

Video Tracking & 3D Visualization
Web Application

By Eleftherios Kalykakis

Technological Educational Institute of Crete, Department of

Informatics Engineering, School of Applied Technology, 201 8

THESIS PROJECT

Supervisor:

Major Professor

Athanasios G. Malamos

Technological Educational Institute of Crete

Department of Informatics Engineering

Video Tracking & 3D Visualization Web Application

[1]
 Eleftherios Kalykakis © TEI Crete 2018

Περιεχόμενα
List of Figures ... 2

Abstract ... 4

1 Introduction and Motivation ... 5

2 Object Tracking Background .. 8

2.1 What is Object Tracking? ... 8

2.2 Tracking vs Detection .. 8

2.3 Object Tracking Algorithms ... 9

2.3.1 Multiple Instance Learning Tracker (MIL).. 9

2.3.2 Tracking Learning Detection Tracker (TLD) ... 11

2.3.3 Kernel Correlation Filters (KCF) ... 13

2.4 Tracking on Web .. 17

2.4.1 OpenCV.js .. 17

2.4.2 Tracking.js .. 18

3 Web Technologies & 3D Visualization ... 21

3.1 HTML 5 video ... 21

3.2 3D in web & HTML5 3D Web frameworks... 22

3.2.1 Three.js .. 22

3.2.2 Babylon.js .. 23

3.2.3 PlayCanvas ... 25

3.2.4 X3DOM .. 26

3.2.5 Pros and Cons .. 27

3.2.6 Software Wrapper ... 28

4 Methodology & Implementation .. 28

4.1 Main Idea ... 28

4.2 Workflow & Difficulties ... 28

4.3 The C++ Tracking code ... 29

4.4 The App Interface .. 32

4.5 Sessioning .. 37

5 Experimental Results ... 38

5.1 Experiments Execution .. 38

5.2 Results Evaluation ... 42

6 Conclusions .. 43

6.1 Future Work .. 43

Video Tracking & 3D Visualization Web Application

[2]
 Eleftherios Kalykakis © TEI Crete 2018

List of Figures
1.1 Sentioscope [1] equipment ... 5

1.2 Sentioscope [1] in action ... 6

1.3 Sportcast [2] in action.. 6

1.4 Sportcast [2] in action.. 6

1.5 Optasports [4] tracking position data.. 7

2.1 Tracking versus detection [6] .. 8

2.2 Pseudocode of MIL tracker [9] .. 9

2.3 Online MILBoost [9] pseudocode .. 10

2.4 Tracking by detection with a greedy approach [9] .. 11

2.5 Updating a discriminative appearance model [9] ... 11

2.6 The block diagram of TLD [10] ... 11

2.7 P-N block Diagram workflow [10] .. 12

2.8 TLD Block Diagram [10] ... 13

2.9 Illustration of circulant matrix- The rows are cyclic shifts of a vector image [11] 13

2.10 MATLAB Algorithm with Gaussian kernel [11] .. 15

2.11 Table of parameters used in experiments. [11] ... 15

2.12 Kernelized Correlation Filter (KCF) results compared to Struck and TLD. [11] 16

2.13 Precision plot for all 50 sequences [11] .. 16

2.14 OpenCV logo [12] .. 17

2.15 Face Detection with HAAR Cascades [19] ... 18

2.16 Face Detection on Video Stream [19] ... 18

2.17 Background subtraction [19] ... 18

2.18 Meanshift and Camshift example [19] .. 18

2.19 Tracking.js Tracker Declaration and Usage [13] .. 18

2.20 Tracking.js video Color Tracker [13] .. 19

2.21 Tracking.js Color Tracker in image [13] ... 19

2.22 Tracking.js Object Tracker [13] .. 20

3.1 Flash video source [22] Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης.

3.2 HTML5 video source [22].................................... Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης.

3.3 Three.js rotating cube Example [24] ... 23

3.4 Simple Three.js scene setup with a rotating cube [24] ... 23

3.5 Babylon.js structure documentation [25] ... 24

3.6 Babylon.js example result [25] .. 24

3.7 Babylon.js example source code [25] .. 25

3.8 PlayCanvas online game engine environment [26] ... 25

3.9 PlayCanvas online 3D Editor [26] .. 26

3.10 SVG, canvas, WebGL and X3DOM relation [27] .. 26

3.11 X3DOM code in HTML [27] .. 27

3.12 X3DOM rendered result [27] ... 27

4.1 Algorithm Execution Process ... 29

4.2 Tracking Process Workflow ... 30

4.3 3D Transformation formulas ... 30

4.4 Simplified Transformation from 2D to 3D coordinations .. 31

4.5 Server algorithm workflow diagram .. 31

Video Tracking & 3D Visualization Web Application

[3]
 Eleftherios Kalykakis © TEI Crete 2018

4.6 Video Upload Page 1 ... 32

4.7 Video Upload Page 2 ... 32

4.8 Tracking Page ... 32

4.9 Visualization Page .. 32

4.10 Website Navigation Diagram ... 33

4.11 Upload Video workflow diagram ... 34

4.12 Tracking page Usage .. 34

4.13 Track workflow diagram .. 35

4.14 Visualization Page Usage ... 36

4.15 Visualization page workflow diagram ... 36

4.16 Animate function workflow diagram .. 37

4.17 MoveAvatar function workflow diagram .. 37

5.1 Position Estimation Calculator .. 38

5.2 Experimental Example 1 .. 38

5.3 Experimental Example 2 .. 39

5.4 Experimental Example 3 .. 39

5.5 Experimental Example 4 .. 40

5.6 Experimental Example 5 .. 40

5.7 Experimental Examples Table.. 41

Video Tracking & 3D Visualization Web Application

[4]
 Eleftherios Kalykakis © TEI Crete 2018

Abstract

The entry of technology into sports has been enormous over the last years. It has
covered almost every part of all existing sports and data are being mined from everything
that can affect a sport’s event flow. From calculating the distance travelled from an athlete
or the height that jumped or the distance threw an object, to how much effort he makes to
achieve a result, sometimes a time limit, sometimes a speed limit and much more things.
Some of these calculations require the usage of specific equipment either wearable or pre-
installed in the environment. Although a big amount of data is exported from video analysis
all these processes that are involved to this procedure. Video Tracking or Object Tracking is a
major process in the hands of sports’ data analysts, who use video analysis to export data,
that gives them the opportunity to derive a huge amount of data only by analyzing a video.
In this project an idea of a web application that helps every person interested in getting data
from video analysis in a football match is implemented. This application allows user to mark
and track a player’s position in a video, transform it to 3D world coordinates and visualize
them into a virtual 3D environment.

