
  

MIDDLEWARE PLATFORM FOR MOBILE CROWD SENSING APPLICATIONS 

USING HTML5 APIS AND WEB TECHNOLOGIES 

 

by 

 

IOANNIS VAKINTIS  

 

 

 

A THESIS 

 

Submitted in partial fulfillment of the requirements for the degree 

 

MASTER OF SCIENCE 

 

 

 
 

DEPARTMENT OF INFORMATICS ENGINEERING 

 

SCHOOL OF APPLIED TECHNOLOGY 

 

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE 

 

2015 

 

Approved by: 

 

Spyros Panagiotakis 

Assistant Professor 

 

 



  

Copyright © 

VAKINTIS IOANNIS 

2015 

All rights reserved.  No  part  of  the  material  protected  by  this  copyright  notice  may  

be reproduced  or  utilized  in  any  form  or  by  any  means,  electronic  or  mechanical,  

including photocopying, recording or by any information storage and retrieval system, without 

written permission from the author. 



  



  

 

Abstract 

Today, smart devices are flooding the internet with data that are everywhere and in any 

form. In addition, Web technologies, such as HTML5, have made the personalized interaction of 

a digital artifact with the web easier than ever. One area of ubiquitous computing is the 

interaction of smart devices with the physical world. The data obtained from a device that can 

sense the physical world can generate an endless amount of personal applications that make life 

easier. In this thesis, we design a web platform which is interfaced with the real world through 

the sensors of various mobile devices in order to group and graphically present the retrieved data 

following statistical processing. The platform consists of two application specific components: 

the first, the client part, runs in the user device to collect sensor data and transmit them; the 

second, the server part, runs in the cloud and is responsible for analyzing and visualizing the data 

from all devices in a human friendly format, e.g. a map. The application is multi-sensor as it can 

collect data from almost all sensors of mobile devices. Besides the use of the platform as a 

participatory and opportunistic sensing application, our endmost aim is to be used with other 

Internet of Things equipment for the introduction to the third generation of Web characterized as 

ubiquitous web. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 



vi 

 

Table of Contents 

Copyright © .................................................................................................................................... ii 

Abstract .......................................................................................................................................... iv 

Table of Contents ........................................................................................................................... vi 

List of Figures .............................................................................................................................. viii 

List of Tables .................................................................................................................................. x 

Acknowledgements ....................................................................................................................... xii 

CHAPTER 1: INTRODUCTION ........................................................................................................... 1 

1.1 UBIQUITOUS SENSING ....................................................................................................... 1 

1.2 CONTRIBUTIONS ............................................................................................................... 4 

1.3 STRUCTURE ....................................................................................................................... 6 

CHAPTER 2: SENSING ARCHITECTURES ......................................................................................... 7 

2.1 SMARTPHONE-BASED SENSING ......................................................................................... 7 

2.2 INTRODUCTION TO MOBILE SENSORS ............................................................................... 7 

2.3 SURVEY ON SENSING ARCHITECTURES .......................................................................... 12 

CHAPTER 3: WEB TECHNOLOGIES ............................................................................................... 20 

3.1 HTML5, THE CONNECTOR BETWEEN WEB AND MOBILE ............................................... 20 

3.2 HTML5 OVERVIEW ........................................................................................................ 20 

3.3 GOOGLE SERVICES ......................................................................................................... 45 

3.4 METEOR PLATFORM ........................................................................................................ 49 

3.5 JSON ............................................................................................................................... 53 

3.6 BSON ............................................................................................................................. 54 

3.7 GEOJSON ....................................................................................................................... 54 

3.8 EXT JS FRAMEWORK....................................................................................................... 55 

3.9 X3D & X3DOM ............................................................................................................... 55 

CHAPTER 4: PLATFORM ARCHITECTURE ..................................................................................... 57 

4.1 CROWDSENSING PLATFORM INTRODUCTION ....................................................................... 57 

4.2 COMPONENTS ...................................................................................................................... 58 

4.2.1 CLIENT COMPONENT .................................................................................................... 58 

4.2.2 SERVER COMPONENT ................................................................................................... 67 



vii 

 

4.2.3 3
RD

 PARTY COMPONENT .............................................................................................. 75 

4.3 SERVER CONFIGURATION .................................................................................................... 88 

CHAPTER 5: PRIVACY ................................................................................................................... 91 

5.1 PRIVACY IN CROWDSENSING .......................................................................................... 91 

CHAPTER 6: MOTIVATION ............................................................................................................ 94 

6.1 USER INCENTIVES ........................................................................................................... 94 

6.1.1 GAMIFICATION ............................................................................................................ 94 

CHAPTER 7: EVALUATION .......................................................................................................... 103 

7.1 OVERVIEW OF PERFORMANCE & BENCHMARK TESTS ................................................ 103 

7.2 EVALUATION TEST OF PLATFORM TASKS ................................................................... 103 

7.3 DATABASE – CENTRIC APPROACH ................................................................................ 110 

7.4 TEST BED OF DATABASES ............................................................................................. 114 

CHAPTER 8: CONCLUSION & FUTURE WORK ............................................................................. 127 

REFERENCES ............................................................................................................................... 130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Figures 

Figure 2-1: Classification of Crowdsensing systems .................................................................... 13 

Figure 2-2: A screenshot of the interactive map used by IBM Almaden Research Center to 

display the contributions of the users of Creek Watch ......................................................... 18 

Figure 3-1: The DeviceOrientation event properties .................................................................... 26 

Figure 3-2: Timing attributes of the Resource Timing API .......................................................... 32 

Figure 3-3:Life-cycle of a WebSocket session ............................................................................. 39 

Figure 3-4: Audio context ............................................................................................................. 43 

Figure 3-5: Geocoding services translate an address into geographic coordinates and display a 

marker in a map. ................................................................................................................... 46 

Figure 3-6: Meteor architecture .................................................................................................... 50 

Figure 4-1: Middleware platform architecture .............................................................................. 58 

Figure 4-2: Noise data capture ...................................................................................................... 59 

Figure 4-3: Sensor switcher .......................................................................................................... 60 

Figure 4-4: Permission dialog ....................................................................................................... 60 

Figure 4-5: Client application screenshot ..................................................................................... 66 

Figure 4-6: Main panel.................................................................................................................. 67 

Figure 4-7: Geocoding statistics from Google geocoding API ..................................................... 68 

Figure 4-8: Averages geocoding statistics from Google geocoding API ..................................... 69 

Figure 4-9:Time aggregation sequence job................................................................................... 73 

Figure 4-10: API documentation .................................................................................................. 78 

Figure 4-12: Reactive real-time map ............................................................................................ 80 

Figure 4-13: Historical map .......................................................................................................... 83 

Figure 4-14: Spatial - temporal analytics charts ........................................................................... 84 

Figure 4-15: Country noise averages with 2D visualization ......................................................... 86 

Figure 4-16: Country noise averages with 3D visualization ......................................................... 88 

Figure 5-1: Generic structure of task flow in MCS ...................................................................... 91 

Figure 6-1: Farm Ville .................................................................................................................. 95 

Figure 6-2: The state of flow is achieved when a player is placed between anxiety and boredom 

over a period of time ............................................................................................................. 97 



ix 

 

Figure 6-3: Yahoo! Answers experience point system ............................................................... 100 

Figure 6-4: Noise pollution puzzle ............................................................................................. 101 

Figure 6-5: Player leaderboard.................................................................................................... 102 

Figure 7-1: Marker test results .................................................................................................... 105 

Figure 7-2: Dynamic map results ................................................................................................ 106 

Figure 7-3: Collection API results .............................................................................................. 107 

Figure 7-4: Country charts results............................................................................................... 108 

Figure 7-5: Country averages results .......................................................................................... 108 

Figure 7-6: Locality charts .......................................................................................................... 109 

Figure 7-7: Historical map results............................................................................................... 109 

Figure 7-8: MongoDB object_id ................................................................................................. 113 

Figure 7-9: Benchmark architecture ........................................................................................... 116 

Figure 7-10: Administrator page ................................................................................................. 118 

Figure 7-11: Insertion test ........................................................................................................... 120 

Figure 7-12: Reading test ............................................................................................................ 122 

Figure 7-13: Reading with sorting .............................................................................................. 123 

Figure 7-14: Searching test ......................................................................................................... 124 

Figure 7-15: Removing test ........................................................................................................ 125 

Figure 7-16: Aggregation test ..................................................................................................... 126 

 

 

 

 

 

 

 

 

 

 



x 

 

List of Tables 

Table 1.1: High-end smartphones with embedded sensors ............................................................. 2 

Table 1.2: Typology of “Crowdsensing” ........................................................................................ 3 

Table 2.1: Sensors categories .......................................................................................................... 7 

Table 2.2: Smartphone sensors ....................................................................................................... 8 

Table 3.1: Sensors and Hardware APIS ........................................................................................ 22 

Table 3.2: Geolocation API methods ............................................................................................ 24 

Table 3.3: Position object properties ............................................................................................ 24 

Table 3.4: Orientation API methods ............................................................................................. 25 

Table 3.5: Device Orientation Event Properties ........................................................................... 26 

Table 3.6: Device Motion Event Properties .................................................................................. 27 

Table 3.7: Battery Status API Properties ...................................................................................... 27 

Table 3.8: Proximity Sensor API methods ................................................................................... 28 

Table 3.9: LightLevelEvent values ............................................................................................... 28 

Table 3.10: Network Information API properties ......................................................................... 31 

Table 3.11: User Timing API properties....................................................................................... 33 

Table 3.12: VisibilityState values ................................................................................................. 35 

Table 3.13: Web Workers capabilities and limitations ................................................................. 36 

Table 3.14: Opcode values for WebSockets ................................................................................. 40 

Table 3.15: Event handlers for WebSockets ................................................................................. 42 

Table 3.16: Audio tag limitations ................................................................................................. 42 

Table 3.17: Types of Web Audio Nodes ...................................................................................... 44 

Table 3.18: Google Geocoding API output: Status codes ............................................................ 47 

Table 3.19: Google Geocoding API output: Result codes ............................................................ 47 

Table 3.20: Returning types [] and address_components []. ........................................................ 48 

Table 3.21: Meteor platform methods .......................................................................................... 53 

Table 3.22: JSON basic types ....................................................................................................... 53 

Table 4.1: Network Information API ............................................................................................ 62 

Table 4.2: Description of API keys ............................................................................................... 76 

Table 4.3: Properties of heatmap .................................................................................................. 80 



xi 

 

Table 7.1: SQL vs NoSQL .......................................................................................................... 111 

Table 7.2: Sensor data structure .................................................................................................. 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

Acknowledgements 

Foremost, I would like to express my sincere gratitude to Prof. Spyros Panagiotakis for 

supervising the thesis work. I especially wish to thank my coworkers in the MCLab, for their 

help at all stages of the thesis. I am also thankful to my life-mate Eirini Kostaki for her 

encouragement, and for helping me stay sane through the whole difficult period. Most 

importantly, nothing would have been possible without the love and patience of my family. 

 



1 

 

CHAPTER 1: INTRODUCTION 

 1.1 UBIQUITOUS SENSING  
 

Mobile sensing has changed many forms over the years. In the decade of 80s and 90s, 

mobile computing point to develop a variety of sensor equipment to monitor phenomena of 

interest such as atmosphere or potholes on road. In the next years, wireless networking 

technologies overcome lot of obstacles and sensors via embedded communication modules start 

to connected not only each other‟s but also with backend servers [69].  Nowadays, ubiquitous or 

pervasive sensing [19, 79] enabled by web and mobile technologies related in a wide range of 

activities in our society.  Transportation and Civil Infrastructure Monitoring [44] [45], 

Environmental Monitoring [31-36] [43], Health and Fitness [41], urban sensing [107] and traffic 

monitoring, social networks [42] are some areas which benefit from ubiquitous sensing. Smart 

devices have played a major role to this trend. Smartphones (Samsung Galaxy S5, IPhone 6), 

tablets (HTC Nexus 9, Samsung Galaxy Tab S), music player (iPods), sensor embedded gaming 

systems (Wii, Kinect), and in-vehicle sensing devices (GPS) are flooding the market and feed 

sensor data to the Internet. They have equipped with various sensors (e.g., accelerometer, 

ambient light, camera, microphone, gyroscope and proximity) and so they transform a near-

ubiquitous smart device into a global mobile sensing device [20], [21]. Table 1.1 shows a few 

modern high-end smartphones with their embedded sensors.  

In the upcoming years more sensors will be embedded in the smartphones. The new 

version of Samsung Galaxy has concluded two more sensors, heart rate sensor and finger scanner 

[37].  It is the first time in history of smartphones that a smartphone conclude a heart rate sensor 

and give the capability to the users to monitor their physical information.  Mobile users can 

measure their heart rate before and after a workout to check out their health and workout status. 

The second sensor that Samsung galaxy S5 features is finger scanner which improves the 

usability and the security of the smartphone. Some features of Finger Scanner are biometric 

screen locking, individual file locking with “Private mode” and secure mobile payments.  

 

 



2 

 

Table 1.1: High-end smartphones with embedded sensors 

Devices\Sensors Camera Microphone Accelerometer Digital 

Compass 

Light Proximity Gyro  Barometer Temperatur

e/ humidity 

Samsung Galaxy S3                  

Samsung Galaxy S4 

 

                  

Motorola Nexus 6                 

Iphone 6                 

Nokia Lumnia 720               

 

 

Observing the above table can be easily understood that the sensing capabilities of 

smartphones can measure individual or community phenomena. The category of individual 

phenomena includes several actions of a specific device owner, which usually are divided into 3 

categories a) movement patterns such as walking and running, b) modes of transportation such as 

biking, driving or taking a bus and c) activities such as listening to music and making coffee.  

Most of the time, the user can have access to his personal data which are presented graphically as 

statistic. On the other hand community phenomena are related to the actions of a set of people 

and are not limited to a specific user. Community phenomena can be characterized real-time 

traffic patterns, air [46], water or noise pollution and pothole patrol.  The way, in which users 

involved in the process of collections of sensor data, divide community phenomena to 

participatory and opportunistic sensing category. In chapter 2 we will present a deep analysis for 

the both categories.  

In recent years, a new sensing architecture has spurred the attention of the scientific 

community in contrast with the others [6]. Mobile Crowdsensing or else MCS, is a new business 

model that allow to a huge number of mobile users to exchange information not only between 

them but also for a set of actions that may have effect to the community. In general, the term 

“Crowdsensing” refers to the collection and sharing of sensor data with the scope to measure a 

community phenomenon. It is a very attractive solution for companies and organizations to 

collect significant data without spend enormous amount of money. A very important advantage 

of Crowdsensing is that unlike an infrastructure-based sensing solution, crowdsensing can 

potentially be cheaper as it does not require the deployment of expensive fixed infrastructure. A 



3 

 

Crowdsensing application can be incorporate into one of the five categories that listed in the 

Table 1.2. Those categories are formed with two main criteria in mind which are the involvement 

of the mobile user in the procedure and the type of the measured phenomenon. 

 

Table 1.2: Typology of “Crowdsensing” 

Criterion Involvement of the user in the 

Crowdsensing process 

Type of measured phenomenon 

Types of 
Crowdsensing 

Participatory crowdsensing Environmental crowdsensing 

 Opportunistic crowdsensing Infrastructure crowdsensing 

  Social crowdsensing 

 

Starting with the first criterion, the involvement of the user in the Crowdsensing process, 

Crowdsensing applications are divided into participatory and opportunistic category. In 

participatory crowdsensing, the users send sensor data to the server, doing an active effect. On 

the other hand, in opportunistic crowdsensing applications the sensor data are sending automatic, 

with little or no involvement of the user. Moving to the second criterion, the type of measured 

phenomenon, we have 3 categories: 1) Environmental 2) Infrastructure and 3) Social.   

Environmental crowdsensing used to measure natural phenomena such as noise pollution, level 

of water and air pollution. Infrastructure crowdsensing used to measure public infrastructure 

such as road conditions or traffic congestion. Finally, social crowdsensing used to measure social 

behavior of individuals such as the shops visited by a citizen or the holiday travel destinations.  

In Chapter 2 we will present a more detailed analysis about Crowdsensing applications which 

will include state of the art and privacy aspects. Also, it will present it, an extend survey on 

existing Mobile Crowdsensing applications.  

The creation of such sensing architectures has blossomed because the mobile and web 

technologies offer unlimited possibilities. Modern mobile operating systems fully exploit the 

features of sensing devices offering multiple capabilities to the mobile and web developers. The 

developers can build applications for handheld devices with three deferent ways: 1) native, 2) 

web and 3) hybrid. Native applications build separately for each operating system and they are 

pre-installed on the mobile phones during manufacturing or can be download from distributed 



4 

 

application stores such as Google play or App store. Web applications delivered using a server-

side or client-side processing to provide an “application-like” experience within a Web browser. 

Last category is hybrid application which is the marriage of web technology and native 

execution. Hybrid app is built with web technologies and mobile web implementations and it is 

run inside a native container on a mobile device. Android and iOS are the two most well-known 

mobile operating systems of the world having the 96, 1% of the Worldwide market share in the 

3
rd

 quarter of 2014 [73].  

  Beyond mobile technologies, the web is gaining momentum in the use of sensing 

devices. The way that we interact with the web is changing throughout the years. In the 

upcoming years web will enter to the 3
rd

 phase it will called ubiquitous web or the intelligent 

web.   Now, webpages there are not just pages that have colors, text and logos but are similar to 

desktop applications and they are turning to web applications [74]. The radical improvement of 

content usability, help the web applications to present their content more dynamically. Also, a 

web application can retrieve data from multiple sources and in real time. In many cases, the 

traditional HTTP communication between a web server and a browser is replaced with a single 

TCP connection, which it called WebSockets [75, 76, and 77]. The advantage of WebSocket 

protocol is that is providing a full-duplex bi-directional communication and can be used in both 

client and server applications. Besides the robust communications protocols such as Websocket, 

„the intelligent Web‟ will have much more technology trends to extend. Semantic Web 

technologies, machine learning and reasoning, autonomous agents and distributed databases will 

drive the Web to be more open, connected and intelligent ecosystem.  

 

 1.2 CONTRIBUTIONS  
 

In this thesis, we design a web-based cross-platform based on HTML5 APIs which is 

interfaced with the real world through the sensors of various mobile devices [3], [4] in order to 

group and graphically present the retrieved data following statistical processing. This is the first 

Crowdsensing platform which uses HTML5 APIS for the collection of the sensor data. The 

platform consists of two application-specific components: the first, the client part, runs in the 

user device to collect sensor data and transmit them; the second, the server part, runs in the cloud 

and is responsible for analyzing and visualizing the data from all devices in a human friendly 



5 

 

format, e.g. a map [10]. The application is multi-sensor as it can collect data from almost all 

sensors of mobile devices and is totally based on HTML5 features. Besides the use of the 

platform as a participatory and opportunistic sensing application [3], our endmost aim is to be 

used with other Internet of Things equipment for the introduction to the third generation of Web 

characterized as ubiquitous web [151]. 

In more detail, the client, which is implemented in the form of a web page, acts as the 

source of data and is located in the front end of our web platform. The end user via the client 

grants access to the sensors through the respective HTML5 APIs. User only needs to activate the 

client application to start the automatic procedure of sending the data to the cloud. Sensor APIs 

obtain the raw information and forward it to the next stage for analyzing. The data analysis is 

divided into two parts, local analysis [8] (at the client) and aggregate analysis (at the server).  

When local analysis finishes, useful data are sent to the server and stored in a cloud database. At 

this point, the data will pass to the second stage of analysis. This stage provides a map 

visualization and statistical analysis of data collected by all users. Statistical data are presented in 

the form of various charts.  Both interactive map and statistics‟ charts can be accessed by anyone 

via a webpage.  

The specific scenario that we have implemented concerns the measurement of noise and 

light. The user gives access to three sensors of his mobile device, namely the microphone (Get 

user media API [12]), the light sensor (Light sensor API) and Location (Geolocation API). 

Microphone records the ambient sound [11] and through an algorithm converts values to decibel. 

These values are periodically sent to the server through a Websocket connection [13], [14] while 

the user is active. The server collects the decibel values along with the location of users to export 

the statistics. Light sensor act with the same procedure as microphone with the only difference 

that light data doesn‟t need further analysis. Light sensor API expose data as a lux values rather 

than Get user media which expose raw data information.  

We use mobile and desktop devices as noise and light sensors and track users‟ location 

from geolocation API. The user device does not need to be equipped with GPS because 

geolocation API support several ways to find the location such as Wi-Fi, IP address, GSM and 

UMTS cell IDs. In chapter 2 we will provide a deeper analysis about the ways of getting the 

location from geolocation API.   



6 

 

Next, when we get the raw sound data using get user media API, we use an algorithm to 

transform the obtained data to a measurement unit as decibels. The process is operated at client 

side or else in the front-end of the server platform.  In the front-end of the device the user can see 

their geo-location parallel with their personal data in a real-time interactive google map. The 

visitor page contains many capabilities such as statistical representation, google maps 

visualization, a collection API and dynamic map visualization.  

To conclude with, we introduce a crowdsourcing technique mostly in environmental 

sensing which group and present sensor data based on the geographical position of the users. The 

web platform is location-aware providing in real-time the noise and light data of live 

participants.  

 

 1.3 STRUCTURE 
 

The rest of the thesis is organized as follows; in chapter 2 we introduce to mobile sensors 

and survey various sensing architectures. Chapter 3 introduces to the web technologies that have 

been used for the implementation of our thesis. Chapter 4 presents the architecture of our web 

platform. Chapter 5 and 6 acquaints various issues of privacy and also incentives for the users to 

participate. Chapter 7 includes evaluation and performance tests. Finally Chapter 8 concludes the 

thesis and discusses about future work. 

 

 

 

 

 

 

 

 

 

 

 



7 

 

CHAPTER 2: SENSING ARCHITECTURES 

 2.1 SMARTPHONE-BASED SENSING    
 

With the penetration of smart mobile devices into our daily activities, we rapidly pace 

from traditional sensor networks to crowdsensing solutions known as “people sensing” [20, 69]. 

The term “people sensing” was first introduced in 2005 and referred to a moving sensor network 

of people which carry sensing devices to monitor a phenomenon of interest. In the early years of 

“people sensing” it was difficult to program a smartphone because they had limited 

programming and embedded sensor capabilities. In the upcoming years, the two popular 

smartphone platforms, iOS and Android made their appearance to the market broadening the 

horizons and opening the doors to the public for rapid and easy programming. In parallel with 

the continuous development of these two platforms, smartphones embedded more and more 

sensors transforming them from simple communication devices to personal intelligent assistants 

[22]. There is a big variety of build-in sensors in smartphones with the ability to measure 

orientation, motion, light and other environmental conditions that provide high precision and 

accurate data to the end user.    

 

 2.2 INTRODUCTION TO MOBILE SENSORS    
 

Today‟s smartphones are moving sensor nodes offering audio and video recording, GPS 

navigation and Wifi connectivity. The embedded sensors are divided into several categories 

which are determined by the type of sensor (hardware - software) and the kind of measurement 

offered (motion – orientation - environmental). Those types of sensors are supported by most 

mobile operation systems such as Android, iOS, Windows and Blackberry. They provide raw 

information with high accuracy offering developers tremendous potential at a low cost.  Below is 

a table with a short description of the types of sensors [89].  

 

Table 2.1: Sensors categories 

Sensors categories  

 Hardware-based: These are physical components embedded 



8 

 

 

Types of sensors 

into a smartphone or tablet device. 

Software-based: They are not physical devices, although they 

mimic hardware-based sensors. They obtain data from one or 

more of the hardware-based sensors. Other titles: Virtual 

sensors or synthetic sensors. 

 

 

 

 

 

Kind of measurements 

Motion: They measure acceleration and rotational forces 

along three axes. They include accelerometers, gravity sensors, 

gyroscopes, and rotational vector sensors. 

Orientation: These sensors measure the physical position of a 

device. They include orientation sensors and magnetometers. 

Environmental: They measure various environmental 

parameters, such as illumination, humidity and pressure. This 

includes barometers, photometers, and thermometers. 

Multimedia: These sensors retrieve multimedia content such 

as video and audio streams and capture images.  

 

Below is a table of embedded physical sensors in a typical modern smartphone. The table 

presents the sensors along with the type, kind of measurement and a detail description.    

 

Table 2.2: Smartphone sensors 

Sensor Type Kind of 

measurement 

Description Common Uses 

 

 

 

 

 

Accelerometer 

 

 

 

 

 

Hardware 

 

 

 

 

 

Motion 

They are the simple MEMS 

(Microelectromechanical 

System) devices which are 

used to measure the 

acceleration force in m/s2 

that is applied to a device on 

all three physical axes (x, y, 

Motion detection 

(shake, tilt, etc.). 



9 

 

and z), including the force of 

gravity. A 3-axis 

accelerometer senses the 

orientation of the phone and 

rotates the screen, images 

and web browsers 

accordingly, allowing the 

user to easily switch 

between portrait and 

landscape mode. 

Temperature Hardware Environmental  Measures the ambient room 

temperature in degrees 

Celsius (°C).  

Monitoring air 

temperatures. 

Gravity  Software 

or 

Hardware 

Motion Measures the force of 

gravity in m/s2 that is 

applied to a device on all 

three physical axes (x, y, z). 

Motion detection 

(shake, tilt, etc.). 

Gyroscope Hardware Orientation Measures a device's rate of 

rotation in rad/s around each 

of the three physical axes (x, 

y, and z). 

Rotation detection 

(spin, turn, etc.). 

Light Hardware Environmental Measures the ambient light 

level (illumination) in lux.  

 

Controlling screen 

brightness to save 

battery power. 

Linear Acceleration  Software 

or 

Hardware 

Motion Measures the acceleration 

force in m/s2that is applied 

to a device on all three 

physical axes (x, y, and z), 

excluding the force of 

gravity. 

Monitoring 

acceleration along 

a single axis. 

Magnetic Hardware Orientation Measures the ambient 

geomagnetic field for all 

three physical axes (x, y, z) 

in μT. It is relative to the 

Earth‟s magnetic north pole.  

Creating a 

compass. 

Orientation Software Orientation  Measures degrees of rotation 

that a device makes around 

Determining device 

position. 

http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GRAVITY
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_GYROSCOPE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LIGHT
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_LINEAR_ACCELERATION
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_MAGNETIC_FIELD
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ORIENTATION


10 

 

all three physical axes (x, y, 

z).  

Pressure  Hardware Environmental  Measures the ambient air 

pressure in hPa or mbar. 

Monitoring air 

pressure changes. 

Proximity  Hardware Orientation  
Measures the 

proximity/position of an 

object in cm relative to the 

screen of a device. This 

sensor determines the 

position of the phone w.r.t 

the object.  

Phone position 

during a call. 

Humidity Hardware Environmental  Measures the relative 

ambient humidity in percent 

(%). 

Monitoring 

dewpoint, absolute, 

and relative 

humidity. 

Rotation Vector Software 

or 

Hardware 

Orientation Measures the orientation of a 

device by providing the 

three elements of the 

device's rotation vector. 

Motion detection 

and rotation 

detection. 

