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Abstract 

Medical Image processing and analysis aim to deliver to the clinician diagnostic and prognostic 

information obtained in a non-invasive way. Interpreting the content of the medical images is 

traditionally done by visual inspection but this reportedly leads to a high rate of false positives 

of malignant lesions by radiologists as well as high inter-observer variability. To tackle this 

problem computer-aided detection (CAD) methods have been proposed for offering more 

subjective, reproducible diagnostic relevant information. As an example, several CAD 

approaches for breast magnetic resonance imaging (MRI) have been proposed, typically either 

for (a) automatically detecting a lesion (computer-aided detection (CADe)) or (b) classifying a 

lesion as benign or malignant (computer-aided diagnosis (CADx)) [1]. Automated CADe 

approaches usually exploit the fact that malignant lesions typically have different image 

intensity profile structure on MR images, compared to normal parenchyma [1]. 

In this thesis, the main focus was to compute several image texture measures for discriminating 

between benign and malignant tissue. To this end, several texture measures were implemented, 

including Haralick’s image texture measure based on 2D image histograms [2] and fractal 

features [3]. The application domain concerned diffusion weighted MRI (DW-MRI) imaging 

which provides a measure of the random Brownian motion of water molecules within a voxel of 

tissue. Densely cellular tissues or those with cellular swelling exhibit lower apparent diffusion 

coefficients (ADC), and thus diffusion is particularly useful in tumor characterization and 

cerebral ischemia. Previous work on DW-MRI image processing has focused on well-known 

histogram-based statistical analyses which however have yielded poor results in describing 

tumor heterogeneity and therefore discriminating between benign and malignant masses. It has 

been reported that texture analysis could be a better method for achieving this [4] which led to 

thefollowing research question: 

Can we improve the image-based heterogeneity description and differentiate normal from 

cancerous tissue in DW-MRI ADC image maps by using texture analysis? 

This research question has been the main rationale behind the work presented in this thesis. 



Περίληψη 

Η ανάλυση και επεξεργασία ιατρικών εικόνων έχει ως στόχο να παρέχει με μη επεμβατικό 

τρόπο στους ειδικούς διαγνωστικές και προγνωστικές πληροφορίες. Παραδοσιακά, η ερμηνεία 

του περιεχομένου των ιατρικών εικόνων γίνεται με οπτικό έλεγχο, αλλά υπάρχουν αναφορές ότι 

αυτό οδηγεί σε υψηλό ποσοστό ψευδώς θετικών διαγνώσεων κακοηθειών από ακτινολόγους, 

καθώς επίσης και σε υψηλή διακύμανση μεταξύ παρατηρητών. Για την αντιμετώπιση του 

προβλήματος αυτού έχουν προταθεί συστήματα υποβοηθούμενης διάγνωσης (CAD) τα οποία 

προσφέρουν πιο αντικειμενικές, επαναλήψιμες και διαγνωστικά σχετικές πληροφορίες. Ως 

παράδειγμα αναφέρονται κάποιες προσεγγίσεις CAD που έχουν προταθεί για εικόνες 

μαγνητικής τομογραφίας (ΜΤ) μαστού, με τυπικές εφαρμογές (α) την αυτόματη ανίχνευση 

βλαβών ή (β) την ταξινόμηση μιας βλάβης σε καλοήθη ή κακοήθη [1]. Οι διάφορες 

προσεγγίσεις αυτόματων CAD συνήθως  εκμεταλλεύονται το γεγονός ότι οι κακοήθεις βλάβες 

έχουν δομικές διαφορές στα προφίλ εντάσεων απεικόνισης σε εικόνες ΜΤ συγκρινόμενα με 

αυτές κανονικών παρεγχυματικών ιστών [1]. 

Στην παρούσα εργασία εστιάζουμε στον υπολογισμό αρκετών αριθμητικών τιμών που 

περιγράφουν την υφή της εικόνας για την διαφοροποίηση καλοηθών και κακοηθών ιστών. Με 

αυτό σαν στόχο, υλοποιήθηκαν αρκετές μέθοδοι που παράγουν αριθμητικές τιμές, 

συμπεριλαμβανομένων και των τιμών υφής εικόνας του Haralick βασισμένων σε δισδιάστατα 

ιστογράμματα [2] και µορφοκλασµατικά (fractal) χαρακτηριστικά [3]. Ο τομέας εφαρμογής 

αφορά εικόνες μαγνητικής τομογραφίας σταθμισμένης διάχυσης (ΜΤ-ΣΔ) οι οποίες παρέχουν 

ένα μέτρο της τυχαίας (Brownian) κίνησης μορίων νερού μέσα σε ένα χωροστοιχείο (voxel) του 

ιστού. Πυκνές κυτταρικές δομές ιστών ή δομές που παρουσιάζουν διόγκωση των κυττάρων 

παρουσιάζουν διαφοροποίηση στους συντελεστές φαινομενικής διάχυσης (ADC), οπότε η ΜΤ-

ΣΔ είναι εξαιρετικά χρήσιμη στον χαρακτηρισμό καρκινωμάτων και στην αξιολόγηση 

εγκεφαλικών ισχαιμιών. Προηγούμενες εργασίες πάνω σε ΜΤ-ΣΔ επικεντρωθήκαν σε γνωστές 

μεθόδους βασισμένες σε στατιστικές αναλύσεις ιστογραμμάτων οι οποίες όμως δεν αποδίδουν 

καλά όταν πρέπει να περιγράψουν ετερογένεια καρκίνου καθώς και στον διαχωρισμό μεταξύ 

καλοηθών και κακοηθών όγκων. Έχει αναφερθεί ότι η ανάλυση υφής εικόνας μπορεί είναι 

καλύτερη μέθοδος για τον σκοπό αυτό [4] πράγμα που οδηγεί στην ακόλουθη ερευνητική 

ερώτηση: 

Μπορούμε να βελτιώσουμε την περιγραφή της ετερογένειας από εικόνες και την 

διαφοροποίηση υγιούς και καρκινικού ιστού σε ΜΤ-ΣΔ ADC παραμετρικές εικόνες με την 

χρήση ανάλυσης υφής; 

Η παρούσα εργασία προσπαθεί να απαντήσει στο ερώτημα αυτό. 
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1 Introduction 

Medical imaging is a generic term that refers to all the techniques that visualize body 

parts, tissues or organs and is a major part of modern health care as it enhances a lot of 

stages of the medical procedure including diagnosis, treatment, preoperative assessment 

and post-treatment monitoring. The main types of medical images are X-ray based 

methods, ultrasound and MRI and they are generally complimenting one another in 

providing ways to examine the human body in detail providing diagnostic information 

with the use of image processing techniques. Advances in electronics and computing 

power in the course of more than a century have made medical image processing and 

analysis quicker, more precise and less invasive. The present work focuses on 

information extraction through texture analysis on MRI images. 

MRI acquisition methods produce non-invasive high-quality images of the interior of 

the human body that allow the visualization of soft tissues by taking advantage of the 

existence of water molecules combined with the use and manipulation of magnetic 

fields, radio waves and powerful computers. It is often the case that in order to increase 

diagnostic information a contrast agent (a magnetically active material) is administered 

to the patient in order to enhance internal structures or abnormalities. MRI is 

particularly good at pinpointing or assessing the growth of certain tumors, at measuring 

blood flow or for complementing other imaging methods. The certain advantage of MRI 

compared to other techniques that are also routinely used (mainly computed 

tomography (CT) scans, X-rays), is that it does not use radiation so it is well suited for 

regular use. As such, it has become a medical procedure readily available for imaging 

almost all organs of the human body. 

The broad applicability of medical images coupled with the relative ease of acquisition 

has led tothe need of CAD methods for quick and automatic interpretation of their 

content by quantitative analysis techniques. CAD methods are being continually 
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developed to provide radiologists with a way to fully exploit the information present in 

medical images by viewing the imaged object through macroscopic and microscopic 

level.  

Expert radiologists examine MRIs and make qualitative analysis to identify parameters 

and other characteristics that help them detect and classify structural abnormalities on 

tissue. CADs examine the imaged tissue at the level of individual pixels, the smallest 

elements in a digital image. An image texture is a set of metrics calculated in image 

processing designed to quantify the perceived texture of an image. Image texture gives 

us information about the spatial arrangement of color or intensities in an image or 

selected region of an image
1
. The pixels’ grey level are usually the input of texture 

analysis (TA) methods and algorithms which aim to provide quantitative metrics that 

describe and characterize the texture of the tissues depicted [5]. TA is a quantitative 

method that may be sensitive enough to detect subtle changes on tissue architecture and 

extract more robust information comparing to simple visual inspection.  

TA based on MRI is a field of research with applications in a wide variety of topics, 

including the detection of lesions and differentiation between pathological and healthy 

tissues in different organs [6] [7]. The objective of TA on MRI is to find texture (tissue) 

specific features that can be correlated with known pathologies and to provide 

information to be used alone or in combination with other clinical findings in order to 

allow more reliable detection and characterization or even early detection of 

pathologies. 

In the present work we propose that TA improves the statistical classification of MRI 

intensity and metric maps for discriminating between benign and malignant tissue. 

 

In chapter 2 we present a literature review on MRI imaging of several organs with 

emphasis on the use of TA image processing before concluding that there has been no 

work reported on Pancreatic MRI TA which is the clinical application domain of this 

                                                           
1
https://en.wikipedia.org/wiki/Image_texture 
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thesis. In chapter 3 we explain in detail the dataset used and analyze the proposed 

methodology to assess its discriminatory power for differentiating benign from 

malignant image regions. In chapter 4 we present the results of the proposed method on 

a dataset of Pancreatic MRI.In chapter 5 we discuss the results and present our 

intensions for further developments on the subject. 

2 Literature review 

2.1 Magnetic resonance imaging 

MRI is a technique that produces images of a body’s soft tissue without the use of 

ionizing radiation that is used in CT scanning or other x-ray methods. The whole 

process is based on the fact that water molecules are distributed differently in organs 

and tissues throughout the body reflecting each tissue’s architectural structure. In simple 

and broad terms, what is depicted in an MRI scan is the position of hydrogen nuclei of 

the water molecules. 

The hydrogen nuclei is a single proton and, like all protons, they have a property called 

“spin” with a given orientation and in their natural state are positively charged and their 

spins have randomly oriented axes so their tiny magnetic fields cancel each other out. 

