

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Ανάλυση χειρονομιών με τη χρήση οπτικών δεδομένων

Κατσουλάκης Ν. Εμμανουήλ

Επιβλέπων: Δρ. Κοσμόπουλος Δημήτριος

Ηράκλειο Κρήτης, Ιούνιος 2016

1

2

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Ανάλυση χειρονομιών με τη χρήση οπτικών δεδομένων

Κατσουλάκης Ν. Εμμανουήλ

Επιβλέπων: Δρ. Κοσμόπουλος Δημήτριος

Εγκρίθηκε από την τριμελή επιτροπή στις /06/2016

Δρ. Κοσμόπουλος Δημήτριος, Καθηγητής ..
 (Υπογραφή)

Δρ. Σφακιωτάκης Μιχαήλ, Επίκουρος Καθηγητής ...
 (Υπογραφή)

Δρ. Φασουλάς Ιωάννης, Επίκουρος Καθηγητής ..
 (Υπογραφή)

Ηράκλειο Κρήτης, Ιούνιος 2016

3

TABLE OF CONTENTS

LIST OF FIGURES .. 6

LIST OF TABLES .. 9

ABSTRACT.. 12

CHAPTER 1. INTRODUCTION ... 14

1.1 OVERVIEW .. 14

1.2 RELATED WORK... 14

1.3 PROPOSED APPROACH .. 16

1.4 CONTRIBUTION OF THE THESIS ... 16

CHAPTER 2. MACHINE LEARNING .. 18

2.1 MACHINE LEARNING ... 18

2.2 MACHINE LEARNING WORKFLOW .. 18

CHAPTER 3. NEURAL NETWORKS .. 19

3.1 NEURAL NETWORKS .. 19

3.1.1 WHAT IS A NEURAL NETWORK? ... 19

3.2 THE BASICS OF NEURAL NETWORKS ... 19

3.2.1 ACTIVATION FUNCTIONS ... 23

3.2.2 HOW DO NEURAL NETWORKS DIFFER FROM CONVENTIONAL
COMPUTING? .. 24

3.2.3 WHAT APPLICATIONS SHOULD NEURAL NETWORKS BE USED
FOR? 25

3.3 LEARNING TECHNIQUES .. 25

3.3.1 SUPERVISED AND UNSUPERVISED MACHINE LEARNING 25

3.3.2 REINFORCEMENT LEARNING .. 28

CHAPTER 4. RECURRENT NEURAL NETWORKS .. 30

4.1 OVERVIEW .. 30

4.2 FORMALISM .. 34

4.2.1 FORMAL DESCRIPTION OF RECURRENT NEURAL NETWORKS 34

4.2.2 APPROACHING A MACHINE LEARNING PROBLEM 36

4.3 RESERVOIR COMPUTING ... 37

4

4.3.1 ECHO STATE NETWORK .. 38

4.3.2 LIQUID STATE MACHINE .. 39

4.3.3 EVOLINO .. 39

4.3.4 BACKPROPAGATION-DECORRELATION 39

CHAPTER 5. ECHO STATE NETWORK .. 40

5.1 OVERVIEW .. 40

5.2 BASIC ECHO STATE NETWORK MODEL .. 40

5.3 RESERVOIR READOUTS .. 42

5.3.1 SINGLE-LAYER READOUT .. 43

5.4 ECHO STATE PROPERTY ... 46

5.5 EXAMPLE OF A SMALL TIMER NETWORK .. 49

5.6 SHORT-TERM MEMORY .. 51

5.7 TRAINING AN ESN AS A DELAY LINE .. 52

5.8 MEMORY CAPACITY .. 54

5.9 GENERIC RESERVOIR “RECIPES” .. 55

5.9.1 DIFFERENT TOPOLOGIES OF THE RESERVOIR 55

5.9.2 INTERNAL UNITS ACTIVATION METHODS 56

5.10 FORMULATION OF TRAINING PROCUDURE 60

5.11 PRODUCING A RESERVOIR ... 61

5.11.1 Function of the Reservoir. .. 61

5.11.2 GLOBAL PARAMETERS OF THE RESERVOIR 62

CHAPTER 6. PRACTICAL APPROACH OF ESN .. 66

6.1 MAIN PARAMETERS OF THE NETWORK .. 66

6.2 PARAMETER SELECTION SETUP ... 66

6.3 MANUAL PARAMETER SELECTION .. 67

6.4 INITIAL TRANSIENT .. 67

6.5 OUTPUT FEEDBACK AND STABILITY PROBLEMS 67

6.5.1 OUTPUT FEEDBACK .. 67

6.5.2 TEACHER FORCING ... 68

6.5.3 FEEDBACK STABILITY PROBLEMS ... 69

CHAPTER 7. SUPERVISED TRAINING FOR SEQUENCE LABELING 70

7.1 SEQUENCE LABELING OVERVIEW .. 70

7.2 SEGMENT CLASSIFICATION. .. 71

5

CHAPTER 8. TEMPORAL GESTURE RECOGNITION EXPERIMENTS 72

8.1 AIM OF THE EXPERIMENT ... 72

8.2 DATA ... 74

8.2.1 GENERAL DESCRIPTION .. 74

8.2.2 MAIN CHARACTERISTICS OF THE DATASET 74

8.2.3 DATA FORMAT ... 78

8.3 PREPROCESSING ... 81

8.3.1 DATA TRANSFORMATION .. 81

8.3.2 DATA RESCALING AND INPUT FORMAT 83

8.3.3 OUTPUT FORMAT .. 85

8.4 EXPERIMENTAL SETUP .. 86

8.5 TRAINING-TEST ECHO STATE NETWORK: ALGORITHM 87

8.6 EXPERIMENTS ... 93

8.6.1 ECHO STATE PROPERTY (A SIMPLE EXPERIMENT) 93

8.6.2 GESTURE CLASSIFICATION EXPERIMENTS 94

8.6.3 RESULTS ... 100

CHAPTER 9. COMPARISONS .. 110

9.1 ChaLearn 3-TOP RANKED APPROACHES .. 110

9.2 COMPARISONS WITH OTHER APPROACHES AND VARIATIONS 111

CHAPTER 10. CONCLUSION .. 113

BIBLIOGRAPHY .. 114

6

LIST OF FIGURES
Figure 1. Basic form of Neural Network ... 20

Figure 2. A Single Node Example ... 21

Figure 3. Delta Rule ... 22

Figure 4. Some common activation functions used in neural networks
((Verstraeten, 2009-2010)). .. 24

Figure 5. Supervised training process (Jaeger, 2002b). 26

Figure 6. Overfitting: The model is learning the noise on the data instead of
generalizing (learning then statistical properties of the data). 27

Figure 7. Overfitting: the error on the training set keeps decreasing while the
error on the (unseen) test set increases. The model is learning the
noise on the data instead of generalizing (learning then statistical
properties of the data). ... 27

Figure 8. Typical structure of a feedforward network (left) and a recurrent
network (right) (Jaeger, 2002b). .. 30

Figure 9. Principal pathway in the black-box modeling (Jaeger, 2002b). 32

Figure 10. A. Traditional gradient-descent-based RNN training methods adapt
all connection weights (bold arrows), including input-to-RNN, RNN-
internal, and RNN-to-output weights. B. In Reservoir Computing,
only the RNN-to-output weights are adapted (Lukosevicius, 2012).
 .. 33

Figure 11. A topology of RNN models .. 34

Figure 12. Basic architecture of RNN models. Shaded arrows indicate optional
connections. Dotted arrows mark connections which are trained in
the "echo state network" approach (in other approaches, all
connections can be trained), (Jaeger, 2001). 35

Figure 13. Basic echo state network architecture. Dashed arrows indicate
connections that are optional (Yildiz, et al., 2012). 41

Figure 14. An echo state network. (Lukosevicius, 2012) 44

Figure 15. Timer network .. 50

Figure 16. Performance of the network. Dotted line in last graph shows
network’s output and solid line desired or teacher output............ 51

Figure 17. Short Term Memory of RNNs. The shading of the nodes in the
unfolded network indicates their sensitivity to the inputs at time
one (the darker the shade, the greater the sensitivity). The
sensitivity decays over time as new inputs overwrite the activations

7

of the reservoir, and the network `forgets' the first inputs (Graves,
2008). .. 52

Figure 18. Setup of delay learning task. ... 53

Figure 19. 20 with a 20-unit DR. Results of training delays k = 4, 8, 16. Top row:
input weights of size –0.1 or +0.1, bottom row: input weights sized
–0.001 or +0.001. .. 54

Figure 20. Time warped data. .. 59

Figure 21. Random scaled internal weights matrix, spectral radius 0.95. 64

Figure 22. An ESN with output feedbacks trained with teacher forcing. 69

Figure 23. Data set gesture categories. ... 73

Figure 24. The 20 gestures performed by one person, which consist one
sequence. .. 75

Figure 25. (a, b) Left and right handed instances for gesture “vieni qui”, (c, d,
e) left and right handed instances and arm position of “vattene”
and. ... 77

Figure 26. Different data modalities of the provided data set. From left to right
are the image selected from the RGB video, depth video, user-index
video, and skeletal model respectively. ... 78

Figure 27. Fields of structure Labels for a sample sequence. 80

Figure 28. Left and right edge: tracked joint types, middle: skeleton joint
positions. ... 81

Figure 29. Twelve joint pairs data after normalization over sampling period. . 83

Figure 30. Input data rescaled to interval [0 1]. Last row: bias input. 84

Figure 31. A portion of teacher sequence (4 of 13 inputs) and target output
vector (4 of 20) and its manual alignment of them. Each input signal
contains 20 regions (represented as different color setup) of equally
unique gesture instances performed by one individual. 86

Figure 32. Response of an arbitrarily selected internal unit of the network for
different spectral radius ρ. The last trace shows the unit impulse
input sequence (training signal). ... 94

Figure 33. Top row: a portion (8 of 20) of labels (red line) and network output
(blue line). Last row: traces of some internal units. 96

Figure 34. Top row: a portion (8 of 20) of labels (red line) and network output
(blue line). Last row: traces of some internal units without feedback
connections. .. 97

Figure 35. True-false classified gesture. .. 98

Figure 36. Bar-graph of four different internal units activation error
classification rate grouped in each gesture. 103

8

Figure 37. Error classification rate as a function of spectral radius a . Training
parameters (except spectral radius) was the same for all executed
simulations. ... 105

Figure 38. Error classification rate as a function of number of internal units.
Training parameters (except number of internal units) was the
same for all executed simulations. .. 106

Figure 39. Shows 4 (of twelve) input channels of two different people
performing the same gesture. After normalization 4 input channels
of different training sets First person needs 80 frames (4 seconds)
to complete ‘prendere’ gesture and second one only 30 frames(1.5
seconds). ... 107

Figure 40. Top: TWI_ESN network internal units activations with time constants
Δt=0.5. Bottom: TWI_ESN network internal units activations with
time constants Δt=0.2.. 109

9

LIST OF TABLES
Table 1. Calculated distances joint pairs. ... 82

Table 2. Network input vector. .. 84

Table 3. Network output vector. ... 85

Table 4. ESN sub-optimal parameter setup and best performance for each type
of internal units activation. .. 101

Table 5. Error classification rate of each gesture. ... 102

Table 6. Team methods and results. HMM: Hidden Markov Models. KNN:
Nearest Neighbor. RF: Random Forest. Tree: Decision Trees. ADA:
Adaboost variants. SVM: Support Vector Machines. Fisher: Fisher
Linear Discriminant Analysis. GMM: Gaussian Mixture Models. NN:
Neural Networks. DGM: Deep Boltzmann Machines. LR: Logistic
Regression. DP: Dynamic Programming. ELM: Extreme Learning
Machines. .. 112

10

Mathematical notations

 Scalars

a Vector

 Matrix

 Matrix transpose

 A set of real-valued vectors of size

 A set of real-valued vectors of size

 Vector or matrix vertical concatenation

 Euclidean distance

 Discrete time

 Input signal

 Internal weight matrix

 Input weight matrix

 Output weight matrix

 Output weight matrix

 Internal state signal at time n, reservoir activation

 Output signal at time n

 Target(desired, teacher) output signal at time n

 Number of time steps

 Spectral radius, i.e., largest absolute eigenvalue of

 ‘Active’ inputs scaling vector

 ‘Active’ inputs shifting vector

 Bias input scaling

 Bias input shifting

 Teacher scaling vector

11

Mathematical notations

 Teacher shifting vector

 Feedback scaling vector

 Internal units noise vector

 Teacher signal noise vector

12

ABSTRACT
Gesture recognition is one of the most significant issues of human-machine
interconnection via mathematical algorithms. Gestures can originate from
body or face motion and most of the time are recorded by a camera. Extracted
cameras’ data (such as depth map, skeletal model) is provided to specific
computational algorithms in order to achieve gesture recognition.

This study is focused on temporal gesture recognition (detection plus
classification) from skeletal data by a specific Reservoir Computing type called
Echo State Network. The goal is to indicate the real order of gestures in the
sequence expressed as a false gestures recognition percentage. The training
and test data have been downloaded from the Chalearn Gesture Recognition
Challenge. They contain a large manually labelled database of 7,820 gestures
from a lexicon of 20 Italian gesture categories recorded with a KinectTM camera.

Recurrent neural networks are a part of Artificial Neural Network architecture
that is inspired by brain cyclical connectivity of neurons and uses recurrent
function loops to store information. Recurrent neural networks (RNNs) have a
great potential for "black box" modeling of nonlinear dynamical systems.
Reservoir Computing is a subclass of Recurrent Neural Networks (RNNs). The
"echo state" approach is a novel approach of RNNs. Large RNNs are
interconnected as "reservoirs" of complex, excitable dynamics. Output units
"tap" from this reservoir by linearly combining the desired output signal from
the rich variety of excited reservoir signals. This idea leads to training
algorithms where only the network-to-output connection weights have to be
trained. This can be solved using ridge regression algorithms. Potential
applications of ESN are dynamical systems, which were difficult to learn with
previous methods. They include (long) periodic sequence generators,
multistable switches, frequency measurement devices, controllers for nonlinear
plants, long short-term memories, dynamical pattern recognizers, and notably,
long-term predictors of chaotic attractors. Today ESNs are widely used in
dynamical pattern recognition applications, control, and time series prediction
applications (Jaeger, 2001)

We investigate the performance of three different types of ESN (4
implementations) internal activation units: plain_ESN, which generates the
internal state of an ESN with standard additive-sigmoid,

13

leaky1_ESN\Leaky_ESN, which updates internal state using leaky integrator
neuron model, and twi_ESN, which updates internal states using a time
warping invariant model. The obtained network performance is measured by
error classification rate. Error classification rate for each gesture is also
provided. Overall approach achieves 28.53% gesture misclassification rate,
providing error rate reduction of 3.12% compared to the best single modal
approach presented in Chalearn Gesture Recognition Challenge 2013.

Keywords: single-modal gesture recognition, ESN, gesture recognition,
temporal classification.

14

CHAPTER 1. INTRODUCTION

1.1 OVERVIEW

Gesture recognition aims to recognize human motions, which are combined
movements of body, head, arms and hands. This research field is very popular
due to vast human-computer interaction applications.

The most important thing in hand gesture recognition systems is the input
feature, and the selection of good features representation. Human-computer
interaction takes place by multiple sensors signals. In the beginning of gesture
recognition research, the majority of approaches were based on controllers
which equip users with wearable hardware devices for recording motion data.
Nowadays proposed approaches focus on gesture recognition with vision-
based methods for capturing motion data. Plenty of computational methods
are used for analyzing cameras’ motion data.

Introduction of outperformed gesture recognition research.
 is a relatively cheap motion sensing input device which is inbuilt
RGB camera, a depth sensor, and a multi-array microphone. Thus, this device
provides multi-modal sensing data such as RGB image, depth image, audio,
and skeletal. Provided features make this device ideal for gesture
recognition systems’ design.

Reservoir Computing methods have some properties that make them an
attractive choice for pattern recognition: learning sequences can represent
data of different types (e.g. audio and video data), they can learn to store only
the meaningful information of the data and they can learn to identify
sequential patterns.

1.2 RELATED WORK

Based on their data capturing method, gesture recognition systems can be
classified in two major categories. First one includes controller-based
recognition systems: users hold or wear devices during gesture performing.
 , introduced in (Kuroda, et al., 2004), is a low price data glove,
which is used for sign language recognition. (Schreiber, et al., 2009) evaluated

15

the potential of a gesture-based human computer interaction system with a
Wii Remote.

Second one is controller-free recognition systems: users do not have to wear
or hold any hardware. Various types of sensors can be used for data capturing
in these systems. Most used sensors in resent research field is cameras, lasers
and infrared. Moreover, camera-based recognition systems can be divided in
subsections: single camera, stereo camera systems and so on.

