

A WEBRTC BASED PLATFORM FOR SYNCHRONOUS
ONLINE COLLABORATION AND SCREEN CASTING

by

NIKOLAOS PINIKAS

Master in Informatics and Multimedia, Department of Informatics Engineering,
School of Applied Technology, Technological Educational Institute of Crete, 2016

A THESIS

submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATICS & MULTIMEDIA

DEPARTMENT OF INFORMATICS ENGINEERING

SCHOOL OF APPLIED TECHNOLOGY

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2016

Approved by:

Assistant Professor
Dr. Spyros Panagiotakis

2

Copyright

N IK O LA O S P IN IK A S

2 0 16

This work is licensed under the Creative Commons Attribution 4.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

All included code is licensed under the MIT License.

3

“WebRTC is not a standard. It’s a movement.”

-Tsahi Levent-Levi

4

Abstract

WebRTC is a project that was released by Google in 2011 to allow browser-

to-browser communication. It includes voice, video and data without the use of

plugins. The mission of WebRTC according to Google is to enable rich, high quality,

RTC applications to be developed for the browser, mobile platforms, and Internet of

Things (IoT) devices, and allow them all to communicate via a common set of

protocols.

In this thesis we employ the capabilities of the WebRTC APIs to implement a

platform for synchronous online collaboration, screen casting and simultaneous

multimedia communication by utilizing the WebRTC data and media streams.

Collaborative software is defined as “a software that supports intentional group

processes”. Collaborative solutions include a wide range of tools. On the Web these

tools can be part of what is known as a “Client-Portal” and can include discussions,

white boards, media and file exchanging etc.

Moving from the world of client-server architecture to the peer-to-peer world

the ideas of online collaboration can be applied to offer more immediate synchronous

communication without the need of a centralized system.

The APIs that will be mainly used are those provided by WebRTC, the Screen

Capturing API, the Media Recording API and other APIs as defined in the

corresponding W3C drafts and in the degree they are implemented in modern

browsers. Adding screen casting in an online collaboration system can provide useful

features such as marking things on the screen, providing insight on what to do next,

simultaneous document editing, creating and checking presentations etc. In this thesis

we develop a synchronous collaboration platform using only modern web

technologies and propose a communication protocol that makes it possible for peers to

exchange collaboration data in a real-time communication environment.

Key words: WebRTC, HTML5, Whiteboard, Online collaboration, Screen

casting, Collaborative browsing

5

Περίληψη

Το WebRTC είναι ένα έργο που κυκλοφόρησε από την Google το 2011, το

οποίο επιτρέπει στα πρόγραµµα περιήγησης (browsers) να επικοινωνούν µεταξύ τους

χρησιµοποιώντας φωνή, βίντεο και δεδοµένα χωρίς τη χρήση πρόσθετων

προγραµµάτων (plugins). Η αποστολή του WebRTC σύµφωνα µε την Google είναι να

επιτρέψει την ανάπτυξη υψηλής ποιότητας εφαρµογών επικοινωνίας πραγµατικού

χρόνου (RTC) για προγράµµατα περιήγησης, κινητές πλατφόρµες, και το Internet of

Things, µέσα από ένα σύνολο κοινών πρωτοκόλλων.

Σε αυτή η εργασία χρησιµοποιώντας κυρίως τις δυνατότητες του WebRTC

API, υλοποιούµε µια πλατφόρµα για online συνεργασία, διαµοιρασµό οθονών και

µεταφοράς πολυµέσων χρησιµοποιώντας τις δυνατότητες του WebRTC. Λογισµικά

και πλατφόρµες συνεργασίας ορίζονται αυτές που µπορούν να υποστηρίξουν

οµαδικές διεργασίες και σήµερα περιλαµβάνουν ένα ευρύ φάσµα εργαλείων που

περιλαµβάνουν συζητήσεις, ανταλλαγή πολυµέσων, οθονών, αρχείων κλπ.

Μεταβαίνοντας από την αρχιτεκτονική client-server στον κόσµο της

αρχιτεκτονικής peer-to-peer, αυτές οι ιδέες της online συνεργασίας µπορούν να

υλοποιηθούν πλέον χωρίς την ανάγκη ύπαρξης ενός κεντρικού συστήµατος.

Τα API που χρησιµοποιούµε σε αυτήν την εργασία είναι αυτά που παρέχονται

από το WebRTC, το API για καταγραφή οθονών (screen capturing), για εγγραφή

µέσων (media recording) και άλλα API όπως ορίζονται από το W3C και στο βαθµό

που έχουν υλοποιηθεί στους σύγχρονους browsers. Προσθέτοντας δυνατότητα

καταγραφής της οθόνης ή µέρους αυτής και στη συνέχεια διαµοιρασµού της στους

συµµετέχοντες στο συνεργατικό περιβάλλον, γίνεται εφικτή η υλοποίηση µιας σειράς

λειτουργιών όπως σηµείωση σε µέρος της οθόνης, παροχή οδηγιών και τεχνικής

υποστήριξης, ταυτόχρονη επεξεργασία εγγράφων, δηµιουργία και έλεγχος

παρουσιάσεων κλπ. Σε αυτή την εργασία αναπτύσσουµε µια συνεργατική εφαρµογή

χρησιµοποιώντας αυτές τις σύγχρονες τεχνολογίες του Web, και προτείνουµε ένα

πρωτόκολλο για ανταλλαγή δεδοµένων σε πραγµατικό χρόνο σε ένα συνεργατικό

περιβάλλον.

Λέξεις κλειδιά: WebRTC, HTML5, Ασπροπίνακας, Σύγχρονη online συνεργασία,

Screen casting, Συνεργατική πλοήγηση στο web

6

Table of Contents

Copyright .. 2

Abstract ... 4

Περίληψη .. 5

Table of Contents ... 6

List of Figures & Screenshots ... 8

List of Tables .. 9

List of Listings .. 9

Abbreviation Index .. 11

Acknowledgments .. 13

Introduction .. 14

Chapter 1. Online Collaboration & P2P Media Streaming 16

1.1 Online Collaboration .. 16

1.2 Online Collaboration Related Work .. 18

1.3 Co-browsing ... 18

1.4 Co-browsing Related Work ... 19

1.5 Media Streaming .. 20

Chapter 2. Underlying Technologies ... 21

2.1 WebSocket & HTTP/2 ... 21

2.2 WebRTC .. 23

2.2.1 WebRTC Use Cases .. 24

2.2.2 WebRTC APIs .. 26

WebRTC Media Stream API ... 26

WebRTC Peer Connection API ... 28

WebRTC Data Channel ... 32

WebRTC Screen Casting ... 34

Screen Casting Security Issues .. 36

WebRTC Interoperability .. 38

2.2.3 WebRTC Signaling ... 40

Node.js/Socket.io for WebRTC Signaling 41

2.2.4 WebRTC Network Protocols .. 42

7

SDP .. 42

STUN ... 43

TURN ... 44

ICE ... 45

2.2.5 WebRTC Codecs .. 47

2.3 HTML5 .. 48

2.3.1 HTML5 APIs .. 49

File API and the Blob Interface ... 49

Stream Capture from DOM Elements API 50

Media Recording API .. 51

2.3.2 jQuery & jQueryUI ... 52

2.4 Data Chanel Compression.. 53

Chapter 3. Communication Protocol... 55

3.1 Use of the native WebRTC send/receive functions 56

3.2 Sending data with sendDataAction .. 57

3.3 Strings defining actions.. 60

3.4 The handleMessage function ... 63

3.5 Example of Expandability.. 64

Chapter 4. Implementation .. 66

4.1 Infrastructure .. 66

4.2 Implementation of the Signaling Server .. 68

4.3 The Client Application ... 70

4.4 The Interface .. 71

Chapter 5. Benchmarking .. 82

5.1 Compression Efficiency ... 82

5.2 CPU Consumption ... 85

Chapter 6. Conclusions & Future Work ... 87

Chapter 7. References ... 89

8

List of Figures & Screenshots

Figure 1.1 A possible scenario of non-interactive co-browsing ... 19

Figure 2.1 Traditional client server bidirectional communcation employed in WebSocket .. 21

Figure 2.2 Server push used in HTTP/2 ... 21

Figure 2.3 Asking for the user’s permission to use a device or start capturing the screen ... 217

Figure 2.4 RTCPeerConnection structure .. 217

Figure 2.5 Screen capturing modes .. 35

Figure 2.6 Obscuring information in application capturing mode .. 36

Figure 2.7 Notifying the user that screen sharing is active in Firefox 37

Figure 2.8 Using screen sharing for launching CSRF attacks .. 378

Figure 2.9 WebRTC Signaling Architecture .. 40

Figure 2.10 Connection using a STUN Server ... 44

Figure 2.11 Using a TURN Server to relay data .. 44

Figure 2.12 Sample list of local and remote ICE candidates gathered by Mozilla Firefox .. 446

Figure 2.13 List of local and remote ICE candidates gatered by Mozilla Firefox.................. 46

Figure 2.14 Using WebRTC to reveal user's IP information .. 46

Figure 2.15WebRTC signaling complete process .. 47

Figure 2.16 Usage of jQuery for websites, 15 Feb 2015 to 15 Feb 2016 53

Figure 2.17 Data channel compression schematic .. 53

Figure 2.18 LZW Algorithm Flowchart ... 54

Figure 3.1 Communication Model .. 56

Figure 3.2 System components and sample incoming messages.. 631

Figure 3.3 Converting messages into function calls ... 63

Figure 3.4 Poke message results ... 635

Figure 4.1 Application data per type .. 66

Figure 4.2 The BeagleBone Black Single Board Computer ... 67

Figure 4.3 The application interface ... 71

Figure 4.4 Sample stream thumbnails with available actions. From left to right: window,

webcam and a local video file .. 72

Figure 4.5 A screen capturing session with the PowerPoint window mazimized 73

Figure 4.6 The whiteboard toolbar ... 73

Figure 4.7 Example system messages .. 75

Figure 4.8 Users exchanging files .. 76

Figure 4.9 Users sketching on a PDF document... 76

9

Figure 4.10 Recording and then playing a WebM file locally.. 77

Figure 4.11 Selecting to embed incoming chat messages on the vide ostream 78

Figure 4.12 Adding text annotation on a shared webm video .. 79

Figure 4.13 Resulting sketch .. 80

Figure 5.1 103KB of uncompressed sketch data .. 82

Figure 5.2 Compression Efficiency .. 823

Figure 5.3 Comparission between compression and no compression on a LAN 824

Figure 5.4 Comparission of frame rate during simple streaming and during sketching 826

List of Tables

Table 2.1 Comparission of WebSocket abd HTTP/2 .. 22

Table 2.2 RTCPeerConnection main methods.. 30

Table 2.3 Comparission between WebSOcket and the WebRTC Data Channel 302

Table 2.4 List of the most important members of the RTCDataChannelInit collection 33

Table 2.5 Example API differences accross Chrome and Firefox .. 38

Table 3.1 Sample communcation prefixes .. 62

Table 4.1 BeagleBoard Black Specifications.. 67

Table 4.2 List of applcication files ... 70

Table 5.1 Compression efficiency .. 83

Table 5.2 Data transfer rates without compression ... 84

Table 5.3 Firefox configuration information indicating hardware accelaration using the

Windows Direct3D .. 85

List of Listings

Listing 2.1 Syntax of the getUserMedia method .. 27

Listing 2.2 getUserMedia constraint to access the rear camera of the device 27

Listing 2.3 Sample returned data from getSupportedConstraints on a laptop computer 28

Listing 2.4 Creating an RTCPeerConnection object... 29

Listing 2.5 Setting the local description using the createOffer method 30

Listing 2.6 Setting the remote description and adding ICE Candidates 30

Listing 2.7 Defining a callback function for when a new RTCPeerConnection negotiation is

needed ... 31

Listing 2.8 Creating an unreliable data channel.. 33

10

Listing 2.9 Creating a reliable data channel ... 33

Listing 2.10 MediaStreamConstraints object for Application capturing in Firefox 34

Listing 2.11 Malicious HTML file for a possible CSRF attack through screen sharing 38

Listing 2.12 Detecting the browser and intercepting WebRTC API accordingly 39

Listing 2.13 Mitigating the lack of MediaDevices interface in Adapter.js 40

Listing 2.14 Socket.io on the server side .. 41

Listing 2.15 Socket.io on the client side ... 42

Listing 2.16 Excerpt of SDP message .. 43

Listing 2.17 Creating an RTCPeerConnection object and telling it which STUN and TURN

servers to use .. 45

Listing 2.18 HTML containing obtrusive JavaScript ... 52

Listing 2.19 Same HTML code with JavaScript now removed .. 52

Listing 2.20 Unobtrusive JavaScript located in a separate .js file .. 52

Listing 2.21 Unobtrusive JavaScript located in a separate .js file using jQuery 52

Listing 3.1 Usage of the RTCDataChannel send() method and the onmessage callback. 57

Listing 3.2 Definition of the interface in Web IDL .. 57

Listing 3.3 The sendDataAction function and an example call .. 59

Listing 3.4 Sending files over the data channel .. 60

Listing 3.5 Sample Sketching Message .. 62

Listing 3.6 Using the handleMessage function ... 64

Listing 3.7 Calling the sendDataAction to send a string and the handling function 65

Listing 4.1 Starting the Node.js server script using Forever ... 68

Listing 4.2 Creating an SSL server in Node.js ... 68

Listing 4.3 Creating a socket.io room on the signaling server .. 69

Listing 4.4 Broadacsting messages from the signaling server .. 69

Listing 4.5 Using the capturestream method to capture a stream from a video element 72

Listing 4.6 Constructing the chat message ... 74

Listing 4.7 The Urmsg function .. 75

Listing 4.8 The file function ... 76

Listing 4.9 Sample sketching actions JSON object .. 79

Listing 4.10 Unicode characters resulting from compressing a string to UTF16 LZW 80

Listing 4.11 The sktch function .. 81

11

Abbreviation Index

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

B2B Business to Business

BLOB Binary Large Object

CDN Content Delivery Network

CPU Central Processing Unit

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

DOM Document Object Model

GPU Graphics Processing Unit

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICE Interactive Connectivity Establishment

IETF Internet Engineering Task Force

ILBC Internet Low Bitrate Codec

IOT Internet of Things

IP Internet Protocol

ISAC Internet Speech Audio Codec

ITU International Telecommunications Union

JS JavaScript

JSEP JavaScript Session Establishment Protocol

JSON JavaScript Object Notation

LAN Local Area Network

LZW Lempel-Ziv-Welch Compression

MCU Multipoint Control Unit

NAT Network Address Translation

P2P Peer to Peer

P2PTV Peer to Peer Television

12

PCMA Pulse Code Modulation A-law

PCMU Pulse Code Modulation µ-law

PEM Privacy Enhanced Mail

PNG Portable Network Graphics

RFC Request for Comments

RTC Real Time Communication

SCTP Stream Control Transmission Protocol

SDK Software Development Kit

SDP Session Description Protocol

SIP Session Initiation Protocol

STUN Session Traversal Utilities for NAT

TCP Transmission Control Protocol

TURN Traversal Using Relays around NAT

UDP User Datagram Protocol

UX User Experience

W3C World Wide Web Consortium

WebRTC Web Real Time Communication

XMPP Extensible Messaging and Presence Protocol

13

Acknowledgments

I would like to thank my thesis supervisor, Assistant Professor Dr. Spyros

Panagiotakis for his kind support and encouragement. Dr. Athanasios Malamos from

the TEI of Crete Multimedia Content Laboratory offered some valuable feedback and

suggestions. My gratitude goes to the Mozilla developers for being first in

implementing all the HTML5 and WebRTC W3C API drafts that are used in the

prototype application developed for the needs of this thesis. They saved me a lot of

trouble and effort.

I would also like to thank all my friends at Crete who were catalytic in

providing the essential incentive to complete this work. You guys are great! Finally a

special thank you goes to Lambros Frantzeskakis for his “psychological” support.

Heraklion, June 2016

14

Introduction

Since 1990, when the World Wide Web was born at CERN, the Web has

evolved from a presentation layer powered by a simple markup language (HTML) to

a full-scale application environment. In the early 1990s, most Web sites were based

on a series of complete HTML pages (one static HTML file for each page). The user

would click on a hyperlink and a new HTML page would be loaded from the server

although only some minor information had changed, placing additional load on the

server and used excessive bandwidth. This inefficient process was reflected in the UX

of the Web making it a clumsy “static pull-request media” not better than teletext

television services of the time.

