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Abstract 

WebRTC is a project that was released by Google in 2011 to allow browser-

to-browser communication. It includes voice, video and data without the use of 

plugins. The mission of WebRTC according to Google is to enable rich, high quality, 

RTC applications to be developed for the browser, mobile platforms, and Internet of 

Things (IoT) devices, and allow them all to communicate via a common set of 

protocols. 

In this thesis we employ the capabilities of the WebRTC APIs to implement a 

platform for synchronous online collaboration, screen casting and simultaneous 

multimedia communication by utilizing the WebRTC data and media streams. 

Collaborative software is defined as “a software that supports intentional group 

processes”. Collaborative solutions include a wide range of tools. On the Web these 

tools can be part of what is known as a “Client-Portal” and can include discussions, 

white boards, media and file exchanging etc. 

Moving from the world of client-server architecture to the peer-to-peer world 

the ideas of online collaboration can be applied to offer more immediate synchronous 

communication without the need of a centralized system. 

The APIs that will be mainly used are those provided by WebRTC, the Screen 

Capturing API, the Media Recording API and other APIs as defined in the 

corresponding W3C drafts and in the degree they are implemented in modern 

browsers. Adding screen casting in an online collaboration system can provide useful 

features such as marking things on the screen, providing insight on what to do next, 

simultaneous document editing, creating and checking presentations etc. In this thesis 

we develop a synchronous collaboration platform using only modern web 

technologies and propose a communication protocol that makes it possible for peers to 

exchange collaboration data in a real-time communication environment. 

 

Key words: WebRTC, HTML5, Whiteboard, Online collaboration, Screen 

casting, Collaborative browsing 
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Περίληψη 

Το WebRTC είναι ένα έργο που κυκλοφόρησε από την Google το 2011, το 

οποίο επιτρέπει στα πρόγραµµα περιήγησης (browsers) να επικοινωνούν µεταξύ τους 

χρησιµοποιώντας φωνή, βίντεο και δεδοµένα χωρίς τη χρήση πρόσθετων 

προγραµµάτων (plugins). Η αποστολή του WebRTC σύµφωνα µε την Google είναι να 

επιτρέψει την ανάπτυξη υψηλής ποιότητας εφαρµογών επικοινωνίας πραγµατικού 

χρόνου (RTC) για προγράµµατα περιήγησης, κινητές πλατφόρµες, και το Internet of 

Things, µέσα από ένα σύνολο κοινών πρωτοκόλλων. 

Σε αυτή η εργασία χρησιµοποιώντας κυρίως τις δυνατότητες του WebRTC 

API, υλοποιούµε µια πλατφόρµα για online συνεργασία, διαµοιρασµό οθονών και 

µεταφοράς πολυµέσων χρησιµοποιώντας τις δυνατότητες του WebRTC. Λογισµικά 

και πλατφόρµες συνεργασίας ορίζονται αυτές που µπορούν να υποστηρίξουν 

οµαδικές διεργασίες και σήµερα περιλαµβάνουν ένα ευρύ φάσµα εργαλείων που 

περιλαµβάνουν συζητήσεις, ανταλλαγή πολυµέσων, οθονών, αρχείων κλπ. 

Μεταβαίνοντας από την αρχιτεκτονική client-server στον κόσµο της 

αρχιτεκτονικής peer-to-peer, αυτές οι ιδέες της online συνεργασίας µπορούν να 

υλοποιηθούν πλέον χωρίς την ανάγκη ύπαρξης ενός κεντρικού συστήµατος. 

Τα API που χρησιµοποιούµε σε αυτήν την εργασία είναι αυτά που παρέχονται 

από το WebRTC, το API για καταγραφή οθονών (screen capturing), για εγγραφή 

µέσων (media recording) και άλλα API όπως ορίζονται από το W3C και στο βαθµό 

που έχουν υλοποιηθεί στους σύγχρονους browsers. Προσθέτοντας δυνατότητα 

καταγραφής της οθόνης ή µέρους αυτής και στη συνέχεια διαµοιρασµού της στους 

συµµετέχοντες στο συνεργατικό περιβάλλον, γίνεται εφικτή η υλοποίηση µιας σειράς 

λειτουργιών όπως σηµείωση σε µέρος της οθόνης, παροχή οδηγιών και τεχνικής 

υποστήριξης, ταυτόχρονη επεξεργασία εγγράφων, δηµιουργία και έλεγχος 

παρουσιάσεων κλπ. Σε αυτή την εργασία αναπτύσσουµε µια συνεργατική εφαρµογή 

χρησιµοποιώντας αυτές τις σύγχρονες τεχνολογίες του Web, και προτείνουµε ένα 

πρωτόκολλο  για ανταλλαγή δεδοµένων σε πραγµατικό χρόνο σε ένα συνεργατικό 

περιβάλλον. 

 

Λέξεις κλειδιά: WebRTC, HTML5, Ασπροπίνακας, Σύγχρονη online συνεργασία, 

Screen casting, Συνεργατική πλοήγηση στο web 
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Introduction 

Since 1990, when the World Wide Web was born at CERN, the Web has 

evolved from a presentation layer powered by a simple markup language (HTML) to 

a full-scale application environment. In the early 1990s, most Web sites were based 

on a series of complete HTML pages (one static HTML file for each page). The user 

would click on a hyperlink and a new HTML page would be loaded from the server 

although only some minor information had changed, placing additional load on the 

server and used excessive bandwidth. This inefficient process was reflected in the UX 

of the Web making it a clumsy “static pull-request media” not better than teletext 

television services of the time. 

The first step to offer users richer web applications was made with the 

introduction of asynchronous communication on the Web. Ajax was one of the first 

such technologies to allow asynchronous web communication. With Ajax, web 

applications could now send data to and retrieve from a server in the background 

without interfering with the display and behavior of the web page. An application of 

Ajax used daily by most users of the Web is the auto complete feature of search 

engines such as Google. When a user start typing in the search box, Ajax sends the 

typed letters to the web server and the server returns a list of suggestions which are 

then displayed under the search box. 

Because of the asynchronous nature of Ajax, each chunk of data that is sent or 

received by the client occurs in a connection established specifically for that event. 

This creates a requirement that for every action, the client should poll the server, 

instead of listening, which again incurs significant overhead, and in turn to several 

times higher latency with. The next technological leap was to offer not only 

asynchronous communication but also persistent connections [1]. This was made 

possible with the introduction of WebSocket. WebSocket allows not only 

asynchronous communication but also a persistent connection allowing for full-

duplex communication over a single TCP connection. 

Another technology that was made available recently is the allowance for 

browser to browser (P2P) communication. Until now the web was based on the client-

server model meaning that all communication between two or more users had to be 

relayed through a web server. This paradigm was changed with the introduction of 

WebRTC which is the main focus of this thesis. WebRTC is an API definition 
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designed to allow browser-to-browser communication without the need of plugins, 

enabling various kinds of real time communication such as audio, video and data. 

With browser-to-browser communication users can now communication in a peer-to-

peer fashion and send voice, video and any other message they see fit, eliminating the 

need for a server. This way, web developers can build web services that require less 

processing and bandwidth in their backend [2]. 

Finally what powers the Web today and enables web applications to use the 

technologies mentioned above is HTML5. To understand the importance of HTML5 

we can observe how we have now come to a point where taking HTML5 web apps 

and wrapping them as native apps (e.g Windows or Android apps) is a common 

practice. One such technology is Apache Cordova which allows the use of HTML5, 

CSS3, and JavaScript for cross-platform development. Applications developed with 

Cordova execute within wrappers targeted to each platform, and rely on standards-

compliant API bindings to access each device's hardware capabilities [3]. 

In this thesis we present the latest developments on WebRTC. We have 

developed a prototype application that includes example implementations of most of 

the currently available WebRTC technologies such as screen sharing, media 

streaming, multiple streams, media recording, canvas integration etc. In chapter 1 a 

brief literature review on online collaboration/co-browsing and media streaming is 

conducted. In chapter 2 an in depth review of the technologies used in the 

development of our application is presented. In chapter 3 the specifications of our 

suggested communications protocol is discussed. In chapter 4 we present our 

prototype application and give implementation details. Finally in chapter 5 we discuss 

benchmarking and performance measurements of the application. 
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Chapter 1. Online Collaboration & P2P Media 

Streaming 

The main focus of this thesis is on online collaboration, media streaming and 

co-browsing. In this chapter we present current techniques, trends and related work on 

these technologies.  

 

1.1 Online Collaboration 

Collaboration can be defined as the common effort of a group of people to 

create something. Tools that aid collaboration were around long before computers - 

whiteboards, flipcharts or even a piece of paper can be used to support collaboration 

[4]. Computer and the Web revolutionized the way people work together in groups. In 

the 80s the term “groupware” was coined by C. A. Ellis who defined it as “computer-

based system that support groups of people engaged in a common task (or goal) and 

that provide an interface to a shared environment” [5]. Popular groupware software 

packages included Lotus Notes and Microsoft Exchange.  

The Web opened a new window for the development of collaboration 

software. With Web 2.0 came a plethora of cloud hosted Internet-based apps that 

enabled more collaboration, formation of online communities, and other means of 

interaction. Today online collaboration tools can be classified in two categories [6]: 

� Asynchronous collaboration tools. These tools enable participants to 

collaborate on work at different times and different locations. These 

tools are useful for collaborating over time and providing resources 

and information that are accessible at any time. Viewing the revision 

history allows participants to see who has contributed, when they have 

contributed, and what they have contributed. Plus, the comments allow 

participants to agree, rebut, or explain changes needed in the work. 

� Synchronous collaboration tools. These tools enable participants to 

collaborate in real-time, whether in the same location or in different 

places. The key point of synchronous tools is that the technology lets 

the communicators work together at the same time. 
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The emphasis of this thesis is on synchronous online collaboration since these 

kinds of tools are now made possible with real-time technologies such as WebRTC. 

Synchronous collaboration can have many advantages likes [7]: 

• Immediate response and feedback. 

• Video/web conferencing allow for body language and tone of voice. 

• Increased motivation and engagement with course concepts. 

• Increased social presence 

 

Disadvantages of synchronous collaboration include: 

• Lack of reflection between collaborators. 

• If technology fails the collaboration session not possible. 

• Large time commitment for collaborators. 

• Difficult for one to many communication. 

 

Synchronous collaboration includes whiteboards, video and audio 

communication, text chat and screen sharing. Whiteboarding in particular is a 

teaching and collaboration practice in which participants use a whiteboard area to 

draw or write concepts, charts, maps, tables, diagrams, equations etc. Smith et al. in 

[8] conducted a literature review on interactive whiteboard and found among other 

things that they are particularly effective in education and virtual classrooms allowing 

teachers to use teaching time to discuss student-generated ideas rather than merely 

presenting information and summarized the benefits of interactive whiteboards as 

follows: flexibility and multiple facets, effectiveness in multimedia use; support for 

the lesson plan; diverse resources; development of information and communication 

technology skills; and more interaction and student participation in classes.  

Interactive whiteboards engage students with their peers in a collaborative learning 

community and it allows for “more than one teacher” in a classroom by allowing 

students with whiteboards to become teachers as well [9]. This enhances motivation, 

participation and cooperation. Educational whiteboards are proved to be an effective 

learning tool for people of all ages. For example Akbaş et al. in [10] have evaluated a 

whiteboard-based system that trained older people to use automatic teller machines. 
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1.2 Online Collaboration Related Work 

A number of synchronous online collaboration platforms have been proposed 

or implemented commercially. As early as 1991, Abdel-Wahab et al. in [11] proposed 

a distributed system that allowed the sharing of X Window applications 

synchronously among a group of remotely located users. Jara C. in [12] proposed a 

web learning system which combines synchronous collaborate learning with 3D 

virtual laboratories. They intergraded their framework in the popular EJS physics 

platform, allowing users to collaborate using the WebGL platform. Andrioti Z. in [13] 

combined WebRTC and the Evie-m platform [14] to create an online collaborative 

educational virtual environment for teaching mathematics. In the field of 

whiteboarding which is one of the most popular applications of synchronous online 

collaboration a study by Metz et al. in [15] designed a collaborative whiteboard and 

evaluated it by assigning tasks to a group of users and collecting data from user 

interactions and chat communication. They showed that whiteboard can be an 

effective collaboration tool. Interestingly they observed that the collective 

consciousness of the group of users is created through off-task interactions. It can be 

deduced that this ability to have “off-task interaction” is one of the reasons that video 

communication significantly improves collaboration efficiency and is one of the 

advantages of synchronous collaboration. Today many online whiteboards are 

commercially available on the web. 

 

1.3 Co-browsing 

Collaborative Web Browsing (co-browsing) is another form of online 

collaboration in which two or more user navigate the World Wide Web together by 

sharing a synchronized common view on a web page as well as sharing interactions, 

such as mouse movements, text highlighting or mouse clicks, on this web page with 

each other [16]. For example, a B2B customer having difficulty placing an order 

could call a customer service representative who could then show the customer how 

to use the ordering pages as though the customer were using their own mouse and 

keyboard. Collaborative browsing can include e-mail, fax, regular telephone, and 

Internet phone contact as part of an interaction. Effectively, collaborative browsing 

allows a company and a customer to "be on the same page." [17] The ability for 

consumers to share their screens with agents and navigate the Website together, fill 
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out forms, or find information can enable businesses to increase revenue and quickly 

resolve support issues [18].  