Gestures to be recognized can be divided in two categories, static and dynamic.
Static gesture recognition (also known as posture recognition) is expressed as a
stable body posture. Body posture can be defined as the static movement, e.g.
holding the hand in a specific pose is a posture, a victory sign, for example,
pointing. On the other hand, dynamic gesture represents a sequence of
dynamic body movements. In (Just, et al., 2006) introduced an approach to
hand posture classification and recognition tasks. (Fang, et al., 2007) proposed
a robust real-time hand gesture recognition method. Firstly, a specific gesture
is required to trigger the hand detection followed by tracking; then the hand is
segmented using motion and color cues; finally, in order to break the
limitation of aspect ratio encountered in most of learning based hand gesture
methods, the scale-space feature detection is integrated into gesture
recognition.

Most frequently used approaches for Dynamic recognition and classification of
hand gestures is Machine Learning based approaches (Mitra & Acharya, 2007).
The most common methods that considered the gesture as a result of some
stochastic processes include Hidden Marcov Model, Finite State Machine,
Kalman Filtering, Artificial Neural Network, and Principal Component Analysis.

In (Yamato, et al., 1992) a Hidden Marcov Model method was first applied for
gesture recognition. In (Yang & Ahuja, 2001) introduced a method to recognize
40 hand gestures of American Sign Language (ASL) which used Time-Delay
Neural Network (TDNN). Pixel-level motion trajectory is obtained across the
image sequence by multi-scale motion segmentation and affine
transformation. Then, the motion trajectory is matched to a given gesture
model with TDNN.

Different data capturing devices provide data which can be combined. These
modalities allow us to improve recognition performance. (Bolt & Herranz,

16

1992) proposed a framework in which both hand gestures and speech signals
are used to augment the user’s ability to communicate with computers. In
their prototype, two handed gestures, both static and dynamic, were designed
to input concepts, manipulate items and specify actions to be taken.

1.3 PROPOSED APPROACH

In this study, we focus on the detection and classification of single modally
expressed gestures as performed freely by different people. Single modal
gesture recognition arises many challenging research issues such as extraction
of valuable features of the provided data, appropriate reform of data, and
construction of an effective gesture recognition classifier. The database we
used was introduced for the needs of Chalearn Gesture Recognition Challenge.
This database comprises multimodal cultural-anthropological gestures of life
realized as both hands-body-arm movements and spoken words, which are
intermixed with irrelevant phrases and body movements. This features consist
a demanding and challenging database.

We present a single modal temporal gesture recognition framework that
exploits skeletal data captured by a device. An Echo State Network is
used to build the gesture recognition classifier. This classifier is trained to
“memorize” significant features of the provided reformed skeletal data and
recognize gestures in a novel sequence data during test phase. Test error is
measured by misclassification rate.

A detailed report of the results is presented in section 8.6.3. Spectral radius
can be tuned in a wide range of values without significant change in network
performance and rearranging the input data timescale did not improve
performance; is the significant result of experiments.

1.4 CONTRIBUTION OF THE THESIS

The main contribution of this study is to overview and describe an alternative
method to classical supervised training of RNNs. This method belongs to the
subcategory of RNNs called Reservoir computing. Reservoir computing
methods consist a powerful tool for pattern generation.

This study is organized as follows. Firstly, in Chapter 2, we give a brief review
of Machine Learning.

17

In Chapter 3 we refer to Neural Networks and the important section of
learning techniques (supervised and unsupervised learning).

In connecting Chapter 4 we represent a description of Artificial Recurrent
Neural Networks and an overview of Reservoir Computing Trends.

In Chapter 5 we make a detailed description of Echo State Network and its
significant properties. We continue our investigation in Chapter 6 with some
practical issues concerning ESN.

Chapter 7 concerns readouts of a network and classification strategies.

Finally, in Chapter 8, we describe the executed experiments and provide our
results. Some comparisons to other approaches as represented in (Escalera, et
al., 2013b) are demonstrated in Chapter 9.

18

CHAPTER 2. MACHINE LEARNING

2.1 MACHINE LEARNING

Machine learning is a type of artificial intelligence (AI) that provides computers
with the ability to learn without being explicitly programmed. Machine
learning focuses on the development of computer programs that iteratively
learn from data. That is software that can develop properties to grow and
change when new data is provided.

Most significant feature of this type of Artificial Intelligence is learning.
Roughly speaking, machine learning tries to configure how artificial systems
can incorporate experience in order to improve their performance.

2.2 MACHINE LEARNING WORKFLOW

A typical workflow model for machine learning is described below:

 Choose a computational model (i.e. Neural Network) which fits the
learning task.

 Choose a training algorithm and the associated parameters.

 Collect or artificially generate data to apply to the learning task.

 Train the model to approximate the desired task. For training, data is
used. This data contains the ‘experience’ from which the model learns.
Mathematically training is an optimization problem where parameters
are adapted to estimate model performance.

19

CHAPTER 3. NEURAL NETWORKS

3.1 NEURAL NETWORKS

3.1.1 WHAT IS A NEURAL NETWORK?

The definition of a neural network, or otherwise called, 'artificial' neural
network (ANN), is given by Dr. Robert Hecht-Nielsen who first introduced
neurocomputers. A neural network is defined as:

"...a computing system made up of a number of simple, highly interconnected
processing elements, which process information by their dynamic state
response to external inputs” (Hecht-Nielsen, 1989).

Neural Networks are a part of machine learning and they are inspired by the
physical intelligence, brain. This study is mostly concerned with Recurrent
Neural Networks and the Reservoir Computing approach.

Trained Neural Network can be assumed as a black-box model since its internal
workings are not known enough. The topology and parameters of Neural
Networks are manually adapted, based on experience, and trial and error.
Training is a looped process and it’s time and computation costly. It is hard to
analyze mathematically complex and recurrent Neural Networks.

Mathematically, Neural Networks can represent (almost) any function
(Cybenko, 1989)or, in the case of Recurrent Neural Networks, dynamical
system.

During the last 50 years, computational power is growing exponentially
(according to Moore’s law). Even so, it still is the major problem of Neural
Networks.

3.2 THE BASICS OF NEURAL NETWORKS

Neural networks are usually split into layers. As displayed at the figure below,
each layer consists of a number of interconnected 'nodes'. Every node contains
an 'activation function'. The 'input layer' is responsible for operating via the

20

'input layer', which communicates to one or more 'hidden layers' where the
actual processing is done via a system of weighted 'connections'. The hidden
layers then link to an 'output layer like the figure below (Figure 1).

Figure 1. Basic form of Neural Network

The majority of ANNs are based on a 'learning rule' which manipulates the
weights of the connections according to the input patterns. In a sense, ANNs
learn by example, as do their biological counterparts; a child learns to
recognize dogs from examples of dogs.

There is a variety of learning rules that are employed by neural networks.
Below an example of the usage of the delta rule is displayed. The delta rule is
frequently utilized by the most popular class of ANNs, called
'backpropagational neural networks' (BPNNs). Backpropagation is an
abbreviation for the backwards propagation of error.

Learning is a supervised procedure that takes place periodically at each cycle
or 'epoch' (i.e. each time the network is presented with a new input pattern)
through a forward activation flow of outputs, and the backwards error
propagation of weight adjustments. To put it simply, when a neural network is

21

initially presented with a pattern it makes a random 'guess' as to what it might
be. It then sees how far its answer was from the actual one and makes an
appropriate adjustment to its connection weights. More analytically, the
process looks something like the Figure 2 below:

Figure 2. A Single Node Example

Not to forget to mention that inside each hidden layer node there is a
sigmoidal activation function which succeeds to stabilize the network through
network activity polarization.

Back propagation carries out a gradient descent within the solution's vector
space towards a 'global minimum' along the steepest vector of the error
surface. The global minimum is the theoretical solution with the lowest
possible error. The error surface itself is a hyper paraboloid, but is seldom
'smooth', as is depicted in the graphic below. Indeed, in most problems, the
solution space is quite irregular with numerous 'pits' and 'hills' which may
cause the network to settle down in a 'local minimum', which is not the best
overall solution.

22

Figure 3. Delta Rule

Due to the fact that the error space cannot be known from the start, neural
network analysis is frequently related to a large number of individual
executions to find the most appropriate solution. The learning rules used come
with built-in mathematical terms to help in this process which control the
'speed' (Beta-coefficient) and the 'momentum' of the learning. The speed of
learning is calculated from the rate of convergence between the current
solution and the global minimum. Momentum helps the network to overcome
obstacles (local minima) in the error surface and settle down at or near the
global minimum.

Upon completion of the neural network 'training', the trained dataset may be
used as an analytical tool on other data. In this case no training runs are
executed but the network works in forward propagation mode only. New
inputs are presented to the input pattern where they filter into and are
processed by the middle layers as though training were taking place. However,

23

at this point the output is retained and no back propagation occurs. The
output of a forward propagation run is the predicted model for the data which
can then be used for further analysis and interpretation.

The above process sometimes leads to an over trained neural network, which
means that the network has been trained exactly to respond to only one type
of input; which is much like rote memorization. In real-world applications this
situation is not very useful since one would need a separate over trained
network for each new kind of input.

3.2.1 ACTIVATION FUNCTIONS

Neuron’s transfer function is applied to the weighted sum of its inputs. This
function governs the network’s behavior. The most common type is sigmoid
function. This name comes from its relative similarity with letter S. Different
transfer functions are proposed in the literature (Figure 4).The most popular
sigmoid functions are and . The activation function
equation is:

 (3.1)

And the related to activation function:
 Other popular transfer functions are the linear function and the
 function. In most cases transfer function is non-linear, thus called
the nonlinearity of the function too.

24

Figure 4. Some common activation functions used in neural networks
((Verstraeten, 2009-2010)).

A significant characteristic of transfer functions is the squashing effect, which
refers to the bounded range values of the neuron. That is, regardless of the
magnitude of input signal the magnitude of neuron values remains limited to a
specific value range.

Also, the shape of the activation function is crucial for the network’s behavior
and should be task adapted. Exact requirements and implementation of the
task must take into consideration the right choice of activation function.

3.2.2 HOW DO NEURAL NETWORKS DIFFER FROM CONVENTIONAL
COMPUTING?

There are some characteristics of artificial neural computing that differ from
conventional 'serial' computer and its software process information. For
example, a serial computer uses a central processor that has the ability to
address an array of memory locations where data and instructions are stored.
Computations are made by the processor reading an instruction as well as any

25

data the instruction requires from memory addresses, then the instruction is
executed and the results are saved in a specified memory location as required.
In a serial system (and a standard parallel one as well) the computational steps
are deterministic, sequential, and logical, and the state of a given variable can
be tracked from one operation to another.

On the other hand, ANNs do not necessarily operate sequentially or in a
deterministic way like described above. ANNs do not employ complex central
processors, rather there are many simple ones which generally do nothing
more than take the weighted sum of their inputs from other processors. ANNs
do not follow previously programmed instructions; they respond in parallel
(either simulated or actual) to the pattern of inputs presented to them. There
are also no distinct memory addresses for storing data. Instead, information is
contained in the overall activation 'state' of the network. 'Knowledge' is thus
represented by the network itself, which is quite literally more than the sum of
its individual components.

3.2.3 WHAT APPLICATIONS SHOULD NEURAL NETWORKS BE USED
FOR?

Neural networks are considered as universal approximators, and are
appropriate for systems that are highly tolerant to error. A neural network is
not suitable for balancing one's cheque book. Neural networks are suitable for
tracking associations or discovering regularities within a set of patterns, where
the volume, number of variables, or diversity of the data is vast and the
relationships between variables are complex or the relationships are hard to
describe adequately with conventional approaches.

3.3 LEARNING TECHNIQUES

3.3.1 SUPERVISED AND UNSUPERVISED MACHINE LEARNING

In supervised learning, the training data includes training data sets. Each data
set is a pair of input vectors and the desired (target) output vectors. This data
sets come from empirical observations or are artificially constructed, which
represent the desired model behavior.

26

Figure 5. Supervised training process (Jaeger, 2002b).

To train an RNN we use the training (teacher) data for training in order for the
output of the network to fit the target output vectors. Then we test the RNN
with a novel input which is similar to the training input sequence. We expect
the target output to approximate the output of the trained network (Figure 5).

A basic disadvantage of supervised training is overfitting (Figure 6). During the
training process network fits the training data too well (extreme case: model
duplicates teacher data exactly), but not the underlying function. The result of
this process is that the network performs well on the data used during training
and poorly with the test data. This is a computational expensive method of
learning because we provide the network with vast amounts of training data,
in order to improve the learning performance.

27

Figure 6. Overfitting: The model is learning the noise on the data instead of
generalizing (learning then statistical properties of the data).

Figure 7, below, shows the relationship between model complexity and

training and validation errors. The optimal model has the fewest generalization
errors, and is marked by a dashed line.

Figure 7. Overfitting: the error on the training set keeps decreasing while the
error on the (unseen) test set increases. The model is learning the noise on the
data instead of generalizing (learning then statistical properties of the data).

Supervised models are used mainly for:

 Pattern recognition.

 Classification.

 Multi-layer percepton.

28

Unsupervised learning on the other hand, is an even less restricted setup. The
training data set includes only input sequences, that is, the network is not
provided with output data during the training.

An important question is what should the goal of unsupervised learning be?
Many authors provide different techniques, which are essentially based on
minimizing error or maximizing reward in ML. They include: data compression,
clustering, reducing dimensionality while preserving the topology, learning the
statistical distribution of the input, minimizing free energy, learning to predict
the input, looking for slowly varying (close to invariant) components of the
data, sparse representation, maximal information transmission while using
minimal energy.

With unsupervised learning it is possible to learn larger and more complex
models than with supervised learning. In supervised learning one is trying to
find the connection between two sets of observations. The difficulty of the
learning task increases exponentially in the number of steps between the two
sets and that is why supervised learning cannot, in practice, learn models with
deep hierarchies.

3.3.2 REINFORCEMENT LEARNING

Reinforcement learning methods can be expressed as an unbound region of
learning. When a model is exposed to an input, model response is evaluated
and scored (good response vs. rather bad response), without previous
knowledge of correct behavior having been given. The system is provided with
clues of desired output behavior, but this information is restricted. In other
words, learning process is based on reward-penalty. A physical life example is
walking or crawling. These learning algorithms are used in robotics
implementations, because it is easier to define a reward signal than a
rest3.2rict training signal. Complex games are another application example Go
(schraudolph, et al., 1994), because it is almost impossible to define the
desired response of the system to every incoming signal.

 It can be used to cluster the input data in classes on the basis of their
statistical properties only.

 Cluster significance.

 Labeling.

29

 The labeling can be carried out even if the labels are only available for a
small number of objects representative of the desired classes.

 Kmeans.

 Self-organizing maps.

30

CHAPTER 4. RECURRENT NEURAL NETWORKS

4.1 OVERVIEW

Artificial recurrent neural networks (RNNs) are a large and varied domain of

mathematical models, the architecture of which is trying to simulate biological
brain modules. The basic structure element of a neural network is neurons.
Neurons are interconnected by synaptic connections (or links) which enable
activations to propagate through the network. Basic difference between the

more widely used feedforward neural networks (FFNNs) and (RNNs) is that

the connection topology includes one or more cycles (Figure 8).

Figure 8. Typical structure of a feedforward network (left) and a recurrent
network (right) (Jaeger, 2002b).

The existence of cycles has the following impacts on the network:

 An RNN may develop self-sustained temporal activation dynamics along
with its recurrent connection pathways, even in the absence of input.
Mathematically, this renders an RNN a dynamical system, while
feedforward networks are functions (Lukosevicius, 2012)

 If driven by an input signal, an RNN preserves in its internal state a
nonlinear transformation of the input history. In other words, it has a
dynamical memory, and is able to process temporal context information
(Lukosevicius, 2012).

The influence of RNN in nonlinear modeling was limited for a long time. The
main reason for this stagnancy was that RNN models are to be trained by
gradient descent methods, which aim at iteratively reducing the training error.

31

There is a lot of proposed training algorithms but they have numerous
disadvantages:

 It is intrinsically hard to learn dependences requiring long-range
memory because the necessary gradient information exponentially
dissolves over time (Bengio, et al., 1994)

 Training tasks require advanced algorithms and one must parametrize a
lot of global control parameters. Thus, experience is needed for a well-
performed network tuning.

 The gradual change of network parameters during learning drives the
network dynamics through bifurcations (Doya, 1992).

Some characteristics of feedback networks are:

 Many architectures exist. Activations are fed forward from input to
output through "hidden layers" ("Multi-Layer Perceptrons" MLP)

 They are static input-output topologies.

 Backpropagation is the most feedforward supervised training algorithm.

 More than 90% of artificial neural network publications refer to
feedforward networks.

 They are good approximators of many practical applications such as
nonlinear functions and pattern classificators.

On the other hand, basic characteristics of Recurrent Neural Networks (RNN)
are:

 They have at least one cyclic path of synaptic connections.

 Mathematically consist dynamical systems.

 Many training algorithms have been proposed.

 Theoretical and practical difficulties have prevented practical
applications so far.

32

Figure 9. Principal pathway in the black-box modeling (Jaeger, 2002b).