The first step to offer users richer web applications was made with the

introduction of asynchronous communication on the Web. Ajax was one of the first

such technologies to allow asynchronous web communication. With Ajax, web

applications could now send data to and retrieve from a server in the background

without interfering with the display and behavior of the web page. An application of

Ajax used daily by most users of the Web is the auto complete feature of search

engines such as Google. When a user start typing in the search box, Ajax sends the

typed letters to the web server and the server returns a list of suggestions which are

then displayed under the search box.

Because of the asynchronous nature of Ajax, each chunk of data that is sent or

received by the client occurs in a connection established specifically for that event.

This creates a requirement that for every action, the client should poll the server,

instead of listening, which again incurs significant overhead, and in turn to several

times higher latency with. The next technological leap was to offer not only

asynchronous communication but also persistent connections [1]. This was made

possible with the introduction of WebSocket. WebSocket allows not only

asynchronous communication but also a persistent connection allowing for full-

duplex communication over a single TCP connection.

Another technology that was made available recently is the allowance for

browser to browser (P2P) communication. Until now the web was based on the client-

server model meaning that all communication between two or more users had to be

relayed through a web server. This paradigm was changed with the introduction of

WebRTC which is the main focus of this thesis. WebRTC is an API definition

15

designed to allow browser-to-browser communication without the need of plugins,

enabling various kinds of real time communication such as audio, video and data.

With browser-to-browser communication users can now communication in a peer-to-

peer fashion and send voice, video and any other message they see fit, eliminating the

need for a server. This way, web developers can build web services that require less

processing and bandwidth in their backend [2].

Finally what powers the Web today and enables web applications to use the

technologies mentioned above is HTML5. To understand the importance of HTML5

we can observe how we have now come to a point where taking HTML5 web apps

and wrapping them as native apps (e.g Windows or Android apps) is a common

practice. One such technology is Apache Cordova which allows the use of HTML5,

CSS3, and JavaScript for cross-platform development. Applications developed with

Cordova execute within wrappers targeted to each platform, and rely on standards-

compliant API bindings to access each device's hardware capabilities [3].

In this thesis we present the latest developments on WebRTC. We have

developed a prototype application that includes example implementations of most of

the currently available WebRTC technologies such as screen sharing, media

streaming, multiple streams, media recording, canvas integration etc. In chapter 1 a

brief literature review on online collaboration/co-browsing and media streaming is

conducted. In chapter 2 an in depth review of the technologies used in the

development of our application is presented. In chapter 3 the specifications of our

suggested communications protocol is discussed. In chapter 4 we present our

prototype application and give implementation details. Finally in chapter 5 we discuss

benchmarking and performance measurements of the application.

16

Chapter 1. Online Collaboration & P2P Media

Streaming

The main focus of this thesis is on online collaboration, media streaming and

co-browsing. In this chapter we present current techniques, trends and related work on

these technologies.

1.1 Online Collaboration

Collaboration can be defined as the common effort of a group of people to

create something. Tools that aid collaboration were around long before computers -

whiteboards, flipcharts or even a piece of paper can be used to support collaboration

[4]. Computer and the Web revolutionized the way people work together in groups. In

the 80s the term “groupware” was coined by C. A. Ellis who defined it as “computer-

based system that support groups of people engaged in a common task (or goal) and

that provide an interface to a shared environment” [5]. Popular groupware software

packages included Lotus Notes and Microsoft Exchange.

The Web opened a new window for the development of collaboration

software. With Web 2.0 came a plethora of cloud hosted Internet-based apps that

enabled more collaboration, formation of online communities, and other means of

interaction. Today online collaboration tools can be classified in two categories [6]:

� Asynchronous collaboration tools. These tools enable participants to

collaborate on work at different times and different locations. These

tools are useful for collaborating over time and providing resources

and information that are accessible at any time. Viewing the revision

history allows participants to see who has contributed, when they have

contributed, and what they have contributed. Plus, the comments allow

participants to agree, rebut, or explain changes needed in the work.

� Synchronous collaboration tools. These tools enable participants to

collaborate in real-time, whether in the same location or in different

places. The key point of synchronous tools is that the technology lets

the communicators work together at the same time.

17

The emphasis of this thesis is on synchronous online collaboration since these

kinds of tools are now made possible with real-time technologies such as WebRTC.

Synchronous collaboration can have many advantages likes [7]:

• Immediate response and feedback.

• Video/web conferencing allow for body language and tone of voice.

• Increased motivation and engagement with course concepts.

• Increased social presence

Disadvantages of synchronous collaboration include:

• Lack of reflection between collaborators.

• If technology fails the collaboration session not possible.

• Large time commitment for collaborators.

• Difficult for one to many communication.

Synchronous collaboration includes whiteboards, video and audio

communication, text chat and screen sharing. Whiteboarding in particular is a

teaching and collaboration practice in which participants use a whiteboard area to

draw or write concepts, charts, maps, tables, diagrams, equations etc. Smith et al. in

[8] conducted a literature review on interactive whiteboard and found among other

things that they are particularly effective in education and virtual classrooms allowing

teachers to use teaching time to discuss student-generated ideas rather than merely

presenting information and summarized the benefits of interactive whiteboards as

follows: flexibility and multiple facets, effectiveness in multimedia use; support for

the lesson plan; diverse resources; development of information and communication

technology skills; and more interaction and student participation in classes.

Interactive whiteboards engage students with their peers in a collaborative learning

community and it allows for “more than one teacher” in a classroom by allowing

students with whiteboards to become teachers as well [9]. This enhances motivation,

participation and cooperation. Educational whiteboards are proved to be an effective

learning tool for people of all ages. For example Akbaş et al. in [10] have evaluated a

whiteboard-based system that trained older people to use automatic teller machines.

18

1.2 Online Collaboration Related Work

A number of synchronous online collaboration platforms have been proposed

or implemented commercially. As early as 1991, Abdel-Wahab et al. in [11] proposed

a distributed system that allowed the sharing of X Window applications

synchronously among a group of remotely located users. Jara C. in [12] proposed a

web learning system which combines synchronous collaborate learning with 3D

virtual laboratories. They intergraded their framework in the popular EJS physics

platform, allowing users to collaborate using the WebGL platform. Andrioti Z. in [13]

combined WebRTC and the Evie-m platform [14] to create an online collaborative

educational virtual environment for teaching mathematics. In the field of

whiteboarding which is one of the most popular applications of synchronous online

collaboration a study by Metz et al. in [15] designed a collaborative whiteboard and

evaluated it by assigning tasks to a group of users and collecting data from user

interactions and chat communication. They showed that whiteboard can be an

effective collaboration tool. Interestingly they observed that the collective

consciousness of the group of users is created through off-task interactions. It can be

deduced that this ability to have “off-task interaction” is one of the reasons that video

communication significantly improves collaboration efficiency and is one of the

advantages of synchronous collaboration. Today many online whiteboards are

commercially available on the web.

1.3 Co-browsing

Collaborative Web Browsing (co-browsing) is another form of online

collaboration in which two or more user navigate the World Wide Web together by

sharing a synchronized common view on a web page as well as sharing interactions,

such as mouse movements, text highlighting or mouse clicks, on this web page with

each other [16]. For example, a B2B customer having difficulty placing an order

could call a customer service representative who could then show the customer how

to use the ordering pages as though the customer were using their own mouse and

keyboard. Collaborative browsing can include e-mail, fax, regular telephone, and

Internet phone contact as part of an interaction. Effectively, collaborative browsing

allows a company and a customer to "be on the same page." [17] The ability for

consumers to share their screens with agents and navigate the Website together, fill

19

out forms, or find information can enable businesses to increase revenue and quickly

resolve support issues [18].

1.4 Co-browsing Related Work

One of the earliest attempts to implement a co-browsing system dates back to

1998 before the advent of broadband internet. In [19] it was attempted to implement

internet navigation by requesting and navigating a web page using the telephone line.

One more serious attempt for real client-server co-browsing was proposed in [20]. In

this US patent it proposed that co-browsing can be achieved by utilizing a server that

retrieves content of a page on behalf of a collaboration participant or attendee. Each

peer operates or views the content with a browser that is augmented with a

collaboration applet. Tags, links, script code and other references that may cause a

different page to be accessed or loaded from the current page are transformed or

replaced on the server before the page is distributed to the attendees. In particular,

events and redirections that may cause the attendee browser to directly navigate to

another page are transformed on the server. Pre-determined rules may be applied to

prevent some attendees from viewing certain content (e.g., financial or personal data).

A page may be further transformed at a client browser, to redirect a hyperlink to the

collaboration server or to trap some other event. What is described is essentially a

client-server, plugin-based solution and is the basis of the majority of co-browsing

solution available today while in this thesis we aspire to propose a peer-to-peer

plugin-less implementation.

Non interactive co-browsing can be very simple to implement and can utilize

the screen sharing API of WebRTC as shown in the following screenshot:

Figure 1.1 A possible scenario of non-interactive co-browsing

20

In the above scenario a user requests support from an agent. The agent then

proceeds to share his/her screen (right window) with the user in an attempt to show

the user what to do next while the user watches the screen sharing stream and acts on

his own browser accordingly (left window).

The real challenge is implementing an interactive co-browsing session. The

obstacles that need to be overcome in plugin-less interactive co-browsing include

dealing with cookies, page personalization, login sessions, or requests for

authentication while dealing with the strong security measures and confidence

requirements provided by both the operating system and the web browser (with most

important security limitation being the “Same origin policy” which is discussed in

chapter “Screen Casting Security Issues”. In client-server based co-browsing system a

solution has been proposed in [16] by enabling the user to control which web

application data is propagated and to enforce privacy policies upon private data within

a co-browsing session.

1.5 Media Streaming

Media streaming is defined as multimedia that is constantly received by and

presented to the end user. According to estimates in 2015 streaming media was

accounting for 70% of Internet downstream traffic in North America [21], at the same

time regular HTTP traffic accounted for about 6%. In the future with the rise of 4K

streaming the percentage of streaming traffic will be increased. Although traditional

client-server systems were used initially for delivering media content, researchers and

practitioners soon realized that peer-to-peer systems, due to their self-scaling

properties, had the potential to improve scalability compared with traditional client-

server architectures. Various P2P media streaming systems have been deployed

successfully, and corresponding theoretical investigations have been performed on

such systems [22]. The term P2PTV refers to peer-to-peer software applications

designed to redistribute video streams in real time on a P2P network.

Using WebRTC technology to stream media is still an experimental

technology and it is one of the things we will showcase in this thesis.

21

Chapter 2. Underlying Technologies

2.1 WebSocket & HTTP/2

WebSocket is a technology that makes it possible to open a bidirectional

communication session between the user's browser and a server. Before WebSocket,

real-time client-server web applications were only possible using the inefficient server

polling. Polling is a technique with which the client polls the server at regular

intervals and receives the response. However this is obviously not an efficient method

because it leads to many connections opening and closing needlessly since real-time

data is not always predictable [23]. Using the WebSocket API, a Web application can

send messages to a server and receive event-driven responses without having to poll

the server for a reply (full-duplex communication) [24]. A connection is established

during the initial handshake between the client and the server upgrading in this way

the standard HTTP protocol [25].

Figure 2.1 Traditional client server bidirectional communcation employed in WebSocket

Figure 2.2 Server push used in HTTP/2

 The WebSocket protocol was standardized by the IETF as RFC 6455 in 2011

and its API is maintained by W3C. It provides an object and methods that can be used

to connect to a server and send a receive data from the connection. The main interface

is the WebSocket interface. Many wrapper APIs for the WebSocket API exist, one of

the most popular being Socket.IO which is used in this thesis and discussed in a

22

following chapter. On the server side it becomes obvious that the traditional server

stacks are not adequate for the large number of connections. Keeping a large number

of connections open at the same time requires an architecture that receives high

concurrency at a low performance cost. Such architectures are usually designed

around either threading or so called non-blocking IO [26]. Server side

implementations include Socket.IO, Websocket-Node for Node.js, Jetty for Java,

SuperWebSocket for .NET, Tornado for Python etc. WebSocket is omnipresent in the

modern web with applications in social networking and chat, multiplayer games,

collaborative applications, online education etc [27].

An alternative to WebSocket is HTTP/2. HTTP/2 is a protocol intended to

replace HTTP/1.1 which is used since 1999. It was developed by the IETF HTTP

Working Group and is primarily focused on improving the speed to render a webpage.

It defines an upgrade handshake and data framing very similar to the WebSocket

standard. It is a fully multiplexed binary protocol that uses header compression and

allows “server push” [28]. Server Push is where the server pushes a resource directly

to the client without the client asking for the resource. HTTP/2 could be used as an

alternative to WebSocket. The differences between the two are shown in the

following table.

WebSocket HTTP/2

Headers Binary Binary, compressed

Content Binary, text Text, compressed

Direction Bidirectional
Client to Server,
Server push

Multiplexing
Supported
(extension)

Supported

Table 2.1 Comparison of WebSocket and HTTP/2

An IETF draft has been written for WebSocket over HTTP/2 that describes

how WebSocket semantics can be layered onto HTTP/2.0 semantics by defining

detailed mapping, replacement of operations and events defined in the WebSocket

protocol [29].

23

2.2 WebRTC

WebRTC (Web Real Time Communication) is a technology that allows real-

time peer-to-peer communication between browsers without the use of additional

plugins. The mission of WebRTC is “to enable rich, high-quality RTC applications to

be developed for the browser, mobile platforms, and IoT devices, and allow them all

to communicate via a common set of protocols” [30]. WebRTC was open-sourced by

Google in 2011 and after that an ongoing work started to standardize the protocols

associated with it by IETF and its browser APIs by W3C. Interest and support for

WebRTC has been since growing steadily. Today, the most advanced WebRTC

implementation is done by Mozilla Firefox and Google Chrome. These browsers are

now supporting the majority of the features of WebRTC that are envisioned by the

corresponding W3C drafts and proposals [31]. Other platforms that support WebRTC

to some extend include the Opera browser, the Android platform and Apple’s iOS

platform. Microsoft in its Edge browsers supports another set protocols named ORTC

which does not use the SDP for session descriptions but it is planned to be

interoperable with WebRTC [32]. It is expected that by 2018 WebRTC will be

supported by 4.7 billion mobile devices [33] and 1.5 billion PCs that run WebRTC

enabled browsers bringing the total number to over 6.2 billion WebRTC enabled

devices.

WebRTC opens the window to a new era of Web innovations that will rely on

the web browser for a variety of new activities which were not possible in the past

without the need of specialized software or plugins. Video and audio chat, file sharing

between peers without the use of an intermediating server, multiplayer games that

exchange their data peer-to-peer are just a few of the applications which are made

possible by WebRTC. We further discuss all these possibilities in next chapter where

we look at some WebRTC use cases.

One of the most important issues with WebRTC is its interoperability. Firstly,

the WebRTC web API has not yet fully standardized. As a result web browsers

implement slightly different APIs which in turn this has led to Google releasing a

shim JavaScript library called adapter.js to insulate WebRTC applications for API

changes in the future and across different browsers [34]. We will discuss adaper.js in

chapter 2.1.1. Secondly, until recently there hasn’t been an agreement on the set of

video codecs which would be used by WebRTC. This held the whole WebRTC

24

ecosystem back for some time. The two proposed codecs were Google’s VP8 and

MPEG’s H.264.Constrained Baseline. Agreeing on a set of video and audio codecs is

important because browsers running WebRTC applications should all support the

same set of video and audio codecs because lack of support on the same codec set

would break interoperability [35]. It was recently decided that both VP8 and H.264 to

be mandatory to implement [36]. Audio codecs which have been decided for audio are

Opus and G.711 [37].We will extensively discuss WebRTC codecs in section 2.2.5.

2.2.1 WebRTC Use Cases

As stated in the previous section, it is estimated that over 6.2 billion devices

will be WebRTC enabled by 2018. The main question that arises is “What will we do

with these devices?” and “What can we develop with WebRTC?”. Currently there are

over 200 commercial solutions utilizing WebRTC with new ones released constantly

[38]. These applications range from simple online video conferencing to file sharing

and torrent sharing to healthcare systems and even distributed CDN system. In this

chapter we look at some established examples and innovations that rely on WebRTC

technology.

One of the challenges that WebRTC faces is its adoption by the mobile world.

Currently mobile versions of Chrome, Firefox and Opera support WebRTC on the

Android platform. Bowser was developed by Ericsson Research and is the first

browser that supported WebRTC for the iOS platform [39]. An alternative to web

applications, is native mobile applications that utilize the WebRTC Native Code

which is offered by Google and Ericsson for Android and iOS. This way, native RTC

applications can be developed able to communicate with any WebRTC device. 3rd

party SDKs for building native WebRTC applications, such as easyRTC, are also

available.