Video Tracking & 3D Visualization Web Application

[5]
 Eleftherios Kalykakis © TEI Crete 2018

1 Introduction and Motivation
Over the years, during a sports event, football, basketball, Olympics etc., as spectators

or participants we all wanted to have more data about what we see. To be able to see the
details behind the viewable part. All these data and statistics that show how good is a player
or how efficiently moves in the area. This forced people to start implementing various
solutions about this. The first implementations were about keeping statistics of matches and
players, a thing that helped in keeping history data of all events and achievements. Later on,
with the insertion of video and replay ability things became more interesting and powerful.
That was the point where companies came into the game and implemented various
solutions about it. Replay analysis, and highlighted spots on videos were the first things that
shown up. The last years and with the evolution of technology, those systems evolved also,
and more things became possible to happen, such as 3D video replay analysis. A cameras
network covers key spots of the pitch and by combining their images, there is the ability of
creating an all-around optic view of the pitch. As an evolution of this system, some football
associations installed cameras on the stadiums with a general optic view of the pitch,
helping them spot and track players during the whole time of the match, providing this way
high precision statistics about teams and players. It started being implemented in other
sports, but it’s not that much used as in football. This insertion is also exploited from the
teams participating in the league, using these data for their own improvement. Over the
years there have been a lot of video tracking applications and software to recognize and
track objects inside a video. Especially in sports events where all the possible exported
positioning or movement data can bring useful conclusions about the players, to help them
evolve and react better and faster in similar situations. A lot of companies and organizations
have come up with software and solutions about this. Some examples are Sentioscope an
application of Sentio Sports Analytics [1]. In Sentioscope players are marked in the video and
get tracked and their 3D positions are provided in real-time giving the impression of a live
radar/map of the field, in addition with other useful data for each player such as his covered.
Sportcast [2] A company of the DFL German Football League [3], which is responsible for
exporting useful data from video analysis and tracking for German Bundesliga. It uses a
camera system that gives a general point of view of the pitch that gives the opportunity to
the operators to have a complete access to all the action area of the match, the pitch. They
track the players and many other statistics which help them provide as good as possible a
match review in numbers.

1.1 Sentioscope [1] equipment

Video Tracking & 3D Visualization Web Application

[6]
 Eleftherios Kalykakis © TEI Crete 2018

1.2 Sentioscope [1] in action

1.3 Sportcast [2] in action

1.4 Sportcast [2] in action

Another similar company example is Opta Sports [4], who apart from football and
some of its most famous leagues coverage such as English Premier League, MLS, LaLiga etc.
They are active also in other sports such as Basketball, Rugby, Baseball etc.

Video Tracking & 3D Visualization Web Application

[7]
 Eleftherios Kalykakis © TEI Crete 2018

1.5 Optasports [4] tracking position data

Apart from professional implementations, in a more general scope apart from sports, big
interest is shown about computer vision from the academic community with numerous of
researchers and students are working on various object recognition, object tracking, motion
tracking etc. projects, a thing that helps the greater computer vision community evolve day-
by-day and provide a big amount of solutions to new people who get involved with it.
Unfortunately, all these implementations either professional or not, are all stand-alone
applications. There aren’t any applications doing tracking and visualizing a player’s position
from video to 3D in web environment. The most accurate relevant example was an
implementation from lusob [5], who created a football match tracker using only web
technologies (HTML & JavaScript), that tracks players and ball. But it doesn’t export any data
and works only with specific colors. So, in that point the idea of creating a web application
that can be used from everybody, professional or not, and will give him the opportunity to
track player or players from whatever football video he wants and visualize their positions
real-time in 3D world shows up. Based on the instant usage of web and mobile devices, so
the user can extract data from video by using only his phone or a web browser. The
application is created strictly with web technologies and works on web browser
environment. It enables user to:

 Upload a video

 Mark the players he wants and track them

 Export and visualize their positions in 3D-world coordination

The application will be able to run anywhere, because its built primarily with web
technologies that are compatible with the most existing active browsers, which gives us the
advantage of mobility. The tracking algorithm is the only part that it’s not built with web
technologies mainly because of the demanding on resources to calculate positions in each
frame. So, it built it using C++ in combination with OpenCV library. It’s a frame-by-frame
tracking process implementing MIL tracking algorithm, with a position transform formula
included from 2D to 3D for each object’s position detected on screen. With this
transformation the results are exported ready on 3D world coordinates, something that
does the visualization process easier.

Video Tracking & 3D Visualization Web Application

[8]
 Eleftherios Kalykakis © TEI Crete 2018

2 Object Tracking Background

2.1 What is Object Tracking?
As Object Tracking we call the process of locating and following one or more moving

objects into a video’s frame sequence [6]. It’s a process that is commonly used in computer
vision and machine learning and sometimes it’s related to these terms. There are two types
of trackers for simple and multiple tracking processes. In simple trackers the tracked object’s
position on frame is specified with a rectangle and according to the tracking algorithm used
it “follows” the object’s position in the subsequence frames. In multiple trackers we do the
same position specification as in simple, but before use the tracking algorithm, an algorithm
to specify the rectangles matching between frames is needed. A very well-known respective
algorithm and commonly used is Kalman filtering [7], which is one of the most famous
algorithms for object’s location variation. There are also, Dense optical flow algorithms, who
estimate the alteration of every pixel in a video frame and Sparse algorithms, who track the
location of feature points in an image. Kanade-Lucas-Tomasi (KLT) [8], is a typical example of
Sparse optical flow algorithm.

2.2 Tracking vs Detection
But here arises a serious question. Why tracking and not just repeated detections?

The answer is clear. Detection algorithms are slower than tracking algorithms. When a
detected object in the previous frame is tracked, many information about object's
appearance are obtained.

2.1 Tracking versus detection [6]

Location and speed of its motion and the direction in the previous frame, are some of

them. In the currently examined frame, all this information can be used to predict the
object’s new position in the next frame. To locate the object more accurately, a limited
search needs to be done around the expected location. A detection algorithm starts from
the beginning, while a reliable tracking algorithm takes advantage of the acquired
information about the object to that point. Accordingly, to design an efficient system, most
of the time, an object detection is performed on every nth frame, while we run a tracking
algorithm in the n-1 frames in between. Someone may wonder, if it is more achievable to
simply detect the object in the first frame and track afterwards. Tracking can take advantage
of the information that are obtained, but the accuracy of the procedure is uncertain when
the moving object goes behind other objects or an obstacle for a long period of time or
moves too fast. In addition, tracking algorithms often accumulate errors and the bounding
box that tracks the object slowly slides away from the tracked object. To deal with these
problems, a detection algorithm runs from time to time. Since detection algorithms are
trained on object's instances, more information is known about object's general class. In a

Video Tracking & 3D Visualization Web Application

[9]
 Eleftherios Kalykakis © TEI Crete 2018

different manner, tracking algorithms have more knowledge about the specific instance of
the class they are tracking. An efficient tracking algorithm will be able to handle occlusion,
while detection fails. Further-more, tracking algorithms help preserving object's identity. An
array of rectangles that contain the object, is the output of object detection, yet there is no
identity attached to the object. For example, if we want to detect 10 moving circles in a
video the output will be the rectangles matching to all the circles the detector has detected
in one frame. In the next frame, another array of rectangles will be the output. The problem
is that in the first frame, a specific circle might be defined by the rectangle at location 12 in
the array and in the next frame, it could be at location 15. If detection is being used on one
frame, there is no indication which rectangle corresponds to which object, and the solution
is tracking, because provides a way to associate the circles.

