
Converting 2D motion into 3D world coordinates in

the case of soccer players video

by Charalampaki Eirini

Technological Educational Institute of Crete, Department of

Informatics Engineering, School of Applied Technology, 2017

THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Approved by:

Major Professor

Dr. Athanasios G. Malamos

Technological Educational Institute of Crete

Department of Informatics Engineering

Copyright c© 2017

CHARALAMPAKI EIRINI

All rights reserved. No part of this material may be reproduced, displayed, mod-

ified or distributed without prior written permission from the author or authors

institute- except in the case of noncommercial research and nonprofit education which

must be accompanied by the appropriate citation.

I

Abstract

One of many important tasks in computer vision applications is real time object de-

tection and tracking. Motion information and visual features, such as shape, color

and texture, can be used to extract information from a video, to track and detect

objects. Although classical tracking algorithms work accurately in perfectly arranged

conditions, tracking objects in real-life situations poses challenges due to the multi-

tude of variable conditions. However, efficient object tracking is a difficult task due

to the multitude of the conditions met. Significant problems arise in computer vi-

sion systems, especially under the presence of noise, scene illumination, object shape

variation and total or partial occlusion. The purpose of this thesis is to develop a

method for effective object tracking and detection in complex scenes, such as sports

game. In sports, the constant movement and the unexpected change of the velocity,

is a common thing. Furthermore, sport players can frequently leave or enter cameras

field of view, but also occlude each other. A robust solution could combine tempo-

ral motion information and statistical analysis of the visual features. The proposed

approach would enable to accurately track targets in motion in real scenes.

II

Contents

1 Introduction 1

1.1 Objective . 2

1.2 Goal and Motivation . 2

1.3 Limitations . 3

1.4 Applications . 3

2 State of the art 4

2.1 What is Object Tracking? . 4

2.2 Tracking versus Detection . 5

2.3 Related work . 7

3 Methodology 10

3.1 The Football field . 10

3.2 Camera setup . 11

3.3 OpenCV 3.2 . 13

4 Implementation 15

4.1 Track a single football player . 15

4.2 Track multiple football players . 18

4.3 Analysis of selected algorithms . 19

4.4 Multiple Instance Learning Tracker (MIL) 20

4.5 Kernel Correlation Filters . 26

III

5 Algorithm evaluation 36

5.1 Dataset . 41

5.2 Evaluation Methodology . 45

5.3 Evaluation Results . 47

5.4 Converting 2D motion into 3D world coordinates 51

5.5 Conclusion . 57

IV

List of Figures

2.1 Example of fist tracking using one Lucas-Kanade-Tomasi(LKT) tracker

[5] . 5

2.2 Tracking versus detection [6] . 6

2.3 Learning to track and identify players from broadcast sports videos [16] 8

2.4 Examples of failure cases (a) Player merged with advertising billboard

in similar color (b) Heavy occlusion (c) Blurriness [15] 9

3.1 A mini 5× 5 football pitch [17] . 11

3.2 A way to cover the football field from two different corners 12

3.3 The chosen video sequence . 13

4.1 The selection of a single player . 16

4.2 A single player tracking process . 17

4.3 Multiple football players tracking process 19

4.4 Pseudocode of MIL tracker 1 [23] . 21

4.5 Pseudocode of Online MILBoost [23] 22

4.6 Tracking by detection with a greedy motion model [23] 23

4.7 Updating a discriminative appearance model 25

4.8 Illustration of circulant matrix- The rows are cyclic shifts of a vector

image, or its translations in 1D. The same properties carry over to

circulant matrices containing 2D images [24]. 28

4.9 Matlab code with a Gaussian kernel [24]. 31

V

4.10 Parameters used in all experiments. In this table, n and m refer to the

width and height of the target, measured in pixels or HOG cells [24]. 32

4.11 Qualitative results for the proposed Kernelized Correlation Filter (KCF)-

compared with the top performing Struck and TLD. [24] 33

4.12 Precision plot for all 50 sequences [25] 34

4.13 Precision plot for sequences with attributes [25] 35

5.1 KCF under partial occlusion . 37

5.2 The two tracked players are fully occluded 38

5.3 The KCF tracker does not recover from full occlusion 38

5.4 When the full occlusion is about to happen 39

5.5 MIL fails under full occlusion . 39

5.6 Output text file indicates the x and y position of the three selected

players . 40

5.7 Set of all ground truth data, composed of both positive and negative

training examples [29] . 42

5.8 Tracking sequences for evaluation [30] 43

5.9 Tracking sequences for evaluation [30] 43

5.10 List of the attributes annotated to test sequences. The threshold values

used in this work are also shown. [30] 44

5.11 Evaluation methods of tracking algorithms 46

5.12 The Temporal Robustness Evaluation of the overall performance of

tracking algorithms. The values in the legend are the performance

scores. In the Success plots - the x axis (overlap threshold)- is the

ratio of the frames whose tracked bounding box has more overlap with

the ground truth bounding box than the threshold. The precision plot

shows the ratio of successful frames whose tracker output is within the

given threshold (x-axis of the plot, in pixels) from the ground-truth,

measured by the center distance between bounding boxes. 48

VI

5.13 The three categories of occlusion types: a) Self Occlusion b) Inter

object occlusion c) Object to Background occlusion [31] 49

5.14 Success and Precision plot under the presence of occlusion 50

5.15 3D projection diagram [34] . 52

5.16 Transform the perspective video tracking coordinates to orthographic

3D coordinates . 52

5.17 The position of 3 players in the first frame 53

5.18 The position of the first player in the 3D world, for the first 23 frames 54

5.19 The position of the second player in the 3D world, for the first 23 frames 55

5.20 The position of the third player in the 3D world, for the first 23 frames 56

VII

Chapter 1

Introduction

Vision is the main form to achieve outside information for being [1]. According to

scientific studies, it is found that the human retina can transmit data at roughly

10 million bits per second. By comparison, an Ethernet can transmit information

between computers at speeds of 10 to 100 million bits per second [2]. Nowadays,

computer vision, pattern recognition, computer graphics, artificial intelligence etc.,

are developed rapidly, making computers recognize, analyze, understand things as

human. Based on object detection, visual tracking is presented which is applied to

detect, extract, recognize and track moving objects in images sequence [3]. Moving

parameters, such as position, speed, acceleration is processed and analyzed to under-

stand behavior of moving target. Visual tracking is applied in multi-domains such as

medical diagnosis, robots, video compression, human computer interaction, education

and entertainment combining technologies of image processing, pattern recognition,

artificial intelligence. In sports, especially soccer, computer vision systems are gaining

tremendous growth due to its numerous uses for sport professionals, trainers and sport

game viewers. Soccer video analysis has a wide range of applications, both at a group

and individual level. Football players can gain insight into their physiological perfor-

mance [4], for instance players’ covered distance extraction and trajectory. Coaches

can extract information about the quality of tactical analysis and game strategy,

1

strengths or weaknesses evaluation of the team’s opponents or player and moreover,

the verification of referee decisions. Furthermore, players’ tracking information can

be used by the broadcaster of a football match to provide enhanced replays and sta-

tistical analysis for the footballs team supporter. Tracking football players effectively

is a challenging task- due to the constant movement and the unexpected change of

velocity. Moreover, athletes can frequently leave or enter a cameras field of view,

but also occlude each other. The presence of noise and scene illumination lead to

significant problems, when a classical tracking approach is chosen.