The most basic use of WebRTC is in the field of teleconferencing and

audio/video communication. Firefox Hello is a feature built-in Mozilla Firefox which

enables video and voice calls and text messaging [40]. Zingaya is a click-to-call

service for use on websites that allows visitors to video chat with a sales

representative/support person etc. eliminating the need for a telephone call [41].

WebRTC has also been used in synchronized software development and collaborative

language leraning as described in [42] and [43].

25

There are numerous proposed application of WebRTC in the field of telehealth

and telemedicine. Some notable examples include Cola et al. in [44] who propose a

video appointment solution that allows doctor and patient to have a video consult

instead of a normal visit at the physician office. Vidul et al. in [45] propose a new

Emergency Telemedicine Application for emergency care management which uses

WebRTC. A WebRTC enabled device is carried within an ambulance to conduct an

initial assessment of the patient and later brought to the nearest health center where

further treatment is carried under the assistance of specialists whose telepresence is

provided by WebRTC enabled devices. Jang-Jaccard in [46] propose WebRTC-based

video conferencing system which allows online meetings between remotely located

care coordinators and patients at their home while in [47] an efficient session weight

load balancing and scheduling methodology to improve network performance for a

telehealth care service based on WebRTC is proposed.

Utilizing the data channel for distribution of web content and file sharing peer-

to-peer is another area in which WebRTC has a prominent presence. Sharefest and

Webtorrent are two examples. Sharefest allows a user to drag and drop a file on a web

page. The file is not uploaded anywhere instead the user is given a URL. Using that

URL other users can download the file directly from the first user using WebRTC

(provided the first user’s browser remains open) [48]. WebTorrent is a torrent client

developed for the browser. Currently it is only compatible with the WebRTC enabled

BitTorent clients and thus it cannot download data from conventional torrent clients

[49]. P2P CDN is another field in which WebRTC can be used. Traditionally CDNs

are server-based networks, but when P2P is employed it means that instead of always

serving content directly from the CDN to the end users, the end users can share

content or blocks of it between them, which reduces the load on the CDN and the

bandwidth required on the CDN’s side [50]. Notable example of WebRC based CDNs

include peerCDN and Peer5. Peer5 is used for distributing video streaming among

viewers and can purportedly reach up to 95% server offloading [51]. peerCDN which

was acquired by Yahoo in 2013 is another P2P content delivery network that utilizes

WebRTC to distribute site resources like images, videos and downloads among site

visitors [52].

Using WebRTC for exchanging metadata in web based real-time games has

the advantage of reduced server bandwith, lower latencies and also enables players to

26

interact via audio and video. Andrioti et al. in [53] have implement a demo 3D

collaborative online game introducing WebRTC over X3DOM technology.

Finally the emerging popularity of WebRTC has led many companies to offer

dedicated signaling and hosting services, while other companies offer WebRTC API

wrappers. Notable examples include Xirsys, TokBox and peerJS. Xirsys offers STUN

and TURN server hosting for WebRTC applications [54], peerJS wraps the browser's

WebRTC implementation to provide a complete, configurable, and easy-to-use API

[55] and TokBox provides hosted infrastructure, APIs and tools required to deliver

enterprise-grade WebRTC capabilities [56].

2.2.2 WebRTC APIs

WebRTC implements three APIs:

� MediaStream

� RTCPeerConnection

� RTCDataChannel

The MediaStream API is responsible for capturing streams of media, these

streams can be a video taken from the user’s web camera, a stream from a canvas of

video element or a screen casting session, the RTCPeerConnection API is used to

communicate these streams between browsers and the RTCDataChannel API is used

to exchange arbitrary data such as application and game data but also metadata. We

will look at these 3 APIs in some more detail in the following paragraphs.

WebRTC Media Stream API

At the heart of the WebRTC API lies the MediaStream Processing API, often

called the Media Stream API or the Stream API. This API describes a stream of audio

or video data, the methods with working with them, the constraints associated with

the type of data, the success and error callbacks when using the data asynchronously,

and the events that are fired during the process [57]. Media streams are distinguished

between local and remote. The source of a local stream can be the user’s web camera

or microphone, a screen capturing stream, an HTML5 canvas or a video element. We

discuss with more detail in screen capturing and in stream capturing from video and

canvas elements in later sections. The source of a non-local MediaStream may is a

27

stream originating over the network, and obtained via the WebRTC PeerConnection

API, or a stream created using the Web Audio API MediaStreamAudioSourceNode.

Local media streams from the web cam or screen capture are generated by the

MediaDevices.getUserMedia method which prompts the user for permission to use

one video and/or one audio input device such as a camera, a microphone or for

permission to start capturing a screen or part of it.

Figure 2.3 Asking for the user's permission to use a device (left) or start capturing part of the screen (right)

If the user provides permission, then the returned Promise (an object is used

for deferred and asynchronous computations) is resolved with the resulting

MediaStream object. If the user denies permission, or media is not available, then the

promise is rejected with PermissionDeniedError or NotFoundError respectively. [58].

The getUserMedia method has one constraints parameter and two callback

functions, one for successful creation of the promise and one for the rejection of the

returned promise.

navigator.mediaDevices.getUserMedia(constraints)
.then(successFunction)
.catch(errorFunction)
Listing 2.1 Syntax of the getUserMedia method

The constraints object contains parameters such as the video resolution, frame

rate or which camera to use on devices with more than one camera. For example to

enable audio and allow access to the rear camera of a device instead of the front

camera the following constraints object can be used:

{audio:true, video:{facingMode:{exact:"environment"}}}

Listing 2.2 getUserMedia constraint to access the rear (environment) camera instead of the front camera of the

device

28

Because not all devices support all constrains W3C requires the

implementation of a getSupportedContraints method which returns all the supported

constraints of the devices as seen in the following listing:

Object { browserWindow: true,
 deviceId: true,
 facingMode: true,
 frameRate: true,
 height: true,
 mediaSource: true,
 scrollWithPage: true,
 width: true }
Listing 2.3 Sample returned data from getSupportedConstraints on a laptop computer

The above data can be used by the web developer to check the capabilities of a

device and adapt the getUserMedia call accordingly [59].

WebRTC Peer Connection API

WebRTC uses the RTCPeerConnection interface to represent a connection

between two peers and to handle efficient streaming of data between them [60]. An

RTCPeerConnection object must be accompanied by configuration information which

include an ICE agent, signaling state, ICE gathering state and ICE connection state.

When the object is created the browser associates an ICE agent with the

RTCPeerConnection object [61].

Figure 2.4 RTCPeerConnection structure [62]

29

The PeerConnection interface uses the ICE protocol together with the STUN

and TURN servers to let UDP-based media streams to traverse NAT boxes and

firewalls. ICE allows the browsers to discover enough information about the topology

of the network where they are deployed to find the best exploitable communication

path. Using ICE also provides a security measure, as it prevents untrusted web pages

and applications from sending data to hosts that are not expecting to receive them

[63]. An example of how to create an RTCPeerConnection object is shown in the

following listing:

var config = {iceServers:
[{url:'stun:stun.services.mozilla.com'}]};
pc = new RTCPeerConnection(config);
Listing 2.4 Creating an RTCPeerConnection object

In the above example, a new RTCPeerConnection object is created using the

configuration described in the variable “config|”. The variable declares one STUN

server to be used by RTCPeerConnection. Once the RTCPeerConnection object is

created by the browser it awaits for calls to methods createOffer, setLocalDescription,

createAnswer, setRemoteDescription and addIceCandidate. These methods are

summarized in the following table:

createOffer Creates a request to find a remote peer with a specific

configuration.

setLocalDescription Changes the local description associated with the

connection. The description defines the properties of the

connection like its codec. The method takes three

parameters, an RTCSessionDescription object to set, and

two callbacks, one called if the change of description

succeeds, another called if it fails.

setRemoteDescription Changes the remote description associated with the

connection. The description defines the properties of the

connection like its codec. The method takes three

parameters, an RTCSessionDescription object to set, and

two callbacks, one called if the change of description

succeeds, another called if it fails.

30

createAnswer Creates an answer to the offer received by the remote peer,

in a two-part offer/answer negotiation of a connection. The

two first parameters are respectively success and error

callbacks, the optional third one represent options for the

answer to be created.

addIceCandidate Provides a remote candidate to the ICE Agent. In addition

to being added to the remote description, connectivity

checks will be sent to the new candidates as long as the

"IceTransports" constraint is not set to "none". This call

will result in a change to the connection state of the ICE

Agent, and may result in a change to media state if it

results in different connectivity being established.

Table 2.2 RTCPeerConnection main methods [60]

For example to set the local description associated with the connection the

peer connection will call its createOffer method which in turn will call a callback

function which then calls the setLocalDescription method. Since a peer-to-peer

connection has not yet been established at this point, the application also needs to

notify the other peer through the signaling channel of its local description

information.

pc.createOffer(function() {
 pc.setLocalDescription(sessionDescription);
 sc_send(sessionDescription);
}, onSignalingError, sdpConstraints);
Listing 2.5 Setting the local description using the createOffer method

The application must then wait for the remote description from the server and

a list of ICE candidates as seen in the following listing:

socket.on('message', function (message){
if (message.type === 'answer') {
 pc.setRemoteDescription(new
RTCSessionDescription(message));
} else if (message.type === 'candidate') {
 pc.addIceCandidate(candidate);
}});
Listing 2.6 Setting the remote description and adding ICE Candidates

31

Another very important feature of the RTCPeerConnection API is its ability to

support multiple streams per connection. For example two users can exchange the

streams of their web cameras and also screen casting streams through the same media

connection. Currently there are two different approaches for signaling multiple

streams. Firefox since version 38 utilizes the “Unified Plan” [64] Internet draft while

Chrome utilized an older Google proposal called “Plan B” [65]. As a result

applications utilizing multiple streams are not interoperable between Chrome and

Firefox [66]. Chrome development team has stated that they reevaluate this issue in

the first quarter of 2016 [67].

The main goal of the “Unified Plan for Using SDP with Large Numbers of

Media Flows” Internet draft is among others:

� To support for a large number of arbitrary sources

� To achieve glareless addition and removal of sources

� To avoid excessive use of port allocation

On Firefox, multiple streams can be implemented through the use of the

onnegotiationneed callback function of the RTCPeerConection object. Every time a

stream or track is added to an established RTCPeerConnection using the addstream

method and onaddstream callback, it simply needs to be signaled to the other side of

the connection using the onnegotiationneed callback function as shown in the

following listing:

if(pc) {
 pc.onnegotiationneeded = function (event) {
 pc.createOffer(
 setLocalDescription,
 onSignalingError,
 sdpConstraints);
 };
}
Listing 2.7 Defining a callback function for when a new RTCPeerConnection negotiation is needed

32

WebRTC Data Channel

The WebRTC data channel API is designed to provide a transport service

allowing web browsers to exchange generic data in a bidirectional peer-to-peer mode

[63]. The WebRTC data channel is implemented by the RTCDataChannel interface

which represents a bidirectional data channel between two peers of a connection [68].

RTCDataChannel can be configured to operate in different reliability modes. A

reliable channel (the default RTCDataChannel connection) ensures that the data is

delivered at the other peer through retransmissions [61].

The WebRTC data channel models the behavior of WebSocket [61] and is in

fact a superset of the WebSocket API. Their main difference is that WebSocket runs

on top of TCP whereas the WebRTC data channel is layered on top of three different

protocols [62]:

� UDP which provides peer-to-peer connectivity.

� DTLS which provides encryption of transferred data.

� SCTP which provides multiplexing, flow and congestion control, and other

features.

A comparison between the WebRTC Data Channel and WebSocket is

summarized in the following table [62]:

WebSocket DataChannel

Encryption configurable always

Reliability reliable configurable

Delivery ordered configurable

Multiplexed no (extension) yes

Transmission message-oriented message-oriented

Binary transfers yes yes

UTF-8 transfers yes yes

Compression no (extension) no
Table 2.3 Comparison between WebSocket and the WebRTC Data Channel

Reliability and ordering can be set when creating the data channel by calling

the createDataChannel method of the RTCPeerConnection object. These properties

are members of an RTCDataChannelInit collection and are summarized in the

following table:

33

maxPacketLifeTime Limits the time during which the channel will transmit or

retransmit data if not acknowledged. This value may be

clamped if it exceeds the maximum value supported by the

user agent.

maxRetransmits Limits the number of times a channel will retransmit data if

not successfully delivered. This value may be clamped if it

exceeds the maximum value supported by the user agent.

negotiated The default value of false tells the user agent to announce the

channel in-band and instruct the other peer to dispatch a

corresponding RTCDataChannel object. If set to true, it is up

to the application to negotiate the channel and create an

RTCDataChannel object with the same id at the other peer.

ordered If set to false, data is allowed to be delivered out of order.

The default value of true, guarantees that data will be

delivered in order.

Table 2.4 List of the most important members of the RTCDataChannelInit collection

As it can be seen, there is no member in the above table that sets the reliability

of the channel. An unreliable channel can be created either by limit the number of

retransmissions (using member maxRetransmits) or by setting a time during which

transmissions (including retransmissions) are allowed (using member

maxPacketLifeTime). According to the specification these two properties cannot be

used simultaneously and an attempt to do so will result in an error. Not setting any of

these properties results in a reliable channel. This can be seen in the following 2

examples where we show how a reliable and an unreliable data channel can be

created:

var con_init= {maxRetransmits: 0, ordered: false};
var data_channel = pc.createDataChannel("testChannel",
con_init);
Listing 2.8 Creating an unreliable data channel

var data_channel = pc.createDataChannel("testChannel", {});
Listing 2.9 Creating a reliable data channel

34

In the first example a data channel with unordered data transmission and no

retransmits if a packet is not successfully transmitted while the second example shows

the creation of a default reliable data channel.

WebRTC Screen Casting

Screen capturing is an extension to the WebRTC getUserMedia API which

allows the acquisition of a user's display, or part of it, in the form of a HTML5 video

stream [69].

Screen capturing is achieved simply by calling the getUserMedia method

using specific constraints. These constraints are specified by a

MediaStreamConstraints object which has two members: video and audio, which

describe the media type requested. An example constraints object is shown in the

following listing.

constraints = {
 video: {
 mozMediaSource: "application",
 mediaSource: "application"
 }
};
Listing 2.10 MediaStreamConstraints object for Application capturing in Firefox

In the case of screen capturing the audio member is null because support for

capturing audio from a native application is not yet implemented. The video member

specifics the requested type of screen capturing. These types can be depending on the

browser, one of the following:

� A monitor surface: Represents the full screen area for one of the

connected screens (e.g. the user is asked to select a monitor in a system

with multiple monitors connected). It can also represent a combination of

all the connected screens.

� A window surface: Captures a single window. Child windows (modal or

not) will not be captured

� An application surface: This surface represents all the windows that are

available to a single application. All child windows modal or not will be

captured. An application capture results in a surface area with dimensions

35

equal to the user’s screen resolution but with all areas that don’t belong in

the captured application obscured.

� A browser surface: This represents a single document. It is usually a

browser tab but it is not strictly limited to HTML. Theoretically it could be

a single document from any application, although this feature has not yet

implemented by any browser.

Figure 2.5 Screen capturing modes (from left to right: Monitor, Application, and Window) Notice how the

“About” dialog box is visible in the 2rd screenshot (Application capturing) because it belongs to the Minesweeper

Application

As of February 2016 the screen capturing API is only supported on Chrome

and Firefox. On Firefox in order for a web application to be allowed to access the

screen capturing API it must a) be behind an SSL server (https) and b) has its domain

whitelisted in the media.getusermedia.screensharing.allowed_domains variable of the

Firefox application settings (about:config). A simple extension can be developed to

automatically whitelisting a domain but developers of commercial WebRTC screen

sharing applications can also request their domain to be whitelisted in the next release

of Firefox. Firefox currently doesn’t support capturing of browser documents (tabs).

On Chrome screensharing is implemented as an API for Chrome extensions

which must be installed through the Chrome Web Store. The API is must more

difficult to use and documentation for it is currently ver sparse. Although this defies

the philosohpy of plugin-less web advocated by WebRTC, Google decided to enforce

this policy of security reasons. Because extensions for Chrome can only be delivered

through the Chrome Web Store, Google is allowed to maintain some form of

governance, along with the ability to throw away extensions that are considered

malware [70].

36

Screen Casting Security Issues

Screen sharing in the browser has significant security implications, the most

obvious being users sharing content that they did not wish to share , or users not

realizing that they are actively sharing their screen or portion of it. Also display of

information that is under the control of the browser (e.g. a browser tab that the web

application has access to) can allow the web application to access information that

would otherwise be inaccessible to it directly [71] and thus render the “same-origin

policy” inefficient. To summarize, the main security concerns of W3C are a) the

capture of an area that is not intended to be exposed and b) the capturing of an area

without the authorization of the user.