A new approach of RNN design and training was proposed independently by
Wolfgang Maass under the name of Liquid State Machines (Maass, et al., 2002)
and by Herbert Jaeger under the name of Echo State Networks (Jaeger, 2001).
This approach, which had predecessors in computational neuroscience
(Dominey, 1995) and subsequent Ramifications in machine learning as the
BackPropagation-DeCorrelation (Steil, 2004) learning rule, is now increasingly
often referred as Reservoir Computing (RC) (Verstraeten, et al., 2007a). The RC
approaches try to overcome the disadvantages of gradient-descent RNN
training listed above, by setting up RNNs in the following way (Figure 10):

 The RNN is created randomly and stays unchanged during training. This
recurrent neural network is named the reservoir. Reservoir is excited by
the input sequence and preserves in its state a highly nonlinear
transformation of input history.

33

 The desired output signal is produced as a linear combination of the
neuron's signals from the input-excited reservoir. This linear
combination is obtained by linear regression, using the teacher signal as
a target.

Figure 10. A. Traditional gradient-descent-based RNN training methods adapt
all connection weights (bold arrows), including input-to-RNN, RNN-internal,
and RNN-to-output weights. B. In Reservoir Computing, only the RNN-to-
output weights are adapted (Lukosevicius, 2012).

Reservoir computing methods have become very popular. The main reasons
for this development are the following:

 Modeling accuracy. Reservoir computing performs better than previous
methods of nonlinear identification systems, prediction and
classification, for instance, in predicting chaotic dynamics (Jaeger & Haas,
2004), nonlinear wireless channel equalization (two orders of magnitude
improvement (Jaeger & Haas, 2004), the Japanese Vowel benchmark
(zero test error rate, previous best: 1.8% (Jaeger, et al., 2007a)), financial
forecasting (winner of the international forecasting competition NN32),
and in isolated spoken digits recognition (improvement of word error
rate on benchmark from 0.6% of previous best system to 0.2%
(Verstraeten, et al., 2005b) and further to 0% test error in recent
unpublished work).

 Modeling capacity. RC is used for continuous-time, continuous value
real-time systems modeled with bounded resources (including time and
value resolution) (Maass, et al., 2003), (Maass, et al., 2006).

 Biological plausibility. Numerous connections of RC principles to
architectural and dynamical properties of mammalian brains have been
established. RC (or closely related models) provides explanations of why
biological brains can carry out accurate computations with an

34

inaccurate" and noisy physical substrate (Buonomano, 1995) (Haeusler
& Maass, 2007), especially accurate timing (Karmarkar & Buonomano,
2007).

4.2 FORMALISM

4.2.1 FORMAL DESCRIPTION OF RECURRENT NEURAL NETWORKS

A recurrent neural network consists of neurons (internal units) which are
connected by synaptic links whose synaptic strength is coded by weight. These
networks usually have input units, internal units and output units. At a given
time input units have an activation Similar activations have the
internal and output units respectively.

Figure 11. A topology of RNN models

In Figure 11 we can distinguish two major categories of RNN models. One is
describing discrete time models over steps and the other
continuous time models which are defined with differential equations over a
continuous time . Continuous dynamical models which are used for biological
modeling usually involve and describe activation signals in the sense of
individual action potentials (spikes).

Assume a discrete time RNN model. This model consists of input units,
internal units and L output units whose activations vectors are respectively:

35

 (4.1)

 (4.2)

 (4.3)

The input weight matrix size is , internal units size is , output

weight matrix is and the optional weight matrix of

feedback is

Figure 12. Basic architecture of RNN models. Shaded arrows indicate optional
connections. Dotted arrows mark connections which are trained in the "echo
state network" approach (in other approaches, all connections can be trained),
(Jaeger, 2001).

Output units are allowed to have connections not only to internal units but
also (often) to input units and (rarely) to output units.

Updates of internal units activations are calculated according to the equation:

36

(4.4)

Where f denotes the activation function or unit activation function. Typically,
the sigmoid function f=tanh is used. f is applied component-wise.
 The output of the network is:

 (4.5)

Where is the concatenation matrix of input, internal and

output activation vectors. Output activation function is either

 = or =identity.

4.2.2 APPROACHING A MACHINE LEARNING PROBLEM

A task in machine learning can be defined as a problem of a functional relation
between a given input sequence and a desired (target)
 output sequence, where is the number of steps in the
data set . When a training set includes both input and target
signal it is called supervised machine learning.

If steps included in data set are independent of each other, the goal is to learn
a function of the form , such that the error measure

 is minimized. Typically, this error is the normalized root-mean-
square error (NRMSE)

37

 (4.6)

Where stands for mean.

This is a non-temporal task. Non temporal tasks are memoryless.

On the contrary, a temporal task is to learn a function

 from an input signal and a target signal such that
 is minimized. The difference between the temporal and non-
temporal task is that the function we are trying to learn is memoryless in
the first case and has memory in the second.

In a temporal task the function to be learned also depends on the input history
of the input thus the expansion function has memory:
 Since this function has an unbounded number of parameters,
practical implementations often take an alternative, recursive, definition:

 (4.7)

A well-learned task, or with good precision or accuracy means that the
 is small. Typically, one part of the data points of is used for
training and the rest for testing it.

4.3 RESERVOIR COMPUTING

A basic difference between the traditional design and learning techniques of
RNN and Reservoir Computing is that, the second one makes a computational
and conceptual separation between a recurrence Dynamic reservoir and a
recurrence free (usually linear) readout which produces the desired output
from the expansion. The Dynamic Reservoir and the readout serve different
purposes, expands the input history into a rich
enough reservoir state space ,while combines the internal
unit into the desired output signal . In the linear readout

38

case , for each dimension of an output
weight vector

 in the same space is found such that

 (4.8)

While the purpose of is to contain as much as possible a rich
representation of input history (Lukosevicius, 2012). The Reservoir Computing
readout is basically a non-temporal function, learning of which is simple.

In RNN training methods, previous to RC, we do not make this separation
between reservoir and readout, thus both internal weights and output weights
are trained the same manner. Analyses of traditional training algorithms have
furthermore revealed that the learning dynamics of internal vs. output weights
exhibit systematic and striking differences (Lukosevicius, 2012).

Basic representatives of RC methods are represented below. Each of these
methods has its own structure, type of reservoir and specific insights.

4.3.1 ECHO STATE NETWORK

Echo State Network design (Jaeger, 2007b)is based on the principle that if a
random RNN possesses certain algebraic properties, training only a linear
readout from it is often enough to achieve excellent performance in practical
applications. RNN is divided in two parts, the untrained part of ESN is called
Dynamic Reservoir which includes the internal units (neurons). These internal
units are termed of its input history. The readout from the reservoir is
the second part which is usually linear.

 (4.9)

Where is the learned output weight matrix, is
the output neuron activation function (usually the identity) applied
component-wise, and stands for a vertical concatenation of vectors. The
most used batch training method to compute is linear regression.

39

4.3.2 LIQUID STATE MACHINE

Liquid State Machines (LSMs) (Maass, et al., 2002) developed independently
but simultaneously with ESNs. LSMs were developed from a computational
neuroscience background, aiming at elucidating the principal computational
properties of neural microcircuits (Maass, et al., 2002), (Maass, et al., 2003),
(Natschlager, et al., 2002), (Maass, et al., 2004). LSMs use biologically inspired,
more sophisticated, models of spiking integration, and fire neurons and
dynamic synaptic connection models inside reservoir. In terms referred to LSM
design, the reservoir is the liquid, which is the excited states as ripples on the
surface of a body of water. LSM input signals usually consist of spike trains.
Readouts used are similar to ESNS or multilayer feedforward neural network
methods.

4.3.3 EVOLINO

Evolino is a type of RNN with Long Short-Term-Memory ((LSTM)) constructed
with units capable of preserving memory for long periods of time. The
reservoir weights are trained using evolutionary methods.

4.3.4 BACKPROPAGATION-DECORRELATION

BackPropagation-DeCorrelation (BPDC), was introduced by (Steil, 2004). It
approximates and significantly simplifies the APRL method, and only applies it
to the output weights , turning it into an online RC method. BPDC uses
the reservoir update equation defined in eq. (4.4), where output feedbacks
 are essential, with the same type of units as ESNs. BPDC learning is
claimed to be insensitive to the parameters of fixed internal units (reservoir)
weights .

40

CHAPTER 5. ECHO STATE NETWORK

5.1 OVERVIEW

The main idea of an ESN [Jaeger, 2001, 2002b] is (i) to drive a random, large,
fixed, recurrent neural network with the input signal thereby inducing in each
neuron within this “reservoir” network a nonlinear response signal, and (ii) to
create a desired output signal by a trainable linear combination of all of these
response signals. The internal weights of the underlying reservoir network are
not changed by the learning; only the reservoir-to-output connections are
trained.

This means that in order to produce a ‘rich’ set of dynamics inside reservoir,
reservoir must be large with order ranging from ten to thousands, the
internal weight matrix must be sparse up to 20% connections, and the
weights of the connections are chosen from a uniform distribution symmetric
around zero.

The optionally feedback weights and input weights are chosen to
be either dense or sparse and generated randomly from a uniform distribution.
Input scaling and shifting (a constant value added to of the input signal
must be ‘tuned’ manually. The magnitude of these values depends on how non
linearity of the processing unit is needed for the task. If the inputs are far from
zero the internal units tend to drive activations more towards saturation
where they exhibit more nonlinearity, while for inputs that are close to
zero, internal units tend to operate with activations close to zero. Input
shifting sometimes helps to overcome undesired consequences of the
symmetry around zero of the internal units.

5.2 BASIC ECHO STATE NETWORK MODEL

The basic echo state network model is described in this section (Figure 13). We

assume a discrete-time neural networks with input units, internal

network units and output units. Activation of input units at time step are
 of internal units

are , and of output

41

units. Real-valued connection weights are collected in a weight matrix

) for the input weights, in a matrix) for the

internal connections, in an matrix
) for

the connections to the output units, and in a matrix Wback = (
)

for the connections that project back from the output to the internal units, and

in a matrix
 for the connections that project back

from the output to the internal units. is the added noise of step .

Figure 13. Basic echo state network architecture. Dashed arrows indicate
connections that are optional (Yildiz, et al., 2012).

Input to output unit direct connections and connections between outputs are
permitted. This basic architecture does not include layered structure of the
reservoir.

The activation of internal units is updated according to:

42

(5.1)

Where are activation functions of internal units. Usually

are sigmoid functions.

The readout from the reservoir is calculated according to:

(5.2)

Where

 are activation functions of internal units.
Typically, sigmoid or identity function used and applied element-wise.

The readout can be written as follows without output to output connections

(5.3)

Where is the learned output matrix, denotes vertical concatenation
of vectors and the column vector of ones is an optional bias input. To compute
 we use linear regression.

5.3 RESERVOIR READOUTS

This is a well-known section in machine learning. Conceptually, we want to
“filter” a readout from the reservoir which is a supervised non-temporal task

of mapping to . Several methods are available, one can use

his favorite.

43

5.3.1 SINGLE-LAYER READOUT

5.3.1.1 LINEAR REGRESSION
The readout of the described network is a single-layer readout. Also, we
assume that the output activation function is linear, then the equation can be
written in a matrix notation as:

 (5.4)

Where are all and are all produced by presenting
the reservoir with , both are collected into respective matrices over the
training period . Due to initial transients the data of the first
steps of the training run are discarded. In most cases the task requires to
minimize the quadratic error . Since our goal is to find the optimal
weight

 that minimizes the squared error between and

() we solve the linear system equations:

 (5.5)

Where
are all . The system is overdetermined because

 .

One direct method to solve this system is calculating the Moore-Penrose

pseudoinverse of and
as:

44

 (5.6)

 Figure 14. An echo state network. (Lukosevicius, 2012)

Calculations of direct pseudoinverse are memory expensive for large state-

collecting matrices but is numerical stable.

This issue can be overcome by reforming eq. (5.6) in the normal equations
formulation:

(5.7)

A solution of eq. (5.7) would be:

 (5.8)

The method eq. (5.8) has lower numerical stability, compared to eq. (5.6). In
addition, this method enables one to introduce ridge, or Tikhonov,
regularization elegantly:

 (5.9)

Where is a regularization coefficient explained, and I is the identity matrix.

45

Large weight values reveal that amplifies small differences between the
dimensions of internal states and can be very sensitive to deviations from
the exact conditions in which the network has to be trained. When a network
topology uses its output as the next input (using feedback connection) this is a
big problem. This tiny difference between the output and the expected value
becomes bigger in the next steps.

To minimize the effect of feedback instability or if there is a chance of
overfitting we use ridge regression. Instead of just minimizing RMSE, ridge
regression eq. (5.9) solves:

(5.10)

Where
 is the row of and stands for the Euclidean norm.

The objective function in eq. (5.10) adds a regularization, or weight decay and

the term
 limits large sizes of to the square error

between and . This is a sum of two objectives, a compromise
between having a small training error and small output weights. The relative
“importance" between these two objectives is controlled by the regularization
parameter.

It is not necessary to rerun the ESN with training data for every value β,
because no variable of the equation eq. (5.9) is affected. Optimal values of β
can be found in different ranges and depend on the exact instance of the
reservoir and length of training sequence too.

The solution of the equation eq. (5.9) with is

(5.11)

and to remove regularization. Equation eq. (5.10) is now equivalent to the
RMSE function and the ridge regression is now a regular linear regression.

46

Setting sometimes leads to numeric instabilities when inverting in
eq. (5.9). Numeric instabilities can be avoided by using a pseudoinverse
instead of the real inverse in eq. (5.9).

In (Jaeger, 2002b) it is recommended to add noise to the internal units .
This practice has a similar effect as Tikhonof regularization. Adding noise to the
internal units makes reservoir less sensitive and the output learns to recover
from perturbed signals so the network is more stable to feedback loops.

5.3.1.2 WIENER-HOPF SOLUTION
An even faster (but less computationally stable) alternative solution is Wiener-
Hopf equations and calculation of . Since the matrix
has typically many more columns than rows , we get a much

smaller autocovariance matrix
whose inverse

we need to calculate. In most cases (namely, when the condition number of

 has a reasonably small size) this method gives similar results to the ones

calculated by the QR factorization. When training only a subset
of the output (dimensions) at a time, only the corresponding rows
of are used and thus only the corresponding rows

 of the output weights are calculated.

5.4 ECHO STATE PROPERTY

To make an ESN network work properly, the reservoir should have the echo
state property (Jaeger, 2001). Having echo states (or not having them) is a
property of the network prior to training, that is, a property of the weight

matrices , , and (optionally, if they exist) .We require that the
training input vectors come from a compact interval and the training
output vectors from a compact interval . Mathematical definition
of echo states is as follows:

Definition (echo states). Assume an untrained network with

weights , , and is driven by teacher input and teacher-forced
by teacher output from compact intervals and . The network

(, ,) has echo states with regard to and , if for every left-
infinite input/output sequence (,), where

47

 and for all state sequences compatible with the
teacher sequence, i.e. with:

(5.12)

(5.13)

it holds that

Intuitively, the echo state property says, "if the network has been run for a very
long time [from minus infinity time in the definition], the current network state
is uniquely determined by the history of the input and the (teacher-forced)
output (Jaeger, 2002b)

A condition (forgetting property) equivalent to echo states, determines that
the effects on initial network wash out over time (Jaeger, 2002b)

These conditions essentially determine, that the effect of a state and or
the previous on a future state should ‘decay’ gradually as time
passes and not get amplified or be stable. For most practical purposes, echo
state property assures if the largest absolute eigenvalue of the reservoir
weight matrix is .The largest absolute eigenvalue is the
spectral radius of weight matrix .

A common computational method to achieve an internal weight matrix with
spectral radius less than one is:

48

1. Randomly generate an internal weight sparse matrix with zero mean
value of weights.

2. Normalize to a matrix with unit spectral radius by putting
 , where is the spectral radius of . Scale
to , where , whereby obtains a spectral radius of .

The optimal value of the spectral radius is crucial for the performance of the
network and should be task adapted. This means that we must set the
magnitude of spectral radius considering the profile of memory and
nonlinearity the learning task require. The internal timescale of the dynamics
of the dynamic reservoir state is connected to [jaeger, 2003]. Spectral radius
(Jaeger, 2001) should be close to 1 for learning tasks that require long short-
term memory and smaller for the tasks where a too long memory might be
harmful. Small means that one has a fast Dynamic Reservoir, on the contrary
close to unit has a slow Dynamic Reservoir. For example, if one wishes to
train a sine generator, one should use a small for fast sinewaves and a large
 for slow sinewaves (Jaeger, 2002b). A considerable effect of large spectral
radius is that it drives internal units into more nonlinear regions of

 units similarly to . Thus scalings of both and have a similar
effect on nonlinearity of the ESN, with a difference that scaling up makes
reservoir unstable, while their difference determines the effect of current
versus past inputs on the current state (Lukosevicius, 2012).

A question that we must answer, is why a Dynamic reservoir must have the
echo state property in order to work appropriately.

