
	

	

MSc	in	Informatics	&	Multimedia	

Master’s	Thesis	

Smartphone-Based	Telematics	for	Usage	Based	
Insurance	

Prokopios	Vavouranakis	

Supervisor:	
Dr.	Spyros	Panagiotakis,	Assistant	Professor		

	
																

	
Heraklion,	February	2016	

	

TECHNOLOGICAL	EDUCATIONAL	INSTITUTE	OF	CRETE	

Preface	
	

This	 master	 thesis	 has	 been	 conducted	 in	 Technological	 Educational	 Institute	 of	
Crete	 under	 the	 supervision	 of	 Assistant	 Professor	 Spyros	 Panagiotakis.	 Object	 of	
this	 thesis	 is	 the	 study	 and	 the	 implementation	 of	 a	 smartphone-based	 telematics	
system	for	usage	based	insurance	(UBI).	
	
At	 this	 point	 I	would	 like	 to	 thank	my	 supervisor	Mr.	 Spyros	Panagiotakis	 for	 the	
assignment	 of	 the	 diploma	 thesis	 and	 for	 his	 decisive	 contribution	 in	 the	
implementation	of	this	thesis.	
	
Finally	I	would	like	to	say	a	big	thank	you	to	my	parents,	Michael	and	Athena,	and	
my	sister	Mara,	for	the	unconditional	love	and	support	they	have	given	me	over	the	
years.	There	are	no	words	to	describe	my	love	and	gratitude.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

Abstract	
	

This	thesis	aims	to	study	and	implement	a	smartphone-based	telematics	system	
for	 a	 usage-based	 insurance	 (UBI).	 The	 smartphone	 has	 been	 identified	 as	 an	
enabler	 for	 future	 UBI,	 replacing	 the	 vehicle	 (after-)	 mounted	 dedicated	
hardware	with	 a	 ubiquitous	 device	with	 a	 plurality	 of	 sensors,	means	 for	 data	
processing	and	wireless	communication.		
	
We	 implemented	 and	 developed	 an	 end-to-end	 system	 including	 a	 telematics	
android-based	 application	 for	 client’s	 smartphones	 and	 a	 portal	 to	 collect,	
analyze	 and	 record	 driving	 patterns	 and	 score	 drivers.	 Driver	 Behavior	
monitoring	 has	 evolved	 tremendously	 in	 recent	 years.	 Monitoring	 driver	
behavior,	 recording	 their	 driving	 events	 (safe	 and	 aggressive)	 and	 giving	
feedback	of	recorded	events	can	enhance	driver	safety.		
	
We	 implemented	 and	 developed	 an	 android-based	 application,	 which	 can	
estimate	 driving	 behavior	 using	 two	 methods.	 Using	 data	 only	 from	 the	
accelerometer	sensor	or	using	orientation	data	of	a	sensor	fusion	method,	which	
combine	data	from	the	accelerometer,	the	gyroscope	and	the	magnetometer.		
	
We	can	recognize	events	like	hard	acceleration,	safe	acceleration,	sharp	left	turn,	
safe	 right	 turn,	 sharp	 lane	 left	 lane	 change	 etc.	 The	 application	 to	 improve	 the	
driving	 behavior	 of	 the	 driver,	 displays	 some	 hint	 messages,	 after	 each	 bad-
driving	event.	For	every	trip,	the	app	calculates	a	score	for	the	driving	behavior	of	
the	driver	and	gives	him	a	rating	to	help	him	improving	his	behavior	in	the	next	
trips.	 	All	trips	data	such	as	bad	driving	events,	which	take	place	during	the	trip,	
are	stored	in	a	database	and	the	driver	has	the	opportunity	to	review	and	analyze	
them	whenever	he	wants.		
	
Also,	we	developed	a	portal,	where	we	can	have	access	to	an	overall	dashboard	of	
all	registered	drivers.	In	the	portal	are	presented	scores,	behaviors,	trips	reports	
and	 routes	 in	maps	 of	 all	 recorded	 trips.	With	 this	way,	we	 help	 the	 insurance	
carriers	to	assess	better	the	risk	of	the	drivers.	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

Table	of	Contents	
	
Chapter	1	–	Introduction	...	8	
1.1			Basic	Concept	..	8	
1.2			Purpose	and	Structure	of	Thesis	..	9	

Chapter	2	–	Usage	Based	Insurance	(UBI)	..	11	
2.1			Definition	of	UBI	..	11	
2.2			Pricing	of	UBI	...	11	
2.3			Advantages	of	UBI	...	12	
2.4			Challenges	...	12	
2.4			Implementations	in	USA	...	13	
2.5			Future	of	UBI	..	15	

Chapter	3	–	Detecting	Driver	Behavior	using	Smartphone	Sensors	16	
3.1			Smartphone	Hardware	Sensors	...	16	
3.2			Methods	of	Detecting	Driver	Behavior	..	16	

Chapter	4	–	Calibration	of	device	..	21	
4.1			Vehicle	Coordinate	System	..	21	
4.2			Calibration	..	21	

Chapter	5	–	Orientation	Data	via	Sensor	Fusion	method	25	
Chapter	6	–	Detection	Methods	&	Testing	..	27	
6.1			Detection	Method	using	Accelerometer	Data	...	27	
6.2			Detection	Method	using	Sensor	Fusion	Orientation	Data	30	
6.3			Driver	Behavior	Detection	Algorithm	...	34	

Chapter	7	–	Information	System	of	Usage-Based	Auto	Insurance	39	
7.1			Native	Android	Application	of	Auto	UBI	System	..	39	
7.1.1			-			Driver’s	Login	and	Registration	System	..	39	
7.1.2			-			Main	Menu	..	40	
7.1.3			-			New	Trip	...	41	
7.1.4			-			Trip’s	Info	...	45	
7.1.5			-			My	Trips	..	48	
7.1.5			-			Settings	..	48	

7.2			E-Platform	of	Auto	UBI	System	...	49	
Chapter	8			-			Used	Technologies	&	Tools	...	54	
8.1			Android	Application	Development	...	54	
8.1.1		-			Why	Android?	..	54	
8.1.2		-			Introduction	to	Android	..	56	
8.1.3		-			SQLite	Database	..	64	
8.1.4		-			Google	Maps	Android	API	...	64	
8.1.5		-			Graph	View	..	65	

8.2			Web	Application	Development	..	65	
8.2.1			-			JSP	&	Servlets	..	66	
8.2.1			-			MySQL	..	67	
8.2.1			-			Google	Maps	Web	API	...	67	
8.2.1			-			Google	Charts	..	67	

Chapter	9	–	Conclusion	...	69	
9.1			Thesis	Summary	..	69	
9.2			Recommendation	for	Future	Work	..	70	

Bibliography	...	72	

	
List	of	Figures	

	
Figure	1	-	Axis	of	Vehicle	Coordinate	System	...	21	
Figure	2	-	Illustration	of	the	calibration	angles	...	22	
Figure	3	-	Flow	of	the	calibration	process	...	24	
Figure	4	-	Flow	of	the	Sensor	Fusion	with	complementary	filter	25	
Figure	5	-	Intermediate	signals	in	the	filtering	process	when	we	assuming	that	the	

device	is	turned	90	degrees	in	one	direction	and	after	a	short	time	turned	
back	to	its	initial	position.	...	26	

Figure	6	-	Safe	Acceleration	pattern	and	then	a	hard	acceleration	pattern.	28	
Figure	7	-	Safe	Deceleration	pattern	and	then	a	hard	deceleration	pattern	28	
Figure	8	-	Safe	Left	Turn	pattern	and	then	a	Sharp	Left	Turn	pattern.	29	
Figure	9	-	Safe	Right	Turn	pattern	and	then	a	Sharp	Right	Turn	pattern.	29	
Figure	10	-	Safe	Right	Lane	Change	pattern	and	then	a	Sharp	Right	Lane	Change	

Pattern.	..	30	
Figure	11	-	Safe	Left	Lane	Change	pattern	and	then	a	Sharp	Left	Lane	Change	
pattern.	..	30	

Figure	12	-	Two	safe	acceleration	patterns	and	then	a	hard	acceleration	pattern.
	..	31	

Figure	13	-	A	safe	deceleration	pattern	and	the	a	hard	deceleration	pattern.	32	
Figure	14	-	A	Safe	Left	Turn	pattern	and	then	a	Sharp	Left	Turn	pattern	32	
Figure	15	-	A	Safe	Right	Turn	pattern	and	then	a	Sharp	Right	Turn	pattern.	33	
Figure	16	-	A	Safe	Right	Lane	Change	Pattern.	..	33	
Figure	17	-	A	Sharp	Left	Lane	Change	pattern.	..	34	
Figure	18	-	The	Login	Screen	of	the	application.	..	39	
Figure	19	-	The	Registration	screen	of	our	application.	..	40	
Figure	20	-	The	Main	Menu	of	our	application.	...	40	
Figure	21	-	The	calibration	instructions	screen.	...	41	
Figure	22	-		The	given	calibration	signals	as	they	presented	in	our	application.	...	41	
Figure	23	-	The	basic	monitoring	option.	The	system	is	not	detecting	anything	safe	

or	dangerous	driving	events.	...	42	
Figure	24	-	The	system	detects	a	safe	deceleration.	..	42	
Figure	25	-	The	system	detects	a	dangerous	sharp	left	turn.	..	43	
Figure	26	-	The	map	monitoring	option	of	our	application.	..	44	

Figure	27	-	The	system	detects	a	sharp	left	turn	during	the	map	monitoring	
option.	..	44	

Figure	28	-	Option	menu,	where	we	can	select	the	monitoring	option	we	prefer.	45	
Figure	29	-	Info	Tab	screen	of	our	application.	...	45	
Figure	30	-	Map	Tab	screen	of	our	application.	...	46	
Figure	32	-	Deceleration	Line	Chart	of	Graph	Tab	screen	of	our	application.	47	
Figure	33	-	Turn	Line	Chart	of	Graph	Tab	screen	of	our	application.	48	
Figure	34	-	"My	Trip"	screen.	We	can	see	the	list	of	our	trips.	48	
Figure	35	-	Select	detection	method	from	the	settings	of	our	application.	49	
Figure	36	-	Login	Screen	of	UBI	Portal.	...	49	
Figure	37	-	List	of	all	registered	drivers	in	the	program	of	UBI	Company.	50	
Figure	38	-	List	of	trips	(and	data	of	trips)	of	a	particular	driver.	50	
Figure	39	-	Map	Screen	of	our	portal	with	the	route	and	data	of	a	particular	trip.	51	
Figure	40	-	Acceleration	line	chart	with	data	of	a	particular	trip.	52	

Figure	41	-	Deceleration	line	chart	of	a	particular	trip.	...	53	
Figure	42	-	Turn	line	chart	of	a	particular	trip.	...	53	
Figure	43	-	Android	6.0	home	screen.	...	57	
Figure	44	-		Android's	architecture	diagram.	...	62	
Figure	45	-	Google	Maps	in	Android	device.	...	64	
Figure	46	-	Line	graph	with	two	y-scales.	..	65	

List	of	Tables	
	
	

Table	 1	 -	 Thresholds	 and	 Data	 used	 for	 the	 detection	 of	 a	 Safe/Hard	 -	
Acceleration/Deceleration	using	accelerometer's	data.	..	28	

Table	2	-	Thresholds	and	data	used	for	the	detection	of	a	Safe/Sharp	-	Left/Right	
Turn	using	accelerometer’s	data.	...	29	

Table	 3	 -	 Thresholds	 and	 Data	 used	 for	 the	 detection	 of	 a	 Safe/Hard	 -	
Acceleration/Deceleration	using	orientation	data	of	Sensor	fusion	method.	31	

Table	4	-	Thresholds	and	Data	used	for	the	detection	of	a	Safe/Sharp	-	Left/Right	
Turn	using	orientation	data	of	the	sensor	fusion	method.	32	

Table	 5	 -	 Thresholds	 and	Data	Used	 for	 the	 detection	 of	 various	 driving	 events	
using	accelerometer's	data	or	sensor	fusion	orientation	data.	35	

Table	6	-	Driver	Behavior	categories	based	on	the	total	score	of	the	driver.	37	
	
	 	

Chapter	1	–	Introduction	

1.1			Basic	Concept	 	
Usage-based	insurance	(UBI)	[1]	is	a	type	of	vehicle	insurance	whereby	the	costs	
are	 dependent	 upon	 type	 of	 vehicle	 used,	 measured	 against	 time,	 distance,	
behavior	and	place.	
	
This	 differs	 from	 traditional	 insurance,	 which	 attempts	 to	 differentiate	 and	
reward	 "safe"	 drivers,	 giving	 them	 lower	 premiums	 and/or	 a	 no-claims	 bonus.	
However,	 conventional	 differentiation	 is	 a	 reflection	 of	 history	 rather	 than	
present	patterns	of	behavior.	This	means	that	it	may	take	a	long	time	before	safer	
(or	more	reckless)	patterns	of	driving	and	changes	 in	 lifestyle	 feed	through	 into	
premiums.	
The	simplest	form	of	usage-based	insurance	bases	the	insurance	costs	simply	on	
the	 number	 of	miles	 driven.	 However,	 the	 general	 concept	 of	 pay	 as	 you	 drive	
includes	 any	 scheme	 where	 the	 insurance	 costs	 may	 depend	 not	 just	 on	 how	
much	you	drive	but	how,	where,	and	when	one	drives.	[2]	
	
Pay	 as	 you	 drive	 (PAYD)	 means	 that	 the	 insurance	 premium	 is	 calculated	
dynamically,	 typically	 according	 to	 the	 amount	driven.	There	 are	 three	 types	 of	
usage-based	insurance:	

• Coverage	is	based	on	the	odometer	reading	of	the	vehicle.	
• Coverage	is	based	on	mileage	aggregated	from	GPS	data,	or	the	number	of	

minutes	the	vehicle	is	being	used	as	recorded	by	a	vehicle-independent	
module	transmitting	data	via	cellphone	or	RF	technology.	[3]	

• Coverage	is	based	on	other	data	collected	from	the	vehicle,	including	speed	
and	time-of-day	information,	historic	riskiness	of	the	road,	driving	actions	
in	addition	to	distance	or	time	travelled.	

	
The	formula	can	be	a	simple	function	of	the	number	of	miles	driven,	or	can	vary	
according	 to	 the	 type	 of	 driving	 or	 the	 identity	 of	 the	 driver.	 Once	 the	 basic	
scheme	 is	 in	 place,	 it	 is	 possible	 to	 add	 further	 details,	 such	 as	 an	 extra	 risk	
premium	 if	 someone	 drives	 too	 long	without	 a	 break,	 uses	 their	mobile	 phone	
while	driving,	or	travels	at	an	excessive	speed.	Telematics	usage-based	insurance	
provides	a	much	more	immediate	feedback	loop	to	the	driver,	[1]	by	changing	the	
cost	 of	 insurance	 dynamically	with	 a	 change	 of	 risk.	 This	means	 drivers	 have	 a	
stronger	incentive	to	adopt	safer	practices.	For	example,	 if	a	commuter	switches	
to	public	 transport	or	 to	working	at	home,	 this	 immediately	 reduces	 the	 risk	of	
rush	 hour	 accidents.	 With	 usage-based	 insurance,	 this	 reduction	 would	 be	
immediately	reflected	in	the	cost	of	car	insurance	for	that	month.	
	
So	the	proposal	for	the	user	is	simple.	The	user	has	to	download	an	application	in	
his	 smartphone,	 open	 it	 when	 he	 is	 driving	 and	 let	 his	 insurance	 company	 to	
monitor	his	driving	behavior.	Where	his	vehicle	is	driven,	how	fast	he	drives,	how	
hard	he	breaks,	how	hard	he	corners	and	so	on.	In	return	the	insurance	will	give	
him	a	discount	on	insurance	premiums.	
	
This	may	seem	disturbing,	but	 it	should	not	be	a	surprise.	 If	someone	considers	
that	 Internet	users	already	gladly	offer	 their	data	against	 free	 services,	 the	only	

surprise	is	that	the	insurance	based	on	the	recording	data	is	not	widespread.	The	
Progressive	Insurance	[4],	the	largest	insurance	company	using	such	methods	in	
the	USA,	found	after	analysis	of	billion	of	miles	and	relevant	data	that	key	points	
in	driving	behavior	such	as	actual	miles	traveled,	braking	and	time	of	the	day	give	
more	than	the	twice	predictabilities	compared	to	tradition	variables	such	as	age	
of	the	driver,	gender,	the	manufacturer	and	the	model	of	the	insured	vehicle.	The	
average	 discount	 on	 insurance	 premiums	 for	 a	 driver	who	 agrees	 to	 record	 his	
driving	behavior	amounts	to	10-15%.		
	
In	the	future,	anyone	who	does	not	agree	to	record	his	driving	behavior	may	not	
be	required	to	pay	higher	insurance	premiums,	but	most	companies	will	not	even	
accept	to	insure	his	car.	Insurance	based	on	telematics	can	find	great	appeal,	as	no	
longer	 required	 special	 devices	 installed	 in	 the	 car	 but	 it	 is	 enough	 a	 simple	
download	 of	 an	 application	 in	 your	 smartphone.	 In	 addition,	 smartphones	 are	
made	especially	for	communication.	On	the	other	hand	special	devices	need	some	
kind	of	transmitter.		
	
Insurance	 programs	 based	 on	 telematics	 [2]	 would	mean	 big	 changes	 for	 road	
safety.	The	 insurance	application	on	the	mobile	phone	will	notify	you	when	you	
brake	too	abruptly	or	run	too	much,	and	tame	the	way	you	drive.	The	fact	is	that	
people	drive	more	carefully,	simply	because	they	know	that	their	driving	behavior	
is	 recorded.	 The	 more	 expensive	 insurance	 premiums	 act	 as	 penalty	 for	
recklessness	driving	behavior.		

1.2			Purpose	and	Structure	of	Thesis	
Purpose	 of	 thesis	 is	 to	 implement	 a	 usage	 based	 auto-insurance	 information	
system,	 which	 consists	 of	 two	 elements.	 The	 first	 element	 is	 an	 android-based	
application	 for	 smartphones	 and	 tablets,	which	detects	 the	driver’s	behavior	by	
analyzing	 the	 collected	 data	 from	 device’s	 sensors.	 For	 this	 reason	 we	 study	
various	 driving	 detection	 methods	 using	 smartphone’s	 sensor	 in	 order	 to	 find	
which	 method	 or	 methods	 are	 the	 best	 for	 our	 implementation.	 The	 second	
element	 is	 an	 e-platform,	 where	 someone	 can	 have	 access	 to	 all	 data	 (trip’s	
information,	 routes	 of	 trips,	 graphs	 of	 sensor’s	 data)	 of	 all	 drivers,	 of	 the	
insurance	company.	
	
In	chapter	2	is	presented	the	concept	of	usage-based	insurance,	the	definition	and	
the	advantages	of	UBI.	Also	we	talked	about	the	challenges	and	future	of	UBI.	 In	
chapter	 3	 are	 presented	 the	 various	 types	 of	 sensors,	 which	 are	 in-built	 in	
smartphones	and	tablets.	Also	we	present	a	survey	about	driver	classification	and	
driving	 behavior	 recognition	 using	 a	 smartphone’s	 sensors.	 In	 chapter	 4	 is	
presented	 the	 vehicle	 coordinate	 system	 and	 how	 we	 calibrate	 the	 device	 (re-
orient	the	sensor’s	axis)	in	order	to	get	always	one	type	of	values,	regardless	the	
position	of	 the	device	 inside	 the	 car.	 In	 chapter	5	we	present	 the	 sensor	 fusion	
method,	 which	 used	 to	 detect	 the	 driving	 behavior.	 This	 method	 uses	 the	
accelerometer,	 geomagnetic	 field	 sensor	 and	 the	 gyroscope	 in	 order	 to	 get	 the	
orientation	of	the	vehicle.		
In	chapter	6,	are	presented	the	selected	 two	driver	detection	methods.	The	 first	
method	 is	 to	evaluate	the	data	we	get	 from	the	accelerometer	sensor	and	 in	the	
second	method	we	 evaluate	 the	 orientation	data	we	 get	 from	 the	 sensor	 fusion	

method.	We	 present	 thresholds	 and	 graphs	 for	 various	 driving	 events	 for	 both	
methods	and	we	analyze	the	driver	behavior	detection	algorithm.	
	
In	 chapter	7	we	discuss	 about	 the	 android-based	 application,	which	detects	 the	
driver’s	behavior.	 	The	features	of	the	application	are	presented	and	the	way	we	
use	 the	 application.	 Also	 is	 presented	 the	 e-platform	 of	 the	 UBI	 information	
system,	how	we	use	it	and	what	data	are	collected	and	presented.	
	
In	 chapter	 8	 are	 presented	 the	 technologies	 and	 the	 tools,	 which	 we	 used	 to	
implement	the	android-based	application	and	the	e-platform.	In	the	end,	Chapter	
9	summarizes	the	findings	of	thesis	and	presents	the	potential	benefits	of	using	a	
UBI	system.	

	
	
	
	
	

	
	
	
	
	

	

	

	

	

	
	

	
	
	

Chapter	2	–	Usage	Based	Insurance	(UBI)	
	

2.1			Definition	of	UBI	
Usage-based	insurance	(UBI)		[2]	also	known	as	pay	as	you	drive	(PAYD)	and	pay	
how	 you	 drive	 (PHYD)	and	mile-based	 auto	 insurance	is	 a	 type	 of	vehicle	
insurance	whereby	the	costs	are	dependent	upon	type	of	vehicle	used,	measured	
against	time,	distance,	behavior	and	place.	
	
Usage-Based	Insurance	is	a	recent	innovation	by	auto	insurers	that	more	closely	
aligns	 driving	 behaviors	 with	 premium	 rates	 for	 auto	 insurance.	 Mileage	 and	
driving	 behaviors	 are	 tracked	 using	 odometer	 readings	 or	 in-vehicle	
telecommunication	 devices	 (telematics)	 that	 are	 usually	 self-installed	 into	 a	
special	 vehicle	port	or	 already	 integrated	 in	original	 equipment	 installed	by	 car	
manufactures.	 The	 basic	 idea	 of	 telematics	 auto	 insurance	 is	 that	 a	 driver's	
behavior	is	monitored	directly	while	the	person	drives.	These	telematics	devices	
measure	a	number	of	elements	of	interest	to	underwriters:	miles	driven;	time	of	
day;	where	 the	 vehicle	 is	 driven	 (GPS);	 rapid	 acceleration;	 hard	 breaking;	 hard	
cornering;	and	air	bag	deployment.	The	 level	of	data	collected	generally	reflects	
the	 telematics	 technology	 employed	 and	 the	 policyholders’	willingness	 to	 share	
personal	data.		
	
The	insurance	company	then	assesses	the	data	and	charges	insurance	premiums	
accordingly.	For	example,	a	driver	who	drives	long	distance	at	high	speed	will	be	
charged	a	higher	rate	than	a	driver	who	drives	short	distances	at	slower	speeds.	
With	UBI,	premiums	are	collected	using	a	variety	of	methods,	 including	utilizing	
the	 gas	 pump,	 debit	 accounts,	 direct	 billing	 and	 smart	 card	 systems.		
	
The	 first	 UBI	 programs	 began	 to	 surface	 in	 the	 U.S.	 about	 a	 decade	 ago,	 when	
Progressive	Insurance	Company	and	General	Motors	Assurance	Company	(GMAC)	
began	 to	 offer	mileage-linked	 discounts	 through	 combined	 GPS	 technology	 and	
cellular	 systems	 that	 tracked	miles	 driven.	 These	 discounts	were	 (and	 still	 are)	
often	combined	with	ancillary	benefits	 like	roadside	assistance	and	vehicle	theft	
recovery.	Recent	accelerations	in	technology	have	increased	the	effectiveness	and	
cost	 of	 using	 telematics,	 enabling	 insurers	 to	 capture	 not	 just	 how	many	miles	
people	drive,	but	how	and	when	they	drive	too.	The	result	has	been	the	growth	of	
several	 UBI	 variations,	 including	 Pay-As-You-Drive	 (PAYD),	 Pay-How-You-Drive	
(PHYD),	Pay-As-You-Go,	and	Distance-Based	Insurance.	
	

