

DEEP LEARNING FRAMEWORK, FOR IMAGE CLASSIFICATION APPLICATIONS

by

ALEXANDROS FRANGIADOULIS

B.A. Technological Institute of Crete, 2014

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF APPLIED INFORMATICS

AND MULTIMEDIA

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2016

Approved by:

Dr. Nikolaos Vidakis

1

2

3

Abstract

In this master thesis, we design and construct a Deep-Learning Framework, which is a

model for building image classification applications. We demonstrate the “CNNs Tester” and a

web-application structure. “CNNs Tester” uses images to create a trained model, after that the

model can be used in the web-application’s classification procedure. This Thesis started as a

need for a transition, from purely experimental work to something more practical. The results are

two applications a) CNNs Tester, b) PatternF. These two applications can be also considered as

generic framework.

4

5

Table of Contents

List of Figures ... 8

List of Tables .. 10

Acknowledgements ... 11

Dedication ... 13

1. Introduction .. 15

1.1 The Problem .. 15

1.2 Goals ... 15

1.3 Contributions... 16

1.4 Thesis Outline ... 16

1.4.1 Chapter 2-Literature Review ... 16

1.4.2 Chapter 3-Deep Learning Java Desktop Application ... 16

1.4.3 Chapter 4 Web Application Framework, using CNNs ... 17

1.4.4 Chapter 5 Conclusions .. 17

2 Literature Review .. 19

2.1 Computational Intelligence ... 19

2.1.1 Types of Learning ... 20

2.2 Deep Learning ... 21

2.2.1 Why Use CNNs... 21

2.2.2 Convolutional Neural Networks for Visual Recognition .. 22

2.2.2.1 Structure Characteristics ... 22

2.2.2.2 Algorithm Operation ... 23

2.2.2.3 Architecture Design of CNNs ... 25

2.3 State-Of-The-Art ... 27

2.3.1 Deep Learning on Network Traffic Identification .. 27

2.3.2 Google Brain ... 28

2.3.3 State-of-the-Art Visual Recognition ... 28

2.3.4 Apply Deep Learning in Financial issues ... 29

2.3.5 ImageNet Classification with Deep Convolutional Neural Networks 29

2.3.6 Autonomous .. 30

6

2.3.7 NVidia Digits .. 31

2.3.8 TensorFlow ... 32

3 Java Desktop Application using CNNs ... 33

3.1 Basic Idea .. 33

3.1.1 Purpose of Implementation ... 33

3.2 Methodology and Tools .. 33

3.2.1 Environment .. 34

3.2.2 Architecture... 34

3.3 Design ... 35

3.3.1 Diagrams and Tables... 35

3.3.1.1 Content Diagram ... 35

3.3.1.2 Use Case Diagram... 36

3.3.1.3 Class Diagram ... 36

3.3.1.4 Table of Work Packages ... 38

3.3.1.5 Table of Independences .. 38

3.3.2 Phases .. 38

3.3.2.1 Phase 1-First Steps .. 39

3.3.2.2 Phase 2 – Experimental Work... 39

3.3.2.3 Phase 3-Program Finalization ... 39

3.4 CNNs Tester – How it works .. 40

3.5 Summary ... 45

3.5.1 Architecture’s Tests .. 45

4 Web Application Framework, using CNNs ... 50

4.1 Basic Idea .. 50

4.1.1 Purpose .. 50

4.2 Methodology and Tools .. 50

4.2.1 Environment .. 50

4.2.2 Architecture... 50

4.3 Design ... 51

4.3.1 Diagrams and Tables... 51

4.3.1.1 Content Diagram ... 51

7

4.3.1.2 Use Case Diagram... 52

4.3.1.3 Class Diagram ... 53

4.3.1.4 Table of Work Packages ... 53

4.3.1.5 Tables of Independencies .. 54

4.3.2 Phases .. 54

4.3.2.1 Phase 1 .. 54

4.3.2.2 Phase 2 .. 54

4.3.2.3 Phase 3 .. 54

4.4 PaternF Application .. 55

4.5 Summary ... 57

5 Conclusion ... 60

5.1 Improvement of existing work .. 60

5.2 A step further .. 60

5.3 Knowledge Gained.. 61

5.4 Contributions... 61

6. References .. 63

8

List of Figures

Figure 1: Process of CNN ... 24

Figure 2: Training Steps of CNN Architecture[14] .. 26

Figure 3: Network Traffic[17] .. 27

Figure 4: Cat Detection from Google Brain [19] .. 28

Figure 5: 'Deepface' photo-matching, nearly good to human’s brains [21] 29

Figure 6: ImageNet Data-Set view [24] .. 30

Figure 7:Autonomous, robot with Deep Learning Gadgets .. 31

Figure 8: NVidia Digits .. 32

Figure 9: TensorFlow .. 32

Figure 10: CNNs Tester's Content diagram .. 35

Figure 11: CNNs Tester's Use Case diagram .. 36

Figure 12: CNNs Tester’s Class diagram ... 37

Figure 13: CNNs Tester's starting frame .. 40

Figure 14: Shape that must have a Selected folder ... 41

Figure 15: CNNs Tester's Training mode ... 41

Figure 16: CNNs Tester Training end .. 42

Figure 17: CNNs Tester, test have been start ... 43

Figure 18: CNNs Tester, after the test finished .. 43

Figure 19: CNNs Tester with usage of a previous model ... 44

Figure 20: The folder that CNNs Tester creates ... 45

Figure 21: Images from SIMPLIcity... 46

Figure 22: Images from NEC Animal ... 47

Figure 23: Rabbit Dataset view... 48

Figure 24: Web-application’s framework Content diagram ... 51

Figure 25: Web-application's framework Use Case diagram ... 52

Figure 26: Web-application's framework Class diagram .. 53

Figure 27: PaternF starting page ... 55

Figure 28: image upload completed .. 56

9

Figure 29: PaternF waiting for result .. 56

Figure 30: PaternF results ... 57

10

List of Tables

Table 1: Table of Work Packages for CNNs Tester ... 38

Table 2: Table of Independencies for CNNs Tester ... 38

Table 3: SIMPLIcity Image Database results ... 46

Table 4: NEC Animal dataset results .. 47

Table 5: Rabbit Dataset results ... 48

Table 6: Web-application's Framework Work-Packages' table .. 54

Table 7: Web-application's Framework Independencies' table ... 54

11

Acknowledgements

First, I would like to thank my supervisor Dr. Nikolaos Vidakis for all the support

throughout my Master Thesis. Second, Dr. Tsampikos Kounalakis for his advice during my years

as an undergraduate and graduate student, which was critical for the selection of my research

area. Also, Dr. Triantafyllidis Georgios and Dr. Georgios Papadourakis, who provided valuable

perspective to my goals with their guidance. I would also like to thank ISTlab crew, in particular

Antonios Providakis, Dimitrios Maramatakis and Georgios Ktistakis for the ongoing support.