Camera  

 

Hardware Multimedia  Capture pictures and videos. Taking photos and 

recording video. 

Microphone  

 

Hardware Multimedia  Capturing and encoding a 

variety of common audio 

formats.  

Recording audio 

 

 2.2.1 SOCIAL SENSORS 

 

Apart from the categories of physical sensors there is a separate type of sensors which 

emerges from the rise of Social networks (Facebook, Twitter, Instagram, Pinterest, LinkedIn, 

etc.) as well as location-based social networking services (Foursquare). As a matter of fact, 

Social networks act like social sensing devices exposing huge amounts of information such as 

individual interests, preferences and activities [90].  In [92] the Social Sensing is defined as a 

procedure that the sensors presented in mobile devices are exploited to infer data about people 

activities. In a more general definition, social sensors are a continuous source of information 

derived from social networks by exposing situations of users or social environments. Some 

http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PRESSURE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_PROXIMITY
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ROTATION_VECTOR


11 

 

examples of Social sensors include Facebook status updates or posts, Twitter posts and Pinterest 

pins.  

 

 2.2.2 PERVASIVE SENSORS VS SOCIAL SENSORS 

 

Comparing the pervasive sensors along with the social sensors we can derive many conclusions 

for the usage and gathering of sensor data.  

 

 Pervasive sensors are physical components of a mobile device such as smartphones or 

tablets. On the other hand social sensors are software tools which originate from modern 

social networks.   

 Social sensors can “sense” information that exists in the mind of the user. For example a 

user‟s favorite song. This information can be obtained from a social post. 

 Social sensors can be used as pervasive sensors with an abstract way. For example, 

understanding the location of the user from an image post.  

  Social sensors can predict future situations. For example by reading a shared calendar.  

 

 

 2.2.3 SEMANTICS ON SENSORS 

 

The definition of the word “semantic” is the study of meanings. In mobile sensing 

“semantics” are any meaningful information that we can be extracted from raw sensor data [70]. 

For example GPS sensors provide the coordinates of a location. This is a useless information by 

itself. But if we can combine this kind of information with another source of sensor data we can 

derive meaningful information, aiding for a better understanding of the phenomena in the mobile 

sensing era. The stored GPS logs can be used to determine the significant places associated to a 

user‟s daily routines (e.g., home, office, shopping areas). Also, they can be used as travel 

patterns derivatives providing the means by which we understand how a user moves from one 

place to another (e.g. by driving or by using public transportation). This information can be 



12 

 

useful for developing an application to inform the user about delays. Similarly, accelerometer 

logs can be used to measure a user‟s average walking speed, compute step counts and estimate 

the calories burnt per day. The main purpose is to provide custom integrated services to the end 

customer.  

 

 

 2.2.4 ACCESS INTO DEVICE SENSORS 
 

The access to device sensors is accomplished with three different ways: native 

programming, JavaScript and hybrid. The native access differs as every operating system has its 

own specific language (e.g. Android has Java, iOS has Objective C). Native applications provide 

full-access to a device‟s capabilities because they are running directly in the device.  The second 

approach includes access through JavaScript and this is used for Web applications. JavaScript 

APIs will be further analyzed in the chapter‟s sequel.  Finally, the hybrid frameworks provide a 

different approach which gives the capability to the developer to write code with Web 

technologies, such as HTML5, and create almost native applications. Examples of such 

frameworks are PhoneGap [48], Intel XDK [49], Enyos [50] and Mosync [51]. 

 

 

 2.3 SURVEY ON SENSING ARCHITECTURES  
 

The information that is sensed from the users‟ devices can be transmitted to a back-end server for 

further analysis. The combination of information from multiple mobile or desktop devices can 

reveal significant trends of an environment like predicting air and noise quality. Also, they can 

help to improve city management issues like the traffic sector, civil complaints or neighborhood 

problems. All these developments are under the category of Community sensing, People sensing, 

Participatory sensing, Opportunistic sensing, Crowdsensing, Crowdsourcing and Social sensing.  

These buzz words all describe the space of sensing architectures from various application 

perspectives. The purpose of these buzz words is to build platforms or applications that gather 

sensor data from volunteers belonging to the huge number of people with mobile devices, 

actively or passively. Nevertheless, a sensing platform can be characterized with more than one 

of the above names because it may contain characteristics from several sensing architectures. 



13 

 

Below we will survey several of the sensing architectures giving a small description about the 

scope and the relative applications.  

 

 

Figure 2-1: Classification of Crowdsensing systems 

 

 2.3.1 COMMUNITY AND PERSONAL SENSING 
 

Sensing applications are classified into two categories, community and personal, based 

on the type of phenomena being measured [6].   Community sensing monitors large-scale 

phenomena with a large number of participants. Applications for community sensing are for 

example intelligent transportation systems which measure traffic congestion, air or noise 

pollution. These applications need to receive daily updates from the sensor data of participants to 

perform spatio-temporal analysis and determine various phenomenon occurrences. Community 

sensing is also divided into, popularly called, participatory sensing and opportunistic sensing. 

Both architectures will be further analyzed in the upcoming sub-chapters. On the other hand, 

there are personal sensing applications which refer to individuals. An example of a personal 

sensing application could be the monitoring of movement patterns such as walking or the 

transportation mode to determine the carbon footprint.   

 

 

 



14 

 

 2.3.2 PARTICIPATORY SENSING 
 

Participatory sensing [5, 47, 93, 94] refers to the vision of distributed data collection and 

analysis at the personal, urban, and global scale, in which an agreement is made with individuals 

to fulfill the requested sensing activities and are, thus, actively involved in the sensing actions 

(e.g. by taking a picture).  

 

 2.3.2.1ROAD AND TRAFFIC MONITORING 

 

A problem that concerns a lot of people is the monitoring of road and traffic conditions in 

a city. In [96] the authors present an application for monitoring road and traffic conditions using 

smartphones. They use the built-in sensors of smartphones such as the accelerometer, the 

microphone, and GPS to detect potholes, bumps, braking, and honking. Another similar paper is 

the Pothole patrol [97]. It uses some sensor-equipped vehicles (e.g. taxis) to gather data from the 

streets of Boston and then train the detector, a decision-making process, so it reaches to final 

conclusions. Four years later and 12245.77 kilometers away in the streets of Mumbai Wolverine, 

the authors of [98] tried also to identify road conditions using the accelerometer, magnetometer 

and GPS from their smartphones. Compared to the two previous papers they promise more 

accurate results. Bikestatic [99] is an application for improving the daily life of a cyclist. It 

documents routes using an Android application and the built-in sensors and then records the 

roughness and noisiness of a road.  Then, the user can share the information and see 

visualizations of the data.  

 

 2.3.2.2 HEALTH 

 

The monitoring of patients and the progress of their health is a very important issue for 

their relatives. Ambulation [100] is a tool for detecting the movement of patients who suffer 

from chronic diseases such as Multiple Sclerosis, Parkinson‟s, and Muscular Dystrophy. It runs 

as a service on the background of Android and Nokia N95 mobile phones and sends the collected 

data to a web server for visualization. AndWellness [101] is a web platform for health that uses 



15 

 

mobile devices as real-time sensor data collectors. The evaluation of the platform was made by 

people who are breast cancer survivors and young mothers. Other than monitoring the health of 

sick people there are applications for healthy people as well who wish to improve their lives by 

maintaining a healthier lifestyle.  BeWell [102] tracks the everyday behavior of people by 

absorbing sensor data from a variety of multiple embedded smartphone sensors. It promotes 

wellbeing by monitoring daily activities such as sleep, physical activity and social interactions.  

 

 2.3.2.3 ENVIRONMENTAL MONITORING 

 

In recent years several researches have been carried out in the field of environmental 

monitoring. Ikarus [103] is a flight recording device that collects sensor data from cross-country 

flights measuring thermal atmospheric conditions. The application provides thermal maps using 

GPS and barometer pressure values taken from mobile devices. The total results have been taken 

from more than 30,000 flights. In the same context, GasMobile [104] provides information about 

air quality and pollution using an Android client application and displays the data in a high-

resolution air pollution map. To collect the data it uses an external sensor which is capable of 

measuring carbon dioxide values.  Peir system [43] is a participatory sensing application for 

environmental monitoring which uses GPS location data to measure the exposure of the user 

carbon impact .  In the server side, it uses HMM-based activity classification to determine the 

transportation mode, weather, carbon impact and other context data.  Also, it provides new map-

matching and GSM-augmented activity classification techniques and a selective hiding 

mechanism that generates believable proxy traces for times a user does not want their real 

location revealed. In the end, Peir provides a two-month usage statistics snapshot of a six-month 

trial. 

 

 2.3.3 OPPORTUNISTIC SENSING 
 

Opportunistic sensing [7, 95] is referred to the collection of user data with minimum or 

no involvement of the participants (e.g. recording sound). In most cases opportunistic 

applications run in the background of the operating system, so there isn‟t any interaction with the 

users of the sensing devices.  



16 

 

 

 

 2.3.3.1 OPPORTUNISTIC SENSING BACKGROUND 

 

CarTel [104] is an opportunistic sensing project which maps traffic patterns in the streets 

of Boston and Seattle from small computers installed in vehicles. |The computers contain GPS to 

measure location, speed and direction. Later, CafNet, uploads the sensor data to the relational 

database. CarTel has a web-based user interface for access to the database and allows for 

modification of data-gathering rules, such as time granularity. Some of the capabilities of CarTel 

are traffic monitoring, automotive notification and road-surface diagnostics.  Both producers and 

consumers of the data are ordinary people and not scientists.  

 

MetroSense [105] envisions a future full of sensor data. Sensing will be people-centric. 

The applications of MetroSense include tasking of personal mobile devices and sharing between 

adjacent hubs in an opportunistic way. The main concern is the use of sensor devices as a 

platform for opportunistic applications such as BikeNet [106]. BikeNet represents the first 

working mobile networked. Bicycles are equipped with a large number of sensors which 

communicate with each other and with adjacent bikes.  In more detail, BikeNet contains a system 

architecture for collecting personal data from cyclists and environmental data along the route. 

When the sensors come into the range of a sensor access point the data is uploaded to the 

backend server. It collects various data about the cyclist such as heart rate and galvanic skin 

response. It also collects data about the cyclist‟s performance such as wheel speed, pedaling 

cadence and frame tilt and about the cyclist‟s surroundings such as sound level, carbon dioxide 

level, and cars. BikeNet provides many capabilities such as cycling performance metrics (current 

speed, distance traveled), user experience and environmental mapping, data collection and local 

presentation.  

 

 

 

 



17 

 

 2.3.4 CROWDSENSING ~ CROWDSOURCING 
 

Crowdsensing is a new way of sensing the real world which encourages people to 

participate and generate sensor data from their mobile devices. Sensor data is aggregated and 

fused in the cloud for further analysis and customer service delivery [72].  As mobile devices are 

referred mobile phones, wearable devices and smart vehicles. The embedded mobile sensors can 

acquire local knowledge e.g., location, noise level, traffic conditions, and in the future more 

specialized information such as pollution. A typical functionality of MCS application is first to 

collect raw sensing data from mobile devices and then to process it to a mechanism for local 

analytics [6].  Second, privacy preservation, the data is sent to the backend and aggregate 

analytics will further process it for different applications.  

  

Crowdsensing is low-cost compared to a platform with static sensors and its range is far 

larger than the typical WSN systems. Moving users create an enormous range which can expand 

in the most improbable places. The main research challenges for Crowdsensing applications are 

privacy and incentive mechanisms. The nature of the data that is transferred between the 

applications is very sensitive and the functionality of privacy is considered very important for the 

smooth functionality of the application. Another important issue for Crowdsensing is the 

motivation of the user. The purpose is to keep the user for a long time inside the application and 

obtain large amount of sensor data. Crowdsensing applications are divided into three categories 

(i) Environmental, (ii) Infrastructure, and (iii) Social. 

 

 2.3.4.1 CROWDSENSING BACKGROUND 
 

Medusa [71] is a platform for crowd-sensing applications with the purpose of simplifying 

the burden of managing crowd-sensing tasks for non-expert users. It uses MedScript, a high-level 

programming language and a runtime system called Medusa which is located both in the cloud 

and in the smartphone. Several scenarios have been created for the Medusa framework such as 

road-bump monitoring, citizen journalist, collaborative learning and auditioning. The criteria to 

demonstrate the expressivity of MedScript are the different sensors and different facilities that 

they use.     

 



18 

 

Creek Watch [108] is a participatory environmental crowdsensing application for 

monitoring water levels and the quality of the area around the water by the IBM Almaden 

Research Center.  The user can submit a variety of information that concerns water such as the 

amount of water, the rate of flow and a picture of the waterway. The obtaining data is aggregated 

by IBM Almaden Center and then shared with institutes that are responsible for managing water 

resources. Fig.1 displays a screenshot of the interactive map used by IBM Almaden Research 

Center to display the contributions of the users.  

 

 

Figure 2-2: A screenshot of the interactive map used by IBM Almaden Research Center to 

display the contributions of the users of Creek Watch 

 

DietSence [109] displays the eating habits of individuals in a social way, giving the 

capability to the users to compare their data. Individuals send manually their eating habits. 

Before that they need to answer to a survey of questions such as the place of the food, a picture 

of it and motivation for the chosen food. The improvements of eating habits are the incentive to 

use DietSence. 

 

 



19 

 

 2.3.5 SOCIAL SENSING 
 

As we mentioned above social sensing is a category in which data comes exclusively 

from social networks. The popular social sites such as Facebook and Twitter are some of the 

inexhaustible sources of social data [91]. One such application is the Dartmouth CenceMe [42] 

which collects data such as events in people lives, called sensing presence, and selectively shares 

this presence using online social networks. R. Ji et al. [110] report a work on mining famous city 

landmarks from blogs for personalized tourist suggestions. Their main contribution is a graph 

modeling framework to discover city landmarks by mining blog photo correlations with 

community supervision. Q. Zhao et al. [111] propose detecting and framing events from the real 

world by exploiting the tags supplied by users in Flickr photos. The temporal and locational 

distributions of tag usage are analyzed, tags related to aperiodic events and those of periodic 

events are distinguished. Tags are finally clustered and, for each cluster, a representing picture 

and tag is extracted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

CHAPTER 3: WEB TECHNOLOGIES 

 3.1 HTML5, THE CONNECTOR BETWEEN WEB AND MOBILE  

 

The rapid evolution of mobile phones in recent years has brought great impact on 

people's daily lives. From simple calling devices they have become powerful platforms with 

features such as access to the internet, barcodes scanners, embedded sensors (e.g., GPS, 

accelerometer, gyroscope, light, video, microphone, etc.). Also, they can communicate with 

external sensors through network protocols such as Bluetooth. Apart from the evolution of 

mobiles, Web, also, currently lives its evolutionary phase with HTML5. Thus, several Web 

applications have been mobilized and many Web sites are now responsive. HTML5 is the 

definite “software glue” which fills the gap between mobiles and Web and becomes the key to 

any future development. All these mobile features can be used combinatorial to the advanced 

features of HTML5 for enabling valuable distributed participatory and opportunistic sensing 

applications. As we review in the second chapter the crowdsensing applications can be extended 

to many fields of the daily life, namely: transportation and civil infrastructure monitoring, 

environmental monitoring, health and fitness, urban sensing and traffic monitoring.  

 In this chapter, we will introduce web and mobile technologies, which are capable to deal 

with data of IoT [1], [2]. At first we discuss about HTML5 APIs which are deal with sensor and 

hardware integration and then later we will analyze every new element that HTML present in the 

fifth revision. Later in the chapter we comment about others web technologies which help us to 

construct the architecture of our platform. Also, we will discuss about concepts, protocols, 

libraries and APIs such as Meteor, Nodejs, Mongodb, Google geocoding APIv3, Web Audio 

API, Web sockets, Geolocation API, Sencha ExtJS 4 (Visualization charts) and much more.  

 

 3.2 HTML5 OVERVIEW 
 

HTML5 APIs that enable pervasive and adaptive multimedia over the web 

 

HTML5 [144-147] is a programming language used for describing the layout and 

presenting the contents of Web pages. HTML5 is cooperation between the Web Hypertext 



21 

 

Application Technology Working Group (WHATWG) and the World Wide Web Consortium 

(W3C). In the early years, HTML had limited potentialities and was designed just for describing 

static web content. But with the course of time, the language has been dramatically evolved, 

offering real challenges to developers. Its latest version, HTML5 has completely changed the 

status in the IT firmament with the breaking through technologies it introduces. For example 

video files do not require any more external plugins like flash in order to be played back in a 

browser, as HTML5 with its <video> tag embeds such functionalities, as play, stop/pause, move 

back/forward, directly into the body of the language. Essentially, HTML5 is not anymore a 

simple language for describing web pages, but a combination of HTML, CSS and many 

Javascipt APIs, which makes it a powerful platform with rich capabilities. In the following, the 

attention will be paid on these Javascipt APIs, available with the 5th edition of HTML that can 

enable the provision of pervasive, ubiquitous and adaptive web applications to end users. 

Because with these APIs web sites and web applications are offered an insight to the personal 

context and ambient environment of the end users, static or mobile, enabling capabilities for 

personalized, customized and anticipatory service provisioning. The fifth version of HTML 

includes a wide variety of new characteristics such as graphical and media support without using 

external plugins, quick response time and consistency in web applications, device independence. 

Below we highlight the new capabilities of the HTML5 platform: 

1. Support for media without plugins: Adding and handling graphical content on the web 

with new elements such as <video>,  <audio>, <canvas> and integration of scalable vector 

graphics (SVG) content.  

2. Media and Real-Time Communications: WebRTC, streaming media.  

3. Interoperability: One of the main objectives of HTML5 has been to ensure 

interoperability and consistent functionality across browsers.  

4. Better handling of client-side data:  With support for different storage in HTML5 viz. 

sessionStorage and localStorage, it is possible to store structured data temporarily thereby 

warding off cookies. 

5. Improved Semantics: The main aim of HTML5 is to introduce a markup that is easily 

readable by humans and understood by computers and devices.  

6. Security and Privacy: identity, crypto, multi-factor authentication, privacy protection 

http://en.wikipedia.org/wiki/HTML5_video
http://en.wikipedia.org/wiki/HTML5_Audio
http://en.wikipedia.org/wiki/Canvas_element
http://en.wikipedia.org/wiki/Systems_integration
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics


22 

 

7. Device Interaction: access to hardware and sensors such as geolocation, orientation, 

bluetooth, NFC, vibration, etc. 

8. Application Lifecycle: HTML5 can be used to write web applications that even work 

offline and become available after the user refresh the page. Also, support push, geofencing 

and sync.  

 

 3.2.1 HTML5 APIS 

 

Sensors and Hardware Integration 

 

Modern mobile devices of smartphone and tablet style embed a rich variety of sensors. In order 

applications to have access to the data from sensors, normally a middleware tool needs to mediate to 

facilitate the communication. Special-purpose Application Programming Interfaces (APIs) expose sensor 

data to the mobile web developers. Table 3.1 summarizes some critical sensors and hardware APIs from 

W3C as they are included in [136].   

 

Table 3.1: Sensors and Hardware APIS 

 Feature Working Group Maturity 
Current 

Implementation 

1 Geolocation 
 

Geolocation 

W3C 

Recommendations 
Widely deployed 

2 
Motion 

sensors 

Last Call Working 

Drafts 
Well deployed 

3 
Battery 

status 

Device API s 

Candidate 

Recommendations 
Very limited 

4 
Proximity 

sensors 

Candidate 

Recommendations 
Very limited 

5 
Ambient 

light sensor 

Candidate 

Recommendations 
Very limited 

6 
Networking 

information 

Discontinued 

 
Very limited 



23 

 

API 

7 

Camera & 

Microphone 

streams 

Device APIs and 

Web Real-Time 

Communications 

Working Drafts 

 
Limited but growing 

 

 3.2.1.1 GEOLOCATION API 

 

Geolocation API [53] allows the client-side device to provide geographic positioning information 

to javascript web applications. Geolocation API offers to mobile users the possibility to share their 

location with anyone they trust (individuals or web sites). The Geolocation API returns the geographical 

coordinates of the user device in a geodetic datum, that is in the form of latitude and longitude. In order 

them to be understandable or valuable for the end user, later this information must be translated to 

something like a city or street name or the name of a favorite area (e.g. my mother‟s place, my office, my 

gym), since the user understands better the civil datum. Online services such as Google and Bing maps, 

can undertake such transformations. Apart from latitude and longitude, the geolocation API can also 

return additional information such as the user‟s altitude, heading and speed and the altitude accuracy.   

There isn‟t a standard positioning technology with which the Geolocation API finds the user location; it 

rather uses any available method offered by the device. Hence, there is no guarantee about the accuracy of 

the returned data. Several positioning technologies can be used and combined to this end including:   

• Global Positioning System (GPS): a very promising way to return the location when outdoors but with 

very bad results when indoors. GPS takes the signal from many GPS satellites (and the serving cellular 

network in the form of A-GPS) to calculate the final location. Its disadvantages include the draining of 

devices from power and the need for enough time to yield results especially at start up.  

• Wi-Fi: the location is found by triangulating the location estimations from several Wi-Fi hot spots. The 

accuracy depends on the density of the access points in the surroundings of the user.  

• GSM and UMTS cell IDs: similar to the WiFi method the results are estimated by triangulating the 

location measurements from the serving cellular network‟s towers near the user. The accuracy depends on 

the density of the base stations in the surroundings.  

• IP address: It is considered an unreliable means to return the location of the user due to the fact that it is 

greatly based on the ISP provider, which could be far away from the physical address.  



24 

 

Taking into account that user location is included in the personal and sensitive information and with 

respect to the user privacy; the Geolocation API requires the confirmation of the user before sharing his 

or her location with any application or individual.  

  

How it works 

The Geolocation API uses the navigator.geolocation property which returns a Geolocation object.  

The Geolocation object contains the location of the user represented in latitude and longitude coordinates.  

In particular, the Geolocation object has 3 methods, the getCurrentPosition, the watchPosition and the 

clearWatch, as Table 3.2 depicts.  

 

Table 3.2: Geolocation API methods 

Method Description 

getCurrentPosition Gets the user location once  

watchPosition  Keeps polling for user position and returns an 

associated ID. 

clearWatch  Stops polling for user position 

 

The getCurrentPosition gets the user location only once. Its successful callback returns a 

Position object as argument, and its fail callback returns an error.  The Position object consists of several 

properties, the most critical of which are the coords.latitude and coords.longitude. Table 3.3 enlists the 

properties of a Position object.  

 

Table 3.3: Position object properties 

Property Unit 

coords.latitude degrees 

coords.longitude degrees 

coords.altitude meters 

coords.accuracy meters 



25 

 

coords.altitudeAccuracy meters 

coords.heading degrees clockwise 

coords.speed meters/second 

timestamp like the Date object 

 

The watchPosition method gets user location as the user moves. This function is iteratively 

called as the user location changes so the web application is always provided with updated location 

information. It returns the same arguments as the getCurrentPosition. In addition, it returns an ID number 

to ensure the uniqueness of the user. The third method of Geolocation object, clearWatch, uses this ID 

number to stop polling the user location.  

 

Browser Support 

Currently the Geolocation API is supported by the Mozilla Firefox, Chrome, Opera, Internet Explorer, 

Safari, and the native Android and Blackberry browsers. 

 

 3.2.1.2 DEVICE ORIENTATION API 

The most modern mobile devices are equipped with plenty of motion sensors. Motion sensors 

include accelerometers, gyroscopes and compasses. The HTML5 Device Orientation API [61] provides 

developers with access to underlying motion sensors and to associated data from the orientation and 

movement of the device.  The API specifies the events listed in Table 3.4. 

 

Table 3.4: Orientation API methods 

Event Description 

DeviceOrientation It fires whenever a significant change in 

orientation occurs 

CompassNeedsCalibration It fires when the user agent determines that a 

compass used to obtain user orientation needs 

calibration 



26 

 

DeviceMotion It fires regularly with information about the 

motion of the device 

 

The DeviceOrientation event exposes all the orientation changes. It returns the properties, alpha, 

beta and gamma that are explained in Table 3.5.   

 

Table 3.5: Device Orientation Event Properties 

Property Description 

Alpha 
Denotes the direction the device is facing according to 

the compass 

Beta 
Denotes the angle in degrees the device is tilted front-to-

back 

Gamma 
Denotes the angle in degrees the device is tilted left-to-

right 

 

Figure 3-1 visualizes the values of the DeviceOrientation event. 

 

Figure 3-1: The DeviceOrientation event properties 

 

The DeviceMotion event exposes the acceleration and rotation rates of the device. It takes 4 properties, 

acceleration, acceleratonIncludingGravity, rotationRate and interval. Table 3.6 details on them.   



27 

 

 

Table 3.6: Device Motion Event Properties 

Property Description 

Acceleration 
provides acceleration data, in m/s² for each of 

the x, y, and z axes 

AcceleratonIncludingGravity 
provides same data as above, but with effects 

due to the Earth's gravity included 

RotationRate 
provides the rate of rotation in deg/s around 

each of the axes 

Interval time in milliseconds between samples 

 

Browser Support 

Currently the Device Orientation API is supported by the Mozilla Firefox, Chrome, Opera, Internet 

Explorer, Safari, and the native Android and Blackberry browsers. 

 

 

 3.2.1.3 BATTERY STATUS API 

Normally, mobile devices have a life time of 9 to 10 hours of active usage before battery drains 

all its energy. The Battery Status API [55] can make the web applications smarter and energy-friendly. It 

uses the navigator.battery property to create a BatteryObject. Table 3.7 depicts the basic properties of a 

BatteryObject.  

 

Table 3.7: Battery Status API Properties 

Properties Description 

navigator.battery.level Obtains the charging level of the battery.  

Returns a value between 0 and 1. 

navigator.battery.charging Informs if the device is currently charging or 

not.  

Returns true or false.  



28 

 

navigator.battery.chargingTime The remaining time in seconds until charging 

level reaches 100%. 

navigator.battery.dischargingTime The time in seconds before the battery is 

completely discharged and the device shuts 

down. 

 

Browser Support 

Currently the Battery Status API is only supported by Mozilla Firefox. 

 

 3.2.1.4 PROXIMITY SENSOR API 

The Proximity Sensor API detects the distance between the mobile device and the user or an 

object. The API [56] has the two methods of Table 3.8 to work with:  

 

Table 3.8: Proximity Sensor API methods 

Method Description 

Device proximity measures the distance in centimeters 

User proximity informs the user if an object is near or not 

 

The deviceProximityEvent property measures the distance in centimeters but the minimum and 

maximum distance a proximity sensor supports varies. Usually the value ranges from 0 to 10cm. 

The userProximityEvent property returns a Boolean value (true or false) which inform the user if an 

object is near or far. 

 

Browser Support 

Currently the Proximity Sensor API is only supported by Mozilla Firefox. 