2.2			Pricing	of	UBI	
The	 pricing	 scheme	 for	 UBI	 deviates	 [2]	 greatly	 from	 that	 of	 traditional	 auto	
insurance.	 Traditional	 auto	 insurance	 relies	 on	 actuarial	 studies	 of	 aggregated	
historical	data	to	produce	rating	factors	that	include	driving	record,	credit-based	
insurance	score,	personal	characteristics	(age,	gender,	and	marital	status),	vehicle	
type,	living	location,	vehicle	use,	previous	claims,	liability	limits,	and	deductibles.	
Premium	 discounts	 on	 traditional	 auto	 insurance	 is	 usually	 limited	 to	 the	
bundling	of	 insurance	on	multiple	vehicles	or	types	of	 insurance,	 insurance	with	

the	 same	carrier,	protection	devices	 (like	airbags),	driving	courses	and	home	 to	
work	mileage.	
	
Policyholders	tend	to	think	of	traditional	auto	insurance	as	a	fixed	cost,	assessed	
annually	 and	 usually	 paid	 for	 in	 lump	 sums	 on	 an	 annual,	 semi-annual,	 or	
quarterly	basis.	However,	studies	show	that	there	is	a	strong	correlation	between	
claim	and	loss	costs	and	mileage	driven,	particularly	within	existing	price	rating	
factors	(such	as	class	and	territory).	For	this	reason,	many	UBI	programs	seek	to	
convert	the	fixed	costs	associated	with	mileage	driven	into	variable	costs	that	can	
be	used	in	conjunction	with	other	rating	factors	in	the	premium	calculation.	UBI	
has	 the	 advantage	 of	 utilizing	 individual	 and	 current	 driving	 behaviors,	 rather	
than	relying	on	aggregated	statistics	and	driving	records	 that	are	based	on	past	
trends	and	events,	making	premium	pricing	more	individualized	and	precise.	

	
2.3			Advantages	of	UBI	
UBI	 programs	 offer	 many	 advantages	 [2]	 to	 insurers,	 consumers	 and	 society.	
Linking	 insurance	 premiums	 more	 closely	 to	 actual	 individual	 vehicle	 or	 fleet	
performance	allows	 insurers	 to	more	accurately	price	premiums.	This	 increases	
affordability	for	lower-risk	drivers,	many	of	whom	are	also	lower-income	drivers.	
It	 also	 gives	 consumers	 the	 ability	 to	 control	 their	 premium	 costs	 by	 incenting	
them	to	reduce	miles	driven	and	adopt	safer	driving	habits.	Fewer	miles	and	safer	
driving	 also	 aid	 in	 reducing	 accidents,	 congestion	 and	 vehicle	 emissions,	which	
benefits	society.	
	
The	use	of	telematics	helps	insurers	more	accurately	estimate	accident	damages	
and	 reduce	 fraud	 by	 enabling	 them	 to	 analyze	 the	 driving	 data	 (such	 as	 hard	
breaking,	 speed,	 and	 time)	 during	 an	 accident.	 This	 additional	 data	 can	 also	 be	
used	by	insurers	to	refine	or	differentiate	UBI	products.	Additionally,	the	ancillary	
safety	benefits	offered	in	conjunction	with	many	telematics-based	UBI	programs	
also	help	to	lower	accident	and	vehicle	theft	related	costs	by	improving	accident	
response	 time,	 allowing	 for	 stolen	 vehicles	 to	 be	 tracked	 and	 recovered,	 and	
monitoring	 driver	 safety.	 Telematics	 also	 allow	 fleets	 to	 determine	 the	 most	
efficient	routes,	saving	them	costs	related	to	personnel,	gas	and	maintenance.	
	

2.4			Challenges	 	 	
The	practice	of	 tracking	mileage	and	behavior	 information	 in	UBI	programs	has	
raised	 privacy	 concerns.	 As	 a	 result,	 some	 states	 have	 enacted	 legislation	
requiring	disclosure	of	tracking	practices	and	devices.	Additionally,	some	insurers	
limit	 the	data	they	collect.	Although	not	 for	everyone,	acceptance	of	 information	
sharing	is	growing	as	more	mainstream	technology	devices	(such	as	smartphones,	
tablets,	 and	 GPS	 devices)	 and	 social	 media	 networks	 (such	 as	 Facebook	 and	
MySpace)	enter	the	market.	
	
Implementing	 a	 UBI	 program,	 particularly	 one	 that	 utilizes	 telematics,	 can	 be	
costly	and	resource	intensive	to	the	insurer.	UBI	programs	rely	heavily	on	costly	
technology	to	capture	and	sensitize	driving	data.	Additionally,	UBI	is	an	emerging	
area	 and	 thus	 there	 is	 still	 much	 uncertainty	 surrounding	 the	 selection	 and	

interpretation	of	driving	data	and	how	that	data	should	be	integrated	into	existing	
or	new	price	structures	to	maintain	profitability.	This	is	particularly	important,	as	
the	 transitioning	 of	 lower-risk	 drivers	 into	 UBI	 programs	 that	 offer	 lower	
premium	 could	 put	 pressure	 on	 overall	 insurer	 profitability.	
	
Insurers	must	also	manage	regulatory	requirements	within	the	states	that	they	do	
business.	Many	states	require	insures	to	obtain	approval	for	the	use	of	new	rating	
plans.	Rate	filings	usually	must	include	statistical	data	that	supports	the	proposed	
new	rating	structure.	Although	 there	are	general	 studies	demonstrating	 the	 link	
between	 mileage	 and	 risk,	 individual	 driving	 data	 and	 UBI	 plan	 specifics	 are	
considered	proprietary	information	of	the	insurer.	This	can	make	it	difficult	for	an	
insurer	who	does	 not	 have	 past	UBI	 experience.	Other	 requirements	 that	 could	
prevent	 certain	 UBI	 programs	 include	 the	 need	 for	 continuous	 insurance	
coverage,	 upfront	 statement	 of	 premium	 charge,	 set	 expiration	 date,	 and	
guaranteed	renewability.	However,	 it	should	be	noted	that	a	Georgia	Institute	of	
Technology	survey	of	state	insurance	regulations	(2002)	found	that	the	majority	
of	states	had	no	regulatory	restrictions	that	would	prevent	PAYD	programs	from	
being	implemented.	
	

2.4			Implementations	in	USA	
Metromile.	 Metromile	 is	 a	 California-based	 insurance	 startup	 funded	 by	 New	
Enterprise	 Associates,	 Index	 Ventures,	 National	 General	 Insurance/Amtrust	
Financial,	and	other	investors.	It	offers	a	driving	app	and	a	pay-per-mile	insurance	
product	using	a	device	 that	 connects	 to	 the	OBD-II	port	of	 all	 automobiles	built	
after	 1996.	Metromile	 does	 not	 use	 behavioral	 statistics	 like	 type	 of	 driving	 or	
time	of	day	 to	price	 their	 insurance.	They	offer	consumers	a	 fixed	base	rate	per	
month	 plus	 a	 per-mile-rate	 ranging	 from	 2	 to	 11	 cents	 per	 mile,	 taking	 into	
account	 all	 traditional	 insurance	 risk	 factors.	 Drivers	 who	 drive	 less	 than	 the	
average	(10,000	miles	a	year)	will	tend	to	save.	Metromile	allows	users	to	opt	out	
of	GPS	tracking,	never	sells	consumer	data	to	3rd	parties,	and	does	not	penalize	
consumers	 for	 behavioral	 driving	 habits.	Metromile	 is	 currently	 licensed	 to	 sell	
auto	insurance	in	California,	Oregon,	Washington,	Virginia	and	Illinois	(as	of	July	
2015).	[49]	More	states	are	expected	to	roll	out	shortly.	
	
Progressive.	 Snapshot	 is	 a	 car	 insurance	 program	 developed	 by	 Progressive	
Insurance	 in	 the	United	 States.	 [50]	 It	 is	 a	 voluntary,	 behavior-based	 insurance	
program	that	gives	drivers	a	customized	insurance	rate	based	on	how,	how	much,	
and	when	their	car	is	driven.	Snapshot	is	currently	available	in	46	states	plus	the	
District	of	Columbia.	Because	insurance	is	regulated	at	the	state	level,	Snapshot	is	
currently	not	available	in	Alaska,	California,	Hawaii,	and	North	Carolina.	
	
Driving	data	 is	 transmitted	 to	 the	 company	using	 an	on-board	 telematic	device.	
The	device	connects	to	a	car's	Onboard	Diagnostic	(OBD-II)	port	(all	automobiles	
built	after	1996	have	an	OBD-II.)	and	transmits	speed,	time	of	day	and	number	of	
miles	 the	car	 is	driven.	Cars	 that	are	driven	 less	often,	 in	 less	risky	ways	and	at	
less	 risky	 times	 of	 day	 can	 receive	 large	 discounts.	 Progressive	 has	 received	
patents	on	its	methods	and	systems	of	implementing	usage-based	insurance	and	

has	 licensed	 these	 methods	 and	 systems	 to	 other	 companies.	 Progressive	 has	
service	marks	pending	on	the	terms	Pay	As	You	Drive	and	Pay	How	You	Drive.	
	
Allstate.	Allstate	 announced	on	October	8,	2012	 that	 it	 has	 expanded	 its	usage-
based	auto	insurance	product,	Drive	Wise,	to	four	additional	states	including	New	
York	and	New	Jersey.	[51]	As	of	October	2012	Drive	Wise	is	currently	available	in:	
Colorado,	Michigan,	New	 Jersey,	New	York,	Arizona,	 Illinois,	 and	Ohio.	Allstate's	
usage-based	 insurance	 product,	 Drive	Wise,	 gets	 installed	 into	 a	 car's	 onboard			
diagnostic	 port,	 near	 the	 steering	 column	 in	 most	 cars.	 Allstate	 said	 its	 usage-
based	insurance	measures	things	such	as	mileage,	braking,	speed,	and	time	of	day	
when	a	customer	is	driving.	Using	that	data,	Allstate	calculates	a	driving	discount	
for	each	customer	using	its	telematics	technology.	
	
One	 of	 the	 big	 advantages	 with	 Drive	 Wise	 is	 that	 it	 can	 constantly	 provide	
feedback	to	the	consumers	for	as	long	as	they	keep	the	device	in	the	car.	Allstate’s	
Drive	Wise	 utilizes	 data	 from	a	monitoring	device	 plugged	 into	 a	 car’s	 onboard	
diagnostic	port.	Of	the	drivers	earning	a	discount,	the	average	savings	is	nearly	14	
percent	per	vehicle.	More	than	10	percent	of	all	new	Allstate	customers	are	opting	
to	participate	in	this	coverage.	
	
Liberty	Mutual	Insurance.	Onboard	Advisor	is	a	commercial	lines	pay-how-you-
drive,	 PHYD,	 or	 "safety-driven"	 insurance	 product	 by	 Liberty	 Mutual	 Agency	
Corporation.	It	offers	up	to	40%	discount	to	commercial	and	private	fleets	based	
on	how	safely	they	actually	drive.	
	
National	General	 Insurance.	National	General	 Insurance	 is	 one	of	 the	 first	 and	
largest	 auto	 insurance	 companies	 to	 institute	 a	 Pay-As-You-Drive	 (PAYD)	
program	in	the	United	States	back	in	2004.	[52]	The	National	General	Insurance	
Low-Mileage	Discount	is	an	innovative	program	offered	to	OnStar	subscribers	in	
34	states,	where	those	who	drive	less	pay	less	on	their	auto	insurance.	This	opt-in	
program	 is	 the	 first	 of	 its	 kind	 [53]	 leveraging	 state-of-the-art	 technology	using	
OnStar	 to	 allow	 customers	 who	 drive	 fewer	 miles	 to	 benefit	 from	 substantial	
savings.	 Eligible	 active	OnStar	 subscribers	 sign	up	 to	 save	on	 their	 premiums	 if	
they	drive	less	than	15,000	miles	annually.	Subscribers	who	drive	even	less	than	
that	can	save	even	more	(up	to	54%).	
	
Under	 the	 program,	 new	 National	 General	 Insurance	 customers	 receive	 an	
automatic	insurance	discount	of	approximately	26	percent	upon	[54]	enrollment	
(existing	OnStar	customers	receive	a	discount	based	on	historical	mileage).	With	
the	 subscriber’s	 permission,	 the	 odometer	 reading	 from	 his	 or	 her	 monthly	
OnStar	 Vehicle	 Diagnostics	 report	 is	 forwarded	 to	 National	 General	 Insurance.	
Based	on	those	readings,	the	company	will	decrease	the	premium	using	discount	
tiers	corresponding	to	miles	driven.	
	
Information	 sent	 from	 OnStar	 to	 National	 General	 Insurance	 pertains	 solely	 to	
mileage,	and	no	additional	data	is	gathered	or	used	for	any	purpose	other	than	to	
help	manage	transportation	costs.	Customers	who	drive	more	than	15,000	miles	
per	year	are	not	penalized	and	all	OnStar	customers	receive	an	insurance	discount	
simply	for	having	an	active	OnStar	subscription.	

2.5			Future	of	UBI	
UBI	 is	 poised	 for	 rapid	 growth	 in	 the	 U.S.	 According	 to	 SMA	 Research	 [2],	
approximately	 36	 percent	 of	 all	 auto	 insurance	 carriers	 are	 expected	 to	 use	
telematics	UBI	by	2020.	Based	on	 a	May	2014	CIPR	 survey	of	 47	U.S.	 state	 and	
territory	 insurance	 departments,	 in	 all	 but	 five	 jurisdictions	 –	 California,	 New	
Mexico,	Puerto	Rico,	Virgin	Islands,	and	Guam	-	insurers	currently	offer	telematics	
UBI	policies.	In	twenty-three	states,	there	are	more	than	five	insurance	companies	
active	 in	 the	 telematics	 UBI	 market.	 The	 CIPR	 survey	 is	 part	 of	 a	 recently	
released	CIPR	 study,	 Usage-Based	 Insurance	 and	 Vehicle	 Telematics:	
Insurance	Market	and	Regulatory	Implications,	on	how	technological	advances	
in	 telematics	 are	 driving	 changes	 in	 the	 insurance	 market	 and	 its	 impact	 on	
insurers.	
	
Telematics-based	UBI	 growth	 is	 being	propelled	by	 technology	 advances,	which	
continue	 to	 substantially	 improve	 the	 cost,	 convenience,	 and	 effectiveness	 of	
using	telematics	devices.	It	is	through	the	use	of	telematics	that	insurers	are	able	
to	 collect	 driving	 data	 that	 better	 enable	 them	 to	 more	 closely	 link	 a	 driver’s	
individual	 risk	 with	 premium.	 Through	 UBI	 programs,	 insurers	 are	 able	 to	
differentiate	 products,	 gain	 competitive	 advantage,	 and	 attract	 low-risk	
policyholders.	 Recognition	 of	 the	 societal	 benefits	 and	 growing	 consumer	
acceptance	of	personal	data	collection	will	only	serve	to	further	increase	demand	
for	telematics-based	UBI	products	in	the	future.	
	

	

	

	

	
	
	

	
	

Chapter	 3	 –	 Detecting	 Driver	 Behavior	 using	 Smartphone	
Sensors	

3.1			Smartphone	Hardware	Sensors	
Sensors	 made	 the	 smartphones	 smart.	 Sensor	 is	 a	 converter	 that	 measures	 a	
physical	quantity	and	converts	it	into	a	signal,	which	can	be	read	by	an	observer	
or	by	an	instrument.	There	are	various	types	of	sensors,	which	are	currently	being	
used	in	analyzing	driver	behavior.	These	sensors	are:	

a) Accelerometer.	An	accelerometer	[5]	is	an	electromechanical	device	that	
will	measure	acceleration	 forces.	These	 forces	may	be	 static	 (z	axis),	 like	
the	constant	force	of	gravity	pulling	at	your	feet,	or	they	could	be	dynamic	
(x,	y	axis)	caused	by	moving	or	vibrating	the	accelerometer.	

b) GPS.	 GPS	 [6]	 is	 a	 satellite	 based	 Navigation	 tracking,	 often	 with	 a	 map	
showing	 where	 you	 have	 been.	 It	 gives	 us	 the	 value	 of	 longitude	 and	
latitude,	which	determines	the	point	of	location	on	earth.	

c) Gyroscope.	Gyroscope	[7]	detects	the	current	orientation	of	the	device,	or	
changes	 in	 the	 orientation	 of	 the	 device.	 	 Orientation	 can	 be	 computed	
from	the	angular	rate	that	is	detected	by	the	gyroscope.	It	basically	works	
on	the	principle	of	angular	momentum	and	 it	 is	expressed	 in	rad/s	on	3-	
axis.	

d) Camera.	
e) Microphone.	
f) Magnetometer.	Magnetometers	 [8]	 are	measurements	 instruments	 used	

for	 two	 general	 purposes-to	 measure	 the	 magnetization	 of	 a	 magnetic	
material	like	a	Ferro	magnet,	or	to	measure	the	magnetic	strength	and	the	
direction	of	the	magnetic	field	at	a	point	in	space.	

3.2			Methods	of	Detecting	Driver	Behavior	
There	 are	 many	 researchers	 who	 have	 tried	 to	 detect	 driving	 behavior	 using	
mobile	phone	sensors.	
	
Singh	 [9]	 et	 al.	 developed	 an	 android	 application,	which	 first	 collects	 data	 from	
accelerometer	sensor	and	GPS	sensor.	Also	collects	data	from	the	microphone	of	
the	 smartphone.	Then	analyzes	 the	data	 and	detects	 rash	driving	events	 (speed	
breaker,	 left	turn,	right	turn,	 left	 lane	change,	right	lane	change,	sudden	braking,	
sudden	acceleration).	Rash	driving	events	are	verified	using		“Ground	Truth”.	Also	
the	data	from	the	accelerometer	are	combined	with	the	data	from	the	microphone	
to	detect	more	rash	driving	events	(lane	change	is	not	accompanied	with	indicator	
sound)	or	traffic	(slow	speed	with	frequent	honking).	
	
Fazeen	[10]	et	al.	developed	an	android	application	for	smartphones	for	detecting	
driver’s	 behavior.	 They	 have	 used	 the	 accelerometer	 sensor	 of	 smartphones	
(which	are	integrated	inside	the	cars)	to	collect	and	detect	various	driver	styles	or	
road	 conditions.	They	have	 analyzed	 the	data	 from	 the	 accelerometer	 sensor	 (x	
axis,	 y	 axis)	 to	measure	 the	 driver’s	 direct	 control	 of	 the	 vehicle	 as	 they	 steer,	
accelerate	 or	 braking.	 We	 can	 detect	 the	 difference	 between	 safe	 and	 sudden	
acceleration/declaration	 because	 safe	 acceleration/declaration	 never	 reach	 a	 g-
force	 of	 more	 than	 +0.3/-0.3	 g.	 	 On	 the	 other	 hand	 sudden	
acceleration/declaration	 reach	 +0.5/-0.5	 g.	 Safe	 left/right	 lane	 change	 never	

reaches	 a	 g-force	 of	 less	 than	 -0.1g/+0.1g	 and	 sudden	 or	 unsafe	 lane	 change	
(left/right)	 reaches	 a	 g-force	 over	 -0.5g/+0.5g.	 The	 results	 of	 the	 experiment	
showed	 us	 that	 the	 best	 phone	 placement	 location	 inside	 the	 car	 is	 the	 center	
console	 of	 the	 car.	 This	 location	 gave	 us	 the	 best	 relative	 data	with	 the	 lowest	
engine	 feedback	 and	 the	 best	 results	 of	 prediction	 driving	 behavior.	 The	
disadvantage	 is	 that	 in	 any	 vehicle	 the	 placement	 of	 the	 smartphone	 can	 be	
anywhere	and	not	only	in	the	center	console.	So	there	should	be	a	mechanism	for	
virtually	re-orienting	the	accelerometer.	Also	 it	was	discovered	that	 the	average	
time	to	complete	a	safe	lane	change	was	75%	longer	than	a	sudden	lane	change.	
	
Chigurupati	[11]	et	al.	proposed	an	android-based	application	to	aware	the	driver	
about	 rash	 driving	 events	 and	 to	 improve	 driver’s	 performance	 with	 feedback.	
The	 application	 uses	 the	 accelerometer	 sensor	 and	 the	 GPS	 sensor	 for	 data	
recording.	Also	uses	the	camera	of	the	smartphone	for	video	recording.	Then	data	
analyzed	to	detect	rash	driving	events.	The	recommended	range	of	accelerating	or	
braking	 (front/rear	 direction,	 x-axis)	 is	 -3g	 to	 +3g.	 The	 recommended	 range	 of	
turning,	swerves	or	lane	change	(left/right	direction,	y-axis)	is	also	-3g	to	+3g	and	
that	 of	 bumps	 or	 road	 anomalies	 (up/down	 direction,	 z-axis)	 is	 -8g	 to	 -11g.	 So	
whenever	 the	 values	 of	 the	 accelerometer	 exceed	 the	 recommended	 values	 it	
would	be	consider	as	a	rash	driving	event.	The	drawback	of	this	system	is	that	it	is	
not	automatic.	There	must	be	an	administrator	to	analyze	the	videos.	
	
Johnson	[12]	et	al.	developed	an	 iOS	application	(they	used	an	 iPhone	4),	which	
predicts	and	characterizes	the	style	of	the	driver	into	normal,	aggressive	or	very	
aggressive.	So	 they	built	a	system,	which	called	MIROD	(Mobile	sensor	platform	
for	 Intelligent	 Recognition	Of	 Aggressive	Driving).	 This	 system	with	 the	 help	 of	
the	application	collects	data	 from	accelerometer,	GPS,	gyroscope,	magnetometer	
and	uses	the	camera	for	video	recording.	All	data	from	multiple	sensors	are	fused	
into	a	single	classifier	based	on	the	Dynamic	Time	Warping	(DTW)	algorithm.	The	
MIROD	system	can	detect	 the	 following	events:	 right	or	 left	 turns	(90°),	U-turns	
(180°),	aggressive	right	or	left	turns	(90°),	aggressive	U-turns	(180°),	aggressive	
acceleration	 or	 braking,	 swerve	 right	 or	 left	 (aggressive	 lane	 change),	 device	
removal	and	excessive	speed.	The	system	can	detect	only	aggressive	events.	Safe	
changes	(for	example	non	aggressive	lane	change)	are	not	being	detected	because	
they	do	not	exert	enough	force	or	rotation	to	the	device.	If	the	system	detect	that	a	
driver’s	style	becomes	aggressive	provides	audible	feedback.		
	
Dai	 [13]	 et	 al.	 have	 proposed	 an	 innovative	mobile	 phone	 based	 system,	which	
detects	 drunk	 driving	 patterns.	 The	 system	 was	 implemented	 on	 Android	 G1	
Phone	 and	 they	used	 the	 accelerometer	 and	 the	orientation	 sensor.	The	 system	
can	 detect	 (throw	windowing	 and	 variation	 thresholding)	 and	 alert	 the	 drivers	
about	3	categories	of	drunk	driving	behaviors.	The	first	category	is	related	to	lane	
position	 maintenance	 problems	 like	 weaving,	 driving,	 swerving	 and	 turning	
abruptly.	The	second	category	is	related	to	speed	control	problems	like	suddenly	
accelerating	or	decelerating,	braking	erratically	and	stopping	inappropriately.	The	
last	category	is	related	to	judgment	and	vigilance	problems	like	driving	with	tires	
on	center	or	lane	marker,	driving	without	headlights	at	night	and	slow	response	
to	traffic	signals.	In	their	experiment	they	have	tested	the	detection	performance	
in	abnormal	curvilinear	movement	and	problem	in	maintaining	speed.	The	result	

of	the	experiment	shows	0%	false	negative	rate	and	0,49%	false	positive	rate	for	
abnormal	 curvilinear	 or	 lane	 changing	 movements.	 The	 result	 also	 shows	 0%	
false	 negative	 and	 2,39%	 false	 positive	 rate	 for	 speed	 control	 problems.	 The	
drawback	of	this	system	is	that	the	set	of	drunk	driving	patterns	were	limited	and	
it	was	difficult	to	distinguish	them	from	safe	and	normal	driving	patterns.	
	