 

1.4 Co-browsing Related Work 

One of the earliest attempts to implement a co-browsing system dates back to 

1998 before the advent of broadband internet. In [19] it was attempted to implement 

internet navigation by requesting and navigating a web page using the telephone line. 

One more serious attempt for real client-server co-browsing was proposed in [20]. In 

this US patent it proposed that co-browsing can be achieved by utilizing a server that 

retrieves content of a page on behalf of a collaboration participant or attendee. Each 

peer operates or views the content with a browser that is augmented with a 

collaboration applet. Tags, links, script code and other references that may cause a 

different page to be accessed or loaded from the current page are transformed or 

replaced on the server before the page is distributed to the attendees. In particular, 

events and redirections that may cause the attendee browser to directly navigate to 

another page are transformed on the server. Pre-determined rules may be applied to 

prevent some attendees from viewing certain content (e.g., financial or personal data). 

A page may be further transformed at a client browser, to redirect a hyperlink to the 

collaboration server or to trap some other event. What is described is essentially a 

client-server, plugin-based solution and is the basis of the majority of co-browsing 

solution available today while in this thesis we aspire to propose a peer-to-peer 

plugin-less implementation. 

Non interactive co-browsing can be very simple to implement and can utilize 

the screen sharing API of WebRTC as shown in the following screenshot: 

 

Figure 1.1 A possible scenario of non-interactive co-browsing 
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In the above scenario a user requests support from an agent. The agent then 

proceeds to share his/her screen (right window) with the user in an attempt to show 

the user what to do next while the user watches the screen sharing stream and acts on 

his own browser accordingly (left window). 

The real challenge is implementing an interactive co-browsing session. The 

obstacles that need to be overcome in plugin-less interactive co-browsing include 

dealing with cookies, page personalization, login sessions, or requests for 

authentication while dealing with the strong security measures and confidence 

requirements provided by both the operating system and the web browser (with most 

important security limitation being the “Same origin policy” which is discussed in 

chapter “Screen Casting Security Issues”. In client-server based co-browsing system a 

solution has been proposed in [16] by enabling the user to control which web 

application data is propagated and to enforce privacy policies upon private data within 

a co-browsing session. 

 

1.5 Media Streaming 

Media streaming is defined as multimedia that is constantly received by and 

presented to the end user. According to estimates in 2015 streaming media was 

accounting for 70% of Internet downstream traffic in North America [21], at the same 

time regular HTTP traffic accounted for about 6%. In the future with the rise of 4K 

streaming the percentage of streaming traffic will be increased. Although traditional 

client-server systems were used initially for delivering media content, researchers and 

practitioners soon realized that peer-to-peer systems, due to their self-scaling 

properties, had the potential to improve scalability compared with traditional client-

server architectures. Various P2P media streaming systems have been deployed 

successfully, and corresponding theoretical investigations have been performed on 

such systems [22]. The term P2PTV refers to peer-to-peer software applications 

designed to redistribute video streams in real time on a P2P network.   

Using WebRTC technology to stream media is still an experimental 

technology and it is one of the things we will showcase in this thesis. 
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Chapter 2. Underlying Technologies 

2.1 WebSocket & HTTP/2 

WebSocket is a technology that makes it possible to open a bidirectional 

communication session between the user's browser and a server. Before WebSocket, 

real-time client-server web applications were only possible using the inefficient server 

polling. Polling is a technique with which the client polls the server at regular 

intervals and receives the response. However this is obviously not an efficient method 

because it leads to many connections opening and closing needlessly since real-time 

data is not always predictable [23]. Using the WebSocket API, a Web application can 

send messages to a server and receive event-driven responses without having to poll 

the server for a reply (full-duplex communication) [24]. A connection is established 

during the initial handshake between the client and the server upgrading in this way 

the standard HTTP protocol [25]. 

 

  

Figure 2.1 Traditional client server bidirectional communcation employed in WebSocket 

 

 

Figure 2.2 Server push used in HTTP/2 

 

 The WebSocket protocol was standardized by the IETF as RFC 6455 in 2011 

and its API is maintained by W3C. It provides an object and methods that can be used 

to connect to a server and send a receive data from the connection. The main interface 

is the WebSocket interface. Many wrapper APIs for the WebSocket API exist, one of 

the most popular being Socket.IO which is used in this thesis and discussed in a 
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following chapter. On the server side it becomes obvious that the traditional server 

stacks are not adequate for the large number of connections. Keeping a large number 

of connections open at the same time requires an architecture that receives high 

concurrency at a low performance cost. Such architectures are usually designed 

around either threading or so called non-blocking IO [26]. Server side 

implementations include Socket.IO, Websocket-Node for Node.js, Jetty for Java, 

SuperWebSocket for .NET, Tornado for Python etc. WebSocket is omnipresent in the 

modern web with applications in social networking and chat, multiplayer games, 

collaborative applications, online education etc [27]. 

An alternative to WebSocket is HTTP/2. HTTP/2 is a protocol intended to 

replace HTTP/1.1 which is used since 1999. It was developed by the IETF HTTP 

Working Group and is primarily focused on improving the speed to render a webpage. 

It defines an upgrade handshake and data framing very similar to the WebSocket 

standard. It is a fully multiplexed binary protocol that uses header compression and 

allows “server push” [28]. Server Push is where the server pushes a resource directly 

to the client without the client asking for the resource. HTTP/2 could be used as an 

alternative to WebSocket. The differences between the two are shown in the 

following table. 

 

 
WebSocket HTTP/2 

Headers Binary Binary, compressed 

Content Binary, text Text, compressed 

Direction Bidirectional 
Client to Server, 
Server push 

Multiplexing 
Supported 
(extension) 

Supported 

Table 2.1 Comparison of WebSocket and HTTP/2 

 

An IETF draft has been written for WebSocket over HTTP/2 that describes 

how WebSocket semantics can be layered onto HTTP/2.0 semantics by defining 

detailed mapping, replacement of operations and events defined in the WebSocket 

protocol [29]. 
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2.2 WebRTC 

WebRTC (Web Real Time Communication) is a technology that allows real-

time peer-to-peer communication between browsers without the use of additional 

plugins. The mission of WebRTC is “to enable rich, high-quality RTC applications to 

be developed for the browser, mobile platforms, and IoT devices, and allow them all 

to communicate via a common set of protocols” [30]. WebRTC was open-sourced by 

Google in 2011 and after that an ongoing work started to standardize the protocols 

associated with it by IETF and its browser APIs by W3C. Interest and support for 

WebRTC has been since growing steadily. Today, the most advanced WebRTC 

implementation is done by Mozilla Firefox and Google Chrome. These browsers are 

now supporting the majority of the features of WebRTC that are envisioned by the 

corresponding W3C drafts and proposals [31]. Other platforms that support WebRTC 

to some extend include the Opera browser, the Android platform and Apple’s iOS 

platform. Microsoft in its Edge browsers supports another set protocols named ORTC 

which does not use the SDP for session descriptions but it is planned to be 

interoperable with WebRTC [32]. It is expected that by 2018 WebRTC will be 

supported by 4.7 billion mobile devices [33] and 1.5 billion PCs that run WebRTC 

enabled browsers bringing the total number to over 6.2 billion WebRTC enabled 

devices. 

WebRTC opens the window to a new era of Web innovations that will rely on 

the web browser for a variety of new activities which were not possible in the past 

without the need of specialized software or plugins. Video and audio chat, file sharing 

between peers without the use of an intermediating server, multiplayer games that 

exchange their data peer-to-peer are just a few of the applications which are made 

possible by WebRTC. We further discuss all these possibilities in next chapter where 

we look at some WebRTC use cases.  

One of the most important issues with WebRTC is its interoperability. Firstly, 

the WebRTC web API has not yet fully standardized. As a result web browsers 

implement slightly different APIs which in turn this has led to Google releasing a 

shim JavaScript library called adapter.js to insulate WebRTC applications for API 

changes in the future and across different browsers [34]. We will discuss adaper.js in 

chapter 2.1.1. Secondly, until recently there hasn’t been an agreement on the set of 

video codecs which would be used by WebRTC. This held the whole WebRTC 
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ecosystem back for some time. The two proposed codecs were Google’s VP8 and 

MPEG’s H.264.Constrained Baseline. Agreeing on a set of video and audio codecs is 

important because browsers running WebRTC applications should all support the 

same set of video and audio codecs because lack of support on the same codec set 

would break interoperability [35]. It was recently decided that both VP8 and H.264 to 

be mandatory to implement [36]. Audio codecs which have been decided for audio are 

Opus and G.711 [37].We will extensively discuss WebRTC codecs in section 2.2.5. 

 

2.2.1 WebRTC Use Cases 

As stated in the previous section, it is estimated that over 6.2 billion devices 

will be WebRTC enabled by 2018. The main question that arises is “What will we do 

with these devices?” and “What can we develop with WebRTC?”. Currently there are 

over 200 commercial solutions utilizing WebRTC with new ones released constantly 

[38]. These applications range from simple online video conferencing to file sharing 

and torrent sharing to healthcare systems and even distributed CDN system. In this 

chapter we look at some established examples and innovations that rely on WebRTC 

technology.  

One of the challenges that WebRTC faces is its adoption by the mobile world. 

Currently mobile versions of Chrome, Firefox and Opera support WebRTC on the 

Android platform. Bowser was developed by Ericsson Research and is the first 

browser that supported WebRTC for the iOS platform [39]. An alternative to web 

applications, is native mobile applications that utilize the WebRTC Native Code 

which is offered by Google and Ericsson for Android and iOS. This way, native RTC 

applications can be developed able to communicate with any WebRTC device. 3rd 

party SDKs for building native WebRTC applications, such as easyRTC, are also 

available. 

The most basic use of WebRTC is in the field of teleconferencing and 

audio/video communication. Firefox Hello is a feature built-in Mozilla Firefox which 

enables video and voice calls and text messaging [40]. Zingaya is a click-to-call 

service for use on websites that allows visitors to video chat with a sales 

representative/support person etc. eliminating the need for a telephone call [41]. 

WebRTC has also been used in synchronized software development and collaborative 

language leraning as described in [42] and [43]. 
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There are numerous proposed application of WebRTC in the field of telehealth 

and telemedicine. Some notable examples include Cola et al. in [44]  who propose a 

video appointment solution that allows doctor and patient to have a video consult 

instead of a normal visit at the physician office. Vidul et al. in [45] propose a new 

Emergency Telemedicine Application for emergency care management which uses 

WebRTC. A WebRTC enabled device is carried within an ambulance to conduct an 

initial assessment of the patient and later brought to the nearest health center where 

further treatment is carried under the assistance of specialists whose telepresence is 

provided by WebRTC enabled devices. Jang-Jaccard in [46]  propose WebRTC-based 

video conferencing system which allows online meetings between remotely located 

care coordinators and patients at their home while in [47] an efficient session weight 

load balancing and scheduling methodology to improve network performance for a 

telehealth care service based on WebRTC is proposed. 

Utilizing the data channel for distribution of web content and file sharing peer-

to-peer is another area in which WebRTC has a prominent presence. Sharefest and 

Webtorrent are two examples. Sharefest allows a user to drag and drop a file on a web 

page. The file is not uploaded anywhere instead the user is given a URL. Using that 

URL other users can download the file directly from the first user using WebRTC 

(provided the first user’s browser remains open) [48]. WebTorrent is a torrent client 

developed for the browser. Currently it is only compatible with the WebRTC enabled 

BitTorent clients and thus it cannot download data from conventional torrent clients 

[49]. P2P CDN is another field in which WebRTC can be used. Traditionally CDNs 

are server-based networks, but when P2P is employed it means that instead of always 

serving content directly from the CDN to the end users, the end users can share 

content or blocks of it between them, which reduces the load on the CDN and the 

bandwidth required on the CDN’s side [50]. Notable example of WebRC based CDNs 

include peerCDN and Peer5. Peer5 is used for distributing video streaming among 

viewers and can purportedly reach up to 95% server offloading [51]. peerCDN which 

was acquired by Yahoo in 2013 is another P2P content delivery network that utilizes 

WebRTC to distribute site resources like images, videos and downloads among site 

visitors [52]. 

Using WebRTC for exchanging metadata in web based real-time games has 

the advantage of reduced server bandwith, lower latencies and also enables players to 
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interact via audio and video. Andrioti et al. in [53] have implement a demo 3D 

collaborative online game introducing WebRTC over X3DOM technology. 

Finally the emerging popularity of WebRTC has led many companies to offer 

dedicated signaling and hosting services, while other companies offer WebRTC API 

wrappers. Notable examples include Xirsys, TokBox and peerJS. Xirsys offers STUN 

and TURN server hosting for WebRTC applications [54], peerJS wraps the browser's 

WebRTC implementation to provide a complete, configurable, and easy-to-use API 

[55] and TokBox provides hosted infrastructure, APIs and tools required to deliver 

enterprise-grade WebRTC capabilities [56]. 

