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ABSTRACT 
Gesture recognition is one of the most significant issues of human-machine 
interconnection via mathematical algorithms. Gestures can originate from 
body or face motion and most of the time are recorded by a camera. Extracted 
cameras’ data (such as depth map, skeletal model) is provided to specific 
computational algorithms in order to achieve gesture recognition.  

This study is focused on temporal gesture recognition (detection plus 
classification) from skeletal data by a specific Reservoir Computing type called 
Echo State Network. The goal is to indicate the real order of gestures in the 
sequence expressed as a false gestures recognition percentage. The training 
and test data have been downloaded from the Chalearn Gesture Recognition 
Challenge. They contain a large manually labelled database of 7,820 gestures 
from a lexicon of 20 Italian gesture categories recorded with a KinectTM camera. 

Recurrent neural networks are a part of Artificial Neural Network architecture 
that is inspired by brain cyclical connectivity of neurons and uses recurrent 
function loops to store information. Recurrent neural networks (RNNs) have a 
great potential for "black box" modeling of nonlinear dynamical systems. 
Reservoir Computing is a subclass of Recurrent Neural Networks (RNNs). The 
"echo state" approach is a novel approach of RNNs. Large RNNs are 
interconnected as "reservoirs" of complex, excitable dynamics. Output units 
"tap" from this reservoir by linearly combining the desired output signal from 
the rich variety of excited reservoir signals. This idea leads to training 
algorithms where only the network-to-output connection weights have to be 
trained. This can be solved using ridge regression algorithms. Potential 
applications of ESN are dynamical systems, which were difficult to learn with 
previous methods. They include (long) periodic sequence generators, 
multistable switches, frequency measurement devices, controllers for nonlinear 
plants, long short-term memories, dynamical pattern recognizers, and notably, 
long-term predictors of chaotic attractors. Today ESNs are widely used in 
dynamical pattern recognition applications, control, and time series prediction 
applications (Jaeger, 2001) 

We investigate the performance of three different types of ESN (4 
implementations) internal activation units: plain_ESN, which generates the 
internal state of an ESN with standard additive-sigmoid, 
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leaky1_ESN\Leaky_ESN, which updates internal state using leaky integrator 
neuron model, and twi_ESN, which updates internal states using a time 
warping invariant model. The obtained network performance is measured by 
error classification rate. Error classification rate for each gesture is also 
provided. Overall approach achieves 28.53% gesture misclassification rate, 
providing error rate reduction of 3.12% compared to the best single modal 
approach presented in Chalearn Gesture Recognition Challenge 2013. 

Keywords: single-modal gesture recognition, ESN, gesture recognition, 
temporal classification. 
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CHAPTER 1. INTRODUCTION 

1.1 OVERVIEW 

Gesture recognition aims to recognize human motions, which are combined 
movements of body, head, arms and hands. This research field is very popular 
due to vast human-computer interaction applications. 

The most important thing in hand gesture recognition systems is the input 
feature, and the selection of good features representation. Human-computer 
interaction takes place by multiple sensors signals. In the beginning of gesture 
recognition research, the majority of approaches were based on controllers 
which equip users with wearable hardware devices for recording motion data. 
Nowadays proposed approaches focus on gesture recognition with vision-
based methods for capturing motion data. Plenty of computational methods 
are used for analyzing cameras’ motion data. 

Introduction of          outperformed gesture recognition research. 
          is a relatively cheap motion sensing input device which is inbuilt 
RGB camera, a depth sensor, and a multi-array microphone. Thus, this device 
provides multi-modal sensing data such as RGB image, depth image, audio, 
and skeletal. Provided            features make this device ideal for gesture 
recognition systems’ design. 

Reservoir Computing methods have some properties that make them an 
attractive choice for pattern recognition: learning sequences can represent 
data of different types (e.g. audio and video data), they can learn to store only 
the meaningful information of the data and they can learn to identify 
sequential patterns. 

1.2 RELATED WORK 

Based on their data capturing method, gesture recognition systems can be 
classified in two major categories. First one includes controller-based 
recognition systems: users hold or wear devices during gesture performing. 
          , introduced in (Kuroda, et al., 2004), is a low price data glove, 
which is used for sign language recognition. (Schreiber, et al., 2009) evaluated 
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the potential of a gesture-based human computer interaction system with a 
Wii Remote. 

Second one is controller-free recognition systems: users do not have to wear 
or hold any hardware.  Various types of sensors can be used for data capturing 
in these systems. Most used sensors in resent research field is cameras, lasers 
and infrared. Moreover, camera-based recognition systems can be divided in 
subsections: single camera, stereo camera systems and so on. 

Gestures to be recognized can be divided in two categories, static and dynamic. 
Static gesture recognition (also known as posture recognition) is expressed as a 
stable body posture. Body posture can be defined as the static movement, e.g. 
holding the hand in a specific pose is a posture, a victory sign, for example, 
pointing. On the other hand, dynamic gesture represents a sequence of 
dynamic body movements. In (Just, et al., 2006) introduced an approach to 
hand posture classification and recognition tasks. (Fang, et al., 2007) proposed 
a robust real-time hand gesture recognition method. Firstly, a specific gesture 
is required to trigger the hand detection followed by tracking; then the hand is 
segmented using motion and color cues; finally, in order to break the 
limitation of aspect ratio encountered in most of learning based hand gesture 
methods, the scale-space feature detection is integrated into gesture 
recognition. 

Most frequently used approaches for Dynamic recognition and classification of 
hand gestures is Machine Learning based approaches (Mitra & Acharya, 2007). 
The most common methods that considered the gesture as a result of some 
stochastic processes include Hidden Marcov Model, Finite State Machine, 
Kalman Filtering, Artificial Neural Network, and Principal Component Analysis. 

In (Yamato, et al., 1992) a Hidden Marcov Model method was first applied for 
gesture recognition. In (Yang & Ahuja, 2001) introduced a method to recognize 
40 hand gestures of American Sign Language (ASL) which used Time-Delay 
Neural Network (TDNN). Pixel-level motion trajectory is obtained across the 
image sequence by multi-scale motion segmentation and affine 
transformation. Then, the motion trajectory is matched to a given gesture 
model with TDNN. 

Different data capturing devices provide data which can be combined. These 
modalities allow us to improve recognition performance. (Bolt & Herranz, 
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1992) proposed a framework in which both hand gestures and speech signals 
are used to augment the user’s ability to communicate with computers. In 
their prototype, two handed gestures, both static and dynamic, were designed 
to input concepts, manipulate items and specify actions to be taken. 

1.3 PROPOSED APPROACH 

In this study, we focus on the detection and classification of single modally 
expressed gestures as performed freely by different people. Single modal 
gesture recognition arises many challenging research issues such as extraction 
of valuable features of the provided data, appropriate reform of data, and 
construction of an effective gesture recognition classifier. The database we 
used was introduced for the needs of Chalearn Gesture Recognition Challenge. 
This database comprises multimodal cultural-anthropological gestures of life 
realized as both hands-body-arm movements and spoken words, which are 
intermixed with irrelevant phrases and body movements. This features consist 
a demanding and challenging database. 

We present a single modal temporal gesture recognition framework that 
exploits skeletal data captured by a          device. An Echo State Network is 
used to build the gesture recognition classifier. This classifier is trained to 
“memorize” significant features of the provided reformed skeletal data and 
recognize gestures in a novel sequence data during test phase. Test error is 
measured by misclassification rate. 

A detailed report of the results is presented in section 8.6.3. Spectral radius 
can be tuned in a wide range of values without significant change in network 
performance and rearranging the input data timescale did not improve 
performance; is the significant result of experiments.  

1.4 CONTRIBUTION OF THE THESIS 

The main contribution of this study is to overview and describe an alternative 
method to classical supervised training of RNNs. This method belongs to the 
subcategory of RNNs called Reservoir computing. Reservoir computing 
methods consist a powerful tool for pattern generation.   

This study is organized as follows. Firstly, in Chapter 2, we give a brief review 
of Machine Learning. 
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In Chapter 3 we refer to Neural Networks and the important section of 
learning techniques (supervised and unsupervised learning). 

In connecting Chapter 4 we represent a description of Artificial Recurrent 
Neural Networks and an overview of Reservoir Computing Trends. 

In Chapter 5 we make a detailed description of Echo State Network and its 
significant properties. We continue our investigation in Chapter 6 with some 
practical issues concerning ESN. 

Chapter 7 concerns readouts of a network and classification strategies. 

Finally, in Chapter 8, we describe the executed experiments and provide our 
results. Some comparisons to other approaches as represented in (Escalera, et 
al., 2013b)  are demonstrated in Chapter 9.  
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CHAPTER 2. MACHINE LEARNING 

2.1 MACHINE LEARNING 

Machine learning is a type of artificial intelligence (AI) that provides computers 
with the ability to learn without being explicitly programmed. Machine 
learning focuses on the development of computer programs that iteratively 
learn from data. That is software that can develop properties to grow and 
change when new data is provided. 

Most significant feature of this type of Artificial Intelligence is learning. 
Roughly speaking, machine learning tries to configure how artificial systems 
can incorporate experience in order to improve their performance. 

2.2 MACHINE LEARNING WORKFLOW  

A typical workflow model for machine learning is described below: 

 Choose a computational model (i.e. Neural Network) which fits the 
learning task. 

 Choose a training algorithm and the associated parameters.  

 Collect or artificially generate data to apply to the learning task. 

 Train the model to approximate the desired task. For training, data is 
used. This data contains the ‘experience’ from which the model learns. 
Mathematically training is an optimization problem where parameters 
are adapted to estimate model performance. 
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CHAPTER 3. NEURAL NETWORKS 

3.1 NEURAL NETWORKS 

3.1.1 WHAT IS A NEURAL NETWORK? 

The definition of a neural network, or otherwise called, 'artificial' neural 
network (ANN), is given by Dr. Robert Hecht-Nielsen who first introduced 
neurocomputers. A neural network is defined as: 

"...a computing system made up of a number of simple, highly interconnected 
processing elements, which process information by their dynamic state 
response to external inputs” (Hecht-Nielsen, 1989). 

Neural Networks are a part of machine learning and they are inspired by the 
physical intelligence, brain. This study is mostly concerned with Recurrent 
Neural Networks and the Reservoir Computing approach. 

Trained Neural Network can be assumed as a black-box model since its internal 
workings are not known enough. The topology and parameters of Neural 
Networks are manually adapted, based on experience, and trial and error. 
Training is a looped process and it’s time and computation costly. It is hard to 
analyze mathematically complex and recurrent Neural Networks. 

Mathematically, Neural Networks can represent (almost) any function 
(Cybenko, 1989)or, in the case of Recurrent Neural Networks, dynamical 
system.  

During the last 50 years, computational power is growing exponentially 
(according to Moore’s law). Even so, it still is the major problem of Neural 
Networks. 

3.2 THE BASICS OF NEURAL NETWORKS 

Neural networks are usually split into layers. As displayed at the figure below, 
each layer consists of a number of interconnected 'nodes'. Every node contains 
an 'activation function'. The 'input layer' is responsible for operating via the 
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'input layer', which communicates to one or more 'hidden layers' where the 
actual processing is done via a system of weighted 'connections'. The hidden 
layers then link to an 'output layer like the figure below (Figure 1). 

 

 

 

Figure 1. Basic form of Neural Network 

 

The majority of ANNs are based on a 'learning rule' which manipulates the 
weights of the connections according to the input patterns. In a sense, ANNs 
learn by example, as do their biological counterparts; a child learns to 
recognize dogs from examples of dogs. 

There is a variety of learning rules that are employed by neural networks. 
Below an example of the usage of the delta rule is displayed. The delta rule is 
frequently utilized by the most popular class of ANNs, called 
'backpropagational neural networks' (BPNNs). Backpropagation is an 
abbreviation for the backwards propagation of error. 

Learning is a supervised procedure that takes place periodically at each cycle 
or 'epoch' (i.e. each time the network is presented with a new input pattern) 
through a forward activation flow of outputs, and the backwards error 
propagation of weight adjustments. To put it simply, when a neural network is 
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initially presented with a pattern it makes a random 'guess' as to what it might 
be. It then sees how far its answer was from the actual one and makes an 
appropriate adjustment to its connection weights. More analytically, the 
process looks something like the Figure 2 below: 

 

Figure 2. A Single Node Example 

 

Not to forget to mention that inside each hidden layer node there is a 
sigmoidal activation function which succeeds to stabilize the network through 
network activity polarization.  

Back propagation carries out a gradient descent within the solution's vector 
space towards a 'global minimum' along the steepest vector of the error 
surface. The global minimum is the theoretical solution with the lowest 
possible error. The error surface itself is a hyper paraboloid, but is seldom 
'smooth', as is depicted in the graphic below. Indeed, in most problems, the 
solution space is quite irregular with numerous 'pits' and 'hills' which may 
cause the network to settle down in a 'local minimum', which is not the best 
overall solution. 
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Figure 3. Delta Rule 

 

Due to the fact that the error space cannot be known from the start, neural 
network analysis is frequently related to a large number of individual 
executions to find the most appropriate solution. The learning rules used come 
with built-in mathematical terms to help in this process which control the 
'speed' (Beta-coefficient) and the 'momentum' of the learning. The speed of 
learning is calculated from the rate of convergence between the current 
solution and the global minimum. Momentum helps the network to overcome 
obstacles (local minima) in the error surface and settle down at or near the 
global minimum. 

Upon completion of the neural network 'training', the trained dataset may be 
used as an analytical tool on other data. In this case no training runs are 
executed but the network works in forward propagation mode only. New 
inputs are presented to the input pattern where they filter into and are 
processed by the middle layers as though training were taking place. However, 
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at this point the output is retained and no back propagation occurs. The 
output of a forward propagation run is the predicted model for the data which 
can then be used for further analysis and interpretation. 

 

The above process sometimes leads to an over trained neural network, which 
means that the network has been trained exactly to respond to only one type 
of input; which is much like rote memorization. In real-world applications this 
situation is not very useful since one would need a separate over trained 
network for each new kind of input. 

3.2.1 ACTIVATION FUNCTIONS 

Neuron’s transfer function is applied to the weighted sum of its inputs. This 
function governs the network’s behavior. The most common type is sigmoid 
function. This name comes from its relative similarity with letter S.  Different 
transfer functions are proposed in the literature (Figure 4).The most popular 
sigmoid functions are       and        . The        activation function 
equation is: 

 
         

 

          
 (3.1) 

And the related to              activation function:                   
   Other popular transfer functions are the           linear function and the 
          function. In most cases transfer function is non-linear, thus called 
the nonlinearity of the function too. 
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Figure 4. Some common activation functions used in neural networks 
( (Verstraeten, 2009-2010)). 

A significant characteristic of transfer functions is the squashing effect, which 
refers to the bounded range values of the neuron. That is, regardless of the 
magnitude of input signal the magnitude of neuron values remains limited to a 
specific value range. 

Also, the shape of the activation function is crucial for the network’s behavior 
and should be task adapted. Exact requirements and implementation of the 
task must take into consideration the right choice of activation function.  

 

3.2.2 HOW DO NEURAL NETWORKS DIFFER FROM CONVENTIONAL 
COMPUTING? 

There are some characteristics of artificial neural computing that differ from 
conventional 'serial' computer and its software process information. For 
example, a serial computer uses a central processor that has the ability to 
address an array of memory locations where data and instructions are stored. 
Computations are made by the processor reading an instruction as well as any 
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data the instruction requires from memory addresses, then the instruction is 
executed and the results are saved in a specified memory location as required. 
In a serial system (and a standard parallel one as well) the computational steps 
are deterministic, sequential, and logical, and the state of a given variable can 
be tracked from one operation to another. 