1.1 Objective

The aim of this thesis is to put to the test if it is achievable to implement an application

for tracking single and several players on a football field. Considering the large area

of the field, several cameras required to be used in a real system. In this thesis, a

limitation is set to only cover a part of the football field. The camera that will be

used is standard mobile camera.

1.2 Goal and Motivation

Classical tracking approaches work accurately under perfectly arranged conditions.

On the other hand, novel tracking algorithms depend upon multiple cameras to ex-

tract as many motion information as they can of the object that is tracked. This

thesis motivation, is the craving of a straightforward application of tracking football

players, without the use of multiple cameras. Our goal is to overcome the challenges

of tracking in a complex scene- such as a football match- and implement a system

that tracks one or more football players effectively, with the convention that a single

mobile camera is going to be utilized. The following goals have been defined for this

thesis.

2

• A single mobile device is used, which covers part of the field.

• Track one player/ multiple football players.

• Real world coordinates estimation.

• Motion statistics extraction from real world coordinates.

1.3 Limitations

The following limitations has been set for this thesis: According to the initial scenario

the software will run to a mobile device and thus only one camera will be available.

1.4 Applications

The proposed system, has numerous applications. Broadcaster companies will be able

to monitor automatically the football game. Valuable information can be collected,

since every player could be tracked, such as average speed, total running distance,

maximum speed, ball’s possession time. Furthermore, it can be a useful tool for

coaches to gather information about the quality of tactical analysis and game statis-

tics, post-game analysis, strengths or weaknesses evaluation of opponents team or

player and moreover, the verification of referee decisions.

3

Chapter 2

State of the art

2.1 What is Object Tracking?

Object tracking is the process of locating one or multiple moving objects in successive

frames of a video, utilizing a camera. In computer vision and machine learning,

object tracking is a wide-ranging term that incorporates conceptually related but

technically dissimilar ideas, for example, Kalman filtering- one of the most popular

signal processing algorithm- is used to predict the location of a moving object based

on prior motion information. Also, Dense optical flow algorithms estimate the motion

vector of every pixel in a video frame and Sparse optical flow algorithms, track the

location of a few feature points in an image, like the Kanade-Lucas-Tomasi (KLT)

feature tracker. Moreover, there are two classes of trackers, single object trackers

and multiple objects trackers. In single object trackers- to specify the location of the

object we want to track- a rectangle is used to mark the first frame. Then, using the

tracking algorithm, the object is tracked in subsequent frames. In multiple objects

trackers, multiple objects are detected in each frame and to identify which rectangle

in one frame corresponds to a rectangle in the next frame, a track finding algorithm

should be used. Two very popular techniques that are also used for tracking, are

Meanshift and Camshift algorithms for locating the maxima of a density function.

4

Figure 2.1: Example of fist tracking using one Lucas-Kanade-Tomasi(LKT) tracker

[5]

2.2 Tracking versus Detection

A critical question arises. Why do we need tracking in the first place and not just

do repeated detections? The answer is clear, detection algorithms are slower than

tracking algorithms. When a detected object in the previous frame is tracked, many

information about object’s appearance are obtained. Furthermore, the location, the

speed of its motion and the direction in the previous frame, are known. In the

consequent frame, all this information can be used to predict the location of the

object in the next frame. To locate the object more accurately, a limited search

needs to be done around the expected location. A detection algorithm starts from

the beginning, while a reliable tracking algorithm takes advantage of the acquired

information about the object prior to that point. Accordingly, if we want to design

an efficient system, most of the time, an object detection is employed on every nth

frame, while we run a tracking algorithm in the n-1 frames in between. Someone may

wonder, if it is more feasible to simply detect the object in the first frame and track

afterwards. Tracking can take advantage of the information that are obtained, but

the accuracy of the procedure is uncertain when the moving object goes behind an

obstacle for a long period of time or moves too fast. Moreover, tracking algorithms

often accumulate errors and the bounding box that tracks the object slowly slides

away from the tracked object.

5

Figure 2.2: Tracking versus detection [6]

To deal with these problems, a detection algorithm is runned from time to time.

Since detection algorithms are trained on object’s instances, more information are

known about object’s general class. In a different manner, tracking algorithms have

more knowledge about the specific instance of the class- they are tracking. An efficient

tracking algorithm, will be able to handle occlusion, while detection fails. Further-

more, tracking algorithms help preserving object’s identity. An array of rectangles

that contain the object, is the output of object detection, yet there is no identity

attached to the object. For example, if we want to detect 10 moving circles in a

video- the output will be the rectangles matching to all the circles- the detector has

detected in one frame. In the next frame, another array of rectangles will be the

output. The problem is that in the first frame, a specific circle might be defined by

the rectangle at location 12 in the array and in the next frame, it could be at location

15. As long as detection is being used on one frame, there is no indication which

rectangle corresponds to which object, and the solution is tracking, due to the fact

that provides a way to actually associate the circles.

6

2.3 Related work

Since the proccess of tracking objects is a difficult task due to the variety of the

conditions met, different approaches have been proposed. In [7] authors introduced

a new method of multi- object tracking by using multi-camera network, tested on 3

different datasets. They used single camera tracking and multi camera collaborative

tracking. For single camera tracking, codebook background modeling algorithm is

used and then in order to achieve more accurate detection, histogram of oriented

gradient algorithm is applied. The results from each single camera used to propose- a

multi camera view object correspondence scheme- to track objects in multiple camera

views. Their proposed method can track objects effectively, even when they are oc-

cluded in some cameras and capture the differences in object’s appearance by multiple

views. Authors in Robust tracking of multiple persons in real-time video [8], combine

object and background segmentation and especially temporal differencing to detect

motion in the region of interest. As tracking strategy, they applied particle swarm op-

timization algorithm to overcome the robustness problem in noisy background. Their

approach works faster and more precisely than the conventional particle filter.

Some researches for distinguishing the athletes from the background, relied on color

of pants and shirt. Color-based classification techniques can be divided into template-

based player detection and pixel-based detection. In the template based player detec-

tion approaches, each window in the image is classified into player or non-player[9].

On the other hand, each pixel is classified by its color component in pixel-based player

detection methods [10]. The main disadvantage of these methods is that player’s im-

age might get fragmented into multiple regions.

7

Figure 2.3: Learning to track and identify players from broadcast sports videos [16]

In [11] authors combined players’ features based particle filter, number detection

likelihood model and a motion vector prediction model for tracking multiple players

in 3D space. They map 2D images to 3D space in the real world, by using multiple

fixed cameras, which allow them to track players in 3D space. To distinguish players

with different jersey number, they use the number detection likelihood model and to

predict players’ position when occlusion occurred, they use a motion vector. Authors

in[12], proposed an automatic player detection by combining boosting detection and

background modeling, unsupervised labeling and efficient player tracking method us-

ing Markov Chain Monte Carlo data association applied for broadcast soccer videos.

However, whenever the video is blurred, camera is moving suddenly and unexpectedly

or long occlusions occurred, their proposed method leads to failure. In the literature,

in videos captured by static cameras, background subtraction method has been ex-

tensively used for segmenting moving players based on motion information[13] [14].

Nevertheless, in case of moving camera, the accuracy of this method is ambiguous.

8

In this paper [15], a blob-guided Particle Swarm Optimization is introduced for ef-

ficiently searching multiple players in an image. Authors- based on the number of

blobs- divided the swarm into sub-swarms and search for players in each blob. The

blob-guided Particle Swarm Optimization detects effectively multiple players, but

several open issues need to be investigated. In literature, the discriminative color

of the players’ uniforms has been widely used, although there are unreliable results

using just color information, to distinguish blurred and distant players. Moreover, if

the players’ uniform colors are similar color with the playfield, advertising billboards

and lines, the detection results are uncertain.