Finally, I would like to extend my Special thanks to Dr. Evelyn-Eleni Minis, Panagiota Xatzi and

to my family and friends, who always support me.

12

13

Dedication

To my grandfather to whom I owe my name

14

15

1. Introduction

1.1 The Problem

In this project, we start with one basic problem and then we go deeper, we want an

application which could create Deep Learning models. Using images given from user, combined

with training statistics too. Not especially using common databases, but in most occasions

images collected from the user.

For this purpose, we decided to use Convolutional Neural Networks [1] (CNNs) and

Supervised Learning [2], with scope to create an accessory Deep Learning tool, both for familiar

and non-familiar users.

The second problem came up, was that we wanted to demonstrate the efficiency of this

technology, so our problem divided to two smaller problems, first, we needed to construct an

application to resolve the first issue (training of images) second demonstrate the technology to

prove the efficiency. The try to resolve the above problems, described to the next pages.

1.2 Goals

The goals of this Master thesis are as follows:

 Greater knowledge in technology of Deep Learning on Computer Vison matters.

 Manufacturing a tool to assist researchers of Computer Vision, for better

knowledge of the quality of an image-database.

 The smooth introduction of junior scientists in the art of Deep Learning, to better

understand how it works in its totality.

 Widespread use of the described tool, for people who want to test the efficiency

of image-databases, such as researchers from other sciences (Biologists,

Architects, Artists).

16

 As described to the problems, to design and construct one framework, in order to

demonstrate the usability of a pre-trained model from an application.

 To create a web-application using a pre-trained model with (CNNs) [1], which

facilitates recognition between categories of objects.

1.3 Contributions

With the creation of this project we want to contribute to science. Purpose is to help

familiar and non-familiar with this scientific area for better understanding of Deep Learning.

Also we want to create two applications and share the source code of theme, so that somebody

find a starting point, and then in the beginning contribute himself.

1.4 Thesis Outline

This thesis will outline the procedure of a java application construction using Deep

Learning technologies, particularly CNNs. The following chapters will demonstrate the efficacy

of such tools for research purposes.

1.4.1 Chapter 2-Literature Review

 The primary goal of this chapter is to provide information on the knowledge required to

accomplish this thesis. The whole work is divided into individual tasks and focuses on the

requirements.

1.4.2 Chapter 3-Deep Learning Java Desktop Application

In this chapter, having finished the description of our Literature, we discuss about the

procedure of design, using professional methods for our main task. All as mentioned, we will see

17

the route from the initial idea to design, and to determine completion time, when results meet the

goals we set above.

1.4.3 Chapter 4 Web Application Framework, using CNNs

This Chapter discusses the webutility of this Master Thesis work, we reach the point to

discussing about our web-application framework, after the implementation of the first

application. As well as for the aforementioned chapter, we describe the procedure of design,

through the calculation of time, it would take for the implementation of this task.

1.4.4 Chapter 5 Conclusions

In this final chapter, express our opinion over the work we did as a whole, such also the

knowledge earned, through the root of manufacture. In addition to this, we comment on our

work, and develop plans for future projects, as well as improvement of the project at hand.

18

19

2 Literature Review

In this chapter of Thesis, we discuss the literature and knowledge necessary need to reach

our objective. In the beginning we will talk broadly about computational intelligence, and then

we will analyze our individual literature issues. Succinctly at this part of our work, discussing

about Deep Learning and specially for Convolution Neural Networks. Finally it is worth noting

that this process was performed with Java and related libraries.

2.1 Computational Intelligence

Computational Intelligence, is described as the ability of an information system to learn

patterns from a collection of given data and is often referred to as Machine Learning, although

the term is not generally accepted. This title can be used for themes such as Fuzzy Logic,

Neural Networks, Evolutionary Computation, Learning Theory and Probabilistic Methods.

Collectively, they are recognized as algorithmic development used to resolve problems relating

to the topics mentioned above [3].

The conversion of biological processes and learning cases that have copied functions

from nature separately, is proof that nature teaches us once again its usability An important

question that arises, is whether computers are able to achieve intelligence? Much research has

been done on this subject since Alan Turing first posed this question, but there are still many

physical processes that cannot be approached by computers. Although Artificial Intelligence and

Computational Intelligence request a similar long-term goal, to reach physical intelligence,

which is the intelligence of a machine that could perform any mental work that a human being

can, there is of course a clear difference between them.

The Artificial Intelligence (A.I.) supported by hard computing techniques, while

Computational supported on soft computing methods. implement methods from Computational

Intelligent, and especially from the sophisticated and new form of Neural Networks, the Deep

Neural Networks or otherwise Deep Learning with usage of Convolutional Neural Networks.

20

2.1.1 Types of Learning

In Machine Learning, there are three types of learning depending on the signal or the

feedback that are available to the learning system. These are: Supervised Learning, Unsupervised

Learning and Reinforcement Learning. We will briefly see the educational categories and we

will choose the best form for our problem. These types of learning described as:

 Supervised Learning: Is a type of Machine Learning, wherein a function uses

labeled training data as an input (in our problem, images), is transformed to a pair

of consisting input object (in our problem, as a vector) and the desired output is a

supervisory signal. During training, a supervised learning algorithm analyzes the

training data and produces an inferred function, which can be used for recognize

other examples. The best case scenario is the algorithm specify an unseen example

correctly, at the test operation[4].

 Unsupervised Learning: Use a function, to find a structure inside a set of

unlabeled data. The data is unlabeled, so there is no error or reward signal to

evaluate the possible solution. This is the main point that differentiates it from the

other two categories [5].

 Reinforcement Learning: Is the area of Machine Learning, that has borrowed

features from science of Behaviorist Psychology. Dealing with, how software

agents must take actions, in such a way that rise the cumulative reward. This

problem given the general nature that characterizes it, is studied and in many

other fields [6].

As we proceed, it is evident that the unsupervised learning tactic is not the best solution

to the problem posed due to the fact that as described above, our goal is to design something

which can use labeled images from a user. It is possible that the use of this ploy would have been

a better use for such problems as “Density Estimation” or “Statistics”. The Reinforcement

Learning as we see, is a very broad field, and is surely not what is needed. Thus we chose to use

the supervised.