On the other hand, ANNs do not necessarily operate sequentially or in a 
deterministic way like described above. ANNs do not employ complex central 
processors, rather there are many simple ones which generally do nothing 
more than take the weighted sum of their inputs from other processors. ANNs 
do not follow previously programmed instructions; they respond in parallel 
(either simulated or actual) to the pattern of inputs presented to them. There 
are also no distinct memory addresses for storing data. Instead, information is 
contained in the overall activation 'state' of the network. 'Knowledge' is thus 
represented by the network itself, which is quite literally more than the sum of 
its individual components. 

3.2.3 WHAT APPLICATIONS SHOULD NEURAL NETWORKS BE USED 
FOR? 

Neural networks are considered as universal approximators, and are 
appropriate for systems that are highly tolerant to error. A neural network is 
not suitable for balancing one's cheque book. Neural networks are suitable for 
tracking associations or discovering regularities within a set of patterns, where 
the volume, number of variables, or diversity of the data is vast and the 
relationships between variables are complex or the relationships are hard to 
describe adequately with conventional approaches. 

3.3 LEARNING TECHNIQUES 

3.3.1 SUPERVISED AND UNSUPERVISED MACHINE LEARNING 

In supervised learning, the training data includes training data sets. Each data 
set is a pair of input vectors and the desired (target) output vectors. This data 
sets come from empirical observations or are artificially constructed, which 
represent the desired model behavior. 
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Figure 5. Supervised training process (Jaeger, 2002b). 

To train an RNN we use the training (teacher) data for training in order for the 
output of the network to fit the target output vectors. Then we test the RNN 
with a novel input which is similar to the training input sequence. We expect 
the target output to approximate the output of the trained network (Figure 5).  

A basic disadvantage of supervised training is overfitting (Figure 6). During the 
training process network fits the training data too well (extreme case: model 
duplicates teacher data exactly), but not the underlying function. The result of 
this process is that the network performs well on the data used during training 
and poorly with the test data. This is a computational expensive method of 
learning because we provide the network with vast amounts of training data, 
in order to improve the learning performance. 
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Figure 6. Overfitting: The model is learning the noise on the data instead of 
generalizing (learning then statistical properties of the data). 

Figure 7, below, shows the relationship between model complexity and 

training and validation errors. The optimal model has the fewest generalization 
errors, and is marked by a dashed line.  

 

 

Figure 7. Overfitting: the error on the training set keeps decreasing while the 
error on the (unseen) test set increases. The model is learning the noise on the 
data instead of generalizing (learning then statistical properties of the data). 

 

Supervised models are used mainly for: 

 Pattern recognition. 

 Classification.  

 Multi-layer percepton. 
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Unsupervised learning on the other hand, is an even less restricted setup. The 
training data set includes only input sequences, that is, the network is not 
provided with output data during the training. 

An important question is what should the goal of unsupervised learning be? 
Many authors provide different techniques, which are essentially based on 
minimizing error or maximizing reward in ML. They include: data compression, 
clustering, reducing dimensionality while preserving the topology, learning the 
statistical distribution of the input, minimizing free energy, learning to predict 
the input, looking for slowly varying (close to invariant) components of the 
data, sparse representation, maximal information transmission while using 
minimal energy. 

With unsupervised learning it is possible to learn larger and more complex 
models than with supervised learning. In supervised learning one is trying to 
find the connection between two sets of observations. The difficulty of the 
learning task increases exponentially in the number of steps between the two 
sets and that is why supervised learning cannot, in practice, learn models with 
deep hierarchies. 

3.3.2 REINFORCEMENT LEARNING 

Reinforcement learning methods can be expressed as an unbound region of 
learning. When a model is exposed to an input, model response is evaluated 
and scored (good response vs. rather bad response), without previous 
knowledge of correct behavior having been given. The system is provided with 
clues of desired output behavior, but this information is restricted. In other 
words, learning process is based on reward-penalty. A physical life example is 
walking or crawling. These learning algorithms are used in robotics 
implementations, because it is easier to define a reward signal than a 
rest3.2rict training signal. Complex games are another application example Go 
(schraudolph, et al., 1994), because it is almost impossible to define the 
desired response of the system to every incoming signal. 

 It can be used to cluster the input data in classes on the basis of their 
statistical properties only.  

 Cluster significance. 

 Labeling. 
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 The labeling can be carried out even if the labels are only available for a 
small number of objects representative of the desired classes. 

 Kmeans. 

 Self-organizing maps. 
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CHAPTER 4. RECURRENT NEURAL NETWORKS 

4.1 OVERVIEW 

Artificial recurrent neural networks (RNNs) are a large and varied domain of 

mathematical models, the architecture of which is trying to simulate biological 
brain modules. The basic structure element of a neural network is neurons. 
Neurons are interconnected by synaptic connections (or links) which enable 
activations to propagate through the network. Basic difference between the 

more widely used feedforward neural networks (FFNNs) and (RNNs) is that 

the connection topology includes one or more cycles (Figure 8). 

 

Figure 8. Typical structure of a feedforward network (left) and a recurrent 
network (right) (Jaeger, 2002b). 

The existence of cycles has the following impacts on the network: 

 An RNN may develop self-sustained temporal activation dynamics along 
with its recurrent connection pathways, even in the absence of input. 
Mathematically, this renders an RNN a dynamical system, while 
feedforward networks are functions (Lukosevicius, 2012) 

 If driven by an input signal, an RNN preserves in its internal state a 
nonlinear transformation of the input history. In other words, it has a 
dynamical memory, and is able to process temporal context information 
(Lukosevicius, 2012). 

The influence of RNN in nonlinear modeling was limited for a long time. The 
main reason for this stagnancy was that RNN models are to be trained by 
gradient descent methods, which aim at iteratively reducing the training error. 
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There is a lot of proposed training algorithms but they have numerous 
disadvantages: 

 It is intrinsically hard to learn dependences requiring long-range 
memory because the necessary gradient information exponentially 
dissolves over time (Bengio, et al., 1994) 

 Training tasks require advanced algorithms and one must parametrize a 
lot of global control parameters. Thus, experience is needed for a well-
performed network tuning.  

 The gradual change of network parameters during learning drives the 
network dynamics through bifurcations (Doya, 1992). 

Some characteristics of feedback networks are: 

 Many architectures exist. Activations are fed forward from input to 
output through "hidden layers" ("Multi-Layer Perceptrons" MLP) 

 They are static input-output topologies. 

 Backpropagation  is the most feedforward supervised training algorithm. 

 More than 90% of artificial neural network publications refer to 
feedforward networks. 

 They are good approximators of many practical applications such as 
nonlinear functions and pattern classificators. 

 
On the other hand, basic characteristics of Recurrent Neural Networks (RNN) 
are: 

 They have at least one cyclic path of synaptic connections. 

 Mathematically consist dynamical systems. 

 Many training algorithms have been proposed. 

 Theoretical and practical difficulties have prevented practical 
applications so far. 
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Figure 9. Principal pathway in the black-box modeling (Jaeger, 2002b). 

 

A new approach of RNN design and training was proposed independently by 
Wolfgang Maass under the name of Liquid State Machines (Maass, et al., 2002) 
and by Herbert Jaeger under the name of Echo State Networks (Jaeger, 2001). 
This approach, which had predecessors in computational neuroscience 
(Dominey, 1995) and subsequent Ramifications in machine learning as the 
BackPropagation-DeCorrelation (Steil, 2004) learning rule, is now increasingly 
often referred as Reservoir Computing (RC) (Verstraeten, et al., 2007a). The RC 
approaches try to overcome the disadvantages of gradient-descent RNN 
training listed above, by setting up RNNs in the following way (Figure 10): 

 The RNN is created randomly and stays unchanged during training. This 
recurrent neural network is named the reservoir. Reservoir is excited by 
the input sequence and preserves in its state a highly nonlinear 
transformation of input history. 
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  The desired output signal is produced as a linear combination of the 
neuron's signals from the input-excited reservoir. This linear 
combination is obtained by linear regression, using the teacher signal as 
a target. 

 

Figure 10. A. Traditional gradient-descent-based RNN training methods adapt 
all connection weights (bold arrows), including input-to-RNN, RNN-internal, 
and RNN-to-output weights. B. In Reservoir Computing, only the RNN-to-
output weights are adapted (Lukosevicius, 2012). 

Reservoir computing methods have become very popular. The main reasons 
for this development are the following: 

 Modeling accuracy. Reservoir computing performs better than  previous 
methods of nonlinear identification systems, prediction and 
classification, for instance, in predicting chaotic dynamics (Jaeger & Haas, 
2004), nonlinear wireless channel equalization (two orders of magnitude 
improvement (Jaeger & Haas, 2004), the Japanese Vowel benchmark 
(zero test error rate, previous best: 1.8% (Jaeger, et al., 2007a)), financial 
forecasting (winner of the international forecasting competition NN32), 
and in isolated spoken digits recognition (improvement of word error 
rate on benchmark from 0.6% of previous best system to 0.2% 
(Verstraeten, et al., 2005b) and further to 0% test error in recent 
unpublished work). 

 Modeling capacity. RC is used for continuous-time, continuous value 
real-time systems modeled with bounded resources (including time and 
value resolution) (Maass, et al., 2003), (Maass, et al., 2006). 

 Biological plausibility. Numerous connections of RC principles to 
architectural and dynamical properties of mammalian brains have been 
established. RC (or closely related models) provides explanations of why 
biological brains can carry out accurate computations with an 
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inaccurate" and noisy physical substrate (Buonomano, 1995) (Haeusler 
& Maass, 2007), especially accurate timing (Karmarkar & Buonomano, 
2007). 

4.2 FORMALISM 

4.2.1 FORMAL DESCRIPTION OF RECURRENT NEURAL NETWORKS 

A recurrent neural network consists of neurons (internal units) which are 
connected by synaptic links whose synaptic strength is coded by weight. These 
networks usually have input units, internal units and output units. At a given 
time     input units have an activation       Similar activations have the 
internal      and output units      respectively. 

 

Figure 11. A topology of RNN models 

In Figure 11 we can distinguish two major categories of RNN models. One is 
describing discrete time models over steps             and the other 
continuous time models which are defined with differential equations over a 
continuous time  . Continuous dynamical models which are used for biological 
modeling usually involve and describe activation signals in the sense of 
individual action potentials (spikes). 

Assume a discrete time RNN model. This model consists of   input units,   
internal units and L output units whose activations vectors are respectively: 
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  (4.1) 

                        
  (4.2) 

                        
  (4.3) 

 

The input weight matrix    size is     , internal units   size is    , output 

weight matrix            is         and the optional weight matrix       of 

feedback is     

 

 

Figure 12. Basic architecture of RNN models. Shaded arrows indicate optional 
connections. Dotted arrows mark connections which are trained in the "echo 
state network" approach (in other approaches, all connections can be trained), 
(Jaeger, 2001). 

Output units are allowed to have connections not only to internal units but 
also (often) to input units and (rarely) to output units. 

Updates of internal units activations are calculated according to the equation: 



  

36 
 

 

      

                  

            

(4.4) 

 

Where f denotes the activation function or unit activation function. Typically, 
the sigmoid function f=tanh is used. f is applied component-wise. 
 The output of the network is: 
 

                                (4.5) 

 

Where                    is the concatenation matrix of input, internal and 

output activation vectors. Output activation function     is either 

    =     or     =identity. 

 

4.2.2 APPROACHING A MACHINE LEARNING PROBLEM 

A task in machine learning can be defined as a problem of a functional relation 
between a given input sequence           and a desired (target)          
   output sequence, where               is the number of steps in the 
data set               . When a training set includes both input and target 
signal it is called supervised machine learning. 

If steps included in data set are independent of each other,  the goal is to learn 
a function of the form             , such that the error measure 

            is minimized. Typically, this error is the normalized root-mean-
square error (NRMSE) 
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 (4.6) 

 

Where     stands for mean. 

This is a non-temporal task. Non temporal tasks are memoryless. 

On the contrary, a temporal task is to learn a function              

         from an input signal      and a target signal            such that 
             is minimized. The difference between the temporal and non-
temporal task is that the function      we are trying to learn is memoryless in 
the first case and has memory in the second. 

In a temporal task the function to be learned also depends on the input history 
of the input thus the expansion function has memory:              
          Since this function has an unbounded number of parameters, 
practical implementations often take an alternative, recursive, definition: 

  

                     (4.7) 

 

A well-learned task, or with good precision or accuracy means that the 
              is small. Typically, one part of the data points of    is used for 
training and the rest for testing it. 

4.3 RESERVOIR COMPUTING 

A basic difference between the traditional design and learning techniques of 
RNN and Reservoir Computing is that, the second one makes a computational 
and conceptual separation between a recurrence Dynamic reservoir  and a 
recurrence free (usually linear) readout which produces the desired output 
from the expansion. The Dynamic Reservoir and the readout serve different 
purposes,     expands the input history                   into a rich 
enough reservoir state space           ,while      combines the internal 
unit      into the desired output signal         . In the linear readout 
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case                          , for each dimension    of   an output 
weight vector        

 
 in the same space    is found such that  

                      
      

    (4.8) 

While the purpose of        is to contain as much as possible a rich 
representation of input history (Lukosevicius, 2012). The Reservoir Computing 
readout is basically a non-temporal function, learning of which is simple. 

In RNN training methods, previous to RC, we do not make this separation 
between reservoir and readout, thus both internal weights and output weights 
are trained the same manner. Analyses of traditional training algorithms have 
furthermore revealed that the learning dynamics of internal vs. output weights 
exhibit systematic and striking differences (Lukosevicius, 2012). 

Basic representatives of RC methods are represented below. Each of these 
methods has its own structure, type of reservoir and specific insights. 

4.3.1 ECHO STATE NETWORK 

Echo State Network design (Jaeger, 2007b)is based on the principle that if a 
random RNN possesses certain algebraic properties, training only a linear 
readout from it is often enough to achieve excellent performance in practical 
applications. RNN is divided in two parts, the untrained part of ESN is called 
Dynamic Reservoir which includes the internal units (neurons). These internal 
units are termed        of its input history. The readout from the reservoir is 
the second part which is usually linear. 

                           (4.9) 

  
Where                     is the learned output weight matrix,          is 
the output neuron activation function (usually the identity) applied 
component-wise, and       stands for a vertical concatenation of vectors. The 
most used batch training method to compute       is linear regression. 
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4.3.2 LIQUID STATE MACHINE 

Liquid State Machines (LSMs) (Maass, et al., 2002) developed independently 
but simultaneously with ESNs. LSMs were developed from a computational 
neuroscience background, aiming at elucidating the principal computational 
properties of neural microcircuits (Maass, et al., 2002), (Maass, et al., 2003), 
(Natschlager, et al., 2002), (Maass, et al., 2004). LSMs use biologically inspired, 
more sophisticated, models of spiking integration, and fire neurons and 
dynamic synaptic connection models inside reservoir. In terms referred to LSM 
design, the reservoir is the liquid, which is the excited states as ripples on the 
surface of a body of water. LSM input signals usually consist of spike trains. 
Readouts used are similar to ESNS or multilayer feedforward neural network 
methods. 

4.3.3 EVOLINO 

Evolino is a type of RNN with Long Short-Term-Memory ((LSTM)) constructed 
with units capable of preserving memory for long periods of time. The 
reservoir weights are trained using evolutionary methods. 