Figure 2.4: Examples of failure cases (a) Player merged with advertising billboard in

similar color (b) Heavy occlusion (c) Blurriness [15]

9

Chapter 3

Methodology

3.1 The Football field

For our implementation, all video sequences are recorded in a live football match,

taking place in a mini 5×5 football filed with 30 × 60 meters size. The lines have 8

cm width. The longer sides are called touchlines. The other opposing sides are called

the goal lines. Goals are placed at the center of each goal-line. These consist of two

upright posts placed equidistant from the corner flag posts, joined at the top by a

horizontal crossbar. The inner edges of the posts must be 3 m apart, and the lower

edge of the crossbar must be 2 m above the ground.

10

Figure 3.1: A mini 5× 5 football pitch [17]

3.2 Camera setup

There are numerous ways to allocate the camera, all relying upon what is the chosen

focal length, how many camera rigs are going to be used and how much overlap is

preferable. The total cameras that can be used, the position of the camera, the

camera’s distance from the football field, camera coverage, whether the player should

be observed from more than one direction, the football player’s range resolution and

what should be the player’s pixel resolution at a specific distance, are significant

factors that should be considered depending on the desired output. An example a

possible setup- with eight cameras placed to cover a football field- is depicted below.

11

Figure 3.2: A way to cover the football field from two different corners

Figure 3.2-a: A way to cover the football field from two different corners. With this

approach, football players are covered from two different directions, resulting in the

improvement of the position’s estimation in the current area. However, positioning

the cameras this way, reduces the resolution in the middle of the football area,

because of a wider FOV requirement. Figure 3.2-b: The division of the field into

four pieces.

The number of the cameras to be used is for the most part an economical decision,

not for the cameras’ cost itself, but the rigs, the cables, etc. that could significantly

increase the total price. The usage of less than eight cameras has shown that causes

critical problems, since very wide-angle lenses have to be used, otherwise the resolu-

tion would be unsatisfactory. Player’s resolution refers to the actual pixel resolution

and the depth resolution. The actual pixel resolution is the size of the player at a

specific distance, in image pixels. Depth resolution depends on the focal length, the

camera base and the distance from the camera and measures the estimation of the

distance between the player in a scene and the camera.

12

For our system, a steady mobile camera is selected, which only covers a part of

the football field. The resolution of the video sequence is high definition 1280x720

size in pixels and the frame rate is 30 frames per second.

Figure 3.3: The chosen video sequence

3.3 OpenCV 3.2

For this thesis implementation, the C++ interface of open source library OpenCV 3.2

(Open Source Computer Vision Library) is used inside the Microsoft Visual Studio

2015. OpenCV [19] package includes a considerable amount of static and shared

libraries.

13

The following modules are included in our application:

• Core functionality

• Video I/O

• Image Processing

• High GUI

OpenCV header is included in our application, which is a file that defines what

modules where included during the build of OpenCV. All the OpenCV classes and

functions are placed into the cv namespace. Therefore, to access this functionality

from our code, we use directive namespace cv;. Moreover, additional libraries need

to be included to our implementation the so called extra modules for OpenCV[19].

From opencv contrib modules, roi selector header is included in our application, which

is a class where the drawing mode is set. It notifies the user and prompt him to

select an object- calling MouseCallback function- which sets the mouse handler for

the specified window. When the user selects the preferable area, a bounding box is

appearing with a crosshair in the middle of it. The drawing process is started from the

center of the selected object and the selection process is finished, whenever the user

is pressing the escape button from the keyboard. Region of interest selector is part of

the long-term optical tracking API in OpenCV. ”Long-term optical tracking is one of

most important issue for many computer vision applications in real world scenario.

The development in this area is very fragmented and this API is a unique interface

useful for plug several algorithms and compare them. These algorithms start from

a bounding box of the target and with their internal representation they avoid the

drift during the tracking” authors in[20] pointed out. The tracking API of OpenCV

includes six tracking algorithms: KCF, MIL-these two algorithms will be used in our

implementation- Boosting, TLD, GoTurn and MedianFlow.

14

Chapter 4

Implementation

4.1 Track a single football player

In this implementation, firstly the input video sequence is specified as parameter of

the application. Several variables need to be declared. The region of interest (roi)

parameter is necessary to record the bounding box of the tracked player and this

variables stored value will be updated in every iteration. Moreover, a frame variable

is required to be set- to hold the image data- from each frame of the input video.

Then, a tracker is created by its name and the selected algorithms to be used are MIL

and KCF. A more comprehensive analysis for the selected trackers is taken place in

the next section. After the creation of the tracker object and the setup of the input

video, the user selects the object to be tracked: by using the roiSelector function, the

user will be able to select a bounding box of the preferable object to be tracked using

a GUI. The selection is created from the center of the bounding box and a middle

cross will be drawn. Afterwards, the selected tracker is initialized for the first frame

of the video input and the bounding box that surrounds the target is drawn.

At that point, the variables to store the motion extraction results- such as the

distance, the selected object’s center, the previous x position of the object and the

previous y position of the object- are initialized. The previous x and y position of

15

Figure 4.1: The selection of a single player

the object to be tracked, is assigned to the original x and y variable respectively.

The tracking begins within an iterative process from the first frame of the video

sequence until the last one. For finding the new most likely bounding box for the

selected player, the tracker is being updated and the tracked object is drawn on the

GUI window. At that point, the tracked object’s distance is calculated, by using the

Euclidean distance formula. The Euclidean distance between points a and b is the

length of the line segment connecting them āb.

In the cartesian coordinate system, if a = (a1, a2, a3, ., an) and b = (b1, b2, b3, ., bn)

are two points in Euclidean n-space, then the distance d from a to b, or from b to a

is given by the Pythagorean formula

d(a, b) = d(b, a) =
√

(a1 − b1)2 + (a2 − b2)2 ++ (an − bn)2 (1)

The position of a point in a Euclidean n-space is a Euclidean vector. So, a and

b are Euclidean vectors, starting from the origin of the space, and their tips indicate

16

two points. The distance of the tracked object, its original position and its position

after the tracking process, are extracted in an output text file. Finally, the results of

the image with the tracked object are eventually displayed on screen.

In figure 4-2 below, the frame number on the current frame is obtained and written in

the top left of our GUI screen, and the selected football player is tracked throughout

the whole video sequence.

Figure 4.2: A single player tracking process

Furthermore, the center of the tracked player, as well as his current position are

being displayed on the screen.

17

4.2 Track multiple football players

Here, we create a multi tracker object instead of a single tracker object, which has

been created in the previous implementation. The difference in this approach, is that

a container object of the multiple tracked objects should be defined. Moreover, a

variable where the center of each selected player will be stored, requires to be set. In

our proposal, the multi tracker object, uses the same tracking algorithm for all the

objects to be tracked. For each tracked player, there is, though, the option of using

different type of tracking algorithm. To achieve this, the tracking algorithm should

be defined, whenever an extra object is added to the multi tracker object, however

this option is somewhat out of the scope for this thesis.

After the creation of the multi tracker object and the setup of the input video se-

quence, the user is able to select multiple football players to be tracked. Once again,

the region of interest function is used, to select multiple football players- with the

result saved in the container object- that is mentioned above. Afterwards, the tracker

is initialized for the first frame of the video and an infinite iterative process signifies

the starting point of the tracking procedure throughout the whole video sequence. At

this point, the tracking result is being updated, nevertheless a second difference from

the single object approach is observed.