MRI scanners utilize wire loops with electric current passing through them that produce 

magnetic fields with strength between 0.5 and 3 T (tesla) and the patient is laid in the 

space inside the loops. This will align the spin axis orientation of the hydrogen protons 

in the patients water molecules parallel to that of the magnetic field and some will have 

the same direction as the field while the rest will have the opposite direction with a 

slight excess in favor of the former which creates a small net magnetization of the area. 

Radio waves are generated by antenna coils positioned around the patient to interact 

with the protons and make them resonate. Those protons with the same spin axis 

direction as the magnetic field are in a low energy state and those in the opposite are in 

a high energy state. By exciting the protons with the proper radio frequency, the excess 

low energy protons absorb energy to become high energy protons and so their spin 

direction change to opposite of the magnetic field. By letting the excited protons relax, 
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the newly aligned protons emit the radio waves back to the antenna coils and revert to 

low energy and same spin direction as the magnetic field. Depending on the kind of 

tissue the reverting protons are in, they emit the radio waves back in different 

frequencies. These waves now contain encoded information in their frequency and 

phase that help determine each signals position and the kind of tissue they originate 

form [8] [9] [10]. 

The frequency of the radio waves used to stimulate the protons is dependent on the 

targeted element and the strength of the magnetic field. In the case of clinical MRI the 

element is usually hydrogen so the strength of the magnetic field is the only variable. 

By making it a gradient magnetic field, there is not one radio frequency that can excite 

the protons of the whole body, so targeted proton excitation is possible by keeping the 

gradient magnetic field constant and changing the frequency of the radio waves. In this 

setup, certain radio frequencies can excite the protons of certain parts of the body and 

this is used to pinpoint and create pictures of thin slices of the tissue where the radio 

frequency is just right to make the protons occupying that space resonate. The images 

produced are a set of tomographic depictions of slices through the patient’s body. Due 

to the difference in magnetic properties of each type of tissue, MRI demonstrates high 

sensitivity in tissue variation in the form of high contrast and as such it has exceptional 

utility as a tool for medical diagnosis [11]. 

The contrast seen on MRIs is generated mainly through differences in two kinds of spin 

time relaxations, T1 and T2. The longitudinal relaxation time T1 is the decay constant 

for the recovery of the nuclear spin magnetization of the protons towards its thermal 

equilibrium or neutral state. The transverse relaxation time constant T2 measures the 

disappearance of the rotating magnetization. Depending on the weight that is given to 

either T1 or T2 – through the manipulation of the magnetic pulse’s sequence and power 

and the type of tissue in the region of interest – image regions appear brighter or darker 

because of diverse reasons including the presence of water, fat, tumors and hemorrhages 

[12]. Concluding, in the last few decades MRI has become a very important device in 

the arsenal of diagnostic techniques of medicine. It is a painless in vivo diagnostic tool 
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used to produce images with high resolution and detail so they can be used to detect 

lesions within the body. For some procedures, contrast agents, such as gadolinium, are 

used to increase the accuracy of the images. 

2.1.1 Dynamic contrast enhanced MRI 

Dynamic contrast enhanced MRI (DCE-MRI) is an MRI acquisition technique that 

utilizes the rampant blood vessel growth that is part of some malignant tumors 

development. In normal situations, blood vessels grow up to a point where they reach a 

sufficient coverage of the tissue. Malignant tumors on the other hand prolong the vessel 

growth indefinitely. By using an intravenously paramagnetic contrast agent, such as 

Gadolinium [13], the acquired DCE-MRIs are baseline images prior to the contrast 

agent injection and multiple post-contrast images and are used to evaluate various 

enhancement characteristics of the lesion. The dynamic acquisition of data allows for 

the determination of vascular permeability. Normal tissue has a diffusion permeability 

characteristic that serves as a baseline. This baseline vascular permeability is compared 

to the vascular permeability of the tissue of interest to determine whether the tissue is 

non-malignant or malignant. In areas with increased blood vessel growth and increased 

vascular leakage, more contrast agent moves from the vascular system to the tumor 

tissue. The paramagnetic properties of the contrast agent increase the local 

magnetization, which results in stronger signal intensity depicted in the acquired image 

sequence. This enhancement causes the tumor area to increase in image signal intensity 

over time, while normal tissue areas remain at the same signal intensity, thereby making 

tumor tissue appear brighter than normal tissue in the image [14]. 

2.1.2 Diffusion weighted MRI 

DW-MRI is based on the random movement of water molecules, also called Brownian 

motion. The properties of the movement are dependent on the environment; if the 

molecules are in a nonrestrictive environment they are equally diffused in all directions 

contrary to certain areas of the body where a diffusion directionality can be observed – 

isotropic and anisotropic diffusion respectively – and the viscosity of the medium or the 
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ease with which molecules are displaced in it, represented by a value called diffusion 

coefficient D [8] [15]. 

To quantize the diffusion, contrary to typical MRIs where only a homogenous magnetic 

field is used to prime the protons for the radio waves, a pulsed magnetic gradient is also 

applied and the resulting contrast image indicates with darker pixel intensities the areas 

where diffusion is stronger in the direction of the pulse. Additionally to better interpret 

the resulting image, the diffusion coefficient D is replaced by the apparent diffusion 

coefficient ADC produced by a DW-MRI and a MRI without perfusion contamination 

[16]. 

A further improvement in producing diffusion images is the use of the intravoxel 

incoherent motion (IVIM) model which considers the motion of the water molecules in 

each voxel as a combination of diffusion due to their Brownian motion, characterized 

by the diffusion coefficient D, and perfusion, that results from the water flowing with 

the blood microcirculation in the capillary network, characterized by the pseudo 

diffusion coefficient D*. The number of water molecules in the voxel that flow in the 

capillaries is only a fraction of the total and this percent is expressed as the perfusion 

factor f [17]. 

2.2 MRI clinical applications and texture analysis 

MRI plays an important role in cancer diagnosis, severity assessment, treatment 

planning and appraising. MRI can provide information able to help radiologists 

distinguish between normal and diseased tissue and to reveal cancerous tissues within 

the body. It is also useful for imaging metastases. MRI provides greater contrast within 

the soft tissues of the body and as a result, it is often used for imaging the brain, spine, 

muscle, connective tissue, bones marrow and other soft tissue structures and organs. In 

the following sections the main areas/organs of MRI application are reviewed along 

with relevant prior work on TA. 
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2.2.1 Brain 

Maybe the most useful MRI of soft body tissue and with the best results currently, is in 

the area of the brain as it is one of the few imaging tools that can see through the skull 

bone and deliver high quality pictures of the brain's delicate soft tissue structures. 

By comparing texture features of T2 weighted MRIs of normal appearing white matter 

of untreated patients versus normal white matter of healthy subjects, TA may 

potentially provide some prognostic evidence in relation to future disability of patients 

diagnosed with clinical isolated syndrome of multiple sclerosis [18]. 

Glioblastoma patients who have received treatment may show progression or pseudo 

progression of increased existing lesions or develop new ones. Contrast and correlation 

texture features obtained from TA of T2 weighted MRI are the most promising 

differential imaging biomarkers that distinguished between the two [19]. TA of ADC 

maps also produce texture biomarkers with pretreatment prognostic information 

independent of known prognostic factors like age, stage and surgical procedure [20]. 

In a texture segmentation effort, texture features extracted from denoised brain MRIs 

and subsequently introduced to a support vector machine that detects with an accuracy 

of 99% the tumor area and then separates the tumor region from normal brain and 

reconstructs it in 3D [21]. 

TA methods yield measurements that result in good classification between MRIs of 

brains with Alzheimer’s disease and MRIs of normal brains and also reflect the 

progression of the disease. This makes TA a useful tool in the diagnosis and tracking of 

Alzheimer’s disease [22]. 

Juvenile myoclonic epilepsy disease mechanisms are connected to the thalamus after 

investigating MRI with TA [23] and even neonatal brains, with their increased water 

content and structural variability due to immaturity,can be examined for ischemic injury 

by using techniques that have a great potential for automated injury detection from MRI 

data [24]. 
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2.2.2 Prostate 

In the last few decades MRI is used for diagnosis and observation of prostate cancer 

(CaP) and it is considered as a complementary method to the prostate-specific antigen 

control and transrectal ultrasound (US) biopsy, performed to distinguish low from high 

risk and the stage of CaP [25] [26]. MRI-ultra sound guided biopsy, where MRI is fused 

with US images in order to improve localization and aggressiveness assessment to carry 

out biopsies, has been shown to outperform standard transrectal US biopsy [27]. 

Gleason score is part of the evaluation of the prognosis of men with prostate cancer 

using samples from a prostate biopsy and there has been association identified between 

ADC prostate values and the Gleason score [28] [29]. Also, the detailed images coupled 

with the minimal invasive nature of MRI is ideal for CaP as there is generally excellent 

natural history reported in the series of CaP patients treated with active surveillance 

[30]. 

High resolution MRI has been shown to have a higher accuracy of prostate cancer 

detection compared to ultrasound and it is a natural fit for CAD systems as they provide 

clearer and sharper spatial information that can be interpreted into a pixel or voxel 

representation to be analyzed by 2-D or 3-D TA methods. Such systems, based on first 

and second order texture feature analysis of DCE, DW and T2 weighted MRI, have 

been reported to provide satisfactory results when compared with expert qualitative 

analysis [31] [32]. 

2.2.3 Breast 

Breast cancer MRI is not recommended as a screening tool by itself, because although it 

is a test with high sensitivity, it can still miss some cancers that mammograms would 

detect, even for women at high risk for breast cancer [33]. It also has high false-positive 

findings that may lead to unnecessary biopsies or overtreatment [34]. There are some 

promising reports however on breast cancer quantitative classification of DCE-MRIs 

using volumetric TA or 4D TA (i.e. volumetric TA on pre-contrast and post contrast 

DCE-MRIs) with results comparable to those of radiologists [35] [36] [37]. 
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Breast MRI may be used in addition to mammography to detect breast cancer in its 

earliest stage for some women who are at high risk for developing the disease [38], to 

better examine suspicious areas found by a mammogram, to look more closely at the 

breast on someone who has already been diagnosed with breast cancer [39] or to 

monitor for post treatment recurrence [40] [41]. 