4.3.4 BACKPROPAGATION-DECORRELATION 

BackPropagation-DeCorrelation (BPDC), was introduced by (Steil, 2004). It 
approximates and significantly simplifies the APRL method, and only applies it 
to the output weights     , turning it into an online RC method. BPDC uses 
the reservoir update equation defined in eq. (4.4), where output feedbacks 
     are essential, with the same type of units as ESNs. BPDC learning is 
claimed to be insensitive to the parameters of fixed internal units (reservoir) 
weights . 
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CHAPTER 5. ECHO STATE NETWORK 

5.1 OVERVIEW 

The main idea of an ESN [Jaeger, 2001, 2002b] is (i) to drive a random, large, 
fixed, recurrent neural network with the input signal thereby inducing in each 
neuron within this “reservoir” network a nonlinear response signal, and (ii) to 
create a desired output signal by a trainable linear combination of all of these 
response signals. The internal weights of the underlying reservoir network are 
not changed by the learning; only the reservoir-to-output connections are 
trained.  

This means that in order to produce a ‘rich’ set of dynamics inside reservoir, 
reservoir   must be large with order ranging from ten to thousands, the 
internal weight matrix   must be sparse up to 20% connections, and the 
weights of the connections are chosen from a uniform distribution symmetric 
around zero. 

The optionally feedback weights       and input weights     are chosen to 
be either dense or sparse and generated randomly from a uniform distribution. 
Input scaling and shifting (a constant value added to       of the input signal 
must be ‘tuned’ manually. The magnitude of these values depends on how non 
linearity of the processing unit is needed for the task. If the inputs are far from 
zero the      internal units tend to drive activations more towards saturation 
where they exhibit more nonlinearity, while for inputs that are close to 
zero,      internal units tend to operate with activations close to zero. Input 
shifting sometimes helps to overcome undesired consequences of the 
symmetry around zero of the internal units. 

5.2 BASIC ECHO STATE NETWORK MODEL 

The basic echo state network model is described in this section (Figure 13). We 

assume a discrete-time neural networks with   input units,   internal 

network units and   output units. Activation of input units at time step   are 
                        of internal units 

are                    , and                        of output 
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units. Real-valued connection weights are collected in a       weight matrix  

         
  ) for the input weights, in a       matrix       ) for the 

internal connections, in an                 matrix           
   ) for 

the connections to the output units, and in a      matrix Wback = (    
    ) 

for the connections that project back from the output to the internal units, and 

in a      matrix            
       for the connections that project back 

from the output to the internal units.      is the added noise of step  . 

 

Figure 13. Basic echo state network architecture. Dashed arrows indicate 
connections that are optional (Yildiz, et al., 2012). 

 

Input to output unit direct connections and connections between outputs are 
permitted. This basic architecture does not include layered structure of the 
reservoir. 

The activation of internal units is updated according to: 
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(5.1) 

Where               are activation functions of internal units. Usually 

are sigmoid functions. 
 
The readout from the reservoir is calculated according to: 
 

      

                     

           

(5.2) 

Where        
         

   are activation functions of internal units. 
Typically, sigmoid or identity function used and applied element-wise. 
 
The readout can be written as follows without output to output connections  
 

      

                       

      

 

(5.3) 

 
 
Where       is the learned output matrix,       denotes vertical concatenation 
of vectors and the column vector of ones is an optional bias input. To compute 
     we use linear regression. 

5.3 RESERVOIR READOUTS  

This is a well-known section in machine learning. Conceptually, we want to 
“filter” a readout from the reservoir which is a supervised non-temporal task 

of mapping      to           . Several methods are available, one can use 

his favorite.  
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5.3.1 SINGLE-LAYER READOUT 

5.3.1.1 LINEAR REGRESSION 
The readout of the described network is a single-layer readout. Also, we 
assume that the output activation function is linear, then the equation can be 
written in a matrix notation as: 
 

         (5.4) 

  

Where   are all      and   are all               produced by presenting 
the reservoir with     , both are collected into respective matrices over the 
training period         . Due to initial transients the data of the first 
steps of the training run are discarded. In most cases the task requires to 
minimize the quadratic error            . Since our goal is to find the optimal 
weight     

 that minimizes the squared error between      and            

(                ) we solve the linear system equations: 

              (5.5) 

 
 

Where         
are all           . The system is overdetermined because   

      . 

One direct method to solve this system is calculating the Moore-Penrose 

pseudoinverse    of   and       
as:  
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               (5.6) 

  

 

                                 Figure 14. An echo state network. (Lukosevicius, 2012) 

Calculations of direct pseudoinverse are memory expensive for large state-

collecting matrices   but is numerical stable. 

This issue can be overcome by reforming eq. (5.6) in the normal equations 
formulation: 

                  

 

(5.7) 

 
 

A solution of eq. (5.7) would be: 

                      (5.8) 

  

The method eq. (5.8) has lower numerical stability, compared to eq. (5.6). In 
addition, this method enables one to introduce ridge, or Tikhonov, 
regularization elegantly: 

                         (5.9) 

  

Where   is a regularization coefficient explained, and I is the identity matrix.  
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Large weight values reveal that       amplifies small differences between the 
dimensions of internal states      and can be very sensitive to deviations from 
the exact conditions in which the network has to be trained. When a network 
topology uses its output as the next input (using feedback connection) this is a 
big problem. This tiny difference between the output and the expected value 
becomes bigger in the next steps. 

To minimize the effect of feedback instability or if there is a chance of 
overfitting we use ridge regression. Instead of just minimizing RMSE, ridge 
regression eq. (5.9) solves: 

     
      
     

 
 
           

 

 

 

   

  
 
      

    
 
      

     
 
  

(5.10) 

 

Where   
     is the      row of      and    stands for the Euclidean norm. 

The objective function in eq. (5.10) adds a regularization, or weight decay and 

the term      
       limits large sizes of      to the square error 

between      and          . This is a sum of two objectives, a compromise 
between having a small training error and small output weights. The relative 
“importance" between these two objectives is controlled by the regularization 
parameter. 

It is not necessary to rerun the ESN with training data for every value β, 
because no variable of the equation eq. (5.9) is affected. Optimal values of β 
can be found in different ranges and depend on the exact instance of the 
reservoir and length of training sequence too. 

The solution of the equation eq. (5.9) with     is  

                      

 

(5.11) 

 
 

and to remove regularization. Equation eq. (5.10) is now equivalent to the 
RMSE function and the ridge regression is now a regular linear regression. 
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Setting     sometimes leads to numeric instabilities when inverting     in 
eq. (5.9). Numeric instabilities can be avoided by using a pseudoinverse       
instead of the real inverse         in eq. (5.9). 

In (Jaeger, 2002b) it is recommended to add noise to the internal units       . 
This practice has a similar effect as Tikhonof regularization. Adding noise to the 
internal units makes reservoir less sensitive and the output learns to recover 
from perturbed signals so the network is more stable to feedback loops. 

5.3.1.2 WIENER-HOPF SOLUTION 
An even faster (but less computationally stable) alternative solution is Wiener-
Hopf equations and calculation of                . Since the       matrix 
has typically many more columns than rows         , we get a much 

smaller autocovariance matrix                           
whose inverse 

we need to calculate. In most cases (namely, when the condition number of 
   

 has a reasonably small size) this method gives similar results to the ones 

calculated by the QR factorization. When training only a subset                   
of the output (dimensions)       at a time, only the corresponding rows 
of        are used and thus only the corresponding rows 

   
                

      
        of the output weights are calculated. 

 

5.4 ECHO STATE PROPERTY 

To make an ESN network work properly, the reservoir should have the echo 
state property (Jaeger, 2001). Having echo states (or not having them) is a 
property of the network prior to training, that is, a property of the weight 

matrices    ,  , and (optionally, if they exist)       .We require that the 
training input vectors      come from a compact interval   and the training 
output vectors            from a compact interval  . Mathematical definition 
of echo states is as follows: 

Definition (echo states). Assume an untrained network with 

weights    , , and       is driven by teacher input      and teacher-forced 
by teacher output            from compact intervals   and  . The network 

(   ,  ,      ) has echo states with regard to   and  , if for every left-
infinite input/output sequence (     ,             ), where    
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              and for all state sequences            compatible with the 
teacher sequence, i.e. with: 

      

                  

                         

(5.12) 

 

       

                   

                         

(5.13) 

 
it holds that                          
 
Intuitively, the echo state property says, "if the network has been run for a very 
long time [from minus infinity time in the definition], the current network state 
is uniquely determined by the history of the input and the (teacher-forced) 
output (Jaeger, 2002b) 
 
A condition (forgetting property) equivalent to echo states, determines that 
the effects on initial network wash out over time (Jaeger, 2002b) 
 
These conditions essentially determine, that the effect of a state      and or 
the previous      on a future state        should ‘decay’ gradually as time 
passes and not get amplified or be stable. For most practical purposes, echo 
state property assures if the largest absolute eigenvalue       of the reservoir 
weight matrix   is         .The largest absolute eigenvalue       is the 
spectral radius   of weight matrix . 
 
A common computational method to achieve an internal weight matrix   with 
spectral radius less than one is: 
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1. Randomly generate an internal weight sparse matrix    with zero mean 
value of weights. 

2. Normalize     to a matrix   with unit spectral radius by putting    
          , where       is the spectral radius of     . Scale     
to          , where      , whereby   obtains a spectral radius of  . 

The optimal value of the spectral radius is crucial for the performance of the 
network and should be task adapted. This means that we must set the 
magnitude of spectral radius considering the profile of memory and 
nonlinearity the learning task require. The internal timescale of the dynamics 
of the dynamic reservoir state is connected to   [jaeger, 2003]. Spectral radius 
(Jaeger, 2001) should be close to 1 for learning tasks that require long short-
term memory and smaller for the tasks where a too long memory might be 
harmful. Small   means that one has a fast Dynamic Reservoir, on the contrary 
close to unit   has a slow Dynamic Reservoir. For example, if one wishes to 
train a sine generator, one should use a small   for fast sinewaves and a large 
  for slow sinewaves (Jaeger, 2002b). A considerable effect of large spectral 
radius is that it drives internal units      into more nonlinear regions of 

     units similarly to     . Thus scalings of both     and   have a similar 
effect on nonlinearity of the ESN, with a difference that scaling up   makes 
reservoir unstable, while their difference determines the effect of current 
versus past inputs on the current state (Lukosevicius, 2012). 

A question that we must answer, is why a Dynamic reservoir must have the 
echo state property in order to work appropriately. 

Engineering speaking, the unknown system’s dynamics are ruled by the update 
equation 

                  

                  

                  

(5.14) 

           

Where   is a (possibly highly complex) nonlinear function of the previous 
inputs and system outputs of deterministic, stationary system. 
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For modeling a specific task with unknown equation system (black-box) 
accurately, it relies on how good the approximation of the system function e is. 
Assume an ESN with output linear function, that its trained output of the 
network is a linear combination of the internal units of the network. 

                             

1,         2=         ( )          

 

(5.15) 

 

    
          

(5.16) 

 
 

   
                                

                 
(5.17) 

 

Above equation makes clear how the desired approximation of the system 

function is a linear combination of echo functions   . Arguments    and   
represent the same thing: collections of previous inputs and readouts of the 
network. 

5.5 EXAMPLE OF A SMALL TIMER NETWORK 

Assume an input-output network. We want to train this network to act as a 
timer (Figure 15). For this network we consider two inputs         and one 
output   . First input       sometimes jumps to 1 but at most of the time is 0. 
Second input       values range from 0.1 to 1 with specific step 0.1. Each 
time input       jumps to 1 second input       takes a new random value of 
the second input range. The target output is 0.5 for          time steps after 
      was 1, otherwise is zero. This implementation indicates a timer:        
gives the "start" activation for the timer,       gives the desired duration. 
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Figure 15. Timer network 

 

 

 

Traces of inputs, outputs, teacher output and readout of the network, if 
represented, are in the following Figure 16: 
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Figure 16. Performance of the network. Dotted line in last graph shows 
network’s output and solid line desired or teacher output. 

This learning task example reveals the major property of the network, which 
must have a kind of memory. Network must act as memory in order to ‘store’ 
information about the ‘start’ signal and the duration of as many time steps as 
possible. This is possible because of internal units “echoing” the inputs signals. 
 

5.6 SHORT-TERM MEMORY 

Most of the tasks in control and furthermore in signal analysis require system 
models with significant STM spams. By STM we understand memory effects 
connected with the transient activation dynamics of network (Jaeger, 2002b), 
or in other words the property of some input- output systems, where the 
current output      depends on earlier values        of the input and/or 
earlier values        of the output itself (Figure 17). RNNs are dynamical 
systems with high dimensional internal state    ). The state      preserves 
some kind of information of the input history. Such an engineer task is 
suppressing       in telephone channels. 

The dynamic reservoir activation units       is, a sort of, echo functions     of 
the past input-output history to the current state. 

          
     (5.18) 

 
 

                                          

       

(5.19) 

  

 



  

52 
 

 

Figure 17. Short Term Memory of RNNs. The shading of the nodes in the 
unfolded network indicates their sensitivity to the inputs at time one (the 
darker the shade, the greater the sensitivity). The sensitivity decays over time 
as new inputs overwrite the activations of the reservoir, and the network 
`forgets' the first inputs (Graves, 2008). 

  

5.7 TRAINING AN ESN AS A DELAY LINE 

A question is revealed, how many of the previous steps               
    are relevant to echo state function, or how long is the short-term memory 
of an ESN effective.  

We train ESN as a pure STM task. For the task we use an ESN with one input 
and many output units. The input      is a white noise signal generated by 
sampling at each time independently from a uniform distribution 

over  –         . We consider delays            . For each delay  , we train a 

separate output unit with the training signal    
      

           . Network 

has no feedback connections, so all output units can be trained simultaneously 
and independently from each other. 
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Figure 18. Setup of delay learning task. 

 

Where            
      

   ,            
      

   ,… 

A Dynamic reservoir of    units was used, with connectivity    , that is,     
of the weight matrix are non-null elements and were sampled randomly from 
a uniform distribution over       . Spectral radius was      . The input 
weights were set to values of –0.1 or +0.1 with equal probability. We trained 4 
output units with delays of                The training was done over 300 
time steps, of which the first 100 were discarded to wash out initial transients. 
On test data, the trained network showed testing mean square errors of 
                                      for the four trained delays. 
Figure 19 (upper diagrams) shows an overlay of the correct delayed signals 
(solid line) with the trained network output. 
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Figure 19. 20 with a 20-unit DR. Results of training delays k = 4, 8, 16. Top row: 
input weights of size –0.1 or +0.1, bottom row: input weights sized –0.001 or 
+0.001. 

When the same experiment is rerun with the same DR, but with much smaller 

input weights set to random values of –       or       , the performance 
greatly improves: testing errors 
                                           are now obtained. 

Three fundamental observations can be gleaned from this simple example: 

1. The network can master the delay learning task, which implies that the 
current network state      retains extractable information about previous 
inputs       . 

2. The longer the delay, the poorer the delay learning performance. 

3. The smaller the input weights, the better the performance. 

5.8 MEMORY CAPACITY   

The most important function of the reservoir is to keep the memory of the 
previous inputs. Some results concerning the ESNs networks are listed below 
(Jaeger, 2001): 

Theorem 1. In a network whose    has   nodes,      . That is, the 
maximal possible memory capacity is bounded by    size. 

This correlation-based measure of short-term memory capacity, evaluating 
how well      can be reconstructed by the reservoir as          after 
various delays  , was introduced in [Jaeger, 2002a]. We define the memory 
capacity    of a network as: 

      
 

   

               (5.20) 

Where correlation coefficient                  between the correct 
delayed signal        and the network output        of the unit trained on 
the delay  . It ranges between –1 and 1. By squaring it, we obtain a quantity 
called the determination coefficient                  . It ranges between 0 
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and 1. A value of 1 indicates perfect correlation between correct signal and 
network output, a    value of 0 indicates complete loss of correlation.  Perfect 

recall of the   –delayed signal would thus be indicated as        

            , complete failure as                    . 