 3.2.1.5 AMBIENT LIGHT SENSOR API 

The Ambient Light Sensor API [57] senses the environment of the device to provide web 

applications with the measured luminosity in lux units. The values range from 0 to 10000 lux. Obviously 



29 

 

an embedded Light Sensor is required. When a light change is detected, the DeviceLightEvent provides 

applications with the updated value of luminosity.  A second interface is the LightLevelEvent, which 

provides less accurate characterization of the ambient light. In particular it categorizes the light level into 

3 categories. The first category is the “Dim” environments with light values below 50 lux, the second is 

the “Normal” environments with values ranging from 50 to 10000 lux and the third is the “Bright” 

environments with light values greater than 10000 lux. Table 9 includes this categorization. 

 

Table 3.9: LightLevelEvent values 

Light Level Ambient Characterization 

<50 lux Dim Environment 

50 ~ 10000 lux Normal 

> 10000 lux Bright 

 

Browser Support 

Currently the Ambient Light Sensor API is only supported by Mozilla Firefox. 

 

 3.2.1.6 MEDIA CAPTURE AND STREAMS API 

The Media Capture and Streams API (or GetUserMedia API) [62] [138] offers to web 

applications access to multimedia streams, such as video and audio, from local devices (webcam or 

microphone) through a browser. It then capitalizes on the HTML5 <video> and <audio> elements to play 

them back. In terms of user privacy, the Media Capture and Streams API behave similar to the 

Geolocation API. Whenever an application attempts to access the local media devices the browser asks 

the user for his permission. The revolutionary with this API is that access to the local media devices takes 

place without any need for plugins installation. Below is an example of how access to camera and 

microphone can be achieved.  

 

If (navigator.getUserMedia)  

{ 

  navigator.getUserMedia({audio: true, video: true}, successCallback, errorCallback); 

 } 



30 

 

 

The method navigator.getUserMedia() takes three arguments: constraints, successCallback and 

errorCallback. In constrains the type of media that will be accessed (video, audio or both) are defined. In 

successCallback the success scenario is defined. Hence, when video and audio are loaded; the captured 

media streams are put in a <video> element identifying the object of the LocalMediaStream via a BLOB 

URL [157]. 

 

function successCallback (MediaStream) { 

  video.src = window.URL.createObjectURL(MediaStream); 

}  

 

In errorCallback three cases for failure can occur, in general: i) Permission denied by the user, ii) No 

media tracks are found, iii) The browser does not support the specific constrain. Hence an alternative 

solution should be offered to the user: 

 

function errorCallback (e) { 

  video.src = 'fallbackvideo.webm'; 

} 

 

Browser Support 

Currently the Media Capture and Streams API is supported by the Mozilla Firefox, Chrome, Opera and 

Blackberry browsers. 

 

 3.2.1.7 PERFORMANCE CHARACTERISTICS 

Performance is a critical part in web applications development. To this end, several tools for web 

applications performance optimization can be found. Especially for mobile web applications, their 

limitations in terms of battery, networking, memory and CPU need to be taken into consideration during 

development and provision. HTML5 provides tools capable to measure various aspects of mobile 

resources. These include the Network Information API, the Resource Timing API, the High Resolution 

Time API and the User Timing API.   

 



31 

 

 3.2.1.8 NETWORK INFORMATION API 

The Network Information API [58] measures the available bandwidth and offers to the developers 

the ability to adapt web media elements, as images, videos, audios and fonts, accordingly for a better user 

experience with multimedia content. The navigator.connection method provides an object with the two 

properties, bandwidth and metered, of Table 3.10.  

 

Table 3.10: Network Information API properties 

Properties Description 

Bandwidth  It estimates the current bandwidth.  

Zero means an offline user. 

Metered  A connection is characterized as “metered” 

when the user's connection is subject to a 

limitation from the Internet Service Provider. 

Hence the web applications are requested to 

be careful with the bandwidth usage. It 

returns a Boolean value.  

 

Despite its obvious value, the development of Network Information API has been discontinued currently. 

In the following, the Resource timing API will be presented, which is in a stable status of development 

and can provide developers with similar information.   

 

Browser Support 

When discontinued the Network Information API was only supported by the native Android and 

Blackberry browsers. 

 3.2.1.9 RESOURCE TIMING API 

A factor that affects user experience in web application is latency. Network latency refers to the 

delay data packets experience as they are transferred from the sender to the receiver. The Resource 

Timing API [66] measures the time needed for various resources of a web page to be loaded in a browser. 

During the development phase of a mobile web application, such debugging information can let the 

developer think and incorporate into his application design various intelligent methodologies for adapting 



32 

 

appropriately the application and offering greater user experience to poor execution environments. Some 

of the networking information that can be retrieved by this API is the time for redirect, cache, access to 

DNS, opening a TCP session, transmitting a request and receiving a response. Figure 2 illustrates the 

measured times from the Resource Timing API.  

 

Figure 3-2: Timing attributes of the Resource Timing API 

Apart from time-sensitive networking information, the Resource Timing API can also measure the delays 

from other critical components for most web applications such as the performance of various third part 

assets including Javascipt libraries, social widgets and CSS frameworks.  

 

Browser Support 

Currently the Resource Timing API is supported by the Chrome and Internet Explorer browsers. 

   

 3.2.1.10 THE HIGH RESOLUTION TIME AND THE USER TIMING API 

The High Resolution Time API [60] measures the internal time performance of a web application 

in terms of function calls, interface callbacks, variable assignments, etc. As it is described in W3C it is “a 

JavaScript interface that provides the current time in sub-millisecond resolution and such that it is not 

subject to system clock skews or adjustments.” The API uses the Performance interface which exposes 

only the method now(). Now() returns a DOMHighResTimeStamp object which represents the current 

time in milliseconds. Performance.now() is similar to the Javascipt function Date.now() with the 

difference that the former is far more accurate with a precision to a thousandth of a millisecond.  



33 

 

Similar to the High Resolution Time API, the User Timing API [61] also measures the internal 

performance of web applications. However, the former API has the drawback that if someone needs to 

measure the performance in different files of an application he has to insert global variables. The User 

Timing API facilitates such situations by offering to web developers access to high precision timestamps. 

In particular it implements the PerformanceEntry interface, which includes the PerformanceMark and 

PerformanceMeasure interfaces.  The mark() method stores a timestamp which is available across all files 

of the application. In addition, with mark() someone can differentiate the time it starts measuring by the 

time the “mark” timestamp was posed in the application. Then, with the measure() method the time 

between marks can be measured. Table 11 includes the properties of the User Timing API and elaborates 

further on them.   

 

Table 3.11: User Timing API properties 

 Property Description 

Name A name correlated to the Mark or the 

Measure 

startTime For Mark() it is a TimeStamp 

 

For Measure() it is the TimeStamp of the start 

Mark of the Measure. 

Duration For Mark() it is zero. 

For Measure() it is the time elapsed between 

marks. 

mark(name) Stores a TimeStamp with the associated name 

clearMarks([name]) Deletes the stored Marks. 

measure(name[, mark1[, mark2]]) Stores the time elapsed between two Marks 

with the provided name. 

clearMeasures([name]) Deletes the stored Measures. 

 

 



34 

 

Browser Support 

Currently the High Resolution Time and the User Timing APIs are supported by the Chrome, Internet 

Explorer and the native Android browsers. 

 

 3.2.1.11 VIBRATION API 

Vibration is synonym to Mobile devices. Hereafter, this capability is extended to the Web 

applications. The Vibration API [63] uses the navigator.vibrate method to enable vibrations. 

Navigator.vibrate() takes as argument a number in milliseconds denoting the duration of the vibration, 

e.g. navigator.vibrate(500); Alternatively, an array of delays defining a pattern of vibration can be given. 

For example, with navigator.vibrate([200, 400, 600]) the pattern will cause the device to vibrate for 200 

ms, be still for 400 ms, and then vibrate again for 600 ms. 

 

Browser Support 

Currently the Vibration API is supported by the Mozilla Firefox, Chrome, and the native Android and 

Blackberry browsers. 

 3.2.1.12 FULL SCREEN API 

The Fullscreen API [64] allows web developers to tag elements in web applications (or 

documents) for viewing in full-screen mode. Instead of using the F11 keyboard button this can be enabled 

by simply pressing above the web element. Exiting from the full-screen mode is achieved by clicking 

again on the web element. It is mostly used with images and videos.  

 

Browser Support 

Currently the Full Screen API is supported by the Mozilla Firefox, Chrome, Internet Explorer and the 

native Blackberry browsers. 

 3.2.1.13 PAGE VISIBILITY API 

The Page Visibility API [65] provides the web developer with the capability to offer better user 

experience by applying the visibility or not state into their web application.  An application will have 

different behavior when it is visible and different when it is hidden.  It can be used to adapt the usage of 

resources to the need of the Web application, for instance by reducing network activity when a page is 



35 

 

minimized. Furthermore, it can have a great impact on the mobile devices because they can save energy 

from battery.  

The API has two properties the Hidden and the VisibilityState.  The Hidden is a Boolean 

property, which with True indicates a hidden document and with False a visible one. The VisibilityState 

has four options:    "hidden", "visible", "prerender", and "unloaded". Table 3.12 elaborates on them. 

Finally, the API contains the visibilityChange event which fires whenever the visibility state of a 

Document  changes.  

 

 

Table 3.12: VisibilityState values 

Values Description 

Hidden The document is totally hidden.  

Visible The document is visible.  

Prerender Optional. The document contained by the top level browser tab 

is loaded off-screen and is not visible. 

Unloaded Optional. The User Agent is to unload the document contained 

by the top level browser tab. 

 

Browser Support 

Currently the Page Visibility API is supported by the Mozilla Firefox, Chrome, Opera, Internet Explorer, 

Safari, and the native Android and Blackberry browsers. 

 

 3.2.1.14 WEB WORKERS 

Javascipt is a single-threated language, which means that javascript-based web applications can 

handle only one script at a time. This can do web applications unresponsive offering a poor user 

experience. HTML5 attempts to solve this problem by introducing the Web workers API [66]. Web 

Workers are scripts running in the background without influencing the main UI, offering, thus, a 

concurrent execution.  

Web Workers are executed in different files, which are called from the main script with a 

postMessage() method. The postMessage() method accepts either a string or a JSON object as argument. 

http://www.w3.org/TR/html5/dom.html#document


36 

 

The Web Workers handles the Messages from the main page with the onmessage handler. The data 

between the main thread and the Worker are copied and not shared minimizing, thus, the time required for 

a large file to be transferred. The Web Workers can transfer different type of objects such as 

Files, BLOBs, ArrayBuffers, and JSON objects [15]. However, Web Workers have currently some 

limitations. Table 3.13 enlists the objects a Worker can and cannot have access. 

 

Table 3.13: Web Workers capabilities and limitations 

DO have access DO NOT have access 

The navigator object 

 

The DOM (it's not thread-safe) 

 

The location object (read-only) 

 

The “window” object 

 

XMLHttpRequest 

 

The “document” object 

 

setTimeout()/clearTimeout() setInter

val()/clearInterval() 

 

The “parent” object 

 

The Application Cache 

 

The local name space. Web Workers will not work if 

a web page is being served directly from the local 

filesystem (using file://) 

Importing external scripts using 

the importScripts() method 

 

All Worker scripts must be served from the same 

domain and protocol as the script that creates the 

worker. 

Spawning other web workers 

 

 

 

 3.2.1.15 WEB STORAGE 

HTML5 introduces new methodologies for the storage of data by Web applications. In the past, 

data were stored exclusively in the web server but with the Web storage capability [67] this has changed. 

http://www.html5rocks.com/tutorials/appcache/beginner/
http://www.html5rocks.com/en/tutorials/workers/basics/#toc-enviornment-subworkers


37 

 

The data can now be stored in the mobile device and be later synchronized with the server. This provides, 

at first, offline usage of data and, at second, improves the application performance. There are two main 

web storage types: Local Storage and Session Storage. The Local Storage stores data for ever without to 

be lost. On the other hand, the Session Storage stores data only for the duration of a session.   

The values on the local Storage are stored as key-value pairs, hence whenever the application wants to 

access the values it must use the respective key.  Only strings can be stored via the Storage API. In most 

browsers, storing of different data types results in automatic conversion of them to a string format. 

Conversion into JSON, however, allows for effective storage of JavaScript objects. Local Storage has an 

upper limit at the storage space it can access, which varies from browser to browser (5 Megabytes for 

Google Chrome, Mozilla Firefox and Opera), but it is definitely far better than the 4 Kilobytes of cookies.  

 

 3.2.1.16 WEB INTENTS 

Web Intents [68] is a framework for service discovery and inter-application communication 

enabling information sharing between web applications.  Most users use specific web applications such as 

facebook, twitter, google+, viber, skype, dropbox, each with its own API. With Intents, web developers 

do not need to deal with each of them because web Intents unify access to them incorporating them to the 

logic of a web application. Web Intents enable to several different applications to work together. Via 

Intents several actions can be performed, such as sharing, editing, viewing, picking, subscribing or saving 

of a document.  Also, web Intents are mobile friendly and can be used in a variety of mobile operating 

systems such as Android and iOS.  

Web Intents function similar to web services. Essentially, it is transfer of the well-known publish-

subscribe model to the web. The life cycle of a Web Intent consists of 5 stages: registration, invocation, 

selection, delivery and response [68]. At first, a User Agent is being informed by a web application that it 

is able to handle Intents for specific actions. Whenever a client page sends to the agent such Intents for 

handling, the User Agent selects this application as appropriate for the Intent. Then the User Agent 

delivers the Intent to the application, which responds by passing data to the client page.  

A Web Intent object can contain several parameters. The most important parameters are action and type 

that cannot be empty. The action parameter indicates the action type of the Intent, for example edit. The 

type parameter indicates the type of the data payload. Data parameter is optional and it refers to any data 

including transferables. The next example demonstrates an application submitting Intent for an 

appropriate service to share a list of images designated via urls. 

 



38 

 

  var intent = new Intent({"action":"http://webintents.org/share", 

                           "type":" text/uri-list ", 

                           "data":getPublicURIForImage(...)}); 

  

 3.2.1.17 WEBSOCKETS 

The WebSocket protocol [134, 135], provides a bidirectional communication channel using a 

single TCP connection. It has been designed for implementation in both browsers and web-servers and its 

API [159] has being standardized by the W3C. WebSocket connections are established over the regular 

TCP port 80, which ensures that the system can run behind firewalls. The life-cycle of a WebSocket 

session is depicted in Figure 3. At first the client, a browser that supports the WebSocket protocol, 

requests a server to establish a WebSocket connection. The positive response from the server denotes the 

start of such a connection. The connection remains open for the whole session, until any endpoint requests 

its release with the specified procedure. As a WebSocket remains active; WebSocket frames can be 

transferred from server to client and vice versa with no preceding request. In an indicative implementation 

the WebSockets server may also host the service logic of a web-application, which might be responsible 

for maintaining a listing of the clients with active WebSockets and session management. Although logical 

separated, the web server, the service logic and the WebSockets server could run on the same physical 

entity. 

As it is depicted in Figure 3.3 the HTTP is initially used to establish the WebSocket connection 

between a compatible browser and a server. When the bidirectional connection is established, the 

application may transfer data to the server using this dedicated socket. The added value appears in the 

case that a server needs to push data to the client, which can take place asynchronously. Prior to 

websockets, a client-sided mechanism to request any updated data from the server should be used, a 

technique that consumes unnecessarily the network resources.  



39 

 

 

Figure 3-3 4:Life-cycle of a WebSocket session 

As it is described in [140], a WebSocket session consists of two parts, the handshake and the data 

transfer. The handshake is based on HTTP signaling, extended with websocket headers. The HTTP GET 

message, as it is depicted below, holds information about the websocket server (host) and the originating 

web application (origin), as well as the upgrade header that indicates a request for switching to a 

websocket connection. The sec-websocket values include information related to security, subprotocols 

and versioning respectively. 

        GET /chat HTTP/1.1 

        Host: server.example.com 

        Upgrade: websocket 

        Connection: Upgrade 

        Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ== 

        Origin: http://example.com 

        Sec-WebSocket-Protocol: chat, superchat 

        Sec-WebSocket-Version: 13 

The HTTP response from the server acknowledges the transfer of the connection to a websocket and 

includes the required headrers for security verification. 

        HTTP/1.1 101 Switching Protocols 

        Upgrade: websocket 

        Connection: Upgrade 

        Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo= 

             Sec-WebSocket-Protocol: chat 

 



40 

 

Once the handshake procedure has been completed successfully, all data between a client and a server are 

transferred via the WebSocket in the form of WebSocket frames. According to the specification each such 

frame is defined with three mandatory values; the opcode, which defines the type of the payload, the 

payload length, and the payload data. The opcode has a length of 4 bits, while the size for payload length 

and data may vary depending on the data value. The WebSocket protocol supports frame fragmentations 

to allow streaming of unknown size messages, and multiplexing. For the former, the server chooses a 

reasonable size buffer, while multiplexing allows several WebSockets within the same origin and host to 

share a single logical channel for various utilizations. The payload data can be carried both as Text (UTF-

8 text) or Binary data. Table 3.14 elaborates on the various opcode values. 

 

Table 3.14: Opcode values for WebSockets 

Opcode Meaning 

0 Continuation Frame 

1 Text Frame 

2 Binary Frame 

8 Connection Close 

9 Ping 

10 Pong 

 

A continuation Frame indicates a frame that is part of a fragmented frame. The Text and Binary 

Frames indicate whether the payload holds text or binary data respectively. The Connection Close value 

starts the signaling for closing the WebSocket, and the Ping / Pong Frames are used for the keep-alive 

process.  

<!DOCTYPE HTML> 

<html> 

<head> 

<script type="text/javascript"> 

 

var socket = new WebSocket('ws://game.example.com:12010/updates'); 

 

socket.onopen = function () { 

  setInterval(function() { 



41 

 

    if (socket.bufferedAmount == 0) 

      socket.send(getUpdateData()); 

  }, 50); 

}; 

 

socket.onmessage = function (evt)  

     {  

        var received_msg = evt.data; 

        console.log(“received message: “+received_msg); 

     }; 

 

socket.onclose = function() 

     {  

 console.log("Connection is closed...");  

     }; 

 

</script> 

</head> 

</html> 

 

 

Frameworks are already distributed to provide interoperability and easy use of the WebSocket 

API. The abstract above illustrates the required javascript code for opening a WebSocket. Once a 

JavaScript object named socket has been created, giving the type “ws://” URL of the server, there are four 

event handlers to be used as listed in Table 3.15. The open and close events occur whenever a connection 

is established or closed, respectively. The error event occurs when there is any kind of error in the 

communication. The message handler is triggered whenever data are received via the WebSocket. All 

parties implementing the WebSocket interface should support these handlers. The send(data) method is 

used for transmitting data via the socket. Data can be of type String, BLOB or ArrayBuffer. Any 

invocation of this method increases the bufferedAmount attribute by the length of the Data in bytes. 



42 

 

 

Table 3.15: Event handlers for WebSockets 

Event Event Handler 

Open Socket.onopen 

Message Socket.onmessage 

Error Socket.onerror 

Close Socket.onclose 

 

 3.2.1.18 WEB AUDIO API 

HISTORY OF WEB AUDIO  

The first contact between Web and Audio was from <bgsound> tag [30], where web 

pages play background music when a user opens them. Only Internet explorer had this feature 

[https://developer.mozilla.org/en-US/docs/Web/HTML/Element/bgsound].  The successor of 

<bgsound> was flash, which offer cross-browser functionality. Despite that, Flash had an 

important drawback, the requirement of plug-in.  So, all moderns‟ browsers move on to another 

tag, <audio> tag [26].  Audio tag embedded sound content in web pages and can support many 

audio sources. It had some limitations and for that reason it can‟t support demanding applications 

like games. Table 3.16 enlists some of the most important limitations.  

 

Table 3.16: Audio tag limitations 

No accurate timing controls 

Very low limit for the number of sounds played at 

once 

No way to reliably pre-buffer a sound 

No ability to apply real-time effects 

No way to analyze sounds 

 

 



43 

 

WEB AUDI API OVERVIEW 

Interactive applications, games, advanced music synthesis applications and visualizations 

need a strong API without the limitations of <audio> tag. This API is the Web Audio API 

[28,29] which is a high-level versatile JavaScript API for controlling, processing and 

synthesizing audio. It provides multiple functionalities such as adding multiple audio sources, 

adding effect [128] and visualizes audio. The Web Audio API is an HTML5 API which has 

direct access to the audio hardware and has built around the concept of an audio context. An 

Audio context is a routed graph which contains directed audio nodes from a source (audio file or 

microphone) to the destination (speakers). Figure 3.4 Shows a simple Audio context where the 

source and destination node are connected without any distribution between them. 

 

 

Figure 3-4: Audio context 

More complex Audio contexts contain multiple sources and many intermediate nodes for 

synthesis and analysis before reach to the final destination. Below is a code example on how to 

create an intermediate node between the source and destination.  

  // Create the source. 

Var source = context.createBufferSource(); 

//Create the gain node.  

Var gain = context.createGain(); 

// Connect source to filter, filter to destination  

Source.connect(gain);  

Gain.connect(context.destination);  

    

In table 3.17 presents source [26], destination and gain nodes that are available for the Web 

Audio API.  

 



44 

 

Table 3.17: Types of Web Audio Nodes 

Source nodes Sound sources such as audio buffers, live audio 

inputs,  <audio>tags, oscillators, and JS processors 

Modification nodes Filters, convolvers, panners, JS processors, etc. 

Analysis nodes Analyzers and JS processors 

Destination nodes Audio outputs and offline processing buffers 

 

Browser Support 

Currently the web audio API is supported by the Mozilla Firefox, Chrome, Opera, Safari, and for the 

mobile version is supported for Ios Safari and Chrome for android. 

 

 3.2.1.19 FILE API 

File API [129] provide a standard way for web applications to interact with local files. The file 

API includes 3 interfaces for accessing files from a local filesystem.   

1) File -   an individual file 

2) FileList – an array-like sequence of File Objects  

3) Blob – allow to slice a file into byte ranges  

 

The conjunction with the above interfaces can be used to asynchronously read a file through 

familiar Javacript event handling. File API has many functionalities with XMLHttpRequest. 

Some of them are monitoring of reading, catch errors, completion of upload progress.  

- The selection of the files can be with input form or by drag and drop. 

- The reading of the files happens with result attribute, after the load finish.  Filereader 

include four options to read a file, asynchronously:  

1) FileReader.readAsBinaryString (Blob|File) - The result property will contain the 

file/blob's data as a binary string. Every byte is represented by an integer in the range [0..255]. 



45 

 

2) FileReader.readAsText(Blob|File, opt_encoding) - The resultproperty will contain the 

file/blob's data as a text string. By default the string is decoded as 'UTF-8'. Use the optional 

encoding parameter can specify a different format. 

3) FileReader.readAsDataURL(Blob|File) - The result property will contain the file/blob's 

data encoded as a data URL. 

4) FileReader.readAsArrayBuffer(Blob|File) - The result property will contain the file/blob's 

data as an ArrayBuffer object. 

 

 3.2.1.20 APPLICATIONS SCENARIOS 

The combination of the above APIs can provide very interesting pervasive applications, 

which keep undiminished the interest of the user. The rapid growth of smartphones, with all 

these advanced sensing and networking capabilities, creates the appropriate infrastructure for 

HTML5 to thrive. 

An interesting such scenario would be a web application that uses the light sensor of a 

smartphone to detect the luminance in the usage environment and then to dynamically adapt the 

background of a web page to enhance readability. A variant of this application would be another 

one that changes the graphics of a webpage based on instantaneous network information. 

Another intriguing scenario would be a web application using WebSockets to send notifications 

to its subscribers and upon their receipt a phone to vibrate. In the same context, crowd sensing 

application is now easy to be implemented.  Sensors APIs mine periodically the data from the 

phone and WebSockets send the valuable information to the central server to analyze and 

visualize the data creating useful maps.  

 

 3.3 GOOGLE SERVICES 

 3.3.1 GOOGLE MAPS AND GOOGLE MAP API V3 

Google Maps [147] is a web mapping service and technology for desktop and mobile 

devices that provided by Google.  The capabilities of the specific platform are satellite imagery, 

street maps and street view perspectives.  Google update the database on a regular basis with 

images for street maps but it is not in real time. Google Maps can easily be integrated into a 

http://en.wikipedia.org/wiki/Data_URI_scheme
https://www.khronos.org/registry/typedarray/specs/latest/#5


46 

 

third-party website via the Google Maps API [148]. The API provides the developer with many 

tools like conclude a marker in a map, add multiple maps or add virtual radius. Also, Google 

Map API can intergrade with others Google services such as Google Geocoding API.   

 

 3.3.2 GOOGLE GEOCODING API V3 

Geocoding or forward geocoding is the procedure of translating addresses (e.g. 

Delaporta, Heraklion 71409, Greece) into geographic coordinates (latitude 35.3191579 and 

longitude 25.1483078) [23], [24]. The opposite procedure of translating geographic coordinates 

into an address (in a human readable-way) is called reverse geocoding [27]. Figure 3.5 shows 

google geocoding API in action. Google geocoding API v3 is included in google maps web 

services and implement both geocoding and reverse geocoding process. The user can have access 

to Google Geocoding API via an HTTP request. An API key is necessary to request the service.  

 Although Google geocoding API is a free web service; it is subject to two limitations 

from a single IP address. The first limitation is referred to the maximum number of requests per 

day (2500 geocode requests per 24 hours). The second limitation is referred to the maximum 

number of requests per second (5 geocode requests per second).  

 

Figure 3-5: Geocoding services translate an address into geographic coordinates and 

display a marker in a map. 



47 

 

The output of a geocoding API request [25] is either a JavaScript Object Notation (JSON) 

object or an XML file. Both outputs have two root elements, one for the status, which contains 

request‟s metadata for information about the result of the request (successful or not), and one for 

the result which contains address‟ and geometry‟s information. Tables 3.18 and 3.19 elaborate 

further on the results of a geocoding API response.  

Table 3.18: Google Geocoding API output: Status codes 

OK This code shows a successful response.  

 

ZERO_RESULTS This code shows a successful response but it doesn‟t return any 

results, probably by a non-existing address.  

OVER_QUERY_LIMIT This code shows that you have overcome your limits.   

REQUEST_DENIED When you get this code your request is denied. The reason is not 

specified but the most common issue is that the sensor parameter is 

missing. 

INVALID_REQUEST This code shows that there was an error with the request.  

 

Table 3.19: Google Geocoding API output: Result codes 

types 

 

An array that contain the type of the location. The type of the location  is 

country or locality. 

 

formatted_address 
A string that contain the address in a human-readable way. A paradeigm 

could be Delaporta, Heraklion 71409, Greece. It contains few kind of 

address information such as name of street, name of city, zip code and 

country name.   

 

address_components 
An array that contain the parts of the location which are listed in 

formatted_address. 

  

Geometry 
An object which contain several information such as position of the 

location, viewport, bounds and location_type 

 



48 

 

The results codes indicate two important arrays for the geocoding process: types[] and 

address_components[]. The first array (types) includes street address, country or political entity, 

while the second (address_component) include the type of each part of the address. Table 3.20 

shows the returning types of the above two arrays.   