2.2.4 Muscle 

Whole-body MRIs (WB-MRI) is a good replacement of CT scans as a diagnostic tool in 

neuromuscular diseases due to limitations of the later because of the use of ionizing 

radiation and the artifacts from dense bone structures [42]. WB-MRI protocols like the 

Garchesprotocol are suitable for a large spectrum of adults and children with early-onset 

neuromuscular disorders [43] [44] and degenerative diseases [45]. A great advantage of 

WB-MRI is the correct and accurate definition of biopsy targets when a biopsy is 

required on patients with suspected muscle disease. Oedematous and inflammatory 

changed muscles can be sufficiently depicted and therefore biopsies become more 

precise [45] [46] [47]. 

Investigation of automated MRI TA of muscle ROIs, using statistical and structural 

methods, produce high sensitivity and specificity scores and the findings suggest that 

TA of MR images can provide further microscopic information complementary to the 

results of visual examination [48]. Muscle composition canbe described with the TA of 

MR T2 relaxation time sequences, to help in diagnosing fat infiltration in muscular 

dystrophy, as fat is a marker for the progression and severity of thedisease [49] [50]. 

2.2.5 Bone structure 

Bone marrow disease diagnosis is another medical area where MRI and WB-MRI tools 

are becoming indispensable. Bone marrow lesion is an indication of many bone 

disorders that include osteoarthritis, arthritis, diffuse large B-cell lymphoma, 

osteonecrosis, bone bruise, multiple myeloma, and even tumor or transient bone marrow 

edema syndrome [51] [52] [53] [54] [55]. At least one survey has shown that diffusion 

weighted WB-MRI demonstrated more lesions than x-ray skeletal survey in all regions 
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except the skull with greater interobserver agreement [56]. In the area of bone tissue 

regeneration with the use of synthetic materials, a combination of micro CT and MRI 

shows potentialfor analyzing the morphology and biocompatibility of the bone implants 

by allowing non-invasive precise three dimensional measurements of the micro-

structures and provides qualitative and quantitative analysis of bones and synthetic 

scaffolds [57] [58]. 

High resolution MRIs (HR-MRI) techniques are proposed to quantify and characterize 

bone trabeculation that causes osteoporosis. Fractal geometry has been used to quantify 

the convolutedness of the marrow-trabecular bone interface in the places where their 

existence in the bone is greatest according to image thresholding techniques [59]. 

Additional studies combined texture metrics of MRIs with bone mineral density 

measurements in a multivariate-regression model that significantly improved the 

analysis of bone strength and quality [60]. The usefulness of trabecular bone structure 

parameters assessed with TA of HR-MRI has been further compared with those 

determined in specimen sections and significant correlations have been found albeit 

with some limitations with thinner sections [61]. 

Significant differences are also found in the trabecular bone texture, particularly at the 

superior femoral neck, between people with different physical exercise loading. The 

differences in the femoral neck area of the bones in two groups, one of female athletes 

and a nonathletic reference group, where detected and classified quantitatively by MRI 

TA methods, specifically co-occurrence matrix-based texture parameters [62]. 

2.2.6 Kidney 

DW-MRI of the kidney seems to be a reliable way to differentiate normal renal 

parenchyma and different renal diseases [63]. It has been shown that MRI is better than 

CT scans for evaluating malignancy, for preoperative assessment of renal lesions with 

minimal amounts of fat or with intracellular fat, for examining complicated cysts and it 

is an excellent method of preoperative workup on donors [64]. The use of kidney MRI 
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T2-star method for evaluating renal iron overload in thalassemic patients has also 

shown better results than the application of the same method on heart or liver [65]. 

Until a few years ago, not much progress had been made in automatic image analysis 

methods through TA on renal MRI because of the large amount of time and skill 

required for image co-registration and segmentation, so they often got ignored in renal 

studies and even in clinical research [66]. Some efforts have been made recently to 

reduce motion artifacts, due to respiratory motion, in image time series and improve the 

automatic segmentation of renal DCE-MRI data, concluding in results that are in 

agreement with manual delineations [67] [68]. Progress has been also made in image 

grading of renal cell carcinoma tissue through 3D TA using GLCM and Haar wavelets, 

with the secondproviding better classification accuracy [69]. Still, the quantification of 

MR renography is in need of improvement in all areas, but especially in the tools for 

automatic image analysis because of the decrease of signal-to-noise ratio with 

decreasing kidney function [70] [71]. 

2.2.7 Cardiovascular 

Cardiac MRI (CMRI) has become a common test used to diagnose many diseases and 

conditions of the heart and major blood vessels. Cardiomyopathy encompasses a wide 

range of fairly rare myocardium pathologies that differ from each other in a number of 

ways and CMRI is considered the most important imaging technique required to 

differentiate, diagnose and study them [72]. DCE-MRI appears to be viable for non-

invasive and pre-interventional assessment of the status of the coronary sinus in heart 

failure patients [73] and for detecting scarring of the damaged myocardium caused by 

myocardial infarction [74], which in turn can identify patients with predisposition to 

ventricular arrhythmias [75]. 

For cardiac tumors CMRI is the most useful among the available imaging modalities, as 

it differentiates tumor from thrombus, distinguishes benign from malignant masses, 

helps to determine the extent of the invasion in the myocardium and pericardium and it 

is used to guide surgical planning, like tumor resectability [76] [77]. 
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Cardiac fibrosis, referring to the heart valves, can be observed by the differences on 

segment-based myocardial T1 maps between relaxation times in aortic regurgitation and 

in normal hearts [78]. The diagnosis and treatment of congenital heart disease by 

cardiac catheterization is based on real time observation and guidance of the catheter 

and the techniques employed to do that are fluoroscopy and MRI. While the former has 

drawbacks, like poor soft tissue visualization and exposure to radiation, the latter is 

safer with lower radiation exposure and better soft tissue visualization [79]. Even in 

newborns afflicted with congenital heart disease, MRI can help valuate cerebral 

hemodynamics, metabolism and risk indicators of brain injury [80]. 

The diagnosis and assessment of cardiovascular shunts (deviations from the normal 

circulatory system), is greatly benefited from CMRI as it can identify and characterize 

defects in the ventricular septum, quantify shunts and their impact on cardiac function, 

and help in the proceduresof percutaneous device placement [81]. Therapy strategies of 

pericardial diseases, like inflammation and constriction, benefit from the morphologic 

and functional information that CMRI can provide by identifying and outlining the 

spread of pericardial masses [82]. 

Tagged CMRI is a technique that makes it possible to measure anatomical and 

functional myocardial parameters in vivo by creating temporary features - tags onan 

initial CMRI to create a grid of tags and then analyze the deformities of the grid through 

a series of subsequent CMRIs depicting the tissue from different angles [83] [84]. TA, 

active contours, template matching and active geometry are also integrated with tagged 

CMRI to enable an automatic detection of the myocardial boundaries and then an 

optimized tracking of the grid of tags within the myocardium [85] [86]. While these 

methods provide good results they suffer from long processing times [87], a 

shortcoming not present in the harmonic phase (HARP) algorithm which works in k-

space, i.e. the Fourier domain and it’s a method widely accepted by the medical 

community as a standard processing technique for tagged CMRI [88] [89]. 

Texture and image analysis techniques are also used on untagged CMRIs to segment the 

heart and blood vessels for 3D visualization using two-phase active contours [90], to 
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segment and investigate morphology and function of the left and right ventricular on 4-

D CMRIs [91] and to retrieve CMRIs from databases based on texture indexing [92]. 

2.2.8 Bladder 

DW-MRI is a moderately accurate technique for the local staging of bladder cancer but 

the accuracy for differentiating superficial versus invasive and organ-confined versus 

non-organ-confined tumor is high [93] [94] [95] [96] and it is also beneficial to use on 

patients for better preoperative T staging [97]. As bladder cancer demonstrates 

angiogenic activity, contrast patterns in DCE-MRI are also valuable indicators for 

tumor profiling [98]. 

TA has shown some promise in differentiating between bladder cancer and the bladder 

wall on MRI [99]. Bladder cancer has significant differences in some texture features 

compared to normal wall tissue. Some properties of bladder cancer, such as the depth of 

invasion into the bladder wall and surrounding structure, and the fully 3D structure of 

the cancer, might be obtained directly from a patient’s MRI [100]. 

2.2.9 Thyroid-Neck 

For thyroid cancer, sonographyhas the advantage over MRI because it is inexpensive 

and provides more information on tumors and metastases in the area [101] [102] but 

when the tumor extends to the thyroid margin DW-MRI can be used effectively and 

when coupled with CTcan be also used to diagnose and monitor swellings, as well as 

perform pre-surgical imaging and evaluate for recurrence in the post-treatment neck 

[103] [101] [104]. 

A study has shown that MRI TA proves useful in correctly classifying or pharyngeal 

squamous cell carcinoma according to the status of p53, which is a protein that 

regulates gene expression to prevent cancer formation. Several texture variables where 

found significant enough to be used in a predictive model with 80% accuracy [105]. 
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2.2.10 Liver 

DCE-MRI is considered the state of the art method for early detection of liver tumors, 

as some cases can benefit from curative liver resection in early stages [106]. Also the 

observation and quantification of liver DW-MRI parameters seems very promising 

since it may help to evaluate tumor microvascularization in relation to disease 

progression and to assess early response to antiangiogenic treatment [107]. Liver 

diagnosis greatly benefits from the principle of intra-voxel incoherent motion MRI 

(IVIM-MRI) as perfusion fraction f and perfusion-related diffusion coefficient D* are 

strongly associated with the difference between normal livers versus fibrotic livers and 

livers with hepatocellular carcinoma [108] [109] [110]. 

It has been shown that MRI TA can be used to successfully separate cirrhotic patients 

and healthy volunteers [111]. Performed on rats liver samples produced good results 

when used to classify protective or therapeutic effects of antifibrotic drugs. Liver 

function tests and histopathological analysis on the same samples resulted in 

comparable outcomes as those found by the texture parameters used in the analysis 

[112]. Another study on hepatic fibrosis found that the results of the TA method of 

finite difference and an artificial neural network reflect the degree of fibrosis most 

accurately [113].  