 

2.2.2 WebRTC APIs 

WebRTC implements three APIs: 

� MediaStream 

� RTCPeerConnection 

� RTCDataChannel 

 

The MediaStream API is responsible for capturing streams of media, these 

streams can be a video taken from the user’s web camera, a stream from a canvas of 

video element or a screen casting session, the RTCPeerConnection API is used to 

communicate these streams between browsers and the RTCDataChannel API is used 

to exchange arbitrary data such as application and game data but also metadata. We 

will look at these 3 APIs in some more detail in the following paragraphs. 

 

WebRTC Media Stream API 

At the heart of the WebRTC API lies the MediaStream Processing API, often 

called the Media Stream API or the Stream API. This API describes a stream of audio 

or video data, the methods with working with them, the constraints associated with 

the type of data, the success and error callbacks when using the data asynchronously, 

and the events that are fired during the process [57]. Media streams are distinguished 

between local and remote. The source of a local stream can be the user’s web camera 

or microphone, a screen capturing stream, an HTML5 canvas or a video element. We 

discuss with more detail in screen capturing and in stream capturing from video and 

canvas elements in later sections. The source of a non-local MediaStream may is a 
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stream originating over the network, and obtained via the WebRTC PeerConnection 

API, or a stream created using the Web Audio API MediaStreamAudioSourceNode. 

Local media streams from the web cam or screen capture are generated by the 

MediaDevices.getUserMedia method which prompts the user for permission to use 

one video and/or one audio input device such as a camera, a microphone or for 

permission to start capturing a screen or part of it.  

 

  

Figure 2.3 Asking for the user's permission to use a device (left) or start capturing part of the screen (right) 

 

If the user provides permission, then the returned Promise (an object is used 

for deferred and asynchronous computations) is resolved with the resulting 

MediaStream object. If the user denies permission, or media is not available, then the 

promise is rejected with PermissionDeniedError or NotFoundError respectively. [58].  

The getUserMedia method has one constraints parameter and two callback 

functions, one for successful creation of the promise and one for the rejection of the 

returned promise. 

navigator.mediaDevices.getUserMedia(constraints) 
.then(successFunction)  
.catch(errorFunction) 
Listing 2.1 Syntax of the getUserMedia method 

 

The constraints object contains parameters such as the video resolution, frame 

rate or which camera to use on devices with more than one camera. For example to 

enable audio and allow access to the rear camera of a device instead of the front 

camera the following constraints object can be used: 

 
{audio:true, video:{facingMode:{exact:"environment"}}} 
 
Listing 2.2 getUserMedia constraint to access the rear (environment) camera instead of the front camera of the 

device 
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Because not all devices support all constrains W3C requires the 

implementation of a getSupportedContraints method which returns all the supported 

constraints of the devices as seen in the following listing: 

Object { browserWindow: true,  
         deviceId: true, 
         facingMode: true, 
         frameRate: true, 
         height: true, 
         mediaSource: true, 
         scrollWithPage: true, 
         width: true } 
Listing 2.3 Sample returned data from getSupportedConstraints on a laptop computer 

 

The above data can be used by the web developer to check the capabilities of a 

device and adapt the getUserMedia call accordingly [59]. 

 

WebRTC Peer Connection API 

WebRTC uses the RTCPeerConnection interface to represent a connection 

between two peers and to handle efficient streaming of data between them [60]. An 

RTCPeerConnection object must be accompanied by configuration information which 

include an ICE agent, signaling state, ICE gathering state and ICE connection state. 

When the object is created the browser associates an ICE agent with the 

RTCPeerConnection object [61]. 

 

 

Figure 2.4 RTCPeerConnection structure [62] 
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The PeerConnection interface uses the ICE protocol together with the STUN 

and TURN servers to let UDP-based media streams to traverse NAT boxes and 

firewalls. ICE allows the browsers to discover enough information about the topology 

of the network where they are deployed to find the best exploitable communication 

path. Using ICE also provides a security measure, as it prevents untrusted web pages 

and applications from sending data to hosts that are not expecting to receive them 

[63]. An example of how to create an RTCPeerConnection object is shown in the 

following listing: 

 

var config = {iceServers: 
[{url:'stun:stun.services.mozilla.com'}]}; 
pc = new RTCPeerConnection(config); 
Listing 2.4 Creating an RTCPeerConnection object 

 

In the above example, a new RTCPeerConnection object is created using the 

configuration described in the variable “config|”. The variable declares one STUN 

server to be used by RTCPeerConnection. Once the RTCPeerConnection object is 

created by the browser it awaits for calls to methods createOffer, setLocalDescription, 

createAnswer, setRemoteDescription and addIceCandidate. These methods are 

summarized in the following table: 

createOffer Creates a request to find a remote peer with a specific 

configuration. 

setLocalDescription Changes the local description associated with the 

connection. The description defines the properties of the 

connection like its codec. The method takes three 

parameters, an RTCSessionDescription object to set, and 

two callbacks, one called if the change of description 

succeeds, another called if it fails. 

setRemoteDescription Changes the remote description associated with the 

connection. The description defines the properties of the 

connection like its codec. The method takes three 

parameters, an RTCSessionDescription object to set, and 

two callbacks, one called if the change of description 

succeeds, another called if it fails. 
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createAnswer Creates an answer to the offer received by the remote peer, 

in a two-part offer/answer negotiation of a connection. The 

two first parameters are respectively success and error 

callbacks, the optional third one represent options for the 

answer to be created. 

addIceCandidate Provides a remote candidate to the ICE Agent. In addition 

to being added to the remote description, connectivity 

checks will be sent to the new candidates as long as the 

"IceTransports" constraint is not set to "none". This call 

will result in a change to the connection state of the ICE 

Agent, and may result in a change to media state if it 

results in different connectivity being established. 

Table 2.2 RTCPeerConnection main methods [60] 

 

For example to set the local description associated with the connection the 

peer connection will call its createOffer method which in turn will call a callback 

function which then calls the setLocalDescription method. Since a peer-to-peer 

connection has not yet been established at this point, the application also needs to 

notify the other peer through the signaling channel of its local description 

information. 

 

pc.createOffer(function() { 
        pc.setLocalDescription(sessionDescription); 
        sc_send(sessionDescription); 
}, onSignalingError, sdpConstraints); 
Listing 2.5 Setting the local description using the createOffer method 

 

The application must then wait for the remote description from the server and 

a list of ICE candidates as seen in the following listing: 

socket.on('message', function (message){ 
if (message.type === 'answer') { 
 pc.setRemoteDescription(new 
RTCSessionDescription(message)); 
} else if (message.type === 'candidate') { 
 pc.addIceCandidate(candidate); 
}}); 
Listing 2.6 Setting the remote description and adding ICE Candidates 
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Another very important feature of the RTCPeerConnection API is its ability to 

support multiple streams per connection. For example two users can exchange the 

streams of their web cameras and also screen casting streams through the same media 

connection. Currently there are two different approaches for signaling multiple 

streams. Firefox since version 38 utilizes the “Unified Plan” [64] Internet draft while 

Chrome utilized an older Google proposal called “Plan B” [65]. As a result 

applications utilizing multiple streams are not interoperable between Chrome and 

Firefox [66]. Chrome development team has stated that they reevaluate this issue in 

the first quarter of 2016 [67]. 

The main goal of the “Unified Plan for Using SDP with Large Numbers of 

Media Flows” Internet draft is among others: 

� To support for a large number of arbitrary sources 

� To achieve glareless addition and removal of sources 

� To avoid excessive use of port allocation 

 

On Firefox, multiple streams can be implemented through the use of the 

onnegotiationneed callback function of the RTCPeerConection object. Every time a 

stream or track is added to an established RTCPeerConnection using the addstream 

method and onaddstream callback, it simply needs to be signaled to the other side of 

the connection using the onnegotiationneed callback function as shown in the 

following listing: 

 

if(pc) { 
 pc.onnegotiationneeded = function (event) {   
         pc.createOffer( 
                              setLocalDescription, 
                              onSignalingError, 
                              sdpConstraints); 
 }; 
} 
Listing 2.7 Defining a callback function for when a new RTCPeerConnection negotiation is needed 
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WebRTC Data Channel 

The WebRTC data channel API is designed to provide a transport service 

allowing web browsers to exchange generic data in a bidirectional peer-to-peer mode 

[63]. The WebRTC data channel is implemented by the RTCDataChannel interface 

which represents a bidirectional data channel between two peers of a connection [68]. 

RTCDataChannel can be configured to operate in different reliability modes. A 

reliable channel (the default RTCDataChannel connection) ensures that the data is 

delivered at the other peer through retransmissions [61]. 

The WebRTC data channel models the behavior of WebSocket [61] and is in 

fact a superset of the WebSocket API. Their main difference is that WebSocket runs 

on top of TCP whereas the WebRTC data channel is layered on top of three different 

protocols [62]: 

� UDP which provides peer-to-peer connectivity. 

� DTLS which provides encryption of transferred data. 

� SCTP which provides multiplexing, flow and congestion control, and other 

features. 

 

A comparison between the WebRTC Data Channel and WebSocket is 

summarized in the following table [62]: 

 

 
WebSocket DataChannel 

Encryption configurable always 

Reliability reliable configurable 

Delivery ordered configurable 

Multiplexed no (extension) yes 

Transmission message-oriented message-oriented 

Binary transfers yes yes 

UTF-8 transfers yes yes 

Compression no (extension) no 
Table 2.3 Comparison between WebSocket and the WebRTC Data Channel 

 

Reliability and ordering can be set when creating the data channel by calling 

the createDataChannel method of the RTCPeerConnection object. These properties 

are members of an RTCDataChannelInit collection and are summarized in the 

following table: 
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maxPacketLifeTime Limits the time during which the channel will transmit or 

retransmit data if not acknowledged. This value may be 

clamped if it exceeds the maximum value supported by the 

user agent. 

maxRetransmits Limits the number of times a channel will retransmit data if 

not successfully delivered. This value may be clamped if it 

exceeds the maximum value supported by the user agent. 

negotiated The default value of false tells the user agent to announce the 

channel in-band and instruct the other peer to dispatch a 

corresponding RTCDataChannel object. If set to true, it is up 

to the application to negotiate the channel and create an 

RTCDataChannel object with the same id at the other peer. 

ordered If set to false, data is allowed to be delivered out of order. 

The default value of true, guarantees that data will be 

delivered in order. 

Table 2.4 List of the most important members of the RTCDataChannelInit collection 

 

As it can be seen, there is no member in the above table that sets the reliability 

of the channel. An unreliable channel can be created either by limit the number of 

retransmissions (using member maxRetransmits) or by setting a time during which 

transmissions (including retransmissions) are allowed (using member 

maxPacketLifeTime). According to the specification these two properties cannot be 

used simultaneously and an attempt to do so will result in an error. Not setting any of 

these properties results in a reliable channel. This can be seen in the following 2 

examples where we show how a reliable and an unreliable data channel can be 

created: 

 

var con_init= {maxRetransmits: 0, ordered: false}; 
var data_channel = pc.createDataChannel("testChannel", 
con_init); 
Listing 2.8 Creating an unreliable data channel 

 

var data_channel = pc.createDataChannel("testChannel", {}); 
Listing 2.9 Creating a reliable data channel 
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In the first example a data channel with unordered data transmission and no 

retransmits if a packet is not successfully transmitted while the second example shows 

the creation of a default reliable data channel. 

 

WebRTC Screen Casting 

Screen capturing is an extension to the WebRTC getUserMedia API which 

allows the acquisition of a user's display, or part of it, in the form of a HTML5 video 

stream [69]. 

Screen capturing is achieved simply by calling the getUserMedia method 

using specific constraints. These constraints are specified by a 

MediaStreamConstraints object which has two members: video and audio, which 

describe the media type requested. An example constraints object is shown in the 

following listing. 

constraints = { 
 video: { 
  mozMediaSource: "application", 
  mediaSource: "application" 
 } 
}; 
Listing 2.10 MediaStreamConstraints object for Application capturing in Firefox 

 

In the case of screen capturing the audio member is null because support for 

capturing audio from a native application is not yet implemented. The video member 

specifics the requested type of screen capturing. These types can be depending on the 

browser, one of the following: 

� A monitor surface: Represents the full screen area for one of the 

connected screens (e.g. the user is asked to select a monitor in a system 

with multiple monitors connected). It can also represent a combination of 

all the connected screens. 

� A window surface: Captures a single window. Child windows (modal or 

not) will not be captured 

� An application surface: This surface represents all the windows that are 

available to a single application. All child windows modal or not will be 

captured. An application capture results in a surface area with dimensions 
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equal to the user’s screen resolution but with all areas that don’t belong in 

the captured application obscured. 

� A browser surface: This represents a single document. It is usually a 

browser tab but it is not strictly limited to HTML. Theoretically it could be 

a single document from any application, although this feature has not yet 

implemented by any browser. 

 

     

Figure 2.5 Screen capturing modes (from left to right: Monitor, Application, and Window) Notice how the 

“About” dialog box is visible in the 2rd screenshot (Application capturing) because it belongs to the Minesweeper 

Application 

 

As of February 2016 the screen capturing API is only supported on Chrome 

and Firefox. On Firefox in order for a web application to be allowed to access the 

screen capturing API it must a) be behind an SSL server (https) and b) has its domain 

whitelisted in the media.getusermedia.screensharing.allowed_domains variable of the 

Firefox application settings (about:config). A simple extension can be developed to 

automatically whitelisting a domain but developers of commercial WebRTC screen 

sharing applications can also request their domain to be whitelisted in the next release 

of Firefox.  Firefox currently doesn’t support capturing of browser documents (tabs). 