H.Eren	 [14]	 et	 al.	 proposed	 an	 approach	 for	 estimating	 driving	 behavior	 and	
detecting	if	a	dangerous	driving	pattern	is	safe	or	risky	using	smartphone	sensors.	
The	 application	 of	 the	 smartphone	 collects	 data	 from	 accelerometer,	 gyroscope	
and	 magnetometer.	 Analyzing	 the	 sensor’s	 data	 they	 obtain	 the	 speed,	 the	
position	angle	and	the	deflection	from	the	regular	trajectory	of	the	vehicle.	After	
the	collection	and	the	preprocessing	of	the	sensor’s	data	via	smoothing	filter	they	
apply	 the	endpoint	detection	algorithm.	The	endpoint	detection	algorithm	helps	
to	estimate	the	temporal	range	of	the	signal	(detecting	events	like	maneuvers).	If	
they	detect	an	event	they	use	the	Warping	algorithm	(DTW	algorithm)	to	identify	
the	type	of	the	event	overcoming	different	temporal	durations	of	the	same	event	
across	different	 drivers.	 In	 the	 end	 they	 apply	Bayes	Classification	 to	 identify	 if	
the	event	was	a	 safe	event	or	a	 risky	event.	 In	 the	experiment	analyzed	driving	
patterns	of	15	different	drivers.	The	results	of	the	Bayesian	Classification	showed	
that	the	type	of	the	event	and	if	the	driving	style	was	safe	or	not,	has	been	found	
correct	for	the	14	of	the	15	drivers.	
	
Chalermpol	 Saiprasert	 [15]	 et	 al.	 have	 proposed	 a	 high	 efficient	 report	 system	
using	 a	 mobile	 smartphone	 for	 detection	 and	 alert	 of	 dangerous	 over	 speed	
driving.	 	 The	 system	 collects	 stream	of	 data	 from	 the	 smartphone’s	 GPS	 sensor	
and	produces	a	 time	series	of	speed	and	 location	profile	 for	a	given	route.	After	
that	a	speeding	detection	algorithm	is	responsible	of	detecting	whether	a	vehicle	
over	speeding	by	finding	anomalies	 in	speed	profile.	 If	 the	system	detects	that	a	
vehicle	 is	 speeding	can	alert	 in	 real	 time	 the	passengers	of	 the	vehicle.	Also	 the	
system	 has	 the	 ability	 to	 record	 the	 data	 of	 the	 journey	 of	 the	 over	 speeding	
vehicles	 to	 be	 used	 as	 evidence	 in	 case	 a	 passenger	 wants	 to	 make	 a	 report.	
Findings	of	the	experiments	showed	that	that	the	system	identified	correctly	3	out	
of	 4	 cases	 of	 anomalies	 in	 speed	 profile.	 The	 data	 from	 the	 sensors	 of	 the	
smartphones	 are	 the	 same	 accurate	 with	 the	 data	 we	 watch	 in	 the	 car’s	
speedometer.	The	sensitivity	and	the	accuracy	of	the	collected	data	are	affected	by	
the	reception	condition.	Also	smartphones	that	are	from	different	manufacturers	
for	 the	 same	 journey	 and	 the	 same	 stream	 of	 data	 produce	 “a	 fluctuation	 in	
instantaneous	 speed	 measurements	 of	 approximately	 +4km/h	 due	 to	 GPS	
receivers	with	different	capabilities”.	
	
Chuang-Wen	You	[16]	et	al.	developed	the	first	dual	camera	android	application,	
which	uses	data	from	both	cameras	(front	and	back)	of	the	smartphone	to	detect	
and	 alert	 drivers	 to	 dangerous	 driving	 behaviors	 and	 conditions	 inside	 and	
outside	of	the	vehicle.	Except	the	data	from	the	cameras	of	the	smartphone	were	
used	data	of	more	smartphone’s	sensors	 like	GPS,	accelerometer	and	gyroscope.	
For	 the	 detection	 of	 dangerous	 driving	 behaviors	 or	 conditions	 were	 used	
computer	 vision	 and	machine	 learning	 algorithms.	 The	 front	 camera	 is	 used	 to	
monitor	 and	 detect	 whether	 the	 driver	 of	 vehicle	 is	 tired	 or	 distracted.	 This	 is	
conducted	 using	 blink	 detection	 algorithms,	 which	 are	 detecting	 micro-sleep,	

fatigue	 and	 drowsiness.	 The	 back	 camera	 is	 used	 to	 track	 road	 conditions,	 like	
lane	change	condition	and	the	distance	between	cars	to	determine	if	driver’s	car	is	
too	close	to	the	car	in	front.	If	the	system	detects	any	dangerous	driving	behaviors	
or	 conditions	 it	 alerts	 the	driver	with	an	audible	alert	 and	on	 the	 smartphone’s	
screen	 displays	 an	 attention	 icon.	 The	 results	 of	 the	 drowsiness	 detection	
experiment	 showed	 that	 the	 detection	 accuracy	 of	 detecting	 short	 blinks	 is	
88,24%,	the	detection	accuracy	of	detection	long	blinks	is	85,71%	and	the	overall	
accuracy	of	87,21%.	
	
Fadi	Aloul	 [17]	 et	 al.	 developed	 an	 innovative	 automatically	 notification	 system	
that	uses	an	android	based	application	to	detect	and	report	car	accidents	online.	
The	aim	of	this	system	is	to	reduce	fatalities	by	reducing	the	long	response	time	
required	 to	 notify	 emergency	 responders	 about	 traffic	 accident’s	 data.	 The	
application	 collects	 data	 from	 the	 accelerometer	 sensor	 of	 the	 smartphone	 and	
then	 data	 analyzed	 using	 a	 Dynamic	 Time	Warping	 (DTW)	 algorithm.	 After	 the	
data	 analysis,	 if	 there	 is	 an	 accident,	 the	 system	 detects	 the	 severity	 of	 the	
accident	and	the	location	of	the	accident	using	smartphone’s	GPS	sensor.	Also	the	
system	 notifies	 police,	 first	 responders	 and	 registered	 emergency	 contact	
(sending	 an	 SMS)	 of	 the	 user’s	 personal	 information	 (name,	 blood	 type,	 phone	
numbers	 of	 individuals	 etc.),	 the	 location	 and	 the	 severity	 of	 the	 accident.	
Findings	of	the	experiments,	testing	the	Dynamic	time	warping	(DTW)	algorithm	
showed	that	DTW	algorithm	has	predict	23	out	of	25	non-accident	cases	and	all	
the	 75	 accident	 cases	 correctly.	 	 Also	 the	 experiment	 showed	 that	 the	 overall	
performance	of	the	DTW	algorithm	in	distinguishing	an	accident	state	and	a	non-
accident	state	has	98%	accuracy.	
	
Nidhi	Kalra	[18]	et	al.	developed	an	android-based	application,	which	collects	data	
from	accelerometer	 sensor	and	 then	data	analyzed	 to	detect	patterns	of	driving	
events	 and	 road	 conditions.	 The	 collected	 data	 is	 raw	 values	 of	 x,y,z	 axis	 of	
accelerometer	 sensor.	 After	 the	 collection,	 the	 raw	 values	 have	 some	 problems	
(wide	range,	data	is	noisy,	etc.)	so	they	need	some	preprocessing.	Then	gradient	
data	 analyzed	 to	 detect	 driving	 events	 or	 road	 anomalies.	 The	 recommended	
range	 of	 normal	 braking	 (in	 negative	 direction,	 y-axis)	 and	 sudden	 braking	 (in	
negative	direction,	y-axis)	is	-1g	to	-3g	and	<-3g	respectively.	The	recommended	
range	 of	 sudden	 forward	 acceleration	 (in	 positive	 direction,	 y-axis)	 is	 >3g.	 The	
recommended	range	of	 left	turn	(in	negative	direction,	x-axis)	and	right	turn	(in	
positive	 direction,	 x-axis)	 is	 <-1g	 and	 >1g	 respectively.	 Also	 the	 recommended	
range	of	pothole	(change	in	value	from	positive	to	negative,	z-axis),	bump	(change	
in	value	from	positive	to	negative,	z-axis)	and	rough	road	(change	in	value	from	
positive	to	negative,	z-axis)	is	±1.5g.	
	
Jin-Hyuk	Hong	[19]	et	al.	have	proposed	an	in-vehicle	sensing	platform	that	uses	
android	smartphone’s	sensors	and	2	other	externals	sensors,	a	Bluetooth	–based	
on	board	diagnostic	 reader	 (OBD2)	and	an	 internal	measurement	Unit	 (IMU)	 to	
predict	aggressive	driving	style.	The	platform	with	the	help	of	the	sensors	collects	
data	during	driving	 (speed,	 acceleration,	deceleration)	 and	 then	apply	machine-
learning	 techniques	with	a	number	of	driving	related	 features	 for	an	automated	
assessment	 of	 driving	 style.	 The	 OBD2	 reads	 data	 from	 the	 vehicle	 like	 engine	
RPM,	throttle	position	and	vehicle	speed.	The	IMU	attached	to	the	upper	back	of	

the	 steering	 wheel	 and	 captures	 the	 wheel	 movement	 using	 accelerometer,	
gyroscope	 and	 compass	 sensors.	 The	 findings	 of	 the	 experiment	 (driving	 data	
collection	 of	 22	 participants	 for	 3	 weeks)	 showed	 that	 the	 performance	 of	 the	
driver	 models,	 which	 are	 built	 using	 ML	 techniques	 in	 distinguishing	 an	
aggressive	style	and	a	non-aggressive	style,	has	90.5%	accuracy	for	violation-class	
and	81%	accuracy	for	questionnaire-class.	
	
Johannes	 Paefgen	 [20]	 et	 al.	 have	 evaluated	 a	 mobile	 application	 for	 the	
assessment	 of	 driving	 behavior	 based	 on	 in-vehicle	 driving	 events	 and	 gives	
feedback	to	drivers.	The	implemented	iOS	application	of	the	iPhone	collects	data	
from	 accelerometer,	 gyroscope	 and	 GPS	 sensors	 and	 then	 data	 transported	 to	
calibration	 component,	 determining	 the	3-dimensional	 orientation	of	 the	device	
in	the	vehicle.	The	calibration	functional	component	contributes	to	the	reliability	
and	the	accuracy	of	measurements.	Then	data	sensors	and	calibrated	parameters	
transported	to	trip	recording	component.	During	the	trip	recording	sensor	data	is	
processed	 in	 a	 data-sampling	 component	 to	 detect	 critical	 driving	 event	 in	 real	
time.	Users	can	access	their	data	via	the	trip	management	module.	Also	they	can	
receive	 driving	 feedback	 via	 the	 same	 module	 and	 share	 their	 performance	 to	
social	 networks.	 In	 their	 experiment	 78	 participants	 drove	 a	 vehicle	 for	 45	
minutes	while	the	application	was	running.	For	the	evaluation	of	the	performance	
of	 the	 application,	 they	 installed	 inside	 the	 vehicle	 a	 dedicated	 off	 the	 shelf	
sensing	 system,	 which	 records	 reference	 data.	 Findings	 of	 the	 comparison	 of	
critical	driving	events	generated	by	a	smartphone	with	reference	measurements	
from	 a	 vehicle	 fixed	 IMU	 showed	 that	 the	measurements	 from	 the	 smartphone	
tend	to	overestimate	critical	driving	events.	Responsible	for	that	is	the	deviation	
from	the	calibrated	initial	device	pose.	The	limitation	of	this	work	is	that	only	one	
model	was	used	and	 threshold	values	were	very	 low	 to	 achieve	high-resolution	
model.	
	
Magana	 [46]	uses	 the	 light	 sensor	 in	 the	phone	 to	obtain	 information	about	 the	
environment	 in	which	 the	 car	 is	moving,	 because	 the	brightness	directly	 affects	
the	 visibility	 of	 the	 driver	 and	 this	 influences	 his	 anticipation.	 Another	 novel	
method	in	the	work	of	Magana	is	the	weather	information	involved	in	estimating	
the	driving	behavior.	This	information	is	obtained	from	the	Internet	connection	of	
the	smartphone.		
	
Araujo	et	al.	 [47]	present	a	smartphone	application,	which	uses	 the	 information	
from	the	embedded	sensors	and	the	vehicles	state	information	acquired	from	the	
vehicles	CAN	bus	(speed,	fuel	consumption,	GPS,	etc.).	The	gathered	data	is	passed	
to	 a	 fuzzy-based	 module,	 which	 analyzes	 the	 data	 and	 classifies	 it	 and	 then	 a	
suggestion	 is	 presented	 to	 the	 driver	 how	 to	 optimize	 the	 fuel	 energy	
consumption/driving	behavior.		
	
Murphey	et.	al	[48]	propose	to	categorize	the	different	driving	styles	according	to	
the	 measure	 how	 fast	 the	 driver	 accelerates	 and	 decelerates.	 The	 developed	
algorithm	 extracts	 jerk	 features	 from	 the	 current	 vehicle	 speed	 within	 a	 short	
time-window,	and	classifies	the	current	driving	style	into	three	categories:	calm,	
normal	and	aggressive,	by	comparing	the	extracted	jerk	feature	with	the	statistics	
of	the	driver	styles	on	the	current	roadway.		

Chapter	4	–	Calibration	of	device	
	

4.1			Vehicle	Coordinate	System		
In	order	to	determine	driver’s	behavior,	we	need	to	find,	how	the	vehicle	is	acting.	
To	be	 able	 to	 determine	how	 the	 vehicle	 is	 acting	we	have	 to	 collect	 data	 from	
smartphone’s	 sensors.	 So	 the	 smartphone’s	 collected	 data	 will	 represent	 the	
behavior	of	the	vehicle.	In	different	positions	and	orientations	of	the	device	inside	
the	 vehicle	 we	 get	 different	 values.	 In	 order	 to	 get	 always	 a	 specific	 range	 of	
orientation	 and	 acceleration	 values	 we	 have	 to	 attach	 our	 device	 in	 a	 fixed	
position	(before	monitoring	and	during	our	trip)	and	to	equate	the	sensor’s	axes	
with	 the	 vehicle	 axes.	 This	 equation	 is	 done	 with	 calibration	 process,	 by	
reorienting	smartphone’s	sensor’s	axes	according	to	vehicle	axes.	So	vehicle	and	
device	will	have	a	common	coordinate	system,	which	is	the	coordinate	system	of	
the	vehicle.	We	can	see	the	3-axes	of	the	vehicle	coordinate	system	in	the	figure	
below.	
	
	

	
Figure	1	-	Axis	of	Vehicle	Coordinate	System	

	
	

4.2			Calibration	
The	axes	of	the	vehicle	and	the	axes	of	the	smartphone	or	tablet	are	different	each	
other	as	it	could	be	seen	in	the	figure	above.	In	order	to	get	accurate	(acceleration	
or	orientation)	data,	 in	each	orientation	 in	which	the	device	 is	placed	 inside	the	
car,	we	have	to	reorient	its	axes	relative	to	the	vehicle’s	axes.	
	
Calibrating	[21]	the	device	relative	to	the	vehicle	means	that	we	have	to	rotate	the	
sensor’s	axes	in	order	to	be	the	same	with	the	vehicle’s	axes.	So	we	have	to	find	
the	 rotation	angles	 roll,	pitch	and	yaw.	The	calibration	process	 (figure	3)	of	 the	
device	 is	 carried	out	 in	3	 steps	and	we	 insure	 the	 independence	of	 the	 sensor’s	
data	from	the	orientation	in	the	car	and	the	device’s	position.		

	
Figure	2	-	Illustration	of	the	calibration	angles	

	
During	the	first	step	the	vehicle	must	be	motionless.	In	the	first	step	we	have	to	
calculate	the	roll	and	pitch	rotation	angle	according	to	the	vehicle’s	level.	The	roll	
and	 pitch	 angle	 are	 calculated	 with	 the	 use	 of	 the	 atan2	 function	 [22]	 which	
measures	 the	 angle	 between	 two	 given	 points.	 To	 calculate	 the	 rotation	 angle	
between	 two	 axes	 we	 see	 the	 accelerometer	 or	 sensor	 fusion	 data	 as	 polar	
coordinates	provided	to	the	atan2	function.	Below	we	can	see	the	equations	witch	
we	use	to	calculate	the	roll	and	pitch	angle.	
	

		
roll = 2*arctan(sensorVector[2]

sensorVector[0]+ sensorVector[0]2 + sensorVector[2]2
)

	
	
Then	 we	 calculate	 the	 XY	 magnitude	 offset	 using	 the	 rotated	 sensor	 data	
(according	 to	 roll	 and	 pitch	 angles	 computed	 before)	 which	 is	 the	 average	
magnitude	(30	samples)	between	X	and	Y	axis,	in	order	to	check	if	the	vehicle	is	in	
motion.	 If	 the	magnitude	 value	 is	 relatively	 the	 same	 value	 as	 the	 last	 one,	 the	
vehicle	 is	not	 in	motion	and	the	magnitude	is	added	to	a	buffer	and	a	counter	is	
incremented.		

	
	

	

	
If	the	vehicle	is	in	motion	we	have	to	restart	the	calibration	process.		
	
In	the	second	step	the	driver	must	start	driving	forward	in	order	to	calculate	the	
yaw	 rotation	 angle.	 The	 yaw	 angle	 is	 the	 angle	 of	 the	 driving	 direction	 of	 the	
vehicle.	 First	we	 calculate	 the	 driving	 direction	magnitude	with	 the	 help	 of	 the	
following	equation:	

	
If	 the	 driving	 direction	 magnitude	 is	 greater	 than	 a	 determined	 threshold,	 the	
vehicle	 is	 in	motion	and	we	calculate	some	yaw	angles	using	atan2	function	 like	
before.	

	
	
We	have	to	compute	enough	angles	in	order	to	get	the	right	direction.	If	we	have	
enough	angle	values	we	get	the	average	yaw	angle	and	set	it	as	the	yaw	angle.		
In	the	last	step	we	have	to	update	the	rotation	angles	in	the	module	of	the	sensor	
data	 in	 order	 to	 get	 accurate	 readings.	 The	 rotated	 sensor	 data	 around	 axes	
calculated	with	the	help	of	the	following	equations.	
Rotated	sensor	data	around	y-axis:	

	
	

Rotated	sensor	data	around	x-axis:	
	
	

Rotated	sensor	data	around	z-axis:	
	
	

	

pitch = 2*arctan(sensorVector[2]
sensorVector[1]+ sensorVector[1]2 + sensorVector[2]2

)

magnitude = rotatedSensorVector[0]2 + rotatedSensorVector[1]2

buffer = buffer +magnitude
counter = counter +1

xyMagnitudeOffset = buffer
counter

drivingDirectionMagnitude = rotatedSensorVector[0]2 − rotatedSensorVector[1]2 − xyMagnitudeOffset

yaw = 2*arctan(sensorVector[0]
sensorVector[1]+ sensorVector[1]2 + sensorVector[0]2

)

sensorData[0]= sensorData[0]*cos(roll)+ sensorData[2]*sin(roll)
sensorData[2]= sensorData[0]*cos(roll)− sensorData[2]*sin(roll)

sensorData[1]= sensorData[1]*cos(pitch)+ sensorData[2]*sin(pitch)
sensorData[2]= sensorData[1]*cos(pitch)− sensorData[2]*sin(pitch)

sensorData[0]= sensorData[0]*cos(yaw)+ sensorData[1]*sin(yaw)
sensorData[1]= sensorData[0]*cos(yaw)− sensorData[1]*sin(yaw)

	
Figure	3	-	Flow	of	the	calibration	process	

	
	
	

Chapter	5	–	Orientation	Data	via	Sensor	Fusion	method	
	
The	best	method	to	determine	the	orientation	of	a	device	(smartphone	or	tablet)	
is	sensor	fusion	[23].	This	method	combines	data	from	3	sensors	(accelerometer,	
magnetometer	 and	 gyroscope)	 in	 order	 to	 get	 the	 three	 orientation	 angles.	We	
could	 get	 these	 three	 angles	 either	 using	 data	 only	 from	 accelerometer	 and	
magnetometer	 or	 using	 data	 only	 from	 gyroscope.	 However	 both	 ways	 doesn’t	
work	accurately.	
	
Using	the	first	way	to	get	the	orientation	of	the	device	(determine	the	direction	of	
magnetic	north	and	south),	the	accelerometer	will	provide	the	gravity	vector	(we	
can	 calculate	 the	 pitch	 and	 roll	 angles)	 and	 the	 magnetometer	 will	 work	 as	 a	
compass	 (we	can	calculate	 the	azimuth	angle).	 	Both	output	data	of	 sensors	are	
inaccurate	 and	 noisy,	 especially	 the	 magnetometer’s	 output	 data	 (low	 reaction	
time).	
	
Using	the	gyroscope	of	the	device	we	can	get	accurate	data	very	fast	(with	short	
response	 time).	 The	 output	 data	 of	 the	 gyroscope	 provide	 the	 angular	 velocity	
speed	for	each	axis.	By	multiplying	these	angular	velocity	measurements	with	the	
time	interval	between	the	last	and	the	current	gyroscope	output	data,	we	get	the	
orientation	angles	of	the	device	because	we	have	a	rotation	increment.	The	main	
disadvantage	of	 this	way	 is	gyro	drift,	which	 is	a	slow	rotation	of	 the	calculated	
orientation.	Gyro	drift	 is	 caused	of	 small	 errors,	 in	 each	 iteration	of	multiplying	
and	adds	up	over	time.		This	leads	to	a	slow	rotation	of	the	calculated	orientation.	
	
So	we	are	going	back	to	say	that	the	right	way	to	get	the	orientation	of	the	device	
is	to	combine	all	the	above-mentioned	sensors.	The	result	of	this	combination	is	
to	avoid	both	noisy	orientation	and	gyro	drift.	With	this	method	counterbalance	
the	 weakness	 of	 the	 one	 sensor	 with	 the	 strength	 of	 the	 other.	 The	 low	 noise	
gyroscope	output	data	is	used	only	for	orientation	changes	in	short	time	intervals.	
The	accelerometer	and	magnetometer	output	data	is	used	as	support	information	
over	 long	 time	 intervals.	 With	 this	 way	 we	 filter	 out	 the	 gyro	 drift,	 with	 the	
accelerometer/magnetometer	 data,	which	 do	 not	 drift	 over	 long	 time	 intervals.	
This	process	is	equivalent	to	high	pass	filtering	of	the	gyroscope	output	data	and	
to	 low	 pass	 filtering	 of	 the	 accelerometer/magnetometer	 output	 data.	 	 This	
configuration	 called	 complementary	 filter.	 In	 the	 figure	 below	 we	 can	 see	 the	
overall	flow	of	sensor	fusion	process.	[24]	
	

	
Figure	4	-	Flow	of	the	Sensor	Fusion	with	complementary	filter	

All	the	sensors	provide	their	output	data	at	constant	time	intervals	and	these	data	
can	 be	 shown	 as	 signals	 in	 a	 graph,	 with	 the	 time	 as	 the	 x-axis.	 The	 low	 pass	
filtering	of	the	accelerometer	and	magnetometer	data	was	done,	by	averaging,	the	
orientation	angle	values	over	 time	within	a	constant	 time	window.	Every	time	a	
new	 accelerometer/magnetometer	 value	 is	 available	 it	 is	 weighted	 with	 a	 low	
pass	 factor	 (1-a)	 and	 added	 to	 the	 absolute	 orientation.	 The	 factor	 (a)	 is	 the	
balance	 factor	 and	 it’s	 equal	 to	 0.98.	 The	 equation	 for	 the	
accelerometer/magnetometer	orientation	is:	
	

	
	
The	high	pass	 filtering	of	 the	gyroscope	data	 is	done	by	replacing,	 the	high	pass	
component	 AccMagOrientation	 with	 the	 corresponding	 gyroscope	 orientation	
data.	Thus	we	have	the	final	sensor	fusion	orientation,	which	is:	
	

	
	
In	 the	 figure	below	we	 can	 see	 the	 intermediate	 signals	 in	 the	 filtering	process,	
when	a	device	 is	 turned	90	degrees	 in	a	direction	and	after	a	short	 time	 turned	
back	to	its	initial	position.	We	can	see	the	gyro	drift	in	the	gyroscope	output	data	
due	to	the	small	irregularities	in	the	original	angular	speed.	These	deviations	add	
up	during	the	integration	and	cause	an	additional	slow	rotation	of	the	gyroscope-
based	orientation.	[25]	
	

	
Figure	5	-	Intermediate	signals	in	the	filtering	process	when	we	assuming	that	the	device	is	turned	90	
degrees	in	one	direction	and	after	a	short	time	turned	back	to	its	initial	position.	

	
	

a = 0.98
AccMagOrientation = a*AccMagOrientation + (1− a)*newAccMagOrientation

SensorFusionOrientation = a*GyroscopeOrientation + (1− a)*AccMagOrientation

Chapter	6	–	Detection	Methods	&	Testing	
	
For	 the	 detection	 of	 the	 driving	 behavior	 of	 the	 driver,	 we	 use	 2	 different	
methods.	 	 In	 the	 first	 detection	 method	 we	 use	 the	 output	 data	 of	 the	
accelerometer	 sensor.	Collecting	 and	evaluating	 the	values	of	 the	 accelerometer	
sensor	we	can	detect	how	the	user	drives.	 In	 the	second	method	we	collect	and	
analyze	 the	orientation	values,	which	we	obtain	with	sensor	 fusion	discussed	 in	
the	previous	chapter.		
	