 

Table 3.20: Returning types [] and address_components []. 

street_address   Shows a street address 

route  Shows a named route  

Intersection Shows an intersection of two roads 

political  Shows a political entity.  

country  Shows the national political entity (Highest order type) 

administrative_area_level_1  Shows a first-order civil entity below the country level.  

administrative_area_level_2  Shows a second-order civil entity below the country level. 

administrative_area_level_3  Shows a third-order civil entity below the country level.  

administrative_area_level_4  Shows a fourth-order civil entity below the country level.  

administrative_area_level_5  Shows a fifth-order civil entity below the country level.  

colloquial_area   Shows a commonly-used alternative name for the entity. 

locality  Shows an incorporated city  

 sublocality  Shows a first-order civil entity below a locality.  

sublocality_level_1 to  

sublocality_level_5. 

Each sublocality level is a civil entity.  

neighborhood  Shows a named neighborhood 

Premise  Shows a named location, usually a building or collection of 

buildings with a common name 



49 

 

Subpremise Shows a first-order entity below a named location, usually a 

singular building within a collection of buildings with a common 

name 

 postal_code  Shows a postal code  

natural_feature  Shows a prominent natural feature 

Airport  Shows an airport 

park  Shows a named park 

point_of_interest  Shows a named point of interest. Typically, these "POI"s are 

prominent local entities that don't easily fit in another category, 

such as "Empire State Building" or "Statue of Liberty." 

 

 3.3.3 GEO-FENCE  

A geo-fence [141] is a virtual boundary around a real-world geographical area which 

defines a point of interest. Geo-fence could be generated dynamically by giving the capability to 

the end user to select a point of interest or static by predefined a set of boundaries, like a field 

boundaries. With the dynamically capability the user can mark the desired region and see the 

recovered information. It is usually used in location-aware applications sending notifications to 

the users about a zone violation.  For example a child location service, can notify the parents 

about the status and the location of their child. In some companies, geofencing is used by 

the Human Resource department to monitor employees working in special locations especially 

those doing field works. Using a geofencing tool, an employee is allowed to log his attendance 

using a GPS-enabled device when within a designated perimeter. Google maps and android in 

mobile technologies contain the functionality of geofence [142]. 

  

 3.4 METEOR PLATFORM   

Our platform has been set up on meteor web platform [163, http://meteor.academy/  ]. 

Meteor is a real-time Javascript web application framework which is written on top of Node.js 

http://en.wikipedia.org/wiki/Human_resource_management
http://meteor.academy/


50 

 

and concludes various packages like MongoDB and jQuery. Meteor consider as the future of the 

web because it combine a full stack isomorphic system using the same language (Javascript) in 

both frontend and backend [144]. Also the same APIs can be used for mobile applications along 

with Cordova. This means that you write your code once and run everywhere. It customizes them 

to communicate seamlessly with one another via Distributed Data Protocol and a built-in 

publish-subscribe pattern [145]. The Distributed Data Protocol is a websocket-based protocol, 

allowing to the user to deliver live updates as data changes. Meteor is designed to work most 

with one database, MongoDB. MongoDB is a JSON-style, document-based NoSQL database 

built for flexibility and scalability. The client side act with the same way as the server side, 

having access to the database from Mongoose. Meteors customized these packages into smart 

packages and offer to the developer great capabilities such as: automatically real-time, database 

access from the client (mongoose), latency compensation, doesn‟t need to write Ajax and there is 

not any DOM manipulation. Meteor allows us to easily create apps without having to worry 

about the backend plumbing needed to set this all up. The web application runs both on the client 

(browser‟s JavaScript engine) and on the server (node.js).  The result of all this is a platform that 

manages to be very powerful and very simple by abstracting away many of the usual hassles and 

difficulties of web app development.  Figure 3.6 show Meteor environment and separate the 

components between server and client. In the next sub-chapter we will analyze every component 

separately.  

 

Figure 3-6: Meteor architecture 



51 

 

 3.4.1 NODEJS 

 Meteor is written on top of Node.js. The server side code is running on a Node.js server. 

Node.js server is a cross-platform (OS X, Microsoft windows, linux and FreeBSD) runtime 

environment which is used for server-side and networking applications [52]. It is an open source 

environment and the Javascript is the language for writing node.js application. The architecture 

is event-driven providing a non-blocking I/O API that optimizes scalability and throughput of 

applications. Node.js running up to Google V8 Javascipt engine containing a large scale of 

modules written in Javascipt.  It contains a built-in library which allows applications to act as a 

Web server. Companies such SAP, LinkedIn, Microsoft and Yahoo are some popular clients who 

use node.js as a server-side platform. A combination of Node.js, a document DB such as 

MongoDB or CouchDB and JSON offers a unified JavaScript development stack. 

 

 3.4.2 DDP 

DDP (Distributed Data Protocol) is running over a websocket and it used for a 

bidirectional communication between the client and the server. DDP can fetch structured data 

from a server and received live updates when that data changes. Actually DDP can query the 

database from client side (database is common for client and server), sending the results to the 

client and push the changes to client whenever there is a change. The actual implementation of 

DDP is JSON messages over a websocket connection.  DDP protocol is responsible for real time 

publish – subscribe communication between the server and the client and for remote procedure 

calls (methods). Currently the ddp package is the same for client and server but the future plan is 

to be separated.  

 

 3.4.3 BLAZE REACTIVE VIRTUAL DOM ENGINE  

Blaze is a library which creates live-update user interfaces 

(https://www.meteor.com/blaze). Similar frameworks with Blaze are Angular, Backbone, Ember 

and Knockout. It has a very simple way to write into a HTML file. In Blaze the developer just 

writes HTML templates with Spacebars and the Blaze itself handle the updates. The system 

which is behind the scene and it is responsible for the Blaze simplicity is called Tracker 



52 

 

(https://github.com/meteor/meteor/wiki/Tracker-Manual), (https://www.meteor.com/tracker). It 

is a lightweight system which is the middleware for the reactive programming. Reactive 

programming means that Blaze can automatically infer the data dependencies of arbitrary 

JavaScript code, allowing Blaze to automatically set up callbacks to detect changes to the 

template's data sources, recompute any values affected by the change, and patch the DOM in 

place with the update. Blaze use Spacebars as template processor which has been inspired from 

Handlebars (http://handlebarsjs.com/    http://code.tutsplus.com/tutorials/an-introduction-to-

handlebars--net-27761 ). Spacebars generate dynamically your HTML page, saving you time 

from performing manual updates.   

   

 3.4.4 PRINCIPLES AND METHODS OF METEOR 

Below we will describe in a few words which are the main principles of Meteor. Also, we 

will refer in the main methods of the platform in table 3.21.  

 

1) Full Stack Reactivity. In Meteor, realtime is the default. All layers, from database to 

template, update themselves automatically when necessary. 

2) Data on the Wire. Meteor doesn't send HTML over the network. The server sends data 

and lets the client render it. 

3) One Language. Meteor lets you write both the client and the server parts of your 

application in JavaScript. 

4) Database Everywhere. You can use the same methods to access your database from the 

client or the server. 

5) Latency Compensation. On the client, Meteor prefetches data and simulates models to 

make it look like server method calls return instantly. 

6) Embrace the Ecosystem. Meteor is open source and integrates with existing open source 

tools and frameworks. 

7) Simplicity Equals Productivity. The best way to make something seem simple is to have 

it actually be simple. Meteor's main functionality has clean, classically beautiful APIs.  

 

 

https://github.com/meteor/meteor/wiki/Tracker-Manual
https://www.meteor.com/tracker
http://handlebarsjs.com/
http://code.tutsplus.com/tutorials/an-introduction-to-handlebars--net-27761
http://code.tutsplus.com/tutorials/an-introduction-to-handlebars--net-27761


53 

 

Table 3.21: Meteor platform methods 

Templates  
Create views that update automatically when data changes. 

Session 
Store temporary data for the user interface. 

Collections 
Store persistent data. 

Accounts 
Let users log in with passwords, Facebook, Google, GitHub, etc.  

Methods 
Call server functions from the client. 

Publish /Subscribe 
Sync part of your data to the client. 

Environment 
Control when and where your code runs. 

  

 3.5 JSON 

JSON or else JavaScript Object Notation [146] is a way to store information in an 

organized, easy-to-access manner.  The outcome of JSON is a human-readable file with a 

structured manner. It is used to transmit data objects between a server and a web application, as 

an alternative to XML. JSON has many similarities with XML, like both are in plain text, are in 

a human readable format, use hierarchical dome and can be fetched by an HttpRequest. On the 

other hand, JSON superior from XML to: it doesn‟t use end tag, is shorter, is quicker to read and 

write and can use arrays. Also, the biggest difference is that XML has to be parsed with an XML 

parser but JSON can be parsed via a standard JavaScript function.  

A common use of JSON is to read data from a web server, and display the data in a web 

page. JSON is derived from JavaScript language but it is considered as an independent language. 

There is a big list of programming languages that are parsing and generating JSON data except 

of JavaScript. In table 3.22 we will present the basic types of JSON object.  

 

Table 3.22: JSON basic types 

JSON basic types Description 



54 

 

Number A signed decimal number that may contain a fractional part 

and may use exponential E notation.  

String  A sequence of zero or more Unicode characters.  

Boolean  Either of the values true or false. 

Array 
An ordered list of zero or more values, each of which may 

be of any type. Arrays use square bracket notation with 

elements being comma-separated.  

Object  An unordered collection of name/value pairs where the 

names (also called keys) are strings.  

Null  An empty value, using the word null. 

 

 

 3.6 BSON 
 

BSON, is [149] based on JSON objects and the “B” is referred to Binary data.  It is a data 

interchange format that is used mainly as data storage. MongoDB database use BSON for data 

storage and network transfer. The main characteristics of BSON object is that it is lightweight 

(keeping spatial overhead to a minimum), traversable (design to travel easily) and efficient (very 

quick encoding and decoding) [150].  

  

 3.7 GEOJSON 

GeoJSON [153] is an open standard format for encoding a variety of geographic data 

structures and is based to JavaScript Object Notation.  It include points (therefore addresses and 

locations), line strings (therefore streets, highways and boundaries), polygons (countries, 

provinces, tracts of land), and multi-part collections of these types. The GeoJSON format differs 

from other GIS standards [152] in that it was written and is maintained not by a formal standards 

organization, but by an Internet working group of developers. Below is an example of GeoJSON. 

Also, there are online tools to create, share and validate GeoJSON data [154].    

{ 

    “type”: “Feature”, 

http://en.wikipedia.org/wiki/E_notation
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/List_(abstract_data_type)
http://en.wikipedia.org/wiki/Square_bracket
http://en.wikipedia.org/wiki/Polygonal_chain
http://en.wikipedia.org/wiki/Polygon
http://en.wikipedia.org/wiki/Geographic_information_system


55 

 

     “geometry”: { 

             “type”: “Point”, 

              “coordinates”: [125.6, 10.1] 

        }, 

          “properties”: {  

             “name”: “Heraklion” 

    } 

 

 3.8 EXT JS FRAMEWORK  

Ext JS [155, 157] is a Javascript application framework suitable for interactive web 

applications. Ajax, DHTML and DOM scripting are some of the techniques that Ext JS use to 

present graphics in web pages. ExtJS Charts are used to present data visually, usually showing 

the relationship between different parts of the data. Ext JS excels for master / detail form-heavy 

applications and no other HTML application framework is going to come close to Ext JS from a 

feature perspective. Below we highlight some elements of the Ext JS framework which make it 

distinguish from others frameworks: 

 

1) Data management: It contain a clever way to break up the data access responsibilities into 

Model, Proxy, Store, Reader and Writer components.  The typed properties translate JSON 

to model objects.  

2) UI Framework: It contains a fleet of components for the user interfaces such as Toolbars, 

Panels, Buttons, Icons, Cards, Carousel, Tabs.   

3) Graphing: Charts and drawing with SVG.  

4) Offline capabilities: It uses SessionStorage and LocalStorage that can be used to make a web 

application work in an offline state.  

 

 3.9 X3D & X3DOM  

 

The World Wide Web Consortium (W3C) and the Web Hypertext Application 

Technology Working Group (WHATWG) cooperated to include into the emerged HTML5 



56 

 

specification an updated way for the presentation of 3D content in web browsers. HTML5 [159] 

[160] through its canvas element enabled the presentation of X3D graphics from web pages 

without requirement for any plugin. That is, all web browsers compatible with WebGL can 

render interactive 3D graphics. Definitely, the advent of HTML5 associated with other web 

technologies, such as X3Dom [161], can convert web browsers to 3D friendly multi-platforms 

with lots of capabilities. X3Dom is a proposed syntax model that translates X3D files to WebGL 

graphics. X3Dom is considered to be the state of the art technology for the visualization of X3D 

graphics on the canvas of a web page. With X3Dom‟s implementation as a JavaScript library, 3D 

graphics can be readily presented to browsers, without plugins, using only WebGL and 

JavaScript. More specifically, X3Dom acts as a broker between DOM (front end), which 

embodies X3D objects, and X3D runtime (backend). The X3Dom library is responsible for the 

conversion of X3Dom descriptions into the appropriate format for the X3D backend that renders 

the 3D objects. Hence, X3Dom library and X3D runtime can update the 3D scene whenever any 

change occurs. The X3Dom library is compatible with a variety of operating systems, devices 

and web browsers [12].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

CHAPTER 4: PLATFORM ARCHITECTURE 

 4.1 CROWDSENSING PLATFORM INTRODUCTION  

 In this chapter, we will discuss about the architecture of our crowdsensing platform. 

Based to the bibliography it is the first platform that use HTML5 APIs to deliver real-time sensor 

data to the users. Our platform is a modern, real time web application system for gathering 

sensor data (e.g. noise intensity, luminous intensity and connection type information) and display 

them in real-time. Apart from displaying the client data, it analyzes them in the server side and 

offer them back to the community. Visitor will be able to see the sensor data from a separate 

page. The collected sensor data will be shown in a fully-interactive world map and in nice 

informative, responsive charts. Also, it offers the data to the community via web services API.  

The sensor data could then be used for further purposes such as for making surveys, scientific 

researching or doing experiments.  We will start by naming its components and then will explain 

every component separately. We will also cover the interconnection between components of the 

architecture. Figure 4.1 shows the architecture of the platform, which is based on the multi-tier 

paradigm [6]. In software engineering, multi-tier or n-tier architecture is a client-server 

architecture in which, the presentation, the application processing and the data management are 

logically separated processes. The most usual "multi-tier architecture" is the three-tier 

architecture. The tiers can be called layers and it is not need to be in physically different 

machines.  



58 

 

 

Figure 4-1: Middleware platform architecture 

  

 4.2 COMPONENTS   

Our platform consists of 3 major components: The client component, which is 

responsible for gathering the sensor data, the server component, which contains the service logic 

of the platform, and the 3
rd

 party component, which offers a variety of services to end users. 

Finally, there is the database component which is responsible for storing the sensor data.  

 

 4.2.1 CLIENT COMPONENT   

 The client component is responsible for the implementation of the HTML5 APIs for the 

communication with the device sensors, the storing of sensor data to the database and their 

transfer to the server. The implementation of the client component is based on the Meteor 

framework, which acts as an application server between the other components. In particular, it 

undertakes to transfer the information quickly and safely to the server via a distributed data 

protocol. Probably, the most critical job for Meteor is the synchronization of the data in both 

client and server side. The client component is the main source of sensor data in our architecture. 

The other source is provided by the noisetube API and is implemented at server side. The main 



59 

 

source of data is noise data provided by the microphone device of clients by using the Web 

Audio API and exlpoiting getUserMedia() with a gain node analyzer. Figure 4.2 shows the 

procedure of capturing the noise data. Also, the application can collect luminosity data by the 

Ambient light sensor API. The user can gather simultaneously data from both sensors, or switch 

between noise and light sensor from a button switcher. Figure 4.3 shows the client switcher 

between the two sensors. The switcher checkbox enables or disables each of the APIs.  Both 

sensor data are combined with location information by Geolocation API. Except from the sensor 

data, the client side can collect connection type information, such as under 2G, 3G or wifi 

connection, via the Network information API. Ambient light sensor API and Network 

information API are in experimental or draft stage currently and browser support is very limited. 

Both APIs are supported only by mobile Firefox for Andoid and iOS.   

 

  

Figure 4-2: Noise data capture 

 

 



60 

 

 

Figure 4-3: Sensor switcher 

 

Data measurement and data conversion module 

Noise data are the main source of the sensor data and the most of our services are referred 

to them. When the user presses the main button at the client interface, automatically activates the 

media capture API or else getUserMedia(). Instantly the user gains access to the microphone of 

the device. Before gaining access to the microphone, browser will through an infobar to call 

getUserMedia(), which gives users the option to accept or deny access to their microphone. 

Figure 3.8 shows the permission dialog from Chrome.     

 

Figure 4-4: Permission dialog 

If the user presses the allow button then the procedure of gathering the noise data is 

started. In the meanwhile we connect the audio stream from getUserMedia() as an audio source 

in an Audio context of Web Audio API. The audio buffer will be connected to the decibel 

analyzer to transform the PCM samples into decibel values. Below is provided the connection to 

the Web Audio API and the analyzer code. We have named this procedure as data conversion 

module because it converts the noise sample from the client device into decibels. 

 

//Connect Media stream as a source of Web Audio API  

navigator.getUserMedia({audio:true}, function (stream) { 



61 

 

     src = ac.createMediaStreamSource(stream); 

     src.connect(analyser); 

} 

//Create a decibel analyser  

analyser.getByteTimeDomainData(timeData); 

while (i<fftsize) { 

     float = (timeData[i++] / 0x80) – 1;  

     total += ( float * float ); 

} 

  rms = Math.sqrt (total / fftSize); 

  db = 20 * (Math.log(rms) / Math.log(10) ); 

  db = Math.max(-48, Math.min(db,0)); 

  percentage = 100 + (db * 2.083);  

  noise = (noise * 99 + percentage) / 100;  

Session.set(„noiseLevel‟,Math.round(noise));  

 

The second source of sensor data is the ambient light sensor API. Ambient light sensor 

detects the light level in "lux" units. In Client application, we are using the method 

addEventListener for adding the event “devicelight”. The devicelight event will be fired when 

fresh data is available from a light sensor. Then it gets the data and save them in the collection.   

 

Geolocation API is coming next. When the user enables the data gathering button 

simultaneously enables the geolocation API. Geolocation API will through an InfoBar just like 

the getUserMedia(). Then the user will have the option to accept or deny the access to his 

location information. Upon “accept”, the client starts to retrieve the coordinates of the user.  

 

Also, client application can detect the connection type of the user (e.g. wifi, cellular, 

bluetooth) using the Network information API. The Network information API is an experimental 

technology because its specification has not been stabilized yet. It consists of the 

NetworkInformation() method and a single property to the Navigator interface: 



62 

 

Navigator.connection. The connection object contains the property type, which returns the user 

agent‟s connection type. The following table shows the values that property type can have. 

 

Table 4.1: Network Information API 

Network Information API Values 

Bluetooth 

Cellular 

Ethernet 

None 

Wifi 

Other 

Unknown 

 

Data insertion module 

We execute a function every 1000 millisecond to send the data in the server/database. We 

named this procedure as data insertion job. Data insertion job call the server method 

“pushSensorData” and send the data from client to the database. The data are stored in the 

database such as JSON documents. Server method calculates the current hour and inserts it in the 

sensor document. Next panel show the structure of the document. It contains coordinates, 

noise\light level values (embedded subdocument), user ID and timestamp (hour). Every minute 

the server job updates the data collection with country and locality values by coordinates.  

 

Data model (sensors collection): 

{ 

“_id”:  mongo ID, 

“country”: geolocation data, 

“locality”: geolocation data, 

“place”: geolocation data, 

“hour”:  unix timestamp in hours, 

“lat”: latitude, 

“lng”: longitude, 

“user”: id of the user (“guest if data not from client”), 

“sensors”: 

 { 

 “noise”: noise data, 



63 

 

 “light”: luminocity data   

 }   

} 

 

 

Distance calculator 

 We have embedded in the client a real-time noise measure map, for visualizing his sensor 

data, and a distance calculator. With the later, the user can select from a variety of choices (e.g., 

whole world, 10000km, 2500km, 500km, 100km, 25km. 5km, 1km) and find live users in 

proximity to him. Using the Geolocation API [53] we can calculate the distance between the 

specific live user and other live users within the specified radius and return to the user the results 

on his live map. The formula takes the coordinates of the starting point of the user and compares 

them periodically towards his current position. To get the starting coordinates we call 

getCurrentPosition() and then the API asynchronously follows the user‟s current location and 

saves it for later use.  This call executes only once when the user grants the application with 

access to geolocation API and then follows the moves of the user. Finally, the formula [38, 39] 

calculates the distance between the current user and the other live users. Below is a sample of the 

code.      

 

  var R = 6371; //km 

  var dLat = (lat2-lat1).toRad(); 

  var dLon = (lon2-lon1).toRad(); 

  var a = Math.sin(dLat/2) * Math.sin(dLat/2) + 

          Math.cos(lat1.toRad()) * Math.cos(lat2.toRad()) * 

        Math.sin(dLon/2) * Math.sin(dLon/2); 

  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 

  var d = R * c; 

  return d; 

 

 

 We use the haversine formula to calculate the distance between users [40]. Haversine  

formula calculates the great-circle distance between two points – that is, the shortest distance 

over the earth‟s surface – giving an „as-the-crow-flies‟ distance between the points (ignoring any 

hills they fly over, of course!). 



64 

 

 

Haversine 

formula: 

a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2) 

c = 2 ⋅ atan2( √a, √(1−a) ) 

d = R ⋅ c 

where 

φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km); 

note that angles need to be in radians to pass to trig functions! 

JavaScript: 

var R = 6371; // km 
var φ1 = lat1.toRadians(); 
var φ2 = lat2.toRadians(); 
var Δφ = (lat2-lat1).toRadians(); 
var Δλ = (lon2-lon1).toRadians(); 
 
var a = Math.sin(Δφ/2) * Math.sin(Δφ/2) + 
        Math.cos(φ1) * Math.cos(φ2) * 
        Math.sin(Δλ/2) * Math.sin(Δλ/2); 
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
 
var d = R * c; 

 

 

Geofence functionality  

As we described in chapter 3, geo-fence is a virtual boundary around a real-world 

geographical area which defines a point of interest. It can be generated dynamically from the end 

user or statically by predefining a set of boundaries. The user can “draw” a point of interest and 

see the corresponding information from the markers. The selection of the point is made in two 

steps: 1) at first there is a selection from the database of the items which are located inside the 

area of the circle. 2) Then it checks if each item is in the distance range from the center of the 

circle. Later there is a real time reverse geocoding procedure that translates the coordinates of the 

center into the corresponding location. The geofence calculate all the markers that are located 

inside the rectangle area and shows the average noise value of them in a dynamic panel.  

 

Real-time live users 

The user interface of the client application is an interactive Google Map which is 

essentially a real-time application. It shows all the live users that use the client application. 

Figure 4.5 shows a screenshot from the client application. This service displays points with noise 

and geolocation information over the google map. After the page is rendered, we initialize the 

google map. Also we initialize the panel overlays for info panels and controls. 

After that, we initialize the geofence controls on the map. Geofence enables the figure 

drawing on the map and retrieving information about the part of the map selected by these 



65 

 

polygons. When the map is loaded we fire the update function which updates and displays the 

data on the map. The update function detects the coordinates of the part of the map which is now 

displayed for the user. By these coordinates and the current filter settings, it retrieves the data 

from server by the server method getLiveUsers. This method fetches the current users from the 

database collection of LiveUsers. The data, aggregated by locality, are displayed as map points 

over the Google Map. Each point is colored according to its noise level. 

pinColor=colorByNoise(res[k].sensors.noise); 

 

Also we put the data from database into the point variable. 

markers[key] = new google.maps.Marker({ 

    position: new google.maps.LatLng(res[k].lat, res[k].lng), 

    map: map, 

    icon: pinImage, 

    shadow: pinShadow, 

    data: res[k] //data from the server 

}); 

 

Then, on each point on the map we attach the onclick event listener, which provides the info 

about point into the info window. 

google.maps.event.addListener(markers[key],"click",function(){}); 

 

The update function fires every 1000ms to make the map a real-time one. Upon an update, we 

only redraw the new points and delete the expired ones, so we avoid redrawing the whole point 

array.  

var key = res[k].lat +',' + res[k].lng + ',' + pinColor; 

//by coordinates and color  

if (!markers[key]) {//adding new points} 

for (var k in markers) { 

    if (!found[k]) { 

        markers[k].setMap(null); 

        delete markers[k]; 

    } 

} 

 

 

 



66 

 

 

Figure 4-5: Client application screenshot 

 

When the user grants his permission for noise and location retrieval, then we start to 

gather raw sensor data and a local data analytics function transforms the data to useful 

information. Later, we send them in the database.  Simultaneously, we fire another function 

which is responsible to save the data to the history collection for client page visualization 

purposes. The LiveUser function takes the id from the login button and shows the name of the 

user with his current noise value and geolocation information in the main panel. To ensure the 

anonymity of the user we replace the real name of the user with a fake name, for example “User 

1”. Figure 4.6 shows the main panel of the client component application. Also, from the main 

panel, the user can see visitor requests from the visitor page. Visitors‟ requests are requests made 

from the visitor page and are based in location information. Visitor requests are stored in a 

specific collection from where we can fetch and display them in the main panel.    



67 

 

 

Figure 4-6: Main panel 

 

 4.2.2 SERVER COMPONENT   

The server component is responsible to store the semantic information from the client 

side and to distribute it to various collections for visualization purposes. The main server jobs 

are: Reverse geocoding, time aggregation and NoiseTube data request. With reverse geocoding 

the server updates user data by translating coordinates to country, locality and place information 

using Google services. Time aggregation job is to manipulate and insert sensor data into 

collections in order to achieve a spatiotemporal visualization in the third party‟s page. Finally, 

there is the NoiseTube data request job with which the server fetches data from the NoiseTube 

API to create more crowd-full visualization charts.  

 

Reverse Geocoding job 

 

The reverse geocoding job is one of the main jobs in the server logic. In the beginning of 

the process it selects one record from the Sensor collection which has no geolocation data. This 

is any record with geographical coordinates but without their translation to an address from the 

real world (i.e. it has no country field). If there are no records without data we just restart this 

function in 1000ms. If there is data without country and locality information, we are executing 

the server method “geocode” which is part of geocoding package [168]. The geocoding package 

is a ready package which is integrated into the server side of the meteor application. The 

Geocode method searches by country name to find null fields. Then pass the coordinates in the 

https://atmospherejs.com/aldeed/geocoder


68 

 

geocode method as arguments and wait the response from the procedure.  After retrieving the 

geocode data we update the record in the Sensor collection with the following data: 

{ 

  country: res.country, 

  locality: res.locality, 

  place: res.place //where res – result of geocoding from google reverse geocoding service 

} 

 
When the record is updated we start the function again in 1ms. Apart from the server 

geocoding job there is another similar job which is executed at client side and we name it as “on 

demand” geocoding job. When the user wishes to search by location name or information in 

geofence functionality we fire this job. Figures 4.7 and 4.8 show statistics and traffic reports with 

the overall request usage of Google APIs. In the google console interface we can see the total 

requests and the requests per day. Also, it shows the daily quota per day at a rate view.   