Theorem 2. In a linear network with   nodes, generically       . That is, a 
linear network will generically reach maximal network capacity. Notes: (i) a 
linear network is a network whose internal units have a linear transfer function, 
i.e.       . (ii) "Generically" means: if we randomly construct such a network, 
it will have the desired property with probability one. 

All of the above memory measurement experiments are accomplished with 
only one-dimensional       input     . Memory of a multidimensional input 
in the reservoir was investigated in (Hermans & Schrauwen, 2010). Results 
show that the shape of the memory curve depends on the spectral 
radius           : reservoirs with small            have precise memory of 
the recent input which drops sharply with delay  , while those with big 
           have a more extended memory at the expense of precision. The 
same limit   of the correlation-based memory capacity applies, which input 
dimensions have to share. The individual principal components of the input 
have memory capacity roughly proportional to the square root of their 
variance, indicating that a lot of memory is spent for non-principal 
components. 

5.9 GENERIC RESERVOIR “RECIPES” 

5.9.1 DIFFERENT TOPOLOGIES OF THE RESERVOIR 

Many authors have proposed different topologies of the ESN reservoir from 
sparsely and randomly connected ones. Specifically, small-world (Watts, 1998), 
scale-free (Barabasi & Albert, 1999), and biologically inspired connection 
topologies generated by spatial growth (Kaiser & Hilgetag., 2004). Eigenvalue 
spread of the cross-correlation matrix of the activations      and the NRMS 
error were used to evaluate the results of these topologies. The investigation 
concludes that ‘(. . . ) none of the investigated network topologies was able to 
perform significantly better than simple random networks, both in terms of 
eigenvalue spread as well as testing error" (Liebald, 2004). 
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5.9.2 INTERNAL UNITS ACTIVATION METHODS 

 

5.9.2.1 LEAKY INTERGRATOR NEURONS  
Standard sigmoid unit networks have the disadvantage that they do not 

include a time constant. This means that dynamics cannot be “slowed down” 

like the dynamics of a differential equation. The units in standard sigmoid 

networks have no memory; their values at time n + 1 depend only fractionally 

and indirectly on their previous value. Thus, these networks are best suited for 

modeling intrinsically discrete-time systems with a “computational”, “jumpy” 

flavor. It is difficult, for instance, to learn slow dynamics like very slow sine 

waves. For learning slowly and continuously changing systems, it is more 

adequate to use networks with continuous dynamics. Using a standard sigmoid 

network it is almost impossible to obtain a very slow dynamics ESN generator 

(Jaeger, 2001). 

Excluding the basic sigmoid units of ESN, there is another implementation of 

internal units (Jaeger, 2001) introduced as leaky integrator neurons. This type 

of internal activation units incorporates a “leaky” integration of its activation 

from previous time steps. 

 

We assume an Echo State network with   inputs,   reservoir activation units 

and   output units.           denotes the  -dimensional input vector, 

         the   dimensional reservoir activation state,          the  -

dimensional output vector,    ,  ,      and      the input / internal / 

output / output feedback connection weight matrices of sizes          

               and      , respectively. Then the continuous-time 

dynamics of a leaky integrator ESN which accumulates (integrates) its inputs, 

but also exponentially loses (leaks) accumulate excitation over time is given by: 

 

   
 

 
                       

(5.21) 
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               (5.22) 

  

Where       is a global time constant which rules the speed of dynamics, 

      is the decay (leakage) rate of internal units (we assume a uniform 

leaking rate for simplicity),   is a sigmoid function (we will use     ), g is the 

output activation function (usually the identity or a sigmoid) and       denotes 

vector concatenation. 

Using Euler (linear) interpolation of above equation with step size   we obtain 

the following discrete time internal units updated equation with a given 

discrete time sample input         

      

    
  

 
     

 
 

 
                    

            

 

(5.23) 

 

                         (5.24) 

  

Since we only consider simulations of network here, training data provided in a 

discrete time domain and the sampling period    is known. We assume (Jaeger, 

et al., n.d.) that    has been suitably fixed. This assumption allow us to write 

      instead of       and indicates that the input sequence is treated now as 

a discrete time sequence. Also we substitute     with   : 
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(5.25) 

 

                        (5.26) 

 
 
where    is a compound time gap between two consecutive time steps divided 
by the time constant of the system and   is the decay (or leakage) rate 
(Lukosevicius, 2012) 
 
if we set     and redefine    in the above equation as the leaking rate   to 
control the “speed” of dynamics: 
 

      

          

                   

            

 

(5.27) 

  
Essentially, described equation is an exponential moving average (smoother). 
This equation has only one additional parameter and the desirable property 
that neuron activations      never go outside the boundaries denoted by     . 
The basic ESN is a special case of leaky integrator neuron. Small values of   and 
   result in reservoirs that react slowly to the input. A natural constraint of 
leaking rate is that it never exceeds 1 and specifically        . 
 
From a signal processing point of view, the exponential moving average on the 
neuron activation eq. (5.25) does a simple low-pass filtering of its activations 
with the cutoff frequency: 
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  (5.28) 

 
Where     is the Euler discretization time step. This makes the neurons 
average out the frequencies above fc and enables tuning the reservoirs for 
particular frequencies. 

5.9.2.2 TIME WARPING INVARIANT ECHO STATE NETWORK (TWI ESN) 
Dealing with artificial data which are transformed to time series or data who 
came from human activities a common problem is time warping. Which is 
input signal including different time scales of process along the time domain or, 
in other words, sorts of variations in the speed of a process. For discrete time 
input signals taken by sampling from a continuous time series it can be 
assumed as variations of sampling rate.  

 

Figure 20. Time warped data. 

By definition two signals       and       are connected by an approximate 
continuous time warping        , if       are strictly increasing functions on 
     ,and                     for            . We can choose one signal, 
say      , as a reference and all signals that are connected with it by some time 
warping (e.g.       call (time-) warped versions of        

In (Sun, et al., 1993) a time warping invariant neural network was proposed. In 
this approach, time warping invariance is obtained by normalizing time 
dependencies of the state variables with respect to the length of trajectory of 
the input signal in its phase space. In other words, the input signal is considered 
in a “pseudo-time” domain, where “time span” between two subsequent 
pseudo time steps is proportional to the metric distance in the input signal 
between these time steps. As a consequence, input signals will be changing 
with a constant metric rate in this “pseudo-time” domain. 
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In discrete time, for a   dimensional input signal      we make the      time-
varying by: 

                        (5.29) 

 
 

Where          is a “pseudo time” gap between time steps     and      , 
and   is a constant factor. Note that the  -dimensional array of input signals 
varies with a constant metric value equal to     in this “pseudo time” domain. 

Substituting    in eq. (5.25) with          we obtain the update state 
equation of Time Warp Invariant Echo State Network (TWIESN): 

                         

                   

                   

(5.30) 

 

5.10  FORMULATION OF TRAINING PROCUDURE  

We present a general formulation of the training procedure with output 
feedback. 

Signal processing speaking, are basically a ‘nonlinear moving average’ kind of 
models. The output of many dynamical systems depends on the input and the 
output history. Feedback output signals are a kind of input. When the teacher 
output is written into the output units during the learning task, the learning 
task becomes teacher forcing. 

Task. given :a teacher input output time series                  , 
        , where inputs are from a compact set     and the desired 
outputs yteach(n) from a compact set     . 

Wanted: An ESN  whose output      approximates            

Choose input connection weights. Attach input units to the network. If the 
original network satisfies the Lipschitz condition (Jaeger, 2001), input 
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connections     can be freely chosen without harming the echo state 
property. Moreover, the experience accumulated so far indicates that the echo 
state property remains intact with arbitrarily chosen input connection weights, 
even if only the weaker condition             was ascertained in the previous 
step. 

 

Procure an echo-state network. Build a network that has echo state property 
in a state set   with respect to input sequence      and a ‘pseudo’-input  

          (i) re-interpret the       matrix        as another input weight 

matrix and join it with       matrix     into a            -matrix 

        , (ii) join the input          with the output          into a 
compound pseudo-input                            , and (iii) make 
sure that the resulting network has the echo state property in an admissible 

state set   with respect to input        from the compact set           . 

Any standard sigmoid neurons whose weight matrix   has spectral radius less 
than one satisfies the echo state property. Also this property is independent of 
the input weight matrix and the output weight matrix and both of them can be 
freely chosen (Jaeger, 2001). 

Run ESN with teacher input and with teacher output forcing, dismiss initial 
transient. Start with an arbitrary network state      and update the network 
with the training input and teacher-forced output for            . Discard 
initial steps due to contamination of initial transient. 

Compute output weights which minimize the training error. 

5.11  PRODUCING A RESERVOIR 

In order to produce a ‘rich’ reservoir it is important to understand what 
function it is serving. 

5.11.1 Function of the Reservoir. 

The reservoir acts as (i) a nonlinear expansion and (ii) memory of the input 
     at the same time (Lukosevicius, 2012). 
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Reservoir is acting as a nonlinear high-dimensional expansion of the input 
sequence       

At the same time it should store feature information, thus providing a 
temporal context of the input     . This characteristic of the reservoir is 
crucial for temporal learning tasks. 

Combining the two aspects the reservoir must provide a rich space of      
states of the inputs, such that linear combination of them should produce the 
desired signal            . 

5.11.2 GLOBAL PARAMETERS OF THE RESERVOIR  

According to    literature what we call ‘parameters’ could be called “meta-
parameters” or “hyper-parameters” as well, as they are not concrete 
connection weights but parameters governing their distribution. We call them 
“global parameter” reflecting their origin. 

The global parameters of the reservoir are: the size of the reservoir  , sparsity 
of non-null elements and their distribution, spectral radius of  , single or 
multiple scaling and shifting of Win and the leaking rate α. Detailed information 
on the design choices are described below. 

5.11.2.1 SIZE OF THE RESERVOIR 
A crucial parameter of the ESN model is the number of internal units N of the 
reservoir. The memory capacity of the network increases as the reservoir 
increases, also affecting network performance. Hence, training and running an 
ESN is computationally cheap compared to other RNN approaches; reservoir 
sizes of order 104 are not uncommon [Fabian Triefenbach, 2011]. It is easiest 

to find a linear combination of the signals to approximate           if the 
internal units are as many as possible. If the task is trivial or there is not 
enough data         the size of reservoir is smaller.  

Taking into account the number of independent real values the reservoir must 
remember from the input to accomplish the learning task successfully we can 
set a lower bound of the reservoir  . Memory capacity (maximum number of 
stored values) of an ESN is equal or less to the size of the reservoir  . 
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5.11.2.2 SPARCITY OF RESERVOIR 
In (Jaeger, 2001) it is recommended to make a sparse connection reservoir, of 
which most of the entries must be null. Network obtains a slightly better 
performance with sparse connectivity. Typically, we connect each internal unit 
to a small fixed number of other internal units on average. And taking 
advantage of this internal unit sparsity to speed up computation time. This 
parameter is not crucial to the network’s behavior. 

5.11.2.3 DISTRIBUTION OF NONZERO ELEMENTS 
Nonzero entries of the internal weight matrix can be chosen to be either 
symmetrically uniformed, discrete bi-valued or normally distributed center 
around zero. Gaussian distributions also exist. All the described distributions, 
except bi-valued, have the same performance. The discrete bi-valued provides 
less rich signal space. The range of distribution is not so important because 
spectral range rescales the magnitude of the nonzero elements of the matrix. 
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Figure 21. Random scaled internal weights matrix, spectral radius 0.95. 

5.11.2.4 SPECTRAL RADIUS 
One of the most significant global parameters of the network is the spectral 
radius. Spectral radius is the maximal absolute eigenvalue        of internal 
units weight matrix  . In general, the most popular method to build a matrix 
W which maximal absolute value is unit described as: first a random sparsely 
interconnected matrix W0 is generated then the spectral radius      is 
computed. The matrix   is divided by       to get a unit spectral radius 
matrix this is finally scaled with the desired spectral radius.  

An ESN reservoir must satisfy the echo state property: the internal state      
is uniquely defined by the decaying history of the input signals and/or the 
previous output signal. In other words for a long enough input      , the 
reservoir state      should not depend on the initial conditions that existed 
before the input (Lukosevicius, 2012) 

The echo state property, theoretically, can be violated even if the spectral 
radius is less than unit (Jaeger, 2001) or can be held for values bigger than one 
for nonzero inputs. This fact can be explained by the strong influence of input 
signals which are pushing activations of the internal units away from zero, 
where the      () nonlinearities have a unitary slope to regions where this 
slope is smaller, thus reducing the gains of the neurons and the effective 
strength of feedback connections. Intuitively speaking, due to activation-
squashing nonlinearities, strong inputs “squeeze out" the autonomous activity 
from the reservoir activations. 

Choosing the appropriate magnitude of spectral radius is not easy and 
depends of the task. Spectral radius must be greater for tasks that require 
longer memory of the inputs and smaller for tasks that the current output 
depends more on the recent history of input signal. 

5.11.2.5 INPUT SCALING 
The input scaling weight matrix consists another key parameter for the 
optimization of ESN. Input weight matrix is usually dense and for scaling 
uniformly distributions or normal distributions are used. 

A general practice when a network has many inputs is to scale together using 
one scale value. This reduces the amount of adjustable parameters. If the 
network includes bias input (usually first column) it is recommended to scale 
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separately from the other inputs. If the remaining inputs contribute to the task 
in very different ways, it is suggested to scale each independently. In (Jaeger, 
2001), recommends to scale and shift the input signal. We can achieve the 
same result by scaling the input weights of the bias input and the rest of the 
inputs separately. 

Many times, input signals come from experimental results or biological 
observations. This means that data have different range values, noise. In such 
cases input data must be normalized. This puts each learning task to a 
bounded region. For example if the input signal distribution is unbounded we 
should apply     (), otherwise outliers can “send” the internal units into 
strange regions which are not familiar to regions of which global parameters of 
the network have been adjusted or the outputs learned. This can cause virtual 
loss of useful memory (may lead to saturations in the activation nonlinearities) 
or unpredictable output of these points. 

Internal activation units are typically     (). Input scaling determines how 
nonlinear internal units responses are. For a linear learning task the scaling of 

matrix     must be small because operating internal units close to zero results 
in almost linear behavior of the unit. If the scaling is larger the unit’s activation 
is saturated to values -1 and 1 acting in a more nonlinear, bi-valued switching 
type. How nonlinear is the task, is not easy to answer. 

Scaling of     combined with   denotes the percentage of contribution of 
the current input      to the current state      and the left percentage is on 
the previous state        . This conclusion must also take into account the 
size of   and  . 

In (Hermans & Schrauwen, 2010) denoted that the representation of different 
Principle Components of      in      is roughly proportional to the square 
root of their magnitudes in       In other words, the reservoir tends to flatten 
the spectrum of principal components of      in     , something to keep in 
mind when choosing the right representation or preprocessing of the data. For 
example, if smaller principal components carry no useful information it might 
be helpful to remove them from the data by Principal Component Analysis 
(PCA) before feeding them to a reservoir, otherwise they will get relatively 
amplified there (Lukosevicius, 2012). 
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CHAPTER 6. PRACTICAL APPROACH OF ESN 
In machine learning the most important parameters must be tuned by trial and 
error method. 