The	 thresholds	 acquired	 from	 the	 analysis	 of	 the	 collected	 data	 discussed	 in	
chapters	 6.1	 and	 6.2.	 The	 collected	 (or	 monitored)	 values	 are	 from	 the	
accelerometer	(x	and	y	axis)	and	the	ones	from	the	sensor	fusion	(pitch	and	roll).	
We	 collect	 data	 using	 both	 methods	 during	 normal	 driving	 events	 like	
acceleration,	 turns	and	 lane	changes.	Also	we	collect	data	during	abnormal	rash	
driving	events	and	maneuvers	like	hard	acceleration	or	deceleration,	sharp	turns	
and	sharp	lane	changes.		
	
All	 data	 from	 all	 sensors	 (accelerometer,	 magnetometer,	 gyroscope)	 of	 both	
methods	 is	 run	 separately	 through	 an	 EMA	 (exponential	 Moving	 Average)	
algorithm.	 [26]	This	 algorithm	works	 as	 a	 low	pass	 filter	 and	handles	 the	noise	
from	the	sensors.	We	check	data	(output	data	of	EMA	algorithm)	of	both	methods	
in	 time	 window	 frames	 of	 5	 seconds.	 In	 this	 time	 window	 all	 axis	 data	 of	 the	
accelerometer	and	of	the	sensor	fusion	are	stored	and	analyzed.	In	every	5-second	
window	frame	we	compute	the	minimum	and	the	maximum	value	of	all	axis	data.	
	
The	 collection	 of	 the	 driving	 events	was	 conducted	 in	 areas	where	 there	 is	 not	
traffic	 at	 all.	 Also	 for	 the	 collection	 and	 testing	 of	 data	 were	 used	 3	 different	
devices.	 A	 Samsung	 Galaxy	 tablet	 (2014	 edition),	 a	 Samsung	 Galaxy	 s3	
smartphone	(2013	edition)	and	a	LG	G3	(2014	edition).	 	The	collected	data	from	
the	all	devices	match	each	other.	So	the	sensor’s	output	data	more	or	less	are	the	
same	for	different	devices.	The	device	was	placed	in	a	fixed	position	in	the	central	
console	 of	 the	 vehicle.	 After	 the	 calibration	 and	 while	 monitoring	 you	 cannot	
move	the	device	from	its	fixed	position.	If	the	device	moved	while	monitoring	the	
sensor’s	 output	 data	 will	 be	 wrong	 and	 the	 evaluation	 of	 the	 data	 will	 not	 be	
accurate.	
	
In	 the	 next	 chapters	 and	 for	 both	 detection	methods,	we	 can	 see	which	 sensor	
data	we	use	 to	detect	 for	every	driving	event.	Also	we	can	see	graphs	 for	every	
driving	event	where	the	maneuver	is	clearly	distinguished.	
	

6.1			Detection	Method	using	Accelerometer	Data		
In	 this	method	we	have	used	 the	 three-axis	accelerometer	sensor	 to	 record	and	
analyze	various	driving	events	and	driver’s	behavior.	We	have	utilized	x-	axis	data	
to	detect	 the	 left/right	direction	of	 the	vehicle	and	 therefore	driving	events	 like	
safe	or	sharp	turns	and	safe	or	sharp	lane	changes.	For	the	detection	of	front/rear	
direction	of	vehicle	and	therefore	to	measure	how	the	driver	accelerate	and	apply	
the	brakes	we	have	utilized	y-axis	data.			
	

After	 collecting	 and	 analyzing	 our	 data	 we	 determined	 the	 threshold	 values	 of	
various	 events	 and	 maneuvers.	 Acceleration	 or	 deceleration	 of	 the	 vehicle	 is	
determined	by	the	change	in	acceleration	in	y-axis.	Safe	acceleration	is	considered	
when	the	y-axis	value	is	between	1.3	m/s2	and	2.5	m/s2.	When	the	value	is	more	
than	 2.5	 m/s2	 it	 is	 considered	 as	 hard	 (sudden)	 acceleration.	 Similar	 to	
acceleration,	it	is	considered	safe	deceleration	(normal	braking)	when	we	have	a	
value	between	-1.3	m/s2	and	-2.5	m/s2.	When	the	y-axis	value	is	lower	than	-2.5	
m/s2	it	is	considered	as	hard	deceleration	(sudden	braking).	In	the	following	table	
and	graphs	we	can	see	the	thresholds	and	patterns	for	acceleration/deceleration	
driving	event.	
	
Table	1	-	Thresholds	and	Data	used	for	the	detection	of	a	Safe/Hard	-	Acceleration/Deceleration	using	
accelerometer's	data.	

Driving	event	 Data	used	for	detection	 Threshold	
Safe	Acceleration	 	Y-axis	data		 1.3	m/s2	to	2.5	m/s2	
Hard	Acceleration	 	Y-axis	data	 >	2.5	m/s2	
Safe	Deceleration	 	Y-axis	data	 -1.3	m/s2	to	-2.5	m/s2	
Hard	Deceleration	 	Y-axis	data	 <	-2.5	m/s2	
	

	
Figure	6	-	Safe	Acceleration	pattern	and	then	a	hard	acceleration	pattern.	

	

	
Figure	7	-	Safe	Deceleration	pattern	and	then	a	hard	deceleration	pattern	

	
Left	or	right	 turn	 is	determined	by	 the	change	 in	acceleration	 in	x-axis.	Safe	 left	
turn	 is	 considered	when	we	have	 x-axis	 value	 between	 -1.8	m/s2	 and	 -3	m/	 s2.	

Whenever	the	accelerometer	x-axis	value	exceeds	the	upper	safe	limit	(-3	m/s2),	it	
would	be	considered	as	sharp	 left	 turn.	Similar	 to	 left	 turn,	we	have	considered	
safe	right	turn	when	the	acceleration	in	x-axis	has	value	from	1.8	m/s^2	to	3	m/s2	
and	sharp	right	turn	when	the	value	exceeds	the	upper	safe	limit	(3	m/s2).	In	the	
following	table	and	graphs	we	can	see	the	thresholds	and	patterns	for	safe/sharp	
left/right	turn	driving	event.	
	
	
	
Table	 2	 -	 Thresholds	 and	 data	 used	 for	 the	 detection	 of	 a	 Safe/Sharp	 -	 Left/Right	 Turn	 using	
accelerometer’s	data.	

Driving	event	 Data	used	for	detection	 Threshold	
Safe	Left	Turn	 	X-axis	data		 -1.8	m/s2	to	-3.0	m/s2	
Sharp	Left	Turn	 	X-axis	data	 <	-3.0	m/s2	 	
Safe	Right	Turn	 	X-axis	data	 1.8	m/s2	to	3.0	m/s2	
Sharp	Right	Turn	 	X-axis	data	 >	3.0	m/s2	
	

	
Figure	8	-	Safe	Left	Turn	pattern	and	then	a	Sharp	Left	Turn	pattern.	

	

	
Figure	9	-	Safe	Right	Turn	pattern	and	then	a	Sharp	Right	Turn	pattern.	

	
A	 lane	change	also	 is	determined	by	 the	change	 in	acceleration	 in	x-axis	and	by	
the	 number	 and	 the	 type	 of	 turns	 in	 a	 specific	 time.	 	 Safe	 right	 lane	 change	 is	
considered	when	we	have	a	safe	right	turn	and	in	the	next	2-second	time	window	
frame	we	 have	 a	 safe	 left	 turn.	 Safe	 left	 lane	 change	 is	 considered	when	 in	 a	 2	

second	time	window	occurred	two	safe	turns.	The	first	must	be	safe	left	turn	and	
the	second,	safe	right	turn.	On	the	other	hand,	 in	the	case	of	sharp	 lane	changes	
we	have	2	cases.		In	the	first	case	one	of	the	turns	must	be	sharp	and	in	the	second	
case	both	of	them	must	be	sharp.	For	example	we	have	a	sharp	right	lane	change	
when	 occurred	 2	 turns	 (the	 first	 right	 and	 the	 second	 left)	 in	 a	 2	 second	 time	
window	and	the	first	turn	is	a	safe	turn	and	the	second	a	sharp	turn	or	the	first	
turn	 is	 sharp	 and	 the	 second	 is	 safe	 turn.	 Also	 a	 sharp	 right	 lane	 change	
considered	when	both	of	the	turns	are	sharp,	the	first	one	is	sharp	right	turn	and	
second	one	is	sharp	left	turn.	
	
In	the	graphs	we	can	see	the	thresholds	and	patterns	for	safe/sharp	lane	change	
driving	event.	
	
	

	
Figure	10	-	Safe	Right	Lane	Change	pattern	and	then	a	Sharp	Right	Lane	Change	Pattern.	

	

	
Figure	11	-	Safe	Left	Lane	Change	pattern	and	then	a	Sharp	Left	Lane	Change	pattern.	

	
	

6.2			Detection	Method	using	Sensor	Fusion	Orientation	Data	
In	 this	 method	 we	 have	 used	 the	 three-axis	 orientation	 output	 data	 of	 sensor	
fusion	 in	 order	 to	 collect	 and	 analyze	 various	 driving	 events.	 Orientation	 is	
defined	 as	 a	 combination	 of	 three	 angular	 quantities:	 azimuth,	 pitch	 and	 roll.	

These	 three	 quantities	 are	 defined	 based	 on	 3-axis.	 The	 positive	 X-axis	 extends	
out	of	the	right	side	of	the	car,	positive	Y-axis	extends	out	of	the	front	side	of	the	
car	and	the	positive	Z-axis	extends	out	of	the	topside	of	the	car.	Azimuth	is	angle	
between	 the	positive	Y-axis	 and	magnetic	north	and	 its	 range	 is	between	0	and	
360	degrees.	Positive	roll	is	defined	when	the	car	starts	by	laying	flat	on	the	road	
and	the	positive	Z-axis	begins	to	tilt	towards	the	positive	X-axis.	Positive	pitch	is	
defined	 when	 the	 car	 starts	 by	 laying	 flat	 on	 the	 road	 and	 the	 positive	 Z-axis	
begins	to	tilt	towards	the	positive	Y-axis.	
	
We	 have	 utilized	 roll	 data	 to	 detect	 the	 left/right	 direction	 of	 the	 vehicle	 and	
therefore	driving	events	 like	safe	or	sharp	turns	and	safe	or	sharp	lane	changes.	
For	the	detection	of	front/rear	direction	of	vehicle	and	therefore	to	measure	how	
the	driver	accelerate	and	apply	the	brakes	we	have	utilized	pitch	data.			
	
After	 collecting	 and	 analyzing	 our	 data	 we	 determined	 the	 threshold	 values	 of	
various	 events	 and	 maneuvers.	 Acceleration	 or	 deceleration	 of	 the	 vehicle	 is	
determined	 by	 the	 change	 in	 orientation	 in	 pitch	 angle.	 Safe	 acceleration	 is	
considered	when	 the	pitch	 value	 is	 between	 -0.08	 rad/s	 and	 -0.12	 rad/s.	When	
the	value	 is	 less	 than	 -0.12	rad/s	 it	 is	considered	as	hard	(sudden)	acceleration.	
Similar	to	acceleration,	it	 is	considered	safe	deceleration	(normal	braking)	when	
we	 have	 a	 value	 between	 0.08	 rad/s	 and	 0.12	 rad/s.	 When	 the	 pitch	 value	 is	
higher	than	0.12	rad/s	it	is	considered	as	hard	deceleration	(sudden	braking).	In	
the	 following	 table	 and	 graphs	 we	 can	 see	 the	 thresholds	 and	 patterns	 for	
acceleration/deceleration	driving	event	of	sensor	fusion	method.	
	
Table	3	-	Thresholds	and	Data	used	for	the	detection	of	a	Safe/Hard	-	Acceleration/Deceleration	using	
orientation	data	of	Sensor	fusion	method.	

Driving	event	 Data	used	for	detection	 Threshold	
Safe	Acceleration	 	Pitch	angle	 -0.08	to	-0.12	rad/s	
Hard	Acceleration	 	Pitch	angle		 <	-0.12	rad/s	
Safe	Deceleration	 	Pitch	angle	 	0.08	to	0.12	rad/s	
Hard	Deceleration	 	Pitch	angle	 >	0.12	rad/s	
	

	
Figure	12	-	Two	safe	acceleration	patterns	and	then	a	hard	acceleration	pattern.	

	

	
Figure	13	-	A	safe	deceleration	pattern	and	the	a	hard	deceleration	pattern.	

	
Left	or	right	turn	is	determined	by	the	change	in	orientation	in	roll	angle.	Safe	left	
turn	 is	 considered	 when	 the	 roll	 value	 is	 between	 0.10	 rad/s	 and	 0.30	 rad/s.	
Whenever	 the	 roll	 value	 exceeds	 the	 upper	 safe	 limit	 (0.30	 rad/s),	 it	would	 be	
considered	as	sharp	 left	 turn.	Similar	 to	 left	 turn,	we	have	considered	safe	right	
turn	when	the	roll	angle	has	value	from	-0.10	rad/s	to	-0.30	rad/s	and	sharp	right	
turn	when	 the	value	exceeds	 the	upper	safe	 limit	 (-0.30	rad/s).	 In	 the	 following	
table	and	graphs	we	can	see	the	thresholds	and	patterns	for	safe/sharp	left/right	
turn	driving	event	of	sensor	fusion	method.	
	
Table	 4	 -	 Thresholds	 and	 Data	 used	 for	 the	 detection	 of	 a	 Safe/Sharp	 -	 Left/Right	 Turn	 using	
orientation	data	of	the	sensor	fusion	method.	

Driving	event	 Data	used	for	detection	 Threshold	
Safe	Left	Turn	 Roll	angle	 0.10	to	0.30	rad/s	
Sharp	Left	Turn	 Roll	angle	 >	0.30	rad/s	
Safe	Right	Turn	 Roll	angle	 	-0.10	to	-0.30	rad/s	
Sharp	Right	Turn	 Roll	angle	 <	-0.30	rad/s	
	
	

	
Figure	14	-	A	Safe	Left	Turn	pattern	and	then	a	Sharp	Left	Turn	pattern	

	

	
Figure	15	-	A	Safe	Right	Turn	pattern	and	then	a	Sharp	Right	Turn	pattern.	

	
In	case	we	want	to	detect	safe	and	sharp	lane	changes	using	orientation	data,	the	
philosophy	and	the	methodology	is	the	same	as	in	the	previous	method,	detection	
using	 accelerometer	data.	A	 lane	 change	 also	 is	 determined	by	 the	number	 and	
the	type	of	turns	in	a	specific	time.		Safe	right	lane	change	is	considered	when	we	
have	a	safe	right	turn	and	in	the	next	2-second	time	window	frame	we	have	a	safe	
left	 turn.	 Safe	 left	 lane	 change	 is	 considered	when	 in	 a	 2	 second	 time	window	
occurred	two	safe	turns.	The	first	must	be	safe	left	turn	and	the	second,	safe	right	
turn.	On	the	other	hand,	in	the	case	of	sharp	lane	changes	we	have	2	cases.		In	the	
first	case	one	of	the	turns	must	be	sharp	and	in	the	second	case	both	of	them	must	
be	sharp.	For	example	we	have	a	sharp	right	lane	change	when	occurred	2	turns	
(the	first	right	and	the	second	left)	in	a	2	second	time	window	and	the	first	turn	is	
a	safe	turn	and	the	second	a	sharp	turn	or	the	first	turn	is	sharp	and	the	second	is	
safe	 turn.	Also	a	sharp	right	 lane	change	considered	when	both	of	 the	 turns	are	
sharp,	the	first	one	is	sharp	right	turn	and	second	one	is	sharp	left	turn.	
	
In	the	graphs	we	can	see	the	thresholds	and	patterns	for	safe/sharp	lane	change	
driving	event.	

	
Figure	16	-	A	Safe	Right	Lane	Change	Pattern.	

	

	
Figure	17	-	A	Sharp	Left	Lane	Change	pattern.	

	

6.3			Driver	Behavior	Detection	Algorithm	
Our	 algorithm	 characterizes	 the	 behavior	 of	 the	 driver	 as	 Excellent,	 Very	Good,	
Good,	Bad	or	Very	Bad	and	computes	the	average	speed	of	the	vehicle	at	the	end	of	
every	trip.	
	
Our	 algorithm	 for	 the	 detection	 of	 driver	 behavior	 uses	 two	 types	 of	 data.	 The	
acceleration	output	data	of	 the	accelerometer	sensor	and	the	orientation	output	
data	of	the	sensor	fusion	method.	We	can	detect	the	behavior	of	the	driver	using	
either	 acceleration	 data,	 either	 orientation	 data.	 The	 driver	 can	 choose	 which	
detection	method	will	be	used	for	the	detection	of	his	behavior.	It	can	be	choosed	
only	one	method	(type	of	data).		The	driver	behavior	detection	algorithm	doesn’t	
work,	with	the	use	of	both	data	types	at	the	same	time.	
	
After	 we	 choose	 detection	 method,	 the	 algorithm	 analyzes	 the	 behavior	 of	 the	
driver	based	on	 thresholds	of	detection	data.	 	These	 thresholds	are	acquired	by	
testing	 the	 data	 of	 the	 detection	 methods	 under	 various	 driving	 events	 and	
maneuvers.	 	 Detection	methods	 and	 testing	 is	 discussed	 in	 the	 chapter	 6.	With	
these	thresholds	we	can	distinguish	and	detect	12	driving	events.	Six	of	them	are	
safe	 driving	 events	 and	 the	 other	 six	 are	 dangerous	 driving	 events.	 The	 safe	
events	are:	Safe	Acceleration,	Safe	Deceleration,	Safe	Left	Turn,	Safe	Right	Turn,	
Safe	 Left	 Lane	 Change	 and	 Safe	 Right	 Lane	 Change.	 The	 dangerous	 events	 are:	
Hard	Acceleration,	Hard	Deceleration,	 Sharp	Left	Turn,	 Sharp	Right	Turn,	 Sharp	
Left	Lange	Change	and	Sharp	Right	Lane	Change.	
	
Our	 algorithm	 for	 the	detection	of	 the	driver’s	behavior,	works	 in	 time	window	
frames	of	5	 seconds.	 In	 these	5	 seconds	all	data	 (3-axis	values)	of	 the	detection	
method	(accelerometer	or	sensor	 fusion	data)	are	stored	 in	a	 list.	 In	every	 time	
window	 frame,	new	values	are	 inserted	 in	 the	 list	and	 the	same	 time	 the	oldest	
values	are	removed	from	the	same	list.	 	Then	we	check	every	data	(3-axis	value)	
of	the	list.	 If	the	current	value,	used	for	the	detection	of	maneuvers	is	below	the	
threshold	 of	 safe	 driving	 events,	 means	 that	 none	 of	 various	 maneuvers	 the	
system	 can	 detect	 is	 happening.	 When	 the	 current	 value	 is	 bigger	 than	 the	
threshold	 for	safe	driving	events	and	below	the	threshold	 for	dangerous	driving	
events	 means	 that,	 one	 of	 the	 safe-driving	 events	 is	 happening.	 At	 last	 if	 the	

monitored	current	value	exceeds	the	threshold	for	a	dangerous	maneuver	means	
that	we	have	a	dangerous	situation	like	sharp	right	turn.		
	
In	 case	 of	 Lane	 Changes	 the	 algorithm	 checks	 if	 in	 time	 window	 frame	 of	 2	
seconds	have	occurred	two	turns.	One	left	and	one	right	or	the	opposite.	If	one	of	
them	turns	or	both	of	are	sharp	turns,	which	means	that	 the	value,	used	 for	 the	
turn	detection	of	the	car	is	higher	than	the	threshold	for	a	dangerous	turn,	a	sharp	
lane	 changing	 is	happening.	On	 the	other	hand	 if	 both	of	 them	are	 safe	 turns,	 a	
safe	 lane	 changing	 is	 happening.	 If	 the	 first	 turn	 is	 left	 turn	we	have	 a	 left	 lane	
change	and	if	it	is	right	we	have	a	right	lane	change.	
	
In	 the	 table	below	we	 can	 see	 the	 summary	 thresholds	of	 both	methods,	which	
used	for	the	detection	of	various	safe	and	dangerous	maneuvers.	
	
Table	5	-	Thresholds	and	Data	Used	for	the	detection	of	various	driving	events	using	accelerometer's	
data	or	sensor	fusion	orientation	data.	

Driving	
Event	

Data	Used	
(Accelerometer)	

Threshold	
	

Data	Used	
(Sensor	
Fusion)	

Threshold	

Safe	
Acceleration	 Y-axis	data	 1.3	m/s2	to	2.5	

m/s2	 Pitch	angle	 -0.08	to	-0.12	
rad/s	

Safe	
Deceleration	 Y-axis	data	 -1.3	m/s2	to		-

2.5	m/s2	 Pitch	angle	 0.08	to	0.12	
rad/s	

Safe	Left	
Turn	 X-axis	data	 -1.8	m/s2	to		-

3.0	m/s2	 Roll	angle	 0.10	to	0.30	
rad/s	

Safe	Right	
Turn	 X-axis	data	 1.8	m/s2	to	3.0	

m/s2	 Roll	angle	 -0.10	to	-0.30	
rad/s	

Hard	
Acceleration	 Y-axis	data	 >	2.5	m/s2	 Pitch	angle	 <	-0.12	rad/s	

Hard	
Deceleration	 Y-axis	data	 <	-2.5	m/s2	 Pitch	angle	 >	0.12	rad/s	

Sharp	Left	
Turn	 X-axis	data	 <	-3.0	m/s2	 Roll	angle	 >	0.30	rad/s	

Sharp	Right	
Turn	 X-axis	data	 >	3.0	m/s2	 Roll	angle	 <	-0.30	rad/s	

	
Every	driving	event	or	maneuver,	that	our	system	can	detect,	has	a	counter.	When	
the	algorithm	detects	that	the	driver	makes	one	of	the	already	talked	maneuvers	
or	 driving	 events,	 the	 counter	 for	 this	 type	 of	 event	 is	 incremented.	 If	 the	
algorithm	 detects	 a	 safe	 driving	 event,	 a	 counter	 for	 this	 driving	 event	 is	
incremented.	 When	 detects	 a	 dangerous	 driving	 event,	 then	 a	 counter	 for	 this	
event	is	incremented	as	well.		
	
When	the	driver	finished	his	trip.	Our	algorithm	computes	the	percentage	of	the	
penalty	 for	 every	 dangerous	 driving	 event.	 The	 computed	 penalties	 are:	 hard	
acceleration	 penalty,	 hard	 deceleration	 penalty,	 sharp	 left	 turn	 penalty,	 sharp	
right	 turn	 penalty,	 sharp	 left	 lane	 change	 penalty	 and	 sharp	 right	 lane	 change	
penalty.		
	
The	equations	for	the	Hard	Acceleration	and	Hard	Deceleration	penalties	are:		
	

	
	

	
	
The	equations	for	the	Sharp	Left	Turn	and	Sharp	Right	Turn	are:	
	

	
	

	
	
The	equations	for	the	Sharp	Left	Lane	Change	and	Sharp	Right	Lane	Change	are:	
	
	

	
	

HardAccelerationPenalty = HardAccelerationCounter
SafeAccelerationCounter + HardAccelerationCounter

HardDecelerationPenalty = HardDecelerationCounter
SafeDecelerationCounter + HardDecelerationCounter

SharpLeftTurnPenalty = SharpLeftTurnCounter
SafeLeftTurnCounter + SharpLeftTurnCounter

SharpRightTurnPenalty = SharpRightTurnCounter
SafeRightTurnCounter + SharpRightTurnCounter

SharpLeftLaneChangePenalty = SharpLeftLaneChangeCounter
SafeLeftLaneChangeCounter + SharpLeftLaneChangeCounter

	
	
	
Using	the	above	penalties	we	can	compute	the	Total	Sharp	Turn	Penalty	and	the	
Total	Sharp	Lane	Change	Penalty	with	the	following	equations:	
	
	

	
	
The	equation	for	the	total	penalty	is:	
	

	
	
Except	 the	 penalties	 at	 the	 end	 of	 the	 trip,	 the	 algorithm	 computes	 the	 driving	
score	 of	 the	 driver.	 The	 total	 score	 depends	 of	 the	 penalties	 of	 the	 dangerous	
driving	events	(Total	Penalty).	The	maximum	score	a	user	can	achieve	is	ten	(10)	
and	the	minimum	is	zero	(0).			
	