Engineering speaking, the unknown system’s dynamics are ruled by the update
equation

(5.14)

Where is a (possibly highly complex) nonlinear function of the previous
inputs and system outputs of deterministic, stationary system.

49

For modeling a specific task with unknown equation system (black-box)
accurately, it relies on how good the approximation of the system function e is.
Assume an ESN with output linear function, that its trained output of the
network is a linear combination of the internal units of the network.

1, 2= ()

(5.15)

(5.16)

(5.17)

Above equation makes clear how the desired approximation of the system

function is a linear combination of echo functions . Arguments and
represent the same thing: collections of previous inputs and readouts of the
network.

5.5 EXAMPLE OF A SMALL TIMER NETWORK

Assume an input-output network. We want to train this network to act as a
timer (Figure 15). For this network we consider two inputs and one
output . First input sometimes jumps to 1 but at most of the time is 0.
Second input values range from 0.1 to 1 with specific step 0.1. Each
time input jumps to 1 second input takes a new random value of
the second input range. The target output is 0.5 for time steps after
 was 1, otherwise is zero. This implementation indicates a timer:
gives the "start" activation for the timer, gives the desired duration.

50

Figure 15. Timer network

Traces of inputs, outputs, teacher output and readout of the network, if
represented, are in the following Figure 16:

51

Figure 16. Performance of the network. Dotted line in last graph shows
network’s output and solid line desired or teacher output.

This learning task example reveals the major property of the network, which
must have a kind of memory. Network must act as memory in order to ‘store’
information about the ‘start’ signal and the duration of as many time steps as
possible. This is possible because of internal units “echoing” the inputs signals.

5.6 SHORT-TERM MEMORY

Most of the tasks in control and furthermore in signal analysis require system
models with significant STM spams. By STM we understand memory effects
connected with the transient activation dynamics of network (Jaeger, 2002b),
or in other words the property of some input- output systems, where the
current output depends on earlier values of the input and/or
earlier values of the output itself (Figure 17). RNNs are dynamical
systems with high dimensional internal state). The state preserves
some kind of information of the input history. Such an engineer task is
suppressing in telephone channels.

The dynamic reservoir activation units is, a sort of, echo functions of
the past input-output history to the current state.

 (5.18)

(5.19)

52

Figure 17. Short Term Memory of RNNs. The shading of the nodes in the
unfolded network indicates their sensitivity to the inputs at time one (the
darker the shade, the greater the sensitivity). The sensitivity decays over time
as new inputs overwrite the activations of the reservoir, and the network
`forgets' the first inputs (Graves, 2008).

5.7 TRAINING AN ESN AS A DELAY LINE

A question is revealed, how many of the previous steps
 are relevant to echo state function, or how long is the short-term memory
of an ESN effective.

We train ESN as a pure STM task. For the task we use an ESN with one input
and many output units. The input is a white noise signal generated by
sampling at each time independently from a uniform distribution

over – . We consider delays . For each delay , we train a

separate output unit with the training signal

 . Network

has no feedback connections, so all output units can be trained simultaneously
and independently from each other.

53

Figure 18. Setup of delay learning task.

Where

 ,

 ,…

A Dynamic reservoir of units was used, with connectivity , that is,
of the weight matrix are non-null elements and were sampled randomly from
a uniform distribution over . Spectral radius was . The input
weights were set to values of –0.1 or +0.1 with equal probability. We trained 4
output units with delays of The training was done over 300
time steps, of which the first 100 were discarded to wash out initial transients.
On test data, the trained network showed testing mean square errors of
 for the four trained delays.
Figure 19 (upper diagrams) shows an overlay of the correct delayed signals
(solid line) with the trained network output.

54

Figure 19. 20 with a 20-unit DR. Results of training delays k = 4, 8, 16. Top row:
input weights of size –0.1 or +0.1, bottom row: input weights sized –0.001 or
+0.001.

When the same experiment is rerun with the same DR, but with much smaller

input weights set to random values of – or , the performance
greatly improves: testing errors
 are now obtained.

Three fundamental observations can be gleaned from this simple example:

1. The network can master the delay learning task, which implies that the
current network state retains extractable information about previous
inputs .

2. The longer the delay, the poorer the delay learning performance.

3. The smaller the input weights, the better the performance.

5.8 MEMORY CAPACITY

The most important function of the reservoir is to keep the memory of the
previous inputs. Some results concerning the ESNs networks are listed below
(Jaeger, 2001):

Theorem 1. In a network whose has nodes, . That is, the
maximal possible memory capacity is bounded by size.

This correlation-based measure of short-term memory capacity, evaluating
how well can be reconstructed by the reservoir as after
various delays , was introduced in [Jaeger, 2002a]. We define the memory
capacity of a network as:

 (5.20)

Where correlation coefficient between the correct
delayed signal and the network output of the unit trained on
the delay . It ranges between –1 and 1. By squaring it, we obtain a quantity
called the determination coefficient . It ranges between 0

55

and 1. A value of 1 indicates perfect correlation between correct signal and
network output, a value of 0 indicates complete loss of correlation. Perfect

recall of the –delayed signal would thus be indicated as

 , complete failure as .

Theorem 2. In a linear network with nodes, generically . That is, a
linear network will generically reach maximal network capacity. Notes: (i) a
linear network is a network whose internal units have a linear transfer function,
i.e. . (ii) "Generically" means: if we randomly construct such a network,
it will have the desired property with probability one.

All of the above memory measurement experiments are accomplished with
only one-dimensional input . Memory of a multidimensional input
in the reservoir was investigated in (Hermans & Schrauwen, 2010). Results
show that the shape of the memory curve depends on the spectral
radius : reservoirs with small have precise memory of
the recent input which drops sharply with delay , while those with big
 have a more extended memory at the expense of precision. The
same limit of the correlation-based memory capacity applies, which input
dimensions have to share. The individual principal components of the input
have memory capacity roughly proportional to the square root of their
variance, indicating that a lot of memory is spent for non-principal
components.

5.9 GENERIC RESERVOIR “RECIPES”

5.9.1 DIFFERENT TOPOLOGIES OF THE RESERVOIR

Many authors have proposed different topologies of the ESN reservoir from
sparsely and randomly connected ones. Specifically, small-world (Watts, 1998),
scale-free (Barabasi & Albert, 1999), and biologically inspired connection
topologies generated by spatial growth (Kaiser & Hilgetag., 2004). Eigenvalue
spread of the cross-correlation matrix of the activations and the NRMS
error were used to evaluate the results of these topologies. The investigation
concludes that ‘(. . .) none of the investigated network topologies was able to
perform significantly better than simple random networks, both in terms of
eigenvalue spread as well as testing error" (Liebald, 2004).

56

5.9.2 INTERNAL UNITS ACTIVATION METHODS

5.9.2.1 LEAKY INTERGRATOR NEURONS
Standard sigmoid unit networks have the disadvantage that they do not

include a time constant. This means that dynamics cannot be “slowed down”

like the dynamics of a differential equation. The units in standard sigmoid

networks have no memory; their values at time n + 1 depend only fractionally

and indirectly on their previous value. Thus, these networks are best suited for

modeling intrinsically discrete-time systems with a “computational”, “jumpy”

flavor. It is difficult, for instance, to learn slow dynamics like very slow sine

waves. For learning slowly and continuously changing systems, it is more

adequate to use networks with continuous dynamics. Using a standard sigmoid

network it is almost impossible to obtain a very slow dynamics ESN generator

(Jaeger, 2001).

Excluding the basic sigmoid units of ESN, there is another implementation of

internal units (Jaeger, 2001) introduced as leaky integrator neurons. This type

of internal activation units incorporates a “leaky” integration of its activation

from previous time steps.

We assume an Echo State network with inputs, reservoir activation units

and output units. denotes the -dimensional input vector,

 the dimensional reservoir activation state, the -

dimensional output vector, , , and the input / internal /

output / output feedback connection weight matrices of sizes

 and , respectively. Then the continuous-time

dynamics of a leaky integrator ESN which accumulates (integrates) its inputs,

but also exponentially loses (leaks) accumulate excitation over time is given by:

(5.21)

57

 (5.22)

Where is a global time constant which rules the speed of dynamics,

 is the decay (leakage) rate of internal units (we assume a uniform

leaking rate for simplicity), is a sigmoid function (we will use), g is the

output activation function (usually the identity or a sigmoid) and denotes

vector concatenation.

Using Euler (linear) interpolation of above equation with step size we obtain

the following discrete time internal units updated equation with a given

discrete time sample input

(5.23)

 (5.24)

Since we only consider simulations of network here, training data provided in a

discrete time domain and the sampling period is known. We assume (Jaeger,

et al., n.d.) that has been suitably fixed. This assumption allow us to write

 instead of and indicates that the input sequence is treated now as

a discrete time sequence. Also we substitute with :

58

(5.25)

 (5.26)

where is a compound time gap between two consecutive time steps divided
by the time constant of the system and is the decay (or leakage) rate
(Lukosevicius, 2012)

if we set and redefine in the above equation as the leaking rate to
control the “speed” of dynamics:

(5.27)

Essentially, described equation is an exponential moving average (smoother).
This equation has only one additional parameter and the desirable property
that neuron activations never go outside the boundaries denoted by .
The basic ESN is a special case of leaky integrator neuron. Small values of and
 result in reservoirs that react slowly to the input. A natural constraint of
leaking rate is that it never exceeds 1 and specifically .

From a signal processing point of view, the exponential moving average on the
neuron activation eq. (5.25) does a simple low-pass filtering of its activations
with the cutoff frequency:

59

 (5.28)

Where is the Euler discretization time step. This makes the neurons
average out the frequencies above fc and enables tuning the reservoirs for
particular frequencies.

5.9.2.2 TIME WARPING INVARIANT ECHO STATE NETWORK (TWI ESN)
Dealing with artificial data which are transformed to time series or data who
came from human activities a common problem is time warping. Which is
input signal including different time scales of process along the time domain or,
in other words, sorts of variations in the speed of a process. For discrete time
input signals taken by sampling from a continuous time series it can be
assumed as variations of sampling rate.

Figure 20. Time warped data.

By definition two signals and are connected by an approximate
continuous time warping , if are strictly increasing functions on
 ,and for . We can choose one signal,
say , as a reference and all signals that are connected with it by some time
warping (e.g. call (time-) warped versions of

In (Sun, et al., 1993) a time warping invariant neural network was proposed. In
this approach, time warping invariance is obtained by normalizing time
dependencies of the state variables with respect to the length of trajectory of
the input signal in its phase space. In other words, the input signal is considered
in a “pseudo-time” domain, where “time span” between two subsequent
pseudo time steps is proportional to the metric distance in the input signal
between these time steps. As a consequence, input signals will be changing
with a constant metric rate in this “pseudo-time” domain.

60

In discrete time, for a dimensional input signal we make the time-
varying by:

 (5.29)

Where is a “pseudo time” gap between time steps and ,
and is a constant factor. Note that the -dimensional array of input signals
varies with a constant metric value equal to in this “pseudo time” domain.

Substituting in eq. (5.25) with we obtain the update state
equation of Time Warp Invariant Echo State Network (TWIESN):

(5.30)

5.10 FORMULATION OF TRAINING PROCUDURE

We present a general formulation of the training procedure with output
feedback.

Signal processing speaking, are basically a ‘nonlinear moving average’ kind of
models. The output of many dynamical systems depends on the input and the
output history. Feedback output signals are a kind of input. When the teacher
output is written into the output units during the learning task, the learning
task becomes teacher forcing.

Task. given :a teacher input output time series ,
 , where inputs are from a compact set and the desired
outputs yteach(n) from a compact set .

Wanted: An ESN whose output approximates

Choose input connection weights. Attach input units to the network. If the
original network satisfies the Lipschitz condition (Jaeger, 2001), input

61

connections can be freely chosen without harming the echo state
property. Moreover, the experience accumulated so far indicates that the echo
state property remains intact with arbitrarily chosen input connection weights,
even if only the weaker condition was ascertained in the previous
step.

Procure an echo-state network. Build a network that has echo state property
in a state set with respect to input sequence and a ‘pseudo’-input

 (i) re-interpret the matrix as another input weight

matrix and join it with matrix into a -matrix

 , (ii) join the input with the output into a
compound pseudo-input , and (iii) make
sure that the resulting network has the echo state property in an admissible

state set with respect to input from the compact set .

Any standard sigmoid neurons whose weight matrix has spectral radius less
than one satisfies the echo state property. Also this property is independent of
the input weight matrix and the output weight matrix and both of them can be
freely chosen (Jaeger, 2001).

Run ESN with teacher input and with teacher output forcing, dismiss initial
transient. Start with an arbitrary network state and update the network
with the training input and teacher-forced output for . Discard
initial steps due to contamination of initial transient.

Compute output weights which minimize the training error.

5.11 PRODUCING A RESERVOIR

In order to produce a ‘rich’ reservoir it is important to understand what
function it is serving.

5.11.1 Function of the Reservoir.

The reservoir acts as (i) a nonlinear expansion and (ii) memory of the input
 at the same time (Lukosevicius, 2012).

62

Reservoir is acting as a nonlinear high-dimensional expansion of the input
sequence

At the same time it should store feature information, thus providing a
temporal context of the input . This characteristic of the reservoir is
crucial for temporal learning tasks.

Combining the two aspects the reservoir must provide a rich space of
states of the inputs, such that linear combination of them should produce the
desired signal .

5.11.2 GLOBAL PARAMETERS OF THE RESERVOIR

According to literature what we call ‘parameters’ could be called “meta-
parameters” or “hyper-parameters” as well, as they are not concrete
connection weights but parameters governing their distribution. We call them
“global parameter” reflecting their origin.

The global parameters of the reservoir are: the size of the reservoir , sparsity
of non-null elements and their distribution, spectral radius of , single or
multiple scaling and shifting of Win and the leaking rate α. Detailed information
on the design choices are described below.

5.11.2.1 SIZE OF THE RESERVOIR
A crucial parameter of the ESN model is the number of internal units N of the
reservoir. The memory capacity of the network increases as the reservoir
increases, also affecting network performance. Hence, training and running an
ESN is computationally cheap compared to other RNN approaches; reservoir
sizes of order 104 are not uncommon [Fabian Triefenbach, 2011]. It is easiest

to find a linear combination of the signals to approximate if the
internal units are as many as possible. If the task is trivial or there is not
enough data the size of reservoir is smaller.

Taking into account the number of independent real values the reservoir must
remember from the input to accomplish the learning task successfully we can
set a lower bound of the reservoir . Memory capacity (maximum number of
stored values) of an ESN is equal or less to the size of the reservoir .

63

5.11.2.2 SPARCITY OF RESERVOIR
In (Jaeger, 2001) it is recommended to make a sparse connection reservoir, of
which most of the entries must be null. Network obtains a slightly better
performance with sparse connectivity. Typically, we connect each internal unit
to a small fixed number of other internal units on average. And taking
advantage of this internal unit sparsity to speed up computation time. This
parameter is not crucial to the network’s behavior.

5.11.2.3 DISTRIBUTION OF NONZERO ELEMENTS
Nonzero entries of the internal weight matrix can be chosen to be either
symmetrically uniformed, discrete bi-valued or normally distributed center
around zero. Gaussian distributions also exist. All the described distributions,
except bi-valued, have the same performance. The discrete bi-valued provides
less rich signal space. The range of distribution is not so important because
spectral range rescales the magnitude of the nonzero elements of the matrix.

64

Figure 21. Random scaled internal weights matrix, spectral radius 0.95.

5.11.2.4 SPECTRAL RADIUS
One of the most significant global parameters of the network is the spectral
radius. Spectral radius is the maximal absolute eigenvalue of internal
units weight matrix . In general, the most popular method to build a matrix
W which maximal absolute value is unit described as: first a random sparsely
interconnected matrix W0 is generated then the spectral radius is
computed. The matrix is divided by to get a unit spectral radius
matrix this is finally scaled with the desired spectral radius.

An ESN reservoir must satisfy the echo state property: the internal state
is uniquely defined by the decaying history of the input signals and/or the
previous output signal. In other words for a long enough input , the
reservoir state should not depend on the initial conditions that existed
before the input (Lukosevicius, 2012)

The echo state property, theoretically, can be violated even if the spectral
radius is less than unit (Jaeger, 2001) or can be held for values bigger than one
for nonzero inputs. This fact can be explained by the strong influence of input
signals which are pushing activations of the internal units away from zero,
where the () nonlinearities have a unitary slope to regions where this
slope is smaller, thus reducing the gains of the neurons and the effective
strength of feedback connections. Intuitively speaking, due to activation-
squashing nonlinearities, strong inputs “squeeze out" the autonomous activity
from the reservoir activations.

Choosing the appropriate magnitude of spectral radius is not easy and
depends of the task. Spectral radius must be greater for tasks that require
longer memory of the inputs and smaller for tasks that the current output
depends more on the recent history of input signal.

5.11.2.5 INPUT SCALING
The input scaling weight matrix consists another key parameter for the
optimization of ESN. Input weight matrix is usually dense and for scaling
uniformly distributions or normal distributions are used.