In our proposal, the multi tracker object- uses the same tracking algorithm for all the

tracked objects and the user is able to select multiple football players. Considering

the fact that the purpose of this approach is to track multiple football players, the

drawing process is slightly different. A second iterative process is started, drawing

the total number of the tracked multiple players. The range of this iterative process,

starts from 0 to the number of football players, that the user previously selected.

Once more, a green circle is defining the center of each tracked object and the motion

information as well the position of each tracked player are stored in a text file. To

calculate the processing speed, we start a timer that counts the number of clock ticks

since our application started. As soon as our tracker is updated, we subtract the

18

number of clock ticks from that counter and divide the clocks per sec with that timer

to calculate the processing speed. The processing speed can be seen in the top left

corner of the GUI window.

Figure 4.3: Multiple football players tracking process

4.3 Analysis of selected algorithms

The goal of tracking is to find a moving object in the current frame, using the prior

information of the motion parameters in the previous frame. Knowing the parameters

of the motion model- the speed, the location and the position of the moving target-

in previous frames, would enable to predict the new location. However, we do not

only have the knowledge of the object’s motion, we also know how the object looks in

each of the previous frames. Specifically, we can encode what the object looks like by

formulating an appearance model. Consecutively, to predict accurately the location

19

of the moving object, the appearance model can be used to go through a narrow

region of interest in the location that the motion model predicted. Considering, the

dramatics changes an object’s appearance can have, a lot of modern trackers use the

appearance model as a classifier, that is trained online.

Classifiers categorize a rectangular region of an image as either a background or

object. An image patch is taken as input and the classifier returns a result between

0 and 1 to point out the probability that this image patch includes the object. The

result is 0 when the image patch is the background and 1 when the classifier is

unquestionably sure that the patch is the object. In machine learning, when ’online’

is mentioned, algorithms are trained using a very few examples at run time, whilst a

great number of examples train offline classifiers.

A classifier is trained by feeding its positive and negative examples, the object and the

background. For instance, if we need to build a classifier for detecting football players,

we train it with thousands of images containing football players and thousands of

images that do not contain football players. This is the way that the classifier learns

to discriminate what is a football player and what is not, although it is not feasible

to have a great number of positive and negative classes, when we decide to build

an online classifier. How the selected tracking algorithms approach this problem of

online training, is investigated in the following section.

4.4 Multiple Instance Learning Tracker (MIL)

Tracking an object in a video, without knowing any other information, except its given

location in the first frame, is a challenging problem, trying to be solved with tracking

by detection techniques. These approaches separate the object from the background,

by training online a discriminative classifier. The classifier extracts negative and

positive examples from the current frame, using the current tracker state to bootstraps

itself [23]. However, the classifier is drifting and degrading, whenever the training

20

samples are wrongly labeled by the trackers unreliability. In this paper, authors

presented MILTrack, a tracking system that make use of a novel online Multiple

Instance Learning algorithm. The basic idea of their proposal is that they consider

only the current location of the object, as a positive example. MIL tracking system

generates several potential positive examples by searching in a small neighborhood

around the current location. In MIL, the examples presented in sets called bags and

labels are not provided for individual instances, only for bags. It is not necessary

for all the images in the positive bag to be positive examples. They assume that if

there is a labeled positive bag, it contains at least one positive instance, if not then

the bag is negative. The centered patch on the objects current location and a small

neighborhood around it, is included in a positive bag. They select MIL framework,

which allow them to update the appearance model with a set of image patches,

although the image patch that accurately captures the object they are interested in,

is not known. As a result, they build an easy to implement and effective algorithm,

with fewer tweaked parameters.

Figure 4.4: Pseudocode of MIL tracker 1 [23]

21

Their tracking system includes the following components, image representation,

appearance model and motion model. For the image representation, in every image

patch, there is a vector of Haar-like features, which are randomly generated. Their

system requires that each weak classifiers hk is composed of a Haar-like feature fk

and parameters µ1, σ1, µ0 can be updated online. Authors based their proposal on

the boosting framework and the Online AdaBoost and its adaptation, to create a

strong classifier, combining many weak classifiers.

Figure 4.5: Pseudocode of Online MILBoost [23]

Each feature contains two to four rectangles, that have a real valued weight. This

feature value is the pixels weighted sum in all the rectangles.

22

Figure 4.6: Tracking by detection with a greedy motion model [23]

A discriminative classifier is composing the appearance model, that estimates

p(y = 1|x), where x is the images patch representation in feature space. A binary

variable y that belongs to 0, 1 specifies the existence of the object we are interested

in that image patch. In MIL, the data is formed as {(x1, y1), , (xn, yn)} and the bag

labels are defined as

yi = max(yij (2)

The tracker maintains the object location lt, at every time step t for computational

efficiency and simplicity reasons. A set of image patches, is cropped out for each new

frame, as long as they are within some search radius s of the current location of the

tracker. The radius s is for gathering positive instances during initialization. In order

to update the trackers location a greedy strategy is used

l∗t = l(argx∈Xs maxP (y|x) (3)

to avoid maintaining the location of the target at every frame. They alternatively

choose a motion model, where the trackers location at every step time t is equally

23

expected to appear at trackers location (t− 1), within of course in a specified radius

s.

P (l∗t |l∗t−1) ∝

1 if ||l∗t − l∗t−1|| < s

0 otherwise
(4)

The algorithm in MIL is trained with labeled bags. So, as soon as the set of

patches Xr is cropped out, this bag is positive labeled where r is smaller than radius

s. From an annular region Xr,b, they cropped out patches to label negatives bag,

where b is another scalar and r is the same as before. A random subset of these image

patches is labeled as negatives, due to the fact that this generates a large set.

Authors tested their MILTrack system in four publicly available grayscale video se-

quences resized to 320 × 240 pixels and four of their own. To demonstrate that

MIL is stable and more robust tracker, they decided for all the experiments, that

all algorithms parameters were fixed. They compare Online-Adaboost Tracker with

positive radius r = 1(OAB1) and r = 5(OAB5), SemiBoost Tracker, FragTrack and

MILTrack with radius 5. The scalar β for sampling negative examples was set to

50 and the learning rate γ for the weak classifiers was set to 0.85. The number of

chosen weak classifier K was 50 and the number of weak classifiers M was set to

250. In the sequences that present challenging scale, lighting and pose changes, their

proposed algorithm achieved the best performance. On the other hand, MILTrack

even though, obtained better results than the compared trackers under the presence

of partial occlusion, it could not handle full occlusions.

24

Figure 4.7: Updating a discriminative appearance model

(A) Using a single positive image patch to update a traditional discriminative

classifier. The positive image patch chosen does not capture the object perfectly.