The	equation	for	the	computation	of	the	total	score,	achieved	from	the	user	at	the	
end	of	the	trip	is:	
	

	
	
According	 to	 the	 total	 score	 (at	 the	 end	 of	 the	 trip)	 of	 the	 user,	 the	 algorithm	
characterizes	 the	 user	 for	 his	 driving	 behavior	 for	 the	 current	 trip.	 There	 are	
various	 behaviors	 depending	 the	 total	 score	 of	 the	 user.	 The	 behavior	 of	 the	
driver	at	 the	end	of	 the	 trip	 can	be	Excellent,	Very	Good,	Good,	Bad	 or	Very	Bad.	
The	various	driver	behaviors	determined	in	the	table	below.	
	
Table	6	-	Driver	Behavior	categories	based	on	the	total	score	of	the	driver.	

Driving	Behavior	 Total	Score	

Excellent	 Score>9.75	

Very	Good	 9<Score<=9.75	

Good	 7.5<Score<=9	

Bad	 5<Score<=7.5	

Very	Bad	 Score<=5	

SharpRightLaneChangePenalty = SharpRightLaneChangeCounter
SafeRightLaneChangeCounter + SharpRightLaneChangeCounter

SharpTurnPenalty = SharpLeftTurnPenalty + SharpRightTurnPenaly

SharpLaneChangePenalty = SharpLeftLaneChangePenalty + SharpRightLaneChangePenalty

TotalPenalty = HardAccelerationPenalty + HardDecelerationPenalty + HardTurnPenalty + HardLaneChangePenalty

TotalScore = 10 −TotalPenalty

For	the	computation	of	the	average	speed	(avgSpeedKM)	of	the	vehicle	at	the	end	
of	every	trip,	we	have	to	compute	first	the	total	time	(totalHours)	we	were	driving	
and	 the	 total	 distance	 (distanceKM)	we	 traveled.	When	we	 start	 a	 new	 trip	 the	
startTrip()	 function	 is	 called.	 During	 the	 trip,	 the	 total	 distance	 travelled	 is	
computed	inside	the	updateLocation()	function.	This	function	is	called	every	time	
we	 have	 a	 new	 Location	 from	 GPS.	 When	 the	 trip	 is	 finished	 the	 stopTrip()	
function	called	and	the	average	speed	is	computed	by	dividing	the	total	distance	
with	the	total	time.	
	
Below	 we	 can	 see	 the	 functions,	 which	 are	 called	 for	 the	 computation	 of	 the	
average	speed	of	the	vehicle	for	every	trip.	
	
updateLocation(Location	location)		
{	
									//	if	there	is	a	previous	location	
									if	(previousLocation	!=	null)	{	
												//	add	to	the	total	distanceTraveled	
												distanceTraveled	+=	location.distanceTo(previousLocation);	
									}	//	end	if	
								 	
									previousLocation	=	location;	
}		
	
	
startTrip()		
{	
						driving	=	true;	
						startTime	=	System.currentTimeMillis();	//	get	current	time	
						previousLocation	=	null;	//	starting	a	new	trip	
}	
	
	
stopTrip()		
{	
						driving	=	false;	//	just	stopped	tracking	locations	
						MILLISECONDS_PER_HOUR	=	1000	*	60	*	60;	
								
						//	compute	the	total	time	we	were	driving	
						long	milliseconds	=	System.currentTimeMillis()	-	startTime;	
						double	totalHours	=	milliseconds	/	MILLISECONDS_PER_HOUR;	
																
						double	distanceKM	=	distanceTraveled	/	1000.0;	
						double	avgSpeedKM	=	distanceKM	/	totalHours;	
}	
	
	
	
	
	

Chapter	 7	 –	 Information	 System	 of	 Usage-Based	 Auto	
Insurance		
	

7.1			Native	Android	Application	of	Auto	UBI	System	
We	developed	 a	 native	 android-based	 application	 that	 can	 be	 used	 by	 a	 usage-
based	 insurance	 company.	 The	 application	 via	 smartphone’s	 sensors	 can	 detect	
and	 evaluate	 the	 driving	 behavior	 of	 the	 user	 for	 all	 his	 trips.	 All	 trip	 data	 that	
contains	statistics,	 routes	and	graphs	 is	saved	 to	 in	smartphone’s	 local	memory.	
Also	 these	 data	 is	 sent	 to	 a	 company’s	 server,	 where	 can	 be	 accessed	 by	 the	
employees	of	the	company.	The	company	evaluates	the	data	of	all	the	trips	of	the	
user,	whose	payment	to	the	company	is	depending	to	his	average	behavior	and	to	
total	distance	of	his	trips.	In	the	subsections	below	we	can	see	how	the	application	
works,	what	data	are	recorded	and	how	they	presented	to	the	user.	
	

7.1.1			-			Driver’s	Login	and	Registration	System	
After	the	user	installs	and	enters	the	application	in	his	device,	the	first	thing	that	
he	 sees	 is	 a	 login	 system.	 If	 the	 user	 has	 already	 registered	 in	 the	 system,	 by	
entering	his	e-mail	and	password	in	the	respective	fields,	can	be	entered	into	the	
system.	 If	 is	not	 registered	 in	 the	 system,	he	has	 to	 sign	up	by	pressing	 the	 “Be	
better	 driver!	 Sign	 up	 now”	 button.	 In	 the	 registration	 form	 has	 to	 enter	 the	
following	 data:	 Full	 name,	 e-mail,	 password,	 address,	 phone	 number	 and	 the	
vehicle	 license	 plate.	 	When	 the	 user	 completes	 his	 registration	 process	 he	 can	
login	successfully	in	the	system.	In	the	figures	bellow,	we	can	see	the	login	and	the	
registration	screens.	
	

	
Figure	18	-	The	Login	Screen	of	the	application.	

	
Figure	19	-	The	Registration	screen	of	our	application.	

	

7.1.2			-			Main	Menu	 	
When	the	user	successfully	connected,	 the	main	menu	 is	presented.	 In	 the	main	
menu	 there	 are	 4	 options.	 The	 first	 option	 is	 the	 “New	 Trip”.	 We	 choose	 this	
option	when	we	want	to	start	a	new	trip.	The	second	option	is	the	“My	trips”	and	
we	choose	it	when	we	want	o	review	our	trips	(routes	and	statistics).	In	the	third	
option	 there	 are	 our	 settings	 and	 the	 last	 option	 is	 “Help”	 where	 we	 can	 find	
tutorials	and	information	about	how	we	use	the	application.	We	can	see	the	main	
menu	in	the	figure	below.	

	
Figure	20	-	The	Main	Menu	of	our	application.	

	
	

7.1.3			-			New	Trip	
As	already	motioned	above,	we	choose	 the	 “New	Trip”	option	when	we	want	 to	
start	a	new	trip.	Before	we	start	driving	the	application	will	tell	us	to	follow	some	
instructions	for	the	calibration	of	the	device.	We	set	the	calibration	procedure	for	
the	device	 in	order	 to	get	 accurate	 readings	 from	 the	 sensor’s	data	 in	 any	 fixed	
orientation	 of	 the	 device	 inside	 the	 vehicle.	 In	 the	 figure	 below	we	 can	 see	 the	
instructions	for	the	calibration	of	the	device.	

	
Figure	21	-	The	calibration	instructions	screen.	

During	the	calibration	process	the	device	must	be	attached	in	a	fixed	position	and	
the	vehicle	must	be	 still.	The	whole	process	 takes	about	5	 seconds	 to	 complete.	
When	the	signal	is	given	we	start	driving	to	our	destination.	We	can	see	the	given	
signals	in	the	figure	bellow.	
	

	
Figure	22	-		The	given	calibration	signals	as	they	presented	in	our	application.	

	
In	the	beginning	of	the	process	the	signal	to	keep	vehicle	still	is	displayed	and	in	a	
few	seconds	 “Drive	vehicle	 forward	 ”	 signal	 is	displayed.	When	we	start	driving	
forward	 the	 calibration	 completed	 and	 starts	 monitoring	 and	 detecting	 our	
driving	behavior	until	the	end	of	our	trip.		
	
The	 user	 can	 select	 between	 two	 options	 of	 displaying	 the	 monitoring	 of	 the	
driving	 behavior.	 The	 first	 option	 is	 the	 basic	 option	where	 in	 the	main	 screen	
there	is	displayed	a	“Monitoring	Driving	Behavior”	message.			
	

	
Figure	 23	 -	 The	 basic	 monitoring	 option.	 The	 system	 is	 not	 detecting	 anything	 safe	 or	 dangerous	
driving	events.	

When	the	system	detects	a	safe	driving	event	(maneuver)	the	main	screen	color	
changed	to	green	color	and	the	message	also	changed	to	the	name	of	the	current	
safe	driving	event.		
	

	
Figure	24	-	The	system	detects	a	safe	deceleration.	

When	the	system	detects	a	dangerous	driving	event	the	color	of	the	main	screen	
changed	to	yellow	color	and	the	message	also	changed	to	“Attention!”	followed	by	
the	name	of	the	dangerous	event.	For	all	the	dangerous	driving	events	except	the	
attention	and	the	name	of	the	event	it	is	displayed	a	hint.	The	hint	helps	the	driver	
to	 improve	 his	 driving	 skills.	 The	 hints	 help	 drivers	 to	 improve	 their	 driving	
behavior	and	to	achieve	better	scores	in	their	trips.		
	
Also	 by	 providing	 constructive	 feedback	 to	 drivers	 is	 very	 important	 and	 helps	
them	 to	 correct	 bad	 driving	 behaviors.	 The	 hints	 that	 are	 displayed	 are:	 try	 to	
maintain	 uniform	acceleration	 (or	 deceleration),	 try	 to	 take	 left	 	 (or	 right)	 turn	
slower	and	try	to	change	the	left	(or	right)	lane	slower.	The	attention	message	and	
hint	is	followed	by	a	notification	sound.	In	the	figure	below	we	can	see	the	screen	
of	out	device	when	a	sharp	left	turn	is	detected.	
	

	
Figure	25	-	The	system	detects	a	dangerous	sharp	left	turn.	

The	second	option	of	displaying	the	monitoring	of	driving	detection	of	the	user	is	
the	Map	option.	With	this	option	in	our	screen	is	displayed	a	map	with	our	spot	
(the	 car’s	 spot)	 into	 the	map.	When	we	 start	 driving,	 our	 route	 outlined	 in	 the	
map.	Also	it	is	displayed	with	pointers,	the	starting	point	of	our	trip	and	any	bad	
driving	event	(maneuver)	is	going	to	happen.			

	
Figure	26	-	The	map	monitoring	option	of	our	application.	

When	the	system	detects	a	safe	driving	a	pop	up	window	is	opening	and	displays	
the	current	safe	driving	event.	In	the	same	way	when	a	dangerous	driving	event	is	
detected	a	pop-up	window	with	the	name	and	the	hint	of	 the	event	 is	displayed	
for	some	seconds.	Also	a	notification	sound	listened	and	a	pointer	in	the	map	with	
the	name	of	the	dangerous	driving	event	is	created.		
	
In	 the	 figure	below	we	can	 see	 the	 screen	of	out	device	with	 the	map	option	of	
displaying	 the	 monitoring	 of	 the	 driving	 behavior,	 when	 a	 sharp	 left	 turn	 is	
detected.	
	

	
Figure	27	-	The	system	detects	a	sharp	left	turn	during	the	map	monitoring	option.	

	
We	 can	 alternate	 between	 the	 2	 options	 of	 displaying	 the	 monitoring	 of	 our	
driving	behavior	 (Basic	Monitor	 to	Map	Monitor	and	 the	opposite)	any	 time	we	
want	during	the	trip	by	pressing	the	option	button	of	our	device.	When	we	press	
the	option	button,	an	option	menu	is	displayed	in	the	bottom	of	our	screen	and	we	
can	choose	out	choice.		When	the	user	finished	his	trip,	he	presses	the	back	button	
on	his	device	and	the	system	ends	the	trip	and	loads	all	the	statistics,	the	routes	
and	 the	 graphs.	 	 In	 the	 figure	 below	we	 can	 see	 the	 option	menu	 for	 changing	
monitor.	
	

	
Figure	28	-	Option	menu,	where	we	can	select	the	monitoring	option	we	prefer.	

7.1.4			-			Trip’s	Info	
As	we	mentioned	before,	by	pressing	 the	back	button	of	our	device	we	 finished	
our	trip.	After	that	the	system	is	loading	and	presented	all	information	about	our	
trip.	All	information	of	the	current	trips	is	presented	in	3	different	tabs.		
In	 the	 first	 tab	 is	 presented	 the	 info	 tab.	 In	 info	 tab	 presented	 some	 general	
statistics	about	the	trip	like	the	total	distance,	the	total	duration	and	the	average	
speed.	 The	 total	 duration	 is	 the	 actual	 duration	 of	 the	 trip.	 Except	 the	 above	
statistics	is	presented	the	percentage	of	the	penalties	of	dangerous	driving	events.	
The	 presented	 percentages	 of	 penalties	 are:	 Hard	 Acceleration	 Penalty,	 Hard	
Deceleration	 Penalty,	 Sharp	 Left	 Turn	 Penalty,	 Sharp	Right	 Turn	 Penalty,	 Sharp	
Right	 Left	 Lane	 Change	 Penalty	 and	 Sharp	 Left	 Lane	 Change	 Penalty.	 Also	 is	
present	the	rating		(Score	-	up	to	10)	and	the	behavior	(Very	Bad	to	Excellent)	of	
the	current	trip.	In	the	following	figure	we	can	see	the	Info	Tab.	

	
Figure	29	-	Info	Tab	screen	of	our	application.	

In	the	second	tab	is	presented	the	map	tab.	In	map	tab	is	presented	the	route	of	
our	 trip	based	on	Google	maps.	 In	 the	map	we	can	see	 the	starting	point	of	our	
trip,	which	is	represented	by	a	blue	marker	and	the	end	point	of	our	trip,	which	is	
represented	by	a	light	green	marker.	Also	we	can	see	at	which	point	of	our	route,	
we	 are	 commit	 a	 dangerous	 driving	 event.	 All	 dangerous	 driving	 points	 are	
represented	with	 a	 red	marker.	When	we	 tap	 in	 a	dangerous	driving	point	 it	 is	
presented	 the	 name	 of	 the	 current	 event.	 In	 the	 figure	 below	 we	 can	 see	 an	
example	of	the	map	tab	with	the	route	and	the	markers	as	we	mentioned	before.	
	

	
Figure	30	-	Map	Tab	screen	of	our	application.	

In	the	last	tab	is	presented	the	graph	tab.	In	graph	tab	is	presented	3	line	charts,	
the	acceleration	line	chart,	the	deceleration	line	chart	and	the	turn	line	chart.	We	
can	see	one	of	the	3	charts	at	the	time.	If	we	want	to	change	graph	chart	we	tap	on	
the	radio	button	of	the	chart	we	want	under	the	displayed	chart.		
	
The	x-axis	represents	the	time	in	milliseconds	and	the	y-axis	represent	the	values	
of	 the	 detection	 method	 we	 have	 already	 chosen.	 These	 values	 can	 be	 can	
acceleration	values	(acceleration	detection	method	–	m/s2)	or	orientation	values	
(sensor	fusion	method	–	rad/s).		
	
The	charts	are	scrollable	in	the	x-axis,	which	means	that	by	scrolling	horizontally	
we	 can	 see	 the	 acceleration	or	orientation	values	 in	 relation	with	 the	 time.	The	
displayed	x-axed	duration	is	60	seconds	and	as	we	scroll	we	can	see	the	next	60	
seconds.		
	
Except	 the	 acceleration,	 deceleration	 and	 turn	 line	 charts	 we	 can	 see	 the	
thresholds	lines	for	each	chart.	The	thresholds	line	represented	with	a	red	direct	
lines	with	the	threshold	value	for	each	event.	If	there	is	a	value	that	has	exceed	the	
threshold	 line	 means	 than	 we	 have	 commit	 a	 dangerous	 driving	 event	 of	 the	

current	 chart	 (acceleration,	 deceleration,	 turn)	 at	 this	 particular	 time.	 In	 the	
figures	below	we	can	see	an	example	of	these	3	line	charts.	

	
	

	
Figure	32	-	Deceleration	Line	Chart	of	Graph	Tab	screen	of	our	application.	

	

Figure	31	-	Acceleration	Line	Chart	of	Graph	Tab	screen	of	our	application.	

	
Figure	 33	 -	 Turn	 Line	 Chart	 of	 Graph	 Tab	 screen	 of	 our	 application.	
	

7.1.5			-			My	Trips	
In	 the	 main	 menu	 we	 choose	 the	 “My	 Trips”	 option	 when	 we	 want	 to	 browse	
previous	 trips.	 When	 the	 user	 chooses	 the	 “My	 Trips”	 option,	 all	 the	 recorded	
trips	 are	 presented	 in	 a	 scrollable	 list.	 Each	 trip	 is	 represented	with	 the	 name	
“Trip	”	and	an	auto	increment	number,	followed	by	a	timestamp,	which	declares	
the	date	and	the	time	that	the	trip	begun.	In	the	following	figure	we	can	see	the	
list	of	the	trips	of	a	user.	
	

	
Figure	34	-	"My	Trip"	screen.	We	can	see	the	list	of	our	trips.	

7.1.5			-			Settings	
In	 the	main	menu	 there	 is	 also	 a	 “Settings”	 option	when	 a	 user	want	 to	 set	 his	
preferences.	 On	 of	 the	 main	 settings	 that	 the	 user	 can	 change	 is	 the	 standard	
monitor,	which	declares	the	preferred	monitor	style.	The	preferred	monitor	style	
can	 be	 the	 Basic	 Monitor	 and	 the	 Map	 Monitor.	 The	 other	 main	 setting	 is	 the	
choice	of	the	detection	method,	which	is	the	choice	of	the	data,	which	the	system	
will	evaluate	in	order	to	detect	safe	or	dangerous	driving	events	and	the	driving	
behavior	of	 the	user.	The	detection	method	 can	be	 the	 accelerometer	 sensor	or	
the	 sensor	 fusion	 method.	 Also	 from	 setting	 we	 can	 enable	 the	 GPS,	 if	 it’s	 not	
enabled	and	to	read	more	about	the	application.	In	the	following	figure	we	can	see	
a	snapshot	of	our	settings.	
	

	
Figure	35	-	Select	detection	method	from	the	settings	of	our	application.	

7.2			E-Platform	of	Auto	UBI	System	
We	 developed	 a	 web	 platform	 that	 can	 be	 used	 by	 a	 usage-based	 insurance	
company.	The	purpose	of	the	platform	is	to	check	and	evaluate	the	trip	data	of	the	
company’s	drivers.		
	
Via	 the	 particular	 platform	 an	 employee	 of	 the	 insurance	 company	 can	 have	
access	 to	 the	 list	 and	 data	 of	 all	 drivers	 of	 the	 company	 by	 entering	 the	
administrator’s	username	and	password.	In	the	figure	below	is	presented	the	log	
in	system	of	the	platform.	
	

	
Figure	36	-	Login	Screen	of	UBI	Portal.	

When	an	employee	of	the	company	logs	in	successfully	to	the	system,	can	browse	
in	a	table	of	driver’s	data.	In	this	table	are	presented	all	data	of	every	driver.	The	
presented	data	of	the	driver	are:	Full	name,	e-mail,	Address,	Phone	Number	and	
the	 license	 plate	 number	 of	 his	 vehicle.	 In	 the	 following	 figure	 we	 can	 see	 an	
example	of	the	table	with	the	data	of	every	company’s	customer	(driver).	
	

	
Figure	37	-	List	of	all	registered	drivers	in	the	program	of	UBI	Company.	

As	we	 can	 see	 in	 the	 right	 side	 of	 every	 row	 (or	 driver)	 of	 the	 table,	 there	 is	 a	
“Select”	button.	When	we	want	to	browse	the	past	trips	of	a	particular	driver,	we	
click	the	“Select”	button	in	the	row	of	the	particular	driver.	For	example	we	click	
to	 browse	 the	 list	 of	 trips	 of	 a	 driver	 named	 “Akis	 Vavouranakis”.	 In	 the	 figure	
below	we	present	the	list	of	trips	of	the	driver	named	“Akis	Vavouranakis”.	
	

	
Figure	38	-	List	of	trips	(and	data	of	trips)	of	a	particular	driver.	

In	the	list	of	trips,	we	can	see	the	driving	history	of	every	driver.	In	the	presented	
table,	every	row	of	the	table	represents	a	trip.	Lots	of	data	are	presented	for	every	
trip.	The	presented	general	data	are:	The	timestamp	of	the	trip,	which	is	the	date	
and	the	starting	time	of	the	trip,	the	distance	of	the	trip	in	km,	the	duration	of	the	

trip,	which	is	the	actual	duration	of	the	trip	(when	the	vehicle	 is	 in	motion)	and	
the	average	speed	of	the	vehicle	(km/h).		
	
Also	it	 is	presented	the	selected	from	the	user	detection	method	(Accelerometer	
sensor	data	or	Sensor	fusion	orientation	data)	and	the	percentage	of	penalties	of	
all	dangerous	driving	events.	 	The	percentages	of	penalties	of	the	driving	events	
that	 are	 presented	 are:	Hard	 Acceleration	 Penalty	 (HAP),	Hard	 Deceleration	
Penalty	 (HDP),	 Sharp	 Left	 Turn	 Penalty	 (SLTP),	 Sharp	 Right	 Turn	 Penalty	
(SRTP),	 Sharp	 Left	 Lane	 Change	 Penalty	 (SLLCP)	 and	 the	 Sharp	 Right	 Lane	
Change	Penalty	(SRLCP).		
	
The	score	and	the	rating	of	every	trip	are	also	presented.	The	score	of	every	trip	
is	calculated	based	on	the	already	above	mentioned	penalties.	The	max	score	for	
every	trip	is	10.	Based	on	the	score	the	rating	(driver’s	behavior)	of	every	trip	is	
calculated.	The	rating	can	be:	Very	Bad,	Bad,	Good,	Very	Good	or	Excellent.		
	
In	the	line	above	the	array	and	its	elements,	we	can	see	some	average	data	of	the	
driver.	First	of	all,	 the	name	of	 the	driver	 is	displayed,	which	 is	 followed	by	 the	
average	score	and	the	average	rating	of	all	his	trips.	
	
As	we	 can	 see,	 in	 the	 data	 table	 (which	 contains	 the	 list	 of	 trips	 of	 a	 particular	
user),	in	the	last	two	columns	of	each	row	(trip)	there	are	two	“select”	buttons.	By	
selecting	the	first	one,	the	route	of	the	trip	is	displayed	in	a	map	and	by	selecting	
the	 second	 the	 data	 of	 the	 trip	 are	 presented	 in	 graphs.	 Also	 a	 table	 with	 the	
information	of	the	particular	trip	is	presented	before	the	map.	
	
In	the	following	figure	we	can	see	how	the	route	of	the	particular	trip	is	displayed	
in	a	map	when	we	select	“View	Map”.	
	

	
Figure	39	-	Map	Screen	of	our	portal	with	the	route	and	data	of	a	particular	trip.	

	

We	can	see	the	route	of	our	trip	with	a	blue	line.	The	starting	point	of	our	trip	is	
displayed	with	 a	 blue	marker	 and	 the	 end	 of	 our	 trip	 is	 displayed	with	 a	 light	
green	marker.	All	dangerous	driving	events	are	displayed	with	a	red	marker.	If	we	
tap	a	red	marker,	the	name	of	the	dangerous	driving	event	is	displayed.	The	map	
is	based	on	Google	maps	and	we	can	zoom	In/Out	on	it.	
	
By	 selecting	 the	 “View	 Graph”	 select	 button,	 3	 line	 charts	 are	 presented,	 the	
acceleration	line	chart,	the	deceleration	line	chart	and	the	turn	line	chart.		The			x-
axis	represents	the	time	in	milliseconds	and	the	y-axis	represent	the	values	of	the	
detection	method	we	have	already	chosen.	These	values	can	be	can	acceleration	
values	 (acceleration	 detection	 method	 –	 m/s2)	 or	 orientation	 values	 (sensor	
fusion	method	–	rad/s).		
	