2.2.11 Pancreas 

Pancreatic cancer (PaC) is one of the most lethal forms of cancer as it is progressing 

aggressively, there is an inadequacy of tools for early diagnosis and there is no real 

progressin the establishment of new therapeutic options in the last two decades [114]. 

Due to the lack of early symptoms and the tendency of PaC to invade adjacent 

structures or to metastasizeat an early stage, many patients with pancreatic cancer 

already have advanced disease at the time of their diagnosis and therefore they exhibit a 

high mortality rate [115]. The first diagnostic tool used is usually US followedby CT for 

pre-operative examination in patients with suspected PaC but currently MRI with 

magnetic resonance cholangiopancreatography is considered superior in several specific 
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situations (i.e. small tumors, hypertrophied pancreatic head, isoattenuating PaC, and 

focal fatty infiltration of the parenchyma [116]) given its greater soft-tissue contrast of 

MRI compared to that of CT [117]. 

Based on our extensive search, there doesn’t seem to beany published research on 

the subject of TA on pancreatic MRI. For this reason in this thesis it was decided 

to investigate the use of TA for discriminating between benign and malignant 

masses on a dataset of pancreatic MRIs. 

2.3 Texture analysis and feature extraction methods 

Texture has no formal definition in the literature thought it has been described as a 

pattern of variations in gray tones [118] [5], as a scale depended spatial relationship 

between tonal primitives (pixels) [2] or that it expresses if an image characteristics are 

fine or coarse, smooth or irregular, homogeneous or inhomogeneous [119]. Humans use 

mainly texture and color to differentiate materials on sightbecause even though texture, 

like shape, is a spatial property, it only reveals itself as such under very close scrutiny as 

it blends with and changes color to give materials the various characteristics that the 

human eye is trained to recognize [120]. The textures depicted on digital images are 

treated with a procedure known by the generic name texture analysis and it is used to 

extractfeatures that describe the textures directly or in an abstract way. Apart from the 

obvious advantage of speed in automatic bulk digital texture processing, a big benefit 

over human eye perception is that the human eye can identify only first or second level 

complexity information from an image rather than the higher level of information a 

digital texture process can extract [5]. 

The main TA methods are the statistical, the structural and the model based methods 

[121]. These methods create a pool of features that are then used to classify the texture 

by using one of a multitude of statistical classification techniques. Which technique will 

be used depends on a number of things. The existence or not of a training set will lead 

to a supervised or unsupervised classification respectively. The number of available 

features is also an important factor as a high-dimensional space is difficult to be 
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visualized and is computationally heavy. Usually in TA of medical images samples of 

known pathologies a supervised classification method is used because the results have 

to be comparable to the known cases of pathologies to determine the usefulness of the 

extracted information. 

2.3.1 Haralick features 

The Haralick features have become a staple of medical imaging TA since Haralick et al. 

described them in [2]. They are second order statistics information that are extracted 

from a matrix representation of the relationship between pairs of pixels which must be 

in grayscale or at least have their color values quantized in some similar fashion. In the 

original publication by Haralick et al. the matrix was named gray-tone spatial-

dependence matrix but now it is referred to as grayscale co-occurrence matrix (GLCM) 

in the literature. The GLCM contains non-normalized frequencies that are the counts of 

appearance of every possible pair of intensity values (usually gray scales) between two 

pixels separated by a distance dand orientation θ. In its most typical form the GLCM is 

calculated using distance d equal to 1 pixel – so neighboring pixels form the pairs – and 

for the orientation θ one of the 0
0
, 45

0
, 90

0
 or 135

0
 degrees. The occurrences of intensity 

pairs are stored in the GLCM according to a template grid created by all the possible 

pairs of intensities which is an NxN matrix, where N is the maximum intensity value 

possible for a given ROI. 

 

Figure 1 The GLCM of an image with 4 gray levels. 

In Figure 2 we see a step in the process of creating a GLCM of a ROI with distance 1 

and orientation 0
0
. The black numeric values are the intensities of the ROI which, if it is 
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necessary, is quantized in a positive integer scale in preprocess. The arrows show an 

example of pair counting, in this instant it is that of the pixels with intensity 1 and 2. 

The count is then stored in the GLCM as shown in Figure 3. 

 

Figure 2 Instance of calculating the GLCM. 

 

Figure 3 There are 6 horizontal pairs of (1, 2) or (2, 1). 

After the creation of the GLCM comes the feature extraction process which provides 

quantitative features for analysis the texture content of the image. Haralick et al. 

proposed 14 features which are described in the following sections. 

2.3.1.1 Angular second moment  

Angular second moment (ASM) or energy that measures the smoothness of the image 

and it is calculated from the sum of the squares of the entries of the GLCM. If an image 

is smooth ASM is large because the values of GLCM are less uniformly distributed and 

there are a few large frequencies present. If the image is not smooth then the GLCM is 

populated by a lot of small values and the ASM is small. 

              

  

 

Equation 1 Haralick angular second moment 
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2.3.1.2 Contrast  

Contrast or inertia is a measure of local level variation. Visually the GLCM is fuller and 

with higher frequency values at the corners away from the main diagonal where the 

pairs of pixels with large intensity difference are situated. It is calculated by summing 

all the frequencies of the GLCM after weighting them in favor of the pairs with higher 

intensity difference. 

      

    

   
 
 

 
        

  

   

  

   

        
 

 

 

Equation 2 HaralickContrast or inertia 

2.3.1.3 Correlation 

Correlation is the measure of linear dependency between each pair of pixels represented 

in the GLCM. The more pairs found with similar grayscale intensities the higher the 

correlation measure.  

   
                   

    
 

Equation 3 Haralick Correlation 

2.3.1.4 Sum of squares  

Sum of squares or variance is a measurement of the spread between the intensity pairs 

in the image. It is the mean of the product of the differences of all the intensity pairs 

from their marginal means.  

                 

  

 

Equation 4 HaralickSum of squares or variance 
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2.3.1.5 Inverse difference moment  

Inverse difference moment or local homogeneity is a measure inversely proportional to 

the contrast of the image. Images with small local intensity variations have a large 

amount of local homogeneity. 

     
 

        
      

  

 

Equation 5 HaralickInverse difference moment or local homogeneity 

2.3.1.6 Sum average 

Sum average is calculated by first adding the intensities of each possible intensity pair 

in the GLCM and then summing the frequency of the pairs with the same total intensity. 

This produces an array of length 2N-1 (where N the maximum intensity value). Another 

way to get the same result is to sum all the elements of each of the secondary diagonals 

of the GLCM. The sum of the products of each element of the array times the 

corresponding total pair intensity of the element gives the measure of the sum average. 

            

   

   

 

Equation 6 Haralick Sum average 

2.3.1.7 Entropy  

Entropy is a measure of how evenly energy is distributed and is related to the contrast of 

the image. The smoother the image the lowest the entropy value. For the GLCM 

calculating the entropy means quantifying the repetition of intensity pairs and thus 

measuring the repetition of the texture. Low entropy means more repetition and higher 

entropy means more randomness in the structure of the texture. 

                      

  

 

Equation 7 Haralick Entropy 
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2.3.1.8 Sum entropy 

Sum entropy is the entropy of the array calculated by adding the intensities of each 

possible intensity pair in the GLCM and then summing the frequency of the pairs with 

the same total intensity, as in sum average described above.  

            

   

   

             

Equation 8 Haralick Sum entropy 

2.3.1.9 Sum variance 

Sum variance is the same as sum average but with total intensity pair array being 

replaced by the squared difference of the sum entropy measure from the total pair 

intensity. 

          
        

   

   

 

Equation 9 Haralick Sum variance 

2.3.1.10 Difference variance 

Difference variance is calculated by first subtracting the intensities of each possible 

intensity pair in the GLCM and then summing the frequency of the pairs with the same 

difference in intensity. This produces an array of length N (where N the maximum 

intensity value). Another way to get the same result is to sum all the elements of the 

diagonals of the upper triangle of the GLCM multiply them by 2 and then add to the 

array the matrix trace. Then the variance of this array is calculated to produce the 

measure of difference variance. 

                     

Equation 10 Haralick Difference variance 
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2.3.1.11 Difference entropy  

Difference entropy is calculated as the normal entropy above but with the values of the 

GLCM that have the same difference in gray levels added. The smoother the image the 

lowest the entropy value. For the GLCM calculating the entropy means quantifying the 

repetition of same difference intensity pairs and thus measuring the repetition of relative 

gray level values in the texture. Low entropy means more repetition and higher entropy 

means more randomness in the structure of the texture.  

            

    

   

             

Equation 11 Haralick Difference entropy 

2.3.1.12 Information measures of correlation and maximal correlation  

Information measures of correlation and the maximal correlation coefficient are 

introduced in [122] and [123] and according to [2] provide some desirable properties 

that are not available from the simple correlation calculated above. 

    
        

          
 

Equation 12 Haralick Information measure of correlation 1 

                         
    

Equation 13 Haralick Information measure of correlation 2 

                                    
    

Where 

        
            

          
 

 

Equation 14 Haralick maximal correlation coefficient 
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Equation 15 logs used in Haralick’s information measures of correlation and maximal correlation coefficient 

Because the values of the GLCM change, as the distance d and the orientation θ change, 

the values of the features extracted from the GLCM also change. To make the features 

rotation invariantfor a given distance d all features for all four orientations of 0
0
, 45

0
, 

90
0
 and 135

0 
degrees are calculated and then averaged out. Also, the range of each 

suchquartet of features is taken as an extra step to obtain more information from the 4 

GLCMs. 
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2.3.2 Gray level difference method 

The gray level difference method (GLDM) is a statistical method that is based on 

absolute differences between pairs of pixels. For a given displacement δ = (Δx, 

Δy),where Δx and Δyare integers, each element fδ(x, y) of the GLDM equals to |f(x, y) - 

f(x + Δx, y + Δy)| where f(x, y) is the intensity value of the image at position (x, y) 

[124].  

The GLDM results in a vector constructed from the sorted in increasing order 

corresponding absolute gray level difference probabilities for each pair of elements 

[121]. If the probability values are skewed to the right of the vector the texture elements 

of the image are coarse and theirintensity variation small and conversely, if the the 

probabilities are skewed to the left the texture elements are fine and their intensity 

variation large. 

 

Figure 4 Instance of calculating the GLDM for horizontal pairs. 

 

Figure 5 There are 5 horizontal pairs with gray level absolute difference 2. 