 

 

Figure 4-7: Geocoding statistics from Google geocoding API 

 
 



69 

 

 
Figure 4-8: Averages geocoding statistics from Google geocoding API 

 

 

NoiseTube request job 

 

The need for a big volume of data, especially for noise data, for visualization and testing 

of our platform, leads us to search for another source of data. A project with large amount of 

noise data has been built from the France laboratory of Sony Computer [169] in corporation with 

VUB BrusSense group http://www.brussense.be/  and is called NoiseTube [170]. NoiseTube is a 

research project which started in 2008 and its main scope is to measure noise pollution levels in 

many cities. It contains a NoiseTube mobile app which turns the mobile devices into noise 

sensors enabling citizens to measure their daily exposure to sound. Every user can create a 

collective map of noise pollution by sharing his geolocalized measurements. The noise is 

measured in dB(A) and the mobile application can be used by iOS, Android and Java ME-based 

mobile devices.  

The NoiseTube research project contains a data collective API and an API which gives 

access to its database. When the user creates the account then he is given an API key to authorize 

his identity and allow him to send and retrieve data from the database. The data collective API 

http://www.brussense.be/
http://www.brussense.be/


70 

 

lets you create “a track” that when its processing is finished it is published and shared through 

the website. The second API is the data commons API that lets you retrieve raw collected data 

from the server. The user can make a query giving his API key along with some other criteria 

such as location, dbmax and dbmin. 

  The NoiseTube data request job is actually a parser which requests NoiseTube data from 

the Noise Tube server and stores them in the sensor collection. This service requests the noise 

data from the NoiseTube server, converts them to have the same structure as records in our data 

base and puts them in the sensor collection. We make an http request with the following 

structure:  

var a = queue.pop(); 

  ax = a[0], ay = a[1], bx = a[2], by = a[3]; 

  var box = ax+','+ay+','+bx+','+by; 

  var query = date+','+box; 

 

  var url = 'http://www.noisetube.net/api/search.json?'+ 

    'key=de0d36c700cdfb0412a9cc7a429c788baecaa822&'+ 

    'max=100&since='+date+'&box='+box; 

 

 

Meteor.http.get(url, function (err, res) { 

      if (err) { 

        console.log(err);  

      } else { 

        noisetube.insert({query: query, response: res.data}); 

        response = res.data; 

        g(response, 90000); 

      } 

    }); 

 

 

 

When we initialize the system, it gets the current date and makes request to NoiseTube 

server to get the last 1 hour data. After that we check if data exists and put it in a queue. The last 



71 

 

part is to convert the data from NoiseTube format to the sensor collection format and put it into 

database. The format of NoiseTube data are the following:  

 

{"lat":45.75514437370546,"lng":4.8425658840205115,"made_at":"2015-03-

03T18:37:20Z","loudness":"61.0","user":null} 

 

We change the format of the above document to the following format: 

Data model (sensors collection): 
{ 
“_id”:  mongo ID, 
“country”: geolocation data, 
“locality”: geolocation data, 
“place”: geolocation data, 
“hour”:  unix timestamp in hours, 
“lat”: latitude, 
“lng”: longitude, 
“user”: id of the user (“guest if data not from client”), 
“sensors”: 
 { 
 “noise”: noise data, 
 “light”: luminocity data   
 }   
} 

  

 

Id: MongoDB place a unique id for every document when is going to be stored in a 

collection.  

 Country-locality-place: Those 3 fields remain empty in this stage. Later when we store 

them in the sensor collection, geocode method is responsible to transform the lat and lng field 

into a geographical name.  

Lat-lng: Those 2 fields remain like we take it without any intervention.  

User: The field user takes the value “guest” because it comes from an external source.  

Sensors: The field Sensors is an embedded field with contains two others field: Noise 

and Light. The field noise will take the value of the corresponding field “loudness“, from 

NoiseTube. The field light will stay null as we have not any data to fill it.  

 



72 

 

When the entire record has become as it is required, we call the pushSensorData function 

to store the object in the Sensor collection. The function pushSensorData fills the last field 

“hour” with the current time in Unix timestamp format.  

 

 

History record jobs  

History record jobs contain the following jobs: Hourly job, daily job, monthly job and 

yearly job for both country and locality data. IoT and crowdsensing applications gather a huge 

amount of sensor information. Multiple clients are feeding the managing system with a big 

volume of data which in many cases will be difficult to analyze and manage. Some of the 

capabilities of our platform are the historical map, the access data API and the 2d-3d 

visualization averages of countries.  By real-time we mean that the data are manipulated by the 

server at regular intervals so charts illustrate the last samples with statistical ways. 

Instead of storing the sensor data to one collection and making a heavy query, we create a 

more effective job. Time jobs are used to aggregate data according to the needs of the charts. We 

group records with same localities and timestamps and create new collections with averages of 

the initial data. This kind of job helps us to save time in the visitor page when it needs to 

visualize the data. We have made 4 server jobs to aggregate raw sensor data based on time. The 

idea is to take raw sensor data and aggregate them to create country and locality hourly data. 

Respectively, we will take the hourly sensor data and aggregate them with the same way to 

create day‟s sensor data. The same procedure follow for monthly and yearly data. The server 

contains 4 jobs for country data and 4 for locality data. There are not any differences between 

country time and locality time jobs.  

 

Clean and record generator jobs 

 At frequent intervals we fire a clean job to keep the database in good condition and not 

overcome the quota offered by the host provider. We calculate the current hour and remove the 

last two hour data from the sensor collection. The calculation of current time is made with use of 

the date function. We transform conventional timestamp into unix timestamp in seconds and then 

we divide by 1000/3600 to gain a 6 digit number with hour timestamp. This way we can keep the 



73 

 

database compact. Each object in database takes about 250 bytes of disk space, so 1GB 

will contain about 400 localities with hourly data for one year.  

var curr_hour = Math.floor((new Date() - 0)/1000/3600); 

 

Here it is worth mentioning that unix timestamp is a way of storing instants in time, defined as 

the number of seconds that have elapsed since midnight of Thursday, 1 January 1970, UTC. It 

has a form of a ten digit number that can represent multiple time zones at once.  

 Another server job is the record generator job. Due to the small amount of data from 

client applications and NoiseTube API, we have created a signal generator. The duty of this job 

is to generate incidentally noise sensor data at frequently intervals. When such a sensor 

document is ready, it pushes it into the sensor collection with client application and NoiseTube 

data for the reverse geocoding job. First, we have the user field, which takes the name “gen” due 

to the generator. Lat and long fields take specific coordinates from an array with a big amount of 

countries. Hour field takes the current hour in hourly format. Finally, it is the sensor field for 

noise data which takes a random value produced by a random generator with upper limit the 60 

db and lower limit the 10 db.    

 

Time aggregations job  

 One of the most important jobs for the server is to create new aggregated sensor data 

from raw data in order to provide quicker services in the 3
rd

 party component. There are 4 jobs 

for this part: hourly data job, daily data job, monthly data job and yearly data job. Figure 4.9 

shows a diagram with the sequence of jobs.  Practically there is not any connection between the 

jobs since they are independent to each other. 

  

 

Figure 4-9:Time aggregation sequence job 

 

 

 



74 

 

Hourly job  

The first job is to convert the data from sensor collection into hourly sensor data. The 

hourly data job calculates the current hour and gets the sensor data of the last hour based on the 

unix timestamp.  When it has taken all the records with the specific hour then it groups them by 

country field and by user field. The result is an array of countries, each of which contains an 

array of users and each user has its average value of noise data. Next, we do a sum aggregation 

to the array so every country is associated with its sum and number of records. We create an 

array of values indexed by country in order to have a faster access to the collection. The final 

step is to insert the aggregated data into the CountryHour collection. For each country we do:  

 

1) If there‟s no data in the CountryHour collection for that country and hour, we insert 

the average data for that country into the CountryHour collection.  

2) If data exists, we are updating the record averaging the existing data with the current 

average data for the country.  

  

The Hourly job updates the hourly statistics per minute. Below there is a table which compares 

the document of sensor collection with the result of the hourly job. We follow the same 

procedure for locality data but instead of aggregating with the country field, we aggregate with 

the locality field.  

 

Sensor collection document 
 

Country hour collection document 

{ 
“_id”:  mongo ID, 
“country”: geolocation data, 
“locality”: geolocation data, 
“place”: geolocation data, 
“hour”:  unix timestamp in hours, 
“lat”: latitude, 
“lng”: longitude, 
“user”: id of the user (“guest if data not from 
client”), 
“sensors”: 
 { 
 “noise”: noise data, 
 “light”: luminocity data   

{ 
“_id”:  mongo ID, 
“country”: geolocation data, 
“hour”:  unix timestamp in hours, 
 “sensors”: 
 { 
 “noise”: noise data, 
  }   
} 



75 

 

 }   
} 

 

 

Daily – Monthly – Yearly job  

The CountryHour collection is the source of data for the daily job. The latter, instead of 

taking input from the raw sensor collection, takes as such the result of the hourly job.  At first, 

we calculate the current day in timestamps and then we go through the last two days documents. 

For every day we find the corresponding hourly data records and then we follow the same 

procedure as with the Hourly job. That is, we take all the hourly records within the specific 

period and then group the records by country field and by user field.  

The result is an array grouped by countries. Each country contains an array with hours. Next, we 

do a sum aggregation to the array so every country is associated with a sum value and its number 

of records. We also create an array of values indexed by country in order to have a fasted access 

to the collection. The final step is to insert the aggregated data into the CountryDay collection. 

For each country we do:  

 

1) If there‟s no data in the CountryDay collection for that country and hour, we insert 

the average data for that country into the CountryDay collection.  

2) If data exists, we are updating the record averaging the existing data with the current 

average data for the country.  

  

The Daily job updates the daily statistics per minute. We follow the same procedure with 

Monthly and Yearly jobs. We don‟t use anywhere the yearly data for visualization purposes. The 

only use is to get the country list in the chart page due to the fact that it is the most lightweight 

collection with the fewer documents.  

 4.2.3 3
RD

 PARTY COMPONENT   

The 3
rd

 party component, similar to the client component, is built upon the Meteor 

framework. Meteor is a full stack real-time framework that uses MongoDB as its main database 

and DDP (websocket) as the communication channel between its components. We use Meteor 

because its nature is to be real-time by default. Also, MongoDB is a next-generation document-



76 

 

oriented database, which is storing data in a JSON-like format, making the integration of data in 

certain types of applications easier and faster. MongoDB provides scalability and flexibility to 

the developer. It is perfect for IoT applications, which need very large databases, and also in 

real-time analytics that need lightweight data.  

The 3
rd

 party component provides a way to visualize the data collected by the client 

devices of our framework in real-time. It provides two ways for visualization: 1) Google maps 

and 2) analytics‟ charts. By real-time we mean that the data are manipulated by the server at 

regular intervals so the generated charts visualize the last samples with statistical ways. Also, 

analytics‟ charts are divided in two categories: 1) time charts aggregated by country and locality 

information and 2) averages aggregated by country data. Finally, averages‟ graphs are divided in 

two categories: 1) 2d graphics provided by the Ext JS framework and 2) 3d graphics provided by 

the X3dom framework. Also, the 3
rd

 party component provides some others capabilities to the 

end user which are: dynamic maps, historical maps and an API to retrieve information from the 

database.   

 

Access Data API  

This API allows users to have access to raw sensor data from our server by specifying some 

parameters [18] and use them at will. The can send a query from their browser directly to the 

database. Below is an example of such a query:  

 

http://html5platform.tk:3300/api?geo=0.805974,-

100.2278493,88.4755191,172.1061351&type=noise&max=10&maxlevel=50&minlevel=48 

 

Right after the domain name and port of this service, the end user needs to specify some 

parameters that elaborate his query. Table 4.2 inludes the key parameters and their description.  

 

Table 4.2: Description of API keys 

Key Description 

Max The maximum number of returned items (<=500) 

Type Type of the sensor data. Can be noise/light/both. 

Geo Coordinates. Format: minLat,minLng,maxLat,maxLng 

http://html5platform.tk:3300/api?geo=0.805974,-100.2278493,88.4755191,172.1061351&type=noise&max=10&maxlevel=50&minlevel=48
http://html5platform.tk:3300/api?geo=0.805974,-100.2278493,88.4755191,172.1061351&type=noise&max=10&maxlevel=50&minlevel=48


77 

 

Maxlevel The maximum noise level 

Minlevel  The minimum noise level 

 

The document that is returned to the user contains 5 fields: Hour, Sensors, Country, Locality and 

Place. We notice that we return to the requesting user only the database fields with value to him, 

excluding fields such as “mongoDB id” or “id” of the user.    

 var fields={ 

  '_id':0, 

  'place':1, 

  'locality': 1, 

  'country': 1, 

  'hour':1 

}; 

 

if(query.type!="noise") 

  fields['sensors.light']=1; 

if(query.type!="light") 

  fields['sensors.noise']=1; 

 

In order to proceed with such a data request, we need to retrieve data from our database. So, we 

send a parameterized find request. We define the fields that will be returned with the natural 

operator in a descent order. Natural order refers to the logical ordering of documents internally 

within the database. 

 

data=Sensor.find(select, {fields:fields, sort:{$natural:-1}, limit:parseInt(max)}).fetch(); 
 

 

The last step is to flush all the data to the user in a JSON format. 

this.response.writeHead(200, {'Content-Type': 'text/plain'}); 

this.response.end(JSON.stringify(data)); 

 

Below is a box which contains a return object from the access data API.  

{"hour":396065,"sensors":{"noise":50},"country":"United 

Kingdom","locality":"Scotland, City of Edinburgh","place":"Waterloo Pl, 

http://docs.mongodb.org/manual/reference/method/cursor.sort/#return-natural-order


78 

 

16/28"} 

 

Figure 4.10 shows the Access Data API documentation from the User Interface of our visitor 

page.  

 

 

Figure 4-10: API documentation 

 

Dynamic map and data uploading module 

This service offers the capability to the visitor user to upload custom sensor data to our server, 

which are then displayed as a heatmap. Figure 4.11 shows a sample of such noise data that are 

appeared as heat points in a google map. Also, the dynamic map service can store such data in 

the sensor collection of our data base, so it can be also used for other purposes. 

 

Figure 4-11: Heatmap screenshot 



79 

 

After the page is rendered, we initialize the google map. Also we initialize the panel overlays for 

legend panel and controls. 

map = new google.maps.Map($('#map-canvas')[0], mapOptions); 

map.controls[google.maps.ControlPosition.RIGHT_TOP].push( 

    document.getElementById('uploadContainer')); 

map.controls[google.maps.ControlPosition.RIGHT_BOTTOM].push( 

    document.getElementById('legendContainer2')); 

 

The next step is to draw the legend. The map legend displays the gradient of colors for heatmap 

in 0...100 range. 

for(i=0;i<=5;i++) { 

    grd.addColorStop(0.2*i, '#' + colorByNoise((maxLevel/5)*i)); 

    var dbLevel=Math.round(i*(maxLevel/5)); 

    $("#mylegend").append("<div style='height:16px;position:relative;top:-

"+(i*16)+"px;left:"+(i*(canvas.width/5)-14)+"px'>"+dbLevel+"db</div>"); 

} 

 

In upload section we have the simple upload form by using the HTML5 “File API”. Every time 

the user selects a file, it uploads it to the browser app, which converts it into binary format.  

'change #json_file': function (event, template) { 

    var files = event.target.files; 

    for (var i = 0, ln = files.length; i < ln; i++) { 

        var reader = new FileReader(); 

        reader.onload = function(e) { 

            update(e.target.result);//update function 

        } 

        reader.readAsBinaryString(files[i]); 

    } 

} 

 

Then we fire the Update function, which is responsible for two jobs. First, it goes through the 

data array and puts all the data into the heatmap to visualize them. The Update function takes the 

Json file and parses it to use the noise values as weights in the heatmap. We use the “lat” and 

“lng” fields to feed the location property of the heatmap and, also, the “weight” field to feed the 

corresponding weight property. Table 4.3 shows the properties of such a heatmap. 

 



80 

 

Table 4.3: Properties of heatmap 

Properties Type Description 

Location LatLng The location of the data 

point. 

Weight  number The weighting value of the 

data point. 

 

The second job is to put the received data into the sensor collection of our database by calling the 

server method pushSensorData. Due to the fact that the user document includes time values in 

seconds, we need to transform these values into hour timestamps for compatibility with the other 

database records.  

  

 

Real-time map  

The main functionality of the visitors‟ web page is to illustrate the sensor data derived 

from the live users of our framework into a reactive google map. The data for the real-time map 

are derived from 3 sources of data: Client components, NoiseTube API and Signal generator. 

This service displays the last gathered values over the google map as points with noise and 

geolocation information. Figure 4.12 shows a screenshot from the real-time map of the visitors‟ 

page.   

 

Figure 4-12: Reactive real-time map 



81 

 

When the page is rendered, we initialize the google map. Along with the google map, we 

initialize the panel overlays for info panels and controls. The next task is the initialization of the 

geofence controls on the map. Geofence enables polygons drawing on the map and the retrieving 

of information about the part of the map selected by these polygons. 

 

map = new google.maps.Map($('#map-canvas')[0], mapOptions); 

map.controls[google.maps.ControlPosition.RIGHT_TOP].push( 

    document.getElementById('legendContainer')); 

map.controls[google.maps.ControlPosition.LEFT_BOTTOM].push( 

    document.getElementById('legendContainer2')); 

 

When the map is loaded we fire the update function, which updates and displays the data 

on the map. The Update function detects the coordinates of the part of the map which is now 

displayed for the user. By these coordinates and current filter settings it retrieves the specific data 

by the server method getLiveUsers. This data are aggregated by locality and get displayed as 

map points. Each point has its color according to its noise level. 

 

pinColor=colorByNoise(res[k].sensors.noise); 

 

Also we put the data from the database into the point variable. 

markers[key] = new google.maps.Marker({ 

    position: new google.maps.LatLng(res[k].lat, res[k].lng), 

    map: map, 

    icon: pinImage, 

    shadow: pinShadow, 

    data: res[k] //data from the server 

}); 

 

Then, on each point on the map we attach an “onclick” event listener, which provides info about 

clicked points into an info window. 

google.maps.event.addListener(markers[key],"click",function(){}); 

 

The update function fires every 1000ms to make the map real-time. On every update, we only 

draw new points and delete the expired ones, so we don't redraw the whole point array.  



82 

 

 

 

var key = res[k].lat +',' + res[k].lng + ',' + pinColor; 

//by coordinates and color  

if (!markers[key]) {//adding new points} 

for (var k in markers) { 

    if (!found[k]) { 

        markers[k].setMap(null); 

        delete markers[k]; 

    } 

} 

 
 

Ticket functionality  

Real-time map has a unique functionality that allows visitors to communicate with live 

users and send them noise request tickets. In particular, visitors have the capability to request 

noise data for a specific location. The visitor can either use his own location by geolocation API, 

or specify it by text search. If the user uses the geolocation API, then the geocoding service 

transforms his coordinates into the corresponding locality or place. When the user uses the text 

search, the geocoding process, again, checks the location text. Then, the request ticket goes to the 

request panel of the client page running on the live users‟ devices. Only live users within the 

specified location receive such requests. We build a document with 3 fields: lat, lng (for the 

coordinates) and place and we insert it into the UserRequest collection. Later a confirmation alert 

box is displayed in the browser. If the data are not valid the alert box displays a message 

“unknown data”. In the client page, clients can see the list of the tickets valid for them. Also, 

once a new one is added in the database, clients receive a notification message with a sound 

alert. 

Historical map 

This service displays a heatmap over the google map with historical noise value data. 

Figure 4.13 shows a screenshot from the historical map.  



83 

 

 

Figure 4-13: Historical map 

 

When the page is rendered, we set the default session variables and initialize the google 

map. After that, we initialize the panel overlays for info panels and controls. When the map is 

loaded we fire the update function which updates and displays the data for the map overlay. Also 

we setup the heatmap controls which provide the capability for data filtering. 

 

google.maps.event.addListenerOnce(map, 'idle', function(){ 

    update(); 

    setControls(map,update); 

  }); 

 

The update function detects the coordinates of the map which is now displayed for the user. By 

these coordinates and current filter settings it retrieves the data by the server method 

getHistoryData. Then the data, aggregated by locality and converted into a Google Heatmap 

Layer data format, goes into the heatmap and get displayed as an overlay. 

 

        var pointArray = new google.maps.MVCArray(items2); 

 

        heatmap[heatmap.length] = new google.maps.visualization.HeatmapLayer({ 

          data: pointArray, //data from server 

          gradient:[ 

            'rgba(0, 0, 0, 0)', 



84 

 

            'rgba(128, 255, 64, 1)', 

            'rgba(240, 255, 64, 1)', 

            'rgba(255, 128, 64, 1)', 

            'rgba(255, 112, 64, 1)', 

            'rgba(255, 0, 64, 1)' 

          ], 

          maxIntensity: 100, 

          radius:0.75, 

          dissipating:false 

        }); 

        heatmap[heatmap.length-1].setMap(map); 
 

 

Every time the user activates the map filter, we fire the update function using the settings set by 

the user. After specified the zoom level on the map, we display in sight view the points from the 

database with info about geolocation and noise level as we presented in the live map section. 

 
 

 

Charts by time  

This service displays spatial - temporal analytics charts. The charts display daily, monthly 

and yearly data for all the countries that participate in the project. Figure 4.14 shows a screenshot 

of the charts page. 

 

 

Figure 4-14: Spatial - temporal analytics charts 

 



85 

 

The logic behind this service is just to convert data from the collection records to chart 

data format.  The charts have 3 types of displayed information: hourly chart for an exact date, 

daily chart for a selected month of the year, monthly chart for a selected year. Each type can 

have 2 states: country average values and locality values for the selected country.  

When the template is rendered we fire the chart initialization function. First we initialize 

the ext.js data storage.  

store1 = new Ext.data.JsonStore({ 

  fields: ['name', 'data1'],//fields that we parse from given data 

  data: generateData($('#calend').val())//function that returns data      

    from server by selected date 

}); 

 

The user interface has options to select country, range type and period. Those options will 

retrieve data from the generateData function. The generateData function will call the following 

server methods: getCountryDayData, getCountryMonthData, getCountryYearData. Each of 

these methods has option to select data from the database only for the localities of the selected 

country. Also, every method retrieves data from different collection and has different date type 

according to its scope.  

 We take as example the function getCountryDayData. It takes the date from the user, and 

makes the query to database “{$gte:curr_hour-1,$lte:curr_hour+24}”. The query means that it 

will take the data for all hours from 00:00 of selected day to 00:00 of the next day. Then it will 

return an array of hourly data to the client.  

 When it gets the hourly data then it calls the Ext.js constructor and specifies the data 

storage.  

Ext.chart.theme.White = Ext.extend(Ext.chart.theme.Base, { 

  constructor: function() {} 

}); 

store: store1, // specify the data storage  



86 

 

renderTo: Ext.get('charts'), // element of where we place the chart in HTML  
 

 

Later in the data generation function we specify Y and X axes. The name field in the given data 

reflects to the column size. 

xField: 'name', 

yField: res.countries[field], 

 

Next comes the rendering function which adds to the column title the noise level.  

renderer: function (storeItem, item) { 

  this.update(item.series.title + ': ' + storeItem.get(item.series.yField) + '&nbsp;dB');} 

 

After any change we redraw the chart with the new parameters.  

chart.store.model.setFields(fields2); 

chart.store.loadData(res.data); 

chart.redraw(); 

chart.refresh(); 

 

Averages 2D ~ Ext JS by country 

This service displays average data for each country on a column chart. Each column is 

painted by color according to its noise level. Figure 4.15 shows a screenshot from the averages 

page.

 

Figure 4-15: Country noise averages with 2D visualization 



87 

 

This service uses the Ext.js visualization framework. First we generate ext.js data storage.  

var store1 = new Ext.data.JsonStore({ 

  fields: ['name', 'data1'], //fields that we parse from given data 

  data: generateData() //function that returns data from server 

}); 

 

Next, the generateData function calls the server method getCountryAvgData which 

returns aggregated data from the database. The getCountryAvgData groups documents per 

country and calculates the average noise per country from the countryHour collection. It returns 

an array with the name of all the countries and the corresponding average values of noise.   

When we obtain the country array with the average values then we set the chart settings 

in the chart constructor and specify the data storage “store:store1”.  

 

 Ext.chart.theme.White = Ext.extend(Ext.chart.theme.Base, { 

  constructor: function() {} 

}); 

 

Next, we specify the element to put the chart in HTML. Axes x - y take as parameter the 

elements of country name and average noise in order to create the column size. Finally, we fire 

the rendering function to colorize the column by the noise level.  

 

return Ext.apply(attr, { 

  fill: '#'+colorByNoise(record.data.data1) 

}); 

 

 

Averages 3D ~ X3Dom by country  

This service displays the same average data like the Ext.js framework but in 3D format 

using the X3dom framework. Figure 4.16 shows a screenshot from the country noise averages by 

x3dom. We create a 3d bar plot with a d3.js approach [158] using x3dom for 3d visualization. 

After loading the page we fire the getCountryAvgData server method. When we get the response 

we run the getChart3D function which provides the drawing of the X3dom scene for the given 

data. It takes two parameters: the dom element, in which we append the x3dom scene, and the 



88 

 

response from the getCountryAvgData function.  Then we draw the X and Y axis using the 

maximum noise value and the number of countries. Later we draw the column chart using the 3D 

boxes as columns with text on it and with Y-length by noise value. After drawing DOM, we 

request the X3dom js file which makes the 3D scene by given markup. The X3dom file contains 

two functions to create the x3d scene. The first is the initializeAxis, which creates axis lines in 

the scene, and the second is the drawaxis, which creates the columns on axis and the legend upon 

them. The colors of the 3d bars change according to the average values for the countries. We 

change the diffuseColor attribute of the 3d bars with the colorByNoise function.  

Due to the fact that X3Dom is just a plaintext, we use the D3js library to create it 

dynamically from a javascript function. D3 is a javascript library that creates documents and 

visualizations which are entirely driven by the data behind them. We are using D3js along with 

X3dom in order to create hardware-accelerated 3d visualizations directly in the browser.   

 

 

Figure 4-16: Country noise averages with 3D visualization 

  

 4.3 SERVER CONFIGURATION   

 

The application is deployed in the degitalocean cloud servers. Everyone can have access 

to the client web page from the URL: http://html5platform.tk:3100/. The visitors‟ page is 

available from the URL: http://html5platform.tk:3300/. Finally, there is a separate administrator 

http://html5platform.tk:3100/
http://html5platform.tk:3300/


89 

 

page from which we run the database benchmarks. The URL for the latter is: 

http://html5platform.tk:3400/ and it is closed for the public due to the database access it enables.  

 

Set – up of the server   

 

To set up the server a variety of packages and tools is needed. The first thing that is needed to be 

installed is a Node.js server, the environment for the server-side.  

 

curl -sL https://deb.nodesource.com/setup | sudo bash -apt-get install -y nodejs 

 

The next component is the database server. The default database of Meteor is MongoDB.  