Except	 the	 acceleration,	 deceleration	 and	 turn	 line	 charts	 we	 can	 see	 the	
thresholds	lines	for	each	chart.	The	thresholds	line	represented	with	a	red	direct	
lines	with	the	threshold	value	for	each	event.	If	there	is	a	value	that	has	exceed	the	
threshold	 line	 means	 than	 we	 have	 commit	 a	 dangerous	 driving	 event	 of	 the	
current	chart	(acceleration,	deceleration,	turn)	at	this	particular	time.	Also	a	table	
with	the	information	of	the	particular	trip	is	presented	before	the	graphs.	
	
In	the	figures	below	we	can	see	an	example	of	these	3	line	charts.	
	
	

	
Figure	40	-	Acceleration	line	chart	with	data	of	a	particular	trip.	

	
	

	
Figure	41	-	Deceleration	line	chart	of	a	particular	trip.	

	
	

	
Figure	42	-	Turn	line	chart	of	a	particular	trip.	

	

	 	
	
	
	
	

Chapter	8			-			Used	Technologies	&	Tools	

8.1			Android	Application	Development	
For	 the	 implementation	 of	 our	 application	 we	 choose	 to	 develop	 a	 Native	
Application.	A	native	mobile	 app	 is	 a	 smartphone	 application	 that	 is	 coded	 in	 a	
specific	programming	language,	such	as	Objective	C	for	iOS	and	Java	for	Android	
operating	 systems.	 Native	 mobile	 apps	 provide	 fast	 performance	 and	 a	 high	
degree	of	reliability.	They	also	have	access	to	a	phone's	various	devices,	such	as	
its	camera,	sensors	and	address	book.		
	
We	choose	the	Android	platform,	where	the	Java	language	is	used,	along	with	the	
Android	Studio	 integrated	development	environment	(IDE).	This	Android	Studio	
is	based	on	JetBrains’	IntelliJ	IDE	and	replaced	Eclipse	as	the	official	development	
tool	 for	 Android	 applications.	 There	 are	 several	 steps	 to	 building	 an	 Android	
application.	The	steps	include	the	following:	
	

• Define	the	user	interface.	The	UI	for	an	application	is	generally	defined	as	a	
series	of	layout	files.	These	are	XML-based	files	that	describe	the	controls	
on	a	screen	and	the	relationship	of	their	layouts	relative	to	one	another.	

• Add	 image	 assets,	 language	 translations	 and	 other	 resources.	 Android	
refers	to	non-code	assets	of	a	project	as	resources.	These	are	placed	in	the	
project	 in	 a	 directory	 structure.	 At	 runtime,	 Android	 dynamically	 loads	
content	from	this	directory	structure.		

• Write	Java	code	to	respond	to	various	events	that	occur	from	the	controls	
on	a	given	screen	and	from	changes	in	the	lifecycle	of	an	application.	Java	
code	 is	 also	 responsible	 for	 loading	 the	 layout	 and	menu	 files	 associated	
with	each	screen.	And	it’s	used	to	control	the	flow	from	one	screen	to	the	
next.	

• Export	the	completed	Android	application	as	a	file	that	can	be	uploaded	to	
Google	Play	or	shared	with	others	directly.	

	
	

8.1.1		-			Why	Android?	 	
We	 developed	 our	 application	 in	 the	 Android	 Platform	 because	 of	 5	 reasons.	
These	5	reasons	are:	

• Portability.	 Native	 Android	 apps	 are	 developed	 using	 the	 Java	
programming	language,	and	can	easily	be	ported	to	other	mobile	operating	
systems	 like	Blackberry,	 Symbian	 and	Ubuntu.	 In	 addition,	Android	 apps	
can	 also	 be	 ported	 easily	 to	 Chrome	 OS.	 Not	 surprisingly,	 Microsoft	 has	
also	announced	that	it	will	provide	an	easy	method	to	port	Android	apps	to	
Windows	10	devices.	

	
• Android	Studio	is	an	excellent	IDE,	based	on	the	equally	excellent	IntelliJ	

IDE.	 As	 the	 name	 suggests,	 Android	 Studio	 is	 an	 IDE	 designed	 and	
developed	specifically	for	Android	app	development.	It	is	blazingly	fast	and	
efficient,	 and	 you	 can	 setup	 a	 new	Android	 project	 for	 different	 types	 of	
Android	 apps	within	 seconds.	When	Android	was	 launched,	Android	 app	
development	 was	 done	 with	 Eclipse	 and	 the	 Android	 Developer	 Tools	

plugin.	 However,	 that	 changed	with	 the	 release	 of	 Android	 Studio.	 Some	
key	 features	 include:	 Gradle-based	 build	 system,	 Live-layout	 WYSIWYG	
Editor	with	real	time	app	layout	rendering,	Option	to	preview	a	layout	on	
multiple	 screen	 configurations	while	 editing,	 Build	 variants	 and	multiple	
apk	 file	 generation,	 Lint	 tools	 (used	 to	 catch	 usability,	 performance,	
version	 compatibility	 and	 other	 issues),	 Supports	 developing	 Android	
Wear,	 TV	 and	 Auto	 apps,	 Enables	 app	 integration	 with	 Google	 Cloud	
Platform	(App	Engine	and	Google	Cloud	Messaging)	

	
• Java	 is	 a	 proven	 and	 powerful	 programming	 language,	 used	 on	 a	 wide	

range	of	devices	and	operating	systems.	Learning	Java	can	open	doors	for		
other	opportunities,	including	the	ability	to	develop	applications	for	other	
operating	 systems	 (Windows,	 Linux)	 and	devices.	Developing	 for	 iOS,	 on	
the	 other	 hand,	 requires	 that	 you	 learn	 one	 of	 Apple’s	 development	
languages	 (Objective	 C	 or	 Swift).	 Both	 of	 these	 languages	 are	 really	 only	
used	for	Apple-centric	development	(iOS	and	OS	X),	and	the	skills	needed	
to	 develop	 in	 these	 languages	 cannot	 be	 carried	 over	 to	 other	 operating	
systems.	But	 to	be	 fair,	Apple	has	announced	Swift	will	be	open	sourced,	
with	Linux	tools	available	before	the	end	of	the	year.	

	
• Profitability.	 The	 general	 consensus	 has	 always	 been	 that	 the	 iPhone	 is	

used	 by	 richer	 and	 more	 affluent	 users,	 and	 so,	 iPhone	 users	 are	 more	
likely	to	spend	money	on	apps	than	Android	users.	This	might	have	been	
true	 in	 the	past,	but	not	any	more.	 In	most	app	categories,	Android	apps	
have	 been	 found	 to	 be	 as	 profitable	 (even	 more	 profitable	 in	 some	
instances)	 as	 iPhone	 apps,	 both	 for	 initial	 app	 purchases	 and	 for	 in-app	
purchases.	Also,	with	many	apps	using	a	free	with	ads	model,	as	long	as	the	
ads	are	being	shown	to	app	users,	the	app	generates	income.	According	to	
DAU-UP,	 the	 average	 revenue	 per	 user	 for	 Android	 games	was	 a	measly	
20%	of	that	from	iOS	games	in	January	2014.	By	December	2014,	the	figure	
had	 spiked	 to	 65%.	 In	 addition,	 advertising	 costs	 are	 generally	 lower	 on	
Android	 devices,	which	means	 that	 apps	 can	 advertise	 to	more	 users	 on	
Android	devices	than	users	on	iOS	devices	for	the	same	amount.	

	
• Market	share.	This	has	to	be	the	number	one	reason	why	indie	developers	

should	 develop	 for	 Android	 first.	 According	 to	 IDC,	 Android	 absolutely	
dominated	 the	 number	 of	 smartphones	 shipped	 worldwide	 in	 the	 first	
three	months	of	2015,	with	78%	market	share.	The	estimated	total	number	
of	 Android	 devices	 in	 the	 hands	 of	 consumers,	 as	 at	 December	 2014,	
according	 to	 statista.com,	 lies	 north	 of	 1.6	 billion.	 This	 is	 a	 staggering	
amount,	and	a	very	large	potential	market	of	users.	Compare	this	with	an	
estimated	395	million	iOS	devices,	and	46	million	and	45	million	Windows	
and	Blackberry	devices	respectively.	If	you	are	designing	an	app	(or	game)	
for	the	general	public,	it	makes	economic	sense	to	target	the	platform	that	
would	give	you	the	greatest	access	to	potential	users.	

	
	

8.1.2		-			Introduction	to	Android	 	
Android	 [27]	 is	 a	mobile	 operating	 system	 (OS)	 currently	 developed	by	Google,	
based	on	the	Linux	kernel	and	designed	primarily	for	touchscreen	mobile	devices	
such	 as	 smartphones	 and	 tablets.	 Android's	 user	 interface	 is	 mainly	 based	 on	
direct	manipulation,	 using	 touch	 gestures	 that	 loosely	 correspond	 to	 real-world	
actions,	 such	as	swiping,	 tapping	and	pinching,	 to	manipulate	on-screen	objects,	
along	with	a	virtual	keyboard	 for	 text	 input.	 In	addition	 to	 touchscreen	devices,	
Google	has	 further	developed	Android	TV	 for	 televisions,	Android	Auto	 for	cars,	
and	 Android	 Wear	 for	 wristwatches,	 each	 with	 a	 specialized	 user	 interface.	
Variants	of	Android	are	also	used	on	notebooks,	game	consoles,	digital	cameras,	
and	 other	 electronics.	 As	 of	 2015,	 Android	 has	 the	 largest	 installed	 base	 of	 all	
operating	systems.	
	
Initially	developed	by	Android,	 Inc.,	which	Google	bought	 in	2005,	Android	was	
unveiled	 in	 2007,	 along	 with	 the	 founding	 of	 the	 Open	 Handset	 Alliance	 –	 a	
consortium	of	hardware,	software,	and	telecommunication	companies	devoted	to	
advancing	 open	 standards	 for	mobile	 devices.	 As	 of	 July	 2013,	 the	 Google	 Play	
store	has	had	over	one	million	Android	applications	("apps")	published,	and	over	
50	 billion	 applications	 downloaded.	 An	 April–May	 2013	 survey	 of	 mobile	
application	 developers	 found	 that	 71%	 of	 developers	 create	 applications	 for	
Android,	and	a	2015	survey	found	that	40%	of	full-time	professional	developers	
see	Android	as	their	priority	target	platform,	which	is	comparable	to	Apple's	iOS	
on	37%	with	both	platforms	far	above	others.	At	Google	I/O	2014,	the	company	
revealed	that	there	were	over	one	billion	active	monthly	Android	users,	up	from	
538	million	in	June	2013.	
	
Android's	source	code	is	released	by	Google	under	open	source	licenses,	although	
most	 Android	 devices	 ultimately	 ship	 with	 a	 combination	 of	 open	 source	 and	
proprietary	 software,	 including	 proprietary	 software	 required	 for	 accessing	
Google	 services.	 Android	 is	 popular	 with	 technology	 companies	 that	 require	 a	
ready-made,	 low-cost	 and	 customizable	 operating	 system	 for	 high-tech	 devices.	
Its	open	nature	has	encouraged	a	large	community	of	developers	and	enthusiasts	
to	 use	 the	 open-source	 code	 as	 a	 foundation	 for	 community-driven	 projects,	
which	add	new	features	for	advanced	users	or	bring	Android	to	devices	originally	
shipped	 with	 other	 operating	 systems.	 At	 the	 same	 time,	 as	 Android	 has	 no	
centralized	update	system	most	Android	devices	fail	to	receive	security	updates:	
research	in	2015	concluded	that	almost	90%	of	Android	phones	in	use	had	known	
but	 unpatched	 security	 vulnerabilities	 due	 to	 lack	 of	 updates	 and	 support.	 The	
success	of	Android	has	made	it	a	target	for	patent	litigation	as	part	of	the	so-called	
"smartphone	wars"	between	technology	companies.	
	
	

	
Figure	43	-	Android	6.0	home	screen.	

	
Features	
	
Interface.	 Android's	 default	 user	 interface	 is	 mainly	 based	 on	 direct	
manipulation,	 using	 touch	 inputs	 that	 loosely	 correspond	 to	 real-world	 actions,	
like	 swiping,	 tapping,	 pinching,	 and	 reverse	 pinching	 to	 manipulate	 on-screen	
objects,	 along	 with	 a	 virtual	 keyboard.	 Game	 controllers	 and	 full-size	 physical	
keyboards	 are	 supported	 via	 Bluetooth	 or	 USB.	 The	 response	 to	 user	 input	 is	
designed	 to	 be	 immediate	 and	 provides	 a	 fluid	 touch	 interface,	 often	 using	 the	
vibration	capabilities	of	the	device	to	provide	haptic	feedback	to	the	user.	Internal	
hardware,	such	as	accelerometers,	gyroscopes	and	proximity	sensors	are	used	by	
some	applications	to	respond	to	additional	user	actions,	for	example	adjusting	the	
screen	 from	 portrait	 to	 landscape	 depending	 on	 how	 the	 device	 is	 oriented,	 or	
allowing	 the	 user	 to	 steer	 a	 vehicle	 in	 a	 racing	 game	 by	 rotating	 the	 device,	
simulating	control	of	a	steering	wheel.	
	
Android	devices	boot	to	the	homescreen,	the	primary	navigation	and	information	
"hub"	 on	 Android	 devices	 that	 is	 analogous	 to	 the	 desktop	 found	 on	 personal	
computers.	 (Android	 also	 runs	 on	 regular	 personal	 computers,	 as	 described	
below).	Android	homescreens	are	typically	made	up	of	app	icons	and	widgets;	app	
icons	 launch	 the	 associated	 app,	 whereas	 widgets	 display	 live,	 auto-updating	
content,	 such	 as	 the	 weather	 forecast,	 the	 user's	 email	 inbox,	 or	 a	 news	 ticker	
directly	 on	 the	 homescreen.	 A	 homescreen	 may	 be	 made	 up	 of	 several	 pages,	
between	which	the	user	can	swipe	back	and	forth,	though	Android's	homescreen	
interface	is	heavily	customisable,	allowing	users	to	adjust	the	look	and	feel	of	the	
devices	 to	 their	 tastes.	Third-party	apps	available	on	Google	Play	and	other	app	
stores	can	extensively	re-theme	the	homescreen,	and	even	mimic	the	look	of	other	

operating	 systems,	 such	 as	 Windows	 Phone.	 Most	 manufacturers,	 and	 some	
wireless	 carriers,	 customise	 the	 look	 and	 feel	 of	 their	 Android	 devices	 to	
differentiate	 themselves	 from	 their	 competitors.	 Applications	 that	 handle	
interactions	 with	 the	 homescreen	 are	 called	 "launchers"	 because	 they,	 among	
other	purposes,	launch	the	applications	installed	on	a	device.	
	
Along	the	top	of	the	screen	is	a	status	bar,	showing	information	about	the	device	
and	its	connectivity.	This	status	bar	can	be	"pulled"	down	to	reveal	a	notification	
screen	 where	 apps	 display	 important	 information	 or	 updates,	 such	 as	 a	 newly	
received	 email	 or	 SMS	 text,	 in	 a	 way	 that	 does	 not	 immediately	 interrupt	 or	
inconvenience	the	user.	Notifications	are	persistent	until	read	(by	tapping,	which	
opens	 the	 relevant	 app)	 or	 dismissed	 by	 sliding	 it	 off	 the	 screen.	 Beginning	 on	
Android	4.1,	"expanded	notifications"	can	display	expanded	details	or	additional	
functionality;	 for	 instance,	 a	 music	 player	 can	 display	 playback	 controls,	 and	 a	
"missed	call"	notification	provides	buttons	 for	calling	back	or	 sending	 the	caller	
an	SMS	message.	
	
Android	provides	the	ability	to	run	applications	that	change	the	default	launcher,	
and	 hence	 the	 appearance	 and	 externally	 visible	 behaviour	 of	 Android.	 These	
appearance	 changes	 include	 a	 multi-page	 dock	 or	 no	 dock,	 and	 many	 more	
changes	to	fundamental	features	of	the	user	interface.	
	
Applications.	 Applications	 ("apps"),	 which	 extend	 the	 functionality	 of	 devices,	
are	written	using	the	Android	software	development	kit	(SDK)	and,	often,	the	Java	
programming	language	that	has	complete	access	to	the	Android	APIs.	Java	may	be	
combined	with	C/C++,	together	with	a	choice	of	non-default	runtimes	that	allow	
better	 C++	 support;	 the	 Go	 programming	 language	 is	 also	 supported	 since	 its	
version	1.4,	which	can	also	be	used	exclusively	although	with	a	restricted	set	of	
Android	 APIs.	 The	 SDK	 includes	 a	 comprehensive	 set	 of	 development	 tools,	
including	 a	 debugger,	 software	 libraries,	 a	 handset	 emulator	 based	 on	 QEMU,	
documentation,	 sample	 code,	 and	 tutorials.	 Initially,	 Google's	 supported	
integrated	 development	 environment	 (IDE)	 was	 Eclipse	 using	 the	 Android	
Development	 Tools	 (ADT)	 plugin;	 in	 December	 2014,	 Google	 released	 Android	
Studio,	 based	 on	 IntelliJ	 IDEA,	 as	 its	 primary	 IDE	 for	 Android	 application	
development.	 Other	 development	 tools	 are	 available,	 including	 a	 native	
development	 kit	 (NDK)	 for	 applications	 or	 extensions	 in	 C	 or	 C++,	 Google	 App	
Inventor,	 a	 visual	 environment	 for	 novice	 programmers,	 and	 various	 cross	
platform	mobile	web	applications	frameworks.	In	January	2014,	Google	unveiled	
an	 framework	 based	 on	 Apache	 Cordova	 for	 porting	 Chrome	 HTML	 5	 web	
applications	to	Android,	wrapped	in	a	native	application	shell.	
	
Android	 has	 a	 growing	 selection	 of	 third-party	 applications,	 which	 can	 be	
acquired	by	users	by	downloading	and	installing	the	application's	APK	(Android	
application	 package)	 file,	 or	 by	 downloading	 them	 using	 an	 application	 store	
program	that	allows	users	to	install,	update,	and	remove	applications	from	their	
devices.	Google	Play	Store	 is	 the	primary	application	 store	 installed	on	Android	
devices	 that	 comply	 with	 Google's	 compatibility	 requirements	 and	 license	 the	
Google	 Mobile	 Services	 software.	 Google	 Play	 Store	 allows	 users	 to	 browse,	
download	 and	 update	 applications	 published	 by	 Google	 and	 third-party	

developers;	as	of	July	2013,	there	are	more	than	one	million	applications	available	
for	 Android	 in	 Play	 Store.	 As	 of	 July	 2013,	 50	 billion	 applications	 have	 been	
installed.	 Some	 carriers	 offer	 direct	 carrier	 billing	 for	 Google	 Play	 application	
purchases,	where	the	cost	of	the	application	is	added	to	the	user's	monthly	bill.	
	
Due	 to	 the	 open	 nature	 of	 Android,	 a	 number	 of	 third-party	 application	
marketplaces	also	exist	for	Android,	either	to	provide	a	substitute	for	devices	that	
are	not	allowed	to	ship	with	Google	Play	Store,	provide	applications	that	cannot	
be	 offered	 on	 Google	 Play	 Store	 due	 to	 policy	 violations,	 or	 for	 other	 reasons.	
Examples	of	these	third-party	stores	have	included	the	Amazon	Appstore,	GetJar,	
and	 SlideMe.	 F-Droid,	 another	 alternative	 marketplace,	 seeks	 to	 only	 provide	
applications	that	are	distributed	under	free	and	open	source	licenses.	 	
	
Memory	 Management.	 Since	 Android	 devices	 are	 usually	 battery-powered,	
Android	is	designed	to	manage	memory	(RAM)	to	keep	power	consumption	at	a	
minimum,	in	contrast	to	desktop	operating	systems	which	generally	assume	they	
are	connected	to	unlimited	mains	electricity.	When	an	Android	application	 is	no	
longer	 in	 use,	 the	 system	 will	 automatically	 suspend	 it	 in	 memory;	 while	 the	
application	 is	 still	 technically	 "open",	 suspended	 applications	 consume	 no	
resources	 (for	 example,	 battery	 power	 or	 processing	 power)	 and	 sit	 idly	 in	 the	
background	 until	 needed	 again.	 This	 brings	 a	 dual	 benefit	 by	 increasing	 the	
general	 responsiveness	of	Android	devices,	 since	applications	do	not	need	 to	be	
closed	 and	 reopened	 from	 scratch	 each	 time,	 and	 by	 ensuring	 that	 background	
applications	do	not	consume	power	needlessly.	
	
Android	 manages	 the	 applications	 stored	 in	 memory	 automatically:	 when	
memory	is	low,	the	system	will	begin	killing	applications	and	processes	that	have	
been	inactive	for	a	while,	in	reverse	order	since	they	were	last	used	(oldest	first).	
This	process	 is	designed	to	be	invisible	to	the	user,	so	that	users	do	not	need	to	
manage	memory	or	the	killing	of	applications	themselves.	Lifehacker	reported	in	
2011	that	third-party	task	killers	were	doing	more	harm	than	good.	
	
Development	
	
Android	is	developed	in	private	by	Google	until	the	latest	changes	and	updates	are	
ready	 to	be	 released,	 at	which	point	 the	 source	 code	 is	made	available	publicly.	
This	source	code	will	only	run	without	modification	on	select	devices,	usually	the	
Nexus	series	of	devices.	The	source	code	 is,	 in	 turn,	adapted	by	OEMs	to	run	on	
their	 hardware.	 Android's	 source	 code	 does	 not	 contain	 the	 often	 proprietary	
device	drivers	that	are	needed	for	certain	hardware	components.	
	
In	2007,	 the	green	Android	 logo	was	designed	 for	Google	by	a	graphic	designer	
Irina	 Blok.	 The	 design	 team	 was	 tasked	 with	 a	 project	 to	 create	 a	 universally	
identifiable	 icon	with	 the	 specific	 inclusion	 of	 a	 robot	 in	 the	 final	 design.	 After	
numerous	 design	 developments	 based	 on	 science-fiction	 and	 space	movies,	 the	
team	 eventually	 sought	 inspiration	 from	 the	 human	 symbol	 on	 restroom	 doors	
and	modified	 the	 figure	 into	 a	 robot	 shape.	 As	 Android	 is	 open-sourced,	 it	was	
agreed	 that	 the	 logo	should	be	 likewise,	 and	since	 its	 launch	 the	green	 logo	has	
been	reinterpreted	into	countless	variations	on	the	original	design.	

	
Update	Schedule.	Google	provides	major	incremental	upgrades	to	Android	every	
six	 to	 nine	months,	 with	 confectionery-themed	 names,	 which	most	 devices	 are	
capable	 of	 receiving	 over	 the	 air.	 The	 latest	 major	 release	 is	 Android	 6.0	
"Marshmallow".	
	
Compared	 to	 its	 primary	 rival	 mobile	 operating	 system,	 iOS,	 Android	 updates	
typically	reach	various	devices	with	significant	delays.	For	devices	not	under	the	
Nexus	 brand,	 updates	 often	 arrive	 months	 from	 the	 time	 the	 given	 version	 is	
officially	 released,	 if	 at	 all.	 This	 is	 partly	 due	 to	 the	 extensive	 variation	 in	
hardware	of	Android	devices,	to	which	each	upgrade	must	be	specifically	tailored,	
as	 the	 official	 Google	 source	 code	 only	 runs	 on	 their	 flagship	 Nexus	 devices.	
Porting	Android	to	specific	hardware	is	a	time-	and	resource-consuming	process	
for	 device	 manufacturers,	 who	 prioritize	 their	 newest	 devices	 and	 often	 leave	
older	 ones	 behind.	 Hence,	 older	 smartphones	 are	 frequently	 not	 updated	 if	 the	
manufacturer	decides	it	is	not	worth	their	time,	regardless	of	whether	the	phone	
is	 capable	 of	 running	 the	 update.	 This	 problem	 is	 compounded	 when	
manufacturers	customize	Android	with	their	own	interface	and	apps,	which	must	
be	reapplied	to	each	new	release.	Additional	delays	can	be	introduced	by	wireless	
carriers	who,	after	receiving	updates	from	manufacturers,	further	customize	and	
brand	 Android	 to	 their	 needs	 and	 conduct	 extensive	 testing	 on	 their	 networks	
before	sending	the	upgrade	out	to	users.	
	