On Chrome screensharing is implemented as an API for Chrome extensions 

which must be installed  through the Chrome Web Store. The API is must more 

difficult to use and documentation for it is currently ver sparse. Although this defies 

the philosohpy of plugin-less web advocated by WebRTC, Google decided to enforce 

this policy of security reasons. Because extensions for Chrome can only be delivered 

through the Chrome Web Store, Google is allowed to maintain some form of 

governance, along with the ability to throw away extensions that are considered 

malware [70]. 
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Screen Casting Security Issues 

Screen sharing in the browser has significant security implications, the most 

obvious being users sharing content that they did not wish to share , or users not 

realizing that they are actively sharing their screen or portion of it. Also display of 

information that is under the control of the browser (e.g. a browser tab that the web 

application has access to) can allow the web application to access information that 

would otherwise be inaccessible to it directly [71] and thus render the “same-origin 

policy” inefficient. To summarize, the main security concerns of W3C are a) the 

capture of an area that is not intended to be exposed and b) the capturing of an area 

without the authorization of the user. 

To secure against capturing of surfaces areas that the user has not provided 

capturing authorization the browser can obscure some of the captured areas as shown 

in the following screenshot: Here a user has chosen to capture the Windows Notepad 

application. The browser is obscuring the rest of the desktop only displaying the 

application and its child windows. 

 

 

Figure 2.6 Obscuring information in application capturing mode (black area covers everything that doesn’t 

belong to the application) 

 

To secure against initiating a screen sharing session without the explicit 

authorization of the user the draft specifies two different forms of user interaction. In 

the first case the application (e.g. browser) that is requesting to use the screen 

capturing feature has no control over what is to be rendered on that surface. In this 
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case active user consent (e.g. by selecting an application from a drop down menu) is 

all that is required. The user must remain notified that a screen sharing session is 

active (e.g. by an always-on-top notification such as the one shown in the next figure). 

The user must also be able to stop any active capture at any time. Firefox for example 

displays an always-on-top orange square with the Firefox icon on the middle top of 

the screen, and an icon in the address bar. When the user clicks on either of these 

areas, a popup notification appears indicating that a device is used or that part of the 

screen is captured, from which the user can stop the capturing session, as seen in the 

following figure.  

 

 

Figure 2.7 Notifying the user that screen sharing is active in Firefox 

  

In cases where the application has control over the area that is about to be 

shared, the W3C draft strongly advices for a form of “elevated permission” to be 

required from the user. This “elevated permission” should, among others things, 

notify the user of the risks associated with enabling screen capturing and certify that 

the user has trust in the application. 

The vulnerabilities arising from the lack of enforcement of the “same-origin 

policy” by WebRTC screen capturing are discussed extensively in [72] by Tian et al. 

The same-origin policy is a critical web security mechanism for isolating 

potentially malicious documents. It restricts a document or script loaded from one 

origin from interacting with a resource from another origin [73]. Tian et al. conclude 

that this assumption is directly broken when using the screen sharing feature of 

WebRTC and distinguish between malicious users and malicious WebRTC 

applications. A malicious user is one who tries to collect sensitive information by 

tricking a benign user to click on malicious links during a screen sharing session. A 

malicious WebRTC application is one which can access the cross-origin content 

displayed inside a user’s browser. Utilizing this technique an attacker could perform 

attacks on integrity (CSRF) and attacks on confidentiality (access to personal 



 

38 
 

information, browsing history etc.). For example a malicious user or malicious 

application could trick the user into clicking a malicious link to an HTML file 

containing the following code: 

 

<script> 
document.location="view-source:https://www.facebook.com/"; 
</script> 
Listing 2.11 Malicious HTML file for a possible CSRF attack through screen sharing 

The above code displays the source code of Facebook.com (fig. 3). The 

attacker now has obtained a screenshot of the source code of the website which could 

contain critical information such as validation tokens etc. 

 

Figure 2.8 Source code of a website which could contain security-critical information such as security tokens 

which could be used for a CSRF attack. 

 

WebRTC Interoperability 

Until the WebRTC standard is more finalized, the two supporting browsers 

(Firefox and Chrome) could be using different prefixes for their WebRTC interface. 

Some differences in the WebRTC API between Firefox and Chrome are 

summarized in the following table (as of September 2015): 

 

W3C Standard Chrome Firefox 

getUserMedia  webkitGetUserMedia  mozGetUserMedia 

RTCPeerConnection webkitRTCPeerConnection mozRTCPeerConnection 

RTCSessionDescription RTCSessionDescription mozRTCSessionDescription 

RTCIceCandidate RTCIceCandidate mozRTCIceCandidate 

Table 2.5 Example API differences accross Chrome and Firefox 



 

39 
 

 

To remedy this and to help ease cross-browser development the WebRTC 

group has developed a “polyfill” shim library (a small library that transparently 

intercepts API calls and changes the arguments passed, handles the operation itself, or 

redirects the operation elsewhere) called “Adapter.js”. This library helps insulate apps 

from cross-browser API differences by letting developers write code using W3C 

standard names [34]. 

The following code shows an example of how Adapter.js works. In this 

example it is shown how Adapter.js detects the user’s browser and redefines the 

object RTCPeerConnection as “mozRTCPeerConnection”: 

 

if (navigator.mozGetUserMedia) { 
  console.log("This appears to be Firefox"); 
  webrtcDetectedBrowser = "firefox"; 
  // The RTCPeerConnection object. 
  RTCPeerConnection = mozRTCPeerConnection; 
} 
 
Listing 2.12 Detecting the browser and intercepting WebRTC API accordingly 

 

Adapter.js is being developed at github.com/webrtc/adapter 

 

It must be noted here that since December 2015 the method getUserMedia 

belongs to the MediaDevices interface instead of the Navigator interface that is shown 

on the previous listing. The Navigator interface represents the state and the identity of 

the user agent. It allows scripts to query it and to register themselves to carry on some 

activities. On the other side, the MediaDevices interface in which the getUserMedia 

method now belongs is a specialized interface that provides access to connected 

media input devices like cameras and microphones, as well as screen sharing. This 

interface currently has 2 main methods: getUserMedia() which has been discussed in 

extend in previous section and an enumerateDevices() method for obtaining arrays of 

information about the media input and output devices available on the system [74] 

[75] [76]. Adapter.js mitigates this in old browser versions as seen in the following 

listing: 

if (!navigator.mediaDevices) { 
    navigator.mediaDevices = {getUserMedia: requestUserMedia, 
          addEventListener: function() { }, 
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          removeEventListener: function() { } 
             }; 
} 
Listing 2.13 Mitigating the lack of MediaDevices interface in Adapter.js 

 

2.2.3 WebRTC Signaling 

Although WebRTC aspires to enable Peer-to-Peer communication between 

browsers without relaying data through a server, a use of a server is still required for 

two reasons: The first reason is the obvious one, the server is needed to “serve” the 

actual JavaScript application that utilizes WebRTC. The second reason is less 

obvious. A server is required in order to initialize sessions between the clients that 

need to communicate. This process is known as “Negotiation” and is implemented via 

certain signaling exchange. The latter is responsible for the exchange of the initial 

(meta) data of session descriptions (using SDP) which contain details on the form and 

nature of the data which will be transmitted [77]. This information can include [78]: 

� Network data, such as IP addresses and ports. 

� Media metadata such as codecs and codec settings, bandwidth and media 

types. 

� Error messages. 

� User and room information. 

 

The following schematic shows the signaling architecture of WebRTC: 

 

Figure 2.9 WebRTC Signaling Architecture 

 

The WebRTC signaling process is based on a new standard called JSEP 

(JavaScript Session Establishment Protocol). JSEP is a collection of interfaces used to 
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identify negotiation of local and remote addresses by exchanging “offers” and 

“answers” between peers using SDP. 

The signaling itself in WebRTC is completely abstract and not defined in any 

specification. The reason behind this is that different applications may decide to use 

different signaling protocols such as SIP for e.g. VoIP applications, XMPP for e.g. 

chat applications, HTTPS (WebSocket or socket.io) for e.g. plain web applications 

such as the one we present in this thesis or even something special for a novel use 

case [79]. In other words, standardizing on the wrong signaling protocol could easily 

limit the future potential of WebRTC. 

More details about SDP and the signaling process will be discussed in section 

2.2.4 concerning WebRTC Network Protocols. In the next section we discuss the 

signaling server implementation we chose in this thesis which utilizes WebSocket 

(using socket.io). 

 

Node.js/Socket.io for WebRTC Signaling 

One of the most popular implementations for WebRTC signaling is using 

Socket.io. Socket.io is a JavaScript library for real time web applications that supports 

bi-directional event-based communication. It has two parts: a client-side JavaScript 

library that runs in the browser and a server-side library for node.js. 

Node.js is a JavaScript framework that simplifies the writing of event-driven 

server-side applications using a build-in HTTP server implementation. It is based on a 

single-threaded event loop management process making use of non-blocking I/O. 

With Node.js, it is really easy for the programmer to implement a high-performance 

HTTP server with customized behavior with just a few lines of JavaScript code [63]. 

Socket.io although it is utilizing the WebSocket protocol, it is more than a 

simple WebSocket wrapper as it offers many other features such as broadcasting to 

multiple sockets and support for “Rooms” which are essential for most WebRTC 

applications. An example server and client is shown in the following listings: 

  

var io = require('socket.io').listen(80); 
io.sockets.on('connection', function (socket) { 
  socket.emit('event1', 'hello from server!'); 
  socket.on('event2', function (data) {console.log(data);}); 
}); 
Listing 2.14 Socket.io on the server side 
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var socket = io.connect('http://localhost'); 
socket.on('event1', function (data) { 
  console.log(data); 
  socket.emit('event2', 'hello from client!'); 
}); 
Listing 2.15 Socket.io on the client side 

 

The above listings show the simplicity and elegance of socket.io and how it 

simplifies event-driven web development. On the server side socket.io listens to port 

80 and upon connection emits a ‘hello from server’ event called ‘event1’ which fires 

the event1 event on the client. The event1 event prints the data that accompanies the 

event and then sends an even2 on the server with the string “Hello from client”. 

 

2.2.4 WebRTC Network Protocols 

WebRTC relies on a number of protocols to be able to communicate with 

other clients. Before a peer-to-peer connection is established, all peers must exchange 

session descriptions which contain information about the peers (e.g. IP addresses) and 

the type of information they wish to exchange (e.g. the type video codecs to be used). 

This information is exchanged through the signaling server using SDP. Once session 

information is acquired by all peers, the actual peer-to-peer connection must be 

established. Because naturally some of the peers can be behind a NAT, WebRTC 

must also implement some form of NAT traversal. This is possible with the use of 

STUN and TURN which are part of the ICE protocol. In this section we take a close 

look at these protocols.  

 

SDP 

SDP (Session Description Protocol) is a format for describing streaming media 

initialization parameters. It is published as an IETF proposed standard in RFC 4566 in 

2006. SDP provides a standard representation for such information, irrespective of 

how that information is transported. It is intended to be general purpose protocol so 

that it can be used in a wide range of network environments and applications [80]. A 

session is described by a series of fields, one per line, each line being in the form of  

character=value, where character is a single-case significant character and value is 

structured text whose format depends on the attribute type [81]. For example the 
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character m signifies media name and transport address and the letter o is the 

originator and session identifier. In the following example we show some lines of an 

SDP message generated by Firefox for a WebRTC session: 

 

v=0 
o=mozilla...THIS_IS_SDPARTA-44.0 8584189520789373760 0 IN IP4 0.0.0.0. 
a=ice-options:trickle 
a=msid-semantic:WMS * 
m=audio 9 UDP/TLS/RTP/SAVPF 109. 
a=rtpmap:109 opus/48000/2 
a=rtpmap:9 G722/8000/1 
a=rtpmap:0 PCMU/8000 
a=rtpmap:8 PCMA/8000. 
a=rtpmap:120 VP8/90000 
a=rtpmap:126 H264/90000 
a=rtpmap:97 H264/90000 
Listing 2.16 Excerpt of SDP message 

 

In the above example, the lines beginning with character “a” (media attribute 

lines — overriding the Session attribute lines) is the list of available audio and video 

codecs of the browser from whom this message originated (in this case VP8 and H264 

for video and Opus, G.722. PCMU and PCMA). The originating browser is Firefox 

44.0 as seen from the value of character “o” (originator) being equal to 

“mozilla...THIS_IS_SDPARTA-44.0” (a humorous reference to the quote “This is 

Sparta!” from the movie ‘300’). 

 

STUN 

STUN is one of the protocols used by ICE that serves as a tool for other 

protocols in dealing with NAT traversal, standardized in 2008 as RFC 5389 [82]. 

Most times, a client behind a NAT is unaware of its public IP address and port. To 

resolve this, the client sends a message to a STUN server (which is located behind the 

NAT) on the public web. The STUN server then sends a reply containing the client’s 

public IP and port as seen from its side.  
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Figure 2.10 Connection using a STUN Server 

 

Because STUN is a very light-weight and simple protocol, STUN server with 

low specifications can handle a large number of requests [83]. It is measured that 86% 

of WebRTC connections are successfully completed using STUN. 