(B) Using several positive image patches to update a traditional discriminative

classifier. This can confuse the classifier causing poor performance. (C) Using one

positive bag consisting of several image patches to update a MIL classifier [23]

25

4.5 Kernel Correlation Filters

A discriminative classifier that separates the surrounding environment from the tar-

get, is the basic element of most state of the art trackers. Natural image changes

through time, so this classifier needs to be trained with sample patches, which are

scaled and translated. Authors in this paper[24] proposed an analytic model for

datasets of thousands of translated patches. In the Fourier domain, if a particular

translations model is used, learning algorithms turn out to be easier as more sam-

ples are added. Correlation filters benefits from the fact that in the Fourier domain,

the convolution of two patches is corresponding to an element-wise product. Thus,

correlation filters can indicate linear classifiers output for image shifts or several trans-

lations straightaway. Authors focused on Ridge Regression with classical correlation

filters and cyclically sifted samples, that enables fast learning with O(n log n) Fast

Fourier Transforms. The objective of training is to find a function f(z) = wT z that

minimizes the squared error over samples xi and their regression targets yi

min
∑
i

(f(xi)− yi)2 + λ||W ||2 (5)

To control overfitting, the regularization parameter λ is used. The minimizer w

is given by the following equation

W = (XTX + λI)−1XTy (6)

where X is the data matrix, with one sample per row xi and a regression target yi

is composed by each element of y. Quantities are for the most part complex valued,

in the Fourier domain, so the above equation becomes

W = (XHX + λI)−1XHy (7)

where XH is the Hermitian transpose.

The base sample is an n× 1 vector representing the object of interest patch, de-

noted as x. The classifier needs to be trained with several virtual samples and the

26

base sample, which must be translated.

The cyclic shift operator models one dimensional translations of this vector.

P =

0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 · · · 1 0

(8)

To shift x by one element, authors used product Px, modeling a small translation.

Px = [xn, x1, x2, x3, ..., xn+1]
T (9)

To achieve a larger translation, u shifts are used by the matrix power P ux. The same

signal x is obtained periodically every n shifts, as result of the cyclic property. The

full set of shifted signals is acquired with

{P ux|u = 0,, n− 1} (10)

A regression with shifted samples, is then computed and the set of eq 5 is used to

construct the rows of data matrix X

X = C(x) =

x1 x2 x3 · · · xn

xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2
...

...
...

. . . xn−3

x2 x3 x4 · · · x1

(11)

27

All circulant matrices can be diagonalized using the Discrete Fourier Transform

(DFT), aside from the generating vector x and this is expressed by the following

equation

X = F (diag(x̂)FH) (12)

F is the constant matrix and does not depend on x, and x̂ is the DFT of the

generator factor X̂ = F (x). To simplify the linear regression, when training data is

being made of cyclic shifts, authors replace equation 7 with the no-centered covariance

matrix XHX,

X = F (diag(x̂∗)FHFdiag(x̂)FH (13)

Vector x is the first row in the below image.

Figure 4.8: Illustration of circulant matrix- The rows are cyclic shifts of a vector

image, or its translations in 1D. The same properties carry over to circulant matrices

containing 2D images [24].

The Kernel trick allows more effective, nonlinear regression functions f(z). The

following steps map the inputs of a linear difficulty to an non linear feature space

ϕ(x).

28

• The solution w is expressed as linear combination of the samples

W =
∑
i

αiϕ(xi) (14)

• The dot products are computed using the kernel function k

ϕT (x)ϕ(x′) = k(x, x′) (15)

• A n× n kernel matrix K is used to store the dot products between all pairs of the

samples

Kij = k(xi, xj) (16)

The dominance of the kernel trick is the fact that a vector does not need to be

instantiated in the high dimensional feature space ϕ(x). However, this causes a great

number of samples. The following equation gives the kernelized version of Ridge

regression solution.

α = (K + λI)−1y (17)

Where a is the vector of coefficients ai and K is the kernel matrix, that represent

the solution in dual space. With the proof of the theorem that given circulant data

C(x), the corresponding kernel matrix K is circulant if the kernel function satisfies

k(x, x′) = k(Mx,Mx′), for any permutation matrix M , they can diagonalize the

above equation to achieve a fast result for the linear case obtaining

α̂ =
ŷ

ˆKxx + λ′
(18)

Where kxx is the first row of the kernel matrix K = C(kxx), and a hatˆdenotes the

DFT vector. To detect the object of interest, the evaluation of regression function

f(z), needs to be done, for several candidates on several image locations. The kernel

29

matrix between all candidates patches and all training samples is denoted as Kz. The

patches are cyclic shifts of base patch z and base sample x, so each element of Kz is

given by k(P i−1z, P j−1x) . The first row is needed to define the kernel matrix.

Kz = C(Kxz) (19)

Where Kxz is the kernel correlation of x and z. Afterwards, authors computed

the regression function for all candidate patches with the following equation

f(z) = (Kz)Tα (20)

And then, the diagonalization of f(z) vector is occurred

ˆf(z) = K̂xz � α̂ (21)

KCF is prepared to deal with multiple channels, as the 3rd dimension of the in-

put arrays. It implements 3 functions: train (Eq. 18), detect (Eq. 21), and ker-

nel correlation (Eq. 22), which is used by the first two functions.

α̂ =
ŷ

ˆKxx + λ′
(18)

ˆf(z) = K̂xz � α̂ (21)

Kxx′
= exp

(
− 1

σ2

(
||x||2 + ||x′||2 − 2F−1

(∑
c

x̂∗c � x̂′c

)))
(22)

The functionality of the KCF is presented in the figure below as Matlab code

30

Figure 4.9: Matlab code with a Gaussian kernel [24].

31

In the first frame, they train a model with the image patch at the initial position

of the target. To make available some context, this image patch is larger than the

target. The detection over the patch at the previous position is taking place, for each

new frame. At that moment, targets position is updated, to the one that generated

the maximum value. Finally, at the new position, a new model is trained and ”linearly

interpolate the obtained values of and x with the ones from the previous frame, to

provide the tracker with some memory” as authors pointed out. The proposed Ker-

nelized Correlation Filter (KCF) approach, using a Gaussian kernel is implemented

in Matlab. The algorithm is tested with two alternatives: one that takes the raw

pixel values, and a second one that uses HOG descriptors with a cell size of 4 pixels,

in particular Felzenszwalbs variant. Few parameters required by the KCF tracker,

fixed for all videos and depicted in the following table.

Figure 4.10: Parameters used in all experiments. In this table, n and m refer to the

width and height of the target, measured in pixels or HOG cells [24].

Authors compared their tracking approach with TLD and Struck tracker on fifty

videos dataset instead of the original tests with 12 videos, using precision curve for

the performance criteria. Moreover, instead of using raw pixels, they add to the KCF

tracker a new variant founded on Histogram of Oriented Gradients (HOG) features.

If the predicted target center is inside of ground truths distance threshold, then

we consider that the frame is properly tracked. Precision curves demonstrate the

percentage of correctly tracked frames for a range of distance thresholds.

32

Figure 4.11: Qualitative results for the proposed Kernelized Correlation Filter (KCF)-

compared with the top performing Struck and TLD. [24]

Without any feature extraction, the KCF accomplished better results than a linear

filter [25]. With Histogram of Oriented Gradients features, nonlinear KCF surpassed

TLD and Struck tracker. Tracker’s speed is directly related to the size of the tracked

region and is a significant factor when the comparison, between trackers based on

correlation filter, is made. They decided to reduce their tracked region, to speed

feature computation, but this decision slowed down the performance of the tracker.

33

Figure 4.12: Precision plot for all 50 sequences [25]

Furthermore, they experimented with sequence attributes, such as occlusion and

illumination changes, background clutter and out of view target. In occlusions and

non-rigid deformations, KCF with HOG features surpassed the other algorithms.

TLD’s performance is better in out of view sequences, due to the fact that KCF

lacks a failure recovery mechanism. Moreover, this algorithm performed better in

background clutter, while almost all of trackers are severely affected, although it does

not recover though from full occlusion.

34

Figure 4.13: Precision plot for sequences with attributes [25]

In this paper, authors demonstrated that there is a possibility, multiple positive

samples to have large overlapping regions. If specific conditions are met, kernel ma-

trices and this overlapping data become circulant. DFT is applied to obtain their

diagonalization to make the proposed tracker faster and more accurate at the same

time. Their tracking framework was made open source, to encourage further devel-

opments.