6.1  MAIN PARAMETERS OF THE NETWORK 

Main parameters to optimize ESN reservoir are: input scaling, spectral radius 
and leaking rates. The appropriate magnitude in order for the network to 
reach good performance depends on the task and needs multiple trials.  

Some times the performance can be improved if we set different scalings of 

the columns of input weight matrix     or separate the bias input scaling from 
the scaling of the other “active” inputs. This separation takes advantage of the 
different nature of inputs (if they exist). Instead of using a global leaking rate α, 
if the task requires modeling of the times series producing dynamical system 
on multiple time scales, it might be useful to set different leaking rates to 
different units (making a vector     ). 

The size of reservoir is limited due to finite memory of computational systems. 

Lower importance parameters to be tuned is the reservoir sparseness and 
weight distribution. 

6.2 PARAMETER SELECTION SETUP 

In ESN training algorithms only the network-to-output connection weights 
have to be trained. The main advantage of ESN is that learning of outputs is 
fast. This feature is exploited in evaluating the performance of reservoir by a 
particular set of parameters. 

A method to evaluate the reservoir performance is to train the output and 
measure the error. Training error is usually used (or validation error can be 
used).  

Due to randomly generated reservoirs, same parameters can cause slightly 
different network performances. This observation affects more small sized 
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reservoir, than bigger ones. Random variations inside a big reservoir tend to 
“average out”.  

6.3  MANUAL PARAMETER SELECTION  

Machine learning requires some parameters to be manually optimized. In 
some machine learning approaches some parameters are selected through 
automated ways. Even in this case it is necessary some of the parameters to be 
tuned manually. These parameters are typically called meta-parameters. 

A typical way of handling these parameters is to change one parameter at a 
time and record the performance of the network. Repeat this procedure until 
you get a good performance then change another. Changing more than one 
parameters at the same time usually has catastrophic effects to network 
performance. Also it is blurry to tell which parameter contributed what. 

6.4 INITIAL TRANSIENT 

Usually we set an arbitrary state at time step zero of the internal units 
of       . This denotes an unknown starting state. The data of      which 
are from the beginning of the training run are discarded, so they are not used 

for learning output weight matrix      . The number of time steps to discard 
depends on the memory of the network. Discarded steps are usually tens or 
hundreds. 

6.5 OUTPUT FEEDBACK AND STABILITY PROBLEMS  

6.5.1  OUTPUT FEEDBACK 

For some usually complex tasks (e.g. pattern generation, classification), trained 
readouts are fed back to the reservoir and training process changes its 
dynamics. This process creates a recurrence between the trained outputs and 
the reservoir. There are two implementations to make this real. Either by back 

project (feedback) connections        from the output to the reservoir or by 
looping output        as an input      for the next update step . The 
second implementation is used to pattern generator. These two options are 

equivalent, only the notation changes:      is equivalent to        and      
to       , respectively. There are tasks for which both are used. 
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Feedback connections make ESN more powerful for hard learning tasks 
because it is no longer an input driven dynamical system, but the dynamics are 
adapted to the task. ESN with feedback connections suffers from instability 
problems. 

6.5.2  TEACHER FORCING 

As described in the previous section, training ESN with feedback connections 
changes the dynamics of all the internal units and the outputs, too. In 
traditional training we feed trained outputs into the reservoir. To break the 
recurrence relationship between the reservoir and the output readout 
feedback the desired output               through the feedback 

connections        instead of real output         while learning. This 
method is called teacher forcing. 
 

      

                  

                         

(6.1) 

 
Teacher forcing means that target values are fed back to the reservoir, as if 
they were already successfully learned. This enables us to learn outputs in one 
iteration and is a valid assumption, if in the end the outputs are learned well 
(i.e. the feedbacks are similar to the one which we assumed while training). If 
the feedback is not learned well, this assumption is not valid and the distorted 
feedback may further distort the outputs. (Lukosevicius, 2012) 
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Figure 22. An ESN with output feedbacks trained with teacher forcing. 

In other words, this method has very good results if the output can be learned 
precisely. If this is not feasible, the distorted feedback leads to an even more 
distorted output of the next time step feedback and so on. This mechanism 
leads very quickly to a generated output that diverges from the desired output  
            . 

Even with well-learned outputs the dynamical stability of the autonomous 
running system is often an issue (Lukosevicius, 2012) 

6.5.3 FEEDBACK STABILITY PROBLEMS  

As described in previous section adding noise to the reservoir states has a 
similar effect as ridge regression to network stability. Setting the right amount 
of noise is a delicate balance between the sharpness of the prediction and 
stability (Lukosevicius, 2012). 

Another strategy is to add scale noise to teacher forced signal             . This 
makes the reservoir learn an imperfectly             and the readout is trained 
to ignore some inputs and feedback signals.  

A recently proposed method is to regularize recurrent connections  . Matrix 
  is relearned with regularization using ridge regression as proposed 
for      . This method reduces recurrent connection strength and makes ESN 
more stable. 
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CHAPTER 7.  SUPERVISED TRAINING FOR SEQUENCE 
LABELING 

7.1 SEQUENCE LABELING OVERVIEW 

As described above, in supervised learning tasks a set of input-target pairs is 
provided for training. The nature and degree of supervision provided by the 
targets varies greatly between supervised learning tasks. For example, training 
a supervised learner to correctly recognize (label) every pixel corresponding to 
an airplane in an image requires a much more informative target than simply 
training it to recognize whether or not an airplane exists. To distinguish these 
extremes, people sometimes refer to weakly and strongly labelled data 
(Graves, 2008) 

Sequence labeling goal is to assign sequences of label, picked from a particular 
alphabet, to sequences of input data. Well-known examples of sequence 
labeling are sequences of acoustic data which include spoken words (speech 
recognition) and video frames time sequences with hand gestures. 

For some learning tasks, precise assignment of the labels respectively to the 
input sequences is determined by the learning algorithm. However, in most of 
the tasks the alignment is determined with manual or automatic data 
processing or we only care for the final sequence of label, not the specific time 
that the label takes place. 

Assume that desired sequences have the same length or less than the input 
sequences. Let   be a dataset of training sets picked independently from a 
fixed distribution            . Input space         is a set of all sequences of 

  real valued vectors                         . Target space 
           is a set of all sequences over the finite alphabet   of labels. Each 
element of    represent a label. On the other hand each element of the 
dataset   represents a pair of sequences                  . We use   to train 
a sequence labeling algorithm             to label the sequences in an 
unknown test (disjoint from  ) set   , as accurately as possible. 
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7.2 SEGMENT CLASSIFICATION. 

When the target sequences consist multiple labels and their assigned location 
to input sequence is known in advance it is described by the term segment 
classification. In other words, when the task is to classify separate short time 
series (which consist input sequences), output of the network      has one 
vector (dimension) for each label (class) and the magnitude of the target 
sequence ytarget(n) is one in the dimension which represents the right class 
(label) and zero to the other classes.  Task examples of segments classification 
is natural language, human gestures processing and bioinformatics. A 
disadvantage of sequence classification is that it requires hand segmented 
data, which is a time-costly procedure. 

In sequence labeling input sequences are built from segmented data. Context 
information of each of this segmented data is the key for a good performance 
of the training network. Each segmentation of the input sequence is strongly 
correlated to the corresponding label. 

For a pattern classifier              we can measure misclassifications on 
the test set    by classification error rate: 

            

 
 

    
  

                 

            
 

              

 

(7.1) 
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CHAPTER 8. TEMPORAL GESTURE RECOGNITION 
EXPERIMENTS  

8.1 AIM OF THE EXPERIMENT 

The focus of the numerical experiments is on “multiple instances, user 
independent learning” of skeletal data, that is, learning to recognize gestures 
from several instances for each category performed by different users, picked 
from a vocabulary of 20 gesture categories (see Figure 23). This vocabulary 
contains a set of unique gestures, generally related to a particular task. In 
other words, we try to temporally classify these 20 unique gestures in a time 
series (sequence) by computing the classification error rate. 
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Figure 23. Data set gesture categories. 
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We used ESN software developed by Jaeger’s research team to recognize these 
gestures. Software executed in Matlab environment. 

8.2 DATA 

8.2.1 GENERAL DESCRIPTION 

We used a large video database (available for competition” Multi-modal 
Gesture Recognition Challenge 2013”) from a lexicon of 20 Italian gesture 
categories recorded with a KinectTM camera. Downloaded from 
http://sunai.uoc.edu/chalearn/. Multi-modal Gesture Recognition Challenge 
provided 3 datasets: Development, Validation and Final Evaluation, for 
algorithm development and evaluation. Each dataset consists of hundreds of 
zip files, and each file contains approximately one-minute-long multi-modal 
gesture data, including audio, video and skeleton information. 

The database contains: 

 Training data (RGB+Depth+Audio) and labels for 393 sessions, which 
correspond to 7.754 Italian gestures. 

 Validation data (RGB+Depth+Audio) has the same format as training 
data, but labels are not provided. There are 287 sessions, which 
correspond to 3.362 Italian gestures. 

 Test data have exactly the same structure as the validation set. It 
contains 276 files containing a total of 2742 Italian gestures. 

8.2.2 MAIN CHARACTERISTICS OF THE DATASET 

 The camera is in fixed position 

 There are no resting positions and each sequence records one person’s 
gestures (Figure 24). 

 A single user is recorded in front of a KinectTM, performing natural 
communicative gestures and speaking in fluent Italian. 

 

 

http://sunai.uoc.edu/chalearn/
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Figure 24. The 20 gestures performed by one person, which consist one 
sequence. 

 

 13,858 gesture samples recorded with the KinectTM camera, including 
audio, skeletal model, user mask, RGB, and depth images. 
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 RGB video stream, 8-bit VGA resolution (640X480) with a Bayer color 
filter, and depth sensing video stream in VGA resolution (640X480) with 
11-bit. Both are acquired in 20 Frames per second on average. 

 A total number of 27 users appear in the data set. 

 The data set contains the following number of sequences: 393 (7,754 
gestures), each sequence lasts between 1 and 2 minutes and contains 20 
gesture samples, around 1,800 frames. The total number of frames of 
the data set is 1,720,800. 

 All the gesture samples belonging to the 20 main gesture categories 
from an Italian gesture dictionary are annotated at frame level indicating 
the gesture label. 

There are several aspects that arise from multimodal gesture recognition in 
this database described by” Multi-modal Gesture Recognition Challenge 
2013”, such as gesture continuous recording (no resting points between 
gestures), the presence of distracter gestures, the relatively large number of 
categories, the length of the gesture sequences varies, and different people 
performing the same gestures. Furthermore, there is not a specific way to 
perform the included cultural gestures, e.g., “vieni qui" is performed with 
repeated movements of the hand towards the user, with a variable number of 
repetitions (Figure 25). Similarly, gestures are performed using one hand, 
either the left or right hand. Finally, variations in duration of gestures 
performed, background, lighting and resolution, occluded some parts of the 
body, different Italian dialects 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 25.  (a, b) Left and right handed instances for gesture “vieni qui”, (c, d, 
e) left and right handed instances and arm position of “vattene”. 
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8.2.3 DATA FORMAT  

Each sample sequence (X) contains individual files named: X_audio.wav, 
X_color.mp4, X_depth.mp4, X_user.mp4 and X_data.mat containing the audio, 
RGB, depth, user mask and data about videos for a given sequence X. All the 
sequences are recorded at 20 FPS. Analytically: 

 

Figure 26. Different data modalities of the provided data set. From left to right 
are the image selected from the RGB video, depth video, user-index video, and 
skeletal model respectively. 

RGB: This matrix represents the RGB color image, expressed in 8-bit VGA 
resolution (640x480) with a Bayer color filter. 

Depth: The Depth matrix contains the pixel-wise z component, VGA resolution 
(640x480) represented with 11bits. The value of depth is expressed in 
millimeters. 

UserIndex: The user index matrix represents the player index of each depth 
pixel. A non-zero pixel value means that a tracked subject occupies the pixel, 
and a value of 0 denotes that no tracked subject occupies the pixel. 

DATA: contains the following structure: 

 Video: structure that contains above 5 fields (structures and files): 
o NumFrames: Total number of frames. 
o FrameRate: Frame rate of the video in fps. 
o Frames: A column vector (1xnumber_of_frames) structure is 

contained within a column vector named skeleton. 
 Skeleton: Each row of Skeleton is a structure. It contains 

the joint positions, and bone orientations comprising a 
skeleton of each frame. The format of a Skeleton structure 
is: 
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1. WorldPosition: The world coordinates position 
structure represent the global position of a tracked 
joint. The format is X, Y, which represents the x, y, 
and z components of the subject’s global position (in 
millimeters). 

2. PixelPosition: The pixel coordinates position 
structure represents the position of a tracked joint. 
The format of the Position structure is X, Y, Z which 
represent the x and y components of the joint 
location over the RGB map (in pixels coordinates). 

3.   WorldRotation: The world rotation structure 
contains the orientations of skeletal bones in terms of 
absolute transformations and is formed by a 20x4 matrix, 
where each row contains the W, X, Y, Z values of the 
quaternion related to the rotation. The world rotation 
structure provides the orientation of a bone in the 3D 
camera space. The orientation of a bone is relative to 
the child joint and the Hip Center joint still contains the 
of the player/subject. 

Labels: Structure that contains the data about labels contained in the sequence, 
sorted in order of appearance. The labels considered to the 20 gesture 
categories as shown in the  

o Table 3. The format of a Label structure (Figure 27) is: 
 Name: name of the gesture. 
 Begin: gesture starting frame. 
 End: gesture ending frame. 
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Figure 27. Fields of structure Labels for a sample sequence. 

-JointType: Skeleton joints that make up a tracked skeleton. The  

Figure 28 visualizes these joint types. 
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N Joint type  N Joint type 

1 HipCenter 

 

11 WristRight 
2 Spine 12 HandRight 
3 ShoulderCenter 13 HipLeft 
4 Head 14 KneeLeft 
5 ShoulderLeft 15 AnkleLeft 
6 ElbowLeft 16 FootLeft 
7 WristLeft 17 HipRight 
8 HandLeft 18 FootRight 

9 ShoulderRight 19 KneeRight 

10 ElbowRight 20 FootRight 

 

Figure 28. Left and right edge: tracked joint types, middle: skeleton joint 
positions. 

8.3 PREPROCESSING   

8.3.1 DATA TRANSFORMATION  

Across all provided video features, skeleton features are a meaningful 
representation of body posture in each video frame. Thus, we choose skeletal 
data to consist ESN classifier inputs. 

As we describe above, each sequence contains a file named WorldPosition for 
each frame. This file contains world coordinates position of all 20 tracked 
joints. We use this data to export three dimensional Euclidean distance   
between two tracked joints. Three dimensional Euclidean distance computed 
according to mathematical type: 

      

         
         

          
  

 

(8.1) 

 
 

Where            ) and            ) are two points in Euclidean 3D-
space  

Vectors   and   represent two tracked joints. 
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The    distances of the following joint pairs were computed: 

 

Id-
row 

Joint pairs 3D 
distance 

value 

Id-
row 

Joint pairs 3D 
distance 

value 1 'HipCenter'  -  'Head' d 7 'Head' - 'HandRight' d 

2 'HipCenter'  - 
'ElbowLeft' 

d 8 'Head' -'ElbowLeft' d 

3 'HipCenter'  - 
'HandLeft' 

d 9 'Head' -  'HandLeft' d 

4 'HipCenter'  - 
‘ElbowRight’ 

d 10 'ShoulderCenter'  -  
'HandLeft' 

d 

5 'HipCenter' - 
'HandRight' 

d 11 'ShoulderCenter' -  
'HandRight' 

d 

6 'Head' - ElbowRight’  d 12 'HandLeft'  -  
'HandRight' 

d 

 

Table 1. Calculated distances joint pairs. 