Similar to the GLCM the orientation of the pixel pairings is given by an angle θ. So to 

make the features rotation invariant, for a given distance d all features for all four 

orientations of 0
0
, 45

0
, 90

0
 and 135

0
 degrees are calculated and then are averaged out.  

 

Figure 6 Instance of calculating the GLDM for diagonal pairs (450). 
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Figure 7 There are 4 diagonal pair (450) with gray level absolute difference 0. 

Also, again in similar fashion to GLCM, the range of every quartet of features is taken 

as an extra step to obtain more information from the 4 GLDMs. Further comparisons 

and analysis of spread measures of different orientations can give indications for the 

directionality of the textures. 

Another approach proposed in [124] is to take the differences of average gray levels 

instead of single pixels. The average gray level can be calculated over neighborhoods 

whose centers are at a distance d and direction θ from each other. 

Some features calculated from the GLDMs that are proposed in the literature [124] 

[121] are the following: 

2.3.2.1 Mean 

Mean of the GLDM is small if the gray levels of the texture pixels are not too different 

and large if the there is a high level of texture diversity. 

           

 

    

Equation 16 GLDM mean 

2.3.2.2 Angular second moment 

Angular second moment or energy that measures the homogeneity of gray levels and it 

is calculated from the sum of the squares of the entries of the GLDM. If an image is 

smooth then ASM is large because the values of GLDM are less uniformly distributed 

and there are a few large frequencies present. If the GLDM is populated by a lot of 

similar values then the ASM is small. 



25 
 

          

 

        

 

 

 

 

Equation 17 GLDM angular second moment or energy 

2.3.2.3 Contrast  

Contrast or inertia is a measure of intensity contrast between pixels. In the case of the 

GLDM it is higher if the large values are concentrated in the higher end of the sorted 

gray level difference vector. It is calculated by summing all the frequencies of the 

GLDM after weighting them in favor of the pairs with higher intensity difference. 

           

 

 

Equation 18 GLDM Contrast or inertia 

2.3.2.4 Inverse difference moment  

Inverse difference moment or local homogeneity is a measure inversely proportional to 

the contrast of the image. Images with small local intensity variations have a large 

amount of local homogeneity. In the case of the GLDM it is higher if the large values 

are concentrated in the lower end of the sorted gray level difference vector. 

         

 

         

Equation 19 GLDM Inverse difference moment or local homogeneity 

2.3.2.5 Entropy  

Entropy is a measure of how evenly energy is distributed and is related to the contrast of 

an image. The smoother the image the lowest the entropy value. In essence, the entropy 

calculation based on the GLDM takes into consideration the repetition of differences in 

intensity pairs and therefore gives a measure of the gradientof the texture. Low entropy 

means more smoothgradientor no significant change in gray levels and higher entropy 

means more randomness in the structure of the texture.  
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Equation 20 GLDM entropy 

2.3.3 Gradient matrix 

Gradient matrix (GradM) features are introduced in [5] and are constructed by 

calculating the local gradient of each pixel as a function of the differences between the 

gray levels of its vertically and horizontally neighboring pixels. The resulting GradM 

contains the values of the absolute gradient at each pixel of a ROI, excluding its 

boundaries. 

A B C D E 

F G H I J 

K L M N O 

P Q R S T 

U V W X Y 

Figure 8 ROI neighborhood 

                      

Equation 21 The gradient calculation for the Figure 8 ROI neighborhood 

The parameters mentioned in the literature [5] [121] to describe the GradM are the 

following: 

2.3.3.1 Mean  

Mean of the GradM is small if the texture is smooth and large if its gray levels fluctuate. 

   
 

 
       

  

 

Equation 22 GradM mean 
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2.3.3.2 Variance 

Variance quantifies the amount of difference in gray levels between small pixel groups 

over the whole texture and it is higher when the pixel groups vary greatly. 

   
 

 
            

 

  

 

Equation 23 GradM Variance 

2.3.3.3 Skewness 

Skewness is a measure of the asymmetry of the variance of the texture about its mean 

gray level. 

   
 

     
             

 

  

 

Equation 24 GradM skewness 

2.3.3.4 Kurtosis 

Kurtosis measures the sharpness of the peeks of the distribution of the difference in gray 

levels between small pixel groups over the whole texture. It’s larger when the texture is 

comprised of a lot of texture primitives that vary greatly in grey levels. 

   
 

     
             

 

  

 

Equation 25 GradMKurtosis 

2.3.3.5 Percentage of nonzero gradient 

The last GradM feature is the percentage of pixel neighborhoods with nonzero gradient 

and it gives a general idea about the difference in gray levels between small pixel 

groups of the texture as a whole. 
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2.3.4 Texture feature coding method 

Texture feature coding method (TFCM) is a TA method that was introduced in [125]. It 

transforms a gray level image into a feature map whose elements are texture feature 

numbers (TFN), the texture feature numbers matrix (TFNM).  

The relation of a pixel with its 8 neighbors defines the TFNM value of the pixel. Four 

cases are examined for each pair of neighbors; a) horizontal neighbors, b) vertical 

neighbors, c) main diagonal neighbors and d) secondary diagonal neighbors. For each of 

these cases one triplet of values is produced, the first value is the leftmost pixel or the 

bottommost for the vertical neighbors, the second is the central pixel and the third the 

remaining neighbor. A threshold number Δ is also considered. The triplets are coded 

with different numbers depending on their relative values; the code is a) the number 1 if 

the absolute difference between the neighbors and the central pixel is less than Δ, b) the 

number 2 if the absolute difference between one of the neighbors and the central pixel is 

less than Δ and with the remainder neighbor is more than Δ, c) the number 3 if the 

difference of one of the neighbors and the central pixel is more than Δ and with the 

other less than –Δ and d) the number is 4 if both neighbors have difference with the 

central pixel more than Δ or less than –Δ. 

 

Figure 9 Eachgroup of relative gray level of the triplets has its own code number 

Then the codes of the triplets are divided into two pairs, one is the vertical and 

horizontal neighbors and one is the diagonal neighbors. Each possible code pair, 

without taking into account pairing order, is given another code number as shown in 

Figure 10.  
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Figure 10 Each pair, regardless of order, has its own code number 

The next step is the multiplication of the codes of the pairs to get the TFN of the central 

pixel. Finally the TFNM is used to generate a TFNM histogram and a TFNM co-

occurrence matrix which in turn, are used to produce texture feature descriptors useful 

for classification. 

2.3.4.1 Coarseness 

The coarseness value is taken directly from the last bin of the TFNM histogram which 

corresponds to the frequency of the value 41 in the TFNM. A pixel with TFN value of 

41 at the center of a 3x3 neighborhood indicates drastic change in its 8-connectivity. 

The total number of such neighborhoods is a good indication of texture coarseness. 

            

  

 

Equation 26 TFCM coarseness 

2.3.4.2 Homogeneity 

The homogeneity value is taken directly from the first bin of the TFNM histogram 

which corresponds to the frequency of the value 0 in the TFNM. A pixel with TFN 

value of 0 at the center of a 3x3 neighborhood indicates almost no change in its 8-

connectivity. The total number of such neighborhoods is a good indication of texture 

homogeneity. 
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Equation 27 TFCM homogeneity 

2.3.4.3 Mean convergence  

Mean convergence is a feature descriptor that indicates how close the texture 

approximates the mean. 

    
             

   

  

   

 

Equation 28 TFCM mean convergence 

2.3.4.4 Variance  

Variance measures the deviation of TFNs from the mean. 

           
 

  

   

       

Equation 29 TFCM variance measures 

2.3.4.5 Code entropy  

Code entropy measures the randomness of TFNs. A small value in code entropy 

signifies less randomness and a smoother texture. 

                                 

  

   

  

   

 

Equation 30 TFCM code entropy 

2.3.4.6 Code similarity 

Code similarity assesses the density of the same TFNs in a 3x3 neighborhood. The 

value of the code similarity is higher if there are a lot of 3x3 neighborhoods with 

constant TFNs. 
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Equation 31 TFCM code similarity 

2.3.4.7 Resolution similarity 

Resolution similarity provides information about the joint probability of a pixel at (x,y) 

with TFN i at Δ = 0 and j at Δ*. If the two TFNs have a lot of differences then the 

resolution similarity is lower and the texture is smoother. 

     
          

        
  

 

Equation 32 TFCM Resolution similarity 

2.3.5 Run length matrix 

Run length matrix (RLM) is an NxM matrix derived from a grayscale image with N 

being the max length in pixels that a line can have in the image in a given direction and 

M the max gray level value of the image. Each (i, j) element of the RLM is a number 

that represents the amount of consecutive, collinear pixel runs with length j and gray 

level i. For a given image, an RLM can be calculated for runs having any given 

direction. The following example shows a 5x5 ROI having four gray levels (1-4) and 

the resulting RLMs for the four principal directions. 

2.3.5.1 Short run emphasis 

Short run emphasis is the division of each run length value by the length of the run 

squared and then normalized over the total number of runs in the image. The more short 

runs that are present in the image the larger this value becomes. 

     
      

  
        

  

   

  

   

 

  

   

  

   

 

Equation 33 RLM short run emphasis 
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2.3.5.2 Long run emphasis  

Long run emphasis is the multiplication of each run length value by the length of the 

run squared and then normalized over the total number of runs in the image. The more 

long runs that are present in the image the larger this value becomes. 

                    

  

   

  

   

 

  

   

  

   

 

Equation 34 RLM long run emphasis 

2.3.5.3 Gray level non-uniformity 

Gray level non-uniformitydistribution, is the sum of the squares of the number of run 

lengths for each gray level normalized over the total number of runs in the image. This 

measures the gray level non-uniformity of the image. When runs are equally distributed 

throughout the gray levels, the value is low with high run length values contributing 

more to it. 

            

  

   

 

   

   

        

  

   

  

   

  

Equation 35 RLM gray level non-uniformity - distribution 

2.3.5.4 Run length non-uniformity  

Run length non-uniformity - distribution, is the sum of the squares of the number of run 

lengths for each run length normalized over the total number of runs in the image. This 

measures the non-uniformity of the run lengths. If the runs are equally distributed 

throughout the lengths, the function will have a low value with large run counts 

contributing more to it. 