2.3 Object Tracking Algorithms

2.3.1 Multiple Instance Learning Tracker (MIL)
Multiple Instance Learning (MIL) [9] algorithm, is developed based on the hypothesis

of tracking an object in a video, knowing only its position on the first frame, and anything
more about it. A solution to this problem comes with an approach of tracking by detection
techniques. In this case algorithm separates object from background and subtracts the
second one. MIL tracking system generates several potential positions (mentioned as
positive examples) by searching in a neighbor area of present location. In MIL, positive
examples are presented as sets known as “bags” which are labeled with necessary tags. It’s
not necessary in a positive bag all examples to be positive examples. If a positive label is
attached to a bag, that means that this bag contains at least one positive indication,
otherwise the bag is negative. In the authors approach of paper “Visual Tracking with Online
Multiple Instance Learning” [9], MIL framework is selected, because it gives them the
opportunity to change the appearance model by combining other images, although the
image patch that accurately captures the object they are interested in, is not known. As a
result, an easy to implement and effective algorithm, with fewer tweaked parameters built.

2.2 Pseudocode of MIL tracker [9]

Video Tracking & 3D Visualization Web Application

[10]
 Eleftherios Kalykakis © TEI Crete 2018

This process trains an online classifier to have more secure and accurate results and
deal with the situation of drifting from wrong labeling of the samples by the tracker.
MILBoost [9] is the algorithm on which paper’s [9] authors used to produce their MILTrack
[9] system.

2.3 Online MILBoost [9] pseudocode

So how their [9] approach work. A discriminative classifier is composing the
appearance model, that estimates position based on the image’s patch representation in
feature space. The object’s existence in the image of interest is represented with a variable.
The tracker maintains the object location at every time step, to achieve better
computational efficiency and simplicity in the algorithm. Then a set of images, is cropped out
of each new frame, if they exist in the search area of the tracker. The radius delimits the
definition of positive instances during initialization. In the tracker’s location update process a
greedy strategy is used to avoid maintaining a new location for each frame. Alternatively, a
model based in motions choses, tracker is expected to appear at every step time, of course
within the specified radius. After the update of the tracker’s location, the appearance model
is updated also, using the revised version of MIL algorithm which is now trained with labeled
bags. So, as soon as the set of patches is cropped out, this bag is positive labeled when their
distance from center point is smaller than radius.

Video Tracking & 3D Visualization Web Application

[11]
 Eleftherios Kalykakis © TEI Crete 2018

2.4 Tracking by detection with a greedy approach [9]

2.5 Updating a discriminative appearance model [9]

2.3.2 Tracking Learning Detection Tracker (TLD)
TLD (Tracking, learning and detection) [10] algorithm breaks down the process of long-

time learning, in three sub tasks: Tracking, Learning, Detection

2.6 The block diagram of TLD [10]

Video Tracking & 3D Visualization Web Application

[12]
 Eleftherios Kalykakis © TEI Crete 2018

The object is tracked in every frame. During Detection procedure the detector
calculates the frequency of appearances of the object and corrects the tracker. The Learning
process keeps track of the errors happened in order not to happen again. Tracking
procedure collects the revised data from previous two and tracks the object. This algorithm
introduces P-N learning method. Its main process is to evaluate the detector in each video
frame. As mentioned, the responses returned are processed by two types of mavens, P that
undermines the missing detections and N that undermines the wrong results. The detector is
constantly trained to avoid same errors happen again. In a case that the object is visible and
the motion from frame-by-frame is limited, the Tracker approximates the motion of the
model in successive frames. If the object leaves the camera view, will cause failure of the
Tracker and won’t have any chance to recover. The Detector does a full examination of the
image in each frame independently, to localize the whole range of appearances that have
been learned and observed in the past. The errors types of this Detector are as common
false negatives and false positives. The performance of the Tracker and Detector is observed
by the Learning process, which is responsible for generating training examples, to help the
Detector avoid errors in future processes. The P-N learning is expressed by the following
stages:

 a training classifier

 a set of labeled bags of instances, that form the training set

 the training method for the classifier

 functions named P-N, generated during learning negative and positive instances.

2.7 P-N block Diagram workflow [10]

To initialize the training process, a labelled set is imported to the set for train. Then,
this set is passed to the classifier that gets trained. The estimation of the classifiers error is a
critical point in P-N method. A false-positives estimation must be separated from false-
negatives estimation. Based on the current classification, the P-expert splits the unlabeled
set in two parts and each part is analyzed. Examples classified as negatives, are analyzed and
P-expert estimates false-negatives, labels them as positive and adds them to the training set.
Examples classified as positives, are analyzed by N-expert, which estimates false-positives,
labels them as negative and adds them also to the training set. The purpose of P-experts is
increasing the generality of the classifier by discovering new appearances of the object.
Generating positive training examples, is achievable if the P-expert identities are parts of
trajectory, which are reliable. The N-experts increases the classifiers discriminability, by the

Video Tracking & 3D Visualization Web Application

[13]
 Eleftherios Kalykakis © TEI Crete 2018

assumption that the object takes over one location in the image. The locations surrounding
is marked as negative when the location of the object is known.

2.8 TLD Block Diagram [10]

2.3.3 Kernel Correlation Filters (KCF)
A discriminative classifier that separates the surrounding environment from the target

object, is considered as basis for most state-of-the-art trackers. A natural image can change
trough time, so this classifier needs to be trained with sample patches, which are scaled and
translated. A model of data sets of moved patches was proposed from « High-Speed
Tracking with Kernelized Correlation Filters » paper [11]. According to Fourier, if a translation
model is used, learning algorithms turn out to be easier as more samples are added.
Correlation filters benefits from the fact that in Fourier, the convolution of two patches
corresponds to an element-wise product. Thus, correlation filters can indicate linear
classifiers output for image shifts or several translations straightaway. Authors [11] focused
on Ridge Regression with classical correlation filters and cyclically sifted samples, that
enables fast learning with O(nlogn) Fast Fourier Transforms. The main objective of the
training process is to find a function which will minimize the possibility of error. The basic
sample is a vector representing the object of interest, noted as x. The classifier needs to be
trained with several virtual samples and the base sample, which must be translated. The
cyclic shift operator models’ one-dimensional translations of this vector.

2.9 Illustration of circulant matrix- The rows are cyclic shifts of a vector image [11]

Video Tracking & 3D Visualization Web Application

[14]
 Eleftherios Kalykakis © TEI Crete 2018

Video Tracking & 3D Visualization Web Application

[15]
 Eleftherios Kalykakis © TEI Crete 2018

The functionality of the KCF is presented in the figure below as MATLAB code

2.10 MATLAB Algorithm with Gaussian kernel [11]

In the initial frame, authors [11] train the model at the initial frame’s position. To
make some context available, this image patch is bigger than targets. The detection over the
patch at the precedent position is done, for each new frame. This is when the targets
location updates, to this that generated the higher value. Finally, at the new position, a new
model is trained and "linearly interpolate the obtained values of and x with the ones from the
previous frame, to provide the tracker with some memory" [11] as authors mention. The
proposed KCF approach, using Gaussian kernel is implemented in MATLAB. The algorithm is
tested with two alternatives: one that takes the raw pixel values, and a second one that uses
descriptors with a size of cell of 4 pixels, Felzenszwalbs variant. Parameters required by the
KCF tracker, same to all videos and depicted in the following table.