Then 3D distances are normalized based on the sum of skeleton based 3D 
distances of Head-HipCenter joint pair and HandLeft-HandRight joint pair for 
each element individually. 
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Figure 29. Twelve joint pairs data after normalization over sampling period. 

8.3.2 DATA RESCALING AND INPUT FORMAT 

Observing raw data (Figure 29), it is obvious that each channel has different 
value ranges and a considerable offset. Feeding such a signal in its raw version 
would amount to adding a strong bias constant to the channels with greater 
mean values, which would effectively shift the sigmoids   of reservoir units 
away from their centered position toward their saturation range. This leads to 
systematic wrong behavior of internal units because each input channel 
contributes differently to the learning task.  

We rescale raw data to a desirable range. Considering that output has a 
switching behavior (0 for non-label existence and 1 for existence) and the fact 
that in machine learning it is advisable teacher data (input and output 
sequences) ranged to the same interval, we choose to investigate two 
different types of normalization. First data normalization bounded to interval 
     , (Figure 30) and the second type is to apply interval            to input 
data .This puts learning task into a more standardized setting. 
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Figure 30. Input data rescaled to interval [0 1]. Last row: bias input.   

Input vector (see Figure 30) of ESN network consists of the twelve three 
dimensional Euclidean distances plus one bias input          : 

Input vector   

  Joint pairs   Joint pairs 

   Bias input    'Head' - 'HandRight' 

   'HipCenter'  -  'Head'    'Head' -'ElbowLeft' 

   'HipCenter'  - 'ElbowLeft'     'Head' -  'HandLeft' 

   'HipCenter'  - 'HandLeft'     'ShoulderCenter'  -  'HandLeft' 

   'HipCenter'  - ‘ElbowRight’     'ShoulderCenter'  -  'HandRight' 

   'HipCenter' - 'HandRight'     'HandLeft'  -  'HandRight' 

   'Head' - ElbowRight’    

 

Table 2. Network input vector. 
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8.3.3 OUTPUT FORMAT  

We want to derive assertions of gestures from input histories            
           values   and   we code the existence/non-existence of a 
gesture and we want to realize, through learning,                    
           as a     value indicator function that changes its value to 1 as 
soon as the gesture is present.  In this study we consider the 20 gestures which 
are aligned to    subsequents of each training data set as unique 

outputs          
        .   

     . 

Output vector   
  ID Gesture name    ID Gesture name 
   1 vattene     11 ok 
   2 vieniqui     12 cosatifarei 
   3 perfetto     13 basta 
   4 furbo     14 prendere 
   5 cheduepalle        15 noncenepiu 
   6 chevuoi     16 fame 
   7 daccordo     17 tantotempo 
   8 seipazzo     18 buonissimo 
   9 combinato     19 messidaccordo 
    10 freganiente        20 Sonostuf 

 

Table 3. Network output vector. 

Each input sequence represents    different gesture instances performed by 
one person. The person cannot perform the same gesture twice within the 
same sequence (Figure 27). Essentially, each performed gesture represents a 
temporal pattern which is hand-coded (assigned) to a class (output). This class 
holds value 1 over steps that gesture is present and zero to other classes for 
the same time steps (Figure 31).This indicates two facts: first, the durations of 
the gesture and second, defines start and stop step. Time steps of input and 
output signal are the same. 
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Figure 31. A portion of teacher sequence (4 of 13 inputs) and target output 
vector (4 of 20) and its manual alignment of them. Each input signal contains 
20 regions (represented as different color setup) of equally unique gesture 
instances performed by one individual. 

8.4 EXPERIMENTAL SETUP  

The ESN software we used is written in Matlab by Herbert Jaeger and group 
members. Downloaded from http://reservoir-computing.org/node/129 . 

Teacher signal is composed from the 12 joint pair      distances which are 
filtered and normalized plus 1 bias input (input sequence            ) 

where         . The desired output sequence (  
      

,   
      

,……,     
      

) 

where   
      

       , that is  one output for each label. IF there exists a 

gesture corresponding to the output, then the value is unit else is zero. We 

want a trained ESN   (   ,  ,      ,     ) whose output      approximates 
the teacher output        , when the ESN is driven by the training input     .  

A criterion for the actual gesture recognition was the maximum value of each 
dimension of the output signal (    ). To avoid outliers we firstly smooth      
with a moving average filter. In this setup maximum value of each dimension 
of output signal corresponds to one recognized gesture instance. A gesture is 
considered correctly recognized (Figure 35) if the time step       matches the 

http://reservoir-computing.org/node/129
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interval of which   
      

=1 (only one interval of       can be matched with 

one interval of         . 

We split the dataset of 393 sequences into two subcategories. The first one, 
called training data, is used for training the ESN network and the second one 
for testing the network. Training data is 70% of the dataset and rest of it is for 
testing.  

8.5 TRAINING-TEST ECHO STATE NETWORK: ALGORITHM 

The process of ESN software we used is described below and includes the 
following steps: 

STEP 1. PARAMETERS SETUP 

We manually select magnitude of the parameters: size dynamic reservoir, 
spectral radius, input scaling, input shift, output scaling, output shift, feedback 
scaling, sparsity of nonzero elements of weight matrix   , distribution of input 

weight matrix      
 , distribution of feedback weight matrix       

  ,noise  . 
Also select ESN type:                                         

Plain _ESN (Plain _ESN.m): generates the internal states of an ESN with 
standard additive-sigmoid neurons by computing: 
 

      

                  

                    

 

(8.2) 

 
Or 
 

      

                  

                          

 

(8.3) 

 
with teacher forcing.  
 
Leaky_ESN (leaky_ESN.m): Updates internal state using the leaky integrator 
neuron model by computing: 
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(8.4) 

Or 

 

      

            

                    

                  

 

(8.5) 

 
with teacher forcing.  
 
Leaky1_ESN (leaky1_ESN.m): Updates internal state using the leaky integrator 
neuron model by computing: 
 

      

          

                   

                    

 

(8.6) 

 
Or 
 

      

          

                   

                          

 

(8.7) 

 
with teacher forcing.  
 
Twi_ESN (twi_ESN.m) updates internal states of an ESN using time warping 
invariant model: 
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                  , 

 

(8.8) 

or 

                         

                   

                      

 

(8.9) 

 

with teacher forcing. 

Some important notes: 

 The matrix   should be sparse, a simple method to encourage a rich 
variety of dynamics of different internal units. The weights should be 
roughly zero mean. There are plenty of ways to construct the weight 
matrix (uniform distribution, Gaussian distribution, or set nonzero 
weights randomly to –1 or 1). 

 

 The size N of    should reflect both the length T of training data, and 
the difficulty of the task.   should not exceed an order of magnitude of 
     to     (the more regular-periodic the training data, the closer to 
    can N be chosen). This is a precaution measure against overfitting. 
Furthermore, more difficult tasks require larger N. 

 

 The setting of   is crucial for subsequent model performance. It should 
be small for fast teacher dynamics and large for slow teacher dynamics, 
ρ needs to be hand-tuned by trying out several settings. 

 This step involves many heuristics and the magnitude of each parameter 
is crucial for the network behavior. 

STEP 2.RUN SYSTEM  

2.1 (generate_internal_weights). 
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Randomly generate an internal weight sparse matrix     with mean value of 
weights. Normalize     to a matrix     with unit spectral radius by 
putting              , where        is the spectral radius of   . Scale 
   to       , where      , whereby   obtains a spectral radius of  . 

2.2(generate_esn). 

 Generate input weights    and feedback weights       . These 
weights are chosen from a variety of options such as bi-numeral, 
Gaussian, normal or bounded distribution.  Then, the untrained network 

(   ,  ,      ) is (has always been found to be) an echo state 

network, regardless of how    ,       are chosen. 

 Initialize the network state arbitrarily, we assume that at zero 
state         . 

 

 Drive the network by the training data, for times            , by 

presenting the teacher input       and by teacher-forcing the teacher 

output             by computing : 

 

      

                  

                   

 

(8.10) 

 

for teacher forcing classic approach of ESN, 

or   

      

          

                   

                    

      

 

(8.11) 

 

for teacher forcing leaky  integrator neuron model, 

or  
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(8.12) 

 

for time warping invariant model 

 

 At time      , where            is not defined, use            = 0. 
 

2.3(compute_statematrix.m). 
 

 Considering input scaling and shifting  recalculate value for each input at 
time steps        according to: 
 

              
      

                
      

 

 

(8.13) 

 
 

 Considering output  scaling and shifting  recalculate value for each target  
output at time steps        according to : 

  

               
                       

        (8.14) 

 
 

 If feedback connections are used, recalculate value for each desired 
output considering feedback scaling for time steps        according 
to: 

 

  
      

          
       

      
 (8.15) 

 
 

 Due to initial transient, for each time larger or equal than an initial 
washout time   , collect the concatenated input/reservoir/previous-
output states                    as a new row into a state collecting 
matrix  . In the end, one has obtained a state collecting matrix of size 

   –                        
 
2.4(compute_teacher.m). 
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Similarly, for each time larger or equal to T0, collect the teacher output 

           row-wise into a teacher collection   of size    –               
Where: 
 

                             )),     (8.16) 

  

or without output to output connections 

 

                            (8.17) 

 
 

 
2.5(train_esn). 

 Compute output weights. Multiply the pseudoinverse of   with  , to 
obtain a                 sized matrix (    )t whose      column 
contains the output weights from all network units to the      output 
unit: 
 

             (8.18) 

then  

 Transpose        to      , which is  the desired output weight matrix. 
The learning process has finished. 

Step 3. TESTING THE TRAINED NETWORK  

3. 1 (test_esn.m). 

The matrices    ,  ,      ,      are now known. Drive the network with a 
novel sequence      according to known equations  

      

                  

                   

(8.19) 
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                            (8.20) 

   

3.2(error_rate_classification.m) 

For each testing sequence filter the signal    Find the step                of 

maximum value of       . Make            . Suppress values of time steps 

             to zero for all  . Continue to the next output signal. Finally 
compare it against to ground truth label (       ). Gestures detected or not. 
Sum true classified gestures of all test sequences and divided with the whole 
sum of the gestures that were provided to network during test phase. Multiply 
by 100. Percentage of true classified gestures exists. 

8.6 EXPERIMENTS  

8.6.1 ECHO STATE PROPERTY (A SIMPLE EXPERIMENT) 

A lot of learning tasks involve some form of short-term memory. We 
understand this property of some input-output systems, as the current output 
      to depend on earlier values        of the input and /or earlier values 
       of the output itself. Also the dynamic reservoir units activations 
   can be understood in terms of echo functions    which maps input/output 
histories to the current state (Jaeger, 2001). 

 We ran a simple experiment to indicate the significance of spectral radius and 
how it affects the short-term memory performance of the network. A network 
with the same parameters design, except the spectral radius, was simulated 
three times. Spectral radius hand-tuned to 0.3, 0.95 and 1.35 value. 
For simulations, an 800-unit sigmoid network was used. Internal weight matrix 
sparse connectivity was 1%.The input sequence                    included 
800 steps. At step 200 we provide a unit impulse             . All other 
steps of the input sequence set to zero value. There are no output units 
assigned to network. 
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Input sequence 

Figure 32. Response of an arbitrarily selected internal unit of the network for 
different spectral radius ρ. The last trace shows the unit impulse input 
sequence (training signal). 

 
We observe in Figure 32 that with spectral radius       the internal units 
tend to oscillate and network loses its echo state property. If the spectral 
radius is lower than unit, network retains its echo state property for all    . 
For large ρ (close to unit) exhibits a long – lasting response to unit impulse 
input. The response decays faster for smaller  . A relatively long-lasting 
“       ” of inputs in the internal network dynamics is a requisite for a 
sizable short-term memory performance of the network (Jaeger, 2001). 

8.6.2 GESTURE CLASSIFICATION EXPERIMENTS  

8.6.2.1 EARLY EXPERIMENTS  
We run a lot of simulations in order to achieve a well-tuned ESN classifier. We 
try to find out optimal parameters for testing the network. To reach our goal 
we explore three different types of ESN internal units activations, plain ESN, 
leaky1 (leaky integrator neurons) and twi_ESN (include time warping function). 
The modeling task depends primary on the nature of the excited dynamics – it 
should be adapted to the task at hand. This includes a good judgement on 
important characteristics of the dynamics inside the dynamic reservoir. These 
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important characteristics include an appropriate selection of the spectral 
radius, the visually inspection of internal states and output weights, adding or 
not an extra constant bias input, the magnitude of input scaling and shifting 
and adding noise during sampling. 
 
The input connections weights were uniformly distributed to range [-1 1]. The 
network had output feedback connections, which were uniformly distributed 
to range [-1 1]. The other parameters (e.g. input scaling, shifting etc.) of the 
first simulation of the ESN were chosen close to unity but arbitrarily except 
spectral radius (      ) and the feedback scaling    ). The output activation 
function was linear        . 
The first 400 steps were discarded and the output weights were computed 
from the network states collected from         through         of 
training sequence.  
 
Figure 33 shows network output and internal units response. 
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Figure 33. Top row: a portion (8 of 20) of labels (red line) and network output 
(blue line). Last row: traces of some internal units. 

 
 
We set the feedback scaling to zero and simulate the network again. Network 
output and internal units response are represented below: 
 

  



  

97 
 

 

Figure 34. Top row: a portion (8 of 20) of labels (red line) and network output 
(blue line). Last row: traces of some internal units without feedback 
connections. 
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Figure 35. True-false classified gesture. 

 
 
It is obvious that feedback connections drive the internal units to unstable 
state (see Figure 33). Because the training readouts are fed back to the 
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reservoir, they change the dynamics of all the internal units      and thus, of 
the outputs too. This observation indicates too large values of the output 
feedback weights. We can also notice that internal units are, in most cases, 
saturated. This is caused by a large impact of ‘incoming’ output feedback 
signals to the      internal units. That is, if the inputs are far from the zero the 
      internal units (neurons)   tend to drive to more towards saturation, 
where they exhibit more nonlinearity. For this kind of learning task 
(classification pattern recognition) this “switching” type of target dynamics is 
desirable. 
 

The input signals are a nonlinear sequence. The desired output         is a 
linear combination (zero if there is no gesture and unit if there is). This implies 
a hard learning task so the desired output cannot be learned precisely.  The 
reason for these instabilities issues is that even if the model can’t predict the 
signal quite accurately, pass through the feedback loop of connections      
and       small errors get amplified, making      diverge from the 
intended           . 

The magnitude of input weights    is also important. Input scaling and 
shifting was selected being 1 and 0 respectively and the signal values are 
ranged to       .  In this case, internal units (    ) is excited to the linear 
central part of the sigmoid. In this case (Figure 34) network obtains linear 

dynamic characteristics. Larger values of      imply that the network is 
strongly driven by input and  leads  internal units closer to the saturation of 
the sigmoid, which results in a more nonlinear behavior of the resulting model. 

Even larger values of      , finally lead internal units into almost pure – 1 / +1 
bi-valued, binary dynamics. Manual adjustment and repeated trial and error 
processes are required to find the task appropriate scaling setup.  

These two trained networks indicate bad tuned learning task. The outputs of 
the first network oscillate and the second is far away from desired output 
target. 