The	 lack	of	after-sale	support	 from	manufacturers	and	carriers	has	been	widely	
criticized	 by	 consumer	 groups	 and	 the	 technology	 media.	 Some	 commentators	
have	noted	that	the	industry	has	a	financial	incentive	not	to	upgrade	their	devices,	
as	 the	 lack	of	updates	 for	 existing	devices	 fuels	 the	purchase	of	newer	ones,	 an	
attitude	described	as	"insulting".	The	Guardian	has	complained	that	the	method	of	
distribution	for	updates	is	complicated	only	because	manufacturers	and	carriers	
have	designed	it	that	way.	In	2011,	Google	partnered	with	a	number	of	 industry	
players	 to	 announce	 an	 "Android	 Update	 Alliance",	 pledging	 to	 deliver	 timely	
updates	for	every	device	for	18	months	after	 its	release;	however,	 there	has	not	
been	another	official	word	about	that	alliance	since	its	announcement.	
	
In	 2012,	 Google	 began	 decoupling	 certain	 aspects	 of	 the	 operating	 system	
(particularly	 core	 applications)	 so	 they	 could	 be	 updated	 through	 Google	 Play	
Store,	 independently	 of	 Android	 itself.	 One	 of	 these	 components,	 Google	 Play	
Services,	 is	 a	 closed-source	 system-level	 process	 providing	 APIs	 for	 Google	
services,	installed	automatically	on	nearly	all	devices	running	Android	version	2.2	
and	 higher.	 With	 these	 changes,	 Google	 can	 add	 new	 operating	 system	
functionality	 through	 Play	 Services	 and	 application	 updates	 without	 having	 to	
distribute	an	upgrade	to	the	operating	system	itself.	As	a	result,	Android	4.2	and	
4.3	 contained	 relatively	 fewer	 user-facing	 changes,	 focusing	 more	 on	 minor	
changes	and	platform	improvements.	
	
Linux	Kernel.	Android's	kernel	 is	based	on	one	of	 the	Linux	kernel's	 long-term	
support	 (LTS)	 branches.	 Since	April	 2014,	 Android	 devices	mainly	 use	 versions	
3.4	or	3.10	of	the	Linux	kernel.	The	specific	kernel	version	depends	on	the	actual	

Android	 device	 and	 its	 hardware	 platform;	 Android	 has	 used	 various	 kernel	
versions	since	the	version	2.6.25	that	was	used	in	Android	1.0.	
	
Android's	 variant	 of	 the	Linux	kernel	has	 further	 architectural	 changes	 that	 are	
implemented	by	Google	outside	the	typical	Linux	kernel	development	cycle,	such	
as	 the	 inclusion	 of	 components	 like	 Binder,	 ashmem,	 pmem,	 logger,	wakelocks,	
and	 different	 out-of-memory	 (OOM)	 handling.	 Certain	 features	 that	 Google	
contributed	back	to	the	Linux	kernel,	notably	a	power	management	feature	called	
"wakelocks",	were	rejected	by	mainline	kernel	developers	partly	because	they	felt	
that	Google	did	not	show	any	intent	to	maintain	its	own	code.		Google	announced	
in	April	2010	that	they	would	hire	two	employees	to	work	with	the	Linux	kernel	
community,	but	Greg	Kroah-Hartman,	the	current	Linux	kernel	maintainer	for	the	
stable	branch,	said	in	December	2010	that	he	was	concerned	that	Google	was	no	
longer	 trying	 to	 get	 their	 code	 changes	 included	 in	 mainstream	 Linux.	 Some	
Google	Android	developers	hinted	that	"the	Android	team	was	getting	fed	up	with	
the	process,"	because	they	were	a	small	team	and	had	more	urgent	work	to	do	on	
Android.	
	
In	 August	 2011,	 Linus	 Torvalds	 said	 that	 "eventually	 Android	 and	 Linux	would	
come	back	to	a	common	kernel,	but	it	will	probably	not	be	for	four	to	five	years".	
In	 December	 2011,	 Greg	 Kroah-Hartman	 announced	 the	 start	 of	 Android	
Mainlining	Project,	which	aims	to	put	some	Android	drivers,	patches	and	features	
back	into	the	Linux	kernel,	starting	in	Linux	3.3.	Linux	included	the	autosleep	and	
wakelocks	capabilities	in	the	3.5	kernel,	after	many	previous	attempts	at	merger.	
The	 interfaces	 are	 the	 same	 but	 the	 upstream	Linux	 implementation	 allows	 for	
two	different	 suspend	modes:	 to	memory	 (the	 traditional	 suspend	 that	Android	
uses),	and	to	disk	(hibernate,	as	it	is	known	on	the	desktop).	Google	maintains	a	
public	code	repository	that	contains	their	experimental	work	to	re-base	Android	
off	the	latest	stable	Linux	versions.	
	
The	 flash	 storage	 on	 Android	 devices	 is	 split	 into	 several	 partitions,	 such	 as	
/system	 for	 the	operating	 system	 itself,	 and	/data	 for	user	data	and	application	
installations.	 In	 contrast	 to	 desktop	 Linux	 distributions,	 Android	 device	 owners	
are	not	given	root	access	to	the	operating	system	and	sensitive	partitions	such	as	
/system	 are	 read-only.	 However,	 root	 access	 can	 be	 obtained	 by	 exploiting	
security	 flaws	 in	 Android,	 which	 is	 used	 frequently	 by	 the	 open-source	
community	 to	 enhance	 the	 capabilities	 of	 their	 devices,	 but	 also	 by	 malicious	
parties	to	install	viruses	and	malware.	
	
Android	is	a	Linux	distribution	according	to	the	Linux	Foundation,	Google's	open-
source	chief	Chris	DiBona,	and	several	journalists.	Others,	such	as	Google	engineer	
Patrick	 Brady,	 say	 that	 Android	 is	 not	 Linux	 in	 the	 traditional	 Unix-like	 Linux	
distribution	sense;	Android	does	not	include	the	GNU	C	Library	(it	uses	Bionic	as	
an	alternative	C	 library)	and	some	of	other	components	typically	 found	in	Linux	
distributions.	
	

	
Figure	44	-		Android's	architecture	diagram.	

Software	 Stack.	On	top	of	 the	Linux	kernel,	 there	are	 the	middleware,	 libraries	
and	 APIs	 written	 in	 C,	 and	 application	 software	 running	 on	 an	 application	
framework	which	 includes	 Java-compatible	 libraries	based	on	Apache	Harmony.	
Development	 of	 the	 Linux	 kernel	 continues	 independently	 of	 other	 Android's	
source	code	bases.	
	
Until	 version	 5.0,	 Android	 used	Dalvik	 as	 a	 process	 virtual	machine	with	 trace-
based	just-in-time	(JIT)	compilation	to	run	Dalvik	"dex-code"	(Dalvik	Executable),	
which	is	usually	translated	from	the	Java	bytecode.	Following	the	trace-based	JIT	
principle,	 in	 addition	 to	 interpreting	 the	 majority	 of	 application	 code,	 Dalvik	
performs	the	compilation	and	native	execution	of	select	frequently	executed	code	
segments	("traces")	each	time	an	application	is	launched.	Android	4.4	introduced	
Android	Runtime	(ART)	as	a	new	runtime	environment,	which	uses	ahead-of-time	
(AOT)	compilation	to	entirely	compile	the	application	bytecode	into	machine	code	
upon	the	installation	of	an	application.	In	Android	4.4,	ART	was	an	experimental	
feature	and	not	enabled	by	default;	it	became	the	only	runtime	option	in	the	next	
major	version	of	Android,	5.0.	
	
In	 December	 2015,	 Google	 announced	 that	 the	 next	 version	 of	 Android	 would	
switch	to	a	Java	implementation	based	on	OpenJDK.	
	
Android's	 standard	 C	 library,	 Bionic,	 was	 developed	 by	 Google	 specifically	 for	
Android,	 as	 a	 derivation	 of	 the	 BSD's	 standard	 C	 library	 code.	 Bionic	 itself	 has	
been	designed	with	several	major	features	specific	to	the	Linux	kernel.	The	main	

benefits	 of	 using	 Bionic	 instead	 of	 the	 GNU	 C	 Library	 (glibc)	 or	 uClibc	 are	 its	
smaller	runtime	footprint,	and	optimization	for	low-frequency	CPUs.	At	the	same	
time,	 Bionic	 is	 licensed	 under	 the	 terms	 of	 the	 BSD	 licence,	which	Google	 finds	
more	suitable	for	the	Android's	overall	licensing	model.	
	
Aiming	 for	a	different	 licensing	model,	 toward	 the	end	of	2012	Google	switched	
the	 Bluetooth	 stack	 in	 Android	 from	 the	 GPL-licensed	 BlueZ	 to	 the	 Apache-
licensed	BlueDroid.	
	
Android	does	not	have	a	native	X	Window	System	by	default,	nor	does	it	support	
the	full	set	of	standard	GNU	libraries.	This	made	it	difficult	to	port	existing	Linux	
applications	 or	 libraries	 to	 Android,	 until	 version	 r5	 of	 the	 Android	 Native	
Development	Kit	brought	support	for	applications	written	completely	in	C	or	C++.	
Libraries	written	in	C	may	also	be	used	in	applications	by	injection	of	a	small	shim	
and	usage	of	the	JNI.	
	
Open	 Source	Community.	Android	has	an	active	community	of	developers	and	
enthusiasts	 who	 use	 the	 Android	 Open	 Source	 Project	 (AOSP)	 source	 code	 to	
develop	 and	 distribute	 their	 own	 modified	 versions	 of	 the	 operating	 system.	
These	 community-developed	 releases	 often	 bring	 new	 features	 and	 updates	 to	
devices	 faster	 than	 through	 the	 official	 manufacturer/carrier	 channels,	 with	 a	
comparable	level	of	quality;	provide	continued	support	for	older	devices	that	no	
longer	 receive	 official	 updates;	 or	 bring	 Android	 to	 devices	 that	 were	 officially	
released	running	other	operating	systems,	such	as	the	HP	TouchPad.	Community	
releases	 often	 come	 pre-rooted	 and	 contain	 modifications	 not	 provided	 by	 the	
original	 vendor,	 such	 as	 the	 ability	 to	 overclock	 or	 over/undervolt	 the	 device's	
processor.	CyanogenMod	is	the	most	widely	used	community	firmware,	and	acts	
as	a	foundation	for	numerous	others.	There	have	also	been	attempts	with	varying	
degrees	of	success	to	port	Android	to	iPhones,	notably	the	iDroid	Project.	
	
Historically,	 device	 manufacturers	 and	 mobile	 carriers	 have	 typically	 been	
unsupportive	 of	 third-party	 firmware	 development.	 Manufacturers	 express	
concern	 about	 improper	 functioning	 of	 devices	 running	 unofficial	 software	 and	
the	 support	 costs	 resulting	 from	 this.	 Moreover,	 modified	 firmwares	 such	 as	
CyanogenMod	 sometimes	 offer	 features,	 such	 as	 tethering,	 for	 which	 carriers	
would	 otherwise	 charge	 a	 premium.	 As	 a	 result,	 technical	 obstacles	 including	
locked	 bootloaders	 and	 restricted	 access	 to	 root	 permissions	 are	 common	 in	
many	 devices.	 However,	 as	 community-developed	 software	 has	 grown	 more	
popular,	 and	 following	 a	 statement	 by	 the	 Librarian	 of	 Congress	 in	 the	 United	
States	 that	 permits	 the	 "jailbreaking"	 of	 mobile	 devices,	 manufacturers	 and	
carriers	 have	 softened	 their	 position	 regarding	 third	 party	 development,	 with	
some,	 including	 HTC,	 Motorola,	 Samsung	 and	 Sony,	 providing	 support	 and	
encouraging	development.	As	 a	 result	 of	 this,	 over	 time	 the	need	 to	 circumvent	
hardware	restrictions	to	install	unofficial	firmware	has	lessened	as	an	increasing	
number	of	devices	are	shipped	with	unlocked	or	unlockable	bootloaders,	similar	
to	 Nexus	 series	 of	 phones,	 although	 usually	 requiring	 that	 users	 waive	 their	
devices'	 warranties	 to	 do	 so.	 However,	 despite	manufacturer	 acceptance,	 some	
carriers	 in	 the	 US	 still	 require	 that	 phones	 are	 locked	 down,	 frustrating	
developers	and	customers.	

8.1.3		-			SQLite	Database	 	
All	data	are	saved	 locally	 in	our	device,	with	 the	help	of	SQLite	 [28].	SQLite	 is	a	
relational	database	management	system	contained	in	a	C	programming	library.	In	
contrast	 to	 many	 other	 database	 management	 systems,	 SQLite	 is	 not	 a	 client–
server	database	engine.	Rather,	it	is	embedded	into	the	end	program.	
	
SQLite	 is	 ACID-compliant	 and	 implements	 most	 of	 the	 SQL	 standard,	 using	 a	
dynamically	 and	weakly	 typed	 SQL	 syntax	 that	 does	 not	 guarantee	 the	 domain	
integrity.	
	
SQLite	is	a	popular	choice	as	embedded	database	software	for	local/client	storage	
in	 application	 software	 such	 as	 web	 browsers.	 It	 is	 arguably	 the	 most	 widely	
deployed	 database	 engine,	 as	 it	 is	 used	 today	 by	 several	widespread	 browsers,	
operating	systems,	and	embedded	systems,	among	others.	SQLite	has	bindings	to	
many	programming	languages.	
	

8.1.4		-			Google	Maps	Android	API	
We	display	the	routes	and	the	dangerous	driving	events	of	our	trips	using	Google	
Maps	Android	API	[29].	This	API	allow	to	our	users	to	explore	the	world	with	rich	
maps	provided	by	Google.	 Identify	 locations	with	 custom	markers,	 augment	 the	
map	data	with	image	overlays,	embed	one	or	more	maps	as	fragments,	and	much	
more.	

	
Figure	45	-	Google	Maps	in	Android	device.	

	
The	 Google	 Maps	 Android	 API	 allows	 you	 to	 include	 maps	 and	 customized	
mapping	information	in	your	app.	
	
Add	maps	to	your	app	
	
With	 Google	 Maps	 Android	 API	 v2,	 you	 can	 embed	 maps	 into	 an	 activity	 as	 a	
fragment	with	a	simple	XML	snippet.	The	new	Maps	offer	exciting	features	such	as	
3D	 maps;	 indoor,	 satellite,	 terrain,	 and	 hybrid	 maps;	 vector-based	 tiles	 for	
efficient	caching	and	drawing;	animated	transitions;	and	much	more.		
	
Customize	the	map	
	

Add	markers	 onto	 the	map	 to	 indicate	 special	 points	 of	 interest	 for	 your	 users.	
You	can	define	custom	colors	or	icons	for	your	map	markers	to	match	your	app's	
look	and	feel.	To	further	enhance	the	app,	draw	polylines	and	polygons	to	indicate	
paths	or	regions,	or	provide	complete	image	overlays.		
	
Control	the	user's	view	
	
Give	 your	 users	 a	 different	 view	 of	 the	 world	 with	 the	 ability	 to	 control	 the	
rotation,	tilt,	zoom,	and	pan	properties	of	the	"camera"	perspective	of	the	map.		
	
Add	Street	View	to	your	app	
	
Embed	Street	View	into	an	activity	and	let	your	users	explore	the	world	through	
panoramic	360-degree	views.	Programmatically	control	the	zoom	and	orientation	
(tilt	and	bearing)	of	the	Street	View	camera,	and	animate	the	camera	movements	
over	a	given	duration.		

8.1.5		-			Graph	View	 	
In	our	app	we	create	our	line	charts	with	the	help	of	Graph	View.	GraphView	[30]	
is	 a	 library	 for	 Android	 to	 programmatically	 create	 flexible	 and	 nice-looking	
diagrams.	 It	 is	 easy	 to	 understand,	 to	 integrate	 and	 to	 customize.	 Create	 Line	
Graphs,	Bar	Graphs,	Point	Graphs	or	implement	your	own	custom	types.	
	

	
Figure	46	-	Line	graph	with	two	y-scales.	

8.2			Web	Application	Development	
For	 the	 implementation	 of	 our	 web	 application	 we	 choose	 the	 Apache	 Tomcat	
Web	Server	[31].		Apache	Tomcat,	often	referred	to	as	Tomcat,	is	an	open-source	
web	 server	 developed	 by	 the	 Apache	 Software	 Foundation	 (ASF).	 Tomcat	
implements	several	Java	EE	specifications	including	Java	Servlet,	JavaServer	Pages	
(JSP),	 Java	 EL,	 and	 WebSocket,	 and	 provides	 a	 "pure	 Java"	 HTTP	 web	 server	
environment	for	Java	code	to	run	in.	
	

Tomcat	is	developed	and	maintained	by	an	open	community	of	developers	under	
the	 auspices	 of	 the	 Apache	 Software	 Foundation,	 released	 under	 the	 Apache	
License	2.0	license,	and	is	open-source	software.	
	
We	send	our	JSON	data	to	our	server	via	http	methods.	JSON,	is	an	open	standard	
format	 that	 uses	 human-readable	 text	 to	 transmit	 data	 objects	 consisting	 of	
attribute–value	 pairs.	 It	 is	 the	 primary	 data	 format	 used	 for	 asynchronous	
browser/server	communication,	largely	replacing	XML	(used	by	AJAX).	
	
The	 server	 receives	 and	 analyzes	 JSON	 data.	 After	 analyzing	 the	 data	 we	 store	
them	to	our	MySQL	database.	JSP	have	access	to	MySQL	database	using	JDBC.	Java	
Database	Connectivity	(JDBC)	is	an	application-programming	interface	(API)	for	
the	programming	language	Java,	that	defines	how	a	client	may	access	a	database.	
It	 is	 part	 of	 the	 Java	 Standard	 Edition	 platform,	 from	 Oracle	 Corporation.	 It	
provides	methods	to	query	and	update	data	in	a	database,	and	is	oriented	towards	
relational	 databases.	 A	 JDBC-to-ODBC	bridge	 enables	 connections	 to	 any	ODBC-
accessible	data	source	in	the	Java	virtual	machine	(JVM)	host	environment.	
	

8.2.1			-			JSP	&	Servlets	
JavaServer	Pages	(JSPs)	[32]	are	a	specification	for	combining	Java	with	HTML	to	
provide	dynamic	content	for	Web	pages.	When	you	create	dynamic	content,	JSPs	
are	 more	 convenient	 to	 write	 than	 HTTP	 servlets	 because	 they	 allow	 you	 to	
embed	Java	code	directly	into	your	HTML	pages,	in	contrast	with	HTTP	servlets,	in	
which	you	embed	HTML	inside	Java	code.	
	
JSPs	 are	 Web	 pages	 coded	 with	 an	 extended	 HTML	 that	 makes	 it	 possible	 to	
embed	Java	code	in	a	Web	page.	 JSPs	can	call	custom	Java	classes,	called	taglibs,	
using	HTML-like	tags.	The	WebLogic	appc	compiler	weblogic.appc	generates	JSPs	
and	 validates	 descriptors.	 You	 can	 also	 precompile	 JSPs	 into	 the	 WEB-
INF/classes/	 directory	 or	 as	 a	 JAR	 file	 under	 WEB-INF/lib/	 and	 package	 the	
servlet	class	in	the	Web	archive	to	avoid	compiling	in	the	server.	Servlets	and	JSPs	
may	require	additional	helper	classes	to	be	deployed	with	the	Web	application.	
	
JSPs	 enable	 you	 to	 separate	 the	 dynamic	 content	 of	 a	 Web	 page	 from	 its	
presentation.	 It	 caters	 to	 two	 different	 types	 of	 developers:	 HTML	 developers,	
who	 are	 responsible	 for	 the	 graphical	 design	 of	 the	 page,	 and	 Java	 developers,	
who	handle	the	development	of	software	to	create	the	dynamic	content.	
	
A	Servlet	[33]	is	a	Java	class	that	runs	in	a	Java-enabled	server.	An	HTTP	servlet	is	
a	 special	 type	 of	 servlet	 that	 handles	 an	 HTTP	 request	 and	 provides	 an	 HTTP	
response,	 usually	 in	 the	 form	 of	 an	 HTML	 page.	 The	 most	 common	 use	 of	
WebLogic	HTTP	servlets	is	to	create	interactive	applications	using	standard	Web	
browsers	 for	 the	 client-side	 presentation	 while	 WebLogic	 Server	 handles	 the	
business	 logic	 as	 a	 server-side	 process.	 WebLogic	 HTTP	 servlets	 can	 access	
databases,	 Enterprise	 JavaBeans,	 messaging	 APIs,	 HTTP	 sessions,	 and	 other	
facilities	of	WebLogic	Server.	
	

8.2.1			-			MySQL	
MySQL	[34]	is	an	open-source	relational	database	management	system	(RDBMS);	
in	July	2013,	it	was	the	world's	second	most[a]	widely	used	RDBMS,	and	the	most	
widely	 used	 open-source	 client–server	 model	 RDBMS.	 It	 is	 named	 after	 co-
founder	Michael	Widenius's	daughter,	My.	The	SQL	acronym	stands	for	Structured	
Query	 Language.	 The	 MySQL	 development	 project	 has	 made	 its	 source	 code	
available	under	 the	terms	of	 the	GNU	General	Public	License,	as	well	as	under	a	
variety	of	proprietary	agreements.	MySQL	was	owned	and	sponsored	by	a	single	
for-profit	 firm,	 the	 Swedish	 company	 MySQL	 AB,	 now	 owned	 by	 Oracle	
Corporation.	 For	 proprietary	 use,	 several	 paid	 editions	 are	 available,	 and	 offer	
additional	functionality.	
	
MySQL	is	a	popular	choice	of	database	for	use	in	web	applications,	and	is	a	central	
component	of	the	widely	used	LAMP	open	source	web	application	software	stack	
(and	 other	 "AMP"	 stacks).	 LAMP	 is	 an	 acronym	 for	 "Linux,	 Apache,	 MySQL,	
Perl/PHP/Python."	 Free-software-open	 source	 projects	 that	 require	 a	 full-
featured	 database	management	 system	 often	 use	 MySQL.	 Applications	 that	 use	
the	MySQL	 database	 include:	 TYPO3,	 MODx,	 Joomla,	WordPress,	 phpBB,	MyBB,	
Drupal	and	other	software.	MySQL	 is	also	used	 in	many	high-profile,	 large-scale	
websites,	 including	Google	 (though	not	 for	 searches),	Facebook,	Twitter,	 	Flickr,	
and	YouTube.	
	
On	all	platforms	except	Windows,	MySQL	ships	with	no	GUI	 tools	 to	administer	
MySQL	databases	or	manage	data	contained	within	the	databases.	Users	may	use	
the	 included	 command	 line	 tools,	 or	 install	 MySQL	 Workbench	 via	 a	 separate	
download.	Many	third	party	GUI	tools	are	also	available.	

8.2.1			-			Google	Maps	Web	API	
We	display	the	routes	and	the	dangerous	driving	events	of	our	trips	using	Google	
Maps	JavaScript	API.	The	Google	Maps	JavaScript	API	[35]	is	a	powerful,	popular	
mapping	API.	 It's	 simple	 to	use	 to	 add	maps	 to	 your	website,	 or	web	or	mobile	
application,	 and	 provides	 a	 wide	 range	 of	 services	 and	 utilities	 for	 data	
visualization,	map	manipulation,	directions,	and	more.	

8.2.1			-			Google	Charts	
Google	Charts	[36]	provides	a	perfect	way	to	visualize	data	on	your	website.	From	
simple	line	charts	to	complex	hierarchical	tree	maps,	the	chart	gallery	provides	a	
large	number	of	ready-to-use	chart	types.	
	
The	most	 common	way	 to	 use	Google	 Charts	 is	with	 simple	 JavaScript	 that	 you	
embed	in	your	web	page.	You	load	some	Google	Chart	libraries,	list	the	data	to	be	
charted,	 select	options	 to	customize	your	chart,	and	 finally	create	a	chart	object	
with	an	id	that	you	choose.	Then,	 later	 in	the	web	page,	you	create	a	<div>	with	
that	id	to	display	the	Google	Chart.	
	
Charts	are	exposed	as	JavaScript	classes,	and	Google	Charts	provides	many	chart	
types	for	you	to	use.	The	default	appearance	will	usually	be	all	you	need,	and	you	
can	always	customize	a	chart	 to	 fit	 the	 look	and	feel	of	your	website.	Charts	are	
highly	interactive	and	expose	events	that	let	you	connect	them	to	create	complex	
dashboards	 or	 other	 experiences	 integrated	 with	 your	 webpage.	 Charts	 are	

rendered	 using	HTML5/SVG	 technology	 to	 provide	 cross-browser	 compatibility	
(including	VML	 for	older	 IE	versions)	and	cross	platform	portability	 to	 iPhones,	
iPads	 and	 Android.	 Your	 users	 will	 never	 have	 to	 mess	 with	 plugins	 or	 any	
software.	If	they	have	a	web	browser,	they	can	see	your	charts.	
	