A general practice when a network has many inputs is to scale together using
one scale value. This reduces the amount of adjustable parameters. If the
network includes bias input (usually first column) it is recommended to scale

65

separately from the other inputs. If the remaining inputs contribute to the task
in very different ways, it is suggested to scale each independently. In (Jaeger,
2001), recommends to scale and shift the input signal. We can achieve the
same result by scaling the input weights of the bias input and the rest of the
inputs separately.

Many times, input signals come from experimental results or biological
observations. This means that data have different range values, noise. In such
cases input data must be normalized. This puts each learning task to a
bounded region. For example if the input signal distribution is unbounded we
should apply (), otherwise outliers can “send” the internal units into
strange regions which are not familiar to regions of which global parameters of
the network have been adjusted or the outputs learned. This can cause virtual
loss of useful memory (may lead to saturations in the activation nonlinearities)
or unpredictable output of these points.

Internal activation units are typically (). Input scaling determines how
nonlinear internal units responses are. For a linear learning task the scaling of

matrix must be small because operating internal units close to zero results
in almost linear behavior of the unit. If the scaling is larger the unit’s activation
is saturated to values -1 and 1 acting in a more nonlinear, bi-valued switching
type. How nonlinear is the task, is not easy to answer.

Scaling of combined with denotes the percentage of contribution of
the current input to the current state and the left percentage is on
the previous state . This conclusion must also take into account the
size of and .

In (Hermans & Schrauwen, 2010) denoted that the representation of different
Principle Components of in is roughly proportional to the square
root of their magnitudes in In other words, the reservoir tends to flatten
the spectrum of principal components of in , something to keep in
mind when choosing the right representation or preprocessing of the data. For
example, if smaller principal components carry no useful information it might
be helpful to remove them from the data by Principal Component Analysis
(PCA) before feeding them to a reservoir, otherwise they will get relatively
amplified there (Lukosevicius, 2012).

66

CHAPTER 6. PRACTICAL APPROACH OF ESN
In machine learning the most important parameters must be tuned by trial and
error method.

6.1 MAIN PARAMETERS OF THE NETWORK

Main parameters to optimize ESN reservoir are: input scaling, spectral radius
and leaking rates. The appropriate magnitude in order for the network to
reach good performance depends on the task and needs multiple trials.

Some times the performance can be improved if we set different scalings of

the columns of input weight matrix or separate the bias input scaling from
the scaling of the other “active” inputs. This separation takes advantage of the
different nature of inputs (if they exist). Instead of using a global leaking rate α,
if the task requires modeling of the times series producing dynamical system
on multiple time scales, it might be useful to set different leaking rates to
different units (making a vector).

The size of reservoir is limited due to finite memory of computational systems.

Lower importance parameters to be tuned is the reservoir sparseness and
weight distribution.

6.2 PARAMETER SELECTION SETUP

In ESN training algorithms only the network-to-output connection weights
have to be trained. The main advantage of ESN is that learning of outputs is
fast. This feature is exploited in evaluating the performance of reservoir by a
particular set of parameters.

A method to evaluate the reservoir performance is to train the output and
measure the error. Training error is usually used (or validation error can be
used).

Due to randomly generated reservoirs, same parameters can cause slightly
different network performances. This observation affects more small sized

67

reservoir, than bigger ones. Random variations inside a big reservoir tend to
“average out”.

6.3 MANUAL PARAMETER SELECTION

Machine learning requires some parameters to be manually optimized. In
some machine learning approaches some parameters are selected through
automated ways. Even in this case it is necessary some of the parameters to be
tuned manually. These parameters are typically called meta-parameters.

A typical way of handling these parameters is to change one parameter at a
time and record the performance of the network. Repeat this procedure until
you get a good performance then change another. Changing more than one
parameters at the same time usually has catastrophic effects to network
performance. Also it is blurry to tell which parameter contributed what.

6.4 INITIAL TRANSIENT

Usually we set an arbitrary state at time step zero of the internal units
of . This denotes an unknown starting state. The data of which
are from the beginning of the training run are discarded, so they are not used

for learning output weight matrix . The number of time steps to discard
depends on the memory of the network. Discarded steps are usually tens or
hundreds.

6.5 OUTPUT FEEDBACK AND STABILITY PROBLEMS

6.5.1 OUTPUT FEEDBACK

For some usually complex tasks (e.g. pattern generation, classification), trained
readouts are fed back to the reservoir and training process changes its
dynamics. This process creates a recurrence between the trained outputs and
the reservoir. There are two implementations to make this real. Either by back

project (feedback) connections from the output to the reservoir or by
looping output as an input for the next update step . The
second implementation is used to pattern generator. These two options are

equivalent, only the notation changes: is equivalent to and
to , respectively. There are tasks for which both are used.

68

Feedback connections make ESN more powerful for hard learning tasks
because it is no longer an input driven dynamical system, but the dynamics are
adapted to the task. ESN with feedback connections suffers from instability
problems.

6.5.2 TEACHER FORCING

As described in the previous section, training ESN with feedback connections
changes the dynamics of all the internal units and the outputs, too. In
traditional training we feed trained outputs into the reservoir. To break the
recurrence relationship between the reservoir and the output readout
feedback the desired output through the feedback

connections instead of real output while learning. This
method is called teacher forcing.

(6.1)

Teacher forcing means that target values are fed back to the reservoir, as if
they were already successfully learned. This enables us to learn outputs in one
iteration and is a valid assumption, if in the end the outputs are learned well
(i.e. the feedbacks are similar to the one which we assumed while training). If
the feedback is not learned well, this assumption is not valid and the distorted
feedback may further distort the outputs. (Lukosevicius, 2012)

69

Figure 22. An ESN with output feedbacks trained with teacher forcing.

In other words, this method has very good results if the output can be learned
precisely. If this is not feasible, the distorted feedback leads to an even more
distorted output of the next time step feedback and so on. This mechanism
leads very quickly to a generated output that diverges from the desired output
 .

Even with well-learned outputs the dynamical stability of the autonomous
running system is often an issue (Lukosevicius, 2012)

6.5.3 FEEDBACK STABILITY PROBLEMS

As described in previous section adding noise to the reservoir states has a
similar effect as ridge regression to network stability. Setting the right amount
of noise is a delicate balance between the sharpness of the prediction and
stability (Lukosevicius, 2012).

Another strategy is to add scale noise to teacher forced signal . This
makes the reservoir learn an imperfectly and the readout is trained
to ignore some inputs and feedback signals.

A recently proposed method is to regularize recurrent connections . Matrix
 is relearned with regularization using ridge regression as proposed
for . This method reduces recurrent connection strength and makes ESN
more stable.

70

CHAPTER 7. SUPERVISED TRAINING FOR SEQUENCE
LABELING

7.1 SEQUENCE LABELING OVERVIEW

As described above, in supervised learning tasks a set of input-target pairs is
provided for training. The nature and degree of supervision provided by the
targets varies greatly between supervised learning tasks. For example, training
a supervised learner to correctly recognize (label) every pixel corresponding to
an airplane in an image requires a much more informative target than simply
training it to recognize whether or not an airplane exists. To distinguish these
extremes, people sometimes refer to weakly and strongly labelled data
(Graves, 2008)

Sequence labeling goal is to assign sequences of label, picked from a particular
alphabet, to sequences of input data. Well-known examples of sequence
labeling are sequences of acoustic data which include spoken words (speech
recognition) and video frames time sequences with hand gestures.

For some learning tasks, precise assignment of the labels respectively to the
input sequences is determined by the learning algorithm. However, in most of
the tasks the alignment is determined with manual or automatic data
processing or we only care for the final sequence of label, not the specific time
that the label takes place.

Assume that desired sequences have the same length or less than the input
sequences. Let be a dataset of training sets picked independently from a
fixed distribution . Input space is a set of all sequences of

 real valued vectors . Target space
 is a set of all sequences over the finite alphabet of labels. Each
element of represent a label. On the other hand each element of the
dataset represents a pair of sequences . We use to train
a sequence labeling algorithm to label the sequences in an
unknown test (disjoint from) set , as accurately as possible.

71

7.2 SEGMENT CLASSIFICATION.

When the target sequences consist multiple labels and their assigned location
to input sequence is known in advance it is described by the term segment
classification. In other words, when the task is to classify separate short time
series (which consist input sequences), output of the network has one
vector (dimension) for each label (class) and the magnitude of the target
sequence ytarget(n) is one in the dimension which represents the right class
(label) and zero to the other classes. Task examples of segments classification
is natural language, human gestures processing and bioinformatics. A
disadvantage of sequence classification is that it requires hand segmented
data, which is a time-costly procedure.

In sequence labeling input sequences are built from segmented data. Context
information of each of this segmented data is the key for a good performance
of the training network. Each segmentation of the input sequence is strongly
correlated to the corresponding label.

For a pattern classifier we can measure misclassifications on
the test set by classification error rate:

(7.1)

72

CHAPTER 8. TEMPORAL GESTURE RECOGNITION
EXPERIMENTS

8.1 AIM OF THE EXPERIMENT

The focus of the numerical experiments is on “multiple instances, user
independent learning” of skeletal data, that is, learning to recognize gestures
from several instances for each category performed by different users, picked
from a vocabulary of 20 gesture categories (see Figure 23). This vocabulary
contains a set of unique gestures, generally related to a particular task. In
other words, we try to temporally classify these 20 unique gestures in a time
series (sequence) by computing the classification error rate.

73

Figure 23. Data set gesture categories.

74

We used ESN software developed by Jaeger’s research team to recognize these
gestures. Software executed in Matlab environment.

8.2 DATA

8.2.1 GENERAL DESCRIPTION

We used a large video database (available for competition” Multi-modal
Gesture Recognition Challenge 2013”) from a lexicon of 20 Italian gesture
categories recorded with a KinectTM camera. Downloaded from
http://sunai.uoc.edu/chalearn/. Multi-modal Gesture Recognition Challenge
provided 3 datasets: Development, Validation and Final Evaluation, for
algorithm development and evaluation. Each dataset consists of hundreds of
zip files, and each file contains approximately one-minute-long multi-modal
gesture data, including audio, video and skeleton information.

The database contains:

 Training data (RGB+Depth+Audio) and labels for 393 sessions, which
correspond to 7.754 Italian gestures.

 Validation data (RGB+Depth+Audio) has the same format as training
data, but labels are not provided. There are 287 sessions, which
correspond to 3.362 Italian gestures.

 Test data have exactly the same structure as the validation set. It
contains 276 files containing a total of 2742 Italian gestures.

8.2.2 MAIN CHARACTERISTICS OF THE DATASET

 The camera is in fixed position

 There are no resting positions and each sequence records one person’s
gestures (Figure 24).

 A single user is recorded in front of a KinectTM, performing natural
communicative gestures and speaking in fluent Italian.

http://sunai.uoc.edu/chalearn/

75

Figure 24. The 20 gestures performed by one person, which consist one
sequence.

 13,858 gesture samples recorded with the KinectTM camera, including
audio, skeletal model, user mask, RGB, and depth images.

76

 RGB video stream, 8-bit VGA resolution (640X480) with a Bayer color
filter, and depth sensing video stream in VGA resolution (640X480) with
11-bit. Both are acquired in 20 Frames per second on average.

 A total number of 27 users appear in the data set.

 The data set contains the following number of sequences: 393 (7,754
gestures), each sequence lasts between 1 and 2 minutes and contains 20
gesture samples, around 1,800 frames. The total number of frames of
the data set is 1,720,800.

 All the gesture samples belonging to the 20 main gesture categories
from an Italian gesture dictionary are annotated at frame level indicating
the gesture label.

There are several aspects that arise from multimodal gesture recognition in
this database described by” Multi-modal Gesture Recognition Challenge
2013”, such as gesture continuous recording (no resting points between
gestures), the presence of distracter gestures, the relatively large number of
categories, the length of the gesture sequences varies, and different people
performing the same gestures. Furthermore, there is not a specific way to
perform the included cultural gestures, e.g., “vieni qui" is performed with
repeated movements of the hand towards the user, with a variable number of
repetitions (Figure 25). Similarly, gestures are performed using one hand,
either the left or right hand. Finally, variations in duration of gestures
performed, background, lighting and resolution, occluded some parts of the
body, different Italian dialects

77

(a)

(b)

(c)

(d)

(e)

Figure 25. (a, b) Left and right handed instances for gesture “vieni qui”, (c, d,
e) left and right handed instances and arm position of “vattene”.

78

8.2.3 DATA FORMAT

Each sample sequence (X) contains individual files named: X_audio.wav,
X_color.mp4, X_depth.mp4, X_user.mp4 and X_data.mat containing the audio,
RGB, depth, user mask and data about videos for a given sequence X. All the
sequences are recorded at 20 FPS. Analytically:

Figure 26. Different data modalities of the provided data set. From left to right
are the image selected from the RGB video, depth video, user-index video, and
skeletal model respectively.

RGB: This matrix represents the RGB color image, expressed in 8-bit VGA
resolution (640x480) with a Bayer color filter.

Depth: The Depth matrix contains the pixel-wise z component, VGA resolution
(640x480) represented with 11bits. The value of depth is expressed in
millimeters.

UserIndex: The user index matrix represents the player index of each depth
pixel. A non-zero pixel value means that a tracked subject occupies the pixel,
and a value of 0 denotes that no tracked subject occupies the pixel.

DATA: contains the following structure:

 Video: structure that contains above 5 fields (structures and files):
o NumFrames: Total number of frames.
o FrameRate: Frame rate of the video in fps.
o Frames: A column vector (1xnumber_of_frames) structure is

contained within a column vector named skeleton.
 Skeleton: Each row of Skeleton is a structure. It contains

the joint positions, and bone orientations comprising a
skeleton of each frame. The format of a Skeleton structure
is:

79

1. WorldPosition: The world coordinates position
structure represent the global position of a tracked
joint. The format is X, Y, which represents the x, y,
and z components of the subject’s global position (in
millimeters).

2. PixelPosition: The pixel coordinates position
structure represents the position of a tracked joint.
The format of the Position structure is X, Y, Z which
represent the x and y components of the joint
location over the RGB map (in pixels coordinates).

3. WorldRotation: The world rotation structure
contains the orientations of skeletal bones in terms of
absolute transformations and is formed by a 20x4 matrix,
where each row contains the W, X, Y, Z values of the
quaternion related to the rotation. The world rotation
structure provides the orientation of a bone in the 3D
camera space. The orientation of a bone is relative to
the child joint and the Hip Center joint still contains the
of the player/subject.

Labels: Structure that contains the data about labels contained in the sequence,
sorted in order of appearance. The labels considered to the 20 gesture
categories as shown in the

o Table 3. The format of a Label structure (Figure 27) is:
 Name: name of the gesture.
 Begin: gesture starting frame.
 End: gesture ending frame.

80

Figure 27. Fields of structure Labels for a sample sequence.

-JointType: Skeleton joints that make up a tracked skeleton. The

Figure 28 visualizes these joint types.

81

N Joint type N Joint type

1 HipCenter

11 WristRight
2 Spine 12 HandRight
3 ShoulderCenter 13 HipLeft
4 Head 14 KneeLeft
5 ShoulderLeft 15 AnkleLeft
6 ElbowLeft 16 FootLeft
7 WristLeft 17 HipRight
8 HandLeft 18 FootRight

9 ShoulderRight 19 KneeRight

10 ElbowRight 20 FootRight

Figure 28. Left and right edge: tracked joint types, middle: skeleton joint
positions.

8.3 PREPROCESSING

8.3.1 DATA TRANSFORMATION

Across all provided video features, skeleton features are a meaningful
representation of body posture in each video frame. Thus, we choose skeletal
data to consist ESN classifier inputs.

As we describe above, each sequence contains a file named WorldPosition for
each frame. This file contains world coordinates position of all 20 tracked
joints. We use this data to export three dimensional Euclidean distance
between two tracked joints. Three dimensional Euclidean distance computed
according to mathematical type:

(8.1)

Where) and) are two points in Euclidean 3D-
space

Vectors and represent two tracked joints.

82

The distances of the following joint pairs were computed:

Id-
row

Joint pairs 3D
distance

value

Id-
row

Joint pairs 3D
distance

value 1 'HipCenter' - 'Head' d 7 'Head' - 'HandRight' d

2 'HipCenter' -
'ElbowLeft'

d 8 'Head' -'ElbowLeft' d

3 'HipCenter' -
'HandLeft'

d 9 'Head' - 'HandLeft' d

4 'HipCenter' -
‘ElbowRight’

d 10 'ShoulderCenter' -
'HandLeft'

d

5 'HipCenter' -
'HandRight'

d 11 'ShoulderCenter' -
'HandRight'

d

6 'Head' - ElbowRight’ d 12 'HandLeft' -
'HandRight'

d

Table 1. Calculated distances joint pairs.

Then 3D distances are normalized based on the sum of skeleton based 3D
distances of Head-HipCenter joint pair and HandLeft-HandRight joint pair for
each element individually.

83

Figure 29. Twelve joint pairs data after normalization over sampling period.

