root node and continues to its direct child nodes. Then, it traverses every 

grandchildren, great grandchildren, and so goes on until all nodes have been successfully 

traversed. 

 

Pre-order traversal: a depth-first tree traversal which visits every parent node before its 

children. It starts from the root node and then are recursively traversed the nodes of the left 

subtrees before the nodes consisting the right subtrees. 

 

OGC (Open Geospatial Consortium): an alliance of international organizations responsible for 

developing data mining services and implementing interface specifications, which are ultimately 

made available as open standards for geospatial information applications. 

 

Vague region: a term which is used to imply that an object’s boundary alone, does not suffice to 

spatially categorize it into a specific region. This uncertainty is usually overcome with the 

introduction of additional spatial factors. 
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RCC (Region Connection Calculus): an alternative -and contradictory to DE-9IM- spatial 

reasoning methodology, which segments the search space into various spatial regions based on a 

fixed set of topological relations. 

 

ElevationGrid: a special type of geometry defined in X3D standard for the generation of 

polymorphic terrains. Its diversity is based on the definition of a set of grids, which are attributed 

with a height value on specific row and column coordinates. 

 