21

2.2 Deep Learning

Deep learning, also known as Deep Structured Learning, Hierarchical Learning or Deep

Machine Learning, is a chapter of Machine Learning supported by mass of algorithms, which are

intended to model high-level abstractions in data by using multiple processing layers, often with

complex structures or conversely, composed of multiple non-linear transformations. Deep

Learning belongs to the Machine Learning. In that it makes use of methods pattern learning

methods of data, such an example of input as image, can be mirrored in many different ways,

such as a vector of force values per pixel, or in a more abstract way as a set of acmes, districts of

a particular shape. Many representations are much better than others at simplifying the learning

task. One of the Deep Learning guarantees, is that the features of different algorithms, will be

replaced with unsupervised or semi supervised feature learning and hierarchical feature

extraction [7].

The exploration of this topic, strides to make a better and better representations and

construct models from large-scale unlabeled data. Some of the representations are inspired by

advances in neuroscience and are loosely based on the interpretation of information processing

and communication patterns in a nervous system, such as neural coding, which attempts to define

the relationship between various stimuli and associated neuronal responses in the brain [8].

A lot of Deep Learning tools such as Deep Neural Networks, Convolutional Neural

Networks, Deep Belief Networks and Recurrent Neural Networks have been used in fields like

Computer Vision, speech recognition, natural language processing, audio recognition and

bioinformatics where they have been shown to produce state-of-the-art results on various tasks.

Deep learning has been characterized as a buzzword, or a rebranding of neural networks [9] [10].

In this master thesis, we use Convolutional Neural Networks [1] and apply them to image

recognition and categorization.

2.2.1 Why Use CNNs

 Convolutional Neural Networks it’s a new technology, which has become a big trend,

resulting in a great number of people engaged in developing it. There is also a plethora of tools

for each different environment from which a programmer may choose, like as Deeplearning4j

[11], Caffe [12] and Torch[13]. Also it’s better to understanding, because of the biological-base

22

design of it. Thus, enabling us to understand more and to intervene in it. CNNs also in contrast

with similar technologies, have the advantage of capturing features from the input data, without

the existence of a feature extraction algorithm, it taking semi-supervised the features from the

buffering data and creating feature map automatically, as a result, we can save a lot of time from

the feature extraction procedure. In fact, we design the architecture of our network, and we allow

it to choose what it considers important from the given data.

2.2.2 Convolutional Neural Networks for Visual Recognition

 Deep learning is a subfield of machine learning that works with the usage of learning

levels of representations, corresponding to a hierarchy of features, factors or concepts, where

higher-lever concepts are characterized from lower-lever ones. The same lower-lever concepts

can help to define a lot of higher-lever concepts.

Deep Learning can acquire the knowledge of multiple levels of representation and

abstraction, this helps to understand a plethora of data, transformed to vectors such as images.

The theme of Deep Learning arises from the Artificial Neural Networks, Multilayer Perceptron

which encloses more hidden layers is a Deep-Learning system [14]. The main story at this work,

is classified as a problem of Computational Intelligent, that has to do with recognition of objects

in an image. The tool used, is CNNs for visual recognition. The architecture and characteristics

are further analyzed below.

2.2.2.1 Structure Characteristics

Altogether, we define as Deep Neural Networks (DNNs), every Multilayer Perceptron

with multiple hidden layers. Convolutional Neural Networks (CNNs) [1] , is a type of DNN.

CNN is a productive recognition algorithm, which is universally used in pattern recognition and

image processing. It uses many features such as simple structure, less training parameters and

adaptability. The ‘weights” shared network structure makes it more similar to biological neural

networks. It reduces the complexity of the network model and the number of weights.

Normally a CNN is comprised of two layers, one for semi-supervised feature extraction,

and another for pooling. Each neuron is connected to the local receptive fields of the previews

layer to extract the local feature. When the local feature is ready, the positional relationship

between them and the other features will also be determined.

23

The second layer, is that of the feature map. Every feature map is a plane, the weights of

the neurons in the plane are equal. The structure of a feature map, uses a sigmoid as an

activation function, which can be a different type at each level. This makes the feature map have

“sift” invariance. In addition, since the neurons in the same mapping plane share weight, the

number of free parameters of the network is reduced.

 Each convolution layer in the convolution neural network is followed by a computing

layer which is used to calculate the local average and the second extract, this unique two feature

extraction structure reduces the resolution. CNNs are used to detect the displacement types of

distorting invariance of two-dimensional graphics. Since the feature detection layer of CNN

learns by training data, avoids explicit feature extraction and implicitly learns from the training

data when we use CNN. Also, locally in the map plane the weights are the same, so the network

can learn jointly. This is the significant advantage of a convolutional neural network over a

simple neural network. CNNs, with the advantage of shared weights topically, it’s an efficient

tool adjustment in voice detection and image recognition applications.

The real layout of CNN is in fact very common to a biological Neural Network, the

complexity of the network significantly decreases with the shared weights. In particular, multi-

dimensional input vector image can directly enter the network, in such a way to reduce the

complexity in feature extraction and classification process. In Reality, Deep Learning can

accomplish the approximation of complex function by a deep nonlinear network structure [14].

2.2.2.2 Algorithm Operation

The CNN algorithm itself, is a multilayer perceptron structure, is a specific tide stand of

two-dimensional image information’s. The standard existing layers are always:

 Input Layer

 Convolutional Layer

 Sample Layer

 Output Layer

In addition to the CNN architecture we can have more than one of Convolutional and

Sample layers. CNN is not necessity exist a Boltzmann Machine [15]before and after at the

adjacent layers of the neurons for all connections in CNN algorithms. For each neuron it is not

24

necessary to see the entire image as it is possible to focus on a local area. In addition, each

neuron parameter the same such as the sharing of weights and each neuron has the same

convolution kernels to deconvolution image.

CNN algorithm as we said before make uses of two main actions, convolution and

sampling.

 Convolution: Is the process which the output is a convolution layer Cx, so it uses

a trainable filter Fx, the deconvolution of the input image which also referred to

as Feature Map and a bias bx. In this order is possible to supply desired results.

 Pooling or Sampling: Is the second process in which n pixels of each

neighborhood through pooling steps, become a pixel, and then by scalar

weighting Wx + 1 weighted, adds bias bx + 1, and then by an activation function,

produces a narrow n times feature map Sx + 1.

Figure 1: Process of CNN

The key of CNN architecture is the local receptive field, which sharing of weights and

sub sampling by time or space, so as to extract features and reduce the size of the training

parameters. The advantage of CNN algorithm is that its avoid the district feature extraction, so

25

learn from training data, the weights of the same neuron on the surface of the feature mapping,

thus the network can learn alongside, reduce the compellability of the network. With the usage of

the sub sampling structure oriented from time or space, cane accomplish some degree robustness,

scale and deformation displacement. It need a good network topology and input information, if

they set correctly we have more efficient results, in image processing and speech recognition.