2.11 Table of parameters used in experiments. [11]

Video Tracking & 3D Visualization Web Application

[16]
 Eleftherios Kalykakis © TEI Crete 2018

Authors [11] compared their tracking approach with TLD and Struck tracker on fifty
videos dataset instead of the original tests with 12 videos, using precision curve for the
performance criteria. Moreover, instead of using raw pixels, they add to the KCF tracker a
new variant founded on Histogram of Oriented Gradients features. If the center of the
predicted target is inside of ground truths distance threshold, then we consider that the
frame is properly tracked. Precision curves demonstrate the percentage value of correctly
tracked frames from a range of thresholds.

2.12 Kernelized Correlation Filter (KCF) results compared to Struck and TLD. [11]

Without any feature extraction, the KCF accomplished better results than a linear
filter. With Histogram of Oriented Gradients features, nonlinear KCF surpassed TLD and
Struck tracker. Tracker's speed is immediately related to the size of the tracking area and is a
significant consideration when the comparison, between trackers based on relational filter,
is made. They decided to reduce their tracked region, to speed feature computation, but this
decision slowed down the performance of the tracker.

2.13 Precision plot for all 50 sequences [11]

Furthermore, they experimented with sequence attributes, such as occlusion and
illumination changes, background clutter and out of view target. In occlusions and non-rigid

Video Tracking & 3D Visualization Web Application

[17]
 Eleftherios Kalykakis © TEI Crete 2018

deformations, KCF with HOG features surpassed the other algorithms. TLD's performance is
better in out of view sequences, because KCF lacks a failure recovery mechanism. Moreover,
this algorithm performed better in background clutter, while almost all of trackers are
severely affected, although it does not recover though from full occlusion.

2.4 Tracking on Web
All these algorithms generally work on standalone applications. Usually they are

inherited in software solutions that work independently as programs. The most common
programming languages used to write those programs are C++, Python and Java. This means
that they are not able to run on a web browser environment directly, because they won’t be
understandable due to the absence of JavaScript, the browser’s main language. Their
integration effort on browser started only a few years ago and there are not that many
implementations doing the same thing as standalone applications. Only OpenCV [12] and
Tracking.js [13] have some ready to use implementations but there are facing more the
detection part and face recognition. Tracking is used only on face and eye movement and
generally over web camera.

2.4.1 OpenCV.js
OpenCV [12] is a real-time computer vision library of programming functions. Initially

developed by Intel [14], supported by Willow Garage [15] later and then from Itseez which
lately came by Intel. The library comes under a license which is free to use for both academic
and commercial use. It comes with the most common object-oriented interfaces (C++, Java,
Python) and supported from all platforms (Windows, Linux, Mac OS, iOS and Android). It was
designed for efficient computations in real-time applications. Written in C/C++ gives library
the advantage of multi-core processing. Also, the fact that its enabled with OpenCL, gives
the ability of the hardware acceleration of the underlying platforms.

2.14 OpenCV logo [12]

After becoming worldwide known, OpenCV has a user community counting more than
47 thousand people and over 14 million downloads. It’s used from art to advanced robotics.
It’s currently running on version 3.4.1 in all platforms. Lately, and more specific after version
3.0 release, they introduced OpenCV.js, an implementation of various library’s functions in
JavaScript. The purpose of the new library is to help OpenCV inheritance in web
development and give the opportunity to developers and computer vision researchers,
access a variety of web-based OpenCV examples. OpenCV.js uses Emscripten [16] toolchain
to compile OpenCV functions into asm.js [17] or WebAssembly [18], and provide a JavaScript
API to be easier accessible for web applications. According to OpenCV.js instructions page
[19] , the library needs to be built from default OpenCV libraries using Emscripten [16]. After
build is complete a JavaScript file is produced and can be faced as a typical JavaScript file in
web development. It’s inserted into HTML code as all the rest files and gives the developer
access to all the implemented functions of OpenCV. Below there are several examples of
some functions of OpenCV.js in use:

Video Tracking & 3D Visualization Web Application

[18]
 Eleftherios Kalykakis © TEI Crete 2018

2.15 Face Detection with HAAR Cascades [19]

2.16 Face Detection on Video Stream [19]

2.17 Background subtraction [19]

2.18 Meanshift and Camshift example [19]

2.4.2 Tracking.js
Tracking.js [13] is a computer vision framework, containing algorithm and techniques

written completely in Html5 and JavaScript. It provides the user functions for face detection,
color tracking and feature detection. It has a very lightweight source code which is very
important on web development. It provides a variety of Tracker types, such as color tracker,
object tracker and custom tracker. They have very simple usage with just initialization as
variable and track purpose task initialization needed. Then, can be used as native JavaScript
objects.

2.19 Tracking.js Tracker Declaration and Usage [13]

Color Tracker can detect and track if we have a video the given color from the user or
any of the default known colors of the framework, yellow, cyan, magenta. It can also detect
any color user gives either named or hex code.

Video Tracking & 3D Visualization Web Application

[19]
 Eleftherios Kalykakis © TEI Crete 2018

2.20 Tracking.js video Color Tracker [13]

2.21 Tracking.js Color Tracker in image [13]

Object Tracker on the other hand can recognize only prefixed classifiers. These
classifiers are for face, mouth and eyes and are included inside frameworks library. User
doesn’t have the ability to add his own classifiers in the library. But the tracker has the same
easy usage as Color Tracker with initialization and calls from the JavaScript code.

Video Tracking & 3D Visualization Web Application

[20]
 Eleftherios Kalykakis © TEI Crete 2018

2.22 Tracking.js Object Tracker [13]

The last tracker category of the framework is Custom Tracker. As its name says is a
tracker that can be created from user and track specific things user wants, for example get
access to the camera and display the pixel matrix on canvas for each frame. It also has the
same simple usage, but it also needs to be inherited to the Tracker hyperclass.

Video Tracking & 3D Visualization Web Application

[21]
 Eleftherios Kalykakis © TEI Crete 2018

3 Web Technologies & 3D Visualization

3.1 HTML 5 video
HTML 5 [20] is the latest version of the HTML standard markup language and

constitutes the official language of presenting data on the Web. It was first published in
2014, to improve the already existing language version with support of the latest
multimedia, keeping it also both readable by humans and understood by computers and
devices. HTML5 includes detailed processing models to encourage more functional
implementations. For that reason, many new syntactic features are included. Elements like
<video>, <audio> and <canvas> were added to handle multimedia and graphical content, in
addition with SVG (scalable vector graphics) content and mathematical formulas from
MathML. The <video> element [21] first presented in 2007. The developer company
released a proclamation and states video as a first-rate component of the web. HTML5 video
support is evolving rapidly [22]. While Flash video, the predecessor of HTML5 video, is non-
searchable and often falls into incompatibilities since users usually don’t have a lately
updated browser, HTML5 video is more transcendent and appears to give a solution to these
problems. That’s because it’s highly searchable, it renders efficiently on mobile devices and
modern browsers, and is easy to style and integrate. All modern browsers now support
HTML5 video. If we talk on statistics, over half of users have a modern browser that supports
HTML5 video. To render HTML5 properly on older version browsers, developers use the
video element, but they keep Flash as a backup, in case HTML5 don’t work. That’s achieved
by embedding video in at least two of the three supported formats .mp4, .ogg/.ogv or
.webm. The element also supports multiple sources. Using any number of <source> tags, the
browser will choose automatically which of them to load. The ideal HTML5 video format
would:

 Have good compression

 good image quality

 low decode processor use

 Be license-free

 hardware video decoder should exist for the format

3.1 Flash video source [22]

Video Tracking & 3D Visualization Web Application

[22]
 Eleftherios Kalykakis © TEI Crete 2018

3.2 HTML5 video source [22]

HTML5 <video> tag comes up with a number of identities that give the video a sort of
functionality. Some of them are shown below:

 Loop – lets the video continuously play

 Autoplay – the video will play once the page is opened

 Poster – indicates the images that will be shown when a video is loading

 Controls – standard play, pause, sound controls

 Preload – download video in background before start to play.