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10 

    echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen' | sudo tee 

/etc/apt/sources.list.d/mongodb.list 

    apt-get update 

    apt-get install -y mongodb-org 

 

Then we install the Meteor framework which acts as an application server between client and 

visitor applications.  

    curl https://install.meteor.com/ | sh 

 

We copy the local files of the project into the server folder and after that we install MeteorUP. 

MeteorUp is a command line tool that allows us to deploy the Meteor app into our server. Along 

with the MeteorUP we need to setup MUP bundle in the folder.  

npm install -g mup 

 

setup MUP bundle in your folder 

    mkdir /my-folder-name 

    cd /my-folder-name 

    mup init 

 

configure bundle //by uploading the specific file  

    nano mup.json 

 

Finally, we can start the server with the following command.  

     

http://html5platform.tk:3400/
https://deb.nodesource.com/setup
http://keyserver.ubuntu.com/
http://downloads-distro.mongodb.org/repo/ubuntu-upstart
https://install.meteor.com/


90 

 

start the server 

    apt-get install sshpass 

    mup setup 

    mup deploy 

 

starting & stoping the app  

stop/start noise/noiseclient 

 

 

Bitvise SSH Client 

Instead of using the default ssh client of the digitalocean server, we prefer the use of the Bitvise 

SSH Client. The Bitvise SSH Client provides integrated access to the SSH server's console, 

either via VT-100 or xterm protocols supported by most SSH servers on any platform. SSH File 

Transfer Protocol is a network protocol for secure file transfer over secure shell.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
http://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol


91 

 

CHAPTER 5: PRIVACY 

 5.1 PRIVACY IN CROWDSENSING     
 

Mobile Crowdsensing applications collect detailed information from sensors and their 

owners during task management procedures. Most of the time, this kind of information is 

considered as sensitive and it is endangered if intercepted by a third party malicious program. In 

this chapter we outline several task management approaches and assess the security issues [78]. 

Also, we discuss how privacy techniques are utilized in existing sensing applications to address 

these threats. We will focus on opportunistic people-centric sensing security challenges and we 

will outline general solutions to this end because of the nature of our HTML5 crowdsensing 

platform.  

 

Figure 5-1: Generic structure of task flow in MCS 

 

The issues of security and privacy have changed in comparison with the older static 

systems. In the past the focus was mainly on security solutions for resource-constrained devices 

[112,113], secure routing techniques for static sensor networks [114,115,116] and secure data 

collection and aggregation in static and fixed tree topologies [117], [118] or for providing 

anonymity in location-based applications [119]. The transfer to more dynamic platforms due to 



92 

 

the domination of mobile devices and anonymous tasking systems has raised other issues that 

need to be solved. The developers of crowdsensing platforms have to succeed in protecting the 

data of users and simultaneously the platform must perform all of its tasks. There are three main 

approaches to solve security issues and protect the users‟ privacy in crowdsensing platforms. 

These approaches are anonymization, encryption, and data perturbation. 

 

 5.1.1 ANONYMIZATION  

Anonymization is a technique which removes the user identity from collected sensor data 

during the task distribution. In some cases the removal of identifying information cannot ensure 

the anonymity of the user. Applications which contain the agent location will face such 

problems. It is very usual for an individual to visit the same place many times. This will result in 

the identification of the user/individual.  For example, we want to measure the noise pollution in 

a fixed area. The specific task will be credited to a specific person. If this person does not want 

to have his position revealed, he can answer to the task anonymously. Sometimes, especially in 

crowdsensing platforms the task itself is more important than who is making the task.   Below we 

will review two anonymization techniques.  

1) Pseudonyms: This is a technique that hides the real identity of the user and replaces it 

with a pseudonym [121].  

2)  Connection Anonymization: In this technique we are using IP addresses masking to 

prevent network-based tracing attacks [120] [122].    

 5.1.2 ENCRYPTION  

Encryption ensures that only an authorized party will have access to the submitted sensor 

data of the users. Unauthorized third parties will not be able to obtain information even if they 

ask about it. On the other hand, large volumes of data consume significant computer resources. 

Recently, a new technique is used for encryption of location-based services [123] and it is called 

PIR-based method. PIR-based method guarantees cryptographic privacy by allowing data 

retrieval from a database without revealing any information to the database server about the 

retrieved item. In crowdsensing applications there are several issues with this approach because 



93 

 

it will suffer from overlapping task selection and bias since sharing entities would not learn 

which tasks are retrieved.  

 5.1.3 DATA PERTURBATION   

In the data perturbation technique, we add noise to sensor data when the data is submitted by 

individuals. This will result to non-recognition of the data by a third person. The micro-

aggregation is a form of data perturbation in which we replace a selected field with an aggregate 

or a more general value for example a ZIP code can be replaced by the name of a state. This 

example was a typical case of micro-aggregation. Micro-aggregation can be operationally 

defined in terms of two steps, namely partition and aggregation. Partition refers to partitioning a 

data set into several parts (groups, clusters). The aggregation refers to the replacement of each 

record in a part with the average record. Such a data perturbation technique is Spatio-Temporal 

Cloaking: Some applications do not require the exact location, so we can use a perturbed or 

cloaked location. This technique hides the location of the user into a cloaked region using 

dummy locations in order to succeed in location privacy [123].   

 5.1.4 SECURITY IN PARTICIPATORY SENSING 

Participatory crowdsensing differs from opportunistic one because it requires from the user to do 

a specific action such as write a comment about a restaurant or take a photo from a landmark.  

The security challenges in participatory crowdsensing are different because it intensely 

penetrates into the human environment [94].  

- Privacy: The information that concerns the identity of the user can be leaked easier than 

in opportunistic sensing. For example the background of a taken picture may contain the home 

location of the user, or a text comment may contain grammatical errors that can reveal the 

identity of the user.  

- Integrity: In participatory sensing the user can choose what kind of data will be 

distributed. In this issue, it is in the user's ability if the data will remain intact. 

- Availability: In this issue, the user has the ability not to respond to a task request about 

data or respond with false or useless data.  



94 

 

CHAPTER 6: MOTIVATION 

 6.1 USER INCENTIVES    
 

Questions about human motivation have been discussed and analyzed in many fields such 

as philosophy and economics. It is a crucial issue to find the perfect incentives for the 

participants to join to an application and share their personal data. So what is the perfect 

incentive for a participant?  The promise of financial or monetary gain is an important incentive 

method for most participants in markets and traditional organizations. Interest and entertainment 

are important motivators in many situations, even when there is no prospect of monetary gain. 

Finally, social or ethical reasons, such as socializing with other people or recognition can be 

good motivational boosts for a participant.  

 

 6.1.1 GAMIFICATION 

The motivation of using a Crowdsensing application is a crucial issue for the success of 

the application and can determine the quantity and quality of sensor data. Developers always 

search for an interesting and motivating point to convince the users to use the application. There 

is a recent trending technique which is called “Gamification” and it is very popular for 

motivating user behavior.  Gamification [82] is the notion of using various types of game 

techniques in order to drive desired behaviors. Turning an application into a game and of course 

by defining some basic principles can inspire a user to visit again and again.  With gamification 

you can incentivize any action you value and can engage an audience either enthusiastic or 

passive to participate.  

Many colossal companies such as Nike, Foursquare, Zynga and Starbucks [85] use 

Gamification techniques to track and keep loyal customers. For example Nike has created an 

online “FIT” community and gives the capability to users to share their daily running exercise. 

After 4 years its market share has increased by 14% and went from 500,000 game members in 

2007 to 11 million members in 2013. It has been applied in several fields such as user 

engagement, physical exercise, teaching and data quality. Also, game mechanics are integral to 

social networking sites and are being applied to the newest generation of social tools like the 

Urgent evoke [86] or Stackoverflow [87]. Urgent evoke is a social network game which grants 



95 

 

young people to create solutions for the most urgent social problems of the world. On the other 

hand, Stackoverflow is a technical question and answer site with a crowdsourced moderation and 

reputation system. Stackoverflow grants those people who give the best questions and the best 

answers with points, badges and tags.  

 6.1.2 FOUNDATIONS OF GAMIFICATION 

Game mechanics is not a goose with golden eggs and cannot solve fundamental business 

problems such as poor infrastructure or a bad customer service. Certainly, if an application 

includes the basic principles of Gamification then it contains a solid base to build and gain from 

its benefits. Gamification techniques contain the following basic rules: 

Fun is the most important factor of gamification techniques. It is not so significant to base on an 

extraordinary idea to build a successful and fun game. The last five years, some of the most 

popular games have used very simple ideas as the main concept of the game case. One example 

is Farm Ville which involves various aspects of farm management in its gameplay. The player 

needs to do the basic actions of a real farmer such as planting and harvesting crops and trees in a 

daily basis to see his farm grow.    

 

 

Figure 6-1: Farm Ville 

 



96 

 

Loyalty is a key factor to grow your reputation [83]. In the 19th century in America local 

merchants used the 10:1 model to persuade the people which arrived in town to buy their 

products. An example of this model is when someone wants to buy 10 potatoes then the next 

potato will be with no charge. This is a very effective model and even today huge percentages 

(about 95%) of loyalty programs use it. A game such as FarmVille will not use such a loyalty 

program for offering real-world prizes but it will use its status to track loyalty customers.  Zynka, 

the company behind Farm Ville uses word of mouth as a marketing technique to grow its 

reputation. The tools used to accomplish this are with social networking sites such as facebook 

and twitter. The players of Farm Ville in order to maximize their reputation and to win social 

rewards post about the game or invite other people to join it. This method expresses a loyalty to 

the game without the player even realizing it. Loyalty is no more than a discussion between two 

people in the back-yard of a house but if it is public then millions of people an view it and 

participate.   

“SAPS” [83] is an acronym which refers to a reward system or a list of rewards for engaging 

players. The sequence of letters symbolizes the importance of each reward method.  

1) S for Status. Status is a relative position of a player in relation to other players. It uses badges 

and leaderboards to present the actual position of the player. Badges usually are status items and 

are presented to the other players virtually or physically.  

2) A for Access. Access to information, objects or items that others players don‟t have. For 

example dinner with the CEO or giving priority to a VIP seat.   

3) P for Power. Give the power to a player to control other players in the game. This motivation 

gives extra responsibility to the player to spend more time on the game.  

4) S for Stuff.  Although, stuff is last in the list it can be a very strong incentive. The expectation 

of giving great or free items can motivate the side of the player. The redemption stage is an 

important factor for stuff. When the item is given away then the engagement is reduced until the 

next one will come.      

 

     



97 

 

 6.1.3 THE IDEA OF FLOW 

The success of a game is relative with the idea of flow.  In psychology, flow is a mental 

state of an operation in which a person or a player in our case is fully focused and enjoined in the 

process of activity or game.  The psychology professor Mihaly Csikszentmihalyi who is noted 

for his studies of happiness and creativity is the creator of flow. The idea of flow is explained as 

the zone between anxiety and boredom. According to Csikszentmihalyi, flow is completely 

focused motivation. Transporting the idea of flow in computer games, it is easily understood that 

keeping the player in the flow state is the key to success. So, the game designer has to design the 

right environment to keep the player focused and simultaneously in an enjoinment stage to guide 

him into the prized state of flow. Namely to successfully achieve the point between anxiety and 

boredom. Flow is directly related with a huge spectrum of psychological phenomena, thus the 

guiding to get a player to master the game is the reinforcement.  

Reinforcement has several forms. Fixed-interval reinforcement is a classic form that it is 

widely used to industrial era jobs. For example workers get paid every two weeks. In the interval 

between the two weeks workers will do only the job to get paid and nothing more. So, the fixed-

interval reinforcement gives limited level of engagement. On the other hand, there is variable 

schedule reinforcement which doesn‟t have a fixed type of rewards either in time or size. 

Gambling and slot games use this type of reinforcement.      

 

 

Figure 6-2: The state of flow is achieved when a player is placed between anxiety and 

boredom over a period of time 

http://en.wikipedia.org/wiki/Motivation


98 

 

 6.1.4 TYPES OF PLAYER 

 

The role of the player can be different according to the scope of the game. Richard Bartle has 

separated players in four types [83,88]: Explorers, Achievers, Killers and Socializers.   

Explorers: The explorers will travel around the game maps and will try to find items or 

unlock hidden stages. A characteristic paradigm was Super Mario in which the player needs to 

play each stage many times to find every hidden level.  

Achievers: The achievers want to win and achieve in an integral part of a competitive game. 

They are a special type of player because it is difficult to develop a system with all the players‟ 

winners.  Usually, achievers when losing at the game lose their interest and give it up. 

Socializers: The socializers play the games with an ultimate purpose to have social 

interactions. Mostly, games that are for socializers are classic games like dominoes, poker and 

mahjong. Of course, they want to win but if not it is not the end of the world.  

Killers:  The killers look like achievers but with the difference that they want to win and 

someone else to lose. They are also known as “griefers” and they constitute the smallest 

population of the players.   

 6.1.5 GAMIFICATION CASE STUDIES 

 

In the previous subchapters we talked in general about gamification, foundations of 

gamification, and player‟s motivation. In this subchapter we will refer to some successful cases 

with global acceptance and success which use game mechanic techniques and went from theory 

to practice.  

 NIKE PLUS: MAKING FITNESS FUN 

Nike has built a running game to motivate users for a healthier lifestyle [84]. It uses 

sophisticated game mechanics to encourage users to join and extend their personal fitness 

program. Nike has several wins from the specific game. It boosts the brand loyalty and naturally 

sells more sporting equipment. The game is social and tries to attract a large number of runners 

which can buy Nike products.   



99 

 

The application is a simple pedometer which track the time and the distance of every run. 

The routes are recorded and then put on a leaderboard. In the beginning the leaderboard is 

personal and contains the individual routes of the player. The new user plays against him and 

tries to make better times. As the player starts exploring the application new games are presented 

and then he can compete with other social runners in a public leaderboard. The application is 

connected with Facebook and when a runner starts a new run they can post a notice to their 

Facebook friends to ask them to join the run. The fun part of the application is that when 

someone likes the post then the player listens to a crowd cheering as in-run feedback. This is an 

excellent engagement for the player to continue the run. Also, the application contains secret 

encouragement feedback from famous runners such as Lance Armstrong and Tracy Morgan 

adding a variable reinforcement touch. Finally, the routes of every player are presented into 

beautiful “heat” maps where you can see fast and slow running.  

 

 YAHOO! GAMIFIES QUESTIONS 

Yahoo uses another approach of gamification and usage pattern to create a community of 

players who will share their knowledge from a system of asking and answering questions.  

Yahoo vision was launched in 2005 and it would gain huge success. Google had presented a 

similar project with the name Google Answers with a far less social pay-for-answers model but it 

was closed down after a while. The scope of Yahoo was to create a system which will drive the 

behavior of the player to answering questions, voting, and having his answer voted as a Best 

Answer. The system contains several types of rewards for those who give the best answers. 

Unique powers, present the user as featured on the main page and showing avatars with 

positioned scores are some of the Yahoo rewards. This kind of motivation was so strong that it 

created a very dedicated community that was driven to ask and answer endless questions.   

Going deeper into Yahoo! Answers, it is understood that the reward is not based only in 

the best answer, but in high-volume participation. Winning the Best Answer game was difficult 

and needed a lot of time so high-volume participation was also awarded with lots of points.  

Figure 6.3 shows the answer-question of Yahoo! Answers.  

 



100 

 

 

Figure 6-3: Yahoo! Answers experience point system 

 6.1.6 GAMIFICATION IN CROWDSENSING 

 

Gamification has several applications in the field of Crowdsensing. The Crowdsensing 

developers are using gamification techniques in web and mobile applications as a means to 

engage the users to use the applications.  There are several ways to succeed gathering sensor data 

using gamification. One way is during the use of the games to create a mechanism which will 

gather data in background without any interruption from the user.   Another way is to create a 

gamificating process and through it to collect the sensor data.  

The author of [81] had created two gamification applications to overpass the boredom of the 

user when they are using a passive application or doing repetitive tasks. He presents an approach 

for gathering noise pollution data by using mobile applications. The first application is the 

NoiseBattle in which the player takes the role of the Achiever. The main scope is to conquer 

areas and winning points by sending noises to the enemies. Noise Battle has in great status the 

competition factor in order to make the achievements more pleasurable. The second application 

is the NoiseQuest where the player takes the role of the explorer. The scope of the application is 

to walk around the town and take measurements. It is more important to take measurements from 

different places than the total score achieved from the observations. Competition isn‟t so serious 

as in NoiseBattle.     

Another paradigm of gamification in Crowdsensing is present in [80]. In [80] they propose a 

model architecture to solve the problem of coverage of unpopular regions from an area. They 



101 

 

designed a first person shooter sensing game “Alien vs. Mobile User” which provides strong 

incentives to the players to cover all the regions of a specific area. The main scope is to collect 

WiFi data (BSSID, SSID, Frequency and Signal strength) to create a campus WiFi coverage 

map. In more detail the game collects WiFi signal data to provide indoor localization by 

engaging the player to find indoor aliens. When aliens are getting close to the player then an alert 

informs them of their presence. The player must start to shoot the alien with the game buttons. If 

the alien is hit two times then it will escape to another location. The player needs to find it and 

hit them a third time. The game motivation is doable: 1) Provide an exciting real-world 

experience and 2) Players can learn useful information about the WiFi coverage map.  

 

 6.1.7 NOISE POLLUTION PUZZLES 

In our thesis we use gamification techniques to motivate the user to extend the time of 

using the Crowdsensing application. We embedded a HTML5 game puzzle in the user profile of 

the client application.  The client has a list with 10 different puzzles to solve. Puzzles have a 

scalable level of difficulty from 1 to 10. The player needs to solve the first puzzle to move on to 

the second and it continues accordingly. Figure 6.4 shows the first puzzle that needs to be solved 

to pass the initial stage.  

 

Figure 6-4: Noise pollution puzzle 

When the player solves a puzzle he gets the appropriate points. The points are added in 

the player‟s profile which keeps the total player‟s score. The user can compare his score with the 



102 

 

this of other users in the leaderboard. The leaderboard shows the 10 top players with the best 

score.  We are using a HTML5 Game framework from [167]. It is loaded in the client component 

as an iframe. In addition, we have included some .js scripts for calculating scores and storing the 

highest scores and stages in the users‟ collection. 

 

 

Figure 6-5: Player leaderboard 

 

 

 

 

 

 

 

 

 

 

 

https://codeload.github.com/edse/puzzle/zip/master


103 

 

CHAPTER 7: EVALUATION  

 7.1 OVERVIEW OF PERFORMANCE & BENCHMARK TESTS  

The evaluation and performance tests are divided in two categories. In the first set of 

measurements we evaluate the performance of our platform under various wireless access 

technologies (e.g. Wifi, 2G, 3G) in terms of latency. In particular, we measure the latency 

involved in the performance of several tasks such as: 1) the appearance of the marker from a 

client-login to the visitors‟ page, 2) the delay between the uploading of data to the server and 

their visualization on a dynamic map, 3) elapsed time to visualize data in the historical map, 

charts and averages, 4) the time to retrieve data from the collection API.  

In the second part of evaluation tests, we create a test bed to compare the current database 

of meteor (Mongo DB) with 2 others databases, MySQL and Redis. In more specific, we 

benchmarking the 3 databases to evaluate their differences into fundamental operations such as 

read and write. In this context, we keep the database size stable and are conducting 6 

performance tests: Data insertion test, Data reading test, Data reading with sorting test, Data 

searching test, Data removing test and Data aggregation test.   

 7.2 EVALUATION TEST OF PLATFORM TASKS  

The purpose of making the performance tests is to identify how fast our platform services 

are delivered to the visitors‟ page under various conditions (i.e. different wireless network 

technologies, or transferred data sizes). In order to have reliable results we repeat each test 15 

times and write down the average latency value. The majority of our tests concern the tier 

between visitors‟ page and server. Only our marker-display test concerns the wholeness of our 

architecture i.e. the tree tiers: client, server and visitor.   

The tool that helps us to complete the elapsed time tests is the “new Date()” function of 

Javascript.  The “new Date()”returns a data object in the following form: Tue Mar 10 2015 

00:03:44 GMT+0200 (Χειμερινή ώρα GTB). When it is specified as current time a new date() 

minus zero, it responds with the Unix timestamp format of the time.  The format of Unix 

Timestamp has the following structure 1421091697521.  It is a big number in seconds which 

counts the time from the 1
st
 January of 1970. Hence, specifying a second new date() function at 



104 

 

the end of each test and abstracting the first timestamp from the second, we can calculate the 

duration of each experiment.  

In order to emulate different wireless network technologies at the tier between client and 

server or between visitors and server, we used a proxy server between the client and the server. 

We emulate 2G, 3G and wifi network via the proxy server. The proxy server that we used is the 

WinGate, version 8.2.5 [173]. The proxy server acts as an intermediary between the endpoint 

device, in our case the computer, and another server from which the client is requesting the 

service. It provides us with options to adjust the link bandwidth in our network to the one we 

wish. In the bandwidth control panel we can set up the restrictions for our network.  

 

Marker test 

In the marker test we measure the time that our system needs to display a marker in the 

visitors‟ live map following the login of a client in our system. To be more precise we measure 

the time from the moment that the client grants the client application with the right to read his 

sensor data, pushing the OK button, until a marker associated with his presence is displayed in 

the live map of our system (both at client and visitors‟ page). Below is the process schema that 

we follow:    

The client user presses the button  the Client application sends the noise level data to 

the database (every 1000ms)  the Geocoding job updates the data collection  the Data 

aggregation job inserts the data into the live user collection  the Client application updates the 

live map (every 1000ms). 

 Code used: 

On Client application 

insert "new Date()-0" as attribute “user” into collection “sensor” 

  

On Visitor application  

if(parseInt(res[k].user)>142108320){ 

     var datenow=new Date()-0; 

     console.log("created: "+res[k].user+";      

 displayed:"+datenow+"; difference:"+(datenow-   

 parseInt(res[k].user))+"ms"); 

   } 



105 

 

where “res[k]” is the data for each point 

  

The final result is the difference between the two timestamps. The first timestamp is created 

when the data is sent to the database and the second when the marker is displayed in the google 

map.  

"created: 1421091697521; displayed:1421091698956; difference:1435ms" 

 

Figure 7.1 shows the results of the marker test. The test conducted assuming three different 

wireless technologies between client and server: Wi-Fi (4Mbps), 2G (250kbps) and 3G 

(750kbps). As it is depicted in figure 7.1 the difference between the 3 access technologies is 

small. Wi-Fi is the fastest one (1700ms), 3G is second (2200ms) and 2G follows with 2400ms. 

The small difference between these measurements denotes that most of the elapsed time is 

consumed in data processing than in transmission or propagation. 

 

 

Figure 7-1: Marker test results 

 

 

Dynamic map test 



106 

 

In the dynamic map test we measure the time elapses between the moment the user 

presses the button to upload a bundle of sensor data to the server until the time they are displayed 

in our dynamic map (visitors‟ page).  To this end, we make as samples 4 different JSON files of 

different size. The structure of the JSON file has similar structure as our sensor data. It contains 

4 fields, two with coordinates, one with time (in Unix timestamp format) and one with noise 

value. The tested samples are of 12, 24, 36, 48 and 96 KB. Figure 7.2 shows the results of the 

dynamic map test. As we see in the Figure the system takes more time to display the data when 

the size of the document is bigger. Below is a sample of the code used to take this performance 

test. This code is also used to the other tests that will be presented hereafter.  

 

Code used: 

On Visitor application  

on click of the file upload button 

   datenow=new Date()-0; 

after displaying the heatmap 

   console.log((new Date()-0)-datenow); 

  

 

Figure 7-2: Dynamic map results 

 
 
 

Access Data API test 



107 

 

In the Access Data API test we measure the time that our system needs to return the 

requesting JSON objects from the database. We perform 3 queries via the API with different 

parameters. The first query returns 10 objects, the second 100 and the third 500 objects. Figure 

7.2 shows the results of the API test. As we see in the chart, the response time of our system for 

10,100 and 500 objects is 15ms, 30ms and 80 ms, respectively.  

 

Figure 7-3: Collection API results 

 

Country, locality, averages charts and historical map test 

In the country charts test we measure the time that take our graphs to be displayed in the 

visitors‟ page. The specific test was conducted on the 31th of January and the total number of 

countries that were displayed that day in the visitors‟ page was twelve. Figure 7.4 shows the 

results of the country charts test. We repeated the test for three different wireless access 

technologies: Wi-Fi (4 Mbps), 2G-GPRS (250 kbps) and 3G (750 kbps). As it is depicted in 

Figure 7.4, a Wi-Fi connection takes less time to display the charts than the other two 

technologies. The Wi-Fi connection takes 2745 ms to conclude, with 2G and 3G to take almost 

the same times, 2842 ms and 2840 ms respectively.    

 



108 

 

 

Figure 7-4: Country charts results 

 

Similar tests with country charts were made with the country averages charts. The 

specific test was also conducted on the 31th of January and the total number of countries that 

were displayed in the visitors‟ page was sixty-four. Figure 7.5 shows the results of the country 

averages charts test. As it is depicted, the Wi-Fi connection takes the less time to display the 

charts with small difference from the 3G connection. The slowest connection is 2G.   

 

 

Figure 7-5: Country averages results 



109 

 

Locality charts test was conducted on the 31th of January and the total number of 

localities that were displayed in the visitors‟ page was ten. We take as an example localities of 

Greece. Figure 7.6 shows the results of the locality charts test. As it is depicted, the Wi-Fi 

connection takes the less time to display the charts. The other two connections 2G and 3G had 

similar times for the specific charts.   

 

 

Figure 7-6: Locality charts 

 
The last test conducted with the historical map. Figure 7.7 shows the results of the historical map 

test. As it is depicted, the Wi-Fi connection takes less time to display the historical map than the 

other two wireless connections 3G and 2G. The difference between Wi-Fi and 3G is less than the 

one between Wi-Fi and 2G. 

 

Figure 7-7: Historical map results 



110 

 

  

 7.3 DATABASE – CENTRIC APPROACH   

Crowdsensing applications can be regularly established with one of the following 3 

models: Remote procedure calls (RPC), publish/Subscribe and database-centric approach. Our 

platform is based on the third approach, the database-centric. Database-centric is a software 

architecture where a database plays critical role to all the procedures that take place inside the 

application. It is the most preferred solution when the application has to do with big data. 

Generally, a database can provide fault tolerant and reliable transactions. In this benchmark we 

compare two kind of databases: SQL (MySQL) and NoSQL (MongoDB, Redis).  

 

 7.3.1 NOSQL VS SQL 

SQL (Structured Query Language) was developed in the 1970s by IBM and since then has 

become the standard query language for Relational DataBase Management Systems (RDBMS). 

Databases that belong to SQL category are MySQL, Oracle and SQLServer. They have slightly 

different syntaxes but there is not required any significant change when switching from one such 

system to another. A RDBMS is organized into relations between entities, each of which is 

represented by a table consisting of rows and columns. The header of the table consists of the list 

of the columns and the body of the table consists of the rows. RDMS are based in the key 

concept, which is used to order data or map data to relations. The most important key of a table 

is the primary key which uniquely identifies the rows of the table. A SQL uses the CRUID tasks 

to access database entries. The initials CRUD is referred to: Creating, Reading, Updating and 

Deleting data. SQL databases [132] are used for low-volume and low-velocity data such as 

customer data and billing. 