Both experiments error classification rate is high, measured        for 
network with feedback connections and         without feedback 
connections. Further examples showed that (APPENDIX 1) ESN classifier 
without feedback connections can be slightly improved as opposed to ESN 
classifier whose performance can be improved dramatically.  
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8.6.2.2 FURTHER EXPERIMENTS 
We continue our experiments to find the appropriate parameters of the 
network in order to recognize gestures. The experiments reported here were 
run  off-line based on provided training/testing data sets. In every 
computational experiment setup was the same as the previous except one 
parameter. This way of experimental setup has the advantage of evaluating 
the effect of this parameter to the network. There are a lot of parameters that 
have to be investigated by someone for tuning this network and the effect of 
each parameter sometimes is not clear. 

We evaluate network performance of the three types of internal activation 
units       over a range of values and designs of the following ESN model 
parameters: 

 Input units weight matrix uniform and Gaussian distribution ranged to 
interval [-1 1] and bi-valued [-1 1] distribution with probability 0.05 to 1, 
0.05 to-1 and 0.9 to 0. 

 Feedback units weight matrix uniform distribution range to intervals [-1 
1] and [-0.1 0.1] 

 Spectral radius range [0.35 0.95] with step 0.2. 

 Number of internal units range 400 to 750 

 Magnitude of leakage range [0.2 0.9] with step 0.1. 

 Uniform distribution of time constants vector and manually selected 
values range [0 1]. 

 Internal units white noise values 0.001, 0.0001 and 0.000001. 

 Target sequence white noise values 0.001, 0.0012, 0.0001 and 0.000001.  

 Number of discarding steps due to initial transient: 1350 neurons-500 
discarding time steps, 1300 neurons-450 discarding time steps, 1300 
neurons-450 discarding time steps, 1250 neurons-400 discarding time 
steps, 1200 neurons-350 discarding time steps, 1150 neurons-300 
discarding time steps, 1100 neurons-200 discarding time steps, 720 
neurons-0 discarding time steps. 

8.6.3 RESULTS 

Here we report ESN sub-optimal parameter setup and best performance for 
each type of internal units activation: 



  

101 
 

Internal units  

activations type 

Plain_ESN Leaky1_ESN Leaky_ESN Twi_ESN 

Internal unit  

Actiavation fuction   

            

Input units  

weight matrix     

Uniform 
distribution 

range [-1 1] 

Uniform 
distribution 

range [-1 1] 

Uniform 
distribution 

range [-1 1] 

Uniform 
distribution 

range [-1 1] 

Bias input scaling value  

     
      

 

1.0 1.0 1.0 1.0 

“active” inputs scaling 
value  

     
      

 

[1.5] [2.5] [1.8] [1.0] 

connectivity 1% 1% 1% 1% 

Feedback units weight 
matrix 

      

Uniform 
distribution 

range [-1 1] 

Uniform 
distribution 

range [-1 1] 

Uniform 
distribution 

range [-1 1] 

Uniform 
distribution 

range [-1 1] 

Feedback scaling value  

     
     

- 0.0001 - 0.00017 

Number of  

Neurons   

720 1000 720 790 

Spectral radius   0.95 0.95 0.95 0.45 

time constant vector 
   

- [0.1] [0.2] [0.25] 

leakage   - - [0.8] [0.8] 

Internal units noise   [0] [0] [0] [0] 

Target sequence noise 
        

[0] [0] [0] [0] 

Moving average filter 
spam 

15 15 15 15 

Error classification 
rate 

 

 

30.00% 29.26% 28.53% 31.21% 

 
 

Table 4. ESN sub-optimal parameter setup and best performance for each type 
of internal units activation. 

And the corresponding error classification rate of each label:  
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Table 5.  Error classification rate of each gesture. 

 

label        

               

      

 

Plain_ESN Leaky1_ESN Leaky_ESN Twi_ESN 

   vattene 36.58% 43.90% 26.82% 36,58% 

   vieniqui 39.02% 36.58% 51.21% 36,58% 

   perfetto 24.39% 12.19% 9.75% 26.82% 

   furbo 29.26% 31.70% 31.70% 39.02% 

   cheduepalle    21.95% 24.39% 21.95% 24,39% 

   chevuoi 9.75% 12.19% 4.87% 19.51% 

   daccordo 7.31% 7.31% 4.87% 2.43% 

   seipazzo 43.90% 36.58% 39.02% 24.39% 

   combinato 14.63% 9.75% 26.82% 7.31% 

    freganiente    53.65% 51.21% 41.46% 48.78% 

    ok 41.46% 48.78% 36.58% 36.58% 

    cosatifarei 53.65% 48.78% 58.53% 56.09% 

    basta 12.19% 17.07% 12.19% 19,51% 

    prendere 46.34% 46.34% 51.21% 46.34% 

    noncenepiu 63.41% 53.65% 60.97% 63.41% 

    fame 0.0% 0.0% 0.0% 4.87% 

    tantotempo 7.31% 2.43% 0.0% 14.63% 

    buonissimo 29.26% 34.14% 26.82% 36.58% 

    messidaccordo 53,65% 56.09% 56.09% 56.09% 

    sonostuf 12.19% 12.19% 9.75% 24.39% 
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Figure 36. Bar-graph of four different internal units activation error 
classification rate grouped in each gesture.  

Experimental results point out that ESN network provide a reasonable 
classification hypothesis. That is, after training (using training data) network is 
capable to recognize (detection plus classification) gestures when exposed to 
unknown data in testing phase. Finding maximum magnitude of each 
dimension of the output we manage to recognize 20 different poses which are 
contained in test input data. Figure 35 shows right and false recognition of an 
output dimension (class). 

Some empirical observations of experimental results which relate to 
parameters setup are: 

 Usage of a bias input (input with constant value) to training and testing 
input sequences improved network performance 1% roughly (in some 
cases). This performance was achieved when the value of the bias input 
was unit. Large bias input value shifted a lot of internal units towards 
work on a more extreme region of their sigmoids. This fact leads 
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reservoir to achieve a strongly nonlinear behavior which is preferable for 
classification learning tasks. 

 We treat “active” inputs as a set. That is all so this channel has same 
scale value. Same method followed for outputs too. 

 Network performance slightly changed applying different distributions 
of input and feedback weight matrices in learning. 

 Injecting noise to internal units downscaled network performance (2%-
3%). A relative large amount of training data was used for learning. This 
data comes from experimental measurements, thus contains some 
random noise components. Adding extra noise led reservoir to 
“memorize” irrelevant to the task features of the input channels.   

 Same parameters setup resimulation, showed tiny variation to network 
performance (APPENDIX 1.            ,             ,             , 
            ). This variation is caused by random entries of matrices 
distributions every time we simulate the network.    
 

This particular learning task focused on classification gestures from segmented 
data. Experimental results showed that: 

 Spectral radius can be scaled in a vast range of values       
                without any significant change in network 
performance (APPENDIX 1.                             
                   ). ESN classifier performance seems to be 
insensitive to duration of Short Term Memory effects. 
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Figure 37. Error classification rate as a function of  spectral radius a . Training 
parameters (except spectral radius) was the same for all executed simulations. 

 720 internal units network reached maximum performance. A network 
of 400 units performed very poorly (APPENDIX 1.           
           ). Computations over the number of 720 internal units did 
not take place due to memory limits of my computer (without discarding 
initial time steps). 
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Figure 38. Error classification rate as a function of number of internal units. 
Training parameters (except number of internal units) was the same for all 
executed simulations. 

 As we describe above data set consists of short separate sequences. 
Discarding an amount of them due to initial transient leads to loss of 
precious information. However experiments showed that (APPENDIX 
1.          ) network has similar performance with 720 neurons and 
zero discarding time steps compared to 1000 neurons and 150 initial 
discarding time steps. 

 Between the three different types of internal unit activations there is 
not a clear winner. They have similar performance value. As we 
described, input channels consist of 20 subsequences, each of those 
represents an output class. Every one of the training data sets contains 
the representations of 20 unique gestures performed by one individual. 
It is clear that every person has its own way and time scale to perform a 
gesture.  
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Figure 39. Shows 4 (of twelve) input channels of two different people 
performing the same gesture. After normalization 4 input channels of different 
training sets First person needs 80 frames (4 seconds) to complete ‘prendere’ 
gesture and second one only 30 frames(1.5 seconds). 

We understand that is time wrapped training data. ESN Internal units with 
Time Warping Invariant activations transform wrapped input data to 
unwarped. This (we thought) would help the network to perform better to this 
kind of data, but experimental results do not reveal this conclusion. In (Jaeger, 
et al., n.d.)] it is reported that as the dimensions K of the input sequences 
increases the benefit of time wrapping  is less important. It is intuitively clear, 
that the bigger the number of independent input dimensions we have, the less 
important the role of the actual time axis is, i.e. the loss of temporal 
information which is intrinsic to TWIESNs becomes less important. In other 
words, the temporal information can in some sense be deduced from the 
dynamics of many independent input variables. 

If k is larger than 10 then the time-scaling invariant information of inputs 
contributes little to the pattern recognition. In other words, the “authentic” 
temporal information is preferable to the recognizability of patterns than the 
pseudo-time reform information of the input sequences. 
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 Providing network with raw data (without rescaling or shifting) or data 
rescaled to range      [-1 1] lead to bad performance training task (30%-
40%). 

 Optimal input scaling value can be determined into a narrow region 
without remarkable change of the performance. That is, network 
obtains same performance with input scaling values 1.2 and 1.4(e.g. 
APPENDIX 1.                  ). Output scaling follows same principle.  

 Due to feedback connections network suffers from instability problems. 
Finding an appropriate value includes many trial-errors. A slight change 
(0.00002) around the optimal value leads to further instability of the 
internal units. 

 Model performance improved when the internal units tend to saturation. 
Better performance with saturation internal units can be explained by 
the binary character (0 or 1) of output vector. In other words, we lead 
internal units almost always to have values near the saturation point 
          by applying large input scaling values. This result is desirable 
in this particular learning task where target dynamics are switching type.  

 There are more than one parameter set that network can reach the 
same performance (e.g. APPENDIX 1            ).  

 Similar network performance is achieved (APPENDIX 1            ) with 
and without feedback. But network tuning without feedback is much 
easier.  

 In APPENDIX 1(                          ) we observe that as the 
“pseudo” time gap     increases the performance drops (      and 
    topologies). This can be explained by the generic problem of linear 
Euler discretization in eq. (5.21) : if the step size becomes larger, the 
curvature of the approximate signal trajectories decreases, thus 
important feature information is lost.  
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Figure 40. Top: TWI_ESN network internal units activations with time 
constants Δt=0.5. Bottom: TWI_ESN network internal units activations with 
time constants Δt=0.2. 
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CHAPTER 9. COMPARISONS 
 

Next, we briefly describe the main components of the top-ranked methods in 
ChaLearn Multi-modal Gesture Recognition 2013. Then, we compare the error 
rate result of our proposed single modal framework with other approaches 
(Escalera, et al., 2013b). 

9.1  ChaLearn 3-TOP RANKED APPROACHES 

The first-ranked team (IV AMM) used a feature vector based on audio and 
skeletal information. A simple time-domain end-point detection algorithm 
based on joint coordinates was applied to segment continuous data sequences 
into candidate gesture intervals. A HMM was trained with 39-dimension MFCC 
features and generated confidence scores for each gesture category. A 
Dynamic Time Warping based skeletal feature classifier was applied to provide 
complementary information (Escalera, et al., 2013b). 

The second-ranked team (WWEIGHT) combined audio and skeletal information, 
using both joint spatial distribution and joint orientation. They first searched 
for regions of time with high audio-energy to define time windows that 
potentially contained a gesture. Feature vectors were defined using a log-
spaced audio spectrogram and the joint positions and orientations above the 
hips (Escalera, et al., 2013b). 

The third ranked team (ET) combined the output decisions of two designed 
approaches. In the first approach, they looked for gesture intervals 
(unsupervised) using the audio files and extracted features from these 
intervals (MFCC). Using these features, authors trained a random forest and 
gradient boosting classifier.  The second approach used simple statistics 
(median, var, min, max) on the first 40 frames of each gesture to build the 
training samples. The prediction phase used a sliding window. The authors 
created a weighted average of the output of these two models (Escalera, et al., 
2013b). 
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9.2 COMPARISONS WITH OTHER APPROACHES AND VARIATIONS 

Herein we compare the recognition results of our proposed single modal 
recognition with the final results of ChaLearn Multi-modal Gesture Recognition 
2013 as reported in (Escalera, et al., 2013b). At this point, we have to mention 
that our training data base was limited compared to the complete data base 
which was used by the participants of the challenge. We performed 
experiments under a limited RAM setting, which did not allow to use more 
than 350 data sets (complete data base included 393 data sets). 

 

Table 6 shows the particular strategy for each team. The considered modalities 
of the three top ranked teams is identical, but the applied classifier differs. 

Regarding the considered modalities, none of the participants used only audio 
data, but the majority used multiple modalities for training. In particular, when 
no multiple modalities were used for describing the data, skeleton was the 
most used feature. Final results show that combination of audio plus skeleton 
data was the best practice. Among single modal approaches our proposed 
classifier achieved better performance. 

 

 

 

 

 

 

 

 

 



  

112 
 

  

TEAM RANK 
POSITI
ON 

MODALITIES CLASSIFIER ERROR 

Our  - Skeleton NN-ESN 28.53% 

IVA MM 1 Audio, Skeleton HMM, DP, KNN 12.75% 

WWEIGHT 2 Audio, Skeleton RF, KNN 15.38% 

ET 3 Audio, Skeleton Tree, RF, KNN 16.81% 

MmM 4 Audio, RGB+ Depth SVM, Fischer, GMM, KNN 17.21% 

PPTK 5 Skeleton,RGB,Depth GMM, HMM 17.32% 

LRS 6 Audio, Skeleton, Depth NN 17.72% 

MMDL 7 Audio, Skeleton DGM, LR 24.45% 

TELEPOINTS 8 Audio, Skeleton, RGB HMM, SVM 25.84% 

CSI MM 9 Audio, Skeleton HMM 28.91% 

SUMO 10 Skeleton RF 31.65% 

GURU 11 Audio, Skeleton, Depth DP 37.28% 

AURINKO 12 Skeleton, RGB ELM 63.30% 

STEVENWUDI 13 Audio, Skeleton DNN,HMM 74.41% 

JACKSPARROW
W 

14 Skeleton NN 79.31% 

JOEWAN 15 Skeleton KNN 83.77% 

MILAN KOVAC 16 Skeleton NN 87.46% 

IAMKHADER 17 Depth RF 92.02% 

 

Table 6. Team methods and results. HMM: Hidden Markov Models. KNN: 
Nearest Neighbor. RF: Random Forest. Tree: Decision Trees. ADA: Adaboost 
variants. SVM: Support Vector Machines. Fisher: Fisher Linear Discriminant 
Analysis. GMM: Gaussian Mixture Models. NN: Neural Networks. DGM: Deep 
Boltzmann Machines. LR: Logistic Regression. DP: Dynamic Programming. ELM: 
Extreme Learning Machines. 
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CHAPTER 10.   CONCLUSION 
This study concerns gesture recognition from segmented data. We treated ESN 
as a gesture classifier. We presented two implementations of internal units 
update equations, plain_ESN consists a special case of Leaky Integrator units.  
Overall performance of the network indicates that ESN is capable to detect and 
classify gestures. ESNs were trained using input segmented data, through a 
“rich” variety of excitable dynamics, assigned to a specific output, the gesture 
(represented as 1) and remain zero to all other outputs. Network must 
combine and remember the important features of input during training in 
order to obtain a good testing performance.  To do so, internal units should 
realize some kind of dynamic memory. In other words, reservoir must retain in 
its current dynamic state information about past input features, which can 
refer back to deep past. This describes an unbounded long lasting dynamic 
memory. 