[14].

2.2.2.3 Architecture Design of CNNs

 The “Implementation of Training Convolutional Neural Networks” [14] provides an

example that helps to understand the operation of the CNN algorithm. The CNNs’ operating

algorithm, has both an experience in Architecture design and is also an unendingly requires

much debugging in a workable application. For example; importing gray image of 96*96, during

the preprocess is transformed into 32*32 of the size of the image. Designing a convolutional

model architecture with 7-layer depth, which contains:

Input Layer

Assume as an input a 32*32 image after the preprocessing, at this point we have 17

different pictures.

Convolutional Layer C1

C1 layer adopts 6 kernels for convolution, which each of these kernels is 5*5 and can

produce six different feature maps. Each feature map contains (32-5 + 1) * (32-5 + 1) = 28 * 28

= 784 neurons. At this phase there are6 * (5 * 5 + 1) = 156 parameters to be trained.

Sampling Layer S1

S1 Layer, also contains six feature maps, each one of which has 14*14=196 neurons, the

sub sampling window is a matrix of 2*2, sub sampling step is, so the S1 Layer have 6 * 196 * (2

* 2 + 1) = 5880 connections every feature map in the S1 layer contains a weights and bias, so a

total of 12 parameters can be trained.

26

Convolutional Layer C2

At this layer we have 16 feature graphs, where each of them contains (14-5 + 1) *(14-5

+1) =100 neurons, and espouse full connection, with each characteristic figure used to own six

convolution kernels, with six characteristics from the S1, convolution and figure. Each feature

graph contains a number of 16*(150+1) =150 weights and bias. So C2 contains a batch of

16 *(150+1)=150 parameters which could be trained.

Sampling Layer S2

In this layer we have 16 feature maps with 5*5 neurons, S2 totally contains 25*16=400

neurons. S2 on characteristic figure of sub sampling window is 2*2, so exist 32 trainable

parameters.

Hidden Layer H

As a connection layer for all hidden layer H has 170 neurons, each one is connected to

the 400 neurons on the S2. So H layers has 170*(400+1) =48120 feature map’s parameters.

Output Layer F

The output Layer F for all the above connections, includes 17 neurons. A total number of

17*(170+1) =2907 parameters ready for training [14].

Figure 2: Training Steps of CNN Architecture[14]

Worth noting that, every data we want to use, works better with modified architecture

specially for them.

27

2.3 State-Of-The-Art

Deep learning is a newly efficient technology applied in solving many problems

containing mostly continuous attributes. Having a high ratio of supervised/unsupervised sets.

Deep Learning is a State-of-the-Art in many areas of computer science. In addition, in Computer

Vision problems, it provides effective solutions such as face recognition, image and digit

classification. Some of the most popular technologies using Deep Learning describing below.

2.3.1 Deep Learning on Network Traffic Identification

Most network traffic identification systems are based on features, which use the port

numbers, static signatures, statistic characteristics. The biggest problem in traffic identification is

to define which is the feature for recognition. This requires lengthy work in the flow of data,

which can be can be translated to a length of time. This solution, has no usage in unknown

protocols. A solution to this problem coming with Deep Learning, as we read in “The

Applications of Deep Learning on Traffic Identification”[16].

Figure 3: Network Traffic[17]

In the aforementioned work that we talk about, a Deep Neural Network is recommended

for learning of Network Traffic characteristics. Also accomplished protocol classification and

anomaly protocol detection.

28

2.3.2 Google Brain

Google Brain [18] Is a research project using Deep Learning which grows in google. It is

the attempt to build a large-scale Deep Learning software. The aim of this project is to managed

simulation with computer’s clusters of the human’s brain operation. After a report in the New

York times, Google Brain achieved training itself to recognize cats, based on 10 million digital

images taken from YouTube videos.

Figure 4: Cat Detection from Google Brain [19]

2.3.3 State-of-the-Art Visual Recognition

According to “DeepFace: Closing the Gap to Human-Level Performance in Face

Verification” [20]. At this paper the scientific team achieve visual recognition in quota of

97.35%, which is a record for visual recognition. With a network with more than 120 million

parameters using several locally connected layers, and in contrast with my method without

29

locally sharing of weights. Achieved to train a large facial dataset, an identity labeled dataset of 4

million facial images from more than 4.000 identities.

Figure 5: 'Deepface' photo-matching, nearly good to human’s brains [21]

2.3.4 Apply Deep Learning in Financial issues

Deep Learning is a tool which can be used in from several sectors of computer science.

As computers grow more complex, can handle bigger problems in this hi-tech era. It is the norm

for computers and information systems to be used for the management of financial operations.

The writing team of the paper “Applying Deep Learning to Enhance Momentum Trading

Strategies in Stocks” [22], use an auto encoder composed of stacked Boltzmann Machines [15],

to extract features from a stock prices data base, that enables it to discover an enhanced version

of the momentum effect in stocks.

2.3.5 ImageNet Classification with Deep Convolutional Neural Networks

In this paper work (ImageNet Classification with Deep Convolutional Neural Networks

[23]), a deep Convolutional Neural Network was created, to classify the 1.2 million images of

high resolution in ImageNet LSVRC-2010. There were 1000 different classes. Test data they

30

top-1 and top-5 error rates of 37.5% and 17%, was improved better when compared to the last

state-of-the-art.

Figure 6: ImageNet Data-Set view [24]

2.3.6 Autonomous

Autonomous is a robot using Deep-Learning gadgets, which aims to be a tool for

researchers. A researcher could buy it, with the pre-installed features such as Google Tensor

Flow [25], Robot Operating System (ROS) [26], Torch [13], Theano [27], Caffe [12] and Cuda

+ cuDNN powered from NVIDIA [28],such also other mechanical features could carry out many

experiments of Deep Learning in the physical world. Which would help the researcher to

understand with more efficiently, the utilitarian value of this scientific field, as a result in the root

of time people take goods and services which improve their lives.

31

Figure 7:Autonomous, robot with Deep Learning Gadgets

2.3.7 NVidia Digits

Digits is a Deep Learning GPU Training System (D.I.G.I.T.S.).It’s a Deep-Learning tool

with which somebody can conduct experiments of image classification and object detection

tasks.

32

Figure 8: NVidia Digits

Digits is similar to CNNs Tester, but a more complex one, which allows to the user to

decide the Deep-Learning architecture and observe the results in real time. The user may carry

out many types of experiments in addition the monitoring will aid in this. Also as it is referred

toin their site “as it is referred completely interactive, so that you can focus on designing and

training networks rather than programming and debugging” [29].