 

TURN 

On some occasions, WebRTC can fail to establish a connection using STUN. 

This usually happens when one of the clients is behind a symmetric NAT because 

with a symmetric NAT a client can find out its public IP address but not its public 

port. To be reachable, a device behind a symmetric NAT needs to initiate and 

maintain a connection using relay [84]. WebRTC uses the TURN protocol (Traversal 

Using Relays around NAT) to establish a relayed connection. TURN is meant to 

bypass the symmetric NAT restriction by opening a connection with a TURN server 

and relaying all information through that server. 

 

   

Figure 2.11 Using a TURN Server to relay data 
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It is obvious that this fallback solution comes with some overhead so it is only 

used if there are no other alternatives [85]. 

 

ICE 

The STUN and TURN protocols are all part of the ICE (Interactive 

Connectivity Establishment) framework that is used by WebRTC. ICE is used to 

allow browsers to connect with other browsers (peers).  

An example of using ICE to tell the RTCPeerConnection object which STUN 

and TURN servers to use is shown in the following listing: 

 

var stun_server = {'url': 'stun:stun.services.mozilla.com',}; 
 
var turn_server = { 
 url: 'turn:nikos@numb.viagenie.ca', credential: 'pwd12345' 
}; 
 
var iceServers = {iceServers: [stun_server, turn_server]}; 
 
var pc = new RTCPeerConnection(iceServers); 
Listing 2.17 Creating an RTCPeerConnection object and telling it which STUN and TURN servers to use 

 

ICE is described in RFC 5245, “Interactive Connectivity Establishment (ICE): 

A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer 

Protocols” [86]. The basic idea behind ICE is that each peer has a list of candidate IP 

addresses and ports it could use to communicate with the other peer. These are called 

“candidate addresses”. Candidates include the host’s private local IP address and also 

IP addresses collected from STUN and TURN servers. ICE then distributes the 

candidate addresses to all the other peers using the signaling server. Finally each peer 

attempts to connect to the other using the candidates in its list. Each of the candidates 

is assigned a priority value. Lowest priority is given to the relayed candidates, highest 

priority to local candidates. 

 

The following two tables shows an example of ICE candidates gathered for a 

sample WebRTC session: 
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Figure 2.12 Sample list of local and remote ICE candidates gathered by Mozilla Firefox (the public addresses of 

the peers are paired) 

 

 

Figure 2.13 List of local and remote ICE candidates gatered by Mozilla Firefox (local IP of the peers is selected) 

 

One security implication of using ICE is that it exposes IP information by 

allowing requests to STUN servers that return the local and public IP addresses of the 

user using JavaScript. Additionally, because these STUN requests are made outside of 

the normal XMLHttpRequest procedure, they are not visible in the developer console 

or able to be blocked by plugins such as AdBlockPlus or Ghostery. This makes these 

types of requests available for online tracking if an advertiser sets up a STUN server 

with a wildcard domain [87]. A demo of this vulnerability can be seen in the 

following screenshot: 

 

 

Figure 2.14 Using WebRTC to reveal user's IP information 

 

The whole process of utilizing the protocols we discussed in this section establishing 

a connection between two peers in WebRTC is shown in the following diagram: 
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Figure 2.15WebRTC signaling complete process [88] 

 

2.2.5 WebRTC Codecs 

The codecs that are supported by WebRTC are defined by two IETF drafts. 

Audio codecs are described in “WebRTC Audio Codec and Processing 

Requirements” [37] and video codecs in “WebRTC Video Processing and Codec 

Requirements” [36]. According to these drafts WebRTC browsers must (absolute 

requirement) implement the VP8 video codec as described in RFC6386 and also 

H.264 Constrained Baseline as described in H264, and must also implement the Opus 

audio codec described in RFC6716 and the G.711 PCMA and PCMU audio codec 

described in RFC3551. WebRTC also supports the iSAC and iLBC audio codecs. 

VP8 is a video compression format which is owned by Google and is the video 

codec of the WebM file format. The benefits of VP8 are its low bandwidth 

requirements and its broad spectrum of supported hardware from desktop computers 

to embedded devices. VP8 is designed to make the optimal use of computation power 

in modern hardware while maintaining fast decoding speeds [89]. Although VP8 is 

influenced by H.264/AVC it includes several technological innovations. 

Although VP8 is the video codec of choice of WebRTC, it was decided by 

IETF in November 2014 that support of H.264 will also be mandatory. H.264 or 

MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC) is a video coding format 

that is one of the most commonly used formats for the recording, compression, and 
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distribution of video content. This popularity of H.264 is one of the reasons that led to 

the decision of making it a mandatory WebRTC codec [90]. It is currently only 

supported by Firefox [31]. Compared to VP8, H.264 offers better video quality at the 

same bit rate especially in higher motion videos [91].  

Opus is the primary audio codec of WebRTC. It is an open source and royalty 

free audio codec intended for storage and streaming, standardized by IETF in 

RFC6716. It supports bitrates from 6 to 510 kbps, frame sizes from 2.5 to 60 ms, 

sampling rates from 8 to 48 KHz, dynamically adjustable bitrate [92], has an audio 

bandwith ranging from narrowband (0.3 to 3.4KHz) to full band and was developed 

specifically for packet switching networks. 

The G.711 is a very simple ITU-T recommendation dating from 1972 which 

was designed to carry audio at a fixed bitrate of 64kbps and is used for many years in 

packet switched networks. It is a narrowband codec (0.3 to 3.4 KHz) which means 

can only be used for voice applications. G.711 does not implement any compression, 

hence it has zero compression latency [93]. G.711 is included in the list of mandatory 

WebRTC codecs mainly for legacy reasons [94]. 

Finally, the iSAC (Internet Speech Audio Codec) and iLBC (Internet Low 

Bitrate Codec) are voice codecs which although are not mandatory are supported 

today by some platforms. iSAC is a bandwidth-adaptive, wideband and super-

wideband voice codec suitable for streaming audio and VoIP applications with a 

sampling frequency of up to 16KHz and adaptive bitrate, while iLBC is narrowband 

with a fixed bitrate. Both are royalty-free. 

 

2.3 HTML5 

The original HTML was proposed and prototyped in the early 1990s by Tim 

Burners Lee. Ever since it has been in continuous development. Some features were 

introduced in specifications while others were introduced in software releases. 

HTML4 became a W3C Recommendation in 1997. 

The current proposed draft is HTML5 which brings to the Web, video and 

audio without the need of plugins, programmatic access to a bitmap canvas, useful for 

rendering graphs, game graphics, or other visual images on the fly [95] (procedural 

animation/drawing), native support for scalable vector graphics (SVG) and math 

(MathML), features to enable accessibility of rich applications and much more [96]. 
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In essence HTML5 helped the Web evolve from a presentation layer powered by a 

simple markup language to a full-scale application environment. 

The HTML5 draft reflects an effort that started in 2004, to study contemporary 

HTML implementations and deployed content [97]. The draft: 

1. Defines a single language called HTML5 which can be written in HTML 

syntax and in XML syntax. 

2. Defines detailed processing models to foster interoperable implementations. 

3. Improves markup for documents. 

4. Introduces markup and APIs for emerging idioms, such as Web applications 

and these include for example the media elements (audio, video) and the 

canvas element. 

 

HTML5 was standardized in 28 October 2014, and the current working draft 

5.1 is scheduled to be released by the end of 2016. 

 

2.3.1 HTML5 APIs 

The development and introduction of a plethora of APIs in HTML5 rose from 

the need to provide users with native-like experiences within the browser [98]. For 

example, there are now many APIs that can access mobile devices on the hardware 

level and report battery status, vibrate the device and even measure the ambient light 

of the environment on devices equipped with a light detector. Things which in the 

past would require time-consuming development of browser plugins are now possible 

with a few lines of JavaScript code. 

The core API of this thesis is the WebRTC API which was descried in the 

previous section. Other important HTML5 APIs used in this thesis include the File 

API, the Stream Capture from DOM Elements API and the Media Recording API 

which we will describe in the following paragraphs. 

 

File API and the Blob Interface 

 One area in which the Web lacked for some time is file I/O. Interacting with 

local data is the core of most desktop software, but for web application this was not 

possible until the introduction of the HTML5 File API [99]. 
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The File API makes it possible for browsers to access data from the 

underlying operating system and manipulate that data before sending it to either a web 

server or a peer browser. The specification of the File API defines basic 

representations for files, list of files, errors caused by access to files and 

programmatic ways to read files. The File API also includes the “Blob” interface 

which represents immutable raw data [100]. 

As stated the File API is capable of reading and writing data to the user’s hard 

disk. For this reason a number of security considerations are taken into account in the 

draft. Those include for example: 

1. Storing malicious executables on the user’s system. The API tries to 

prevent this by restricting file creation and file renaming to non-executable 

file formats. The API also makes sure that the execute bit is not set on any 

file it creates or modifies [99]. 

2. Leakage or deletion of user data. The specification assumes that the 

primary user interaction is with the HTML input element and that all files 

that are being read by the API have first been selected by the user [100]. 

The API also prevents access to system sensitive files. 

 

Stream Capture from DOM Elements API 

Capturing media streams from DOM elements is a W3C draft that was 

published in 19 February 2015 by the WebRTC and the Device API working groups 

with no revisions since. It is intended to become a W3C recommendation at some 

time in the future. The draft describes an extension to the HTML media and canvas 

elements that enables capturing the output of the element in the form of streaming 

media. The stream can in turn be broadcast through the WebRTC media channel, 

recorded or otherwise used by any other HTML5 APIs that handle media streams 

such as WebAudio [101]. 

Implementations of the stream capturing API are still highly experimental. In 

Firefox the captureStream() method is implemented for the HTMLCanvasElement 

object since release 43 (15 December 2015) [102]. The HTMLMediaElement on the 

other side has an undocumented method mozCaptureStream() that is implemented 

[103]. The method is prefixed with the moz- prefix and is problematic in its use most 
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notable problems being those documented in bugs 1178751 and 912907 of the 

Mozilla Bug database. We will further explore these problem in chapter 3. 

In Chrome support for this API has not yet been released. An initial 

implementation is scheduled for Chrome 50 which is due to be released in 11 April 

2016. As of February 2016 (Chrome Canary) audio was still not supported when 

capturing streams from video elements and there were other documented bugs such as 

canvases in background tabs do not update properly [104]. 

 

 

Media Recording API 

The capability to record media in HTML5 has been suggested by W3C in a 

working draft by the Device APIs working group and the WebRTC working group, 

initially published in 5 February 2013. The API allows very basic stream recording in 

the browser while also allowing for more complex use cases. The API provides the 

developer with a MediaRecorder object with record() and stop() methods and an 

ondatavailable event that is fired when the recording has stopped and recorded data is 

available in the form of a HTML5 blob. Functions are also available to query the 

platform's available set of encodings, and to select the desired ones if the author 

wishes [105]. 

The Media Recorder is still experimental in most browsers and as a result its 

use is still problematic. It is expected that the API implementations will be improved 

as new browser versions are released. The current status of the API (as of February 

2016) is presented in the following table [106]: 

 

Browser Version Comments 

Chrome 47 Feature not enabled by default. Currently only video 

is supported. 

Firefox 25 Initially only supported audio recording. Currently 

supports both video and audio but its use is 

problematic 

Firefox Mobile 25 

Firefox OS 1.3 
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2.3.2 jQuery & jQueryUI 

jQuery is a JavaScript library that simplifies HTML document traversing, 

event handling, animating and Ajax interaction [107]. It exposes a “tree-query 

language” API which allows the developer to achieve three things: traverse the DOM 

and select an initial set of nodes of it, navigate to nodes relative to those nodes and 

more importantly manipulate these nodes easily and uniformly [108]. jQuery is 

popular not only because of its ease of use but also because it helps separate design 

from structure and also behavior from structure within a HTML document. This 

approach of development is known as Unobtrusive JavaScript [109] [110]. 

Unobtrusive JavaScript leads to clean and semantic HTML and more manageable 

code. An example can be seen in the following code: 

 

<a href="#" onclick="doSomething();" id="button1"> 
 

Listing 2.18 HTML containing obtrusive JavaScript 

 

<a href="#" id="button1"> 
 

Listing 2.19 Same HTML code with JavaScript now removed 

 

var button1=document.getElementById('button1'); 
button1.onclick = doSomething; 
 

Listing 2.20 Unobtrusive JavaScript located in a separate .js file 

 

$("#button1").on("click", doSomething); 
 

Listing 2.21 Unobtrusive JavaScript located in a separate .js file using jQuery 

 

 jQuery is omnipresent in the modern World Wide Web, used by about 70% of 

all websites (fig.2.16) with a market share of almost 96% among JavaScript libraries 

[111]. 
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Figure 2.16 Usage of jQuery for websites, 15 Feb 2015 to 15 Feb 2016. Source: W3Techs.com 

 

jQueryUI is another JavaScript library that is built on top of jQuery. It 

simplifies the development of user interface interactions that are required for modern 

web applications (especially single page web sites such as the one that was 

implemented in this thesis). It provides user interface interaction elements, animation 

effects, widgets and themes.  