To secure against capturing of surfaces areas that the user has not provided

capturing authorization the browser can obscure some of the captured areas as shown

in the following screenshot: Here a user has chosen to capture the Windows Notepad

application. The browser is obscuring the rest of the desktop only displaying the

application and its child windows.

Figure 2.6 Obscuring information in application capturing mode (black area covers everything that doesn’t

belong to the application)

To secure against initiating a screen sharing session without the explicit

authorization of the user the draft specifies two different forms of user interaction. In

the first case the application (e.g. browser) that is requesting to use the screen

capturing feature has no control over what is to be rendered on that surface. In this

37

case active user consent (e.g. by selecting an application from a drop down menu) is

all that is required. The user must remain notified that a screen sharing session is

active (e.g. by an always-on-top notification such as the one shown in the next figure).

The user must also be able to stop any active capture at any time. Firefox for example

displays an always-on-top orange square with the Firefox icon on the middle top of

the screen, and an icon in the address bar. When the user clicks on either of these

areas, a popup notification appears indicating that a device is used or that part of the

screen is captured, from which the user can stop the capturing session, as seen in the

following figure.

Figure 2.7 Notifying the user that screen sharing is active in Firefox

In cases where the application has control over the area that is about to be

shared, the W3C draft strongly advices for a form of “elevated permission” to be

required from the user. This “elevated permission” should, among others things,

notify the user of the risks associated with enabling screen capturing and certify that

the user has trust in the application.

The vulnerabilities arising from the lack of enforcement of the “same-origin

policy” by WebRTC screen capturing are discussed extensively in [72] by Tian et al.

The same-origin policy is a critical web security mechanism for isolating

potentially malicious documents. It restricts a document or script loaded from one

origin from interacting with a resource from another origin [73]. Tian et al. conclude

that this assumption is directly broken when using the screen sharing feature of

WebRTC and distinguish between malicious users and malicious WebRTC

applications. A malicious user is one who tries to collect sensitive information by

tricking a benign user to click on malicious links during a screen sharing session. A

malicious WebRTC application is one which can access the cross-origin content

displayed inside a user’s browser. Utilizing this technique an attacker could perform

attacks on integrity (CSRF) and attacks on confidentiality (access to personal

38

information, browsing history etc.). For example a malicious user or malicious

application could trick the user into clicking a malicious link to an HTML file

containing the following code:

<script>
document.location="view-source:https://www.facebook.com/";
</script>
Listing 2.11 Malicious HTML file for a possible CSRF attack through screen sharing

The above code displays the source code of Facebook.com (fig. 3). The

attacker now has obtained a screenshot of the source code of the website which could

contain critical information such as validation tokens etc.

Figure 2.8 Source code of a website which could contain security-critical information such as security tokens

which could be used for a CSRF attack.

WebRTC Interoperability

Until the WebRTC standard is more finalized, the two supporting browsers

(Firefox and Chrome) could be using different prefixes for their WebRTC interface.

Some differences in the WebRTC API between Firefox and Chrome are

summarized in the following table (as of September 2015):

W3C Standard Chrome Firefox

getUserMedia webkitGetUserMedia mozGetUserMedia

RTCPeerConnection webkitRTCPeerConnection mozRTCPeerConnection

RTCSessionDescription RTCSessionDescription mozRTCSessionDescription

RTCIceCandidate RTCIceCandidate mozRTCIceCandidate

Table 2.5 Example API differences accross Chrome and Firefox

39

To remedy this and to help ease cross-browser development the WebRTC

group has developed a “polyfill” shim library (a small library that transparently

intercepts API calls and changes the arguments passed, handles the operation itself, or

redirects the operation elsewhere) called “Adapter.js”. This library helps insulate apps

from cross-browser API differences by letting developers write code using W3C

standard names [34].

The following code shows an example of how Adapter.js works. In this

example it is shown how Adapter.js detects the user’s browser and redefines the

object RTCPeerConnection as “mozRTCPeerConnection”:

if (navigator.mozGetUserMedia) {
 console.log("This appears to be Firefox");
 webrtcDetectedBrowser = "firefox";
 // The RTCPeerConnection object.
 RTCPeerConnection = mozRTCPeerConnection;
}

Listing 2.12 Detecting the browser and intercepting WebRTC API accordingly

Adapter.js is being developed at github.com/webrtc/adapter

It must be noted here that since December 2015 the method getUserMedia

belongs to the MediaDevices interface instead of the Navigator interface that is shown

on the previous listing. The Navigator interface represents the state and the identity of

the user agent. It allows scripts to query it and to register themselves to carry on some

activities. On the other side, the MediaDevices interface in which the getUserMedia

method now belongs is a specialized interface that provides access to connected

media input devices like cameras and microphones, as well as screen sharing. This

interface currently has 2 main methods: getUserMedia() which has been discussed in

extend in previous section and an enumerateDevices() method for obtaining arrays of

information about the media input and output devices available on the system [74]

[75] [76]. Adapter.js mitigates this in old browser versions as seen in the following

listing:

if (!navigator.mediaDevices) {
 navigator.mediaDevices = {getUserMedia: requestUserMedia,
 addEventListener: function() { },

40

 removeEventListener: function() { }
 };
}
Listing 2.13 Mitigating the lack of MediaDevices interface in Adapter.js

2.2.3 WebRTC Signaling

Although WebRTC aspires to enable Peer-to-Peer communication between

browsers without relaying data through a server, a use of a server is still required for

two reasons: The first reason is the obvious one, the server is needed to “serve” the

actual JavaScript application that utilizes WebRTC. The second reason is less

obvious. A server is required in order to initialize sessions between the clients that

need to communicate. This process is known as “Negotiation” and is implemented via

certain signaling exchange. The latter is responsible for the exchange of the initial

(meta) data of session descriptions (using SDP) which contain details on the form and

nature of the data which will be transmitted [77]. This information can include [78]:

� Network data, such as IP addresses and ports.

� Media metadata such as codecs and codec settings, bandwidth and media

types.

� Error messages.

� User and room information.

The following schematic shows the signaling architecture of WebRTC:

Figure 2.9 WebRTC Signaling Architecture

The WebRTC signaling process is based on a new standard called JSEP

(JavaScript Session Establishment Protocol). JSEP is a collection of interfaces used to

41

identify negotiation of local and remote addresses by exchanging “offers” and

“answers” between peers using SDP.

The signaling itself in WebRTC is completely abstract and not defined in any

specification. The reason behind this is that different applications may decide to use

different signaling protocols such as SIP for e.g. VoIP applications, XMPP for e.g.

chat applications, HTTPS (WebSocket or socket.io) for e.g. plain web applications

such as the one we present in this thesis or even something special for a novel use

case [79]. In other words, standardizing on the wrong signaling protocol could easily

limit the future potential of WebRTC.

More details about SDP and the signaling process will be discussed in section

2.2.4 concerning WebRTC Network Protocols. In the next section we discuss the

signaling server implementation we chose in this thesis which utilizes WebSocket

(using socket.io).

Node.js/Socket.io for WebRTC Signaling

One of the most popular implementations for WebRTC signaling is using

Socket.io. Socket.io is a JavaScript library for real time web applications that supports

bi-directional event-based communication. It has two parts: a client-side JavaScript

library that runs in the browser and a server-side library for node.js.

Node.js is a JavaScript framework that simplifies the writing of event-driven

server-side applications using a build-in HTTP server implementation. It is based on a

single-threaded event loop management process making use of non-blocking I/O.

With Node.js, it is really easy for the programmer to implement a high-performance

HTTP server with customized behavior with just a few lines of JavaScript code [63].

Socket.io although it is utilizing the WebSocket protocol, it is more than a

simple WebSocket wrapper as it offers many other features such as broadcasting to

multiple sockets and support for “Rooms” which are essential for most WebRTC

applications. An example server and client is shown in the following listings:

var io = require('socket.io').listen(80);
io.sockets.on('connection', function (socket) {
 socket.emit('event1', 'hello from server!');
 socket.on('event2', function (data) {console.log(data);});
});
Listing 2.14 Socket.io on the server side

42

var socket = io.connect('http://localhost');
socket.on('event1', function (data) {
 console.log(data);
 socket.emit('event2', 'hello from client!');
});
Listing 2.15 Socket.io on the client side

The above listings show the simplicity and elegance of socket.io and how it

simplifies event-driven web development. On the server side socket.io listens to port

80 and upon connection emits a ‘hello from server’ event called ‘event1’ which fires

the event1 event on the client. The event1 event prints the data that accompanies the

event and then sends an even2 on the server with the string “Hello from client”.

2.2.4 WebRTC Network Protocols

WebRTC relies on a number of protocols to be able to communicate with

other clients. Before a peer-to-peer connection is established, all peers must exchange

session descriptions which contain information about the peers (e.g. IP addresses) and

the type of information they wish to exchange (e.g. the type video codecs to be used).

This information is exchanged through the signaling server using SDP. Once session

information is acquired by all peers, the actual peer-to-peer connection must be

established. Because naturally some of the peers can be behind a NAT, WebRTC

must also implement some form of NAT traversal. This is possible with the use of

STUN and TURN which are part of the ICE protocol. In this section we take a close

look at these protocols.

SDP

SDP (Session Description Protocol) is a format for describing streaming media

initialization parameters. It is published as an IETF proposed standard in RFC 4566 in

2006. SDP provides a standard representation for such information, irrespective of

how that information is transported. It is intended to be general purpose protocol so

that it can be used in a wide range of network environments and applications [80]. A

session is described by a series of fields, one per line, each line being in the form of

character=value, where character is a single-case significant character and value is

structured text whose format depends on the attribute type [81]. For example the

43

character m signifies media name and transport address and the letter o is the

originator and session identifier. In the following example we show some lines of an

SDP message generated by Firefox for a WebRTC session:

v=0
o=mozilla...THIS_IS_SDPARTA-44.0 8584189520789373760 0 IN IP4 0.0.0.0.
a=ice-options:trickle
a=msid-semantic:WMS *
m=audio 9 UDP/TLS/RTP/SAVPF 109.
a=rtpmap:109 opus/48000/2
a=rtpmap:9 G722/8000/1
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000.
a=rtpmap:120 VP8/90000
a=rtpmap:126 H264/90000
a=rtpmap:97 H264/90000
Listing 2.16 Excerpt of SDP message

In the above example, the lines beginning with character “a” (media attribute

lines — overriding the Session attribute lines) is the list of available audio and video

codecs of the browser from whom this message originated (in this case VP8 and H264

for video and Opus, G.722. PCMU and PCMA). The originating browser is Firefox

44.0 as seen from the value of character “o” (originator) being equal to

“mozilla...THIS_IS_SDPARTA-44.0” (a humorous reference to the quote “This is

Sparta!” from the movie ‘300’).

STUN

STUN is one of the protocols used by ICE that serves as a tool for other

protocols in dealing with NAT traversal, standardized in 2008 as RFC 5389 [82].

Most times, a client behind a NAT is unaware of its public IP address and port. To

resolve this, the client sends a message to a STUN server (which is located behind the

NAT) on the public web. The STUN server then sends a reply containing the client’s

public IP and port as seen from its side.

44

Figure 2.10 Connection using a STUN Server

Because STUN is a very light-weight and simple protocol, STUN server with

low specifications can handle a large number of requests [83]. It is measured that 86%

of WebRTC connections are successfully completed using STUN.

TURN

On some occasions, WebRTC can fail to establish a connection using STUN.

This usually happens when one of the clients is behind a symmetric NAT because

with a symmetric NAT a client can find out its public IP address but not its public

port. To be reachable, a device behind a symmetric NAT needs to initiate and

maintain a connection using relay [84]. WebRTC uses the TURN protocol (Traversal

Using Relays around NAT) to establish a relayed connection. TURN is meant to

bypass the symmetric NAT restriction by opening a connection with a TURN server

and relaying all information through that server.

Figure 2.11 Using a TURN Server to relay data

45

It is obvious that this fallback solution comes with some overhead so it is only

used if there are no other alternatives [85].

ICE

The STUN and TURN protocols are all part of the ICE (Interactive

Connectivity Establishment) framework that is used by WebRTC. ICE is used to

allow browsers to connect with other browsers (peers).

An example of using ICE to tell the RTCPeerConnection object which STUN

and TURN servers to use is shown in the following listing:

var stun_server = {'url': 'stun:stun.services.mozilla.com',};

var turn_server = {
 url: 'turn:nikos@numb.viagenie.ca', credential: 'pwd12345'
};

var iceServers = {iceServers: [stun_server, turn_server]};

var pc = new RTCPeerConnection(iceServers);
Listing 2.17 Creating an RTCPeerConnection object and telling it which STUN and TURN servers to use

ICE is described in RFC 5245, “Interactive Connectivity Establishment (ICE):

A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer

Protocols” [86]. The basic idea behind ICE is that each peer has a list of candidate IP

addresses and ports it could use to communicate with the other peer. These are called

“candidate addresses”. Candidates include the host’s private local IP address and also

IP addresses collected from STUN and TURN servers. ICE then distributes the

candidate addresses to all the other peers using the signaling server. Finally each peer

attempts to connect to the other using the candidates in its list. Each of the candidates

is assigned a priority value. Lowest priority is given to the relayed candidates, highest

priority to local candidates.

The following two tables shows an example of ICE candidates gathered for a

sample WebRTC session:

46

Figure 2.12 Sample list of local and remote ICE candidates gathered by Mozilla Firefox (the public addresses of

the peers are paired)

Figure 2.13 List of local and remote ICE candidates gatered by Mozilla Firefox (local IP of the peers is selected)

One security implication of using ICE is that it exposes IP information by

allowing requests to STUN servers that return the local and public IP addresses of the

user using JavaScript. Additionally, because these STUN requests are made outside of

the normal XMLHttpRequest procedure, they are not visible in the developer console

or able to be blocked by plugins such as AdBlockPlus or Ghostery. This makes these

types of requests available for online tracking if an advertiser sets up a STUN server

with a wildcard domain [87]. A demo of this vulnerability can be seen in the

following screenshot:

Figure 2.14 Using WebRTC to reveal user's IP information

The whole process of utilizing the protocols we discussed in this section establishing

a connection between two peers in WebRTC is shown in the following diagram:

47

Figure 2.15WebRTC signaling complete process [88]

2.2.5 WebRTC Codecs

The codecs that are supported by WebRTC are defined by two IETF drafts.

Audio codecs are described in “WebRTC Audio Codec and Processing

Requirements” [37] and video codecs in “WebRTC Video Processing and Codec

Requirements” [36]. According to these drafts WebRTC browsers must (absolute

requirement) implement the VP8 video codec as described in RFC6386 and also

H.264 Constrained Baseline as described in H264, and must also implement the Opus

audio codec described in RFC6716 and the G.711 PCMA and PCMU audio codec

described in RFC3551. WebRTC also supports the iSAC and iLBC audio codecs.

VP8 is a video compression format which is owned by Google and is the video

codec of the WebM file format. The benefits of VP8 are its low bandwidth

requirements and its broad spectrum of supported hardware from desktop computers

to embedded devices. VP8 is designed to make the optimal use of computation power

in modern hardware while maintaining fast decoding speeds [89]. Although VP8 is

influenced by H.264/AVC it includes several technological innovations.

Although VP8 is the video codec of choice of WebRTC, it was decided by

IETF in November 2014 that support of H.264 will also be mandatory. H.264 or

MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC) is a video coding format

that is one of the most commonly used formats for the recording, compression, and

48

distribution of video content. This popularity of H.264 is one of the reasons that led to

the decision of making it a mandatory WebRTC codec [90]. It is currently only

supported by Firefox [31]. Compared to VP8, H.264 offers better video quality at the

same bit rate especially in higher motion videos [91].

Opus is the primary audio codec of WebRTC. It is an open source and royalty

free audio codec intended for storage and streaming, standardized by IETF in

RFC6716. It supports bitrates from 6 to 510 kbps, frame sizes from 2.5 to 60 ms,

sampling rates from 8 to 48 KHz, dynamically adjustable bitrate [92], has an audio

bandwith ranging from narrowband (0.3 to 3.4KHz) to full band and was developed

specifically for packet switching networks.

The G.711 is a very simple ITU-T recommendation dating from 1972 which

was designed to carry audio at a fixed bitrate of 64kbps and is used for many years in

packet switched networks. It is a narrowband codec (0.3 to 3.4 KHz) which means

can only be used for voice applications. G.711 does not implement any compression,

hence it has zero compression latency [93]. G.711 is included in the list of mandatory

WebRTC codecs mainly for legacy reasons [94].