2.3.8 TensorFlow

TensorFlow is an open-source software library powered by Google. Using this software

can easily depict an architecture through graphs and perform a plethora of experiments. With a

flexible architecture you can deploy to one or more CPU or GPU in a desktop, server or even a

mobile device with a simple API.

Figure 9: TensorFlow

33

3 Java Desktop Application using CNNs

In this chapter we describe the root from basic idea to final design of our Java Desktop

Application, which we named CNNs Tester.

3.1 Basic Idea

The basic idea of this master thesis work, is to create and design an application, which

can be used as a tool of Deep Learning. Due to previous involvement with the field of Computer

Vision in older projects, we decided making an application using CNNs, which could manage

image experiments. Therefore, we proceeded to design an application, with which one could

easily train a model with labelled images (Supervised Learning [2]). In the second act of this

project a researcher can test an image over the trained model. Also the application discussed,

could create model for further use as we show bellow to the next chapter. Worth noting, that an

application GUI like this, with Deeplearnig4j can be compared with only two known

applications, TensorFlow [25] and Digits [29].

3.1.1 Purpose of Implementation

A significant query which must answered, is what is the goal we want to accomplished

with this work? With the completion of this application we want to make a user-friendly and

easy to understand application, for Computer Vision experiments by using CNNs. Also, with the

upload of the source code in GitHub, we would like the researchers can find a background, to

modify with their architecture, and manage their own experiments.

3.2 Methodology and Tools

Final implementation of our main work selection of environment and framework for the

accomplishment, and also the main architecture from the CNNs palette.

34

3.2.1 Environment

Initially, after conceiving the idea, it is crucial to decide upon the technology that will be

used for reaching our goals. Deep Learning is new and currently considered a trend. Which

explains and makes it reasonable that many frameworks would exist, in different environments.

The original idea was to implement in C++ and Caffe [12] bookmark, but after researching and

experiments realization, decided that Caffe may be a very useful tool which can use Cuda-Cores

too (the biggest advantage), but was not suitable for our problem.

Due to the nature of the laboratory where this project done “ISTlab T.E.I. Crete”, selected

to proceed with Java. So, we had to find a compatible framework to proceed. Immediately the

decision was made. The solution selected was to work with DeepLearning4j [11]. Also a New

bookmark developed in San Francisco, which is an open source distributed Deep Learning

project, for java and Scala. provides of 24hr support online via open-chat, which aided greatly.

3.2.2 Architecture

The design of the architecture for this project was a major issue for this work. We ended

up to implement with supervised learning which uses labelled data, so became a search for

similar work to help us, a compatible architecture selected for this work, was this from Hiren’s

Dutta [30] “GitHub” profile, in the project “AppLocalScnes”. In light of the above we proceeded

to design a CNN with five layers, and initially started experiments with images of 112*112

pixels, in order to make all needed modifications. Each layer of CNNs performing three or four

major operations, the first is input and the last is output, while the two intermediate are the

convolution and the Pooling.

 Input: taking a signal as an input, and promoting it to Convolution.

 Convolution: computes a value from each input pixel.

 Pooling: applies a kernel filter and in depend of the sigmoid function taking

samples from the signal.

 Output : promotes the signal to the next layer.

As mentioned above and described in chapter 2, the two major operations are

Convolution and Pooling.

.

35

3.3 Design

By design we mean, all the things we do after capturing the idea, to aid us in organizing

our work. At this chapter we will see all the diagrams we made to help us finalize the

implementation’s boundaries. We also speak for all these independencies which needed to

implement before the first edition of our program.

3.3.1 Diagrams and Tables

Atempt to show the content diagram of our application, which include an overall brake-

down of our project. In addition, presentation of Class and Use Case diagram, in which are

drafted all the uses, which the user or the application itself can perform. Following the tables

with the work packages and the independencies.

3.3.1.1 Content Diagram

A Content Diagram in which boxes represent the components that needed to complete a

project. In this piece of work, namely CNNs Tester Java Application, the basic component

described from boxes is all the knowledge of Deep Learning theory, Deeplearnin4j which is the

bookmark that we used, the Java environment and the images given from the user.

Figure 10: CNNs Tester's Content diagram

36

3.3.1.2 Use Case Diagram

Use Case Diagram is a simple representation of the actor interaction in our system, also

showing the relationship between the actor and all the use cases in which actor is involved. In

the Use Case diagram, the different type of actors are distinguished.

Figure 11: CNNs Tester's Use Case diagram

3.3.1.3 Class Diagram

In the class Diagram can be seen all the classes of our project and the connections

between them. Also separately in each class we see the attributes and the methods. In this

application there are three basic classes. The first one is the “main” which includes the form

design and all the user choices arising from the selection of the buttons, also is connecting the

other two classes, for the total operation of our program. The “Training” class is that includes the

algorithm for the training of a CNN and all to components to resize a group of images and create

a trained model. Finally, the “TestOnImage” class is the one that includes the reload a trained

network, and with the use of a new image to create a test.

37

Figure 12: CNNs Tester’s Class diagram

38

3.3.1.4 Table of Work Packages

Activities in the work-packages composing our work. Also the completion time in weeks,

taking into account that it was implemented by one person.

Work Packages Activity Number Activity Title Completion Time (weeks)

First Steps After Idea

Catch

1 Environment Selection 3

2 Frameworks and Tools 1

3 Deeplearning4j Learn 6

Experiments 4 First Experiments 2

Program

Finalization

5 Components Algorithms writing 2

6 “CNNs Tester’s” Form Creation 1

7 Import Code from experiments

to Form Functions

2

8 Corrections 2

9 Improvements 1

Table 1: Table of Work Packages for CNNs Tester

3.3.1.5 Table of Independences

In this table, by using the above knowledge we present the independencies, as regard the

implementing order.

Activity’s Number Activities Independencies

1 Must be finished before 2 can start

2 Must be finished before 1.6 cam start

3,1,2 Must be finished before 4 can start

4 Must be finished before 5,6,7 can start

5,6,7 Must be finished before 8,9 can start

Table 2: Table of Independencies for CNNs Tester

3.3.2 Phases

In this Chapter we discuss in few words the phases of our work until final

implementation.

39

3.3.2.1 Phase 1-First Steps

During the first phase after the initial capture of our idea we needed to find a way of

implementation. So, we began to look at various technologies and tools which could be used for

the implementation of an application like this. Before we started, we thought that an

implementation of this project with C++ and “Caffe” would be beneficial, so started reading for

Caffe [12] framework online. After a little time, and with communication with other developers ,

the decision had come, the best way to implement it was through java. This is due to the fact that

java is an open source language with many components. In addition, help on programming issues

with java, was available in the ISTlab.