 

2.4 Data Chanel Compression 

In order to save bandwidth, we propose a compression system on the 

WebRTC data channel based on the LZW compression algorithm. All data travelling 

through the data channel are compressed using LZW beforehand and immediately 

decompressed upon arrival from the other peer. This is shown in the following 

schematic which presents a data transfer of data from Peer1 to Peer2. 

 

Figure 2.17 Data channel compression schematic 
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We evaluate the performance of this in implementation in comparison with a 

compressionless data channel in chapter 5. We present implementation details in 

chapter 4. In this section we simply present some details about the LZW algorithm. 

Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm 

created by Abraham Lempel, Jacob Ziv, and Terry Welch. It was published by Welch 

in 1984 as an improved implementation of the LZ78 algorithm published by Lempel 

and Ziv in 1978. The algorithm is simple to implement, and has the potential for very 

high throughput in hardware implementations [112].  

LZW is organized around a string table (dictionary). At each stage of the 

algorithm bytes are gathered into a sequence. This continues until the next character 

gathered forms a sequence which is not included in the string table. 

The algorithm flowchart is presented in the following figure [113]: 

 

 

Figure 2.18 LZW Algorithm Flowchart 
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Chapter 3.  Communication Protocol 

Before developing a system targeted on synchronous online collaboration, a 

protocol defining the messages that will be exchanged through the WebRTC data 

channel must be developed. This is necessary if the system is going to be expandable, 

interoperable and maintainable. What we propose is a “language” defining the actions 

taking placing in such a collaboration environment and their parameters. 

The first step towards defining this “language” targeted at synchronous online 

collaboration is to develop some form of abstraction layer sitting on top of the native 

WebRTC RTCDataChannel interface which was described in Chapter 2. There are 

two basic reasons for this: first, we need functions to uniformly handle messages 

exchanged between peers and second, because the use of the internal WebRTC 

functions to exchange data through the data channel is often a complicated task 

requiring many lines of code and customizations. In chapter 2.2.1 we discussed 

WebRTC API wrappers. In a similar fashion we propose wrapper functions 

encapsulation the data channel functionality into simple send and receive functions 

which simplify the development and maintenance of the system. For these reasons we 

wrote two functions: One for sending messages (called sendDataAction) and one for 

automatically handling incoming messages (called handleMessage). We describe 

these two functions in chapters 3.2 and 3.3 respectively. 

Once this WebRTC abstraction layer is developed, the next step is to define a 

simple “language” that will describe actions in a synchronous collaboration 

environment (such as sketches or user chat messages) and their parameters. The 

language we propose consists of character strings and “stringified” JSON objects. We 

examine this proposed language in detail in chapter 3.3. Finally we give an example 

of how the system can be easily expanded by using this language, in chapter 3.4 

The communication model described above is shown in figure 3.1. The 

foundation of the system is the native WebRTC data channel RTCDataChannel.send() 

function and onmessage property. Above this layer we have the abstraction layer 

consisting of the sendDataAction() and handleMessage() functions. Finally the top 

layer consists of the exchanged standardized messages which represent actions and 

function calls. 
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Figure 3.1 Communication Model 

 

 

3.1 Use of the native WebRTC send/receive functions 

The abstraction layer we will create, at its base will employ the native 

WebRTC functions used for sending and receiving data through the data channel. 

These methods were discussed in detail in chapter 2. To summarize them here, the 

send() method of the RTCDataChannel interface is responsible for sending data 

across the data channel to the remote peer at any time except during the initial process 

of creating the underlying transport channel. Data sent before connecting is buffered 

if possible (or an error occurs if it's not possible), and is also buffered if sent while the 

connection is closing or closed. Received data is handled by a call back function 

which is defined in the RTCDataChannel property “onmessage”. This property stores 

an event handler which specifies a function to be called when the message event is 

fired on the channel. This event is represented by the MessageEvent interface. This 

event is sent to the channel when a message is received from the other peer. 

The basic use of the RTCDataChannel.send() method and the call back 

function “onmessage’ used when messages are received is outlined in the following 

code: 

 

var pc = new RTCPeerConnection(); 
var dc = pc.createDataChannel("BackChannel"); 
 
function sendMessage(msg) { 

// sample JSON object 
     let obj = { "message": msg, "timestamp": new Date() } 
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// Convert JSON to string and pass it to the data channel 
     dc.send(JSON.stringify(obj)); 
} 
 
dc.onmessage = handleMessage; 
 
Listing 3.1 Usage of the RTCDataChannel send() method and the onmessage callback. 

 

 

3.2 Sending data with sendDataAction  

As we discussed in the beginning of this chapter, we need to develop an 

abstraction layer encapsulating the WebRTC methods for sending and receiving data 

through the data channel. For sending data we have developed a function called 

sendDataAction() for sending strings and a function called sendDataFile() for sending 

binary data. 

All data and messages are sent using these two functions. Messages are in turn 

received and handled inside a callback function called handleMessage(string message, 

bool compression) which we will describe in chapter 3.3. 

The sendDataAction() function has two arguments: The first is a string 

containing the data to be exchanged, while the compression argument is an optional 

boolean defining whether the incoming message is compressed using the LZW 

algorithm (true) or not compressed (default, false). In the same manner the first 

argument of the sendDataFile() function is a blob containing the binary data to be sent 

and the second argument is a Boolean defining whether the data is compressed or not.  

The sendDataAction and sendDataFile functions is described below: 

 

 

interface A { 
 
void sendDataAction (string message, bool compression); 
void sendDataFile (blob file, bool compression); 
 
}; 
Listing 3.2 Definition of the interface in Web IDL 
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void sendDataAction(string message, bool compression) 

 

Sends arbitrary data through the WebRTC Data channel using the 

native RTCDataChannel.send() method 

 

message  The string to be sent 

 

[compression] Optional. A Boolean representing whether the 

data should be compressed before sending 

true: compresses data using the LZW 

algorithm 

   false: no data compression (default) 

 

 

 

void sendDataFile(blob file, bool compression) 

 

Sends a local file represented by the input File through the WebRTC 

data channel. 

 

blob A Blob object representing a file-like 

object of immutable, raw data to be sent. 

Blobs represent data that isn't necessarily 

in a JavaScript-native format. 

 

[compression] Optional. A Boolean representing whether the 

data should be compressed before sending 

true: compresses data using the LZW 

algorithm 

   false: no data compression (default) 

 

 

The code of the sendDataAction and an example call is shown in the following 

listing: 
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function sendDataAction(message, compression) { 
  if(compression) { 
   var data = LZString.compressToUTF16(message); 
           data+="C1"; 
      } 
      else data=message+="C0"; 
 
  if(sendChannel || receiveChannel) { 
  if(isInitiator) sendChannel.send(data); 
  else receiveChannel.send(data); 
   } 
} 
 
// example call 
sendDataAction("test message", 0); 

 
Listing 3.3 The sendDataAction function and an example call 

 

Similarly, the sendDataFile() function uses the sendDataAction() intrinsically 

to send binary data instead of strings and is also responsible for handling large chunks 

of data. Sending files is done using the FileReader API which lets web applications 

asynchronously read the contents of files stored on the user's computer, using File or 

Blob objects to specify the file or data to read. After the file is read it is split in chunks 

of 1000 bytes using the slice method. 

 

function sendDataFile(file, compression) { 
 var reader = new FileReader(); 

cmpr=compression; 
      reader.readAsDataURL(file); 
      reader.onload = onReadAsDataURL; 
} 
 
function onReadAsDataURL(event, text) { 
    // data object to transmit over data channel 
    var data = {}; 
    // first run 
    if (event) text = event.target.result; 
    if (text.length > chunkLength) { 
        // getting chunk using predefined chunk length 
        data.message = text.slice(0, chunkLength);  
    } else { 
        data.message = text; 
        data.last = true; 
 
    } 
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  sendDataAction("::FILES::"+data.toSource(), cmpr); 
      var remainingDataURL = text.slice(data.message.length); 
      if (remainingDataURL.length)  
            setTimeout(function () { 
                     onReadAsDataURL(null, remainingDataURL); 
            }, 500) 
} 
Listing 3.4 Sending files over the data channel 

 

 

3.3 Strings defining actions 

The next step is to define a protocol for the exchanged messages. This ensures 

that the system is well defined and can be easily expanded, but also interoperable so 

that any WebRTC applications that use this protocol can communicate with each 

other. The proposed protocol can be used for presenting metadata on video streams, 

which can include sketching information (Whiteboarding), or chat messaging but can 

be equally used for any data exchanged between peers including file data (binary), 

alerts etc. 

The way the system communicates actions between peers is done using a very 

simple language. Two colons (::, Unicode U+003A) are used to indicate that what 

follows is system data in the form of either strings or “stringified” JSON objects. Chat 

messages or any other data must be filtered and barred from containing this set of 

characters. Messages contain an array of information, the elements of which are 

separated by a double colon (::) (see listing 3.4 for an example message). The first 

element of the array is always a 5 letter string defining the message type (and in 

extend the name of the function the system will call, as we will see in the next 

chapter) e.g.: 

� URMSG: A chat message 

� FILES: An incoming binary file 

� SKTCH: Sketching data etc…. 

 

Messages come in two distinct forms: Messages that are intended for canvases 

and messages that are intended for users. For example a drawing corresponds to a 

canvas while a chat message corresponds to a user (since a user can have more than 

one canvas or video shared). 
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� Messages intended for a canvas or a stream should be in the following form: 

::MSGTP::TARGET::[WIDTH]::[DATA] where  

MSGTP = Message identification (e.g. SKTCH) 

TARGET = A string defining which stream this metadata should belong to 

[WIDTH] = (optional) Width in pixels of the originating video area used 

for stretching data 

[DATA] = Stringified JSON Object containing data 

 

 

� Messages intended for a user should be in this form 

::MSGTP::USER::[DATA] where 

MSGTP = Message identification (e.g. URMSG) 

USER = A string defining which user (username) this metadata should 

belong to 

[DATA] = Stringified JSON Object containing data (optional) 

 

The above two distinct messages types are shown in the following diagram:  

 

 
Figure 3.2 System components and sample incoming messages 

 

It must be noted that the system has no means of identifying whether an 

incoming message is a user message or a canvas message. It is the job of the message 

handling function to identify the message and act accordingly as we will see in the 

following section. 
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In the following table some of the messages that can be exchanged through the 

data channel and their meaning is explained.  

 

Prefix Data 

::URMSG::UNAME::DATA 
A chat message from a user with username 

“UNAME” 

::SKTCH::TARGET::WIDTH::DATA 
Sketch data including text caption for the 

stream named “TARGET” 

::FILES::DATA Data for incoming files 

::PAUSE::TARGET::TIME Pauses a stream at a specified time 

Table 3.1 Sample communcation prefixes 

 

For example to send sketching data (which is sent in the form of a 

“stringified” JSON object) the following data will be sent: 

 

::SKTCH 
::pbt6HN5gVideoSketch 
::804 
::[{textcaption:""}, {textcaptionPeer:""}, {tool:"marker", 
color:"#ff0000", size:5, events:[{x:130, y:458, 
event:"mousedown"}, {x:146, y:447, event:"mousemove"}, {x:200, 
y:401, event:"mousemove"}, {x:251, y:357, event:"mousemove"}, 
{x:439, y:215, event:"mousemove"}, {x:560, y:121, 
event:"mousemove"}, {x:614, y:80, event:"mousemove"}, {x:661, 
y:47, event:"mousemove"}, {x:694, y:24, event:"mousemove"}, 
{x:711, y:13, event:"mousemove"}, {x:722, y:5, 
event:"mousemove"}, {x:722, y:4, event:"mousemove"}]}] 
Listing 3.5 Sample Sketching Message 

 

The above message tells peers who receive it that a sketch (SKTCH) must be 

drawn on the canvas named “pbt6HN5gVideoSketch” which originally has a width of 

804 pixels. It can be seen that expandability of the system is very easily achieved by 

sending prefixed data using the SendDataAction() function and then handling them 

accordingly on the peers who receive them. In the next section we examine how the 

system handles these messages once they are received. 
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3.4 The handleMessage function 

Finally we need to add instructions on how the message should be handled 

once it is received. This is done in the function handleMessage. The function 

handleMessage evaluates incoming messages into function calls. As we saw in the 

previous chapter messages are comprised of array elements separated by a double 

colon (::). The first element of the array is always the name of the function to be 

called while the other elements are parameters of that function. For example when the 

system receives the string “::MSGNM::PAR1::PAR2::” it will look for a function 

defined as msgnm(p1, p2) and call it with “PAR1” and “PAR2” as its parameters as 

shown in the following schematic: 

 

 
Figure 3.3 Converting messages into function calls 

 

In the following listing we examine the inner workings of the hanldeMessage 

function which automatically analyses a message and constructs an appropriate 

function call which it then evaluates. The user of the library implementing the 

protocol only needs to write a function with the appropriate name and number of 

parameters.  