35

Chapter 5

Algorithm evaluation

For our system, we choose a steady mobile camera, which only covers a part of the

football field. The football field is mini 5 × 5 with dimensions 30 × 60 meters. Our

application is implemented using OpenCV and C++ [26] . The input video sequences’

resolution is 1280x720 size in pixels and the frame rate is 30 frames per second. The

application is tested in 30 video sequences and the evaluation process is taking into

consideration attributes- such as partial or full occlusion, out of view, where the

players leave the camera field of view- which express the most common challenges of

visual tracking. Kernel Correlation Filters and Multiple Instance Learning algorithms

are selected. The video sequence is chosen and the application enables to define the

bounding box that contains the preferable football player for the first frame. The

tracker type is being initialized and the application goes through the video’s frames,

while the iteration process updates the tracker to capture for the current frame the

new bounding box. Finally, the application displays the results.

36

Figure 5.1: KCF under partial occlusion

KCF outperforms all the other tracking algorithms in speed and reliability, throughout

the whole video sequence. Moreover, the selected algorithms were tested during

partial and full occlusion. Two players are selected for the given sequence and in

the following figures we can observe the results. KCF once more is faster in the

multi players implementation and performs sufficiently under partial occlusion. As

the authors of KCF tracker pointed, this algorithm cannot recover from full occlusion

as we can observe in the figure below.

37

Figure 5.2: The two tracked players are fully occluded

Figure 5.3: The KCF tracker does not recover from full occlusion

38

Figure 5.4: When the full occlusion is about to happen

MIL is reasonable efficient under partial occlusion and it keeps tracking the selected

targets, however when the players are fully occluding one another, this tracking al-

gorithm fails.

Figure 5.5: MIL fails under full occlusion

39

In the following figure, the output text file is illustrated, that stores the motion

information of the three selected players to be tracked.

Figure 5.6: Output text file indicates the x and y position of the three selected players

The first column (0) is the first player, the second and third column is player’s x and

y position. The fourth column is the second player, the fifth and sixth column, is

the 2nds player x and y position, the 7th column is the third player, the 8th and 9th

column is his x and y position.

40

5.1 Dataset

A thorough perfomance evaluation of tracking algorithms could be very complicated-

as it is already mentioned in these papers [27] [28]- for the reason that tracking

has many different applications in constantly changing environments. We can track

people, faces and vehicles, while the presence of noise, scene illumination, object

shape variation and total or partial occlusion are leading to significant problems that

need to be overcomed. So, it is crucial to collect a very large dataset to evaluate

and compare comprehensively tracking algorithms. Yi Wu et al.- in Visual Tracker

Benchmark[30]- build a tracking dataset with 50 sequences with annotations. Using

video sequences without labeled ground truth tends to make difficult the evaluation

process, due to the fact that the reported result depends on object’s location that

are inconsistently annotated. When it comes to computer vision, ground truth data

involves the set of images and its labels that define a model and includes the location,

number and key features’ relationship. The labeling of this set of images, can be

added automatically (by image analysis) or manualy (by human) and then by using

various machine learning methods, the model can be trained. Background, foreground

or objects that are present in an image, form the labeled features of ground truth

data. The following steps are utilized to create a ground truth dataset:

• Model design

• Training set

• Test set

• Classifier design

• Training and testing

”Unless the ground truth data contains carefully selected and prepared image

content, the algorithms cannot be measured effectively. Better ground truth data

will enable better analysis” [29].

41

Figure 5.7: Set of all ground truth data, composed of both positive and negative

training examples [29]

Considering the fact, that our results based on video sequences without labeled

ground truth and different initial conditions and parameters, we decided to use the

Visual Tracking Benchmark dataset with ground truth annotations [30] for com-

prehensive performance evaluation. The dataset contains 50 fully annotated- most

commonly used- tracking sequences and the code library integrates the most publicly

available tracking algortihms. Figure 5.8- 5.9, illustrates the first frame of each se-

quence where the target object is initialized with a bounding box. The sequences on

the top left are more difficult for tracking than the ones on the bottom right of the fig-

ure. All sequence names are in CamelCase without any underscores or blanks. When

there exist multiple targets each target is identified as dot+id number (e.g. Jogging.1

and Jogging.2). Each row in the ground-truth files represents the bounding box of the

target in that frame, (x, y, box-width, box-height). In most sequences the first row

corresponds to the first frame and the last row to the last frame, except the following

sequences David(300:770), Football1(1:74), Freeman3(1:460), Freeman4(1:283).

42

Figure 5.8: Tracking sequences for evaluation [30]

Figure 5.9: Tracking sequences for evaluation [30]

43

Each video in the dataset has been described by listing major challenges in com-

puter vision tracking systems, such as illumination and scale variation, occlusion, fast

motion etc.. Tracking performance can be affected by many factors, therefore to eval-

uate effectively the strength and weakness of tracking algorithms, Visual Tracking

Benchmark annotates 11 attributes to the dataset sequences. In the following figure

5.10, some of the most common challenges in Visual Tracking are illustrated.

Figure 5.10: List of the attributes annotated to test sequences. The threshold values

used in this work are also shown. [30]

44

5.2 Evaluation Methodology

Authors in [30], use the precision and success rate for quantitative analysis. Moreover,

the evalutation of tracking algorithms’ robustness, carried out in the following aspects.

• Success Plot

• Precision Plot

Success Plot (area overlap) refers to an evaluation metric, where the bounding

box overlap is taking place. Given the tracked bounding box rt and the ground truth

bounding box ra, the overlap score is defined as

S =
|rt
⋂
ra|

|rt
⋃
ra|

(23)

where
⋂

and
⋃

symbolize respectively the intersection and union of two regions,

and |.| is the pixels’ number in the region. The perfomance measurement on frames’

sequence, is calculated by counting the number of successful frames whose overlap S

is larger than the given threshold to (e.g. to = 0.5). The success plot shows the ratios

of successful frames at the thresholds varied from 0 to 1. However, using a specific

threshold, may not be representative for tracker evaluation. For showing tracking

algorithms overall performance, authors in [27], instead use the Area Under Curve

(AUC)- which is the success’ rates average- of each success plot, rather than using

one success rate value at a specific threshold.

Precision Plot refers to another widely used evalution metric, which is defined

as the average Euclidean distance between tracked targets’ center locations and the

manually labeled ground truths and referred as center location error. The overall al-

gorithm’s performance is calculated by taking into consideration the average location

error over all the frames of the selected sequence. For the precision plot, authors

considerate a threshold value of 20 pixels. Precision plots are using only the bound-

ing box locations and overlook its overlap and size, and that is the main reason that

45

success plots are most preferable. The bounding box of the target (x, y, box width,

box height) is represented by each row in the groundtruth files.

One- pass evaluation (OPE), the most common approach to evaluate tracking al-

gorithms is- in the first frame- to initialize them from the ground truth position, run

them through a test sequence and take into account the success rate or average po-

sition. Considering the fact, initialization may affects the performance of a tracking

algorithm, Yi Wu et al.- in Visual Tracker Benchmark[30]- propose two methods to in-

vestigate tracker’s robustness. They introduce Spatial Robustness Evaluation (SRE)-

altering initialization spatially starting by different bounding boxes- and Temporal

Robustness Evaluation (TRE)- altering initialization temporally starting at different

frames. Figure 5.11 illustrates the different evaluation methods for trackers. Ground

truth target location is represented by the green box and tracker’s initialization is

represented by the dotted boxes. The simplest method is OPE, where -in the first

frame- we initialize the tracker and allow it to track the selected target throughout

the whole sequence. With TRE method, the tracker is being initiated at different

starting frames with the initialization of the ground truth bounding box. In SRE, the

object states is reproduced by slightly shifting or scaling the ground-truth bounding

box of a target object.