8.3.2 DATA RESCALING AND INPUT FORMAT

Observing raw data (Figure 29), it is obvious that each channel has different
value ranges and a considerable offset. Feeding such a signal in its raw version
would amount to adding a strong bias constant to the channels with greater
mean values, which would effectively shift the sigmoids of reservoir units
away from their centered position toward their saturation range. This leads to
systematic wrong behavior of internal units because each input channel
contributes differently to the learning task.

We rescale raw data to a desirable range. Considering that output has a
switching behavior (0 for non-label existence and 1 for existence) and the fact
that in machine learning it is advisable teacher data (input and output
sequences) ranged to the same interval, we choose to investigate two
different types of normalization. First data normalization bounded to interval
 , (Figure 30) and the second type is to apply interval to input
data .This puts learning task into a more standardized setting.

84

Figure 30. Input data rescaled to interval [0 1]. Last row: bias input.

Input vector (see Figure 30) of ESN network consists of the twelve three
dimensional Euclidean distances plus one bias input :

Input vector

 Joint pairs Joint pairs

 Bias input 'Head' - 'HandRight'

 'HipCenter' - 'Head' 'Head' -'ElbowLeft'

 'HipCenter' - 'ElbowLeft' 'Head' - 'HandLeft'

 'HipCenter' - 'HandLeft' 'ShoulderCenter' - 'HandLeft'

 'HipCenter' - ‘ElbowRight’ 'ShoulderCenter' - 'HandRight'

 'HipCenter' - 'HandRight' 'HandLeft' - 'HandRight'

 'Head' - ElbowRight’

Table 2. Network input vector.

85

8.3.3 OUTPUT FORMAT

We want to derive assertions of gestures from input histories
 values and we code the existence/non-existence of a
gesture and we want to realize, through learning,
 as a value indicator function that changes its value to 1 as
soon as the gesture is present. In this study we consider the 20 gestures which
are aligned to subsequents of each training data set as unique

outputs
 .

 .

Output vector
 ID Gesture name ID Gesture name
 1 vattene 11 ok
 2 vieniqui 12 cosatifarei
 3 perfetto 13 basta
 4 furbo 14 prendere
 5 cheduepalle 15 noncenepiu
 6 chevuoi 16 fame
 7 daccordo 17 tantotempo
 8 seipazzo 18 buonissimo
 9 combinato 19 messidaccordo
 10 freganiente 20 Sonostuf

Table 3. Network output vector.

Each input sequence represents different gesture instances performed by
one person. The person cannot perform the same gesture twice within the
same sequence (Figure 27). Essentially, each performed gesture represents a
temporal pattern which is hand-coded (assigned) to a class (output). This class
holds value 1 over steps that gesture is present and zero to other classes for
the same time steps (Figure 31).This indicates two facts: first, the durations of
the gesture and second, defines start and stop step. Time steps of input and
output signal are the same.

86

Figure 31. A portion of teacher sequence (4 of 13 inputs) and target output
vector (4 of 20) and its manual alignment of them. Each input signal contains
20 regions (represented as different color setup) of equally unique gesture
instances performed by one individual.

8.4 EXPERIMENTAL SETUP

The ESN software we used is written in Matlab by Herbert Jaeger and group
members. Downloaded from http://reservoir-computing.org/node/129 .

Teacher signal is composed from the 12 joint pair distances which are
filtered and normalized plus 1 bias input (input sequence)

where . The desired output sequence (

,

,……,

)

where

 , that is one output for each label. IF there exists a

gesture corresponding to the output, then the value is unit else is zero. We

want a trained ESN (, , ,) whose output approximates
the teacher output , when the ESN is driven by the training input .

A criterion for the actual gesture recognition was the maximum value of each
dimension of the output signal (). To avoid outliers we firstly smooth
with a moving average filter. In this setup maximum value of each dimension
of output signal corresponds to one recognized gesture instance. A gesture is
considered correctly recognized (Figure 35) if the time step matches the

http://reservoir-computing.org/node/129

87

interval of which

=1 (only one interval of can be matched with

one interval of .

We split the dataset of 393 sequences into two subcategories. The first one,
called training data, is used for training the ESN network and the second one
for testing the network. Training data is 70% of the dataset and rest of it is for
testing.

8.5 TRAINING-TEST ECHO STATE NETWORK: ALGORITHM

The process of ESN software we used is described below and includes the
following steps:

STEP 1. PARAMETERS SETUP

We manually select magnitude of the parameters: size dynamic reservoir,
spectral radius, input scaling, input shift, output scaling, output shift, feedback
scaling, sparsity of nonzero elements of weight matrix , distribution of input

weight matrix
 , distribution of feedback weight matrix

 ,noise .
Also select ESN type:

Plain _ESN (Plain _ESN.m): generates the internal states of an ESN with
standard additive-sigmoid neurons by computing:

(8.2)

Or

(8.3)

with teacher forcing.

Leaky_ESN (leaky_ESN.m): Updates internal state using the leaky integrator
neuron model by computing:

88

(8.4)

Or

(8.5)

with teacher forcing.

Leaky1_ESN (leaky1_ESN.m): Updates internal state using the leaky integrator
neuron model by computing:

(8.6)

Or

(8.7)

with teacher forcing.

Twi_ESN (twi_ESN.m) updates internal states of an ESN using time warping
invariant model:

89

 ,

(8.8)

or

(8.9)

with teacher forcing.

Some important notes:

 The matrix should be sparse, a simple method to encourage a rich
variety of dynamics of different internal units. The weights should be
roughly zero mean. There are plenty of ways to construct the weight
matrix (uniform distribution, Gaussian distribution, or set nonzero
weights randomly to –1 or 1).

 The size N of should reflect both the length T of training data, and
the difficulty of the task. should not exceed an order of magnitude of
 to (the more regular-periodic the training data, the closer to
 can N be chosen). This is a precaution measure against overfitting.
Furthermore, more difficult tasks require larger N.

 The setting of is crucial for subsequent model performance. It should
be small for fast teacher dynamics and large for slow teacher dynamics,
ρ needs to be hand-tuned by trying out several settings.

 This step involves many heuristics and the magnitude of each parameter
is crucial for the network behavior.

STEP 2.RUN SYSTEM

2.1 (generate_internal_weights).

90

Randomly generate an internal weight sparse matrix with mean value of
weights. Normalize to a matrix with unit spectral radius by
putting , where is the spectral radius of . Scale
 to , where , whereby obtains a spectral radius of .

2.2(generate_esn).

 Generate input weights and feedback weights . These
weights are chosen from a variety of options such as bi-numeral,
Gaussian, normal or bounded distribution. Then, the untrained network

(, ,) is (has always been found to be) an echo state

network, regardless of how , are chosen.

 Initialize the network state arbitrarily, we assume that at zero
state .

 Drive the network by the training data, for times , by

presenting the teacher input and by teacher-forcing the teacher

output by computing :

(8.10)

for teacher forcing classic approach of ESN,

or

(8.11)

for teacher forcing leaky integrator neuron model,

or

91

(8.12)

for time warping invariant model

 At time , where is not defined, use = 0.

2.3(compute_statematrix.m).

 Considering input scaling and shifting recalculate value for each input at
time steps according to:

(8.13)

 Considering output scaling and shifting recalculate value for each target
output at time steps according to :



 (8.14)

 If feedback connections are used, recalculate value for each desired
output considering feedback scaling for time steps according
to:

 (8.15)

 Due to initial transient, for each time larger or equal than an initial
washout time , collect the concatenated input/reservoir/previous-
output states as a new row into a state collecting
matrix . In the end, one has obtained a state collecting matrix of size

 –

2.4(compute_teacher.m).

92

Similarly, for each time larger or equal to T0, collect the teacher output

 row-wise into a teacher collection of size –
Where:

)), (8.16)

or without output to output connections

 (8.17)

2.5(train_esn).

 Compute output weights. Multiply the pseudoinverse of with , to
obtain a sized matrix ()t whose column
contains the output weights from all network units to the output
unit:

 (8.18)

then

 Transpose to , which is the desired output weight matrix.
The learning process has finished.

Step 3. TESTING THE TRAINED NETWORK

3. 1 (test_esn.m).

The matrices , , , are now known. Drive the network with a
novel sequence according to known equations

(8.19)

93

 (8.20)

3.2(error_rate_classification.m)

For each testing sequence filter the signal Find the step of

maximum value of . Make . Suppress values of time steps

 to zero for all . Continue to the next output signal. Finally
compare it against to ground truth label (). Gestures detected or not.
Sum true classified gestures of all test sequences and divided with the whole
sum of the gestures that were provided to network during test phase. Multiply
by 100. Percentage of true classified gestures exists.

8.6 EXPERIMENTS

8.6.1 ECHO STATE PROPERTY (A SIMPLE EXPERIMENT)

A lot of learning tasks involve some form of short-term memory. We
understand this property of some input-output systems, as the current output
 to depend on earlier values of the input and /or earlier values
 of the output itself. Also the dynamic reservoir units activations
 can be understood in terms of echo functions which maps input/output
histories to the current state (Jaeger, 2001).

 We ran a simple experiment to indicate the significance of spectral radius and
how it affects the short-term memory performance of the network. A network
with the same parameters design, except the spectral radius, was simulated
three times. Spectral radius hand-tuned to 0.3, 0.95 and 1.35 value.
For simulations, an 800-unit sigmoid network was used. Internal weight matrix
sparse connectivity was 1%.The input sequence included
800 steps. At step 200 we provide a unit impulse . All other
steps of the input sequence set to zero value. There are no output units
assigned to network.

94

Input sequence

Figure 32. Response of an arbitrarily selected internal unit of the network for
different spectral radius ρ. The last trace shows the unit impulse input
sequence (training signal).

We observe in Figure 32 that with spectral radius the internal units
tend to oscillate and network loses its echo state property. If the spectral
radius is lower than unit, network retains its echo state property for all .
For large ρ (close to unit) exhibits a long – lasting response to unit impulse
input. The response decays faster for smaller . A relatively long-lasting
“ ” of inputs in the internal network dynamics is a requisite for a
sizable short-term memory performance of the network (Jaeger, 2001).

8.6.2 GESTURE CLASSIFICATION EXPERIMENTS

8.6.2.1 EARLY EXPERIMENTS
We run a lot of simulations in order to achieve a well-tuned ESN classifier. We
try to find out optimal parameters for testing the network. To reach our goal
we explore three different types of ESN internal units activations, plain ESN,
leaky1 (leaky integrator neurons) and twi_ESN (include time warping function).
The modeling task depends primary on the nature of the excited dynamics – it
should be adapted to the task at hand. This includes a good judgement on
important characteristics of the dynamics inside the dynamic reservoir. These

95

important characteristics include an appropriate selection of the spectral
radius, the visually inspection of internal states and output weights, adding or
not an extra constant bias input, the magnitude of input scaling and shifting
and adding noise during sampling.

The input connections weights were uniformly distributed to range [-1 1]. The
network had output feedback connections, which were uniformly distributed
to range [-1 1]. The other parameters (e.g. input scaling, shifting etc.) of the
first simulation of the ESN were chosen close to unity but arbitrarily except
spectral radius () and the feedback scaling). The output activation
function was linear .
The first 400 steps were discarded and the output weights were computed
from the network states collected from through of
training sequence.

Figure 33 shows network output and internal units response.

96

Figure 33. Top row: a portion (8 of 20) of labels (red line) and network output
(blue line). Last row: traces of some internal units.

We set the feedback scaling to zero and simulate the network again. Network
output and internal units response are represented below:

97

Figure 34. Top row: a portion (8 of 20) of labels (red line) and network output
(blue line). Last row: traces of some internal units without feedback
connections.

98

Figure 35. True-false classified gesture.

It is obvious that feedback connections drive the internal units to unstable
state (see Figure 33). Because the training readouts are fed back to the

99

reservoir, they change the dynamics of all the internal units and thus, of
the outputs too. This observation indicates too large values of the output
feedback weights. We can also notice that internal units are, in most cases,
saturated. This is caused by a large impact of ‘incoming’ output feedback
signals to the internal units. That is, if the inputs are far from the zero the
 internal units (neurons) tend to drive to more towards saturation,
where they exhibit more nonlinearity. For this kind of learning task
(classification pattern recognition) this “switching” type of target dynamics is
desirable.

The input signals are a nonlinear sequence. The desired output is a
linear combination (zero if there is no gesture and unit if there is). This implies
a hard learning task so the desired output cannot be learned precisely. The
reason for these instabilities issues is that even if the model can’t predict the
signal quite accurately, pass through the feedback loop of connections
and small errors get amplified, making diverge from the
intended .

The magnitude of input weights is also important. Input scaling and
shifting was selected being 1 and 0 respectively and the signal values are
ranged to . In this case, internal units () is excited to the linear
central part of the sigmoid. In this case (Figure 34) network obtains linear

dynamic characteristics. Larger values of imply that the network is
strongly driven by input and leads internal units closer to the saturation of
the sigmoid, which results in a more nonlinear behavior of the resulting model.

Even larger values of , finally lead internal units into almost pure – 1 / +1
bi-valued, binary dynamics. Manual adjustment and repeated trial and error
processes are required to find the task appropriate scaling setup.

These two trained networks indicate bad tuned learning task. The outputs of
the first network oscillate and the second is far away from desired output
target.

Both experiments error classification rate is high, measured for
network with feedback connections and without feedback
connections. Further examples showed that (APPENDIX 1) ESN classifier
without feedback connections can be slightly improved as opposed to ESN
classifier whose performance can be improved dramatically.

100

8.6.2.2 FURTHER EXPERIMENTS
We continue our experiments to find the appropriate parameters of the
network in order to recognize gestures. The experiments reported here were
run off-line based on provided training/testing data sets. In every
computational experiment setup was the same as the previous except one
parameter. This way of experimental setup has the advantage of evaluating
the effect of this parameter to the network. There are a lot of parameters that
have to be investigated by someone for tuning this network and the effect of
each parameter sometimes is not clear.

We evaluate network performance of the three types of internal activation
units over a range of values and designs of the following ESN model
parameters:

 Input units weight matrix uniform and Gaussian distribution ranged to
interval [-1 1] and bi-valued [-1 1] distribution with probability 0.05 to 1,
0.05 to-1 and 0.9 to 0.

 Feedback units weight matrix uniform distribution range to intervals [-1
1] and [-0.1 0.1]

 Spectral radius range [0.35 0.95] with step 0.2.

 Number of internal units range 400 to 750

 Magnitude of leakage range [0.2 0.9] with step 0.1.

 Uniform distribution of time constants vector and manually selected
values range [0 1].

 Internal units white noise values 0.001, 0.0001 and 0.000001.

 Target sequence white noise values 0.001, 0.0012, 0.0001 and 0.000001.

 Number of discarding steps due to initial transient: 1350 neurons-500
discarding time steps, 1300 neurons-450 discarding time steps, 1300
neurons-450 discarding time steps, 1250 neurons-400 discarding time
steps, 1200 neurons-350 discarding time steps, 1150 neurons-300
discarding time steps, 1100 neurons-200 discarding time steps, 720
neurons-0 discarding time steps.

8.6.3 RESULTS

Here we report ESN sub-optimal parameter setup and best performance for
each type of internal units activation:

101

Internal units

activations type

Plain_ESN Leaky1_ESN Leaky_ESN Twi_ESN

Internal unit

Actiavation fuction

Input units

weight matrix

Uniform
distribution

range [-1 1]

Uniform
distribution

range [-1 1]

Uniform
distribution

range [-1 1]

Uniform
distribution

range [-1 1]

Bias input scaling value

1.0 1.0 1.0 1.0

“active” inputs scaling
value

[1.5] [2.5] [1.8] [1.0]

connectivity 1% 1% 1% 1%

Feedback units weight
matrix

Uniform
distribution

range [-1 1]

Uniform
distribution

range [-1 1]

Uniform
distribution

range [-1 1]

Uniform
distribution

range [-1 1]

Feedback scaling value

- 0.0001 - 0.00017

Number of

Neurons

720 1000 720 790

Spectral radius 0.95 0.95 0.95 0.45

time constant vector

- [0.1] [0.2] [0.25]

leakage - - [0.8] [0.8]

Internal units noise [0] [0] [0] [0]

Target sequence noise

[0] [0] [0] [0]

Moving average filter
spam

15 15 15 15

Error classification
rate

30.00% 29.26% 28.53% 31.21%

Table 4. ESN sub-optimal parameter setup and best performance for each type
of internal units activation.