 

- Pros: Follow ACID (Atomicity, Consistency, Isolation, Durability) rules, Data integrity, 

data reliability  

- Cons: Scaling problem with growing data volume and workload demands.  

 

NoSQL (not only SQL) is another type of DBMS that can be used on the cloud.  NoSQL, 

refers to an well-known group of non-relational database management systems; where databases 



111 

 

are not built primarily on tables, and generally do not use SQL for data manipulation [132]. The 

NoSQL database is the generation of DBMS which have as scope to eliminate the weak points of 

relational databases. There are many types of NoSQL databases, such as documents, graph, key-

value pairs and column family. All types have as common, that are non-relational. NoSQL deals 

with data that are more flexible or need a simpler structure. They don‟t have limitations on data 

structure, allowing nested documents or multi-dimensional arrays. Also, are meant to be schema-

free and suitable to store data that is simple, schema-less or object-oriented. Primary Uses of 

NoSQL Database are [130]:  

 

 (1) Large-scale data processing 

 (2) Basic machine-to-machine information look-up & retrieval 

 (3) Exploratory analytics on semi-structured data  

 (4) Large volume data storage. 

 

Table 8.1 summarizes the main differences between general SQL databases and NoSQL 

databases. 

 

Table 7.1: SQL vs NoSQL 

SQL NoSQL 

Relational model Non-relational data (schema-less, unstructured,simpler) 

Tables Key-value, document, graph, column family stores 

ACID BASE 

Consistency Availability, Performance 

Single server Cluster of servers (Horizontal scalability) 

SQL query Simpler and different API 

 

 

 

 

 



112 

 

 7.3.2 NOSQL CATEGORIES 

NoSQL databases can be classified into four major categories: Key-Value stores, 

document stores, column Family stores and graph databases. In this section we will analyze Key-

Value stores and document stores because we use databases that belong to these categories.  

 

Key-Value stores 

Key-value stores are the simplest type of NoSQL databases. They store data in pairs of 

key and value. The value is a block of data that have any type and any structure.  They don‟t 

need any schema to be defined and let the user to define the semantics for the values and how to 

parse the data. They are easy to build and scale and they have good performance. The basic API 

to have access to the data are: 1) put (key, value), 2) get (key) and remove (key). Redis belongs 

to the type of key-value store databases.  

 

Document stores 

A document store database uses a database as a collection of documents. It is one step 

higher than key/value stores. Every document consists of various named fields and one of them 

is the unique documentID.  Document databases are schema free. The data can be of any 

structure and different among documents. The data types allowed for use vary from strings, 

numbers, and dates to more complex ones such as trees, dictionaries, or nested documents. The 

output format can be JSON, BSON or XML. This is a characteristic that makes document stores 

databases very popular to developers because the server can support not only simple key-value 

lookup but also queries on the document contents. MongoDB belongs to the type of document 

store databases. 

 7.3.3 OVERVIEW OF TESTED DATABASES 

In this section we describe the characteristics of the 3 databases that we use in our 

benchmark: MySQL, MongoDB and Redis. We analyze the theoretical approach of those 

databases and we also underline the main functionalities that each supports.  

 

 

 



113 

 

MySQL 

MySQL belong to the category of SQL databases and it is the most popular in business 

industry. It is owned by Oracle. Many famous applications use SQL such as Facebook, Lindedln, 

Google and Twitter. MySQL is a relational database and organizes its data into tables, rows and 

columns. For accessing data it uses SQL statements. The basic statements are: INSERT, 

SELECT, UPDATE and DELETE. There are also others functionalities such as join, group by 

and views.  

 

Buffering and caching  

MySQL supports a variety of storage engines with different characteristics to manipulate 

data. The default storage engine is the InnoDB after the version 5.5. It is ACID compliant and 

supports various kinds of transactions such as commit, roll back and crash-recovery.  For caching 

data in memory it uses a pool buffer. Pool buffer is a linked list of pages, keeping heavily 

accessed data at the head of the list by using a variation of the least recently used (LRU) 

algorithm.  

 

MongoDB 

MongoDB belongs to the category of document store - NoSQL databases. It has been 

developed by 10gen and written in C++. It is the most famous No-SQL database and well-known 

applications such as foursquare use it. Its main characteristic is scalability and speed, so it is 

suitable to work with large amount of data. The structure of its data has flexible schema. The 

database itself contains multiple collections and every collection contains multiple documents. 

Data is stored in BSON format, which is a binary-encoded format of JSON. BSON objects are 

lightweight, traversable and efficient, so they are very fast in encode and decode operations. 

Every object contains a unique id that the system automatically adds it to the object if the user 

doesn‟t assign it. In figure 7.8 we can see the structure of the Object_id.  

 

 

Figure 7-8: MongoDB object_id 



114 

 

 

In the field of querying, MongoDB has a very large set of available queries and user doesn‟t need 

to write MapReduce functions. Mongo shell is the MongoDB client that communicates with the 

database from a command line. The commands to query the database are insert, find, update, and 

remove. MapReduce operations and a simple aggregation framework are responsive to the 

aggregations tasks. 

Redis  

Redis belongs to the category of in-memory key-value store - NoSQL databases. It is 

considered as a very fast database due to the in-memory storage. It offers high performance and 

more flexibility than a usual key-value database. A database in Redis is characterized by 

dictionaries that are pairs of keys and values. Redis offers a lot of choices for data structure. Data 

can be stored in: String, list of strings, set of strings, sorted set of strings and a hash. Every data 

structure has its own set of commands. 

Redis store data in RAM in order to achieve high performance. Sometimes, this is a 

drawback because RAM can be used by others applications or services. Redis can also store data 

in disks. It uses three methods for data persistence: append-only file, snapshots and a 

combination of both.  Snapshots save a dataset periodically when a number of keys is changed. 

On the other hand, append-only file logs all the write operations.  

 

 7.4 TEST BED OF DATABASES  

 7.4.1 EXPERIMENTAL METHODOLOGY AND SETUP  

In this section, we will describe the methodology used to evaluate the performance of 3 

databases: MySQL, MongoDB and Redis, when deployed in our platform. For each experiment 

that was conducted, we will describe the benchmark functions and commands, the procedure and 

the final results. 

 7.4.2 EXPERIMENTAL OVERVIEW  

The main goal of these tests was to compare the performance of MongoDB, the default 

database of Meteor, with two other databases Mysql and Redis. The databases were implemented 

in the cloud server of our platform and the benchmark is considered to be a database benchmark 



115 

 

over sensor data.  The benchmark architecture also includes 3 different database clients, one for 

each database implementation. The benchmark performs basic read, write, search and remove 

operations and some more advanced, such as search with sorting and aggregation. Each database 

is evaluated and tested separately, meaning that only one test is running upon time for the current 

database. Every test comprises a series of requests, such as read and write, from server to 

database. We set a database client in the server side of the application. In the following sections 

we will analyze each test separately. The performance of the databases is evaluated by measuring 

the elapsed time for each request to conclude. Measurements for each test are taken multiple 

times in order to maintain reliability.  Specifically, the values illustrated in the charts that follow 

have been derived from the average value of a 10-times run of each test. This is a safe way to 

ensure that the underlying network will not alter the results.  

 7.4.3 TEST-BED ENVIRONMENT 

The whole benchmark was implemented in the server side of our Meteor platform. The 

server was deployed on a virtual machine instance running 64-bit Ubuntu 14.14 on a 

Digitalocean instance (droplet) (1 GB memory, 30 GB SSD Disk). The Database editions that we 

tested are MySQL 5.6.10, MongoDB 2.6.7 and Redis 2.8.9. In order to connect and interact with 

the database servers, the following libraries and drivers were used for the implementation of the 

database clients:   

 

• MySQL: numtel: mysql, [171] 

• MongoDB: native Meteor driver  

• Redis: slava:redis-livedata [172] 

 

In the case of Redis we needed to run a Redis server and a url to connect to it. This is because 

Redis is not yet shipped with Meteor. Hence, the following command is needed to be passed in 

the server in order to start the Redis server: 

REDIS_CONFIGURE_KEYSPACE_NOTIFICATIONS=1.  

 

 

 



116 

 

 7.4.4 BENCHMARK IMPLEMENTATION 

The scope of the benchmark was to run various common operations for databases and 

record their performance upon big data from sensors. All tests were made on the server side of 

our middleware platform (located in the cloud). The benchmark comprises 6 separate tests: data 

insertion test, data reading test, data reading with sorting, data searching, data removal and data 

aggregation. The visitor of the client page of our platform can easily run the benchmark test by 

the administrator page we have created. The benchmark test‟s architecture is shown in Figure 

7.9. 

 

Figure 7-9: Benchmark architecture 

 

All tests are the same for every database. In every test we feed the database with a certain 

number of documents, namely 10, 100, 500, 1000 and 2000. The scope is to measure the time 

that elapses between the submission of the query and the time we get the result from the 

database. We are getting start time upon the submission of the query from the server to the 

database and we obtain the difference with the timestamp upon the receipt of the results by the 

server. After that, the server method returns the difference in milliseconds to the client-side 

function, which displays it. All the tests include a remove and insert method for data. In every 



117 

 

test we start from scratch and this is the reason that it takes some time to proceed.  So, for every 

test, we have two constants:  

 

• The data have the same structure for all records. 

• The database collection has not data when we start the tests. 

  

We run the administrator page from the client side of the Meteor platform. The benchmark 

command enables the query at the server side and then the benchmark process starts. To start the 

administrator page and run the benchmark tests we need to configure the url of MongoDB driver 

and enable keyspace notifications for Redis:  

 

1) MONGO_URL=mongodb://localhost:27017/noiseserver  

2) REDIS_CONFIGURE_KEYSPACE_NOTIFICATIONS=1 

3) ROOT_URL=http://html5platform.tk:3400 meteor --port 3400 

 7.4.5 DATA STRUCTURE  

The common data structure for all records is shown in Table 8.2. Each document has 

exactly the same structure as the one we obtain from the client application. It has four numbers 

and one string. The first two numbers represent the location‟s latitude and longitude and their 

values derive from a number array with 10 pairs of coordinates.  The third number contains the 

date in unix format and the forth contains the sensor data. Finally, the string represents the 

locality and it is fed from an array of 10 localities.  

 

Table 7.2: Sensor data structure 

Name Type Example 

Lat Double 32.8133112 

Lng Double 4.1426565 

locality String New York City 

Hour Double 1422012856380 

Noise Double 30.5 

Table 7.2: Sensor data structure 



118 

 

 

 7.4.6 EXPERIMENTAL RESULTS  

In this section, we report the results of all the tests conducted. Figures 7.11 – 7.16   

display the charts with the measurements in each category. Figure 7.10 shows the administrator 

page of the benchmark test. Although NoSQL databases claim that they deliver faster 

performance with big data than classic RDBMS databases, we reach to the conclusion that 

MySQL has better performance in our tests. Also, MongoDB, the default database of Meteor, has 

very good response time in comparison to Redis. However, Redis is not fully supported yet in 

Meteor. Redis in Meteor does not support documents so it makes for each part of the document 

one record. In case Redis was fully supported, it would definitely perform much better.  

 

 

Figure 7-10: Administrator page 

 

A general outcome from the results is that all databases (MySQL, Mongo and Redis) 

have almost equal response time in case of small number of entries but when this number 

increases, MySQL and Mongo perform significantly better than Redis. It is worth noting, here, 

that the initial thought of Meteor developers was to use MySQL as the default database when 

they started to create Meteor. The reason for choosing Mongo, finally, was that it is consistent 

with Javascript and the Meteor developers was familiarized with it.  



119 

 

 All the tests of the benchmark work with the same way: We are getting the start time at 

the beginning of each procedure and obtaining the difference with current timestamp at the end. 

When the procedure is over, the server returns the difference in millisecond. The result denotes 

server time, since the server sends the query to the database and gets the results back.  

 

Insertion test 

Every time we run the benchmark test for a database we consider 5 cases, each with 10, 

100, 500, 1000 and 2000 documents, respectively. All tests have the same structure when they 

start. As we described above, we take some precautions in order to have the same characteristics 

for every database. When the user presses the button to make a query, we at first remove all the 

documents from the database and then we insert the necessary documents. Just before the 

insertion procedure we keep the starting time. When the insertion procedure ends we keep the 

ending time and we abstract it from the starting time.  

 

insertMongoFunc: function(){ 

        var time=[];  //time =[1,10,50,100,200]; 

        for(var i=0;i<times.length;i++){ // array with length 5 

            var startTime=insertIntoMongo(times[i]); // taking the ending time  

            time[i]=new Date()-startTime;// abstract ending to starting time 

        } 

        return time; 

    }, 

 

insertIntoMongo = function(n){ 

    testCollection.remove({}); //remove all the records  

    var startTime=new Date()-0; // create the starting time 

    for (var i=0;i<n;i++) 

    { 

        for (var k=0;k<coords.length;k++) 

        { 

            var doc={ 



120 

 

                lat: coords[k].lat, 

                lng: coords[k].lng, 

                locality: locations[k], 

                hour: 1422012856380, 

                noise: k*10 

            } 

            testCollection.insert(doc); 

        } 

    } 

    return startTime; 

} 

 

Figure 7.11 shows the results from the insertion test. MySQL and Mongo has very close 

response times in almost all cases except for 2000 documents. On the other hand, Redis has 

satisfactory times until the insertion of 1000 documents but in case of 2000 its performance falls 

in very low values.   

 
 

Figure 7-11: Insertion test 

 

 



121 

 

Reading test 

As we refered above, we also have 5 cases for the insertion of documents. Also, we take 

the same precautions with insertion test. In fact, hereafter we will have a removing and insertion 

operation exactly before the starting of the main test. When the insertion job finishes we keep the 

finishing time. The abstraction of insertion finishing time with the reading finishing time gives 

us the desired reading time.   

 

Before the reading procedure there is an insertion procedure  

readMongoFunc: function(){ 

        var time=[]; 

        for(var i=0;i<times.length;i++){ 

            insertIntoMongo(times[i]); 

            var startTime=new Date()-0; 

            testCollection.find({}).fetch(); //reading command  

            time[i]=new Date()-startTime; 

        } 

        return time; 

 

 

Figure 7.12 shows the results from the reading test. MySQL has a clear superiority 

against Mongo and Redis.  



122 

 

 
Figure 7-12: Reading test 

 

 

Reading with sorting test 

The "read with sorting" test is the same with the reading one with just ordering of the 

results in the returned recordset. Recordset is descendingly sorted by the "locality" field. For 

Mysql we use "order by" command and for Mongo we use "sort". There is no ordering support in 

Redis driver for the moment. 

 

Before reading with sorting procedure there is an insertion procedure  

readSortedMongoFunc: function(){ 

        var time=[]; 

        for(var i=0;i<times.length;i++){ 

            insertIntoMongo(times[i]); 

            var startTime=new Date()-0; 

            testCollection.find({},{sort:{locality:-1}}).fetch(); 

            time[i]=new Date()-startTime; 

        } 

        return time; 

    } 



123 

 

 

Figure 7.13 shows the results from reading test. MySQL has a clear superiority against 

Mongo in large number of documents. When the procedure starts both databases have similar 

response times.  

 
Figure 7-13: Reading with sorting 

 

Searching test 

In searching test we search the database by locality “Manila”.  Figure 7.14 shows the 

results of searching test. MySQL along with Mongo has almost equal times. An important notice 

is that both MySQL and Mongo has the same performance for almost all the procedure. On the 

other hand, Redis has the same rate with the other two databases until the last set of documents. 

The searching time rises from 5ms to 324ms when redis searches between 2000 documents. We 

also tested Redis in searching on more than 2000 documents and the additional time was 

disappointing.  

Before searching there is an insertion procedure  

searchMongoFunc: function(){ 

        var time=[]; 

        for(var i=0;i<times.length;i++){ 

            insertIntoMongo(times[i]); 



124 

 

            var startTime=new Date()-0; 

            testCollection.find({locality:"Manila"}).fetch(); 

            time[i]=new Date()-startTime; 

        } 

        return time; 

 

 
Figure 7-14: Searching test 

 

Removing test 

In removing test, MySQL is also the dominant database and Mongo the second. For one 

more time Redis comes third. All databases have close times which sometimes are equal. For 

1000 documents both MySQL and Redis need 6ms to finish the test. Mongo is 1 ms faster.  

Figure 7.15 illustrates our results. 

 

Before removing procedure there is an insertion procedure  

removeMongoFunc: function(){ 

        var time=[]; 

        for(var i=0;i<times.length;i++){ 

            insertIntoMongo(times[i]); 

            var startTime=new Date()-0; 



125 

 

            testCollection.remove(); 

            time[i]=new Date()-startTime; 

        } 

        return time; 

    } 

 

 
Figure 7-15: Removing test 

 

Aggregation test 

The last test is the aggregation test. MySQL and Mongo were tested in aggregation 

procedure. By the time we made the tests there was not support for aggregation in Redis.  For 

aggregation we used the "group by" command in Mysql and the meteorhacks:aggregate library in 

Mongo. At first we group by locality and then we summarize the results of each group. Finally 

we find the average value for each group. The aggregation pipeline provides an alternative 

to map-reduce and may be the preferred solution for aggregation tasks where the complexity of 

map-reduce may be unwarranted. Figure 7.16 shows the results of aggregation test. One more 

time MySQL has better times than Mongo. In both databases it takes more time to aggregate 

small datasets than large ones.  

 

 

http://docs.mongodb.org/manual/reference/glossary/#term-map-reduce


126 

 

Before aggregation procedure there is an insertion procedure  

aggregateMongoFunc: function(){ 

        var time=[]; 

        for(var i=0;i<times.length;i++){ 

            insertIntoMongo(times[i]); 

            var startTime=new Date()-0; 

            var pipeline = [ 

                { 

                    $group: { 

                        _id: {locality: "$locality"}, 

                        total: {$sum: 1} 

                    } 

                } 

            ]; 

            var avgResult = testCollection.aggregate(pipeline); 

            time[i]=new Date()-startTime; 

        } 

        return time; 

    } 

 

 

 
Figure 7-16: Aggregation test 

 



127 

 

CHAPTER 8: CONCLUSION & FUTURE WORK 

In this thesis we created a web middleware platform which is interfaced with the real 

world through various mobile sensors. HTML5 gives the capability to the developers to interact 

with mobile and desktop sensors with a web manner. HTML5 sensor APIs offer access to the 

device hardware with only some lines of Javascript code. Hence, the fundamental functionality 

of the platform is to gather, process and visualize the initial information that acquires from the 

device sensors. The scope of the platform is to group and graphically present the retrieved data 

following statistical processing. The uniquely of the platform is that it solely uses HTML5 APIs 

to deliver real-time sensors data to the end users. Google maps and rich-interactive charts are 

some of the visualization ways that apply. The platform has more advanced capabilities such as a 

collecting and accessing API which integrates with the database. All these web services are 

offered to the end users via a 3
rd

 party component.   

The sensor data are a very important source of information. An appropriate analysis can 

offer a better understanding of the environment that surrounds us.  Hence, a real-time analysis 

based on the events from sensors can be a serious help for urban community. Of course, raw 

sensor data are just numbers. It needs to process, analyze and store the information in some form 

with human value for future use. A graph or an aggregation can offer multi- information.   

Our middleware platform is an intergraded solution for Internet of Things equipment 

offering services from its components for gathering sensor data along with statistical and 

visualization services. It contains 3 separated application layers: Presentation layer (split in two 

parts: Client and 3
rd

 party page), logic layer and database layer.  Each part has its own logic 

which is built in a separate environment following the generic principles of multi-tier software 

engineering architectures. The components communicate and share data between them with 

state-of-the-art bidirectional communication protocols such as websockets. The platform also 

contains an application server, namely the Meteor, which acts as a synchronization layer that 

keeps client and server databases up to date. Although the client part of platform has been built 

for users equipped with mobile devices, it can be easily extended to also include devices of any 

size equipped with ambient and GPS sensors. The only software requirement from such IoT 

devices is to support HTTP for the transmission of sensor data to our server.      



128 

 

 As we refer above, the purpose of the platform is to transfer sensor data from clients to 

visitors in a real-time manner. For that reason we evaluate the response time of the platform by 

doing performance tests in various tasks. Performance tests measure the time it takes for 

delivering sensor data from the initial component (client) to the destination component (visitor). 

Also, we measure the time it takes for the visitors‟ page to retrieve data from the database 

through the server component.  The performance tests made under various access 

communication networks such as Wi-Fi, 2G and 3G. All the networks had similar times with 

very small differences between them, with Wi-Fi to perform faster followed by 3G and 2G.      

Evaluation tests had a second section that measured the speed performance of 3 well-

known databases: MySQL, MongoDB and Redis. We tested the databases in basic operations 

such as read and write, but also in most complicated ones such as aggregation and read with 

sorting.  These tests can be characterized as a competitive test between two different kinds of 

databases, SQL (MySQL) and NoSQL (MongoDB and Redis), over big sensor data volumes. A 

general comment that outcome from the results is that all the databases (MySQL, Mongo and 

Redis) had almost equal times in case of small number of entries, but when this number was 

increased, MySQL and Mongo had significant superiority over Redis. It worth mentioning that 

the initial thought of Meteor developers was to use MySQL as the default database when they 

start creating Meteor. 

This platform has a variety of future applications and uses. Using statistical languages 

like “R”, it can help for performing advanced statistical analysis of the measurements and then 

using them to export conclusions for future changes in society or the environment. A 

visualization service like google maps can help to create a world map for storing gathered sensor 

data and presenting statistics. A similar project that records your voice and then adds it to the 

map has been built in [16]. By using “R” it can create a specific dialect for every place of the 

world.  Also, “R” can be used as analysis tool for more accurate mapping information. For 

example in [17] it describes the usage of “R” along with Shiny to help farmers and managers to 

achieve better yields from their crops.  

Improvements in the application can be made in many areas. We can add to the client 

component a personal account that will keep the personal statistics for every user. There it can 

store time and location statistics with the personal exposure to noise and analogically to the 

statistics it will reward with budges and other prices the user. Another improvement that we can 



129 

 

make is to insert additional information to the GUI of the client like comments and reviews 

which will help him to take an easier decision.   

Also, the client component can be built with one of the highly promising HTML5 hybrid 

frameworks like Ionic [162], mobile angular UI [163], Intel XDK [164], Titanium [165] or 

Phonegap [166]. HTML5 mobile development is evolving day by day and there are always new 

options emerging. Finally, in the field of usability engineering we can make our web applications 

responsive to desktop or mobile devices. An optimal viewing experience like easy reading and 

navigation with a minimum of resizing and scrolling is a desired step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 

 

REFERENCES 

[1] Gubbi, Jayavardhana, et al. "Internet of Things (IoT): A vision, architectural elements, and 

future directions." Future Generation Computer Systems 29.7 (2013): 1645-1660. 

 

[2] WikiPedia, Internet Of Things, http://en.wikipedia.org/wiki/Internet_of_Things, as visited on 

March 10, 2015 

 

[3] Panagiotakis, Spyros, et al. "Towards Ubiquitous and Adaptive Web-Based Multimedia 

Communications via the Cloud." Resource Management of Mobile Cloud Computing Networks 

and Environments (2015): 307. 

 

[4] Guinard, Dominique, Vlad Trifa, and Erik Wilde. "A resource oriented architecture for the 

web of things." Internet of Things (IOT), 2010. IEEE, 2010. 

 

[5] Tilak, Sameer. "Real-world deployments of participatory sensing applications: Current trends 

and future directions." International Scholarly Research Notices2013 (2013). 

 

[6] Ganti, Raghu K., Fan Ye, and Hui Lei. "Mobile crowdsensing: current state and future 

challenges." Communications Magazine, IEEE 49.11 (2011): 32-39. 

 

[7] Sen, Sougata, et al. "The case for cloud-enabled mobile sensing services."Proceedings of the 

first edition of the MCC workshop on Mobile cloud computing. ACM, 2012. 

 

[8] Alamri, Atif, et al. "A survey on sensor-cloud: architecture, applications, and 

approaches." International Journal of Distributed Sensor Networks 2013 (2013). 

 

[9] WikiPedia, Multitier architecture, http://en.wikipedia.org/wiki/Multitier_architecture, as 

visited on March 10, 2015 

   

[10] Lee, Uichin, et al. "Mobeyes: smart mobs for urban monitoring with a vehicular sensor 

network." Wireless Communications, IEEE 13.5 (2006): 52-57. 

 

[11] Anger, Philipp J. Integration of Mobile Devices in Collaborative Web Applications. na, 

2013. 

 

[12] Panagiotakis Spyros, Browser Platform Assessment for X3Dom Graphics'. Rendering 

Capabilities IJCIT, 2014. 

 

[13] Murray, Scott. Interactive data visualization for the Web. " O'Reilly Media, Inc.", 2013. 

 

[14] Kapetanakis, Kostas, Spyros Panagiotakis, and Athanasios G. Malamos. "HTML5 and 

WebSockets; challenges in network 3D collaboration."Proceedings of the 17th Panhellenic 

Conference on Informatics. ACM, 2013. 

 

http://en.wikipedia.org/wiki/Internet_of_Things
http://en.wikipedia.org/wiki/Multitier_architecture


131 

 

[15] Green Ido. Web Workers, Multithreaded Programms in JavaScript. " O'Reilly Media, Inc.", 

2012. 

 

[16] R Video tutorial for Spatial Statistics, http://r-video-tutorial.blogspot.gr/2013/07/interfacing-

r-and-google-maps.html, as visited on March 10, 2015 

 

[17] Jahanshiri, Ebrahim, and Abdul Rashid Mohd Shariff. "Developing web-based data analysis 

tools for precision farming using R and Shiny." IOP Conference Series: Earth and Environmental 

Science. Vol. 20. No. 1. IOP Publishing, 2014. 

 

[18] Amundsen, Mike. Building Hypermedia APIs with HTML5 and Node. " O'Reilly Media, 

Inc.", 2011. 

 

[19] Essa, Irfan A. "Ubiquitous sensing for smart and aware environments."Personal 

Communications, IEEE 7.5 (2000): 47-49. 

 

[20] Campbell, Andrew T., et al. "The rise of people-centric sensing." Internet Computing, 

IEEE 12.4 (2008): 12-21. 

 

[21] Pintus, Antonio, et al. Connecting smart things through web services orchestrations. 

Springer Berlin Heidelberg, 2010. 

 

[22] Lane, Nicholas D., et al. "A survey of mobile phone sensing." Communications Magazine, 

IEEE 48.9 (2010): 140-150. 

 

[23] WikiPedia, Geocoding process, http://en.wikipedia.org/wiki/Geocoding/, as visited on 

March 10, 2015 

 

[24] The Google Geocoding API, 

https://developers.google.com/maps/documentation/geocoding/,as visited on March 10, 2015 

 

[25] Svennerberg, Gabriel. Beginning Google Maps API 3. Apress, 2010. 

 

[26] Smus, Boris. Web Audio API. " O'Reilly Media, Inc.", 2013. 