HTML5 video is also fully style customizable using CSS and CSS3. Almost all attributes
can be edited. HTML5 makes video usage very easy and fast, thing that saves time to the
developer and offers the client a better and easier solution.

3.2 3D in web & HTML5 3D Web frameworks
The web has always been an information transfer and visualization mean, a restricted

one though, especially in the visualization part. Until lately, HTML developers either should
use CSS and JavaScript for animations and visual effects for their websites or had to install
plugins like Flash. With the addition of the canvas element to the language, in addition with
Web GL, and SVG images, this is no longer a problem! There are so many new features that
face various situations with graphics on the web, 2D and 3D. Of course, none of those
additions would be efficient if they couldn’t run fast. Thankfully, JavaScript has become fast
enough to be able to handle 3D games and manipulating video in real-time. Also, with the
implementation of Hardware accelerated compositing in browsers, CSS transitions and
transforms are piece of cake. This was the motivation for developers to proceed in the
creation of many web frameworks for 3D graphics, to enrich browsers visualization ability
even in 3D.

3.2.1 Three.js
Three.js is a JavaScript functions library creating and displaying 3D computer graphics

in a web browser. It was first developed in 2010 under the MIT license and enforces the
creation of GPU-accelerated 3D models and animations, using the JavaScript language, as
components of a website without any browser plugin needed. This is achieved thanks to the
WebGL library that Three.js is built on. The source code was first written in ActionScript,
until 2009 when it moved into JavaScript. The two strong points of this transfer were:

 No need of pre-compile

 Cross platform support

With the addition of WebGL, the renderer became easy part to implement as Three.js
was designed using rendering as module and not as core. This allows Three.js to run in every
browser that supports WebGL 1.0. It includes features like [23]: Effects, Scenes, Cameras,
Animation, Lights, Materials, Virtual reality etc.

Video Tracking & 3D Visualization Web Application

[23]
 Eleftherios Kalykakis © TEI Crete 2018

3.1 Three.js rotating cube Example [24]

3.2 Simple Three.js scene setup with a rotating cube [24]

3.2.2 Babylon.js
Babylon.js is an open-source WebGL/JavaScript 3DEngine supported by all modern

browsers. There is not much more theoretical coverage about the framework, but it
constitutes one of the most commonly used HTML5 3D web frameworks.

Video Tracking & 3D Visualization Web Application

[24]
 Eleftherios Kalykakis © TEI Crete 2018

3.3 Babylon.js structure documentation [25]

The basic example with a sphere on a plane is implemented below with the source
code following the result.

3.4 Babylon.js example result [25]

Video Tracking & 3D Visualization Web Application

[25]
 Eleftherios Kalykakis © TEI Crete 2018

3.5 Babylon.js example source code [25]

3.2.3 PlayCanvas
PlayCanvas is going away of a simple HTL5 3D framework and approaches the concept

of game engine. As they contend in their own site [24] “The Web-First Game Engine
Collaboratively build stunning HTML5 visualizations and games”.

3.6 PlayCanvas online game engine environment [26]

Video Tracking & 3D Visualization Web Application

[26]
 Eleftherios Kalykakis © TEI Crete 2018

It is open sourced under MIT license. The PlayCanvas Engine is considered as the
world's most advanced WebGL game engine. It uses JavaScript to program anything from
simple 2D games to advanced 3D graphics, all written in cross-platform HTML5 for every
major browser and device. The major features of PlayCanvas are:

 Tiny engine footprint, which means that it loads and executes quickly

 Mobile Optimized

 Very small compile step (close to 0)

 Easy debugging and profiling

These are only the key features of the game engine. There are a lot more are
mentioned on their homepage [24]. The most important tool of PlayCanvas is the online
editor. It is the most advanced WebGL authoring environment available. It contains a full set
of features to help speed up development giving the opportunity of real-time 3D models
design from the browser and include them directly in the project.

3.7 PlayCanvas online 3D Editor [26]

3.2.4 X3DOM
X3DOM [25] is an open-source JavaScript 3D framework, used to represent 3D content

in webpages. Since its developed on standard browser technology, there is no need of plugin
to work properly. In a few words, with X3DOM a 3D scene can be created and displayed by
using textual representation instead code. Nowadays, 3D content becomes a first-class
component inside HTML, just like the other core components of the language.

3.8 SVG, canvas, WebGL and X3DOM relation [27]

Video Tracking & 3D Visualization Web Application

[27]
 Eleftherios Kalykakis © TEI Crete 2018

The name X3DOM [25] is a result of the combination of two brevities. The first, X3D
("Extensible 3D Graphics"), suggests a standard for 3D graphics. The second is DOM
("Document Object Model"), which describes the interactions and representations
associated with the content of HTML documents [25]. X3DOM works as a description
language for the 3D content in a Web page, as ready to use HTML tags. X3DOM elements are
accessed through DOM operations, just like native HTML elements. Using X3DOM than other
3D libraries has several advantages [25] like:

 No plugins,

 Parts compatible with new HTML profile standard.

 Big and vital community.

 No need to learn new API, only knowledge of HTML and DOM elements.

So, if someone wants to use X3DOM to build an application, all what will need is a text
editor and a browser.

3.9 X3DOM code in HTML [27]

3.10 X3DOM rendered result [27]

There are several applications, with most of them be open-sourced. The most known
examples of these applications are Blender [26] and the Sun Microsystems’s Project
Wonderland [27].

3.2.5 Pros and Cons
Babylon.js and X3DOM can be characterized more like platforms, having their own

structure, with a lot of processing levels of a 3D model, until its ready to use in webGL or
GPU. As a result of this, they are easier-to-use for the engineer, but they present a limited
performance when 3D models are big and complex. Three.js can be Characterized more like
an API or a library set, a thing that puts it closed to webGL. It requires a more demanding
usage for the engineer and uses a highly programmatic approach of 3D model integration.
Although, it shows a really good performance for big and complex 3D models. PlayCanvas
used the definition of game engine to be characterized, so that puts it closer to Babylon.js

Video Tracking & 3D Visualization Web Application

[28]
 Eleftherios Kalykakis © TEI Crete 2018

and X3DOM, something which can be perceived from the similarity of their processes.
PlayCanvas differs on the point that can handle a bigger and more complex 3D models,
because of the usage of its own 3D editor. But still can’t reach the level of Three.js
performance. In this thesis we chose to use Three.js, because we were more interested in
the performance of the application.