 

function handleMessage(msg) { 
 
 var compression= slice(msg 0, -2); 
 
 // do decompression of the message is necessary 
 if(compression=="c1")  
 var event_data=LZString.decompressFromUTF16(msg.data); 
  
 
 // Split incoming message 
 var splittedMessage= event_data.split("::"); 
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// How many parameters the function has 

 var noOfParams=splittedMessage.length - 2; 
 
 // What function we should call 

var function_name= splittedMessage[1]; 
 
 // construction of the function call 

var fcall= function_name  + " ("; 
 
for(var i=0;i<noOfParams;i++) { 

  fcall=fcall+ ", \"" + splittedMessage[i+2] + "\""; 
} 
 
// remove last character (comma) 
fcall=slice(fcall 0, -1) + " )"; 
 
 
 
// The eval function evaluates or executes the argument 
 
eval(fcall); 

} 
Listing 3.6 Using the handleMessage function 

 

To demonstrate this functionality, in the next section we show how a new 

feature can be added to the system with only minimal effort and lines of code. 

 

3.5 Example of Expandability 

As we explained in previous chapters a developer using our proposed library 

must set the property RTCdatachannel.onmessage to the provided handleMessage 

function:  

 
datachannel.onmessage = handleMessage; 
 

 

The user of the library must also have the functions sendDataAction and 

sendDataFile available. Then the system is able to process incoming messages in the 

way we have explained. To summarize the expandability of the system, we give an 

example of how we could add a “poke” function that would display a JavaScript alert 

to the other peer with only 6 lines of code. 

 Assume an HTML link with the id “pokeLink”: 
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<a href='#' id='pokeLink'>ALERT!</a> 
 

 First we handle the onclick even of the link to send data using the 

sendDataAction function with the prefix ::POKE::.  

 

pokeLink.onclick=function(){ 
 sendDataAction("::POKE::" +  username);  
}; 

 

We then write a function called “POKE” with as many parameters as those 

defined by the received string (each parameter is separated by the double colon with 

the first elemen in the array being the name of the function call): 

 

 
function poke(username) { 

alert(username + ' poked you!'); 
} 
 
Listing 3.7 Calling the sendDataAction to send a string and the handling function 

 

This will result in the following alert message being displayed to the second 

peer every time the first peer presses the link with id “pokeLink”.  

 

 

Figure 3.4 Poke message result 

 

Similarly other collaborative functions could be integrated into the system 

with minimal effort. 
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Chapter 4. Implementation 

In this chapter we discuss in detail the implementation of the WebRTC 

prototype application we developed, the infrastructure it runs on and the inner 

workings of the data channel communication.  

The application we developed takes advantage of all the APIs described in 

Chapter 2 and communication model described in Chapter 3. The application is 

named “Harf” after the Persian word ف��  for “talk”. The users have the ability to 

send video streams to each other. These streams can be sourced from a webcam, an 

application or window, a monitor, or a local video file. Both users can add text and 

sketch annotations on any video stream and they can also record it for storage on their 

local computer. As we discussed in 3.5 where we described the data channel 

communication protocol of the application, it is very easy for more collaborative 

features to be added to expand the application. 

 

4.1 Infrastructure 

As explained in previous chapters, WebRTC requires a minimum load from a 

server. The server is used once to download the WebRTC application code (in our 

case, the whole application is less than 160KB including images and code) and a 

second time to bring the peers together as a signaling server (the data exchanged is no 

more than a few kilobytes per connection).  

 

 

Figure 4.1 Application data per type 
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In the above figure we see that the whole application downloaded from the 

server is under 412KB in size including images and external code (jQuery 1.12.3) 

amounting to a total of 32 HTTP requests. JavaScript amounts to about 90% of the 

bulk application data. If we take into account the large size of the jQuery library (with 

a size of almost 234 KB) which is requested from its respective domains and not our 

application server, we see that the server load for each application pull is about 

300KB. 

For these reasons we experimented with running both the signaling server and 

the application host on a single-board computer. The board we selected was the 

BeagleBone Black which was designed by Texas Instruments. 

 

 

Figure 4.2 The BeagleBone Black Single Board Computer 

 

BeagleBone was launched in April 2013 and costs about $45 and uses up to 

2W of power, making it a very economical and environmentally friendly solution. The 

following table shows the hardware specifications of the board: 

 

CPU Cortex-A8 + 2xPRU(200Mhz) 
SOC AM3358/9 

CPU Frequency 1GHz 

RAM 512MB DDR3 

OS Debian 8.2 armv7l Linux 4.1.12-ti-r29 

Size / Weight 86.40 mm × 53.3 mm / 40g 

Table 4.1 BeagleBoard Black Specifications 

 

The system runs a precompiled distribution of Node.js v.0.10.41 for the 

BeagleBoard Black [114]. The Node.js server is then run using “forever”, a simple 

CLI tool for ensuring that a given script runs continuously 
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root@beaglebone:~/Server# forever start serveHarf.js 
warn:    --minUptime not set. Defaulting to: 1000ms 
warn:    --spinSleepTime not set. Your script will exit if it 
does not stay up for at least 1000ms 
info:    Forever processing file: serveHarf.js 
Listing 4.1 Starting the Node.js server script using Forever 

 

4.2 Implementation of the Signaling Server 

The job of the signaling server is to listen for messages and broadcast them to 

potential WebRTC peers. In this section we explain how the signaling server operates, 

in more detail. 

Currently WebRTC screen sharing works only behind SSL enabled web 

servers on Firefox. For this reason the Node.js HTTPS module is used. HTTPS is the 

HTTP protocol over TLS/SSL. In Node.js this is implemented as a separate module, 

its use shown in the following listing: 

 

var static = require('node-static'); 
var https = require('https'); 
var file = new(static.Server)(); 
var fs = require('fs'); 
 
var hskey = fs.readFileSync('harf-key.pem'); 
var hscert = fs.readFileSync('harf-cert.pem'); 
 
var options = { 
 key: hskey, 
 cert: hscert 
}; 
 
var app=https.createServer(options, function (req, res) { 
 file.serve(req, res); 
}).listen(443); 
Listing 4.2 Creating an SSL server in Node.js 

 

Initially the server loads the following Node.js modules: 

� Node-static: An RFC 2616 compliant HTTP static-file server module. 

� HTTPS: HTTP protocol over TLS/SSL. 

� fs: File I/O module. 
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The fs module is then used to read two PEM certificates on the web server. 

The first file is harf-key.pem and contains the private key used for SSL, the second 

file is harf-cert.pem which contains the public x509 certificate to use. PEM is a 

container format defined in RFCs 1421 to 1424 that can include public certificates or 

certificate chains including public keys, private keys and root certificates. The 

contents of these two PEM files are fed into the createServer method of the HTTPS 

module to create a static server that listens to port 443 (standard HTTPS port). 

Once the server is running, Node.js loads the main modules used for the 

signaling server: Socket.io. The module simply waits from messages from clients. 

Messages can be of the following two types: 

 

� Create or Join message: This message is sent by clients that wish to 

either create a room or join an existing one. The server automatically 

creates a room with the requested name if it doesn’t exist or tries to 

join to it if it exists. The server then answers back with ‘created’ if a 

room was created, ‘joined’ if the client successfully joined an existing 

room or ‘full’ if the room did exist but it would not accept any more 

peers. 

if (numClients == 0){ 
 socket.join(room); 
 socket.emit('created', room, username); 
} 
Listing 4.3 Creating a socket.io room on the signaling server 

 

� Message: When the server receives a ‘message’ it simply broadcasts it 

to all the other peers in the room. This is used to broadcast exchange 

signaling information between the peers that will be used to establish a 

WebRTC P2P session. 

socket.on('message', function (message, room) { 
 socket.broadcast.to(room).emit('message', 
message); 
}); 
Listing 4.4 Broadacsting messages from the signaling server 
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4.3 The Client Application 

The source code of the client application is structured in the following simple 

way: 

+---Server 
    +---serverHarf.js 
    +---index.html 
    +---main.css 
    \---images 
    \---js 
        +---adapter.js 
        +---canvas.js 
        +---clientHarf.js 
        +---cobrowsing.js 
        +---file.js 
        +---html.js 
        +---lz-string.min.js 
        +---recording.js 
        +---screencast.js 
        +---sender.js 
        +---sketch.js 
        +---utils.js 
Table 4.2 List of applcication files 

 

The purpose of each file is described below: 

� serveHarf.js: The signaling server Node.js script 

� index.html, main.css: A single HTML file containg the interface 

layout and a CSS file describing the interface style 

� images directory: Contains all the graphics (buttons etc.) of the 

application 

� adapter.js: The WebRTC interoperability library 

� canvas.js: Contains function for manipulating canvasses 

� clientHarf.js: The main WebRTC connectivity library, contains 

function for communicating with the signaling server and establishing 

a peer to peer connection. 

� cobrowing.js: Functions for basic co-browsing 

� file.js: Functions for reading and streaming local video files 

� html.js: Functions for dynamically outputting HTML code 

� lz-string.js: Functions for compressing strings 
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� recording.js: Functions for recording video streams and storing them 

as webm files. 

� screencast.js: Functions for the WebRTC screen capturing API 

� sender.js: Functions for sending local files through the WebRTC data 

channel 

� sketch.js: Contains the whiteboard drawing functionality 

� utils.js: General utility functions 

 

4.4 The Interface 

The interface of the developed application consists of the following areas: 

1. The connection box 

2. The streams list 

3. The maximized stream area 

4. The toolbox 

5. The chat area 

 

 

Figure 4.3 The application interface 

 

The connection box is where the users can enter a username and a room name. 

Users can also chose to start a screen sharing session from using the dropdown box in 

the area. 
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The streams list is a scrollable area where all the streams available to the users 

are shown. Each stream is displayed as a thumbnail video with buttons representing 

actions below it, as shown in the following figure. 

 

         
Figure 4.4 Sample stream thumbnails with available actions. From left to right: window, webcam and  a local 

video file  

To enable streaming of local media we used the experimental stream capturing 

API currently implemented in Mozilla Firefox as shown in the following listing: 

 

localstream=getel(localvideo).mozCaptureStream(); 
 
pc.onnegotiationneeded = function (event) { 
     pc.createOffer(setLocalAndSendMessage,  
                    onSignalingError, sdpConstraints);}; 
 
function sendMovieStream() { 
 pc.addStream(localstream); 
} 
 
Listing 4.5 Using the capturestream method to capture a stream from a video element 

 

The captureStream() method produces a real-time capture of the media that is 

rendered to the media element and is defined in W3C’s “Media Capture from DOM 

Elements” working draft [115]. 

The buttons below the thumbnail vary depending on the type of the stream and 

these include: 

 

 /  Blanks or reveals the video stream 

 /  Mutes or unmutes the audio stream 

 /  Maximizes the stream bringing on the center area of the page, 

or minimizes it hiding it from the center area of the page 
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 Attempts to send the stream over the RTCPeerConnection to 

the other peers. 

 

Clicking on the maximize button brings the selected stream on the center area 

of the page and enables the collaborative controls for this specific stream. 

 

Figure 4.5 A screen capturing session with the PowerPoint window maximized 

 

Once connection is established users have a range of tools available from the 

sidebar on the right side of the screen. The most important feature is the whiteboard 

toolbar from which the user can select an ink color and a brush size. 

 

Figure 4.6 The whiteboard toolbar 

 

Below the whiteboard toolbar are the other collaborative options available to 

users. These options are: 

 /  Starts or stops recording the currently maximized stream 

  Clears all sketches on the currently maximized stream 

 /  Pauses or freezes the currently maximized stream 

 Prompts the user to select a local video file which can then be 

streamed to the other peers 
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 Captures a single frame from the currently maximized stream 

which can then be saved as a PNG file. 

 Shows the currently maximized stream in full screen. All 

annotations options are disabled in this mode and users cannot 

annotate the stream. 

 Resized the currently maximized stream to its original size. 

 Replaces the currently maximized stream with a HTML 

document hosted on the same domain as the WebRTC 

application. Basic co-browsing is offered to the peers in this 

mode. 

 

Users can communicate using text messages by typing something in the text area on 

the bottom-right corner of the screen. To demonstrate the use of the communication 

protocol, once a user clicks the send button the system constructs a URMGS message 

in the following manner: 

 

// getting the text typed by the user and filtering it from 
// possibliy malicious elements or the :: sequence 
var data = clearString(sendTextarea.value); 
 
// construct an appropriate message 
var datamsg ="::URMSG::"+username+"::"+data; 
 
// send the message without compression 
sendDataAction(datamsg, 0); 
Listing 4.6 Constructing the chat message 

 

Now upon receiving the above message the system will call the URMSG function as 

following: 

 

function urmsg(username, text) { 
 
var peerusername; 
 
if(username=="") peerusername="Peer"; 
else peerusername=username; 
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// also display the received text on the active video stream 
// if user has enabled this option.   
if(getel("annotateVideoOption").checked) { 
sketches[elementNameG+"Sketch"].sketch().actions[0].textcaptio
nPeer=text; 
sketches[elementNameG+"Sketch"].sketch().redraw(); 
} 
 
// write message on chat area 
receiveTextarea.insertAdjacentHTML('beforeEnd',  
"<greyed style='color:#555555'>"  + peerusername + ", " + 
hrDate() + ": </greyed>" + text + "<br/>"); 
 
// scroll down the chat area 
receiveTextarea.scrollTop = receiveTextarea.scrollHeight; 
} 
Listing 4.7 The Urmsg function 

 

The application also communicates messages to the user using the chat area below the 

toolbox. For example when a user clicks on the “Take screenshot” button the system 

sends a message to the user notifying him of the link from which he can download it. 