 

[27] Google Maps JavaScript API,  

https://developers.google.com/maps/documentation/javascript/examples/geocoding-reverse, as 

visited on March 10, 2015 

 

[28] The WebSocket API - W3C, https://dvcs.w3.org/hg/audio/raw-

file/tip/webaudio/specification.html, as visited on March 10, 2015 

 

[29] HTML5rocks, Getting Started with Web Audio API, 

http://www.html5rocks.com/en/tutorials/webaudio/intro/, as visited on March 10, 2015 

 

http://r-video-tutorial.blogspot.gr/2013/07/interfacing-r-and-google-maps.html
http://r-video-tutorial.blogspot.gr/2013/07/interfacing-r-and-google-maps.html
http://en.wikipedia.org/wiki/Geocoding/
https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/javascript/examples/geocoding-reverse
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html
http://www.html5rocks.com/en/tutorials/webaudio/intro/


132 

 

[30] HTML5rocks, WebRTC, http://www.html5rocks.com/en/tutorials/webrtc/basics/, as visited 

on March 10, 2015 

 

[31] Maisonneuve, Nicolas, Matthias Stevens, and Bartek Ochab. "Participatory noise pollution 

monitoring using mobile phones." Information Polity 15.1 (2010): 51-71. 

 

[32] D‟Hondt, Ellie, and Matthias Stevens. "Participatory noise mapping." Demo Proceedings of 

the 9th International Conference on Pervasive. 2011. 

 

[33] D‟Hondt, Ellie, Matthias Stevens, and An Jacobs. "Participatory noise mapping works! An 

evaluation of participatory sensing as an alternative to standard techniques for environmental 

monitoring." Pervasive and Mobile Computing 9.5 (2013): 681-694. 

 

[34] Maisonneuve, Nicolas, et al. "NoiseTube: Measuring and mapping noise pollution with 

mobile phones." Information Technologies in Environmental Engineering. Springer Berlin 

Heidelberg, 2009. 215-228. 

 

[35] Maisonneuve, Nicolas, et al. "Citizen noise pollution monitoring." Proceedings of the 10th 

Annual International Conference on Digital Government Research: Social Networks: Making 

Connections between Citizens, Data and Government. Digital Government Society of North 

America, 2009. 

 

[36] Drosatos, George, et al. "A privacy-preserving cloud computing system for creating 

participatory noise maps." Computer Software and Applications Conference (COMPSAC), 2012 

IEEE 36th Annual. IEEE, 2012. 

 

[37] Gsmarena, Samsung galaxy S5 specs, http://www.gsmarena.com/samsung_galaxy_s5-

6033.php, as visited on March 10, 2015 

 

[38] Geolocation tutorial, HTML5rocks, 

http://www.html5rocks.com/en/tutorials/geolocation/trip_meter/, as visited on March 10, 2015 

 

[39] Movable type scripts,  http://www.movable-type.co.uk/scripts/latlong.html , as visited on 

March 10, 2015 

 

[40] WikiPedia, Haversine formula, http://en.wikipedia.org/wiki/Haversine_formula, as visited 

on March 10, 2015 

 

[41] Consolvo, Sunny, et al. "Activity sensing in the wild: a field trial of ubifit 

garden." Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 

ACM, 2008. 

 

[42] Miluzzo, Emiliano, et al. "Sensing meets mobile social networks: the design, 

implementation and evaluation of the cenceme application." Proceedings of the 6th ACM 

conference on Embedded network sensor systems. ACM, 2008. 

 

http://www.html5rocks.com/en/tutorials/webrtc/basics/
http://www.gsmarena.com/samsung_galaxy_s5-6033.php
http://www.gsmarena.com/samsung_galaxy_s5-6033.php
http://www.html5rocks.com/en/tutorials/geolocation/trip_meter/
http://www.movable-type.co.uk/scripts/latlong.html
http://en.wikipedia.org/wiki/Haversine_formula


133 

 

[43] Mun, Min, et al. "PEIR, the personal environmental impact report, as a platform for 

participatory sensing systems research." Proceedings of the 7th international conference on 

Mobile systems, applications, and services. ACM, 2009. 

 

[44] Thiagarajan, Arvind, et al. "VTrack: accurate, energy-aware road traffic delay estimation 

using mobile phones." Proceedings of the 7th ACM Conference on Embedded Networked Sensor 

Systems. ACM, 2009. 

 

[45] UC Berkeley/Nokia/NAVTEQ, “Mobile Millennium”, http://traffic.berkeley.edu/, as visited 

on March 10, 2015 

 

[46] Dutta, Prabal, et al. "Common sense: participatory urban sensing using a network of 

handheld air quality monitors." Proceedings of the 7th ACM conference on embedded networked 

sensor systems. ACM, 2009. 

 

[47] Burke, Jeffrey A., et al. "Participatory sensing." Center for Embedded Network 

Sensing (2006). 

 

[48] Phonegap website, http://phonegap.com/, as visited on March 10, 2015. 

 

[49] Indel XDK developer,  https://software.intel.com/en-us/html5/tools, as visited on March 10, 

2015 

 

[50] Enyojs, HTML5 Framework, http://enyojs.com/, as visited on March 10, 2015 

 

[51] Mosync, application framework, http://www.mosync.com/, as visited on March 10, 2015 

 

[52] WikiPedia, Node.js, http://en.wikipedia.org/wiki/Node.js, as visited on March 10, 2015 

 

[53] W3C, Geolocation API, http://www.w3.org/TR/geolocation-API/, as visited on March 10, 

2015  

 

[54] W3C, Orientation event, http://www.w3.org/TR/orientation-event/, as visited on March 10, 

2015  

 

[55] W3C, Battery status, http://www.w3.org/TR/battery-status/, as visited on March 10, 2015    

 

[56] W3C, Proximity, http://www.w3.org/TR/proximity/, as visited on March 10, 2015  

 

[57] W3C, Ambient light, http://www.w3.org/TR/ambient-light/, as visited on March 10, 2015   

 

[58] W3C, Network information API, http://www.w3.org/TR/netinfo-api/, as visited on March 

10, 2015   

 

[59] W3C, Resource timing, http://www.w3.org/TR/resource-timing/, as visited on March 10, 

2015  

http://traffic.berkeley.edu/
http://phonegap.com/
https://software.intel.com/en-us/html5/tools
http://enyojs.com/
http://www.mosync.com/
http://en.wikipedia.org/wiki/Node.js
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/orientation-event/
http://www.w3.org/TR/battery-status/
http://www.w3.org/TR/proximity/
http://www.w3.org/TR/ambient-light/
http://www.w3.org/TR/netinfo-api/
http://www.w3.org/TR/resource-timing/


134 

 

  

[60] W3C, High resolution API, http://www.w3.org/TR/hr-time/, as visited on March 10, 2015   

 

[61] W3C, User timing, http://www.w3.org/TR/user-timing/, as visited on March 10, 2015  

 

[62] W3C, Media capture and streams, http://www.w3.org/TR/mediacapture-streams/, as visited 

on March 10, 2015   

 

[63] W3C, Vibration, http://www.w3.org/TR/vibration/, as visited on March 10, 2015  

  

[64] W3C, Fullscreen, http://www.w3.org/TR/fullscreen/, as visited on March 10, 2015   

 

[65] W3C, Page Visibility, http://www.w3.org/TR/page-visibility/, as visited on March 10, 2015   

 

[66] W3C, Web Workers, http://www.w3.org/TR/workers/, as visited on March 10, 2015    

 

[67] W3C, Web storage, http://www.w3.org/TR/webstorage/, as visited on March 10, 2015   

  

[68] W3C, Web intents, http://www.w3.org/TR/web-intents/, as visited on March 10, 2015  

 

[69] Campbell, Andrew T., et al. "People-centric urban sensing." Proceedings of the 2nd annual 

international workshop on Wireless internet. ACM, 2006. 

 

[70] Yan, Zhixian, and Dipanjan Chakraborty. "Semantics in Mobile Sensing."Synthesis 

Lectures on the Semantic Web: Theory and Technology 4.1 (2014): 1-143. 

 

[71] Ra, Moo-Ryong, et al. "Medusa: A programming framework for crowd-sensing 

applications." Proceedings of the 10th international conference on Mobile systems, applications, 

and services. ACM, 2012. 

 

[72] Dimov Daniel, Crowdsensing: State of the Art and Privacy Aspects,  

http://resources.infosecinstitute.com/crowdsensing-state-art-privacy-aspects/ 

 

[73] IDC, http://www.idc.com/, as visited on March 10, 2015 

 

[74] Lewis, Daniel. "What is web 2.0?." Crossroads 13.1 (2006): 3-3. 

 

[75] Robbins, Jennifer Niederst. HTML5 Pocket Reference. " O'Reilly Media, Inc.", 2013. 

 

[76] Lengstorf, Jason, and Phil Leggetter. Real Time Web Apps. United States of America: 

Apress, 2013. 

 

[77] Freeman, Adam. The Definitive Guide to HTML5. Apress, 2011. 

 

http://www.w3.org/TR/hr-time/
http://www.w3.org/TR/user-timing/
http://www.w3.org/TR/mediacapture-streams/
http://www.w3.org/TR/vibration/
http://www.w3.org/TR/fullscreen/
http://www.w3.org/TR/page-visibility/
http://www.w3.org/TR/workers/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/web-intents/
http://resources.infosecinstitute.com/crowdsensing-state-art-privacy-aspects/
http://www.idc.com/


135 

 

[78] Pournajaf, Layla, et al. A survey on privacy in mobile crowd sensing task management. 

Technical Report TR-2014-002, Department of Mathe-matics and Computer Science, Emory 

University, 2014. 

 

[79] Saha, Debashis, and Amitava Mukherjee. "Pervasive computing: a paradigm for the 21st 

century." Computer 36.3 (2003): 25-31. 

 

[80] Talasila, Manoop, Reza Curtmola, and Cristian Borcea. "Alien vs. Mobile User Game: Fast 

and Efficient Area Coverage in Crowdsensing." 

 

[81] Martí, Irene Garcia, et al. "Mobile application for noise pollution monitoring through 

gamification techniques." Entertainment Computing-ICEC 2012. Springer Berlin Heidelberg, 

2012. 562-571. 

 

[82] WikiPedia, Gamification, http://en.wikipedia.org/wiki/Gamification, as visited on March 10, 

2015 

 

[83] Zichermann, Gabe, and Christopher Cunningham. Gamification by design: Implementing 

game mechanics in web and mobile apps. " O'Reilly Media, Inc.", 2011. 

 

[84] Gamification Wiki, Nike, http://badgeville.com/wiki/Nike, as visited on March 10, 2015 

 

[85] Gamification Wiki, Starbucks, http://badgeville.com/wiki/mystarbucksrewards, as visited on 

March 10, 2015 

 

[86] Evoke, http://www.urgentevoke.com/, as visited on March 10, 2015 

 

[87] Stackoverflow, http://stackoverflow.com/, as visited on March 10, 2015  

 

[88] Richard, B.: Hearts, clubs, diamonds, spades: Players who suits MUDs (1996), 

http://www.mud.co.uk/richard/hcds.htm, as visited on March 10, 2015 

 

[89] Android Developer, 

http://developer.android.com/guide/topics/sensors/sensors_overview.html, as visited on March 

10, 2015 

 

[90] Rosi, Alberto, et al. "Social sensors and pervasive services: Approaches and 

perspectives." Pervasive Computing and Communications Workshops (PERCOM Workshops), 

2011 IEEE International Conference on. IEEE, 2011. 

 

[91] Rosi, Alberto, et al. "Social sensors and pervasive services: Approaches and 

perspectives." Pervasive Computing and Communications Workshops (PERCOM Workshops), 

2011 IEEE International Conference on. IEEE, 2011. 

 

http://en.wikipedia.org/wiki/Gamification
http://badgeville.com/wiki/Nike
http://badgeville.com/wiki/mystarbucksrewards
http://www.urgentevoke.com/
http://stackoverflow.com/
http://www.mud.co.uk/richard/hcds.htm
http://developer.android.com/guide/topics/sensors/sensors_overview.html


136 

 

[92] Guo, Bin, et al. "From participatory sensing to mobile crowd sensing."Pervasive Computing 

and Communications Workshops (PERCOM Workshops), 2014 IEEE International Conference 

on. IEEE, 2014. 

 

[93] Goldman, Jeffrey, et al. "Participatory Sensing: A citizen-powered approach to illuminating 

the patterns that shape our world." Foresight & Governance Project, White Paper (2009): 1-15. 

 

[94] Goldman, Jeffrey, et al. "Participatory Sensing: A citizen-powered approach to illuminating 

the patterns that shape our world." Foresight & Governance Project, White Paper (2009): 1-15. 

 

[95] Mohan, Prashanth, Venkata N. Padmanabhan, and Ramachandran Ramjee. "Nericell: rich 

monitoring of road and traffic conditions using mobile smartphones." Proceedings of the 6th 

ACM conference on Embedded network sensor systems. ACM, 2008. 

 

[96] Eriksson, Jakob, et al. "The pothole patrol: using a mobile sensor network for road surface 

monitoring." Proceedings of the 6th international conference on Mobile systems, applications, 

and services. ACM, 2008. 

 

[97] Bhoraskar, Ravi, et al. "Wolverine: Traffic and road condition estimation using smartphone 

sensors." Communication Systems and Networks (COMSNETS), 2012 Fourth International 

Conference on. IEEE, 2012. 

 

[98] Reddy, Sasank, et al. "Biketastic: sensing and mapping for better biking."Proceedings of the 

SIGCHI Conference on Human Factors in Computing Systems. ACM, 2010. 

 

[99] Ryder, Jason, et al. "Ambulation: A tool for monitoring mobility patterns over time using 

mobile phones." Computational Science and Engineering, 2009. CSE'09. International 

Conference on. Vol. 4. IEEE, 2009. 

 

[100] Hicks, John, et al. "AndWellness: an open mobile system for activity and experience 

sampling." Wireless Health 2010. ACM, 2010. 

 

[101] Lane, Nicholas D., et al. "Bewell: A smartphone application to monitor, model and 

promote wellbeing." 5th international ICST conference on pervasive computing technologies for 

healthcare. 2011. 

 

[102] Von Kaenel, Michael, Philipp Sommer, and Roger Wattenhofer. "Ikarus: large-scale 

participatory sensing at high altitudes." Proceedings of the 12th Workshop on Mobile Computing 

Systems and Applications. ACM, 2011. 

 

[103] Hasenfratz, David, et al. "Participatory air pollution monitoring using 

smartphones." Mobile Sensing (2012). 

 

[104] Hull, Bret, et al. "CarTel: a distributed mobile sensor computing system."Proceedings of 

the 4th international conference on Embedded networked sensor systems. ACM, 2006. 

 



137 

 

[105] Eisenman, Shane B., et al. "Metrosense project: People-centric sensing at 

scale." Workshop on World-Sensor-Web (WSW 2006), Boulder. 2006. 

 

[106] Eisenman, Shane B., et al. "BikeNet: A mobile sensing system for cyclist experience 

mapping." ACM Transactions on Sensor Networks (TOSN) 6.1 (2009): 6. 

 

[107] Andreas Krause , Eric Horvitz , Aman Kansal , Feng Zhao, Toward Community Sensing, 

Proceedings of the 7th international conference on Information processing in sensor networks, 

p.481-492, April 22-24, 2008 

 

[108] Kim, Sunyoung, et al. "Creek watch: pairing usefulness and usability for successful citizen 

science." Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 

ACM, 2011. 

 

[109] Reddy, Sasank, et al. "Image browsing, processing, and clustering for participatory 

sensing: lessons from a DietSense prototype." Proceedings of the 4th workshop on Embedded 

networked sensors. ACM, 2007. 

 

[110] Ji, Rongrong, et al. "Mining city landmarks from blogs by graph modeling."Proceedings of 

the 17th ACM international conference on Multimedia. ACM, 2009. 

 

[111] Zhao, Qiankun, et al. "Event detection from evolution of click-through data."Proceedings 

of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. 

ACM, 2006. 

 

[112] Perrig, Adrian, et al. "SPINS: Security protocols for sensor networks." Wireless 

networks 8.5 (2002): 521-534. 

 

[113] Zhu, Sencun, Sanjeev Setia, and Sushil Jajodia. "LEAP+: Efficient security mechanisms 

for large-scale distributed sensor networks." ACM Transactions on Sensor Networks (TOSN) 2.4 

(2006): 500-528. 

 

[114] Karlof, Chris, and David Wagner. "Secure routing in wireless sensor networks: Attacks 

and countermeasures." Ad hoc networks 1.2 (2003): 293-315. 

 

[115] Yin, Changqing, et al. "Secure routing for large-scale wireless sensor 

networks." Communication Technology Proceedings, 2003. ICCT 2003. International 

Conference on. Vol. 2. IEEE, 2003. 

 

[116] Deng, Jing, Richard Han, and Shivakant Mishra. "A performance evaluation of intrusion-

tolerant routing in wireless sensor networks." Information Processing in Sensor Networks. 

Springer Berlin Heidelberg, 2003. 

 

[117] Chan, Haowen, Adrian Perrig, and Dawn Song. "Secure hierarchical in-network 

aggregation in sensor networks." Proceedings of the 13th ACM conference on Computer and 

communications security. ACM, 2006. 



138 

 

 

[118] Chana, Haowen, et al. "SI A: Secure information aggregation in sensor networks." Security 

of Ad-hoc and Sensor Networks (2007): 69. 

 

[119] Tang, Karen P., et al. "Putting people in their place: an anonymous and privacy-sensitive 

approach to collecting sensed data in location-based applications." Proceedings of the SIGCHI 

conference on Human Factors in computing systems. ACM, 2006. 

 

[120] Shin, Minho, et al. "AnonySense: A system for anonymous opportunistic 

sensing." Pervasive and Mobile Computing 7.1 (2011): 16-30. 

 

[121] Christin, Delphine, et al. "A survey on privacy in mobile participatory sensing 

applications." Journal of Systems and Software 84.11 (2011): 1928-1946. 

 

[122] Dingledine, Roger, Nick Mathewson, and Paul Syverson. Tor: The second-generation 

onion router. Naval Research Lab Washington DC, 2004. 

 

[123] Ghinita, Gabriel. "Privacy for location-based services." Synthesis Lectures on Information 

Security, Privacy, & Trust 4.1 (2013): 1-85. 

 

[124] Sabari website, http://www.sabarimarketing.com/blog/html5-the-fifth-revision-of-the-

hypertext-markup language-html , as visited on March 10, 2015 

 

[125] W3C, HTML5, http://www.w3.org/2014/10/html5-rec.html.en, as visited on March 10, 

2015 

 

[126] W3C, HTML5 recommendation,  http://www.w3.org/html/wg/drafts/html/master/, as 

visited on March 10, 2015 

 

[127] WikiPedia, HTML5, http://en.wikipedia.org/wiki/HTML5, as visited on March 10, 2015 

 

[128] Visualizing raw data, http://scottizu.wordpress.com/2014/06/24/visualizing-raw-data-

samples-from-a-microphone/, as visited on March 10, 2015 

 

[129] HTML5rocks, File APIs, http://www.html5rocks.com/en/tutorials/file/dndfiles/, as visited 

on March 10, 2015  

 

[130] Moniruzzaman, A. B. M., and Syed Akhter Hossain. "Nosql database: New era of 

databases for big data analytics-classification, characteristics and comparison." arXiv preprint 

arXiv:1307.0191 (2013). 

 

[131] Scaledb, data architectures for the Internet of Things, http://www.scaledb.com/internet-

things-database.php#architecture, as visited on March 10, 2015 

 

[132] Heroku, NoSQL databases, https://blog.heroku.com/archives/2010/7/20/nosql, as visited 

on March 10, 2015 

http://www.sabarimarketing.com/blog/html5-the-fifth-revision-of-the-hypertext-markup%20language-html
http://www.sabarimarketing.com/blog/html5-the-fifth-revision-of-the-hypertext-markup%20language-html
http://www.w3.org/2014/10/html5-rec.html.en
http://www.w3.org/html/wg/drafts/html/master/
http://en.wikipedia.org/wiki/HTML5
http://scottizu.wordpress.com/2014/06/24/visualizing-raw-data-samples-from-a-microphone/
http://scottizu.wordpress.com/2014/06/24/visualizing-raw-data-samples-from-a-microphone/
http://www.html5rocks.com/en/tutorials/file/dndfiles/
http://www.scaledb.com/internet-things-database.php#architecture
http://www.scaledb.com/internet-things-database.php#architecture
https://blog.heroku.com/archives/2010/7/20/nosql


139 

 

 

[133] http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis, as visited on March 10, 

2015 

 

[134] Websocket official webpage, https://www.websocket.org/, as visited on March 10, 2015       

 

[135] HTML5rocks, websockets, http://www.html5rocks.com/en/tutorials/websockets/basics/, as 

visited on March 10, 2015  

  
[136] W3C, Standards for Web Applications on Mobile,  http://www.w3.org/2014/04/mobile-web-app-

state/, as visited on March 10, 2015 

 

[137] W3C, FileAPI, http://www.w3.org/TR/FileAPI/, as visited on March 10, 2015  

 

[138] HTML5rocks, Getusermedia,  

http://www.html5rocks.com/en/tutorials/getusermedia/intro/, as visited on March 10, 2015 

 

[139] W3C, Websockets, http://www.w3.org/TR/2012/CR-websockets-20120920/, as visited on 

March 10, 2015  

 

[140] IETF, Websockets, https://tools.ietf.org/html/rfc6455, as visited on March 10, 2015  

 

[141] WikiPedia, Geo-fence, http://en.wikipedia.org/wiki/Geo-fence, as visited on March 10, 

2015  

 

[142] Google developer website, Geofences,  

https://developers.google.com/maps/documentation/tracks/geofences, as visited on March 10, 

2015  

 

[143] WikiPedia, Meteor framework, http://en.wikipedia.org/wiki/Meteor_(web_framework), as 

visited on March 10, 2015  

 

[144] Meteor official website, https://www.meteor.com/, as visited on March 10, 2015  

 

[145] Discovermeteor, https://www.discovermeteor.com/blog/understanding-meteor-

publications-and-subscriptions/, as visited on March 10, 2015  

 

[146] WikiPedia, JSON, http://en.wikipedia.org/wiki/JSON, as visited on March 10, 2015  

 

[147] Google maps official webpage, https://www.google.gr/maps/, as visited on March 10, 2015 

 

[148] Google maps website, https://developers.google.com/maps/, as visited on March 10, 2015 

 

[149] WikiPedia, BSON, http://en.wikipedia.org/wiki/BSON, as visited on March 10, 2015  

 

[150] BSON official webpage, http://bsonspec.org/, as visited on March 10, 2015  

 

http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis
https://www.websocket.org/
http://www.html5rocks.com/en/tutorials/websockets/basics/
http://www.w3.org/2014/04/mobile-web-app-state/
http://www.w3.org/2014/04/mobile-web-app-state/
http://www.w3.org/TR/FileAPI/
http://www.html5rocks.com/en/tutorials/getusermedia/intro/
http://www.w3.org/TR/2012/CR-websockets-20120920/
https://tools.ietf.org/html/rfc6455
http://en.wikipedia.org/wiki/Geo-fence
https://developers.google.com/maps/documentation/tracks/geofences
http://en.wikipedia.org/wiki/Meteor_(web_framework)
https://www.meteor.com/
https://www.discovermeteor.com/blog/understanding-meteor-publications-and-subscriptions/
https://www.discovermeteor.com/blog/understanding-meteor-publications-and-subscriptions/
http://en.wikipedia.org/wiki/JSON
https://www.google.gr/maps/
https://developers.google.com/maps/
http://en.wikipedia.org/wiki/BSON
http://bsonspec.org/


140 

 

[151] http://www.labnol.org/internet/web-3-concepts-explained/8908/, as visited on March 10, 

2015    

 

[152] WikiPedia, GeoJSON, http://en.wikipedia.org/wiki/GeoJSON, as visited on March 10, 

2015  

 

[153] GeoJSON official webpage, http://geojson.org/, as visited on March 10, 2015  

 

[154] GeoJSON live tutorial, http://geojson.io/#map=2/20.0/0.0, as visited on March 10, 2015  

 

[155] WikiPedia, Ext_JS framework, http://en.wikipedia.org/wiki/Ext_JS, as visited on March 

10, 2015   

 

[156] Sensorplatform, http://www.sensorplatforms.com/sensors-html5/, as visited on March 10, 

2015   

 

[157] Ext JS, documentation, http://docs.sencha.com/extjs/4.2.1/#!/guide/charting, as visited on 

March 10, 2015 

 

[158] Blog, D3 and X3Dom example, http://bl.ocks.org/camio/5087116, as visited on March 10, 

2015  

 

[159] W3C, HTML5, http://www.w3.org/html/wg/drafts/html/master/, as visited on March 10, 

2015 

 

[160] http://www.web3d.org/wiki/index.php/X3D_and_HTML5, as visited on March 16, 2015. 

 

[161] BEHR, Johannes, et al. X3DOM: a DOM-based HTML5/X3D integration model. In: 

Proceedings of the 14th International Conference on 3D Web Technology. ACM, 2009. p. 

127-135.  

 

[162] Ionic, framework for HTML5 application, http://ionicframework.com/, as visited on March 

10, 2015 

 

[163] Angular framework, http://mobileangularui.com/, as visited on March 10, 2015 

 

[164] Indel XDK framework, https://software.intel.com/en-us/html5/tools, as visited on March 

10, 2015 

 

[165] Appcelerator mobile application platform, http://www.appcelerator.com/titanium/, as 

visited on March 10, 2015 

 

[166] Phonegap official page, http://phonegap.com/, as visited on March 10, 2015  

 

[167] Github example, https://codeload.github.com/edse/puzzle/zip/master  

http://www.labnol.org/internet/web-3-concepts-explained/8908/
http://en.wikipedia.org/wiki/GeoJSON
http://geojson.org/
http://geojson.io/#map=2/20.0/0.0
http://en.wikipedia.org/wiki/Ext_JS
http://www.sensorplatforms.com/sensors-html5/
http://docs.sencha.com/extjs/4.2.1/#!/guide/charting
http://bl.ocks.org/camio/5087116
http://www.w3.org/html/wg/drafts/html/master/
http://ionicframework.com/
http://mobileangularui.com/
https://software.intel.com/en-us/html5/tools
http://www.appcelerator.com/titanium/
http://phonegap.com/
https://codeload.github.com/edse/puzzle/zip/master


141 

 

[168] Atmospherejs, Meteorjs packages, https://atmospherejs.com/aldeed/geocoder 

 

[169] Sony lamporatory in Paris official website, http://www.csl.sony.fr/ 

 

[170] Noisetube project official website, http://www.noisetube.net/   

  

[171] Reactive MySQL for Meteor, https://github.com/numtel/meteor-mysql  

 

[172] Redis Livedata, https://github.com/meteor/redis-livedata  

 

[173] Wingate, proxyserver, http://www.wingate.com/download/wingate/download.php  

 

 

https://atmospherejs.com/aldeed/geocoder
http://www.csl.sony.fr/
http://www.noisetube.net/
https://github.com/numtel/meteor-mysql
https://github.com/meteor/redis-livedata
http://www.wingate.com/download/wingate/download.php