Figure 5.11: Evaluation methods of tracking algorithms

46

5.3 Evaluation Results

The source code default parameters are used in all evaluations for each tracker. For

Spatial Robustness Evaluation, on each sequence we evaluate each tracker 12 times,

where more than 350000 bounding box results are generated. For Temporal Robust-

ness Evaluation, we partition each sequence in to 20 segments, so each tracker is

perfomed on 310000 frames. The complete perfomance for all the trackers is encap-

sulated by the precision and success plots. For precision plots, we use the results at

error threshold of 20 for ranking the trackers (e.g., this is the percent of frames for

which the tracker was less than 20 pixels off from the ground truth). As the trackers

tend to perform well in shorter sequences, the average of all the results in TRE tend

to be higher. The tracking result is a sequence of bounding boxes at each frame. For

the x-axis of the plot (overlap threshold)- the ratio of the tracked frames’ bounding

box has more overlap with the groundtruth bounding box than the threshold- and

forms the success ratio. The values in the brakets in the figures are the AUC (area

under curve), each of which is the average of all success rates at different thresholds

when the thresholds are evenly distributed.

Figure 5.12, illustrates the overall performance of tracking algorithms. The red

line describes KCF tracker with score 0.479, the pink dotted line is Boosting with

score 0.422, the green dotted line is MIL with score 0.417, the black line illustrates

MedianFlow tracker with score 0.359 and the blue dotted line depicts TLD tracker

with score 0.292. In the success plots, the top ranked tracker KCF in TRE outper-

forms Boosting by 5.7 % , MIL by 6.2 %, MedianFlow by 12.1 % and TLD by 18.7

%.

47

In the precision plot, the performance score of KCF is 0.681, for MIL is 0.573, for

Boosting 0.554, for MedianFlow 0.454 and for TLD 0.433. The top ranked tracker is

once more KCF and outperforms MIL by 10.8 % , Boosting by 13.7 %, MedianFlow

by 22.7 % and TLD by 24.8 %. MIL’s score seems to be better, but this is due

to the fact that the average error value does not measure the tracking performance

correctly, because the output location can be random, when the tracking algorithm

loses track of a target object. The overall performance - which is measured in the

success plots- is more accurate than the measurement of the score at one threshold,

thus the precision plots are used as supplementary.

Figure 5.12: The Temporal Robustness Evaluation of the overall performance of track-

ing algorithms. The values in the legend are the performance scores. In the Success

plots - the x axis (overlap threshold)- is the ratio of the frames whose tracked bound-

ing box has more overlap with the ground truth bounding box than the threshold.

The precision plot shows the ratio of successful frames whose tracker output is within

the given threshold (x-axis of the plot, in pixels) from the ground-truth, measured by

the center distance between bounding boxes.

48

Occlusion is one of the most challenging difficulty in computer vision systems. It

is occured under three categories.

• Self occlusion

• Inter object occlusion

• Object to background occlusion

Self occlusion indicates that one part of an object is occluded be another part

of the same object from a specific viewpoint, e.g. football player’s feet. Inter object

occlusion occurs as a result of the full or partial overlapping of more than one objects.

We refer to object to background occlusion, when the tracked object is occluded by

the background.

Figure 5.13: The three categories of occlusion types: a) Self Occlusion b) Inter object

occlusion c) Object to Background occlusion [31]

49

Figure 5.14, illustrates the performance of tracking algorithms under the presence

of occlusion. The red line describes KCF tracker with score 0.536, the pink dotted line

is Boosting with score 0.438, the green dotted line is MIL with score 0.432, the black

line illustrates MedianFlow tracker with score 0.339 and the blue dotted line depicts

TLD tracker with score 0.282. Once more KCF outperforms Boosting by 9.8 % , MIL

by 10.4 %, MedianFlow by 19.7 % and TLD by 25.4 %. In the sequences that present

challenging scale, lighting and pose changes, MIL achieved the best performance. On

the other hand, MIL even though, obtained good results than the compared trackers

under the presence of partial occlusion, it could not handle full occlusions.

Figure 5.14: Success and Precision plot under the presence of occlusion

Tracker’s speed is directly related to the size of the tracked region and is a sig-

nificant factor when the comparison, between trackers based on correlation filter, is

made. If we decide to reduce our tracked region, to speed feature computation, this

will lead to slow down the performance of the tracker. The performance evaluation

is running on a PC with Intel i5-3350 CPU @ 3.10 GHz with 16 GB of RAM.

50

5.4 Converting 2D motion into 3D world coordi-

nates

The motion statistics and specifically the x and y position of the tracked players, is

extracted in an output file. Our goal will be to exploit this information to represent

the perspective video tracking coordinates to orthographic 3D coordinates in the 3D

space. For our system, some known parameters are existing. The focal length of the

camera is 29mm, the camera height in relation to the terrain is 5 meters, the resolution

of our video is 1280×720 pixels and y1 is the center of the height of the tracked player.

We transform u, v coordinates of the camera to correspond to the world coordinates.

Moreover, the position in 3D space is going to be displayed in respect to the upper

left corner. The dimension of the objects is not mandatory, we only interested in

object’s position. To determine which screen x-coordinate corresponds to a point at

Ax, Az, we need to multiply the point coordinates by:

Bx = AxBz
Az

(24),

where Bx is the screen x coordinate, Ax is the model x coordinate, Az is the subject

distance and Bz is the focal length.

In our case, the equation 24 becomes

U = f ∗ x
|z| (25)

V = f ∗ y
|z| (26)

for the U, V coordinates respectively.

y1 is 5000 milimeters (the camera’s distance from the ground), and to calculate

the unknown parameters of x position and z coordinate (depth) in 3D space, the

equations becomes

x1 = U1 ∗ |z1|f (27) solution for finding x coordinate

z1 = y1 ∗ f
v1

(28) solution for finding z1 coordinate

51

Figure 5.15: 3D projection diagram [34]

Figure 5.16: Transform the perspective video tracking coordinates to orthographic

3D coordinates

52

Figure 5.17 illustrates the position of three selected players in the first frame of

our application. The application enables to define the bounding box that contains the

preferable football player for the first frame. The tracker type is being initialized and

the application goes through the video’s frames, while the iteration process updates

the tracker to capture for the current frame the new bounding box.

Figure 5.17: The position of 3 players in the first frame

The motion results of each tracked player are calculated and the position of the

players in the 3D world is stored in an output file.

The tracked object’s distance is calculated, by using the Euclidean distance for-

mula. In a 3 dimensional plane, the distance between points (X1, Y1, Z1) and (X2,

Y2, Z2) is given by:

d =
√

(x2− x1)2 + (y2− y1)2 + (z2− z1)2

In our case XYZ values are in millimeters. To calculate the speed, we divide the

distance traveled by the moving object with the time taken to travel distance ’d’.

The average speed is the total distance traveled divided by the total time taken. For

example, for some of our distance values, an average speed would be 4268 mm/sec.

53

In the following figures is illustrated the number of the first player, the x and z

position in the 3D world (in milimeters).