This increases system usability by eliminating the use of popups or other types of 

alerts. These “system messages” are only visible to the user they concern and not to 

the other peers of the session. 

 

 

Figure 4.7 Example system messages 

 

The chat area can also be used for exchanging files between users. A user can 

drag and drop a file on the text area to send it to other users. In chapter 3 we discussed 

the function sendDataFile function that can send local files to other peer. The file 

function that handles incoming file data is shown below: 

 

function files(event_data) { 
var data = eval(event_data); 

 arrayToStoreChunks.push(data.message); 
 if (data.last) { 
           // returns blob URL of incoming file 
  return arrayToStoreChunks.join(''); 
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 arrayToStoreChunks = []; // resetting array 
  } 
} 
Listing 4.8 The file function 

 

The result is shown in the following screenshot: 

 

  

Figure 4.8 Users exchanging files 

 

 

Every stream has its own whiteboard data attached to it. Users can draw on 

any surface that is maximized and the data is sent through the WebRTC data channel 

to the other peer. 

 

 

Figure 4.9 Users sketching on a PDF document 
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Using the MediaRecording API described in section 2.3.1 we can achieve recording 

of every canvas and the sketching or other action in a WebM file. Unfortunately it is 

impossible to capture audio on the OS level (e.g. audio played by an application) 

because WebRTC does not have access to it yet. What we can capture is audio from 

streaming media files and user web cams. To do that we use the HTML5 

MediaRecorder API described in section 2.3.1. In the following screenshot a 

streaming movie is captured along with all the sketching action users draw on it. Once 

the user clicks the “Stop Recording” button the movie is made available to him in the 

form of a webm blob which can be downloaded and played locally in his computer. 

 

 

Figure 4.10 Recording and then playing a WebM file locally 

 

To achieve this a combination of the stream capture and the media recorder API are 

used. Initially we create a media recorder object whose input is a captured stream 

from the currently active canvas: 

var tempCanvasStream=getel('tempCanvas').captureStream(); 
mediaRecorder = new MediaRecorder(tempCanvasStream); 
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When the user clicks the start recording button we get the audio stream from the video 

element if it exists and add it on the temp canvas. This is done in order to be possible 

to also record audio: 

if(streams[streamNameG].getAudioTracks()[0]!=undefined) { 
tempCanvasStream.addTrack(streams[streamNameG].getAudioTracks(
)[0]); 
} 
 

Finally when the recording is stopped by the user the audio stream on the canvas is 

disabled and the system waits for the ondataavailable callback function: 

mediaRecorder.ondataavailable  = function(e) { 
var videoURL=window.URL.createObjectURL(e.data); 
} 
 

Another feature of the system is the ability to draw text annotation on each stream by 

selecting the appropriate checkbox in the toolbox area. 

 

Figure 4.11 Selecting to embed incoming chat messages on the vide ostream 

 

Once a user makes this selection all messages, incoming and outgoing are 

appended on the currently maximized video stream.  
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Figure 4.12 Adding text annotation on a shared webm video 

 

Sketching data are in the form of JSON object which are comprised of action 

and mouse coordinates. 

 

[{ 
 textcaption: "Test!" 
}, { 
 textcaptionPeer: "" 
}, { 
 tool: "marker", 
 color: "#f00", 
 size: 5, 
 events: [{ 
  x: 162.5, 
  y: 125, 
  event: "mousedown" 
 }, { 
  x: 162.5, 
  y: 124, 
  event: "mousemove" 
 }] 
}] 
 
Listing 4.9 Sample sketching actions JSON object 

 



 

80 
 

The JSON object comprises of 3 values: A value named “textcaption” which 

contains the text caption of the local user, “textCaptionPeer” which contains the text 

caption of the remote peer and then it contains a list of mouse action and sketching 

data. For example the object of the previous listing will result in a caption “Test!” and 

a red dot at coordinates 162.5, 124 as seen in the following screenshot: 

 

Figure 4.13 Resulting sketch 

The JSON object is converted to text and then compressed using UTF16 LZW 

compression before sent through the WebRTC data channel.  
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Listing 4.10 Unicode characters resulting from compressing a string to UTF16 LZW 

 

Referring to table 3.1 we see that sketch messages come in the following form: 

::SKTCH::TARGET::WIDTH::DATA 
Sketch data including text caption for the 

stream named “TARGET” 

 

In accordance with the protocol upon receiving a sketch message (that is a message 

prefixed with the “::SKTCH::” string the system will call the sktch function: 

 

function sktch(target, width, data) { 
 
// what is the width of our own target canvas 
var my_skwtch_width=getel(target_sketch).width; 
 
// calculate ration needed to resize sketch 
var width_ratio=my_skwtch_width/width; 
 
// convert sketch data back to a JSON object and replace 
// the target canvas sketch data with it 
sketches[target_sketch].sketch().actions=eval(data); 
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// if incoming data is not empty apply transformation 
if(data!="[]")  
// sketchTransform function included a call to the redraw 
// function 
sketchTransform(target, width_ratio); 
else 
// redraw sketch (in this case it means erase sketch) 
sketches[target_sketch].sketch().redraw(); 
 
} 
Listing 4.11 The sktch function 
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Chapter 5. Benchmarking 

5.1 Compression Efficiency 

To measure compression efficiency we connected two computers and 

measured the time it took to render a sketch depending on the size of the JSON object 

that described the sketch. 

The LZW compression algorithm is very efficient for sketching metadata 

because of the high number of keywords and word iterations. The following 

screenshots represents about 100KB of sketch data drawn on the Notepad window. 

When the data is compressed using the LZW algorithm the resulting data is 6.6KB a 

compression ratio of 93%. 

   

Figure 5.1 103KB of uncompressed sketch data (6.6 KB of transferred data using compression) 

 

It is obvious that using compression on the data channel can dramatically 

decrease network overhead and with modern hardware the 

compression/decompression times on the local host system are actually miniscule as 

shown in the following table 

 

Test 
No. 

Bytes Before 
Decompression 

Bytes After 
Decompression 

Compression 
Ratio (%) 

Relative Time 
Difference (ms) 

1 235 1001 77 26 

2 486 3044 84 32 

3 2001 21645 91 78 

4 2668 31585 92 107 

5 3255 40661 92 101 

6 3991 51650 92 99 

7 5728 76730 93 196 

8 7535 104437 93 243 
Table 5.1 Compression Efficiency 
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In the above table we measure the time required to render a graphic on the 

canvas assuming that the initial rendering (empty canvas) requires 0 time. Rendering 

time is measured from the time a user makes a sketch to the time it is rendered on the 

other peer’s computer. We repeated the process 8 times with increasing size of 

transferred data. 

 

 

Figure 5.2 Compression Efficiency 

 

We repeated the same 8 test but this time without compression on the data 

channel. 

 

Without compression: 

Test No. Bytes Transferred Relative Time Difference (ms) 

1 1071 6 

2 3238 23 

3 20361 37 

4 31029 67 

5 41590 69 

6 52648 74 

7 76359 112 

8 103789 139 
Table 5.2 Data transfer rates without compression 
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The above data are presented in the following chart: 

 

 

 

 

5.3 Comparison between compression and no compression on a LAN 

 

We observe that compressing the data exchanged via a WebRTC data channel 

over a LAN connection (or other networking situations where network bandwidth is 

ample) may not be an optimal choice, since when comparing the time required 

compressing a string with the time required to decompress it the overhead is 

significant. Nevertheless the very high compression ratio achieved by the 

compression algorithm which is up to 93% for this type of data may prove to be 

useful in situations where network infrastructure is limited or expensive. 
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5.2 CPU Consumption 

On the signaling server, a typical session description message is about 2KB in 

size, while a candidate offer message is about 150 bytes. Assuming that each peer 

exchanges one session description message and 5 candidates on average, we see that 

for each peer connection, less that 5 kilobytes of data (10 kilobytes for 2 peers) are 

sent and received by the signaling server.  

On the modern client devices, hardware is powerful enough for all the video 

and canvas operations that are required by most applications including our own. 

Furthermore, HTML5 Hardware Accelerated canvas are implemented on most 

platforms and browsers taking advantage of the capabilities of modern GPUs. 

 

Table 5.3 Firefox configuration information indicating hardware accelaration using the Windows Direct3D 

  

To measure the processing power requirements of our system we used the 

embedded developer tools in Mozilla Firefox 46. The test system was a laptop 

equipped with 4GB of RAM and an Intel Core i3 (U38) CPU with a clock speed of 

1.33 GHz. The computer was running the Microsoft Windows 7 64bit operating 

system. The system can be considered outdated by today’s standards.  

To analyze which processes consume more time we used the Firefox 

Performance Tool and conducted two 20 second tests: During the first test the system 

was used for streaming media between two peers while during the second test the 

sketching feature was also used. During the first test the average frame rate was 

measured at 42 fps while during the second test the average frame rate was at 17 fps.  
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Function 

Function Cost 

Sketching & 

Streaming 

 

Streaming 

Gecko (includes idle time)* 37.06% 60.83% 

Sketching 19.06% - 

Graphics* 16.40% 23.57% 

Garbage Collecting* 9.41% 6.52% 

JIT* 4.83% 1.88% 

Tools* 2.25% 3.28% 

Input & Events* 1.79% - 

Compression/Decompression Algorithms 1.71% - 

Other 7.49% 3.92% 

* Denotes internal browser functions 

Table 5.4 Function costs while sketching and while straming 

  

 

In the following figure we see the frame rate in which the browser renders the page 

during the tests. 

 

 

 

Figure 5.4 Comparison of frame rate during simple streaming (above) and during sketching (below). Negative 

spikes denote that the user is sketching on the canvas. 

 

Although we observe a drop in the framerate during sketching with the test system, 

with modern CPUs, very high framerates throughout the operation are achieved 

making this drop unnoticeable by users.  
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Chapter 6. Conclusions & Future Work 

In this thesis we presented an extensive review of the WebRTC technology 

and its possible application in the fields of synchronous online collaboration, screen 

sharing, and peer to peer media streaming in the browser. 

The protocol we describe in section 3.5 is the foundation of our application 

and is based on an assumption that a WebRTC application is comprised of users and 

streams. Because streams in HTML5 boil down to video elements we assign an 

HTML canvas to each stream. We then define a message protocol that uses the 

WebRTC data channel and can exchange messages that can have an impact on either 

individual users (chat messages, file exchanges, alerts) or canvases (drawings, 

annotations etc). 

The application we developed is a prototype intended to demonstrate the 

capabilities of WebRTC and its potential use for online collaboration and media 

streaming. As such it has in itself many “bugs” and is missing some of the features 

that would be normally encountered in a commercial product. Apart from the 

occasional bug, some features that could be further explored and implemented include 

a co-browsing feature which utilizing the data channel synchronizes mouse 

movements and URLs in a host web site. 

As it is now the system only supports two peers with equal privileges in each 

room. Another approach is a “one-to-many” model where only one user with elevated 

privileges will have the ability to share streams while all other users in the room will 

only be able to use the data channel to collaborate but without the ability to add 

streams on their own. In this approach the user with the elevated privileges could also 

have “floor-management” option at his disposal (eg. adding/removing users from the 

room, selecting which collaborative functions each user has available etc) 

WebRTC is a work in progress. Many of the APIs used in this thesis are still 

in development and implementation. As a result some of the features of WebRTC 

used in this thesis are either not implemented in all major browsers or have some 

bugs. Most notable implementation bugs are the Mozilla bugs 1178751 and 912907 

we discussed in section 2.3.1. For this reason we decided to focus our development on 

the Mozilla Firefox browser which as in April 2016 has almost all WebRTC proposed 

features implemented. As more commercial WebRTC applications are more people 

are using it, new browser versions are expected to have more stable implementations 
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of the WebRTC APIs. The WebRTC working group meets on an ad-hoc basis week 

on the phone and using mailing lists. 

Furthermore it must be noted that even the core technologies used in WebRTC 

are subject to change. For example while the IETF decided mandatory video codecs to 

be H.264 and VP8 as we discussed in section 2.2.5, Firefox and Chrome versions 

released in April and May 2016 also included the VP9 codec. With VP9, internet 

connections that are currently able to serve 720p without packet loss or delay will be 

able to support a 1080p video call at the same bandwidth. VP9 can also reduce data 

usage for users with poor connections or expensive data plans, requiring in best cases 

only 40% of the bitrate of VP8 [116]. 

What the future holds for WebRTC is not easy to say. Many argue that with 

“peak telephony” (the point in time when telephony communication was at its 

maximum) reached in the United States, the UK and other countries, RTC 

technologies have lost the battle with asynchronous forms of communication like 

email, social networks and IM. Technologies like WebRTC are helping to change the 

definition of RTC. Telephony used to be constrained by an apparatus known as a 

phone. Today the medium of RTC continues to change as application and web sites 

add RTC as a feature (e.g. Facebook Messenger, WhatsApp, SnapChat etc.) [117]. In 

the end WebRTC is a technology used to enhance a service or application, changing 

the fundamental model of communications by creating a world where anyone has the 

ability to put communications in their applications without resorting to a 

communications company. 
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