            

  

   

 

   

   

        

  

   

  

   

  

Equation 36 RLM Run length non-uniformity - distribution 
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2.3.5.5 Run percentage 

Run percentage is the ratio of the total number of runs to the total number of possible 

runs if all runs where one pixel long. It has its lowest value for images with the most 

linear structure. 

             

  

   

  

   

 

Equation 37 RLM Run percentage 

2.3.6 Fractal features 

The concept of fractal dimension (FD) in TA is usually used to providean indicator of 

surface roughness. For a fractal set the Hausdorff-Besicovitch dimension is strictly 

greater than its topological dimension [3] and it can be used to characterize a texture 

even though two or more different textures can share the same FD [126]. 

The box-counting method is a widely used method to approximate the FD of a texture, 

as it is quick to calculate and can be used on texture patterns with or without similarity. 

First the texture is converted to a surface with two dimensions indicating the positions 

of the pixels, as they do in the texture image, and the third dimension is the intensity 

levels of the pixels. Then, the surface space is partitioned into square boxes of equal 

size. All the boxes that are at least partially under the surface are counted and the 

process is repeated with different box sizes with the change in size being the 

magnification index for every stage. The log of the boxes counted versus the log of the 

corresponding measuring index is plotted on a graph and then a line is fitted on it. The 

slope of the fitted line is the FD of the texture. 

  
       

        
 

Equation 38 The approximation of the fractal dimension D. 

Where Nr is the number of boxes for a given box scale and r the measuring index for 

that scale. 
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Figure 11 The original texture (left) is converted to a 3D mesh (middle) and then enclosed in boxes of a particular size 
‘r’ (right) thatshrinks iteratively. 

Here, a variation of the box counting method is used, the differential box counting 

method. The difference with the original method is that the boxes that count towards the 

total number are those that are between the minimum and maximum intensity values in 

any given stack of boxes as this way of counting gives better approximation especially 

when there is sharp gray level variation in neighboring pixels in the texture [127]. 

      
   

      

Equation 39 The counting of boxes in differential box counting. 

Where nr= L – K + 1 and L, K are the indexes of the boxes between the minimum and 

maximum intensity pixels. 

The six features extracted using the original image along with various preprocessed 

images are proposed in [128]. 

2.3.6.1 FD of the original image 

The FD of the original image is computed by overlapping windows of size (2W+1) x 

(2W+1), so at point (i, j) the value I1(i, j) is 

                                 

Equation 40 FD of original image 
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2.3.6.2 FD of high gray value image 

The gray level values of the original image pixels that are lower than a value L are 

replaced with zero and from the rest L is subtracted. L = gmin  + av/2 , where gminthe 

minimum gray level value of the image and av the average gray level value of the 

image. The FD of the resulting image is calculated normally. 

         
                     

          
  

Equation 41 High gray-value level image 

2.3.6.3 FD of low gray value image 

The gray level values of the original image pixels that are higher than a value L are 

replaced by that value and the rest stay unchanged. L = 255 – (gmax  -av/2) , where gmax 

the minimum gray level value of the image and av the average gray level value of the 

image. The FD of the resulting image is calculated normally. 

         
             

                
  

Equation 42 Low gray-value level image 

2.3.6.4 FD of horizontally smoothed image 

After smoothing the image in the horizontal direction, its FD is calculated normally. If 

the texture of the image is highly oriented horizontally its FD will be substantially 

different than the FD of the original image. 

        
 

    
         

 

    

 

Equation 43 Smoothing an image horizontally with a window of size 2w. 
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2.3.6.5 FD of vertically smoothed image 

After smoothing the image in the vertical direction, its FD is calculated normally. If the 

texture of the image is highly oriented vertically its FD will be substantially different 

than the FD of the original image. 

        
 

    
         

 

    

 

Equation 44 Smoothing an image vertically with a window of size 2w. 

2.3.6.6 FD of smoothed image 

To obtain the last FD feature we smooth the image by averaging four neighboring pixels 

and then calculate the FD as before. 

        
 

 
        

 

   

 

   

 

Equation 45 Smoothing an image by averaging 4 neighboring pixels. 

3 Validation work 

As mentioned in chapter 2 we chose in this thesis to investigate the possible use of TA 

in pancreatic MRI images in order to assess its discriminatory power for differentiating 

benign from malignant image regions. In this chapter we explain in detail the dataset 

used and the results with the proposed methodology. 

3.1 Dataset acquisition protocol and post processing 

All examinations were performed at 1.5T (MagnetomAvanto, Siemens Healthcare, 

Erlangen, Germany) with a 12-channel body and spine matrix coil combination. All 

patients underwent single-shot spin-echo echo-planar imaging DWI of the pancreas 

with 8 b-values under free-breathing. In order to maintain sufficient signal-to-noise 

ratio, 5 averages were chosen. Coronal T2-HASTE images were obtained before the 

DWI sequences for optimal slice positioning. No intravenous contrast agent was used.  
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The post-processing analysis was performed using the open-source UMMDiffusion 

plugin for use with OsiriX.25 

One radiologist with 6 years of experience in pancreatic imaging annotatedcarefully 

multiple ROI at all slices, in order to define the tumor and non-tumorous parenchyma 

both up and downstream. There was an effort to avoid the inclusion of large vessels but 

to include main pancreatic duct and areas of possible necrosis/cystic changes. The DWI 

sequence chosen for ROI annotation was the image series where the tumor was best 

visualized. For optimal ROI positioning, apart from DWI all other available images (i.e. 

T2-HASTE and MDCT) were taken into consideration to account for the relatively low 

spatial resolution of DWI images. 

The DWI parametric image mapsthat were evaluated and the corresponding formula 

used were: 

i. ADC from the monoexponentialmodel, according to: 

S(b) = S0 exp(-b•ADC) 

ii. D, D* and f from the biexponential fit, according to: 

S(b) = S0 [(1-f) exp(-D•b)+ f exp(-b•D*+-b•D)] 

iii. K and D(k) from the non-gaussian kurtosis fit, according to: 

S(b) = S0 exp(-b•D(k)+K/6•b2•D(k)2), 

where S(b) is the signal intensity (SI) at a given b-value, S0 the SI without any diffusion 

weighting gradient (b=0 s/mm2), ADC the apparent diffusion coefficient, D the true 

diffusion coefficient, D* the pseudodiffusion coefficient, f the perfusion fraction, D(k) 

is the corrected –for kurtosis– diffusion coefficient, and K the kurtosis coefficient. The 

kurtosis coefficient expresses the grade of deviation from the Gaussian distribution and 

is a unitless parameter, whose value may be either 0 (expressing perfect Gaussian 

distribution) or higher. Kurtosis effects were classified as minimal (K<0.5), 

intermediate (0.5<K<1) or substantial (K>1). 
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3.2 Texture analysis and feature extraction 

The dataset used in this work is a set of 14 pairs of volumes of interest (VOIs) 

(annotated by a specialist) from DW-MRIs of pancreatic tissue from 14 patients 

diagnosed with pancreatic adenocarcinoma. Each pair contains one VOI depicting 

tumorous tissue and one depicting normal appearing tissue from the same patient and 

each one is comprised of 1 to 15 slices depending on the size of the region of interest. 

3.2.1 Number of DWI metrics maps 

From each slice a feature image representation is generated. These representetions are 

the original intensity values map I, the 3 different parameter image maps obtained from 

the IVIM model D, D*, f and their 2 products fxD, fxD*, leading to a total of 6 

representation maps per slice. 

 

Figure 12 Each DW-MRI is a set of slices representing a 3D volume 

3.2.2 Number of different non-ROI pixel valuessetting 

In a preprocess step, the metrics maps are converted into grayscale images. First the 

map values are rescaled to rounded values from 0 to 255 as in Figure 13.  
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Figure 13 Each slice is rescaled to the range {0, 255}. 

Next we find the minimum pixel value of the ROI and set the surrounding non-ROI 

pixels to this value, additionally we encloseit in its minimum bounding box. This is a 

method proposed in [30], as non-ROI pixels might affect the outcome of a pixel based 

TA method when calculating the values of the pixels on the edge of the ROI. In the 

present work we expand on this idea to exploit any further potential benefits from 

setting the non-ROI pixels to different values. The area inside the bounding box is 

copied several times and the non-ROI pixels of each copy are set to the maximum, the 

median and the mean values of the ROI. With the addition of another copy of the 

bounded areas whose non-ROI pixels have their original values, i.e. are treated as empty 

pixels, the number of ROIs is increased by a factor of 5and are saved as grayscale 

texture images. 

 

Figure 14 Copies of the ROI are made and the “nan” values are replaced by the median, mean, maximum and 
minimum value of the ROI. 
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3.2.3 Number of TA methods output mapsand number of neighborhood sizes N 

The TA methods used in this work are the GLCM, GLDM, GradM, TFCM and FD and 

they have been described above. The input of each method is a grayscale texture image 

and the output is one or several image maps of texture features – one map for each 

feature of each TA method. The total number of the feature imagemaps for each texture 

image is 35; 

 11 form the mean and 11 from the value ranges of all four orientations of 

GLCM, 

 5 from the means and 5 from the value ranges of all four orientations of the 

GLDM maps, 

 1 from the GradM, 

 1 from the TFCM, 

 1 from the FD.  

The feature image maps are 2D matrixes with the same size as the texture images. Each 

(i, j) value on a feature map is calculated from an NxN texture neighborhood centered 

on the pixel at position (i, j). While N can be of any size, in this work it is given each of 

the four values; 3, 5, 7 and 9. The texture image is padded from all sides by N/2 so no 

neighborhood has elements outside the image. The value of the padding pixels is the 

same as the non-ROI pixels of the image.  

 

Figure 15 Fromleft to right, DW-MRI slice of a pancreas ROI, its GradM map and its TFCM map 

To better evaluate the usefulness of the results we also calculate a set of 8 image maps 

based on statistical measures of  the intensity and metric maps without any TA, namely 
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the kurtosis, mean, median, energy, range, skewness, variance and coefficient of 

variation. These maps are called the 'Raw Value' maps and increase the total number of 

maps derived from a single texture image to 43. 

Each feature map is then converted to a feature vector by taking, in no particular order, 

the values that correspond only to ROI pixels. The final number of feature image 

vectors generated is based on the following formula; 

Number of feature image vectors = [number of metrics maps] x [number of different 

non-ROI pixel values setting] x [number of TA methods output maps] x [number of 

neighborhood sizes] 

In this work the corresponding numbers are; 

6 x 5x43x 4 

For a total of 5160 feature vectors per slice. 