Figure 5.18: The position of the first player in the 3D world, for the first 23 frames

54

Figure 5.19: The position of the second player in the 3D world, for the first 23 frames

55

Figure 5.20: The position of the third player in the 3D world, for the first 23 frames

56

5.5 Conclusion

The purpose of this thesis was to examine if it is possible to develop an applica-

tion for effective object tracking and detection in complex scenes, specifically in a

football game. This thesis has shown that this is undoubtedly achievable with ad-

equate precision and accuracy in the chosen video sequences. The implementation

was accomplished with the C++ interface of open source library OpenCV 3.2 inside

the Microsoft Visual Studio and the Multiple Instance Learning (MIL) and Kernel

Correlation Filter (KCF) online training tracking algorithms were tested. he pres-

ence of noise, scene illumination, object shape variation and total or partial occlusion

lead to significant problems in computer vision systems and make efficiently tracking

process into a challenging task. Football player tracking and detection is a funda-

mental procedure in nearly all football video analysis. The results can be utilized

at both a group and individual level. Football players can gain insight into their

physiological performance, for instance player’s covered distance extraction and tra-

jectory. Coaches can extract information about the quality of tactical analysis and

game strategy, strengths or weaknesses evaluation of the team’s opponent or player

and moreover, the verification of referee decisions. Furthermore, players’ tracking

information can be used by the broadcaster of a football match to provide enhanced

replays and statistical analysis for the football’s team supporter. The method can

also be applied to a wide range of applications such as vision-based human-computer

interaction. A huge amount of work is still required to be done, to show that this

implementation is sufficient in a larger scale during a live football game. All in all

this thesis has shown that the effectiveness of OpenCV with the combination of novel

tracking algorithms has a huge potential and can circumvent the arising difficulties.

57

Bibliography

[1] Zheng Pan, Shuai Liu1, Weina Fu A review of visual moving target tracking

Accepted: 26 May 2016, Springer Science+Business Media New York 2016.

[2] ”human retina” Online. Available: https://www.eurekalert.org/pub releases/2006-

07/uops-prc072606.php Accessed March 2017.

[3] Hou Z, Han C (2006) A survey of visual tracking. Acta Automatica Sinica

32(4):603617.

[4] P. G. O Donoghue, M. Boyd, J. Lawlor, and E. W.Bleakley. Time-motion analysis

of elite, semi-professional and amateur soccer competition. volume 41, pages 1-12.

TEVIOT SCIENTIFIC, 2001.

[5] A Review on Video-Based Human Activity Recognition [Online]. Available:

http://www.mdpi.com/2073-431X/2/2/88/htm Accessed May 2017

[6] [Online] https://www.youtube.com/watch?v=m- t aIlQwg Accessed May 2017.

[7] Zhaoquan Cai, Shiyi Hu, Yukai Shi, Qing Wang, Dongyu Zhang, Multiple human

tracking based on distributed collaborative cameras Multimed Tools Appl (2017)

[8] [Ching-Han Chen, Chien-Chun Wang, Miao-Chun Yan, Robust tracking of mul-

tiple persons in real-time video, Multimedia Tools Appl (2016)

58

[9] Sun L, Liu G (2009) Field lines and players detection and recognition in soccer

video. In: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, 1924

April 2009.

[10] Vandenbroucke N, Macaire L, Postaire J-G (2003) Color image segmentation by

pixel classification in an adapted hybrid color space. Application to soccer image

analysis. Computer Vision Image Understanding.

[11] [Xizhou Zhuang, Xina Cheng, Shuyi Huang, Masaaki Honda, Takeshi Ikenaga,

Motion Vector and Players Features Based Particle Filter for Volleyball Players

Tracking in 3D Space, Advances in Multimedia Information Processing - PCM

2015. Lecture Notes in Computer Science.

[12] Jia Liu, Xiaofeng Tong, Wenlong Li, Tao Wang, Yimin Zhang, Hongqi Wang,

Bo Yang, Lifeng Sun, Shiqiang Yang Automatic Player Detection, Labeling and

Tracking in Broadcast Soccer Video.

[13] Choi K, Seo Y (2011) Automatic initialization for 3D soccer player tracking.

Pattern Recogn .

[14] DOrazio T, Leo M, Spagnolo P, Mazzeo PL,Mosca N, Nitti M, Distante A (2009)

An investigation into the feasibility of real-time soccer offside detection from a

multiple camera system.

[15] M. Manafifard, H. Ebadi, H. Abrishami Moghaddam, Multi-player detection in

soccer broadcast videos using a blob-guided particle swarm optimization method.

[16] Online,Available:https://www.computer.org/csdl/trans/tp/2013/07/ttp2013071704-

abs.html[Accessed May 2017]

[17] Online,Available:http://grassroots.fifa.com/en/for-coach-educators/technical-

elements-for-grassroots-education/laws-of-the-game-for-small-sided-

formats/dimensions-of-the-pitch.html[Accessed May 2017]

59

[18] Introduction OpenCV Online Available: http://docs.opencv.org/3.2.0/d1/dfb/intro.html

Accessed February 2017

[19] OpenCV contributes [Online]. Available: https://github.com/opencv/opencv contrib

[Accessed April 2017]

[20] OpenCV tracking [Online]. Available: http://docs.opencv.org/3.0-

beta/modules/tracking/doc/tracking.html Accessed March 2017

[21] Long-term optical tracking UML [Online]. Available:

http://docs.opencv.org/3.0-beta/modules/tracking/doc/tracking.html [Accessed

May 2017]

[22] Long-term optical tracking UML [Online]. Available:

http://docs.opencv.org/3.0-beta/modules/tracking/doc/tracking.html [Accessed

May 2017]

[23] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Visual tracking with

online multiple instance learning. In Computer Vision and Pattern Recognition,

2009. CVPR 2009.

[24] Joo F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista, High-Speed

Tracking with Kernelized Correlation Filters, IEEE TRANSACTIONS ON PAT-

TERN ANALYSIS AND MACHINE INTELLIGENCE.

[25] KCF results [Online]. Available: http://www.robots.ox.ac.uk/ joao/circulant/

[Accessed May 2017]

[26] OpenCV download[Online]. Available: http://opencv.org/ [Accessed February

2017][Microsoft Visual Studio [Online]. Available: https://www.visualstudio.com

[Accessed February 2017]]

[27] Wu, Yi et al., ”Object Tracking Benchmark”, IEEE Trans. Pattern Anal. Mach.

Intell. 37 (2015): 1834-1848.

60

[28] Wu, Ye et al., ”Online Object Tracking: A Benchmark”, The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2411-2418.

[29] Ground Truth Data, Content,Metrics, and Analysis, Chapter 7

[30] ”Visual Tracker Benchmark”, Retrieved September 23, 2017, from

http://cvlab.hanyang.ac.kr/tracker-benchmark/datasets.html

[31] Jalal A S, Singh J. The state-of-the-art in visual object tracking. Informatica

Slovenia, 2012, 36(3): 227248

[32] B. Mao, J. Cao and Z. Wu, ”Web-based Visualisation of the Generalised 3D City

Models Using HTML5 and X3DOM,” vol. 2, no. 5, pp. 349-359, 2012

[33] Jung, J. Behr, and H. Graf, X3DOM AS CARRIER OF THE VIRTUAL HER-

ITAGE Fraunhofer Institut fr Graphische Datenverarbeitung, Darmstadt, Ger-

many

[34] 3D Projection diagram [Online]. Available: https://en.wikipedia.org/wiki/3D projection

[Accessed May 2017]

61