Detected results as represented in  

Table 4 are incomplete in the sense that many aspects of gesture recognition 
by ESNs are not investigated. Can better performance using either different set 
of variables or different representation be achieved? Does usage of more input 
channels improve learning task? 

However, the potential of this approach is obvious. This specific learning task is 
difficult to manipulate completely, because network must detect a gesture and 
then temporally classify to correct output, from data which are time 
unwrapped and collections of different individuals. 
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nu
mb
er 

ty
pe 

         
      

       
      

      
      

       
      

      
              

             
               

Uniform 
distribution 

      

Uniform 
distribution 

         

Distri-
bution 

      

Distribution 

       

1 P 950 0.95 [1.0] [0] 1.0 0 [1] [0] [0.1] [0.8] - [0] [0]    [-1 1] U [-1 1] U 92.19% 

2 L1 950 0.95 [1.0] [0] 1.0 0 [1] [0] [0] [0.8] - [0] [0]    [-1 1] U [-1 1] U 42.95% 
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3 L 720 0.95 [2.5] [0.2] 1.0 0.2 [1.4] [0.1] [0.005] [0.15] [0.8] [0] [0]    [-1 1] U [-0.2 0.2] U 53.68% 

4 L 720 0.95 [2.5] [0.2] 1.0 0.2 [1.4] [0.1] [0.004] [0.15] [0.8] [0] [0]    [-1 1] U [-0.2 0.2] U 42.96% 

5 L 720 0.95 [2.65] [0.2] 1.0 0.2 [1.4] [0.1] [0.0001] [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 35.12% 

6 L 720 

 

0.95 [2.65] [0.1] 1.0 0.1 [1.4] [0.1] [0.0001] [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 35.12% 

7 L 1100 0.45 [2.65] [0.1] 1.0 0.1 [1.4] [0.1] [0.0001] [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.51% 

8 L 1150 0.45 [2.65] [0.1] 1.0 0.1 [1.4] [0] [0.0001] [0.8] [0.8] [0] [0]    [-1 1] U [-1 1] U 33.17% 

9 L1 1200 0.45 [2.65] [0.1] 1.0 0.1 [1.4] [0] [0.0001] [0.8] - [0] [0]    [-1 1] U [-1 1] U 35.24% 

10 L1 1250 0.95 [2.5] [0.1] 1.0 0.1 [1.4] [0] [0.0001] [0.8] - [0] [0]    [-1 1] U [-1 1] U 33.90% 

11 L1 1300 0.95 [2.65] [0.1] 1.0 0.1 [1.4] [0] [0.00095] [0.15] - [0] [0]    [-1 1] U [-1 1] U 37.31% 

12 L1 1350 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] 0.1 [0.0001] [0.1] - [0] [0]    [-1 1] U [-1 1] U 32.56% 

13 L1 1000 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] 0.1 [0.0001] [0.1] - [0] [0]    [-1 1] U [-1 1] U 29.26% 

14 L1 720 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] 0.1 [0.0001] [0.1] - [0] [0]    [-1 1] U [-1 1] U 30.24% 

15 L1 720 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] 0.1 [0.0001] [0.1] - [0] [0.0012]    [-1 1] U [-1 1] U 38.41% 

16 L1 720 0.95 [2.5] [-0.2] 1 -0.2 [1.4] [0] [0.0001] [0.1] - [0] [0.0001]    [-1 1] U [-1 1] U 33.41% 

17 L1 720 0.75 [2.5] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0001] [0.1] - [0] [0]    [-1 1] U [-1 1] U 33.89% 

18 L1 720 0.55 [2.5] [-0.2] 1.0 -0.2 [1.4] [0] [0.0001] [0.1] - [0] [0]    [-1 1] U [-1 1] U 33.39% 

19 L1 720 0.35 [2.5] [-0.2] 1.0 -0.2 [1.4] [0] [0.0001] [0.1] - [0] [0]    [-1 1] U [-1 1] U 32.56% 

nu
mb
er 

ty
pe 

         
      

       
      

      
      

       
      

      
              

             
               

Uniform 
distribution 

      

Uniform 
distribution 

         

Distribu
tion 

      

Distribution 

       

20 L1 720 0.20 [2.5] [-0.2] 1.0 -0.2 [1.4] [0] [0.0001] [0.1] - [0] [0]    [-1 1] U [-1 1] U 34.51% 

21 L1 720 0.95 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.1] - [0.000001] [0]    [-1 1] U [-1 1] U 33.90% 

22 L1 720 0.95 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.1] - [0] [0]    [-1 1] U [-1 1] U 34.02% 
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23 L1 720 0.45 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.1] - [0] [0]    [-1 1] U [-1 1] U 34.51% 

24 L1 720 0.95 [1.3] [0] 1.0 0 [1.3] [0] [0.002] [0.5 0.7] U - [0] [0]    [-1 1] U [-1 1] U 34.87% 

25 L1 720 0.45 [1.3] [0] 1.0 0 [1.3] [0] [0.0015] [0.5 0.7] U - [0] [0]      [-1 1] U [-1 1] U 37.68% 

26 L1 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.0015] [0.2 0.3] U - [0] [0]      [-1 1] U [-1 1] U 31.95% 

27 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0.3] [0.0015] [0.2 0.3] U - [0] [0.01]      [-1 1] U [-1 1] U 33.41% 

28 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.0015] [0.2 0.3] U - [0] [0.001]      [-1 1] U [-1 1] U 32.23% 

29 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.0015] [0.2 0.3] U - [0] [0.0001]      [-1 1] U [-1 1] U 32.92% 

30 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.0015] [0.2 0.3] U - [0] [0.00001]      [-1 1] U [-1 1] U 34.92% 

31 L1 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.0015] [0.2 0.9] U - [0] [0.001]      [-1 1] U [-1 1] U 34.87% 

32 L1 1050 0.95 [2.3] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0001] [0.1] - [0] [0]    [-1 1] U [-1 1] U 33.04% 

33 L1 1100 0.95 [2.3] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0001] [0.9] - [0] [0]    [-1 1] U [-1 1] U 34.02% 

34 L1 1150 0.95 [2.2] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0002] [0.8] - [0] [0]    [-1 1] U [-1 1] U 33.17% 

35 L1 900 0.95 [2.2] [-0.2] 1.0 -0.2 [1.4] [0.1] [0.0002] [0.8] - [0] [0]    [-1 1] U [-1 1] U 33.65% 

36 T 900 0.95 [2.4] [0.2] 1.0 0.2 [1.4] [0.1] [0.0001] [0.15] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.87% 

37 T 950 0.95 [2.2] [0.2] 1.0 0.2 [1.4] [0.1] [0.00095] [0.15] [0.8] [0] [0]    [-1 1] U [-1 1] U 35.36% 

38 T 950 0.95 [2.2] [0.2] - - [1.4] [0.1] [0.00095] [0.15] [0.8] [0] [0]    [-1 1] U [-1 1] U 35.24% 

39 T 950 0.95 [2] [0] - - [1.4] [0] [0.00095] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 33.78% 
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40 T 950 0.45 [2] [0] - - [1.4] [0] [0.00095] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.87% 

41 T 950 0.45 [1.8] [0] - - [1.7] [0] [0.00095] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.82% 

42 T 950 0.45 [1.5] [0] - - [1.8] [0] [0.00015] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 32.56% 
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43 T 950 0.45 [1.5] [0] 1.0 0 [1.8] [0] [0.00015] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 33.29% 

44 T 800 0.45 [1.5] [0] 1.0 0 [1.8] [0] [0.00015] [0.25] [0.8] [0.0001] [0]    [-1 1] U [-1 1] U 34.39% 

45 T 800 0.45 [1.5] [0] 1.0 0 [1.8] [0] [0.00015] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 33.41% 

46 T 790 0.45 [1] [0] 1.0 0 [1.8] [0] [0.00017] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 31.21% 

47 T 790 0.95 [1] [0] 1.0 0 [1.9] [0] [0.00017] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 36.46% 

48 T 790 0.95 [1] [0] 1.0 0 [1.9] [0] [0.0002] [0.95] [0.8] [0] [0]    [-1 1] U [-1 1] U 95.36% 

49 T 790 0.95 [1] [0] 1.0 0 [0.9] [0] [0.0002] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 36.34% 

50 T 750 0.95 [0.9] [0] 1.0 0 [1.9] [0] [0.0003] [0.25] [0.8] [0] [0]    [-1 1] U [-1 1] U 36.58% 

51 T 720 0.95 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.1] [0.8] [0.000001] [0]    [-1 1] U [-1 1] U 36.21% 

52 T 720 0.45 [2.4] [0] 1.0 0 [1.4] [0] [0.00016] [0.10.03] U [0.8] [0] [0]    [-1 1] U [-1 1] U 34.26% 

53 T 720 0.45 [2.5] [0] 1.0 0 [1.4] [0] [0.00016] [0.10.03] U [0.2] [0] [0]    [-1 1] U [-1 1] U 40.24% 

54 T 720 0.45 [1] [0] 1.0 0 [2] [0] [0.00024] [0.10.03] U [0.9] [0] [0]    [-1 1] U [-1 1] U 37.19% 

55 T 720 0.45 [1] [0] 1.0 0 [2.2] [0] [0.00028] [0.10.03] U [0.9] [0] [0]    [-1 1] U [-1 1] U 39.26% 

56 P 720 0.95 [1.3] [0.3] 1.0 0.3 [1.8] [0] [0.001] - - [0] [0.001]      [-1 1] U [-1 1] U 33.53% 

57 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.001] - - [0] [0.001]      [-1 1] U [-1 1] U 33.78% 

58 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.005] - - [0] [0.001]      [-1 1] U [-1 1] U 31.70% 

59 P 720 0.95 [1.3] [0] 0.7 0 [1.8] [0] [0.005] - - [0] [0.001]      [-1 1] U [-1 1] U 33.17% 
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60 P 720 0.95 [1.3] [0] 0.5 0 [1.8] [0] [0.005] - - [0] [0.001]      [-1 1] U [-1 1] U 33.65% 

61 P 720 0.95 [1.3] [0] 0.2 0 [1.8] [0] [0.005] - - [0] [0.001]      [-1 1] U [-1 1] U 32.21% 

62 P 720 0.95 [1.3] [0] 1.2 0 [1.8] [0] [0.005] - - [0] [0.001]      [-1 1] U [-1 1] U 31.09% 
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63 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.005] - - [0] [0.005]      [-1 1] U [-1 1] U 34.63% 

64 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.005] - - [0] [0.0012]      [-1 1] U [-1 1] U 32.92% 

65 P 720 0.95 [1.3] [0] 1.0 0 [1.8] [0] [0.005] - - [0] [0.0012]      [-1 1] U [-1 1] U 33.24% 

66 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.4] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 32.31% 

67 P 720 0.95 [2.0] [-0.2] 1.0 -0.2 [1.4] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 33.04% 

68 P 720 0.95 [2.5] [-0.2] 1.0 -0.2 [1.4] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 33.65% 

69 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.8] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 32.56% 

70 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.0] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 30.00% 

71 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 32.31% 

72 P 720 0.35 [1.5] [-0.2] 1.0 -0.2 [2.0] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 33.29% 

73 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.3] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 33.29% 

74 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.0] [0.1] - - - [0] [0.0001]    [-1 1] U [-1 1] U 32.56% 

75 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.4] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 33.53% 

76 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.8] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 33.53% 

77 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.0] [0.1] - - - [0] [0]      [-1 1] U [-1 1] U 33.17% 

78 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.4] [0.1] - - - [0] [0]      [-1 1] U [-1 1] U 34.02% 

79 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [2.8] [0.1] - - - [0] [0]      [-1 1] U [-1 1] U 31.34% 
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80 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [3.2] [0.1] - - - [0] [0]      [-1 1] U [-1 1] U 30.12% 

81 P 720 0.95 [1.5] [-0.2] 1.0 -0.2 [3.6] [0.1] - - - [0] [0]      [-1 1] U [-1 1] U 30.73% 

82 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.6] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 30.73% 
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83 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.3] [0.1] - [0.1] [0.8] [0] [0]    [-1 1] U [-1 1] U 30.85% 

84 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.1] [0.8] [0] [0]    [-1 1] U [-1 1] U 30.36% 

85 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.1] [0.8] [0] [0]    [-1 1] U [-1 1] U 31.70% 

85 L 720 0.95 [1.5] [-0.2] 1.0 -0.2 [0.5] [0.1] - [0.1] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.39% 

86 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.1] [0.8] [0] [0]    [-1 1] U [-1 1] U 31.46% 

87 L 720 0.95 [2.2] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.1] [0.8] [0] [0]    [-1 1] U [-1 1] U 31.58% 

88 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 28.53% 

89 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.3] [0.8] [0] [0]    [-1 1] U [-1 1] U 31.09% 

90 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.4] [0.8] [0] [0]    [-1 1] U [-1 1] U 29.87% 

91 L 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.5] [0.8] [0] [0]    [-1 1] U [-1 1] U 31.09% 

92 L 720 0.75 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 30.00% 

93 L 720 0.55 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 28.41% 

94 L1 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] - [0] [0]    [-1 1] U [-1 1] U 30.12% 

95 T 720 0.95 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 33.41% 

96 T 720 0.95 [1.5] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.51% 

97 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 33.78% 

98 T 720 0.95 [1.0] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 33.17% 
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99 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.02% 

100 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.09% 

101 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.3] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.02% 
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102 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.5] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.39% 

103 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.4] [0.8] [0] [0]    [-1 1] U [-1 1] U 0% 

104 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.1] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.63% 

105 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.05] [0.8] [0] [0]    [-1 1] U [-1 1] U 35.97% 

105 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.9] [0] [0]    [-1 1] U [-1 1] U 31.09% 

106 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [1.0] [0] [0]    [-1 1] U [-1 1] U 32.92% 

107 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [1.0] [0] [0]    [-1 1] U [-1 1] U 34.63% 

108 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [1.3] [0] [0]    [-1 1] U [-1 1] U 38.04% 

109 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.7] [0] [0]    [-1 1] U [-1 1] U 33.04% 

110 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.6] [0] [0]    [-1 1] U [-1 1] U 35.73% 

111 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.5] [0] [0]    [-1 1] U [-1 1] U 40.36% 

112 T 720 0.95 [1.2] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.4] [0] [0]    [-1 1] U [-1 1] U 47.43% 

113 T 720 0.95 [1.1] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.9] [0] [0.0001]    [-1 1] U [-1 1] U 33.78% 

114 T 720 0.95 [1.1] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.9] [0] [0.00001]    [-1 1] U [-1 1] U 33.65% 

115 T 720 0.95 [1.1] [-0.2] 1.0 -0.2 [1.1] [0.1] - [0.2] [0.9] [0] [0.01]    [-1 1] U [-1 1] U 32.80% 

115 P 700 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 34.75% 

116 P 650 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 33.78% 
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117 P 600 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 34.39% 

118 P 550 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 32.68% 

119 P 500 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 34.87% 
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APPENDIX 1. Plain_ESN, leaky1_ESN,leaky_ESN,Twi_ESN error classification rate and the associated parameters setup. 

 
 
 

120 P 400 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 34.26% 

121 P 350 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 36.89% 

122 P 300 0.95 [1.5] [-0.2] 1.0 -0.2 [2] [0.1] - - - [0] [0]    [-1 1] U [-1 1] U 36.82% 

123 L 720 0.35 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 32.41% 

124 L 720 0.2 [1.8] [-0.2] 1.0 -0.2 [0.8] [0.1] - [0.2] [0.8] [0] [0]    [-1 1] U [-1 1] U 34.86% 