3.2.6 Software Wrapper
The Wrapper is a software design pattern (also known as Adapter pattern) that allows

an existing program to be executed under another interface. It is commonly used to make
existing programs cooperate with other without touching any source code. It’s used to
create flexible and reusable object-oriented applications. A wrapper function in a software
library or a computer program has main purpose to call a subroutine, or do a system call
with little or no addition of code [28]. As a wrapper, we can define an entity that
encapsulates and hides the underlying complexity of another entity with a set of well-
defined interfaces. Wrapper libraries [29] contain a small part of source code that converts
an existing interface into a compatible to the technology used interface. This is done for
several reasons:

 Improve an Interface

 Combine code parts that couldn’t work together in other way

 Enable cross language and runtime interoperability

In a few words a Wrapper converts one interface to another so that it matches what
the client is expecting. This is very useful if someone wants to combine different
technologies in a project. For example, to take advantage of C++ speed and potentials, into a
web project, a completely different environment for C++ to work. With the usage of
Wrapper, C++ code is encapsulated in it and communicates with the web technologies part
in a common language.

4 Methodology & Implementation

4.1 Main Idea
The main idea of this thesis is to produce a web application with the main function of

tracking players positions and converting them into 3D world coordinates, so they can be
visualized into a 3D world environment. This procedure is designed for sports events videos,
in our case football videos. The main goal of this application is to provide users the ability of
doing the tracking and visualization process by using their own browser. That’s the major
difference from the already existing solutions, the ability to execute this process wherever
the user wants without any preparation action needed except connecting to the internet
and having a video to process. The process of extracting positions can be accomplished in
any video recorded by a conventional camera, without the need of specific equipment. The
supported video format is mp4, this restriction is put in order to ensure compatibility with
the HTML5 supported video formats.

4.2 Workflow & Difficulties
The whole project started from a basis of a tracking algorithm implemented in C++. Fast and

reliable algorithm but not as versatile as JavaScript algorithms. We came up with the

question if we could implement this algorithm completely built JavaScript and follow a

completely web technology approach in the project. After a small research on what libraries

or frameworks were available on video and object tracking the results showed that there

were pretty good libraries with OpenCV [12] and Tracking.js [13] look the most reliable.

Video Tracking & 3D Visualization Web Application

[29]
 Eleftherios Kalykakis © TEI Crete 2018

Unfortunately, as most of the libraries found their approach was closer to face and color

detection and recognition. Any implementations close to the main problem were in a very

primitive stage, something that wasn’t helpful. We also tried to build our own JavaScript

tracking algorithm, but it didn’t have the precision we needed. Under those restrictions, the

final decision was to keep the C++ algorithm and run it as a service on web. This was

achieved by using a software wrapper to make the algorithm friendlier to the web.

4.3 The C++ Tracking code
The Tracking code is based on the source code of the paper “Converting 2D motion

into 3D world coordinates in the case of soccer players video” [6], which was transformed in
the project’s requirements, in order to have accurate transformations from 2D to 3D
positions. The tracking process makes use of KCF alorithm to track the positions of players
on the screen. Lets have a closer look to the source code works.

4.1 Algorithm Execution Process

The user, through the HTML interface, provides algorithm a file with the variables to
be used for the tracking process. Algorithm set values to the variables and starts the tracking
process. More specifically, the values that sent from user are:

 the marked players rectangles in a way that OpenCV understands them

 camera height

 Tracking process duration

 The frame from which the process will start

 Focal length of camera

After the algorithm variables get those values, the process starts and exports the 3D
positions of the players.

Video Tracking & 3D Visualization Web Application

[30]
 Eleftherios Kalykakis © TEI Crete 2018

4.2 Tracking Process Workflow

The algorithm is fed with frames and for each one does a scan and locates the position
of tracker’s rectangle center on screen. Then this position is transformed into 3D by using 3D
projection formulas.

y = H (static)

4.3 3D Transformation formulas

Video Tracking & 3D Visualization Web Application

[31]
 Eleftherios Kalykakis © TEI Crete 2018

4.4 Simplified Transformation from 2D to 3D coordinations

4.5 Server algorithm workflow diagram

 The tracking duration depends on the framerate that tracking process uses and not
on video’s. So, the 2 seconds tracking process that sent from user (who works at a framerate
of 20-30 fps) would last longer for the algorithm depending on the number of players-
rectangles has to track (average works around 5fps for 2-3 player rectangles). After tracking
finishes the saved position data are encoded to JSON format and sent to user as file as data
for the vizualization.

Video Tracking & 3D Visualization Web Application

[32]
 Eleftherios Kalykakis © TEI Crete 2018

4.4 The App Interface
The user (client) side makes use of state-of-the-art web technologies. A PHP page with

support of the latest elements as video, canvas etc., with Bootstrap 4 CSS for the optical
beauty result and JavaScript (Vanilla.js) for the functionality. The whole website consists of 4
PHP pages, index page, the video upload page, the tracking page and the visualization page,
each one with its own style and functions.

4.6 Video Upload Page 1

4.7 Video Upload Page 2

4.8 Tracking Page

4.9 Visualization Page

The index page lets the user choose between starting a new tracking process in a
video that he uploads and visualize the last tracking process results. Depending on what he
will choose he will be redirected either on video upload page to select and upload a new
video for tracking from his local filesystem, or on visualization page to display the tracking
results in a 3D representation. The tracking page shows the user the video he chose, which
he can play or pause whenever he wants, until he reaches the spot that he wants to mark
the players he wants and sed the data to the server for the tracking.

Video Tracking & 3D Visualization Web Application

[33]
 Eleftherios Kalykakis © TEI Crete 2018

4.10 Website Navigation Diagram

Let’s see more extensible the two basic pages operations. Tracking page and
Visualization page. In the tracking page as we mentioned before provides user an interface
where he sees a video and marks on it the player he wants with rectangles. Because marking
things on a video is impossible, as the video plays, we draw each frame on a canvas where
we have the freedom of drawing things. So, the user marks the player he wants and saves
them in a file in order to be transferred to the server. In the same file are saved some more
data info, to help tracking algorithm be more accurate on his results for the specific video
that user has in process. These data are the camera height, the camera’s focal length and
the time duration of the tracking process he wishes to execute. Things that vary depending
on the video. When all these are saved in the file, this is sent to the server for the main
tracking process.

Video Tracking & 3D Visualization Web Application

[34]
 Eleftherios Kalykakis © TEI Crete 2018

4.11 Upload Video workflow diagram

4.12 Tracking page Usage

Video Tracking & 3D Visualization Web Application

[35]
 Eleftherios Kalykakis © TEI Crete 2018

4.13 Track workflow diagram

The visualization page appears to the user after the tracking process finishes and
server sends back the results response. The page loads the response file with the positions
data and draws them into a 3D configured canvas, using Three.js library. It has a simple
control panel from where user can choose the fps rate, start the animation, reset the
camera at initial point and reset the positions and start over animation. The processing
functionality is built completely in JavaScript with usage of Three.js library. The models and
data are processed really fast and thing that zeros the loading time. Very simple and low-
poly 3D models are used for much easier desired outcome. Concerning the animation, with
the usage of requestAnimationFrame function of JavaScript and a framerate control code
snippet the animation flow can be as smooth as user wishes to.