 

Figure 16 Workflow from MRI to TA feature maps 
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3.3 Classification and statistical analysis methods 

Each of the feature vectors derived from the pixel based TA is finally described by 10 

statistical values. These values are; mean, variance, median, standard deviation, 5
th

 

percentile, 30
th

 percentile, 70
th

 percentile, 95
th

 percentile, skewness and kurtosis. At this 

stage we have a vector of length 51600 that represents each patients' MRI.Then we 

create a table whith rows thatconsist of the aforementioned vectors and, subsequently, 

columns that each containsavector of a specific statistical variablefrom all the MRI 

maps and length equalto the number of patients. 

An example of astatistical variableis the “D_difm_mn_entr_VMean_3_Bmax” as 

shown in Table 1. It is calculated from the MRI metric diffusion (D), with the TA 

method GLDM (difm), taking the mean (mn) of the 4 entropy feature maps (entr) -to 

make the feature map orientation independent - then take the mean of the resulting 

feature map (VMean) withthemapbeing calculated on a per pixel bases from 3x3 pixel 

blocks (3) while all the non-ROI pixels are set to the maximum value of the ROI 

(Bmax). 

 

Table 1 An example column from the table that contains all the statistical values that represent each patients' MRI.. 

Patients D_difm_mn_entr_VMean_3_Bmax 

Acr_n 0.855494491 

Acr_t 1.041458595 

As_n 0.848710686 

As_t 1.171773913 

Ed_n 0.657246952 

Ed_t 1.23035907 

Ep_n 0.78201723 

Ep_t 1.055340078 

Ga_n 0.80003573 

Ga_t 1.248953251 
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Ke_n 0.725246384 

Ke_t 1.174616854 

Liw_n 0.91738745 

Liw_t 1.087597727 

Lsf_n 0.680878462 

Lsf_t 1.101524775 

Mbf_n 1.199003802 

Mbf_t 1.258817717 

Pam_n 0.950032274 

Pam_t 1.180225323 

Ragp_n 0.918033401 

Ragp_t 1.163491269 

Rkbj_n 0.89892102 

Rkbj_t 1.236234038 

Ro_n 0.900045673 

Ro_t 1.357901099 

Use_n 1.188090214 

Use_t 1.306120933 

 

Next we apply several tests to the variables to find out if there are any that can lead to 

accurate classification according to the ground truth (i.e. cancer or normal tissue).  

The first testwe applied is the Kruskal-Wallis test [129] which helps to distinguish a 

subset of variables as the most useful to characterize and classify the data. The test is 

applied to each variable and the estimated p-values of the test are declared statistically 

significant at the 1% significance level.  

After the Kruskal-Wallis test we employ a leave one patient out (LOPO) method to get 

another subset of statistically significant variables. Each variable is passed P times 

through the algorithm described in Figure 17 - where P is the number ofpatients - and 

each timeone of the patients data is excluded from the sample. The algorithm quickly 

and naively calculates a value that separates perfectly the classes of a continuous 
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variable. It is naive because it only works well if there is such a value and if there is not 

then the value proposed by the algorithm is always worse than what a more robust 

classification method would provide.In this LOPO method if a variable,by using this 

algorithm, can classify the P-1 patients' MRI correctly in even one iteration then that 

variable is marked as significant. At the end of this process, we end up witha second set 

of 895 variables out of 51600 that provide 100% accuracy with none or, at most, one of 

the patients excluded from the sample. 

 

 

Figure 17 Algorithm for calculating the cutoff point for the classification of a single metric vector. 

A generalized linear regression model is fitted on each variable to obtain good 

discrimination with a simple but robust classification method that doesn't assume a 

normal distribution of data and works well with small samples [130]. Receiver operator 

characteristics (ROC) curves are computed and the corresponding area under the curves 

(AUCs) are calculated to assess the performance of the variables in predicting the 

responsiveness of the treatment. The AUC values along with the optimal cutoff value of 

all ROC curves are reported in a confusion matrix that also contains the number of true 

positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) and 

their derivatives; sensitivity, specificity, negative and positive predictive values and 

accuracy. 

Mi, the ithvariable vector. 

Min, the set of parameters that belong to the normal appearing tissue class in Mi. 

Mit, the set of parameters that belong to the cancer tissue class in Mi. 

Ai = |maximum(Mit)– minimum(Min)| 

Bi = |maximum(Min)– minimum(Mit)| 

If Ai< Bi then cutoff point is CP=(maximum(Mit)+ minimum(Min))/2 

Else cutoff point is CP=(maximum(Min)+ minimum(Mit))/2 



45 
 

4 Results 

From the Kruskal-Wallis test on this sample population we get that 44% (22901 out of 

51600) of the variables have statistically significant differences between the values that 

belong to the 'tumor' class and that of the 'normal' class for them to be eligible for 

further analysis with p-values equal or lower than the 1% significance level. 

 

Figure 18 Kruskal-Wallis tests p-values of all the variables 

A second subset of 1.7% (895) of the total variables provide perfect classification 

according to the LOPO methodin at least one subsample of the set. The Kruskal-Wallis 

p-values of this subset are less than the 0.024% significance level. We will not discuss 

the classification process of this method because as stated previously this method uses a 

naive algorithm to quickly calculate correctly only the perfectly classifiable variables.  
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Figure 19 AUC values of variables withnon-zero variance - 93% of total number of variables (48085 out of 51600). 

Finally, we fit a linear regression model on the variables and we get that 0.06% (30) of 

the variables provide perfect classification while 16.4% (8473) have AUC above 90% 

and a Kruskal-Wallis p-value lower than 0.5%.Variables that have values with variance 

close to 0 are excluded from this test as these contain no useful information and are 

usually variables that result from feature maps that contain values that are all the same 

or extremely close to one value. The variables excluded based on this criteria is 7% 

(3586) of the total variables. 

Table 2 Features with 100% AUC from the linear regression model 

Method Map 
Block 
size 

Non roi 
values Feature Statistic AUC KruskalP Sens ACC 

GLDM fDstar 3 mean rng_nrg Skewness 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values Dstar 7 mean kurt Variance 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values Dstar 7 mean kurt Std 100.00% 0.0007% 100.00% 100.00% 

GradM D 7 median 
 

Variance 100.00% 0.0007% 100.00% 100.00% 

GradM D 7 median 
 

Std 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values fD 7 median skew 5percentile 100.00% 0.0007% 100.00% 100.00% 

GLCM f 9 max rng_corr 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values Dstar 9 mean kurt Variance 100.00% 0.0007% 100.00% 100.00% 

GLCM f 9 mean rng_entr Variance 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values Dstar 9 mean kurt Std 100.00% 0.0007% 100.00% 100.00% 

GLCM f 9 mean rng_entr Std 100.00% 0.0007% 100.00% 100.00% 
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Raw 
Values Dstar 9 mean nrg 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values Dstar 9 mean range 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values Dstar 9 mean vrnc 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values Dstar 9 mean vrtn 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values fDstar 9 mean nrg 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values fDstar 9 mean range 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values fDstar 9 mean vrnc 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values fDstar 9 mean vrtn 95percentile 100.00% 0.0007% 100.00% 100.00% 

GradM D 9 mean 
 

Kurtosis 100.00% 0.0007% 100.00% 100.00% 

GLDM fD 9 nan rng_hmgnt Variance 100.00% 0.0007% 100.00% 100.00% 

GLCM fD 9 nan rng_hmgnt Variance 100.00% 0.0007% 100.00% 100.00% 

GLDM fD 9 nan rng_hmgnt Std 100.00% 0.0007% 100.00% 100.00% 

GLCM fD 9 nan rng_hmgnt Std 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values Dstar 9 nan nrg 95percentile 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values fDstar 9 nan nrg 95percentile 100.00% 0.0007% 100.00% 100.00% 

GLCM I 7 nan mn_hmgnt 5percentile 100.00% 0.0007% 100.00% 100.00% 

GLDM I 9 nan rng_mn Variance 100.00% 0.0007% 100.00% 100.00% 

GLDM I 9 nan rng_mn Std 100.00% 0.0007% 100.00% 100.00% 

Raw 
Values I 9 nan vrnc Mean 100.00% 0.0007% 100.00% 100.00% 

5 Discussion and Future work  

5.1 Discussion 

Pancreatic MRI protocols have evolved a lot in the last few years providing images of 

improved spatial resolution and contrast and better overall image quality [117]. An 

automatic system for quantitative characterization and subsequent classification of 

pancreatic MRI in predefined clinical categories could become a valuable Computer 

Aided Diagnosis tool for assisting the clinician to establish diagnosis or monitor 

treatment. 
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The initial steps of such a toolarepresented here, with the work being focused around 

the hypothesis that TA methods can provide the means to classify tissue content from 

MRI data. 

More specifically the null hypothesis we test is: 

H0: There are no classifiers that can be created so that features extracted from 

MRI data with the use of specific TA methods are adequate to classify that MRI 

data in predefined clinical categories. 

The alternate hypothesis is: 

H1: Classifiers can be created so that features extracted from MRI data with the 

use of specific TA methods are adequate to classify that MRI data in predefined 

clinical categories. 

By using established TA methods we first extract features from an already classified 

dataset of pancreatic MRIs depicting tumorous and normal appearing tissue and train 

classifiers on these extracted features. The classifier is asimple linear regression 

modelfitted on each variable so that each one is judged by itself on its ability to 

adequately classify the MRIs. 

After the extraction of the features and their statistical analysis yielding the variables 

which are vectors that contain one value for each MRI in the dataset, we proceed with 

testing the results. 

A first analysis of the variables is done by applying a Kruskal-Wallis test on them and 

characterizing as significant those that produced p-values under the 0.1% significance 

level. As stated above the amount of variables with p-values below the 0.1% 

significance level are 44% of the total. From these variables we get an even better 

subset - 29.5% of the total - by fitting them in a linear regression model and focus on 

the ones that that have AUC above 90%. A number of interesting observations can be 

made with regard to the influence of metric maps and TA methods in the discretization 

of this subset. 
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Figure 20 The amounts of MRI Metrics (left) and TA methods (right)that produce variableswith Kruskal-Wallis test p-
values under the 0.1% and AUCs above 90%. 