Finally, the iSAC (Internet Speech Audio Codec) and iLBC (Internet Low

Bitrate Codec) are voice codecs which although are not mandatory are supported

today by some platforms. iSAC is a bandwidth-adaptive, wideband and super-

wideband voice codec suitable for streaming audio and VoIP applications with a

sampling frequency of up to 16KHz and adaptive bitrate, while iLBC is narrowband

with a fixed bitrate. Both are royalty-free.

2.3 HTML5

The original HTML was proposed and prototyped in the early 1990s by Tim

Burners Lee. Ever since it has been in continuous development. Some features were

introduced in specifications while others were introduced in software releases.

HTML4 became a W3C Recommendation in 1997.

The current proposed draft is HTML5 which brings to the Web, video and

audio without the need of plugins, programmatic access to a bitmap canvas, useful for

rendering graphs, game graphics, or other visual images on the fly [95] (procedural

animation/drawing), native support for scalable vector graphics (SVG) and math

(MathML), features to enable accessibility of rich applications and much more [96].

49

In essence HTML5 helped the Web evolve from a presentation layer powered by a

simple markup language to a full-scale application environment.

The HTML5 draft reflects an effort that started in 2004, to study contemporary

HTML implementations and deployed content [97]. The draft:

1. Defines a single language called HTML5 which can be written in HTML

syntax and in XML syntax.

2. Defines detailed processing models to foster interoperable implementations.

3. Improves markup for documents.

4. Introduces markup and APIs for emerging idioms, such as Web applications

and these include for example the media elements (audio, video) and the

canvas element.

HTML5 was standardized in 28 October 2014, and the current working draft

5.1 is scheduled to be released by the end of 2016.

2.3.1 HTML5 APIs

The development and introduction of a plethora of APIs in HTML5 rose from

the need to provide users with native-like experiences within the browser [98]. For

example, there are now many APIs that can access mobile devices on the hardware

level and report battery status, vibrate the device and even measure the ambient light

of the environment on devices equipped with a light detector. Things which in the

past would require time-consuming development of browser plugins are now possible

with a few lines of JavaScript code.

The core API of this thesis is the WebRTC API which was descried in the

previous section. Other important HTML5 APIs used in this thesis include the File

API, the Stream Capture from DOM Elements API and the Media Recording API

which we will describe in the following paragraphs.

File API and the Blob Interface

 One area in which the Web lacked for some time is file I/O. Interacting with

local data is the core of most desktop software, but for web application this was not

possible until the introduction of the HTML5 File API [99].

50

The File API makes it possible for browsers to access data from the

underlying operating system and manipulate that data before sending it to either a web

server or a peer browser. The specification of the File API defines basic

representations for files, list of files, errors caused by access to files and

programmatic ways to read files. The File API also includes the “Blob” interface

which represents immutable raw data [100].

As stated the File API is capable of reading and writing data to the user’s hard

disk. For this reason a number of security considerations are taken into account in the

draft. Those include for example:

1. Storing malicious executables on the user’s system. The API tries to

prevent this by restricting file creation and file renaming to non-executable

file formats. The API also makes sure that the execute bit is not set on any

file it creates or modifies [99].

2. Leakage or deletion of user data. The specification assumes that the

primary user interaction is with the HTML input element and that all files

that are being read by the API have first been selected by the user [100].

The API also prevents access to system sensitive files.

Stream Capture from DOM Elements API

Capturing media streams from DOM elements is a W3C draft that was

published in 19 February 2015 by the WebRTC and the Device API working groups

with no revisions since. It is intended to become a W3C recommendation at some

time in the future. The draft describes an extension to the HTML media and canvas

elements that enables capturing the output of the element in the form of streaming

media. The stream can in turn be broadcast through the WebRTC media channel,

recorded or otherwise used by any other HTML5 APIs that handle media streams

such as WebAudio [101].

Implementations of the stream capturing API are still highly experimental. In

Firefox the captureStream() method is implemented for the HTMLCanvasElement

object since release 43 (15 December 2015) [102]. The HTMLMediaElement on the

other side has an undocumented method mozCaptureStream() that is implemented

[103]. The method is prefixed with the moz- prefix and is problematic in its use most

51

notable problems being those documented in bugs 1178751 and 912907 of the

Mozilla Bug database. We will further explore these problem in chapter 3.

In Chrome support for this API has not yet been released. An initial

implementation is scheduled for Chrome 50 which is due to be released in 11 April

2016. As of February 2016 (Chrome Canary) audio was still not supported when

capturing streams from video elements and there were other documented bugs such as

canvases in background tabs do not update properly [104].

Media Recording API

The capability to record media in HTML5 has been suggested by W3C in a

working draft by the Device APIs working group and the WebRTC working group,

initially published in 5 February 2013. The API allows very basic stream recording in

the browser while also allowing for more complex use cases. The API provides the

developer with a MediaRecorder object with record() and stop() methods and an

ondatavailable event that is fired when the recording has stopped and recorded data is

available in the form of a HTML5 blob. Functions are also available to query the

platform's available set of encodings, and to select the desired ones if the author

wishes [105].

The Media Recorder is still experimental in most browsers and as a result its

use is still problematic. It is expected that the API implementations will be improved

as new browser versions are released. The current status of the API (as of February

2016) is presented in the following table [106]:

Browser Version Comments

Chrome 47 Feature not enabled by default. Currently only video

is supported.

Firefox 25 Initially only supported audio recording. Currently

supports both video and audio but its use is

problematic

Firefox Mobile 25

Firefox OS 1.3

52

2.3.2 jQuery & jQueryUI

jQuery is a JavaScript library that simplifies HTML document traversing,

event handling, animating and Ajax interaction [107]. It exposes a “tree-query

language” API which allows the developer to achieve three things: traverse the DOM

and select an initial set of nodes of it, navigate to nodes relative to those nodes and

more importantly manipulate these nodes easily and uniformly [108]. jQuery is

popular not only because of its ease of use but also because it helps separate design

from structure and also behavior from structure within a HTML document. This

approach of development is known as Unobtrusive JavaScript [109] [110].

Unobtrusive JavaScript leads to clean and semantic HTML and more manageable

code. An example can be seen in the following code:

Listing 2.18 HTML containing obtrusive JavaScript

Listing 2.19 Same HTML code with JavaScript now removed

var button1=document.getElementById('button1');
button1.onclick = doSomething;

Listing 2.20 Unobtrusive JavaScript located in a separate .js file

$("#button1").on("click", doSomething);

Listing 2.21 Unobtrusive JavaScript located in a separate .js file using jQuery

 jQuery is omnipresent in the modern World Wide Web, used by about 70% of

all websites (fig.2.16) with a market share of almost 96% among JavaScript libraries

[111].

53

Figure 2.16 Usage of jQuery for websites, 15 Feb 2015 to 15 Feb 2016. Source: W3Techs.com

jQueryUI is another JavaScript library that is built on top of jQuery. It

simplifies the development of user interface interactions that are required for modern

web applications (especially single page web sites such as the one that was

implemented in this thesis). It provides user interface interaction elements, animation

effects, widgets and themes.

2.4 Data Chanel Compression

In order to save bandwidth, we propose a compression system on the

WebRTC data channel based on the LZW compression algorithm. All data travelling

through the data channel are compressed using LZW beforehand and immediately

decompressed upon arrival from the other peer. This is shown in the following

schematic which presents a data transfer of data from Peer1 to Peer2.

Figure 2.17 Data channel compression schematic

54

We evaluate the performance of this in implementation in comparison with a

compressionless data channel in chapter 5. We present implementation details in

chapter 4. In this section we simply present some details about the LZW algorithm.

Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm

created by Abraham Lempel, Jacob Ziv, and Terry Welch. It was published by Welch

in 1984 as an improved implementation of the LZ78 algorithm published by Lempel

and Ziv in 1978. The algorithm is simple to implement, and has the potential for very

high throughput in hardware implementations [112].

LZW is organized around a string table (dictionary). At each stage of the

algorithm bytes are gathered into a sequence. This continues until the next character

gathered forms a sequence which is not included in the string table.

The algorithm flowchart is presented in the following figure [113]:

Figure 2.18 LZW Algorithm Flowchart

55

Chapter 3. Communication Protocol

Before developing a system targeted on synchronous online collaboration, a

protocol defining the messages that will be exchanged through the WebRTC data

channel must be developed. This is necessary if the system is going to be expandable,

interoperable and maintainable. What we propose is a “language” defining the actions

taking placing in such a collaboration environment and their parameters.

The first step towards defining this “language” targeted at synchronous online

collaboration is to develop some form of abstraction layer sitting on top of the native

WebRTC RTCDataChannel interface which was described in Chapter 2. There are

two basic reasons for this: first, we need functions to uniformly handle messages

exchanged between peers and second, because the use of the internal WebRTC

functions to exchange data through the data channel is often a complicated task

requiring many lines of code and customizations. In chapter 2.2.1 we discussed

WebRTC API wrappers. In a similar fashion we propose wrapper functions

encapsulation the data channel functionality into simple send and receive functions

which simplify the development and maintenance of the system. For these reasons we

wrote two functions: One for sending messages (called sendDataAction) and one for

automatically handling incoming messages (called handleMessage). We describe

these two functions in chapters 3.2 and 3.3 respectively.

Once this WebRTC abstraction layer is developed, the next step is to define a

simple “language” that will describe actions in a synchronous collaboration

environment (such as sketches or user chat messages) and their parameters. The

language we propose consists of character strings and “stringified” JSON objects. We

examine this proposed language in detail in chapter 3.3. Finally we give an example

of how the system can be easily expanded by using this language, in chapter 3.4

The communication model described above is shown in figure 3.1. The

foundation of the system is the native WebRTC data channel RTCDataChannel.send()

function and onmessage property. Above this layer we have the abstraction layer

consisting of the sendDataAction() and handleMessage() functions. Finally the top

layer consists of the exchanged standardized messages which represent actions and

function calls.

56

Figure 3.1 Communication Model

3.1 Use of the native WebRTC send/receive functions

The abstraction layer we will create, at its base will employ the native

WebRTC functions used for sending and receiving data through the data channel.

These methods were discussed in detail in chapter 2. To summarize them here, the

send() method of the RTCDataChannel interface is responsible for sending data

across the data channel to the remote peer at any time except during the initial process

of creating the underlying transport channel. Data sent before connecting is buffered

if possible (or an error occurs if it's not possible), and is also buffered if sent while the

connection is closing or closed. Received data is handled by a call back function

which is defined in the RTCDataChannel property “onmessage”. This property stores

an event handler which specifies a function to be called when the message event is

fired on the channel. This event is represented by the MessageEvent interface. This

event is sent to the channel when a message is received from the other peer.

The basic use of the RTCDataChannel.send() method and the call back

function “onmessage’ used when messages are received is outlined in the following

code:

var pc = new RTCPeerConnection();
var dc = pc.createDataChannel("BackChannel");

function sendMessage(msg) {

// sample JSON object
 let obj = { "message": msg, "timestamp": new Date() }

57

// Convert JSON to string and pass it to the data channel
 dc.send(JSON.stringify(obj));
}

dc.onmessage = handleMessage;

Listing 3.1 Usage of the RTCDataChannel send() method and the onmessage callback.

3.2 Sending data with sendDataAction

As we discussed in the beginning of this chapter, we need to develop an

abstraction layer encapsulating the WebRTC methods for sending and receiving data

through the data channel. For sending data we have developed a function called

sendDataAction() for sending strings and a function called sendDataFile() for sending

binary data.

All data and messages are sent using these two functions. Messages are in turn

received and handled inside a callback function called handleMessage(string message,

bool compression) which we will describe in chapter 3.3.

The sendDataAction() function has two arguments: The first is a string

containing the data to be exchanged, while the compression argument is an optional

boolean defining whether the incoming message is compressed using the LZW

algorithm (true) or not compressed (default, false). In the same manner the first

argument of the sendDataFile() function is a blob containing the binary data to be sent

and the second argument is a Boolean defining whether the data is compressed or not.

The sendDataAction and sendDataFile functions is described below:

interface A {

void sendDataAction (string message, bool compression);
void sendDataFile (blob file, bool compression);

};
Listing 3.2 Definition of the interface in Web IDL

58

void sendDataAction(string message, bool compression)

Sends arbitrary data through the WebRTC Data channel using the

native RTCDataChannel.send() method

message The string to be sent

[compression] Optional. A Boolean representing whether the

data should be compressed before sending

true: compresses data using the LZW

algorithm

 false: no data compression (default)

void sendDataFile(blob file, bool compression)

Sends a local file represented by the input File through the WebRTC

data channel.

blob A Blob object representing a file-like

object of immutable, raw data to be sent.

Blobs represent data that isn't necessarily

in a JavaScript-native format.

[compression] Optional. A Boolean representing whether the

data should be compressed before sending

true: compresses data using the LZW

algorithm

 false: no data compression (default)

The code of the sendDataAction and an example call is shown in the following

listing:

59

function sendDataAction(message, compression) {
 if(compression) {
 var data = LZString.compressToUTF16(message);
 data+="C1";
 }
 else data=message+="C0";

 if(sendChannel || receiveChannel) {
 if(isInitiator) sendChannel.send(data);
 else receiveChannel.send(data);
 }
}

// example call
sendDataAction("test message", 0);

Listing 3.3 The sendDataAction function and an example call

Similarly, the sendDataFile() function uses the sendDataAction() intrinsically

to send binary data instead of strings and is also responsible for handling large chunks

of data. Sending files is done using the FileReader API which lets web applications

asynchronously read the contents of files stored on the user's computer, using File or

Blob objects to specify the file or data to read. After the file is read it is split in chunks

of 1000 bytes using the slice method.

function sendDataFile(file, compression) {
 var reader = new FileReader();

cmpr=compression;
 reader.readAsDataURL(file);
 reader.onload = onReadAsDataURL;
}

function onReadAsDataURL(event, text) {
 // data object to transmit over data channel
 var data = {};
 // first run
 if (event) text = event.target.result;
 if (text.length > chunkLength) {
 // getting chunk using predefined chunk length
 data.message = text.slice(0, chunkLength);
 } else {
 data.message = text;
 data.last = true;

 }

60

 sendDataAction("::FILES::"+data.toSource(), cmpr);
 var remainingDataURL = text.slice(data.message.length);
 if (remainingDataURL.length)
 setTimeout(function () {
 onReadAsDataURL(null, remainingDataURL);
 }, 500)
}
Listing 3.4 Sending files over the data channel

3.3 Strings defining actions

The next step is to define a protocol for the exchanged messages. This ensures

that the system is well defined and can be easily expanded, but also interoperable so

that any WebRTC applications that use this protocol can communicate with each

other. The proposed protocol can be used for presenting metadata on video streams,

which can include sketching information (Whiteboarding), or chat messaging but can

be equally used for any data exchanged between peers including file data (binary),

alerts etc.

The way the system communicates actions between peers is done using a very

simple language. Two colons (::, Unicode U+003A) are used to indicate that what

follows is system data in the form of either strings or “stringified” JSON objects. Chat

messages or any other data must be filtered and barred from containing this set of

characters. Messages contain an array of information, the elements of which are

separated by a double colon (::) (see listing 3.4 for an example message). The first

element of the array is always a 5 letter string defining the message type (and in

extend the name of the function the system will call, as we will see in the next

chapter) e.g.:

� URMSG: A chat message

� FILES: An incoming binary file

� SKTCH: Sketching data etc….

Messages come in two distinct forms: Messages that are intended for canvases

and messages that are intended for users. For example a drawing corresponds to a

canvas while a chat message corresponds to a user (since a user can have more than

one canvas or video shared).

61

� Messages intended for a canvas or a stream should be in the following form:

::MSGTP::TARGET::[WIDTH]::[DATA] where

MSGTP = Message identification (e.g. SKTCH)

TARGET = A string defining which stream this metadata should belong to

[WIDTH] = (optional) Width in pixels of the originating video area used

for stretching data

[DATA] = Stringified JSON Object containing data

� Messages intended for a user should be in this form

::MSGTP::USER::[DATA] where

MSGTP = Message identification (e.g. URMSG)

USER = A string defining which user (username) this metadata should

belong to

[DATA] = Stringified JSON Object containing data (optional)

The above two distinct messages types are shown in the following diagram:

Figure 3.2 System components and sample incoming messages

It must be noted that the system has no means of identifying whether an

incoming message is a user message or a canvas message. It is the job of the message

handling function to identify the message and act accordingly as we will see in the

following section.

62

In the following table some of the messages that can be exchanged through the

data channel and their meaning is explained.