Video Tracking & 3D Visualization Web Application

[36]
 Eleftherios Kalykakis © TEI Crete 2018

4.14 Visualization Page Usage

4.15 Visualization page workflow diagram

Video Tracking & 3D Visualization Web Application

[37]
 Eleftherios Kalykakis © TEI Crete 2018

 4.16 Animate function workflow diagram 4.17 MoveAvatar function workflow diagram

4.5 Sessioning
As the project’s implementation progresses the problem of multiuser accessibility

arises. There should be users’ files isolation to avoid conflicts that may lead to data
corruption of users in case that there is parallel execution of two or more tracking processes.
A lot of techniques were examined with sessioning appearing as the most suitable for the
project’s purpose. With sessioning each user has his files isolated, making use of the session
identifier that each user’s browser creates by connecting to the application server. This
identifier accompanies the files created and edited from the user (video & data files). The
tracking algorithm benefitting from sessioning can now run and service more users by
creating an instance of himself for each user demands his services. This eliminates the case
of conflict between users and gives the application a higher level of credibility and integrity
of the results.

Video Tracking & 3D Visualization Web Application

[38]
 Eleftherios Kalykakis © TEI Crete 2018

5 Experimental Results

5.1 Experiments Execution
A series of experiments were executed to test the results that algorithm produces

taking samples from a specific football match, with as much ideal conditions for the
algorithm as could be. These conditions were a steady camera that covers as much area of
the field is possible and for ease of comparisons between real position and 3D position, a
pitch with already known dimensions. In experiments’ case a pitch of 100m x 60m
dimensions. Below are presented some key results of algorithm’s experimental execution,
compared with the actual approximate position in real field. As zero point for distances, the
nearest left corner of the pitch in front of the camera is set. Positions are estimated based
on a custom pitch position calculator.

5.1 Position Estimation Calculator

Position on pitch (m)

Start: (36, 41) Finish: (32, 34)
3D Position(m)

Start: (40, 41) Finish: (35, 36)

Deviation (|m|)
Start: (4, 0) Finish: (3, 2)

5.2 Experimental Example 1

Video Tracking & 3D Visualization Web Application

[39]
 Eleftherios Kalykakis © TEI Crete 2018

Position on pitch (m)

Start: (50, 30) Finish: (47, 24)
3D Position(m)

Start: (47,49) Finish: (43, 48)

Deviation (|m|)
Start: (3, 19) Finish: (4, 24)
5.3 Experimental Example 2

The first two examples are examining the case of tracking only one player each time. The

execution time is fast, and the results are more or less expected. Small deviation in X axis

and big in Z axis (depth) because of the tracking rectangle with static height.

Position on pitch (m)

P1 Start: (25, 18) Finish: (23, 9)
P2 Start: (27, 43) Finish: (27, 35)

3D Position(m)
P1 Start: (33, 40) Finish: (30, 40)
P2 Start: (36, 54) Finish: (34, 53)

Deviation (|m|)
P1 Start: (8, 22) Finish: (7, 31)
P2 Start: (9, 11) Finish: (7, 15)

5.4 Experimental Example 3

In the case of two players the only thing that had a sensible difference was the execution

time. The movement of the players was for a long time along the X-axis, so a smaller

deviation in Z-axis is observed.

Video Tracking & 3D Visualization Web Application

[40]
 Eleftherios Kalykakis © TEI Crete 2018

Position on pitch (m)

P1 Start: (47, 22) Finish: (40, 7)
P2 Start: (36, 43) Finish: (29, 36)
P3 Start: (29, 24) Finish: (28, 9)

3D Position(m)
P1 Start: (45, 51) Finish: (45, 52)
P2 Start: (37, 51) Finish: (38, 52)
P3 Start: (38, 41) Finish: (37, 41)

Deviation (|m|)
P1 Start: (2, 29) Finish: (5, 45)
P2 Start: (1, 8) Finish: (9, 16)

P3 Start: (9, 17) Finish: (9, 32)
5.5 Experimental Example 4

The same with three players. The execution time increased a lot and the danger of tracker’s

overriding was sensible, although without losing contact with the initial target.

Position on pitch (m)

P1 Start: (42, 14) Finish: (38, 7)
P2 Start: (33, 12) Finish: (35, 15)
P3 Start: (32, 21) Finish: (29, 16)
P4 Start: (30, 24) Finish: (24, 12)

3D Position(m)
P1 Start: (54, 50) Finish: (45, 50)
P2 Start: (40, 54) Finish: (42, 54)

P3 Start: (38, 51) Finish: (39, 49)x (lost)
P4 Start: (36, 51) Finish: (38, 49)

Deviation (|m|)
P1 Start: (12, 36) Finish: (7, 43)
P2 Start: (7, 42) Finish: (7, 39)

P3 Start: (6, 30) Finish: (10, 33)
P4 Start: (6, 27) Finish: (14, 37)

5.6 Experimental Example 5

Video Tracking & 3D Visualization Web Application

[41]
 Eleftherios Kalykakis © TEI Crete 2018

In the case of four players the execution time is just too long. The rectangle override

happened for one player, when the tracker override with another player and followed other

target. So, this calculation can’t be deserved as trustful. Below are some more experimental

examples results for 10 video samples.

Position on pitch (m) 3D Position(m) Deviation (|m|)

P1 Start: (63, 25) Finish: (55, 12)
P2 Start: (39, 39) Finish: (38, 27)
P3 Start: (38, 22) Finish: (33, 8)

P1 Start: (53, 50) Finish: (52, 49)x
P2 Start: (44, 44) Finish: (37, 43)

P3 Start: (41, 55) Finish: (39, 54)

P1 Start: (10, 25) Finish: (3, 37)
P2 Start: (5, 5) Finish: (35, 15)
P3 Start: (3, 33) Finish: (6, 46)

P1 Start: (60, 38) Finish: (50, 32)
P2 Start: (51, 42) Finish: (40,34)
P3 Start: (35, 27) Finish: (35, 21)

P1 Start: (50, 47) Finish: (48, 44)x
P2 Start: (44, 42) Finish: (41, 40)
P3 Start: (41, 53) Finish: (38, 52)

P1 Start: (10, 9) Finish: (2, 12)
P2 Start: (7, 0) Finish: (1, 6)

P3 Start: (6, 26) Finish: (3, 31)

P1 Start: (41, 21) Finish: (36, 4)
P2 Start: (55, 30) Finish: (46, 16)

P1 Start: (47, 48) Finish: (41, 47)
P2 Start: (40, 53) Finish: (35, 53)

P1 Start: (6, 27) Finish: (5, 43)
P2 Start: (15, 23) Finish: (11,

37)

P1 Start: (68, 16) Finish: (61, 5)
P2 Start: (58, 15) Finish: (50, 3)

P1 Start: (59, 52) Finish: (61, 48)x
P2 Start: (54, 55) Finish: (50, 53)

P1 Start: (9, 36) Finish: (0, 43)
P2 Start: (4, 15) Finish: (0, 50)

P1 Start: (54, 45) Finish: (44, 29)
P2 Start: (39, 39) Finish: (38, 27)
P3 Start: (33, 28) Finish: (36,16)