In Figure 20 on the left pie chart we see that the I, D, D*, f, fD and fD* maps produce 

about the same amount of features that classify the variableswith AUC above 90%, with 

a small excess of the f metric maps and with the intensity maps I lagging a bit behind. 

On the right we see the relative contributions of the TA methods weighted by the 

number of features each method produces. As stated in chapter 2.3 the methods produce 

the following number of features; GL produces 8 features, GLCM produces 22 features, 

GLDM produces 10 features and each of the GradM, TFCM and FD produce 1 feature. 

The right pie chart shows that the GLDM produces the most variables with AUC above 

90%, followed by the TFCM, GLCM and the base case of raw map values. The GradM 

and FD methods contribute very little in this important variable set. 
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Figure 21 MRI metrics and TA methods with AUC above 90% weighted by the number of features of each TAmethod 

In Figure 21 we see a combination of the two pie charts in Figure 20. Here we see that 

in almost all cases we get consistently better results from the 5 metric maps than the raw 

intensity values of the MRIs for all the TA methods. GLDM is contributing more to the 

variables subset of AUC above 90% in relation to the amount of features it produces 

followed by GLCM, TFCM and Raw Values whilethe contribution percentages of FD 

and GradM fluctuate between very small and comparable with the rest. 

 

Figure 22 Non-ROI pixel values and block sizes used to generate variables with AUC above 90%. 

Figure 22 shows how the neighborhood size and fixing the non-ROI pixels with certain 

values affect the features. The size of the neighborhood doesn't seem to affect the 

variables very much with only the 9x9 size lacking a bit compared to the others. Setting 

the non-ROI pixels to be empty (giving them the “nan” value) produces the less amount 
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of good variables while the median value of the ROI seems to have a slight edge 

compared to the rest of the values. 

 

Figure 23 Neighborhood size and non-ROI pixel values in subset of variables with AUC above 90%. 

Figure 23 is a combination of the two previous pie charts and clearly shows that when 

the non-ROI pixels are set to the “nan” value, the number of variables with AUC above 

90% increases as the block size is getting larger. However, the total number of the 

useful variables for the rest of the non-ROI value setting decreases with window size. 

This shows that using a smaller block size and setting the non-ROI values to something 

else than “nan” will increase the chances of producing a good classifiable variable while 

keeping the features map computation time reasonable.  

A second subset of variables is comprised of those that classify perfectly the new 

population samples created by the LOPO method described in paragraph 3.3. This 

results in 1.7% or 895 variablesthat can classify all or at most all but one patients 

correctly. All of these features have a Kruskal-Wallis test p-value under the 0.024% 

significance level and all of them except one have an AUC of over 91%. This method is 

quick and naive but it presents the results in a personalized manner as it shows the 

influence of each patient’s data in the classification process. 
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Figure 24 Amount of features that classified the dataset perfectly with the full datasetand after the exclusion of each 
patient in a leave one patient out method. 

In Figure 24 we see the reason why this subset of 895 variablesis considered interesting. 

It shows how many variables classify perfectly the MRIs into tumor and normal 

appearing tissueon the original sample with all P patients as well as in the P-1 samples 

created by the exclusion of one patients' data each time. The number 895 is the count of 

unique variables that perfeclty classify the subsets, that is a variableis added only once 

to the total even if it classifies perfectly more than one P-1 subsamples. We see that for 

the complete sample and 12 of the P-1 samples the good variables are between 30and 

43but when patient “Mbf” is excluded the variables are 711 and when patient “Use” is 

excluded the variables are 188. This could be significant if there is any correlation 

between this disparity and anything unusual in the clinical history of these patients but it 

can also be due to the fact that with MRI it's difficult to obtain uniform image quality 

over a number of images. 
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Figure 25 MRI metrics (left) and TA methods (right) in LOPO subset. 

In Figure 25 on the left bar chart we can see that the I, D, D*, f, fD and fD*maps 

produce about the same amount of features that classify the samples correctly in the 

LOPO method and on the right that the GLCM provide more of the features followed 

closely by the GLDM while Raw Values statistics are lagging behind in performance. 

The TFCM and GradM contribute very little while no DF featuresare present in the 

subset. 

 

Figure 26 MRI metrics and TA methods in subset 2 weighted by the number of features calculated by each 
TAmethod. 

In Figure 26 we see a combination of the two piecharts in Figure 25but with the bars 

weighted by the number of features extracted by each TA method. Here we see that 
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GLDM contributes more to the subset, within any kind of map, in relation to the amount 

of features it extracts, followed bythe GLCM andRaw Value statistics while the GradM 

method with its one feature contributes a lot in the classification of D and f maps. The 

TFCM method produces a minimal share of the important features and the FD method 

produces none. 

 

Figure 27 Neighborhood size (left) and non-ROI pixel values (right) in subset 2 

 

 

Figure 28 Neighborhood size and non-ROI pixel values in the LOPO subset 

Figure 28 shows how the neighborhood size and non-ROI pixel values seems to affect 

the classification of the variables. Again, as in the first subset, setting the non-ROI 

pixels to be empty (giving them the “nan” value) and increasing the size of the 

neighborhood seems to improve the results while setting the median value of the ROI to 

the non-ROI pixels seems to give a slight edge to the amount of variables that exhibit 

perfect classification. In contrast to the first subset however the total number of 

variables for all the non-ROI value setting combinations increases as the block size is 
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getting larger. This may show that variables that provide perfect classification benefit 

from larger block sizes but their number is small - 1.7% for this set- so it is possible that 

this happens by chance due to the large amount of variables. On the other hand there is 

a large percentage of variables created from smaller block sizes that provide weaker 

classifiers - Figure 19 shows that 29.5% of the variables of this sample have AUC of 

over 90% and 84% are above the 50% AUC mark which is what a random classifier 

would achieve. Thesepercentages suggest that TA has a possitive effecttowards the 

correct discrimination of the dataset. A claimthat is further suported by Figure 20 where 

we see that the GLDM, TFCM and GLCM methodscreate more good features than 

those we get directly from the raw values of the maps.  

In conclusion we reject the null hypothesis as we showed that, at least for the pancreatic 

MRI sample available, there are featuresobtained from TA methods that can perfectly 

classify the patient VOIs, as either depicting normal appearing or tumor tissue. In 

addition we showed that the majoriyty of the features that don't perfectly classify the 

samples are themselves medium to strong classifiers, suporting the use of TA as a 

preprossess step in MRI classification. Finally we did a personalized analysis to see the 

influence of each patients' data on the sample and found that most of the patients have 

the same effect on the results except a few that have more pronounced impact but 

without any more knowledge about the sample we cannot perform further analysis to 

understand if there is an underlying biological reason for this or reasons related to the 

image acquisition process. 

5.2 Future work 

This thesis focused on the image texture and how we can derive useful measures in 

order to differentiate between benign and malignant regions in MRI images and used as 

a case studya dataset of pancreatic tissue MRIs. Our analysis and results clearly showed 

that there is value in the  inclution of texture metrics of MRI maps in the effort to 

classify its contents and the potential of TA in discriminating between benign and 

malignant pancreatic MRIs is demonstrated, but only on a small sample of 14 patients. 
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For more conclusive results the proposed method should be applied onlarger pancreatic 

MRI datasets in order to verify our results and produce more robust texture descriptors 

to the research community. 

The small number of available samples and the large number of features extracted from 

them make this classification problem suffer from issues related to the dimensionality. 

In paragraph 5.1 we suggested and demonstrated that there are ways to find a lot of 

medium to strong classifiers using the Kruskal - Wallis test and measuring the AUC of 

the feature variables. A good way to take advantage of the high count of these, good but 

not perfect classifiers, is to feed them in a boosting algorithm - e.g. Adaboost [131]–in 

order to create a strong and robust classifier. 

Other aspects of future work include: 

-More features can be extracted from some of the TA methods used, like the FD from 

which we can extract multiple features [128]sinceonly one per MRI was extracted here.  

-GLCM and GLDM features can have a large range of offset distances effectively 

changing the “resolution” of the analysis in order to find the relevant texture features in 

multiple scales automatically as part of the discriminant analysis. 

-There are other methods that can be used to extract features from  MRI maps.Wavelet 

transforms [132] and Fourier power spectrum transform [133] are maybe worth 

investigating and comparing with the methods applied in this thesis. The application of 

the presentedframework can also be generalized to images from other organs and 

modalities (e.g. CT and PET) in order to provide clinically useful classifiers of normal 

vs. cancer tissue based on image texture. 

Finally because cancer cells occupy 3D space and MRI provide 3D spatial information 

in the form of multiple verticaly aligned 2D slices of an area of interest, any TA 

methods used should be expanded to extract information not only per slice but take into 

acount vertical interslice relationships as well. 
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6 Appendix 

6.1 Abbreviations 

ADC Apparent Diffusion Coefficient 

ASM Angular Second Moment  

AUC Area Under The Curve 

CAD Computer-Aided Detection 

CADe Computer-Aided Detection 

CADx Computer-Aided Diagnosis  

CaP Prostate Cancer  

CMRI Cardiac MRI  

CT Computed Tomography 

D Diffusion Coefficient  

D* Pseudodiffusion Coefficient 

DCE Dynamic Contrast Enhanced 

DW  Diffusion Weighted 

f Perfusion Factor  

FD Fractal Dimension  

FN False Negative  

FP False Positive  

GL Gray Level 

GLCM Co-Occurrence Matrix 

GLDM Gray Level Difference Method  

GradM Gradient Matrix  

HR-MRI High Resolution MRI 

IVIM-MRI Intra-Voxel Incoherent Motion MRI  

LOOCV Leave One Out Cross Validation  

LOPO Leave One Patient Out  

MRI Magnetic Resonance Imagine 

mn Mean 

PaC Pancreatic Cancer  

RLM Run Length Matrix  

rng Range 

ROI Region Of Interest 

T1 Longitudinal Relaxation Time  

T2 Transverse Relaxation Time  

TA Texture Analysis 
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TFCM Texture Feature Coding Method  

TFN Texture Feature Number 

TFNM Texture Feature Numbers Matrix  

TN True Negative  

TP True Positive  

US Ultra Sound  

WB-MRI Whole-Body MRI 
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