Finally, having chosen the environment, what was left was to choose the proper Deep

Learning framework. During the search performed decided the use of Deeplearning4j [11]

framework, which despite being new had many examples and experiments through which a new

users could learn. Finally, the fact that this framework has enough approach in the usage of

CNNs, which are the main components of my work, was critical for the selection.

3.3.2.2 Phase 2 – Experimental Work

First experiments started with Deeplearning4j. Initially we used existing projects from

GitHub [31], and later resolved our single problems. Over time and work-hours, finally

established a code for training Convolutional Neural Networks with images from a local

directory and another one which checks the probability of an image over the model that created

to the previews problem. All that remained, was to transform through a class all the images in to

standard square dimensions. To reach the implementation, it should have combined them all

together in a java form as is being described in the next Phase

3.3.2.3 Phase 3-Program Finalization

The final phase of this project is implementing the third work package from the work-

package’s table. After completing the experimental work, and knowing the work further needed

for program finalization, we began designing through a main class all the component classes

needed.

Initially, the program’s form started to take shape. Next, started using code from the

experiments, with the purpose of making the form a working Java application. After a lot of

40

corrections and anticipated problems that came up, we finished the first edition of the CNNs

Tester.

Later the first edition was followed by improvements suggested from supervisors, after

the implementation of those we had a concrete edition. There are definitely improvements that

can be further made. These are described in the Summary’s chapter future work.

3.4 CNNs Tester – How it works

In this section we will discuss, the functions of the program in the different use cases

made. Running the .jar file we will see the present frame:

Figure 13: CNNs Tester's starting frame

Now, we must browse a folder with labelled images using the Browse Folder button. The

Image’s folder must be organized like this:

41

Figure 14: Shape that must have a Selected folder

After choosing the desired we have two choices, we can make a simple training without

any further customization or the advance training, in which we have the ability for more

customization. It depends from the user what will choose to do. By pushing the generate button

we initiate the training and see the above:

Figure 15: CNNs Tester's Training mode

42

When the Training finish, we see the training bar at 100%, and in the console window

some statistics Accuracy, Precision, Recall and F1 Score.

Figure 16: CNNs Tester Training end

Accuracy is model's accuracy in the training, Precision answers: “Given a positive

prediction from the classifier, how likely is it to be correct? Recall explains how possible is it for

the classifier to detect a positive example, and F1 score is the most significant number. The

F1Score is a number between zero and one, and explains the quality of the training, the closer we

get to one, the better the training. In actual is an average of both precision and recall [32]. It is

also worth noting that we can experiment with the values in advanced training for better results.

 After the training has ended, we may want to stop the program and only write down the

statistics, otherwise we can perform a test on the trained model with a new image which our

system never seen before. So we use the button Browse Test, and search through our folders for a

single image to test. After the image selection we unlock the Start button and by clicking it we

initiate the testing. Then we are wait until bar reaches 100%. If desired, we can perform another

test after completion of the first one.

43

Figure 17: CNNs Tester, test have been start

The frame we see when the test ends would be like:

Figure 18: CNNs Tester, after the test finished

44

We can see in the console that the labels loaded from a. json file that we created in the

training step are correct, this means that the trained model loaded with all it settings. Also we

can see the results of the test and the prediction that the system did for our selected image.

 Also, if we have a trained model in our application directory, we can make a test in

another time. We open our application, and select the radio button in the step B, Use the

Previews Model. Now we can with the same steps to start testing. The test in this case will be as

is presented below:

Figure 19: CNNs Tester with usage of a previous model

After the first run of our program a folder is created on our disk. We can find it at

C:\DDL_APP directory, inside the folder we can find some documents which are details.yaml,

info.json, model.bin and settings.json. The details.yaml have the characteristics of our

architecture, in the info.json we save some variables which want to parse to the training step, the

model.bin is the model with all the knowledge from the training (weights), and final the

settings.json is actually the same document with the details.yaml. This project using the. Json

file.

45

Figure 20: The folder that CNNs Tester creates

Plus, in the same folder we can see a sub-folder Images, in which our system converts all

the selected images to the desirable dimensions. Also the sub-folder test in which the selected

image for the test converted and stored. After running the program all the images are deleted

automatically. Except if, we close the program forcefully while it is running, we have the next

time to use the button clear images. This button deletes all the converted images, such also the

image in the test folder.

3.5 Summary

In this topic, we will see some statistics from the use of well-known image-databases to

our architecture, and then we will discuss what we gained from this work.

3.5.1 Architecture’s Tests

In the tables below we see the results of Accuracy, Precision, Recall and F1 score for

some well-known image-databases as we aforementioned. In the beginning we used one of

James Z. Wang research data group taken from an online source [33]. Common work is

described at the journal “SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture

LIbraries” [34].

46

Accuracy Precision Recall F1 Score Epochs Iterations Learning

Rate

0.0798

0.1593

0.1022

0.1245

1000

1

0.1

0.3417

0.2988

0.3535

0.3239

10

1

0.1

0.3786

0.3699

0.4117

0.3897

5

1

0.1

0.3119

0.3842

0.344

0.363

3

1

0.1

Table 3: SIMPLIcity Image Database results

Figure 21: Images from SIMPLIcity

 As we can see above, it is not necessary that by using more epochs or iterations we will

receive better results. Every dataset has different habits, and needs different customization in the

settings. The question is, which customization will be the best? This one is going to be found

only by experimenting on the data. Therefore, we understand that the experimental work as

described in work-packages, is a very significant work. Below is a matrix of results for a well-

known Image-Database of computer vision NEC Animal dataset [35] results.

47

Accuracy Precision Recall F1 Score Epochs Iterations Learning

Rate

0.2132

0.2876

0.102

0.1506

10

10

0.1

0.149

0.1666

0.0947

0.1207

10

1

0.1

0.1833

0.1242

0.0658

0.086

10

100

0.1

0.2426

0.3049

0.1914

0.2352

20

1

0.1

0.2352

0.3115

0.1883

0.2347

30

1

0.1

Table 4: NEC Animal dataset results

Figure 22: Images from NEC Animal

 To conclude, for comparison we used our own image-database from an older project. The

image-database “Rabbit” contains 18 different classes of images and the three-dimensional of

each image. For this experiment we needed two-dimensional images. In future projects it would

be possible to conduct an experiment with 3D images as well. The matrix with the results as

follows:

48

Accuracy Precision Recall F1 Score Epochs Iterations Learning

Rate

0.3639

0.4322

0.3236

0.3701

10

5

0.1

0.2891

0.5478

0.3181

0.4025

5

1

0.1

0.2463

0.3196

0.2781

0.2974

20

1

0.1

0.335

0.3732

0.3272

0.3487

30

1

0.1

0.1007

0.1007

0.1007

0.1007

50

1

0.1

Table 5: Rabbit Dataset results

Figure 23: Rabbit Dataset view

 Regarding to the above experiments we can demonstrate what we initially stated that

every image-database has its own habits, and with different customization of our program we

achieved the optimal result for each. Also we noticed the existence of one “more beneficial”

point for each occasion, and after this point the results are not optimal. Finally, it is good to note

again that in this thesis work we do not promote that architecture but the framework itself,

however, given the opportunity one could download from GitHub the application’s source code

and use their architecture.