Prefix Data

::URMSG::UNAME::DATA
A chat message from a user with username

“UNAME”

::SKTCH::TARGET::WIDTH::DATA
Sketch data including text caption for the

stream named “TARGET”

::FILES::DATA Data for incoming files

::PAUSE::TARGET::TIME Pauses a stream at a specified time

Table 3.1 Sample communcation prefixes

For example to send sketching data (which is sent in the form of a

“stringified” JSON object) the following data will be sent:

::SKTCH
::pbt6HN5gVideoSketch
::804
::[{textcaption:""}, {textcaptionPeer:""}, {tool:"marker",
color:"#ff0000", size:5, events:[{x:130, y:458,
event:"mousedown"}, {x:146, y:447, event:"mousemove"}, {x:200,
y:401, event:"mousemove"}, {x:251, y:357, event:"mousemove"},
{x:439, y:215, event:"mousemove"}, {x:560, y:121,
event:"mousemove"}, {x:614, y:80, event:"mousemove"}, {x:661,
y:47, event:"mousemove"}, {x:694, y:24, event:"mousemove"},
{x:711, y:13, event:"mousemove"}, {x:722, y:5,
event:"mousemove"}, {x:722, y:4, event:"mousemove"}]}]
Listing 3.5 Sample Sketching Message

The above message tells peers who receive it that a sketch (SKTCH) must be

drawn on the canvas named “pbt6HN5gVideoSketch” which originally has a width of

804 pixels. It can be seen that expandability of the system is very easily achieved by

sending prefixed data using the SendDataAction() function and then handling them

accordingly on the peers who receive them. In the next section we examine how the

system handles these messages once they are received.

63

3.4 The handleMessage function

Finally we need to add instructions on how the message should be handled

once it is received. This is done in the function handleMessage. The function

handleMessage evaluates incoming messages into function calls. As we saw in the

previous chapter messages are comprised of array elements separated by a double

colon (::). The first element of the array is always the name of the function to be

called while the other elements are parameters of that function. For example when the

system receives the string “::MSGNM::PAR1::PAR2::” it will look for a function

defined as msgnm(p1, p2) and call it with “PAR1” and “PAR2” as its parameters as

shown in the following schematic:

Figure 3.3 Converting messages into function calls

In the following listing we examine the inner workings of the hanldeMessage

function which automatically analyses a message and constructs an appropriate

function call which it then evaluates. The user of the library implementing the

protocol only needs to write a function with the appropriate name and number of

parameters.

function handleMessage(msg) {

 var compression= slice(msg 0, -2);

 // do decompression of the message is necessary
 if(compression=="c1")
 var event_data=LZString.decompressFromUTF16(msg.data);

 // Split incoming message
 var splittedMessage= event_data.split("::");

64

// How many parameters the function has

 var noOfParams=splittedMessage.length - 2;

 // What function we should call

var function_name= splittedMessage[1];

 // construction of the function call

var fcall= function_name + " (";

for(var i=0;i<noOfParams;i++) {

 fcall=fcall+ ", \"" + splittedMessage[i+2] + "\"";
}

// remove last character (comma)
fcall=slice(fcall 0, -1) + ")";

// The eval function evaluates or executes the argument

eval(fcall);

}
Listing 3.6 Using the handleMessage function

To demonstrate this functionality, in the next section we show how a new

feature can be added to the system with only minimal effort and lines of code.

3.5 Example of Expandability

As we explained in previous chapters a developer using our proposed library

must set the property RTCdatachannel.onmessage to the provided handleMessage

function:

datachannel.onmessage = handleMessage;

The user of the library must also have the functions sendDataAction and

sendDataFile available. Then the system is able to process incoming messages in the

way we have explained. To summarize the expandability of the system, we give an

example of how we could add a “poke” function that would display a JavaScript alert

to the other peer with only 6 lines of code.

 Assume an HTML link with the id “pokeLink”:

65

ALERT!

 First we handle the onclick even of the link to send data using the

sendDataAction function with the prefix ::POKE::.

pokeLink.onclick=function(){
 sendDataAction("::POKE::" + username);
};

We then write a function called “POKE” with as many parameters as those

defined by the received string (each parameter is separated by the double colon with

the first elemen in the array being the name of the function call):

function poke(username) {

alert(username + ' poked you!');
}

Listing 3.7 Calling the sendDataAction to send a string and the handling function

This will result in the following alert message being displayed to the second

peer every time the first peer presses the link with id “pokeLink”.

Figure 3.4 Poke message result

Similarly other collaborative functions could be integrated into the system

with minimal effort.

66

Chapter 4. Implementation

In this chapter we discuss in detail the implementation of the WebRTC

prototype application we developed, the infrastructure it runs on and the inner

workings of the data channel communication.

The application we developed takes advantage of all the APIs described in

Chapter 2 and communication model described in Chapter 3. The application is

named “Harf” after the Persian word ف�� for “talk”. The users have the ability to

send video streams to each other. These streams can be sourced from a webcam, an

application or window, a monitor, or a local video file. Both users can add text and

sketch annotations on any video stream and they can also record it for storage on their

local computer. As we discussed in 3.5 where we described the data channel

communication protocol of the application, it is very easy for more collaborative

features to be added to expand the application.

4.1 Infrastructure

As explained in previous chapters, WebRTC requires a minimum load from a

server. The server is used once to download the WebRTC application code (in our

case, the whole application is less than 160KB including images and code) and a

second time to bring the peers together as a signaling server (the data exchanged is no

more than a few kilobytes per connection).

Figure 4.1 Application data per type

67

In the above figure we see that the whole application downloaded from the

server is under 412KB in size including images and external code (jQuery 1.12.3)

amounting to a total of 32 HTTP requests. JavaScript amounts to about 90% of the

bulk application data. If we take into account the large size of the jQuery library (with

a size of almost 234 KB) which is requested from its respective domains and not our

application server, we see that the server load for each application pull is about

300KB.

For these reasons we experimented with running both the signaling server and

the application host on a single-board computer. The board we selected was the

BeagleBone Black which was designed by Texas Instruments.

Figure 4.2 The BeagleBone Black Single Board Computer

BeagleBone was launched in April 2013 and costs about $45 and uses up to

2W of power, making it a very economical and environmentally friendly solution. The

following table shows the hardware specifications of the board:

CPU Cortex-A8 + 2xPRU(200Mhz)
SOC AM3358/9

CPU Frequency 1GHz

RAM 512MB DDR3

OS Debian 8.2 armv7l Linux 4.1.12-ti-r29

Size / Weight 86.40 mm × 53.3 mm / 40g

Table 4.1 BeagleBoard Black Specifications

The system runs a precompiled distribution of Node.js v.0.10.41 for the

BeagleBoard Black [114]. The Node.js server is then run using “forever”, a simple

CLI tool for ensuring that a given script runs continuously

68

root@beaglebone:~/Server# forever start serveHarf.js
warn: --minUptime not set. Defaulting to: 1000ms
warn: --spinSleepTime not set. Your script will exit if it
does not stay up for at least 1000ms
info: Forever processing file: serveHarf.js
Listing 4.1 Starting the Node.js server script using Forever

4.2 Implementation of the Signaling Server

The job of the signaling server is to listen for messages and broadcast them to

potential WebRTC peers. In this section we explain how the signaling server operates,

in more detail.

Currently WebRTC screen sharing works only behind SSL enabled web

servers on Firefox. For this reason the Node.js HTTPS module is used. HTTPS is the

HTTP protocol over TLS/SSL. In Node.js this is implemented as a separate module,

its use shown in the following listing:

var static = require('node-static');
var https = require('https');
var file = new(static.Server)();
var fs = require('fs');

var hskey = fs.readFileSync('harf-key.pem');
var hscert = fs.readFileSync('harf-cert.pem');

var options = {
 key: hskey,
 cert: hscert
};

var app=https.createServer(options, function (req, res) {
 file.serve(req, res);
}).listen(443);
Listing 4.2 Creating an SSL server in Node.js

Initially the server loads the following Node.js modules:

� Node-static: An RFC 2616 compliant HTTP static-file server module.

� HTTPS: HTTP protocol over TLS/SSL.

� fs: File I/O module.

69

The fs module is then used to read two PEM certificates on the web server.

The first file is harf-key.pem and contains the private key used for SSL, the second

file is harf-cert.pem which contains the public x509 certificate to use. PEM is a

container format defined in RFCs 1421 to 1424 that can include public certificates or

certificate chains including public keys, private keys and root certificates. The

contents of these two PEM files are fed into the createServer method of the HTTPS

module to create a static server that listens to port 443 (standard HTTPS port).

Once the server is running, Node.js loads the main modules used for the

signaling server: Socket.io. The module simply waits from messages from clients.

Messages can be of the following two types:

� Create or Join message: This message is sent by clients that wish to

either create a room or join an existing one. The server automatically

creates a room with the requested name if it doesn’t exist or tries to

join to it if it exists. The server then answers back with ‘created’ if a

room was created, ‘joined’ if the client successfully joined an existing

room or ‘full’ if the room did exist but it would not accept any more

peers.

if (numClients == 0){
 socket.join(room);
 socket.emit('created', room, username);
}
Listing 4.3 Creating a socket.io room on the signaling server

� Message: When the server receives a ‘message’ it simply broadcasts it

to all the other peers in the room. This is used to broadcast exchange

signaling information between the peers that will be used to establish a

WebRTC P2P session.

socket.on('message', function (message, room) {
 socket.broadcast.to(room).emit('message',
message);
});
Listing 4.4 Broadacsting messages from the signaling server

70

4.3 The Client Application

The source code of the client application is structured in the following simple

way:

+---Server
 +---serverHarf.js
 +---index.html
 +---main.css
 \---images
 \---js
 +---adapter.js
 +---canvas.js
 +---clientHarf.js
 +---cobrowsing.js
 +---file.js
 +---html.js
 +---lz-string.min.js
 +---recording.js
 +---screencast.js
 +---sender.js
 +---sketch.js
 +---utils.js
Table 4.2 List of applcication files

The purpose of each file is described below:

� serveHarf.js: The signaling server Node.js script

� index.html, main.css: A single HTML file containg the interface

layout and a CSS file describing the interface style

� images directory: Contains all the graphics (buttons etc.) of the

application

� adapter.js: The WebRTC interoperability library

� canvas.js: Contains function for manipulating canvasses

� clientHarf.js: The main WebRTC connectivity library, contains

function for communicating with the signaling server and establishing

a peer to peer connection.

� cobrowing.js: Functions for basic co-browsing

� file.js: Functions for reading and streaming local video files

� html.js: Functions for dynamically outputting HTML code

� lz-string.js: Functions for compressing strings

71

� recording.js: Functions for recording video streams and storing them

as webm files.

� screencast.js: Functions for the WebRTC screen capturing API

� sender.js: Functions for sending local files through the WebRTC data

channel

� sketch.js: Contains the whiteboard drawing functionality

� utils.js: General utility functions

4.4 The Interface

The interface of the developed application consists of the following areas:

1. The connection box

2. The streams list

3. The maximized stream area

4. The toolbox

5. The chat area

Figure 4.3 The application interface

The connection box is where the users can enter a username and a room name.

Users can also chose to start a screen sharing session from using the dropdown box in

the area.

72

The streams list is a scrollable area where all the streams available to the users

are shown. Each stream is displayed as a thumbnail video with buttons representing

actions below it, as shown in the following figure.

Figure 4.4 Sample stream thumbnails with available actions. From left to right: window, webcam and a local

video file

To enable streaming of local media we used the experimental stream capturing

API currently implemented in Mozilla Firefox as shown in the following listing:

localstream=getel(localvideo).mozCaptureStream();

pc.onnegotiationneeded = function (event) {
 pc.createOffer(setLocalAndSendMessage,
 onSignalingError, sdpConstraints);};

function sendMovieStream() {
 pc.addStream(localstream);
}

Listing 4.5 Using the capturestream method to capture a stream from a video element

The captureStream() method produces a real-time capture of the media that is

rendered to the media element and is defined in W3C’s “Media Capture from DOM

Elements” working draft [115].

The buttons below the thumbnail vary depending on the type of the stream and

these include:

 / Blanks or reveals the video stream

 / Mutes or unmutes the audio stream

 / Maximizes the stream bringing on the center area of the page,

or minimizes it hiding it from the center area of the page

73

 Attempts to send the stream over the RTCPeerConnection to

the other peers.

Clicking on the maximize button brings the selected stream on the center area

of the page and enables the collaborative controls for this specific stream.

Figure 4.5 A screen capturing session with the PowerPoint window maximized

Once connection is established users have a range of tools available from the

sidebar on the right side of the screen. The most important feature is the whiteboard

toolbar from which the user can select an ink color and a brush size.

Figure 4.6 The whiteboard toolbar

Below the whiteboard toolbar are the other collaborative options available to

users. These options are:

 / Starts or stops recording the currently maximized stream

 Clears all sketches on the currently maximized stream

 / Pauses or freezes the currently maximized stream

 Prompts the user to select a local video file which can then be

streamed to the other peers

74

 Captures a single frame from the currently maximized stream

which can then be saved as a PNG file.

 Shows the currently maximized stream in full screen. All

annotations options are disabled in this mode and users cannot

annotate the stream.

 Resized the currently maximized stream to its original size.

 Replaces the currently maximized stream with a HTML

document hosted on the same domain as the WebRTC

application. Basic co-browsing is offered to the peers in this

mode.

Users can communicate using text messages by typing something in the text area on

the bottom-right corner of the screen. To demonstrate the use of the communication

protocol, once a user clicks the send button the system constructs a URMGS message

in the following manner:

// getting the text typed by the user and filtering it from
// possibliy malicious elements or the :: sequence
var data = clearString(sendTextarea.value);

// construct an appropriate message
var datamsg ="::URMSG::"+username+"::"+data;

// send the message without compression
sendDataAction(datamsg, 0);
Listing 4.6 Constructing the chat message

Now upon receiving the above message the system will call the URMSG function as

following:

function urmsg(username, text) {

var peerusername;

if(username=="") peerusername="Peer";
else peerusername=username;

75

// also display the received text on the active video stream
// if user has enabled this option.
if(getel("annotateVideoOption").checked) {
sketches[elementNameG+"Sketch"].sketch().actions[0].textcaptio
nPeer=text;
sketches[elementNameG+"Sketch"].sketch().redraw();
}

// write message on chat area
receiveTextarea.insertAdjacentHTML('beforeEnd',
"<greyed style='color:#555555'>" + peerusername + ", " +
hrDate() + ": </greyed>" + text + "
");

// scroll down the chat area
receiveTextarea.scrollTop = receiveTextarea.scrollHeight;
}
Listing 4.7 The Urmsg function

The application also communicates messages to the user using the chat area below the

toolbox. For example when a user clicks on the “Take screenshot” button the system

sends a message to the user notifying him of the link from which he can download it.

This increases system usability by eliminating the use of popups or other types of

alerts. These “system messages” are only visible to the user they concern and not to

the other peers of the session.

Figure 4.7 Example system messages

The chat area can also be used for exchanging files between users. A user can

drag and drop a file on the text area to send it to other users. In chapter 3 we discussed

the function sendDataFile function that can send local files to other peer. The file

function that handles incoming file data is shown below:

function files(event_data) {
var data = eval(event_data);

 arrayToStoreChunks.push(data.message);
 if (data.last) {
 // returns blob URL of incoming file
 return arrayToStoreChunks.join('');

76

 arrayToStoreChunks = []; // resetting array
 }
}
Listing 4.8 The file function

The result is shown in the following screenshot:

Figure 4.8 Users exchanging files

Every stream has its own whiteboard data attached to it. Users can draw on

any surface that is maximized and the data is sent through the WebRTC data channel

to the other peer.

Figure 4.9 Users sketching on a PDF document

77

Using the MediaRecording API described in section 2.3.1 we can achieve recording

of every canvas and the sketching or other action in a WebM file. Unfortunately it is

impossible to capture audio on the OS level (e.g. audio played by an application)

because WebRTC does not have access to it yet. What we can capture is audio from

streaming media files and user web cams. To do that we use the HTML5

MediaRecorder API described in section 2.3.1. In the following screenshot a

streaming movie is captured along with all the sketching action users draw on it. Once

the user clicks the “Stop Recording” button the movie is made available to him in the

form of a webm blob which can be downloaded and played locally in his computer.