And the corresponding error classification rate of each label:

102

Table 5. Error classification rate of each gesture.

label

Plain_ESN Leaky1_ESN Leaky_ESN Twi_ESN

 vattene 36.58% 43.90% 26.82% 36,58%

 vieniqui 39.02% 36.58% 51.21% 36,58%

 perfetto 24.39% 12.19% 9.75% 26.82%

 furbo 29.26% 31.70% 31.70% 39.02%

 cheduepalle 21.95% 24.39% 21.95% 24,39%

 chevuoi 9.75% 12.19% 4.87% 19.51%

 daccordo 7.31% 7.31% 4.87% 2.43%

 seipazzo 43.90% 36.58% 39.02% 24.39%

 combinato 14.63% 9.75% 26.82% 7.31%

 freganiente 53.65% 51.21% 41.46% 48.78%

 ok 41.46% 48.78% 36.58% 36.58%

 cosatifarei 53.65% 48.78% 58.53% 56.09%

 basta 12.19% 17.07% 12.19% 19,51%

 prendere 46.34% 46.34% 51.21% 46.34%

 noncenepiu 63.41% 53.65% 60.97% 63.41%

 fame 0.0% 0.0% 0.0% 4.87%

 tantotempo 7.31% 2.43% 0.0% 14.63%

 buonissimo 29.26% 34.14% 26.82% 36.58%

 messidaccordo 53,65% 56.09% 56.09% 56.09%

 sonostuf 12.19% 12.19% 9.75% 24.39%

103

Figure 36. Bar-graph of four different internal units activation error
classification rate grouped in each gesture.

Experimental results point out that ESN network provide a reasonable
classification hypothesis. That is, after training (using training data) network is
capable to recognize (detection plus classification) gestures when exposed to
unknown data in testing phase. Finding maximum magnitude of each
dimension of the output we manage to recognize 20 different poses which are
contained in test input data. Figure 35 shows right and false recognition of an
output dimension (class).

Some empirical observations of experimental results which relate to
parameters setup are:

 Usage of a bias input (input with constant value) to training and testing
input sequences improved network performance 1% roughly (in some
cases). This performance was achieved when the value of the bias input
was unit. Large bias input value shifted a lot of internal units towards
work on a more extreme region of their sigmoids. This fact leads

104

reservoir to achieve a strongly nonlinear behavior which is preferable for
classification learning tasks.

 We treat “active” inputs as a set. That is all so this channel has same
scale value. Same method followed for outputs too.

 Network performance slightly changed applying different distributions
of input and feedback weight matrices in learning.

 Injecting noise to internal units downscaled network performance (2%-
3%). A relative large amount of training data was used for learning. This
data comes from experimental measurements, thus contains some
random noise components. Adding extra noise led reservoir to
“memorize” irrelevant to the task features of the input channels.

 Same parameters setup resimulation, showed tiny variation to network
performance (APPENDIX 1. , , ,
). This variation is caused by random entries of matrices
distributions every time we simulate the network.

This particular learning task focused on classification gestures from segmented
data. Experimental results showed that:

 Spectral radius can be scaled in a vast range of values
 without any significant change in network
performance (APPENDIX 1.
). ESN classifier performance seems to be
insensitive to duration of Short Term Memory effects.

105

Figure 37. Error classification rate as a function of spectral radius a . Training
parameters (except spectral radius) was the same for all executed simulations.

 720 internal units network reached maximum performance. A network
of 400 units performed very poorly (APPENDIX 1.
). Computations over the number of 720 internal units did
not take place due to memory limits of my computer (without discarding
initial time steps).

106

Figure 38. Error classification rate as a function of number of internal units.
Training parameters (except number of internal units) was the same for all
executed simulations.

 As we describe above data set consists of short separate sequences.
Discarding an amount of them due to initial transient leads to loss of
precious information. However experiments showed that (APPENDIX
1.) network has similar performance with 720 neurons and
zero discarding time steps compared to 1000 neurons and 150 initial
discarding time steps.

 Between the three different types of internal unit activations there is
not a clear winner. They have similar performance value. As we
described, input channels consist of 20 subsequences, each of those
represents an output class. Every one of the training data sets contains
the representations of 20 unique gestures performed by one individual.
It is clear that every person has its own way and time scale to perform a
gesture.

107

Figure 39. Shows 4 (of twelve) input channels of two different people
performing the same gesture. After normalization 4 input channels of different
training sets First person needs 80 frames (4 seconds) to complete ‘prendere’
gesture and second one only 30 frames(1.5 seconds).

We understand that is time wrapped training data. ESN Internal units with
Time Warping Invariant activations transform wrapped input data to
unwarped. This (we thought) would help the network to perform better to this
kind of data, but experimental results do not reveal this conclusion. In (Jaeger,
et al., n.d.)] it is reported that as the dimensions K of the input sequences
increases the benefit of time wrapping is less important. It is intuitively clear,
that the bigger the number of independent input dimensions we have, the less
important the role of the actual time axis is, i.e. the loss of temporal
information which is intrinsic to TWIESNs becomes less important. In other
words, the temporal information can in some sense be deduced from the
dynamics of many independent input variables.

If k is larger than 10 then the time-scaling invariant information of inputs
contributes little to the pattern recognition. In other words, the “authentic”
temporal information is preferable to the recognizability of patterns than the
pseudo-time reform information of the input sequences.

108

 Providing network with raw data (without rescaling or shifting) or data
rescaled to range [-1 1] lead to bad performance training task (30%-
40%).

 Optimal input scaling value can be determined into a narrow region
without remarkable change of the performance. That is, network
obtains same performance with input scaling values 1.2 and 1.4(e.g.
APPENDIX 1.). Output scaling follows same principle.

 Due to feedback connections network suffers from instability problems.
Finding an appropriate value includes many trial-errors. A slight change
(0.00002) around the optimal value leads to further instability of the
internal units.

 Model performance improved when the internal units tend to saturation.
Better performance with saturation internal units can be explained by
the binary character (0 or 1) of output vector. In other words, we lead
internal units almost always to have values near the saturation point
 by applying large input scaling values. This result is desirable
in this particular learning task where target dynamics are switching type.

 There are more than one parameter set that network can reach the
same performance (e.g. APPENDIX 1).

 Similar network performance is achieved (APPENDIX 1) with
and without feedback. But network tuning without feedback is much
easier.

 In APPENDIX 1() we observe that as the
“pseudo” time gap increases the performance drops (and
 topologies). This can be explained by the generic problem of linear
Euler discretization in eq. (5.21) : if the step size becomes larger, the
curvature of the approximate signal trajectories decreases, thus
important feature information is lost.

109

Figure 40. Top: TWI_ESN network internal units activations with time
constants Δt=0.5. Bottom: TWI_ESN network internal units activations with
time constants Δt=0.2.

110

CHAPTER 9. COMPARISONS

Next, we briefly describe the main components of the top-ranked methods in
ChaLearn Multi-modal Gesture Recognition 2013. Then, we compare the error
rate result of our proposed single modal framework with other approaches
(Escalera, et al., 2013b).

9.1 ChaLearn 3-TOP RANKED APPROACHES

The first-ranked team (IV AMM) used a feature vector based on audio and
skeletal information. A simple time-domain end-point detection algorithm
based on joint coordinates was applied to segment continuous data sequences
into candidate gesture intervals. A HMM was trained with 39-dimension MFCC
features and generated confidence scores for each gesture category. A
Dynamic Time Warping based skeletal feature classifier was applied to provide
complementary information (Escalera, et al., 2013b).

The second-ranked team (WWEIGHT) combined audio and skeletal information,
using both joint spatial distribution and joint orientation. They first searched
for regions of time with high audio-energy to define time windows that
potentially contained a gesture. Feature vectors were defined using a log-
spaced audio spectrogram and the joint positions and orientations above the
hips (Escalera, et al., 2013b).

The third ranked team (ET) combined the output decisions of two designed
approaches. In the first approach, they looked for gesture intervals
(unsupervised) using the audio files and extracted features from these
intervals (MFCC). Using these features, authors trained a random forest and
gradient boosting classifier. The second approach used simple statistics
(median, var, min, max) on the first 40 frames of each gesture to build the
training samples. The prediction phase used a sliding window. The authors
created a weighted average of the output of these two models (Escalera, et al.,
2013b).

111

9.2 COMPARISONS WITH OTHER APPROACHES AND VARIATIONS

Herein we compare the recognition results of our proposed single modal
recognition with the final results of ChaLearn Multi-modal Gesture Recognition
2013 as reported in (Escalera, et al., 2013b). At this point, we have to mention
that our training data base was limited compared to the complete data base
which was used by the participants of the challenge. We performed
experiments under a limited RAM setting, which did not allow to use more
than 350 data sets (complete data base included 393 data sets).

Table 6 shows the particular strategy for each team. The considered modalities
of the three top ranked teams is identical, but the applied classifier differs.

Regarding the considered modalities, none of the participants used only audio
data, but the majority used multiple modalities for training. In particular, when
no multiple modalities were used for describing the data, skeleton was the
most used feature. Final results show that combination of audio plus skeleton
data was the best practice. Among single modal approaches our proposed
classifier achieved better performance.

112

TEAM RANK
POSITI
ON

MODALITIES CLASSIFIER ERROR

Our - Skeleton NN-ESN 28.53%

IVA MM 1 Audio, Skeleton HMM, DP, KNN 12.75%

WWEIGHT 2 Audio, Skeleton RF, KNN 15.38%

ET 3 Audio, Skeleton Tree, RF, KNN 16.81%

MmM 4 Audio, RGB+ Depth SVM, Fischer, GMM, KNN 17.21%

PPTK 5 Skeleton,RGB,Depth GMM, HMM 17.32%

LRS 6 Audio, Skeleton, Depth NN 17.72%

MMDL 7 Audio, Skeleton DGM, LR 24.45%

TELEPOINTS 8 Audio, Skeleton, RGB HMM, SVM 25.84%

CSI MM 9 Audio, Skeleton HMM 28.91%

SUMO 10 Skeleton RF 31.65%

GURU 11 Audio, Skeleton, Depth DP 37.28%

AURINKO 12 Skeleton, RGB ELM 63.30%

STEVENWUDI 13 Audio, Skeleton DNN,HMM 74.41%

JACKSPARROW
W

14 Skeleton NN 79.31%

JOEWAN 15 Skeleton KNN 83.77%

MILAN KOVAC 16 Skeleton NN 87.46%

IAMKHADER 17 Depth RF 92.02%

Table 6. Team methods and results. HMM: Hidden Markov Models. KNN:
Nearest Neighbor. RF: Random Forest. Tree: Decision Trees. ADA: Adaboost
variants. SVM: Support Vector Machines. Fisher: Fisher Linear Discriminant
Analysis. GMM: Gaussian Mixture Models. NN: Neural Networks. DGM: Deep
Boltzmann Machines. LR: Logistic Regression. DP: Dynamic Programming. ELM:
Extreme Learning Machines.

113

CHAPTER 10. CONCLUSION
This study concerns gesture recognition from segmented data. We treated ESN
as a gesture classifier. We presented two implementations of internal units
update equations, plain_ESN consists a special case of Leaky Integrator units.
Overall performance of the network indicates that ESN is capable to detect and
classify gestures. ESNs were trained using input segmented data, through a
“rich” variety of excitable dynamics, assigned to a specific output, the gesture
(represented as 1) and remain zero to all other outputs. Network must
combine and remember the important features of input during training in
order to obtain a good testing performance. To do so, internal units should
realize some kind of dynamic memory. In other words, reservoir must retain in
its current dynamic state information about past input features, which can
refer back to deep past. This describes an unbounded long lasting dynamic
memory.

Detected results as represented in

Table 4 are incomplete in the sense that many aspects of gesture recognition
by ESNs are not investigated. Can better performance using either different set
of variables or different representation be achieved? Does usage of more input
channels improve learning task?

However, the potential of this approach is obvious. This specific learning task is
difficult to manipulate completely, because network must detect a gesture and
then temporally classify to correct output, from data which are time
unwrapped and collections of different individuals.

114

BIBLIOGRAPHY
Barabasi, A.-L. & Albert, R., 1999. Emergence of scaling in random networks.

Bengio, Y., Simard, P. & Frasconi, P., 1994. s.l., IEEE Transactions on Neural
Networks,5(2):157-166.

Bolt, R. A. & Herranz, E., 1992. Two-handed gesture in multi-modal natural
dialog. , In Proceedings of the 5th annual ACM symposium on User interface
software and technology, pages 7–14. ACM.

Buonomano, D. V. M. M. M., 1995. Temporal information transformed into a
spatial code by a neural network with realistic properties. In:
s.l.:Science,267:1028{1030.

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function..
s.l.:Mathematics of Control,Signals and Systems, 2:303-314.

Dominey, P. F., 1995. Complex sensory-motor sequence learning based on
recurrent. s.l., Biological Cybernetics, 73:265-274.

Doya, K., 1992. Bifurcations in the learning of recurrent neural networks.. s.l., In
Proceed-ings of IEEE International Symposium on Circuits and Systems 1992,
volume 6,pages 2777-2780.

Escalera, S. et al., 2013b. Multi-modal Gesture Recognition Challenge 2013:
Dataset and Results.. s.l., in 15th ACM Int'l Conf. on Multimodal Interaction
(ICMI), ChaLearn Challenge and Wrksp on Multi-modal Gesture Recognition.
ACM,.

Fang, Y., Wang, K., Cheng, J. & Lu, H., 2007. A real-time hand gesture
recognition method. s.l., In Multimedia and Expo, 2007 IEEE International
Conference on, pages 995–998. IEEE.

Graves, A., 2008. Supervised Sequence Labelling with Recurrent Neural
Networks. s.l., PhD thesis, Technical University Munich, Munich, Germany,.

Haeusler, S. & Maass, W., 2007. A statistical analysis of information processing
properties of lamina-specificcortical microcircuit models. s.l.:Cerebral Cortex,
17(1):149{162, 2007. ISSN 1047-3211.

115

Hecht-Nielsen, R., 1989. Neural Network Primer:Part I. s.l.:All expert.

Hermans, M. & Schrauwen, B., 2010. Memory in reservoirs for high
dimensional input. s.l., Proceedings of the IEEE International Joint Conference
on Neural Networks,pages -{7.

Jaeger, H., 2001. The "echo state" approach to analysing and training recurrent,
s.l.: s.n.

Jaeger, H., 2002b. A tutorial on training recurrent neural networks, covering
BPTT,RTRL, EKF and the "echo state network" approach., s.l.: s.n.

Jaeger, H., 2007b. Scholarpedia. [Online]
Available at: http://www.scholarpedia.org/article/Echo_state_network.

Jaeger, H. & Haas, H., 2004. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless communication..

Jaeger, H., Lukosevicius, M. & Popovici, D., n.d. Optimization and Applications
of Echo State Networks with Leaky Integrator Neurons Integrator Neurons, s.l.:
International University Bremen,School of Engineering and Science,28759
Bremen, Germany.

Jaeger, H., Lukosevicius, M., Popovici, D. & Siewert, U., 2007a.
OptiOptimization and applications of echo state networks with leaky-integrator
neurons.. s.l.:Neural Networks, 20(3):335-352.

Just, A., Rodriguez, Y. & Marcel, S., 2006. Hand posture classification and
recognition using the modified census transform.. s.l., In Automatic Face and
Gesture Recognition, 2006. FGR 2006. 7th International Conference on, pages
351–356. IEEE,, p. .

Kaiser, M. & Hilgetag., C. C., 2004. Spatial growth of real-world networks.

Karmarkar, U. R. & Buonomano, D. V., 2007. Timing in the absence of
clocks:encoding time in neural network states.. s.l.:Neuron, 53(3):427-438.

Kuroda, T. et al., 2004. Consumer price data-glove for sign. s.l., In Proc. of 5th
Intl Conf.Disability, Virtual Reality Assoc. Tech., Oxford, UK,pages 253–258,.

Liebald, B., 2004. Exploration of effects of different network topologies on
theESN signal crosscorrelation matrix spectrum..

116

Lukosevicius, M., 2012. A Practical Guide to Applying Echo State Networks, s.l.:
Neural Networks: Tricks of the Trade, Reloaded.G. Montavon, G. B. Orr, and K.-
R. M•uller, editors, Springer.

Lukosevicius, M., 2012. Reservoir Computing and Self-OrganizedReservoir
Computing and Self-Organized. s.l.:School of Engineering and Science.

Maass, W., Joshi, P. & Sontag, E. D., 2006. Principles of real-time computing
with feedback applied to cortical microcircuit models. In: s.l.:Processing
Systems 18 (NIPS 2005), pages 835{842. MIT Press, Cambridge, MA.

Maass, W., Natschlager,, T. & Markram, H., 2002. Real-time computing without
stable states: a new framework for neural computation based onperturbations.
s.l.:Neural Computation, 14(11):2531{2560, 2002. ISSN 0899-7667.

Maass, W., Natschlager, T. & Markram, H., 2003. A model for real-time
computation in generic neural microcircuits.

Maass, W., Natschlager, T. & Markram, H., 2004. Computational models for
generic cortical microcircuits.. s.l.:Computational Neuroscience: A
Comprehensive Approach, pages 575-605. Chapman & Hall/CRC,.

Mitra, S. & Acharya, T., 2007. Gesture recognition: A survey. Systems, Man, and
Cybernetics. Part C:Applications and Reviews, IEEE Transactions on,37(3):311–
324, s.n.