49

50

4 Web Application Framework, using CNNs

4.1 Basic Idea

One of the purposes of this master thesis, based on Deep Learning, is to create a web-

application which can recognize an item. The basic idea is that, we have a pre-trained model

from the application above and we can use it with web technologies, to perform image

identification tests. This is presented in the following chapter.

4.1.1 Purpose

The exact purpose of this work is the creation of a web-application framework, which

one in common usage with the above application, it would be able to create his own App.

Therefore, the user makes and optimize a training at “CNNs Tester”, and subsequently uses the

trained model (model.bin) document to reload the knowledge. This chapter describes the method

with which was done.

4.2 Methodology and Tools

In the following section, we will discuss the tools and the list of sub-problems which

must be solved in order to arrive at a stable edition of a framework like that.

4.2.1 Environment

The environment in which the project was fulfilled is Java. A java framework for Deep

Learning was essential, so we used again Deeplearning4j. Helped also the fact that is an object

oriented language and has direct relationship with server design application and an internet-

oriented logic.

4.2.2 Architecture

This architecture of the web based version is simpler than the architecture of the desktop

presented in chapter 3.

51

At the web based architecture we made use of a pre-trained model from the “CNNs

Tester”. Loaded again in in addition with the settings of our architecture from a. json file. This is

achieved by use of Apache Tomcat server [36] and with a servlet specially designed to upload

images. It is also worth noting, that the image classification done with the same classes used

from the CNNs Tester for testing.

4.3 Design

Below, all the design diagrams and tables are presented.

4.3.1 Diagrams and Tables

4.3.1.1 Content Diagram

Content Diagram is a simple representation of our work, which shows the basic

components.

Figure 24: Web-application’s framework Content diagram

52

4.3.1.2 Use Case Diagram

A Use Case diagram, which represents the functions of our web-application’s

framework. The same apply, for every application construct with this framework’s

structure. Worth noting, that is logic to have many similarities with the “CNNs Tester’s”

Use Case diagram.

Figure 25: Web-application's framework Use Case diagram

53

4.3.1.3 Class Diagram

This Class diagram shows the relationships between the classes of our Web Application.

We can see the servlet which upload an image after the call from the index page. Also, the

Image_Classification class which performs the main job in our application. Furthermore, there is,

a class to resize an image in to desired by the system dimensions.

Figure 26: Web-application's framework Class diagram

4.3.1.4 Table of Work Packages

In this table we can see the needed work for our web-application framework which is

being separated in work packages, and integration time in weeks.

Work Packages Activity Number Activity Title Completion Time (weeks)

First Steps After Idea

Catch

(same with CNNs

Tester)

1 Environment Selection 3

2 Frameworks and Tools 1

3

Deeplearning4j Learn

6

Experiments

(same with CNNs

Tester)

4

First Experiments

2

 5 Components Algorithms writing 1

6 Web-A 1

54

Web-Application

Framework

Finalization

Application Index design

7 Import Code from experiments

to work with index

2

8 Corrections 1

9 Improvements 1

Table 6: Web-application's Framework Work-Packages' table

4.3.1.5 Tables of Independencies

Here we can see the activities’ independencies in common with the table above.

Activity’s Number Activities Independencies

1 Must be finished before 2 can start

2 Must be finished before 1.6 cam start

3,1,2 Must be finished before 4 can start

4 Must be finished before 5,6,7 can start

5,6,7 Must be finished before 8,9 can start

Table 7: Web-application's Framework Independencies' table

4.3.2 Phases

 Reference to the work happening individually for each work-package.

4.3.2.1 Phase 1

This, is the same as we described to the chapter three. This is due to the fact, that we

selected the same background to implement both of the two applications.

4.3.2.2 Phase 2

The same applies to phase 2, A great number of experiments performed, with purpose the

better understanding of the CNNs.

4.3.2.3 Phase 3

At this project’s part, we demonstrate the usefulness of Deep Learning., through a web-

application. This application use a model from “CNNs Tester”, and with some Deeplearnig4j

tools, makes a precision to an unknown image, always relative with those categories used for

training. As a result of this process, was the mentioned web-application framework. In which one

can copy the structure, and create an application too.

55

We use an Apache Tomcat server, HTML5 and a servlet to upload the images. The

process of classification taking place with Deeplearning4j functions once again. Our main page

is in HTML5, and with usage of Ajax technology we can use the same java code, as “CNNs

Tester”. Next, we demonstrate how the existing example (PaternF) of this framework works.

4.4 PaternF Application

To use an application like this, we visit a web-page, in which we can see the main Index

frame. In this example we have a very simple problem to solve, we want to classify an image and

see if it is an elephant or a giraffe. So the first think to do, is to upload an image selected from

our personal computer.

Figure 27: PaternF starting page

In the next frame, we see the image uploading bar. When the upload is completed the “Start

Classification” button unlocks.

56

Figure 28: image upload completed

After we use the button of classification, the class “TestOnImage” starts from the Ajax

and we wait for the results.

Figure 29: PaternF waiting for result

During the wait, the two little arrows move, is understandable that the classification

finished, when the arrows stops, and see the message in the classification process area.

57

Figure 30: PaternF results

4.5 Summary

During this work, our existed knowledge for the web applications improved. Also we

achieved to demonstrate the usefulness of this technology. Therefore, we achieved to create an

existing application, in which we can support the implementation of a more complex.

.

58

59

60

5 Conclusion

In conclusion, in this master thesis work, we created two applications which can be

translated as framework for a total work. Firstly, we have the “CNNs Tester” in where a model is

trained with the knowledge from the images used. Next, we saw that the customization of the

training give better results and after some experiments a trusted model can exists. The second

part of the designed framework, which uses a model from the first, can recognizes objects related

to the classes we used for training. It is therefore a complete project. There are a number of

things that could be added which are described in Future work.

5.1 Improvement of existing work

The two applications are very close to the requirements set. Many extensions can be

found. Some of these are:

 Visualization Panel: Surely the next step is to add a visualization panel, so a

researcher can watch the training.

 User Friendliness Improvement: We ended up with a useful GUI, but there is

much that could be added, such us a preview of the image in testing Step B.