All	chart	types	are	populated	with	data	using	the	DataTable	class,	making	it	easy	
to	 switch	 between	 chart	 types	 as	 you	 experiment	 to	 find	 the	 ideal	 appearance.	
The	 DataTable	 provides	methods	 for	 sorting,	modifying,	 and	 filtering	 data,	 and	
can	be	populated	directly	 from	your	web	page,	a	database,	or	any	data	provider	
supporting	 the	Chart	Tools	Datasource	protocol.	 (That	 protocol	 includes	 a	 SQL-
like	query	 language	and	 is	 implemented	by	Google	Spreadsheets,	Google	Fusion	
Tables,	 and	 third	 party	 data	 providers	 such	 as	 SalesForce.	 You	 can	 even	
implement	 the	 protocol	 on	 your	 own	 website	 and	 become	 a	 data	 provider	 for	
other	services.)	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Chapter	9	–	Conclusion	

9.1			Thesis	Summary	 	
This	work	shows	 that	 the	user	 (driver)	 can	benefit	 from	a	Usage-Based	system;	
the	system	rewards	 the	user	 for	being	a	 safe	driver	and	also	provides	him	with	
feedback	on	his	driving	habits,	making	him	a	better	and	safer	driver.	The	device	
measures	various	elements	of	user’s	driving	behavior,	safe	or	hard	breaking,	safe	
or	 sharp	 accelerating,	 safe	 or	 sharp	 turns	 and	 safe	 or	 sharp	 lane	 changes.	 Also	
measures,	 the	 start	 time	 of	 trip,	 the	 duration	 of	 trip	 and	 the	 total	 travelled	
distance	of	trip.	Also	for	every	trip,	the	user	gets	a	score	and	a	rating,	depending	
on	how	well	he	droves.	The	insurance	company	has	access	to	all	these	data	(trips	
data,	routes	and	graphs)	of	his	drivers	via	the	e-platform.		
	
Also	 in	 our	 work,	 we	 show	 that	 the	 driving	 behavior	 of	 the	 user	 could	 be	
estimated	 based	 on	 acceleration	 data	 of	 the	 accelerometer	 sensor	 or	 based	 on	
orientation	 data	 of	 sensor	 fusion	method.	 Sensor	 fusion	method	 combines	 data	
from	the	accelerometer,	geomagnetic	 field	sensor	and	the	gyroscope.	The	driver	
can	 choose	 the	 detection	 method	 from	 the	 settings	 of	 the	 application’s	 main	
menu.	We	propose	to	drivers	to	use	accelerometer	data	as	their	detection	method.	
The	reason	is	not	that	the	sensor	fusion	data	are	not	accurate	or	reliable	data	but	
the	sensor	fusion	data	are	not	the	best	option	for	the	detection	of	sharp	turns	or	
sharp	 lane	changes.	When	we	use	only	 the	accelerometer,	 the	algorithm	detects	
sharp	turns	or	sharp	lane	changes	faster	than	when	we	use	the	orientation	data	of	
sensor	 fusion	method.	 From	 the	 other	 hand	when	we	 use	 the	 sensor	 fusion	 as	
detection	 method	 the	 system	 detects	 faster	 the	 safe/hard	 acceleration	 or	
deceleration	of	the	vehicle	than	when	we	use	only	the	acceleration	data.	
	
Using	 the	 sensor	 fusion	method	 or	 accelerometer	method	 it	 is	 understood	 that	
safety	 comes	 first	 and	 the	 system	 takes	 into	 account	 that	 sometimes	 hard	
deceleration	 and	 rapid	 accelerating	 or	 other	 dangerous	 driving	 events	 are	
necessary	 to	 avoid	 a	 collision.	 The	 system	 works	 to	 identify	 a	 pattern	 in	 your	
driving	 habits	 so	 the	 occasional	 hard	 brake	 will	 not	 have	 a	 significant	 (if	 any)	
impact	on	your	potential	rating.	The	discount	of	 the	drivers	 is	depending	on	his	
average	 rating	 of	 his	 trips.	 So	 better	 rating	 means	 highest	 discount	 for	 his	
insurance.	
	
By	using	the	application	and	the	e-platform	UBI	 information	system,	 the	drivers	
and	the	insurance	company	have	many	benefits.	Some	of	them	are:	
	

• Social	 and	 environmental	 benefits	 from	 more	 responsible	 and	 less	
unnecessary	driving.	

• Commercial	 benefits	 to	 the	 insurance	 company	 from	better	 alignment	 of	
insurance	with	actual	risk.	Improved	customer	segmentation.	

• Potential	cost-savings	for	responsible	customers.	
• Technology	 that	 powers	 UBI	 enables	 other	 vehicle-to-infrastructure	

solutions	 including	 drive-through	 payments,	 emergency	 road	 assistance,	
etc.	

• More	choice	for	consumers	on	type	of	car	insurance	available	to	buy.	

• Social	benefits	from	accessibility	to	affordable	insurance	for	young	drivers	
-	 rather	 than	 paying	 for	 irresponsible	 peers,	 with	 this	 type	 of	 insurance	
young	drivers	pay	for	how	they	drive.	

• Higher-risk	 drivers	 pay	 most	 per	 use,	 thus	 have	 highest	 incentive	 to	
change	driving	patterns	or	get	off	the	roads,	leaving	roads	safer.	

• For	 telematics	 usage-based	 insurance:	 Continuous	 tracking	 of	 vehicle	
location	 enhances	 both	 personal	 security	 and	 vehicle	 security.	 The	 GPS	
technology	 could	 be	 used	 to	 trace	 the	 vehicle	whereabouts	 following	 an	
accident,	breakdown	or	theft.	

• The	 same	 GPS	 technology	 can	 often	 be	 used	 to	 provide	 other	 (non	
insurance)	benefits	to	consumers,	e.g.	satellite	navigation.	

• Gamification	of	 the	data	encourages	good	driver	behavior	by	comparison	
with	other	drivers.	

	
Our	 system	 can	 serve	 some	 useful	 purposes	 but	 it	 has	 some	 limitations	 and	
drawbacks	too.	Some	of	them	are:	
	

• They	system	cannot	detect	the	backward	movement	of	the	vehicle.	During	
the	user	drives	backwards,	the	detected	driving	events	will	be	wrong.	This	
wrong	 driving	 events	will	 affect	 the	 score	 and	 the	may	 the	 rating	 of	 the	
user.	

• A	 limitation	 of	 our	 system	 has	 to	 do	with	 the	 calibration	 process	 of	 the	
device.	Before	we	start	driving	 the	application	will	 tell	us	 to	 follow	some	
instructions	 for	 the	 calibration	 of	 the	 device.	 This	 process	 has	 to	 be	
repeated	for	each	new	trip	and	the	whole	process	takes	about	5	seconds	to	
complete.	

• Another	limitation	is	when	we	start	the	calibration	process	when	the	car	is	
on	 a	 slope.	 	 If	 the	 car	 is	 on	 a	 slope	 during	 the	 calibration	 procedure	 the	
reading	data	will	be	affected	and	this	will	lead	to	poor	results.	

• The	device	has	to	be	in	a	fixed	position	during	the	trip.	After	the	calibration	
and	while	monitoring	you	cannot	move	the	device	from	its	fixed	position.	If	
the	device	moved	while	monitoring	the	sensor’s	output	data	will	be	wrong	
and	the	evaluation	of	the	data	will	not	be	accurate.	In	this	case	the	user	has	
to	repeat	the	calibration	procedure.	

• Some	of	 low	cost	Android	devices	have	low	quality	sensors	or	processing	
power.	 So	 the	 readings	 of	 the	 sensor’s	 data	 are	 not	 so	 accurate	 and	 the	
application	slow	down	due	to	low	processing	power.	

• All	Android	devices	have	in-built	the	most	used	sensors	like	accelerometer	
and	gyroscope.	The	magnetometer	sensor	on	the	other	side	is	not	included	
in	all	 smartphone	devices.	 So	without	 the	magnetometer	 sensor	 the	user	
cannot	use	the	Sensor	Fusion	detection	method.	

9.2			Recommendation	for	Future	Work	
	
The	research	that	has	been	undertaken	for	this	thesis	has	highlighted	a	number	of	
features	on	which	further	implementation	would	be	beneficial.	Some	future	
features	and	implementations	for	this	project	are:	
	

• As	 the	 driving	 style	 in	 this	 thesis	 was	 based	 mostly	 on	 the	 lateral	 and	

longitudinal	forces	acting	on	a	smartphone	(vehicle),	in	a	future	work	the	
phone	camera	could	be	used	to	detect	distance	between	the	vehicles	or	the	
car’s	position	in	the	lane.		

• Also	 another	 camera	 feature	 could	 also	 be	 implemented.	 It	 could	 take	
pictures	based	on	distance	or	 time.	When	 the	user	views	a	previous	 trip,	
the	pictures	could	be	linked	to	the	map.	If	there	are	some	locations	(where	
bad	driving	events	occurred),	the	user	could	view	the	associated	image	to	
better	 understand	 the	 evaluation	 of	 the	 dangerous	 driving	 events.	 There	
could	 also	 be	 a	 record	 video	 feature	 that	 filmed	 the	 whole	 trip.	 These	
features	would	of	course	require	the	user	to	mount	the	phone	in	a	way	that	
guaranteed	the	camera	free	sight.		

• The	speed	data	acquired	from	the	GPS	or	computed	from	the	acceleration	
sensor	could	be	used	in	combination	with	the	location	data	from	the	GPS	to	
detect	speeding	in	various	areas.		

• It	has	to	be	mentioned	that	the	vehicle,	the	mobile	device	and	the	nature	of	
the	road	affect	the	characteristics	of	the	sensor	data.	Due	to	this	variation	
in	characteristic,	the	accuracy	of	the	system	with	fixed	thresholds	would	be	
lower	when	 tested	 under	 different	 conditions	 [37].	 Therefore,	 the	 use	 of	
dynamic	 time	 warping	 for	 the	 different	 events	 would	 provide	 more	
accurate	and	reliable	results.		

• With	 the	 collected	 data,	 we	 could	 generate	 a	map	 (map	with	 dangerous	
areas)	and	see	 if	 there	are	 some	areas	where	most	drivers	had	 the	same	
bad	driving	events.	

• Another	thing	we	could	do	with	a	database	is	for	the	users	to	upload	their	
score,	 and	 generate	 a	 scoreboard.	 It	 could	 be	 a	 scoreboard	 for	 specific	
routes	or	areas.	We	could	also	make	a	user	ranking	system;	to	display	each	
user’s	overall	ranking	and	make	it	easier	for	friends	to	compare	each	other.		

• Also	 another	 nice	 feature	 would	 be	 to	 make	 it	 possible	 to	 compare	
different	trips	on	the	phone.	E.g.	if	someone	drives	the	same	way	to	work	
every	day,	it	might	be	interesting	to	compare	how	they	drove	on	different	
days.		

• Another	future	development	is	to	make	our	application	social,	with	hopes	
of	 reaching	 more	 potential	 users	 for	 the	 insurance	 company.	 We	 will	
integrate	 our	 application	 with	 Facebook	 and	 Twitter,	 where	 the	 drivers	
could	share	their	scores	and	routes.	

	
	
	
	
	
	
	
	
	

Bibliography	
	
[1]	Usage	based	insurance,	https://en.wikipedia.org/wiki/Usage-based_insurance	
	
[2]	 "Usage-Based	 Insurance	 and	 Telematics".	National	 Association	 of	 Insurance			

Commissioners.	Retrieved	22	February	2014.	
	
[3]	 J.	 Paefgen,	 T.	 Staake	 &	 F.	 Thiesse,	 "Resolving	 the	 Misalignment	 between				

Consumer	 Privacy	 Concerns	 and	 Ubiquitous	 IS	 Design:	 The	 Case	 of	 Usage-
based	 Insurance",	 International	 Conference	 on	 Information	 Systems	 (ICIS),	
2012	

	
[4]	Progressive	Casualty	Insurance	Company,	www.progressive.com	
	
[5]	Accelerometer,	http://en.wikipedia.org/wiki/Accelerometer	
	
[6] Gyroscope,	http://en.wikipedia.org/wiki/Gyroscope	
	
[7]	Magnetometer,	http://en.wikipedia.org/wiki/Magnetometer	
	
[8]	GPS,	http://en.wikipedia.org/wiki/GPS_navigation_device	
	
[9] Singh,	P.,	Juneja,	N.,	Kapoor,	S.:	Using	mobile	phone	sensors	to	detect	driving		

behavior.	 In:	 Proceedings	 of	 the	 3rd	 ACM	 Symposium	 on	 Computing	 for	
Development,	ACM	(2013)	

	
[10]	Fazeen,	M.,	Gozick,	B.,	Dantu,	R.,	Bhukhiya,	M.,	Gonzalez,	M.C.:	 Safe	 	Driving	

Using	 Mobile	 Phones.	 In:	 IEEE	 Transactions	 on	 Intelligent	 	Transportation	
Systems	(2012)			

	
[11]	Chigurupa,	S.,	Polavarap,	S.,	Kancherla,Y.,	Nikhath,	K.A.:Integrated		Computing	

System	 for	 measuring	 Driver	 Safety	 Index.	 In:	 International	 Journal	 of	
Emerging	Technology	and	Advanced	Engineering,	ISSN	2250-2459,	Volume	2	
(2012)			

	
[12]	Dai,	 J.,	Tang,	 J.,	Bai,	X.,	 Shen,	Z.,	Xuan,	D.:Mobile	phone	based	drunk	driving									

detection.	 In:	Proc.	4th	Int.	Conf.	Pervasive	Health	NO	PERMISSIONS,,	pp.	18				
(2010)			

	
[13]	Johnson,	D.A.,	Trivedi,	M.M.:Driving	Style	Recognition	using	a	smartphone	as	

a	 sensor	 platform.	 In:	 IEEE	 14th	 International	 Conference	 on	 Intelligent	
Transportation	system,	October	(2011)		

	
[14]	 H.Eren,	 S.Makinist,	 E.Akin,	 A.Yilmaz:	 Estimating	 Driving	 Behavior	 by	 a	

smartphone	 .	 In:	 Intelligent	 Vehicles	 Symposium,	 Alcala	 de	Henares,	 Span,	
June(2012)	

	

[15]	 Chalermporl	 Saiprasent	 and	 Wasan	 Pattara-Atikom:	 Smartphone	 Enabled	
Dangeroys	Driving	Report	System.	In:	46th	Hawaii	International	Conference	
on	System	Sciences	(2013)	

	
[16]	 Chuang-Wen	 You,	 Martga	 Montes-de-Oca,	 Thomas	 J.Bao,	 Nicholas	 D.	 Lane,	

Hong	 Lu,	 Giuseppe	 Cardone,	 Lorenzo	 Torresani,	 Andrew	 T.	 Campbell:	
CarSafe:	 A	 Driver	 Safety	 App	 thath	 Detects	 Dangerous	 Driving	 Behavior	
using	 Dual	 –	 Cameras	 on	 Smartphones.	 In:	 UbiComp12,	 Pittsburg,	 USA,	
September(2012)	

	
[17]	Fadi	Aloul,	Imran	Zualkernan,	Ruba	Abu-Salma,	Humaid	Al-Ali,	May	Al-Merri:	

iBump:Smartphone	Application	 to	Detect	Car	Accidents.	 In:	 IAICT,	Bali	28-
30	August	2014	

	
[18]	Nidhi	Kalra,	Gunjan	Chugh,	Divya	Bansal	:	Analyzing	Driving	and	Road	Events	

via	Smartphone.	 In:	 International	 Journal	Of	Computer	Applications	No.12,	
July	2014	

	
[19]	 Jin-Hyuk	 Hong,	 Ben	Margines,	 Anind	 K.	 Dey:	 A	 smartphone-based	 sensing	

platform	to	Model	Aggressive	Driving	Behaviors.	 In:	CHI	 ,	Toronto,	Canada	
(2014)	

	
[20]	 Johannes	 Paefgen,	 Flavius	 Kehr,	 Yudan	 Zhai,	 Florian	 Michahelles:	 Driving	

Behavior	Analysis	with	Smartphones:Insights	from	a	controlled	Field	Study.	
In:	MUM’12,	ULM,	Germany	(2012)	

	
[21]	 Fr.	 Hørtvedt,	 Fr.	 Kvitvik,	 and	 J.	 A.	 Myrland.	 DriSMo	 -	 the	 driving	 quality		

application.	Bachelor	thesis,	Gjøvik	University	College,	May	2011.	
	

[22]	Atan2,	https://en.wikipedia.org/wiki/Atan2	
	
[23]	 Radoslav	 Stoichkov,	 Android	 Smartphone	 Application	 for	 Driving	 Style	

Recognition,	 Department	 of	 Electrical	 Engineering	 and	 Information	
Technology	Institute	for	Media	Technology,	July	2013.	

	
[24]	 P.	 Lawitzki.	 Application	 of	 Dynamic	 Binaural	 Signals	 in	 Acoustic	 Games.	

Master’s	thesis,	Hochschule	der	Medien	Stuttgart,	2012.	
	
[25]	P.	Lawitzki,	Android	Sensor	Fusion	Tutorial.		

http://plaw.info/2012/03/android-sensor-fusion-tutorial/	
	

[26]	Exponential	Moving	Average,	https://en.wikipedia.org/wiki/Moving_average	
	
[27]	Android	(Operating	System),	

https://en.wikipedia.org/wiki/Android_(operating_system)	
	
[28]	SQLite	Database,	https://en.wikipedia.org/wiki/SQLite	
	
	

[29]	Google	Maps	Android	API,	
										https://developers.google.com/maps/documentation/android-api/	
	
[30]	GraphView	-	open	source	graph	plotting	library	for	Android	
										http://www.android-graphview.org/	
	
[31]	Apache	Tomcat,	http://tomcat.apache.org/	

	
[32]	Java	Server	Pages,	https://en.wikipedia.org/wiki/JavaServer_Pages	
	
[33]	Java	servlet,	https://en.wikipedia.org/wiki/Java_servlet	
	
[34]	MySQL,	https://en.wikipedia.org/wiki/MySQL	
	
[35]	Google	Maps	JavaScript	API	
										https://developers.google.com/maps/documentation/javascript/	
	
[36]	Google	Charts,	https://developers.google.com/chart/	
	
[37]	R.	Bhoraskar,	N.	Vankadhara,	B.	Raman,	and	P.	Kulkarni.	Wolverine:	Traffic	

and	 road	 condition	 estimation	 using	 smartphone	 sensors.	 In	 2012	 Fourth	
International	 Conference	 on	 Communication	 Systems	 and	 Networks	
(COMSNETS),	pages	1–6,	2012.	

	
[38]	Mrinal	 Haloi,	 Dinesh	 Babu	 Jayagopi:	 Characterizing	 driving	 behavior	 using	

automatic	 visual	 analysis.	 Proceedings	 of	 the	 6th	 IBM	 Collaborative	
Academia	Research	Exchange	Conference	 (I-CARE)	 on	 I-CARE	2014,	 pages	
1-4.	

			
[39]	 Z.	 Chen,	 J.	 Yu,	 Y.	 Zhu,	 Y.	 Chen	 and	 M.	 Li:	 D3:	 Abnormal	 Driving	 Behaviors	

Detection	 and	 Identification	Using	 Smartphone	 Sensors,	 12th	Annual	 IEEE	
International	 Conference	 on	 Sensing,	 Communication,	 and	 Networking	
(SECON),	2015.	

	
[40]	 A.	 Ashutosh,	 B.	 Piyush.K.Ingole:	 Smartphone	 based	 approach	 to	 monitor	

driving	behavior	and	sharing	of	statistic,	 International	Journal	of	Advanced	
Technology	 &	 Engineering	 Research	 (IJATER),	 2nd	 International	 e-
Conference	on	Emerging	Trends	in	Technology	(E-ICETT)	2014.	
	

[41]	 P.	 Dhar,	 S.	 Shinde,	 N.	 Jadav,	 A.	 Bhaduri:	 Unsafe	 Driving	 Detection	 System	
using	 Smartphone	 as	 Sensor	 Platform,	 International	 Journal	 of	 Enhanced	
Research	in	Management	&	Computer	Applications,	ISSN:	2319-7471	Vol.	3	
Issue	3,	March-2014,	pp:	(65-70).	

	
[42]	 El	 Hosin	 Gazali,	 Monitoring	 Erratic	 Driving	 Behavior	 caused	 by	 Vehicle	

Overtaking	using	Off-the-shelf	Technologies,	Master	of	Science	in	Computer	
Science,	University	of	Dublin,	October	2010.	

	

[43]	Ming	Liu,	A	study	of	Mobile	Sensing	Using	Smartphones,	Hindawi	Publishing	
Corporation	International	 Journal	 of	 Distributed	 Sensor	 Networks	 Volume	
2013,	Article	ID	272916,	11	pages.	

	
[44]	Priyanka	B.	 Shinde1,	Vikram	A.	Mane2	P.G.	 Student	 (E&TC),	Context	 aware	

driver’s	 behavior	detection	 system	using	Zigbee:	Result,	Annasaheb	Dange	
College	of	Engineering	&	Technology	Ashta,	 India1	 International	 Journal	of	
innovative	 research	 in	 electrical,	 electronics,	 instrumentation	 and	 control	
engineering	Vol.	3,	Issue	1,	January	2015.	

	
[45]	 P.	 Tharangai	 Thamil,	 S.	 Vanitha:	 Survey	 on	 Rash	 Driving	 Detection	 Using	

Acceleration	 and	 Orientation	 Sensors,	 International	 Journal	 of	 Scientific	
Research	Engineering	&	Technology	(IJSRET),	ISSN	2278	–	0882	Volume	4,	
Issue	3,	March	2015		

	
[46]	V.	Corcoba	Magana,	M.	Munoz-Organero.	Artemisa:	An	eco-driving			assistant	

for	Android	Os.	 In	 IEEE	International	Conference	on	Consumer	Electronics	 -	
Berlin	(ICCE-Berlin),	2011,	pages	211–215,	2011.			

	
[47]	 R.	 Araujo,	 A.	 Igreja,	 R.	 de	 Castro,	 and	 R.E.	 Araujo.	 Driving	 coach:	 A	

smartphone	application	to	evaluate	driving	e	cient	patterns.	In	2012	IEEE	on	
Intelligent	Vehicles	Symposium	(IV),	pages	1005–1010,	2012.			

	
[48]	Y.L.	Murphey,	R.	Milton,	and	L.	Kiliaris.	Driver’s	style	classification	using	jerk		

analysis.	 In	 IEEE	 Workshop	 on	 Computational	 Intelligence	 in	 Vehicles	 and	
Vehicular	Systems,	2009.	CIVVS	’09,	pages	23–28,	2009.			

	
[49]	Truong,	Alice.	"A	New	Take	on	Auto	Insurance	by	the	Mile".	Fast	Company.	
	
[50]	One-of-a-Kind	Car	Insurance	Program	Lets	Drivers	Save	Big	Bucks	Based	on	

How	They	Drive	
	
[51]	http://www.insurancejournal.com/news/east/2012/10/23/267659.htm	In

surance	 Journal:	 Allstate’s	 Usage-Based	 Auto	 Insurance	 Expands	 to	 New	
York,	New	Jersey	

	
[52]	 J.	 Paefgen,	 T.	 Staake	 &	 F.	 Thiesse,	 "Resolving	 the	 Misalignment	 between	

Consumer	Privacy	Concerns	 and	Ubiquitous	 IS	Design:	The	Case	of	Usage-
based	 Insurance",	 International	Conference	on	 Information	Systems	 (ICIS),	
2012	

	
[53]	 P.	 Handel,	 I.	 Skog,	 J.	Wahlstrom,	 F.	 Bonawide,	 R.	Welsh,	 J.	 Ohlsson,	 and	M.	

Ohlsson:	 Insurance	 telematics:	 opportunities	 and	 challenges	 with	 the	
smartphone	 solution,	 Intelligent	 Transportation	 Systems	 Magazine,	 IEEE,	
vol.6,	no.4,	pp.	57-70,	winter	2014,	doi:	10.1109/MITS.2014.2343262	

	
[54]	Iqbal	 &	 Lim,	 "A	 Privacy	 Preserving	 GPS-based	 Pay-as-You-Drive	 Insurance	

Scheme",	International	Global	Navigation	Systems	Society,	2006	
	