Natschlager, T., Markram, H. & Maass, W., 2002. Computer models and
analysis tools for neural microcircuits.. In: s.l.:A PracticalGuide to Neuroscience
Databases and Associated Tools, chapter 9.Kluver Academic Publishers
(Boston).

schraudolph, N., Dayan, P. & Sejnowki, T., 1994. Using TD(λ) to learnan
evaluation function of the gameof Go. s.l.:NIPS-6.

Schreiber, M., Wilamowitz-Moellendorff, M. V. & Bruder, R., 2009. New
interaction concepts by using the wii remote. In: s.l.:Interaction Methods and
Techniques, pages 261–270.Springer.

Steil, J. J., 2004. Backpropagation-decorrelation: recurrent learning with O(N)
complexity. s.l., Proceedings of the IEEE International Joint Conference on
NeuralNetworks, 2004 (IJCNN 2004), volume 2, pages 84-848,.

117

Sun, G.-Z., Chen, H.-H. & Lee, Y.-C., 1993. Time warping invariant neural
network, s.l.: Advances in Neural Information Processing Systems 5,[NIPS
Conference] (pp. 180–187). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc..

Verstraeten, D., 2009-2010. Reservoir Computing: computation with dynamical
systems. s.l.:s.n.

Verstraeten, D., Schrauwen, B., D'Haene,, M. & Stroobandt, D., 2007a. An
experimental unification of reservoir computing methods. s.l., Neural
Networks,20(3):391-403.

Verstraeten, D., Schrauwen, B., Stroobandt, D. & Campenhout, J. V., 2005b.
Isolated word recognition with the liquid state machine: a case study. s.l.,
Information Processing Letters, 95(6):521-528,.

Watts, D. J. S. S. H., 1998. Collective dynamics of 'small-world networks..

Yamato, J., Ohya, J. & Ishii, K., 1992. Recognizing human action in time-
sequential images using hidden markov model. s.l., In Computer Vision and
Pattern Recognition,1992. Proceedings CVPR'92., 1992 IEEE Computer Society
Conference on, pages 379–385. IEEE.

Yang, M. H. & Ahuja, N., 2001. Recognizing hand gestures using motion
trajectories. s.l., In Face Detection and Gesture Recognition for Human-
Computer Interaction pages 53–81. Springer.

Yildiz, I. B., Jaeger, H. & Kiebel, S. J., 2012. Re-Visiting the Echo State Property,
s.l.: s.n.

SINGLE-MODAL TEMPORAL GESTURE RECOGNITION USING ESN CLASSIFIER

118

nu
mb
er

ty
pe

Uniform
distribution

Uniform
distribution

Distri-
bution

Distribution

1 P 950 0.95 [1.0] [0] 1.0 0 [1] [0] [0.1] [0.8] - [0] [0] [-1 1] U [-1 1] U 92.19%

2 L1 950 0.95 [1.0] [0] 1.0 0 [1] [0] [0] [0.8] - [0] [0] [-1 1] U [-1 1] U 42.95%

SINGLE-MODAL TEMPORAL GESTURE RECOGNITION USING ESN CLASSIFIER

119

3 L 720 0.95 [2.5] [0.2] 1.0 0.2 [1.4] [0.1] [0.005] [0.15] [0.8] [0] [0] [-1 1] U [-0.2 0.2] U 53.68%

4 L 720 0.95 [2.5] [0.2] 1.0 0.2 [1.4] [0.1] [0.004] [0.15] [0.8] [0] [0] [-1 1] U [-0.2 0.2] U 42.96%

5 L 720 0.95 [2.65] [0.2] 1.0 0.2 [1.4] [0.1] [0.0001] [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 35.12%

6 L 720

0.95 [2.65] [0.1] 1.0 0.1 [1.4] [0.1] [0.0001] [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 35.12%

7 L 1100 0.45 [2.65] [0.1] 1.0 0.1 [1.4] [0.1] [0.0001] [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 34.51%

8 L 1150 0.45 [2.65] [0.1] 1.0 0.1 [1.4] [0] [0.0001] [0.8] [0.8] [0] [0] [-1 1] U [-1 1] U 33.17%

9 L1 1200 0.45 [2.65] [0.1] 1.0 0.1 [1.4] [0] [0.0001] [0.8] - [0] [0] [-1 1] U [-1 1] U 35.24%

10 L1 1250 0.95 [2.5] [0.1] 1.0 0.1 [1.4] [0] [0.0001] [0.8] - [0] [0] [-1 1] U [-1 1] U 33.90%

11 L1 1300 0.95 [2.65] [0.1] 1.0 0.1 [1.4] [0] [0.00095] [0.15] - [0] [0] [-1 1] U [-1 1] U 37.31%

12 L1 1350 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] 0.1 [0.0001] [0.1] - [0] [0] [-1 1] U [-1 1] U 32.56%

13 L1 1000 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] 0.1 [0.0001] [0.1] - [0] [0] [-1 1] U [-1 1] U 29.26%

14 L1 720 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] 0.1 [0.0001] [0.1] - [0] [0] [-1 1] U [-1 1] U 30.24%

15 L1 720 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] 0.1 [0.0001] [0.1] - [0] [0.0012] [-1 1] U [-1 1] U 38.41%

16 L1 720 0.95 [2.5] [-0.2] 1 -0.2 [1.4] [0] [0.0001] [0.1] - [0] [0.0001] [-1 1] U [-1 1] U 33.41%

17 L1 720 0.75 [2.5] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0001] [0.1] - [0] [0] [-1 1] U [-1 1] U 33.89%

18 L1 720 0.55 [2.5] [-0.2] 1.0 -0.2 [1.4] [0] [0.0001] [0.1] - [0] [0] [-1 1] U [-1 1] U 33.39%

19 L1 720 0.35 [2.5] [-0.2] 1.0 -0.2 [1.4] [0] [0.0001] [0.1] - [0] [0] [-1 1] U [-1 1] U 32.56%

nu
mb
er

ty
pe

Uniform
distribution

Uniform
distribution

Distribu
tion

Distribution

20 L1 720 0.20 [2.5] [-0.2] 1.0 -0.2 [1.4] [0] [0.0001] [0.1] - [0] [0] [-1 1] U [-1 1] U 34.51%

21 L1 720 0.95 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.1] - [0.000001] [0] [-1 1] U [-1 1] U 33.90%

22 L1 720 0.95 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.1] - [0] [0] [-1 1] U [-1 1] U 34.02%

SINGLE-MODAL TEMPORAL GESTURE RECOGNITION USING ESN CLASSIFIER

120

23 L1 720 0.45 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.1] - [0] [0] [-1 1] U [-1 1] U 34.51%

24 L1 720 0.95 [1.3] [0] 1.0 0 [1.3] [0] [0.002] [0.5 0.7] U - [0] [0] [-1 1] U [-1 1] U 34.87%

25 L1 720 0.45 [1.3] [0] 1.0 0 [1.3] [0] [0.0015] [0.5 0.7] U - [0] [0] [-1 1] U [-1 1] U 37.68%

26 L1 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.0015] [0.2 0.3] U - [0] [0] [-1 1] U [-1 1] U 31.95%

27 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0.3] [0.0015] [0.2 0.3] U - [0] [0.01] [-1 1] U [-1 1] U 33.41%

28 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.0015] [0.2 0.3] U - [0] [0.001] [-1 1] U [-1 1] U 32.23%

29 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.0015] [0.2 0.3] U - [0] [0.0001] [-1 1] U [-1 1] U 32.92%

30 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.0015] [0.2 0.3] U - [0] [0.00001] [-1 1] U [-1 1] U 34.92%

31 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.0015] [0.2 0.9] U - [0] [0.001] [-1 1] U [-1 1] U 34.87%

32 L1 1050 0.95 [2.3] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0001] [0.1] - [0] [0] [-1 1] U [-1 1] U 33.04%

33 L1 1100 0.95 [2.3] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0001] [0.9] - [0] [0] [-1 1] U [-1 1] U 34.02%

34 L1 1150 0.95 [2.2] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0002] [0.8] - [0] [0] [-1 1] U [-1 1] U 33.17%

35 L1 900 0.95 [2.2] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0002] [0.8] - [0] [0] [-1 1] U [-1 1] U 33.65%

36 T 900 0.95 [2.4] [0.2] 1.0 0.2 [1.4] [0.1] [0.0001] [0.15] [0.8] [0] [0] [-1 1] U [-1 1] U 34.87%

37 T 950 0.95 [2.2] [0.2] 1.0 0.2 [1.4] [0.1] [0.00095] [0.15] [0.8] [0] [0] [-1 1] U [-1 1] U 35.36%

38 T 950 0.95 [2.2] [0.2] - - [1.4] [0.1] [0.00095] [0.15] [0.8] [0] [0] [-1 1] U [-1 1] U 35.24%

39 T 950 0.95 [2] [0] - - [1.4] [0] [0.00095] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 33.78%

nu
mb
er

ty
pe

Uniform
distribution

Uniform
distribution

Distribu
tion

Distribution

40 T 950 0.45 [2] [0] - - [1.4] [0] [0.00095] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 34.87%

41 T 950 0.45 [1.8] [0] - - [1.7] [0] [0.00095] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 34.82%

42 T 950 0.45 [1.5] [0] - - [1.8] [0] [0.00015] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 32.56%

SINGLE-MODAL TEMPORAL GESTURE RECOGNITION USING ESN CLASSIFIER

121

43 T 950 0.45 [1.5] [0] 1.0 0 [1.8] [0] [0.00015] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 33.29%

44 T 800 0.45 [1.5] [0] 1.0 0 [1.8] [0] [0.00015] [0.25] [0.8] [0.0001] [0] [-1 1] U [-1 1] U 34.39%

45 T 800 0.45 [1.5] [0] 1.0 0 [1.8] [0] [0.00015] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 33.41%

46 T 790 0.45 [1] [0] 1.0 0 [1.8] [0] [0.00017] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 31.21%

47 T 790 0.95 [1] [0] 1.0 0 [1.9] [0] [0.00017] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 36.46%

48 T 790 0.95 [1] [0] 1.0 0 [1.9] [0] [0.0002] [0.95] [0.8] [0] [0] [-1 1] U [-1 1] U 95.36%

49 T 790 0.95 [1] [0] 1.0 0 [0.9] [0] [0.0002] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 36.34%

50 T 750 0.95 [0.9] [0] 1.0 0 [1.9] [0] [0.0003] [0.25] [0.8] [0] [0] [-1 1] U [-1 1] U 36.58%

51 T 720 0.95 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.1] [0.8] [0.000001] [0] [-1 1] U [-1 1] U 36.21%

52 T 720 0.45 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.10.03] U [0.8] [0] [0] [-1 1] U [-1 1] U 34.26%

53 T 720 0.45 [2.5] [0] 1.0 0 [1.4] [0] [0.00016] [0.10.03] U [0.2] [0] [0] [-1 1] U [-1 1] U 40.24%

54 T 720 0.45 [1] [0] 1.0 0 [2] [0] [0.00024] [0.10.03] U [0.9] [0] [0] [-1 1] U [-1 1] U 37.19%

55 T 720 0.45 [1] [0] 1.0 0 [2.2] [0] [0.00028] [0.10.03] U [0.9] [0] [0] [-1 1] U [-1 1] U 39.26%

56 P 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.001] - - [0] [0.001] [-1 1] U [-1 1] U 33.53%

57 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.001] - - [0] [0.001] [-1 1] U [-1 1] U 33.78%

58 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.005] - - [0] [0.001] [-1 1] U [-1 1] U 31.70%

59 P 720 0.95 [1.3] [0] 0.7 0 [1.8] [0] [0.005] - - [0] [0.001] [-1 1] U [-1 1] U 33.17%

nu
mb
er

ty
pe

Uniform
distribution

Uniform
distribution

Distribu
tion

Distribution

60 P 720 0.95 [1.3] [0] 0.5 0 [1.8] [0] [0.005] - - [0] [0.001] [-1 1] U [-1 1] U 33.65%

61 P 720 0.95 [1.3] [0] 0.2 0 [1.8] [0] [0.005] - - [0] [0.001] [-1 1] U [-1 1] U 32.21%

62 P 720 0.95 [1.3] [0] 1.2 0 [1.8] [0] [0.005] - - [0] [0.001] [-1 1] U [-1 1] U 31.09%

SINGLE-MODAL TEMPORAL GESTURE RECOGNITION USING ESN CLASSIFIER

122

63 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.005] - - [0] [0.005] [-1 1] U [-1 1] U 34.63%

64 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.005] - - [0] [0.0012] [-1 1] U [-1 1] U 32.92%

65 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.005] - - [0] [0.0012] [-1 1] U [-1 1] U 33.24%

66 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.4] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 32.31%

67 P 720 0.95 [2.0] [-0.2] 1.0 -0.2 [1.4] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 33.04%

68 P 720 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 33.65%

69 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.8] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 32.56%

70 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.0] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 30.00%

71 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 32.31%

72 P 720 0.35 [1.5] [-0.2] 1.0 -0.2 [2.0] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 33.29%

73 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.3] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 33.29%

74 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.0] [0.1] - - - [0] [0.0001] [-1 1] U [-1 1] U 32.56%

75 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.4] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 33.53%

76 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.8] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 33.53%

77 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.0] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 33.17%

78 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.4] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 34.02%

79 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.8] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 31.34%

nu
mb
er

ty
pe

Uniform
distribution

Uniform
distribution

Distribu
tion

Distribution

80 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [3.2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 30.12%

81 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [3.6] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 30.73%

82 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.6] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 30.73%

SINGLE-MODAL TEMPORAL GESTURE RECOGNITION USING ESN CLASSIFIER

123

83 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.3] [0.1] - [0.1] [0.8] [0] [0] [-1 1] U [-1 1] U 30.85%

84 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.1] [0.8] [0] [0] [-1 1] U [-1 1] U 30.36%

85 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.1] [0.8] [0] [0] [-1 1] U [-1 1] U 31.70%

85 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [0.5] [0.1] - [0.1] [0.8] [0] [0] [-1 1] U [-1 1] U 34.39%

86 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.1] [0.8] [0] [0] [-1 1] U [-1 1] U 31.46%

87 L 720 0.95 [2.2] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.1] [0.8] [0] [0] [-1 1] U [-1 1] U 31.58%

88 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 28.53%

89 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.3] [0.8] [0] [0] [-1 1] U [-1 1] U 31.09%

90 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.4] [0.8] [0] [0] [-1 1] U [-1 1] U 29.87%

91 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.5] [0.8] [0] [0] [-1 1] U [-1 1] U 31.09%

92 L 720 0.75 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 30.00%

93 L 720 0.55 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 28.41%

94 L1 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] - [0] [0] [-1 1] U [-1 1] U 30.12%

95 T 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 33.41%

96 T 720 0.95 [1.5] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 34.51%

97 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 33.78%

98 T 720 0.95 [1.0] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 33.17%

nu
mb
er

ty
pe

Uniform
distribution

Uniform
distribution

Distribu
tion

Distribution

99 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 34.02%

100 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 34.09%

101 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.3] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 34.02%

SINGLE-MODAL TEMPORAL GESTURE RECOGNITION USING ESN CLASSIFIER

124

102 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.5] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 34.39%

103 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.4] [0.8] [0] [0] [-1 1] U [-1 1] U 0%

104 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.1] [0.8] [0] [0] [-1 1] U [-1 1] U 34.63%

105 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.05] [0.8] [0] [0] [-1 1] U [-1 1] U 35.97%

105 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.9] [0] [0] [-1 1] U [-1 1] U 31.09%

106 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [1.0] [0] [0] [-1 1] U [-1 1] U 32.92%

107 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [1.0] [0] [0] [-1 1] U [-1 1] U 34.63%

108 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [1.3] [0] [0] [-1 1] U [-1 1] U 38.04%

109 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.7] [0] [0] [-1 1] U [-1 1] U 33.04%

110 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.6] [0] [0] [-1 1] U [-1 1] U 35.73%

111 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.5] [0] [0] [-1 1] U [-1 1] U 40.36%

112 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.4] [0] [0] [-1 1] U [-1 1] U 47.43%

113 T 720 0.95 [1.1] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.9] [0] [0.0001] [-1 1] U [-1 1] U 33.78%

114 T 720 0.95 [1.1] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.9] [0] [0.00001] [-1 1] U [-1 1] U 33.65%

115 T 720 0.95 [1.1] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.9] [0] [0.01] [-1 1] U [-1 1] U 32.80%

115 P 700 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 34.75%

116 P 650 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 33.78%

nu
mb
er

ty
pe

Uniform
distribution

Uniform
distribution

Distribu
tion

Distribution

117 P 600 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 34.39%

118 P 550 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 32.68%

119 P 500 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 34.87%

SINGLE-MODAL TEMPORAL GESTURE RECOGNITION USING ESN CLASSIFIER

125

APPENDIX 1. Plain_ESN, leaky1_ESN,leaky_ESN,Twi_ESN error classification rate and the associated parameters setup.

120 P 400 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 34.26%

121 P 350 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 36.89%

122 P 300 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0] [-1 1] U [-1 1] U 36.82%

123 L 720 0.35 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 32.41%

124 L 720 0.2 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0] [-1 1] U [-1 1] U 34.86%