 Architecture Customization: It is very important to achieve customize

architecture, in this way the usefulness such as the use cases will multiply.

5.2 A step further

The next step in the research work is the use Deep-Learning for other scientifically areas

than Computer-Vison. The intension of project’s implementation is to use Deep-Learning for

financial misdemeanors. Also, the hope of art improvement is a dream of this research for future

scientifically projects.

61

5.3 Knowledge Gained

After the completion of this work, constructing a Deep-Learning framework provides a

plethora of gains which is good to referred to. One of the most important artifacts is the ability

to transformed from strictly scientific work, to something that can be put to practical use. Being

familiar with Convolutional Neural Networks, is a learning. The knowledge is optimized to an

upgraded level by working on in this field.

5.4 Contributions

Finally, those in which contribute are much than the desirable in the beginning. Two

applications created, easy to work from experts and non-experts. This whole implementation, can

also considered as framework. This because of the ability somebody to download the code from

GitHub, and with an easy implementation due to design create his own application. It is giving

compatibility, for training with images, and test in different systems because of the java. All the

aforementioned gathered to a Deeplearning4j GUI, and creates an application which exist also

few more.

62

63

6. References

[1] L. Lab, "deeplearing.net," [Online]. Available: http://deeplearning.net/tutorial/lenet.html.

[Accessed 10 12 2015].

[2] "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Supervised_learning.

[Accessed 9 12 2015].

[3] A. P. Engelbrecht , Computational Intelligence An Introduction, 2007.

[4] M. Mohri , A. Rostamizadeh and A. Talwalkar , "Foundations of Machine Learning," The

MIT Press, 2012.

[5] M. I. Jordan and C. M. Bishop, "Neural Networks," in Computer Science Handbook, Boca

Raton, Chapman & Hall/CRC Press LLC., 2004.

[6] R. S. Sutton , "Temporal Credit Assignment in Reinforcement Learning (PhD thesis),"

Massachusetts, 1984.

[7] A. H. Song and Y. S. Lee, "Hierarchical Representation Using NMF," in Neural

Information Processing. Lectures Notes in Computer Sciences 8226., Springer

Berlin Heidelberg, 2013.

[8] B. A. Olshausen, "Emergence of simple-cell receptive field properties by learning a sparse

code for natural images," Nature , pp. 607-609, 1996.

[9] R. Collobert, "Deep Learning for Efficient Discriminative Parsing," VideoLectures.net.,

2011.

[10] L. Gomes, "Machine-Learning Maestro Michael Jordan on the Delusions of Big Data and

Other Huge Engineering Efforts," IEEE Spectrum., 20 October 2014.

[11] "deeplearning4j.org," 2. [Online]. Available: http://deeplearning4j.org/. [Accessed 27 1

2016].

[12] "caffe.berkeleyvision.org," Berkley University, [Online]. Available:

http://caffe.berkeleyvision.org/. [Accessed 27 1 2016].

[13] "torch.ch," [Online]. Available: http://torch.ch/. [Accessed 29 1 2016].

[14] T. Liu,, S. Fang,, Y. Zhao,, P. Wang, and J. Zhang, "Implementation of Training

64

Convolutional," University of Chinese Academy of Sciences, Beijing, China.

[15] D. H. Ackley , G. E. Hinton and T. J. Sejnowski , "A Learnimng Algoritmh for Boltzman

Machines," Cognotive Science, pp. 147-169, 1985.

[16] Z. Wang, "The Applications of Deep Learning".

[17] "Caida," [Online]. Available: http://www.caida.org/~alice/docs/bsod.html. [Accessed 30 06

2016].

[18] "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Google_Brain. [Accessed

30 06 2016].

[19] "Google," [Online]. Available: https://googleblog.blogspot.gr/2012/06/using-large-scale-

brain-simulations-for.html. [Accessed 30 06 2016].

[20] Y. Taigman, M. Yang, M. Ranzato and L. Lior, "DeepFace: Closing the Gap to Human-

Level Performance in Face Verification," in CPVR2014, 2014.

[21] "welivesecurity," [Online]. Available:

http://www.welivesecurity.com/2014/03/19/facebooks-deepface-photo-matching-is-

nearly-as-good-as-human-brains/. [Accessed 30 06 2016].

[22] L. Takeuchi and Y.-Y. A. Lee, "Applying Deep Learning to Enhance," 2013.

[23] A. Krizhevsky, I. Sutskever and G. E. Geoffrey, "ImageNet Classification with Deep

Convolutional," Toronto.

[24] A. Karpathy, "http://karpathy.github.io," [Online]. Available:

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-

convnet-on-imagenet/. [Accessed 30 06 2016].

[25] "tensorflow," google, [Online]. Available: https://www.tensorflow.org/. [Accessed 28 01

2016].

[26] "ros," [Online]. Available: http://www.ros.org/. [Accessed 30 06 2016].

[27] "pypi.python.org," [Online]. Available: https://pypi.python.org/pypi/Theano. [Accessed 30

06 2016].

[28] "developer.nvidia.com," [Online]. Available: https://developer.nvidia.com/cuda-gpus.

[Accessed 28 01 2016].

[29] "developer.nvidia.com," [Online]. Available: https://developer.nvidia.com/digits.

65

[30] H. Dutta, "https://github.com/jann2005," [Online]. Available: https://github.com/jann2005.

[Accessed 08 02 2016].

[31] "GitHub," [Online]. Available: https://github.com/. [Accessed 15 02 2016].

[32] "deeplearning4j.org," [Online]. Available: http://deeplearning4j.org/glossary.html.

[Accessed 04 08 2016].

[33] "wang.ist.psu.edu," [Online]. Available: http://wang.ist.psu.edu/docs/related/. [Accessed 05

07 2016].

[34] J. Z. Wang, J. Li and G. Wiederhold,, "SIMPLIcity: Semantics-Sensitive Integrated," IEEE

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol.

23, no. 9, pp. 947-963, 2001.

[35] H. Mobahi, R. Collobert and J. Weston, ""Deep Learning from Temporal Coherence in

Video," Proceedings of the 26th Annual International Conference on Machine

Learning (ICML'09), pp. 737-744, 14-18 June 2009.

[36] "tomcat.apache.org," [Online]. Available: http://tomcat.apache.org/. [Accessed 20 03 2016].

[37] j. Li and J. Z. Wang,, "Automatic Linguistic Indexing of Pictures," IEEE TRANSACTIONS

ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 25, no. 9, 2033.

[38] "www.vision.caltech.edu," Caltech, [Online]. Available:

http://www.vision.caltech.edu/Image_Datasets/Caltech101/. [Accessed 05 07 2016].

66