Figure 4.10 Recording and then playing a WebM file locally

To achieve this a combination of the stream capture and the media recorder API are

used. Initially we create a media recorder object whose input is a captured stream

from the currently active canvas:

var tempCanvasStream=getel('tempCanvas').captureStream();
mediaRecorder = new MediaRecorder(tempCanvasStream);

78

When the user clicks the start recording button we get the audio stream from the video

element if it exists and add it on the temp canvas. This is done in order to be possible

to also record audio:

if(streams[streamNameG].getAudioTracks()[0]!=undefined) {
tempCanvasStream.addTrack(streams[streamNameG].getAudioTracks(
)[0]);
}

Finally when the recording is stopped by the user the audio stream on the canvas is

disabled and the system waits for the ondataavailable callback function:

mediaRecorder.ondataavailable = function(e) {
var videoURL=window.URL.createObjectURL(e.data);
}

Another feature of the system is the ability to draw text annotation on each stream by

selecting the appropriate checkbox in the toolbox area.

Figure 4.11 Selecting to embed incoming chat messages on the vide ostream

Once a user makes this selection all messages, incoming and outgoing are

appended on the currently maximized video stream.

79

Figure 4.12 Adding text annotation on a shared webm video

Sketching data are in the form of JSON object which are comprised of action

and mouse coordinates.

[{
 textcaption: "Test!"
}, {
 textcaptionPeer: ""
}, {
 tool: "marker",
 color: "#f00",
 size: 5,
 events: [{
 x: 162.5,
 y: 125,
 event: "mousedown"
 }, {
 x: 162.5,
 y: 124,
 event: "mousemove"
 }]
}]

Listing 4.9 Sample sketching actions JSON object

80

The JSON object comprises of 3 values: A value named “textcaption” which

contains the text caption of the local user, “textCaptionPeer” which contains the text

caption of the remote peer and then it contains a list of mouse action and sketching

data. For example the object of the previous listing will result in a caption “Test!” and

a red dot at coordinates 162.5, 124 as seen in the following screenshot:

Figure 4.13 Resulting sketch

The JSON object is converted to text and then compressed using UTF16 LZW

compression before sent through the WebRTC data channel.

���� ِ◌������	�
��
�������������������ᡖ��� !"#$%&'()*+,-./
01

23��456፠7�89:�;<=>�?� �@⪋A�⨉��BCD
Listing 4.10 Unicode characters resulting from compressing a string to UTF16 LZW

Referring to table 3.1 we see that sketch messages come in the following form:

::SKTCH::TARGET::WIDTH::DATA
Sketch data including text caption for the

stream named “TARGET”

In accordance with the protocol upon receiving a sketch message (that is a message

prefixed with the “::SKTCH::” string the system will call the sktch function:

function sktch(target, width, data) {

// what is the width of our own target canvas
var my_skwtch_width=getel(target_sketch).width;

// calculate ration needed to resize sketch
var width_ratio=my_skwtch_width/width;

// convert sketch data back to a JSON object and replace
// the target canvas sketch data with it
sketches[target_sketch].sketch().actions=eval(data);

81

// if incoming data is not empty apply transformation
if(data!="[]")
// sketchTransform function included a call to the redraw
// function
sketchTransform(target, width_ratio);
else
// redraw sketch (in this case it means erase sketch)
sketches[target_sketch].sketch().redraw();

}
Listing 4.11 The sktch function

82

Chapter 5. Benchmarking

5.1 Compression Efficiency

To measure compression efficiency we connected two computers and

measured the time it took to render a sketch depending on the size of the JSON object

that described the sketch.

The LZW compression algorithm is very efficient for sketching metadata

because of the high number of keywords and word iterations. The following

screenshots represents about 100KB of sketch data drawn on the Notepad window.

When the data is compressed using the LZW algorithm the resulting data is 6.6KB a

compression ratio of 93%.

Figure 5.1 103KB of uncompressed sketch data (6.6 KB of transferred data using compression)

It is obvious that using compression on the data channel can dramatically

decrease network overhead and with modern hardware the

compression/decompression times on the local host system are actually miniscule as

shown in the following table

Test
No.

Bytes Before
Decompression

Bytes After
Decompression

Compression
Ratio (%)

Relative Time
Difference (ms)

1 235 1001 77 26

2 486 3044 84 32

3 2001 21645 91 78

4 2668 31585 92 107

5 3255 40661 92 101

6 3991 51650 92 99

7 5728 76730 93 196

8 7535 104437 93 243
Table 5.1 Compression Efficiency

83

In the above table we measure the time required to render a graphic on the

canvas assuming that the initial rendering (empty canvas) requires 0 time. Rendering

time is measured from the time a user makes a sketch to the time it is rendered on the

other peer’s computer. We repeated the process 8 times with increasing size of

transferred data.

Figure 5.2 Compression Efficiency

We repeated the same 8 test but this time without compression on the data

channel.

Without compression:

Test No. Bytes Transferred Relative Time Difference (ms)

1 1071 6

2 3238 23

3 20361 37

4 31029 67

5 41590 69

6 52648 74

7 76359 112

8 103789 139
Table 5.2 Data transfer rates without compression

84

The above data are presented in the following chart:

5.3 Comparison between compression and no compression on a LAN

We observe that compressing the data exchanged via a WebRTC data channel

over a LAN connection (or other networking situations where network bandwidth is

ample) may not be an optimal choice, since when comparing the time required

compressing a string with the time required to decompress it the overhead is

significant. Nevertheless the very high compression ratio achieved by the

compression algorithm which is up to 93% for this type of data may prove to be

useful in situations where network infrastructure is limited or expensive.

85

5.2 CPU Consumption

On the signaling server, a typical session description message is about 2KB in

size, while a candidate offer message is about 150 bytes. Assuming that each peer

exchanges one session description message and 5 candidates on average, we see that

for each peer connection, less that 5 kilobytes of data (10 kilobytes for 2 peers) are

sent and received by the signaling server.

On the modern client devices, hardware is powerful enough for all the video

and canvas operations that are required by most applications including our own.

Furthermore, HTML5 Hardware Accelerated canvas are implemented on most

platforms and browsers taking advantage of the capabilities of modern GPUs.

Table 5.3 Firefox configuration information indicating hardware accelaration using the Windows Direct3D

To measure the processing power requirements of our system we used the

embedded developer tools in Mozilla Firefox 46. The test system was a laptop

equipped with 4GB of RAM and an Intel Core i3 (U38) CPU with a clock speed of

1.33 GHz. The computer was running the Microsoft Windows 7 64bit operating

system. The system can be considered outdated by today’s standards.

To analyze which processes consume more time we used the Firefox

Performance Tool and conducted two 20 second tests: During the first test the system

was used for streaming media between two peers while during the second test the

sketching feature was also used. During the first test the average frame rate was

measured at 42 fps while during the second test the average frame rate was at 17 fps.

86

Function

Function Cost

Sketching &

Streaming

Streaming

Gecko (includes idle time)* 37.06% 60.83%

Sketching 19.06% -

Graphics* 16.40% 23.57%

Garbage Collecting* 9.41% 6.52%

JIT* 4.83% 1.88%

Tools* 2.25% 3.28%

Input & Events* 1.79% -

Compression/Decompression Algorithms 1.71% -

Other 7.49% 3.92%

* Denotes internal browser functions

Table 5.4 Function costs while sketching and while straming

In the following figure we see the frame rate in which the browser renders the page

during the tests.

Figure 5.4 Comparison of frame rate during simple streaming (above) and during sketching (below). Negative

spikes denote that the user is sketching on the canvas.

Although we observe a drop in the framerate during sketching with the test system,

with modern CPUs, very high framerates throughout the operation are achieved

making this drop unnoticeable by users.

87

Chapter 6. Conclusions & Future Work

In this thesis we presented an extensive review of the WebRTC technology

and its possible application in the fields of synchronous online collaboration, screen

sharing, and peer to peer media streaming in the browser.

The protocol we describe in section 3.5 is the foundation of our application

and is based on an assumption that a WebRTC application is comprised of users and

streams. Because streams in HTML5 boil down to video elements we assign an

HTML canvas to each stream. We then define a message protocol that uses the

WebRTC data channel and can exchange messages that can have an impact on either

individual users (chat messages, file exchanges, alerts) or canvases (drawings,

annotations etc).

The application we developed is a prototype intended to demonstrate the

capabilities of WebRTC and its potential use for online collaboration and media

streaming. As such it has in itself many “bugs” and is missing some of the features

that would be normally encountered in a commercial product. Apart from the

occasional bug, some features that could be further explored and implemented include

a co-browsing feature which utilizing the data channel synchronizes mouse

movements and URLs in a host web site.

As it is now the system only supports two peers with equal privileges in each

room. Another approach is a “one-to-many” model where only one user with elevated

privileges will have the ability to share streams while all other users in the room will

only be able to use the data channel to collaborate but without the ability to add

streams on their own. In this approach the user with the elevated privileges could also

have “floor-management” option at his disposal (eg. adding/removing users from the

room, selecting which collaborative functions each user has available etc)

WebRTC is a work in progress. Many of the APIs used in this thesis are still

in development and implementation. As a result some of the features of WebRTC

used in this thesis are either not implemented in all major browsers or have some

bugs. Most notable implementation bugs are the Mozilla bugs 1178751 and 912907

we discussed in section 2.3.1. For this reason we decided to focus our development on

the Mozilla Firefox browser which as in April 2016 has almost all WebRTC proposed

features implemented. As more commercial WebRTC applications are more people

are using it, new browser versions are expected to have more stable implementations

88

of the WebRTC APIs. The WebRTC working group meets on an ad-hoc basis week

on the phone and using mailing lists.

Furthermore it must be noted that even the core technologies used in WebRTC

are subject to change. For example while the IETF decided mandatory video codecs to

be H.264 and VP8 as we discussed in section 2.2.5, Firefox and Chrome versions

released in April and May 2016 also included the VP9 codec. With VP9, internet

connections that are currently able to serve 720p without packet loss or delay will be

able to support a 1080p video call at the same bandwidth. VP9 can also reduce data

usage for users with poor connections or expensive data plans, requiring in best cases

only 40% of the bitrate of VP8 [116].

What the future holds for WebRTC is not easy to say. Many argue that with

“peak telephony” (the point in time when telephony communication was at its

maximum) reached in the United States, the UK and other countries, RTC

technologies have lost the battle with asynchronous forms of communication like

email, social networks and IM. Technologies like WebRTC are helping to change the

definition of RTC. Telephony used to be constrained by an apparatus known as a

phone. Today the medium of RTC continues to change as application and web sites

add RTC as a feature (e.g. Facebook Messenger, WhatsApp, SnapChat etc.) [117]. In

the end WebRTC is a technology used to enhance a service or application, changing

the fundamental model of communications by creating a world where anyone has the

ability to put communications in their applications without resorting to a

communications company.

89

References

[1] V. Pimentel and B. G. Nickerson, "Communicating and Displaying Real-Time Data

with WebSocket," IEEE Internet Computing, vol. 16, no. 4, pp. 45 - 53 , 2012.

[2] T. Levent-Levi, "4 Facts You Need to Know about P2P in WebRTC," BlogGeek.me, 30

9 2013. [Online]. Available: https://bloggeek.me/4-p2p-webrtc-facts/.

[3] Apache Cordova, "Architectural Overview of Cordove Platform," [Online]. Available:

http://cordova.apache.org/docs/en/latest/guide/overview/. [Accessed 11 4 2016].

[4] R. O. B. C. R. R. J. Jay F Nunamaker Jr, Collaboration Systems: Concept, Value, and

Use, New York: Routledge, 2014.

[5] C. A. Ellis, S. J. Gibbs and G. Rein, "Groupware: some issues and experiences,"

Communications of the ACM, vol. 34, no. 1, pp. 39-59, 1991.

[6] T. Walhert, "Synchronous or Asynchronous Tools," Green Hills Area Education

Agency, [Online]. Available: https://sites.google.com/a/ghaea.org/aiw-iowacore-

techintegration/synchronous-vs-asynchronous. [Accessed 16 4 2016].

[7] B. Kask and S. Wood, "Synchronous and Asynchronous Communication:Tools for

Collaboration," University of British Columbia, [Online]. Available: http://

etec.ctlt.ubc.ca/510wiki/

Synchronous_and_Asynchronous_Communication:Tools_for_Collaboration. [Accessed

16 4 2016].

[8] H. J. Smith, S. Higgins, K. Wall and J. Miller, "Interactive whiteboards: boon or

bandwagon? A critical review of the literature," Journal of Computer Assisted

Learning, vol. 21, no. 2, pp. 91-101, 2005.

[9] C. J. Wenning, "Whiteboarding & Socratic dialogues: Questions & answers," Journal

of Physics Teacher Education Online, vol. 3, no. 10, pp. 3-10, 2005.

[10] O. Akbaş, M. Baturay and a. Y. Söker, "Interactive Whiteboard-Based ATM Use

Training for Older Individuals," International Online Journal of Educational Sciences,

vol. 8, no. 1, pp. 87-97, 2016.

[11] H. M. Abdel-Wahab and M. A. Feit, "XTV: a framework for sharing X Window clients

in remote synchronous collaboration," in IEEE Conference on Communications

Software, Chapel Hill, NC, 1991.

[12] C. A. Jara, F. A. Candelas, F. Torres, C. Salzmann, D. Gillet, F. Esquembre and S.

Dormido, "Synchronous collaboration between auto-generated WebGL applications and

3D virtual laboratories created with Easy Java Simulations," in 9th IFAC Symposium

Advances in Control Education, Nizhny Novgorod, 2013.

[13] Z.-E. Andrioti, Web3D Gaming Over HTML5 and Web-Based Communication, 2015.

[14] K. Kapetanakis, H. Andrioti, H. Vonorta, M. Zotos, N. Tsigkos and P. I, "Collaboration

framework in the EViE-m platform," in Proceedings of the 24th EAEEIE Annual

Conference, 2013.

[15] S. M.-V. Metz, P. Marin and E. Vayre, "The shared online whiteboard: An assistance

tool to synchronous collaborative design," European Review of Applied Psychology,

vol. 65, no. 5, pp. 253-269, 2014.

90

[16] J. Franke and B. Cheng, "Real-time privacy-preserving cobrowsing with element

masking," in 2013 17th International Conference on Intelligence in Next Generation

Networks (ICIN), Venice, 2013.

[17] M. Rouse, "Collaborative browsing (co-browsing)," [Online]. Available: http://

searchcrm.techtarget.com/definition/collaborative-browsing. [Accessed 26 3 2016].

[18] Oracle, "Best Practices for Oracle RightNow Cobrowse Cloud Service," 3 2012.

[Online]. Available: https://www.oracle.com/applications/customer-experience/

rightnow/web-experience/standalone-cobrowse/index.html.

[19] E. S. Crandall, A. Fernstedt, S. L. Greenspan and D. M. Weimer, "Method and

apparatus for internet co-browsing over cable television and controlled through

computer telephony". United States Patent US 6425131 B2, 23 7 2002.

[20] A. Roy, D. R. Prabhu, J. R. Doering, X. Kuang and R. Sunkara, "System and method

for real-time co-browsing". United States Patent US 7149776 B1, 12 12 2006.

[21] I. Paul, "Video, audio streaming gobble up 70% of peak Internet traffic in North

America," PCWorld, 8 12 2015. [Online]. Available: http://www.pcworld.com/article/

3012625/streaming-services/video-audio-streaming-gobble-up-70-of-peak-internet-

traffic-in-north-america.html.

[22] Z. Shen, J. Luo, R. Zimmermann and A. V. Vasilakos, "Peer-to-Peer Media Streaming:

Insights and New Developments," Proceedings of the IEEE, vol. 99, no. 12, pp. 2089-

2109, 2011.

[23] P. Lubbers and F. Greco, "HTML5 WebSocket: A Quantum Leap in Scalability for the

Web," [Online]. Available: http://www.websocket.org/quantum.html. [Accessed 22 3

2016].

[24] Mozilla Developer Network, "WebSockets," [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/API/WebSockets_API. [Accessed 5 3 2016].

[25] V. Wang, F. Salim and P. Moskovits, "The WebSocket API," in The Definitive Guide to

HTML5 WebSocket, Apress, 2013, pp. 13-32.

[26] M. Ubl and E. Kitamura, "Introducing WebSockets: Bringing Sockets to the Web," 49

10 2010. [Online]. Available: http://www.html5rocks.com/en/tutorials/websockets/

basics/.

[27] J. Freeman, "9 killer uses for WebSockets," 14 11 2013. [Online]. Available: http://

www.javaworld.com/article/2071232/java-app-dev/9-killer-uses-for-websockets.html.

[28] "HTTP/2 Frequently Asked Questions," [Online]. Available: https://http2.github.io/faq.

[Accessed 22 3 2015].

[29] Y. Hirano, "WebSocket over HTTP/2.0," 14 2 2014. [Online]. Available: http://

tools.ietf.org/html/draft-hirano-httpbis-websocket-over-http2-00#section-1.

[30] "WebRTC," [Online]. Available: http://www.webrtc.org/home. [Accessed 4 7 2015].

[31] "Is WebRTC ready yet?," [Online]. Available: http://iswebrtcreadyyet.com/. [Accessed

2 3 2016].

[32] J. Wagner, "What Developers Should Know About ORTC Versus WebRTC,"

ProgrammableWeb, 12 10 2015. [Online]. Available: http://

www.programmableweb.com/news/what-developers-should-know-about-ortc-versus-

webrtc/analysis/2015/10/12.

[33] ABI Research, "4.7 Billion Mobile WebRTC Devices by 2018 Despite Lack of Open

91

Support from Apple and Microsoft," 25 9 2013. [Online]. Available: https://

www.abiresearch.com/press/47-billion-mobile-webrtc-devices-by-2018-despite-l/.

[34] Google Chrome team, "Interop Notes," Google Inc., [Online]. Available: http://

www.webrtc.org/web-apis/interop. [Accessed 27 9 2015].

[35] S. Anderson, "Battle of the Codecs: Is VP8 or H.264 Better for WebRTC?," WebRTC

World, 11 11 2013. [Online]. Available: http://www.webrtcworld.com/topics/webrtc-

world/articles/359800-battle-the-codecs-vp8-h264-better-webrtc.htm.

[36] A. Roach, "WebRTC Video Processing and Codec Requirements," 12 6 2015. [Online].

Available: https://tools.ietf.org/html/draft-ietf-rtcweb-video-06.

[37] J. Valin and C. Bran, "WebRTC Audio Codec and Processing Requirements," 9 2 2016.

[Online]. Available: https://tools.ietf.org/html/draft-ietf-rtcweb-audio-10.

[38] D. Mohney, "What Will We Do with Billions and Billions of WebRTC Devices?," Real

Time Communcations, 22 4 2015. [Online]. Available: http://

www.realtimecommunicationsworld.com/topics/realtimecommunicationsworld/articles/

402077-what-will-we-with-billions-billions-webrtc-devices.htm.

[39] Ericsson Research, "Bowser," OpenWebRTC, [Online]. Available: http://

www.openwebrtc.org/bowser/. [Accessed 3 3 2016].

[40] Mozilla, "Firefox Hello," [Online]. Available: https://www.mozilla.org/en-US/firefox/

hello/. [Accessed 7 3 2016].

[41] Zingaya, [Online]. Available: https://zingaya.com/. [Accessed 7 3 2016].

[42] K. Jain, A. Himmatramka, A. Bhandary, A. D’silva and D. Barge, "Synchronized

Development Using WebRTC Real-Time Collaboration in WebRTC," International

Journal of Engineering Science, vol. 6, no. 4, 2016.

[43] I. V. Osipov, A. A. Volinsky and A. Y. Prasikova, "E-Learning Collaborative System

for Practicing Foreign Languages with Native Speakers," International Journal of

Advanced Computer Science and Applications, vol. 7, no. 3, 2016.

[44] C. Cola, Cluj-Napoca and H. Valean, "E-health appointment solution, a web based

approach," in E-Health and Bioengineering Conference (EHB), Iași, 2015.

[45] A. P. Vidul, S. Hari, K. P. Pranave, K. J. Vysakh and K. R. Archana, "Telemedicine for

emergency care management using WebRTC," in International Conference on

Advances in Computing, Communications and Informatics (ICACCI), Kochi, 2015.

[46] J. Jang-Jaccard, S. Nepal, B. Celler and B. Yan, "WebRTC-based video conferencing

service for telehealth," Computing, vol. 88, no. 1, pp. 169-193, 2016.

[47] L. V. Ma, J. Kim, S. Park, J. Kim and J. Jang, "An efficient Session_Weight load

balancing and scheduling methodology for high-quality telehealth care service based on

WebRTC," The Journal of Supercomputing, pp. 1-18, 2016.

[48] "Sharefest," [Online]. Available: https://www.sharefest.me/faq. [Accessed 7 3 2016].

[49] "WebTorrent," [Online]. Available: https://webtorrent.io/faq. [Accessed 7 3 2016].

[50] T. Levent-Levi, "WebRTC P2P CDN: Where are the Use Cases?," BlogGeek.me, 9 3

2015. [Online]. Available: https://bloggeek.me/webrtc-p2p-cdn-use-cases/.

[51] "Peer5 - P2P Video Streaming CDN FAQ," [Online]. Available: https://

www.peer5.com/faq. [Accessed 8 3 2016].

[52] "PeerCDN," 1 8 2015. [Online]. Available: https://web.archive.org/web/

92

20150810065820/https://peercdn.com/.

[53] H. Andrioti, A. Stamoulias, K. Kapetanakis, S. Panagiotakis and A. G. Malamos,

"Integrating WebRTC and X3DOM: bridging the gap between communications and

graphics," in 20th International Conference on 3D Web Technology, Heraklion, 2015.

[54] "XirSys," [Online]. Available: https://xirsys.com/. [Accessed 8 3 2016].

[55] "PeerJS - Simple peer-to-peer with WebRTC," [Online]. Available: http://peerjs.com/.

[Accessed 8 3 2016].

[56] "OpenTok WebRTC Platform for Video, Voice and Messaging," TokBox, [Online].

Available: www.tokbox.com. [Accessed 8 3 2016].

[57] Mozilla Development Network, "MediaStream API," [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/API/Media_Streams_API. [Accessed 1 3

2016].

[58] Mozilla Developer Network, "MediaDevices.getUserMedia()," [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia.

[Accessed 1 3 2016].

[59] W3C, "Media Capture and Streams W3C Editor's Drafft 29 June 2015," Apple

Computer, Inc., Mozilla Foundation and Opera Software ASA., [Online]. Available:

http://w3c.github.io/mediacapture-main/. [Accessed 4 7 2015].

[60] Mozilla Developer Network, "RTCPeerConnection," [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection. [Accessed 26 2

2015].

[61] W3C, "WebRTC 1.0: Real-time Communication Between Browsers," 15 2 2016.

[Online]. Available: http://w3c.github.io/webrtc-pc.

[62] I. Grikorik, "Chapter 18. WebRTC," in High Performance Browser Networking, O'

Reilly Media, Inc., 2013.

[63] S. Loreto and S. P. Romano, Real-Time Communcation with WebRTC, Sebastopol,

CA: O'Reilly Media Inc., 2014.

[64] A. Roach, J. Uberti and M. Thomson, "A Unified Plan for Using SDP with Large

Numbers of Media Flows," 13 7 2013. [Online]. Available: https://tools.ietf.org/html/

draft-roach-mmusic-unified-plan-00.

[65] J. Uberti, "Plan B: a proposal for signaling multiple media sources in WebRTC,"

Google, 3 5 2013. [Online]. Available: https://tools.ietf.org/html/draft-uberti-rtcweb-

plan-00.

[66] N. Ohlmeier and B. Campen, "WebRTC in Firefox 38: Multistream and renegotiation,"

Mozilla.org, 25 3 2015. [Online]. Available: https://hacks.mozilla.org/2015/03/webrtc-

in-firefox-38-multistream-and-renegotiation/.

[67] Monorail Chromium Open Issues, "Issue 465349: Need to implement WebRTC

"Unified Plan" for multistream," 9 12 2015. [Online]. Available: https://

bugs.chromium.org/p/chromium/issues/detail?id=465349.

[68] Mozilla Developer Network, "RTCDataChannel," [Online]. Available: https://

developer.mozilla.org/en/docs/Web/API/RTCDataChannel. [Accessed 24 2 2016].

[69] W3C, "Screen Capture W3C Editor's Draft 03 July 2015," [Online]. Available: http://

w3c.github.io/mediacapture-screen-share/. [Accessed 5 7 2015].

[70] T. Levent-Levi, "Screencasting as an extension – why is it any different than WebRTC

93

video?," BlogGeek.Me, 1 9 2014. [Online]. Available: https://bloggeek.me/

screencasting-webrtc-different/.

[71] W3C, "Screen Capture W3C First Public Working Draft 10 February 2015," 10 2 2015.

[Online]. Available: https://www.w3.org/TR/screen-capture/.

[72] Y. Tian, Y.-C. Liu, A. Bhosale, L.-S. Huang, P. Tague and C. Jackson, "All Your

Screens are Belong to Us: Attacks Exploiting the HTML5 Screen Sharing API," in

IEEE Symposium on Security and Privacy (SP), San Jose, CA, 2014.

[73] Mozilla Developer Network, "Same-origin policy," [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy. [Accessed 22 2

2016].

[74] W3C, "Media Capture and Streams W3C Editor's Draft Section 10.1

NavigatorUserMedia Interface Extensions," [Online]. Available: http://w3c.github.io/

mediacapture-main/#navigatorusermedia-interface-extensions. [Accessed 20 2 2016].

[75] Mozilla Developer Network, "Navigator Interface," [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/API/Navigator. [Accessed 20 2 2016].

[76] Mozilla Developer Network, "MediaDevices Interface," [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/API/MediaDevices. [Accessed 20 2 2016].

[77] C. Alexandru, "Impact of WebRTC (P2P in the Browser)," Internet Economic VIII, pp.

39-58, 2014.

[78] S. Dutton, "WebRTC in the real world: STUN, TURN and signaling," [Online].

Available: http://www.html5rocks.com/en/tutorials/webrtc/infrastructure/. [Accessed 20

2 2016].

[79] J. Uberti and C. Jennings, "Javascript Session Establishment Protocol, General Design

of JSEP," 25 2 2013. [Online]. Available: http://tools.ietf.org/html/draft-ietf-rtcweb-

jsep-03#section-1.1.

[80] M. Handley, V. Jacobson and C. Perkins, "SDP: Session Description Protocol," IETF, 6

2006. [Online]. Available: https://tools.ietf.org/html/rfc4566. [Accessed 3 3 2016].

[81] J. Wright, "Session Description Protocol," Konnetic.

[82] J. Rosenberg, R. Mahy, P. Matthews and D. Wing, "Session Traversal Utilities for NAT

(STUN)," 10 2008. [Online]. Available: https://tools.ietf.org/html/rfc5389.

[83] S. Dutton, "WebRTC in the real world: STUN, TURN and Signaling - HTML5 Rocks,"

4 November 2013. [Online]. Available: http://www.html5rocks.com/en/tutorials/

webrtc/infrastructure. [Accessed 10 September 2014].

[84] S. Perreault, "NAT and Firewall Traversal with STUN / TURN / ICE," [Online].

Available: www.viagenie.ca/publications/2008-08-cluecon-stun-turn-ice.pdf. [Accessed

5 3 2016].

[85] Mozilla Developer Network, "WebRTC protocols," [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Protocols. [Accessed 5 3

2016].

[86] J. Rosenberg, "Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols," 4 2010. [Online].

Available: https://tools.ietf.org/html/rfc5245.

[87] "STUN IP Address requests for WebRTC," [Online]. Available: https://github.com/

diafygi/webrtc-ips. [Accessed 26 3 2016].

94

[88] Mozilla Developer Network, "WebRTC connectivity," [Online]. Available: https://

developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Connectivity. [Accessed 5

3 2016].

[89] J. Bankoski, P. Wilkins and Y. Xu, "Technical Overview of VP8, An open source video

codec for the Web.," 2011.

[90] A. Gal, "VP8 and H.264 to both become mandatory for WebRTC," 16 11 2014.

[Online]. Available: http://andreasgal.com/2014/11/16/vp8-and-h-264-to-both-become-

mandatory-for-webrtc/.

[91] J. Ozer, "First Look: H.264 and VP8 Compared," 20 5 2010. [Online]. Available: http://

www.streamingmedia.com/articles/editorial/featured-articles/first-look-h.264-and-vp8-

compared-67266.aspx.

[92] "Opus," [Online]. Available: https://www.opus-codec.org/. [Accessed 3 3 2016].

[93] R. Screene, "WebRTC Audio Codecs: Opus and G.711," 5 12 2012. [Online].

Available: https://thisisdrum.com/blog/2012/12/05/webrtc-audio-codecs-opus-and-g-

711/.

[94] X. Marjou, S. Proust, K. Bogineni, R. Jesske, B. Feiten, L. Miao, E. Enrico and E.

Berger, " WebRTC audio codecs for interoperability with legacy networks," 25 2 2013.

[Online]. Available: https://tools.ietf.org/html/draft-marjou-rtcweb-audio-codecs-for-

interop-01.

[95] W3C, "HTML5 Canvas Element," [Online]. Available: https://www.w3.org/TR/2011/

WD-html5-20110525/the-canvas-element.html. [Accessed 17 2 2016].

[96] W3C, "HTML5 is a W3C Recommendation," [Online]. Available: https://www.w3.org/

blog/news/archives/4167. [Accessed 17 2 2016].

[97] W3C, "HTML5 Differences from HTML4 W3C Working Group Note 9 December

2014," 9 12 2014. [Online]. Available: https://www.w3.org/TR/html5-diff/.

[98] P. Garaizar, M. Vadillo and D. López-de-Ipiña, "Benefits and Pitfalls of Using HTML5

APIs for Online Experimens and Simulations," in 2012 9th International Conference on

Remote Engineering and Virtual Instrumentation (REV), Bilbao, 2012.

[99] E. Bidelman, Using the HTML5 Filesystem API, O'Reilly Media, Inc., 2011.

[100] W3C, "File API W3C Working Draft," 21 4 2015. [Online]. Available: https://

www.w3.org/TR/FileAPI/.

[101] W3C, "Media Capture from DOM Elements First Working Draft," 19 2 2015. [Online].

Available: https://www.w3.org/TR/mediacapture-fromelement/.

[102] Mozilla Developer Network, "HTMLCanvasElement.captureStream()," 27 1 2016.

[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/

HTMLCanvasElement/captureStream.

[103] Mozilla Developer Network, "HTMLMediaElement," 8 2 2016. [Online]. Available:

https://developer.mozilla.org/en/docs/Web/API/HTMLMediaElement.

[104] Google Groups, "discuss-webrtc Public Group," [Online]. Available: https://

groups.google.com/forum/#!msg/discuss-webrtc/fpbiC2HOgUY/ZTJN08NoGAAJ.

[Accessed 16 2 2016].

[105] W3C, "MediaStream Recording Working Draft," 8 9 2015. [Online]. Available: https://

www.w3.org/TR/mediastream-recording/.

[106] Mozilla Developer Network, "MediaRecorder," 9 12 2015. [Online]. Available: https://

95

developer.mozilla.org/en-US/docs/Web/API/MediaRecorder.

[107] "jQuery," [Online]. Available: http://jquery.com/. [Accessed 15 2 2016].

[108] B. S. Lerner, L. Elberty, J. Li and S. Krishnamurthi, "Combining Form and Function:

Static Types for JQuery Programs," in ECOOP 2013 – Object-Oriented Programming:

27th European Conference, Montpellier, France, 2013.

[109] B. Bibeault and Y. Katz, jQuery in Action, Manning Publications, 2008.

[110] J. Resig, "Unobtrusive JavaScript," in Pro JavaScript Techniques, Apress, 2007, pp. 77-

178.

[111] W3Techs, "Usage statistics and market share of JQuery for websites," [Online].

Available: http://w3techs.com/technologies/details/js-jquery/all/all. [Accessed 15 2

2016].

[112] T. Welch, "A Technique for High-Performance Data Compression," Computer, vol. 6,

pp. 8-19, 1984.

[113] S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing,

California Technical Publishing, 1997.

[114] "Node.js for the BeagleBone Black," ARMhf, 27 4 2013. [Online]. Available: http://

www.armhf.com/node-js-for-the-beaglebone-black/.

[115] W3C, "Media Capture from DOM Elements," 10 3 2016. [Online]. Available: http://

w3c.github.io/mediacapture-fromelement/.

[116] S. Dutton, "VP9 is now available in WebRTC," Google Developers, [Online].

Available: https://developers.google.com/web/updates/2016/01/vp9-webrtc?hl=en.

[Accessed 18 4 2016].

[117] C. Hart, "Does telephony matter if no one talks to each other anymore?," 18 1 2016.

[Online]. Available: https://medium.com/@chadwallacehart/does-telephony-matter-if-

no-one-talks-to-each-other-anymore-5edf61f27e71#.gdmm244q7.

[118] P. Johnson-Lenz, "Rhythms, Boundaries and Containers: Creative Dynamics of

Asynchronous Group Life," 1990.

[119] E. Neely, "What is a Client Portal?," [Online]. Available: https://clinked.com/2014/01/

29/what-is-a-client-portal/. [Accessed 5 7 2015].

[120] D. Ristic, "WebRTC data channels for high performance data exchange," 4 2 2014.

[Online]. Available: http://www.html5rocks.com/en/tutorials/webrtc/datachannels/.