P1 Start: (47, 41) Finish: (41, 38)
P2 Start: (41, 48) Finish: (36, 46)
P3 Start: (41, 54) Finish: (37, 54)

P1 Start: (7, 4) Finish: (3, 9)
P2 Start: (2, 9) Finish: (2,19)

P3 Start: (8, 26) Finish: (1, 38)

P1 Start: (44, 43) Finish: (50, 32)
P2 Start: (33, 31) Finish: (40,34)
P3 Start: (46, 19) Finish: (35, 21)

P1 Start: (50, 47) Finish: (48, 44)x
P2 Start: (44, 42) Finish: (41, 40)
P3 Start: (41, 53) Finish: (38, 52)

P1 Start: (10, 9) Finish: (2, 12)
P2 Start: (7, 0) Finish: (1, 6)

P3 Start: (6, 26) Finish: (3, 31)

P1 Start: (57, 27) Finish: (31, 30)
P2 Start: (56, 28) Finish: (32, 27)

P1 Start: (50, 46) Finish: (50, 49)x
P2 Start: (49,48) Finish: (49,48)x

P1 Start: (7, 19) Finish: (19, 19)
P2 Start: (7, 20) Finish: (17, 21)

P1 Start: (57, 27) Finish: (31, 30)
P2 Start: (40, 24) Finish: (25, 24)

P1 Start: (50, 46) Finish: (49, 42)
P2 Start: (43, 51) Finish: (44, 47)

P1 Start: (7, 19) Finish: (17, 12)
P2 Start: (3, 27) Finish: (19, 27)

P1 Start: (65, 9) Finish: (50, 15)
P2 Start: (53, 15) Finish: (37, 15)
P3 Start: (44, 6) Finish: (26, 10)
P4 Start: (32, 9) Finish: (24, 5)

P1 Start: (57, 54) Finish: (55, 49)
P2 Start: (49, 49) Finish: (49, 46)x
P3 Start: (45, 54) Finish: (44, 51)x
P4 Start: (40, 55) Finish: (39, 53)x

P1 Start: (8, 45) Finish: (5, 34)
P2 Start: (4, 34) Finish: (12, 31)
P3 Start: (1, 49) Finish: (18, 41)
P4 Start: (8, 46) Finish: (15, 48)

5.7 Experimental Examples Table

The above experiments were executed on various video samples of same length of 10
seconds. The results that are marked with the red X (x), are marked as unreliable because
for some reason the tracker lost the object during the process. Either because of faster
movement that tracker can perceive, or because of losing focus due to passing behind other
object that cuts tracking process of the initial object.

Video Tracking & 3D Visualization Web Application

[42]
 Eleftherios Kalykakis © TEI Crete 2018

5.2 Results Evaluation
After the experiments execution completed some issues arise. Even the algorithm was

fast and reliable, we faced the problem of big deviation on the depth axis due to the absence

of a tracker responsive to the size change of the object. The fixed size tracker gave us zero or

to small translation to the depth axis, because the movement on this axis has to do with the

height of the object, according to the transforming formula. Another issue that appears is

the case that the camera moves and changes pointing target. This has as a result an

inconformity of the positions calculated where there was a movement of the zero point of

video (hypothetic the center of the field in the video) and the positions at the 3D world field

where the zero point is steady. That shows up a new problem that camera should be placed

at the center of the field level and cover as much as its possible of the field’s length. A

problem that depends on the video’s quality and the movement of the objects in it, is the

tracker’s override. If the video has low quality and the image is blur or the tracked players

cross each other, there is a conflict on the trackers’ data. This results in the trackers either

stick together and follow the same object in case of override or lose the tracked object and

stop in one place. Generally, it’s an algorithm needs some optimization in those cases, but

it’s very reliable on the results as the video we have gets closer to the ideal conditions.

These conditions are that the video is recorded with clear picture, a camera placed on the

field’s center level, pointing the center of the field, has wide angle of view and covers all the

length of the field and doesn’t move or rotate during the recording.

Video Tracking & 3D Visualization Web Application

[43]
 Eleftherios Kalykakis © TEI Crete 2018

6 Conclusions
The purpose of this thesis was to create a web application of tracking players positions

from soccer videos, exporting their positions and representing them in a 3D world
environment. A procedure that will be accessible for all, either professional or amateur users
that want to do this process from wherever they are, by accessing from their own browser.
The implementation of this project was accomplished by using C++ source conde with usage
of OpenCV library and the KCF algorithm for the tracking process part. For the web interface,
state of the art web technologies was used such as HTML5 and JavaScript. Its designed in a
way to simplify the ease of access either for a team coach who wants to see how his team’s
players respond tactically to various situations, or simple users who want to see how their
favorite players move and react. Even the players themselves can see how the react in some
situations that maybe were mistaken or had wrong reaction. Furthermore, this web
application can be used by the reporters that cover a football match or write their opinion
about it, to provide a more valid and powerful article with enhanced replays and statistical
analysis, helping them also strengthen their opinion and point of view.

6.1 Future Work
It is a project that still needs a lot of work and improvements to be done, in order to

be a sufficient and trustful application for massive usage. Some of the improvements that
need to be done are the reexamination of the transformation formulas to see if we can have
more accurate results on positioning, the usage of more detailed graphics and animations
and maybe the option of tracking and visualizing in real-time as much this is possible. But as
we saw above in the experimental results the most urgent improvement is the depth
positioning. This can be done by improving the tracker’s box or tracker’s rectangle as it’s
known in OpenCV. According to the Euclidian distance the position in depth of an object is
relative to its height, as seen from the camera. This means that the closer the object is to the
camera, the bigger it will be shown, so the further the smaller. As the tracking process is
performed with static height rectangles, there is no proper precision on positioning results,
because tis based only on the movement of the rectangle on this axe and not its size, which
would provide much more accuracy. Therefore, that’s the reason of the big deviation
observed on this axe in experimental results. So, the usage of dynamic height rectangles
based on object’s size in each frame would be an improvement of major importance.

Video Tracking & 3D Visualization Web Application

[44]
 Eleftherios Kalykakis © TEI Crete 2018

References

[1] "Sentio Sports Analytics," [Online]. Available: https://sentiosports.com/sports-solutions.html.

[2] "Sportcast," [Online]. Available: https://www.sportcast.de/.

[3] "DFL Digital Sports," [Online]. Available: https://www.dfl-digital-sports.de/.

[4] "Opta Sports," [Online]. Available: https://www.optasports.com/.

[5] "lusob.com," [Online]. Available: http://lusob.com/2012/02/tracking-a-football-match-with-

html5-and-javascript/.

[6] C. Eirini, "Converting 2D motion into 3D world coordinates in the case of soccer players video,"

p. 70, 2017.

[7] "kalman filter wiki," [Online]. Available: https://en.wikipedia.org/wiki/Kalman_filter.

[8] "KLT wiki," [Online]. Available:

https://en.wikipedia.org/wiki/Kanade%E2%80%93Lucas%E2%80%93Tomasi_feature_tracker.

[9] B. Babenko, S. Belongie and M.-H. Yang, "Visual Tracking with Online Multiple Instance

Learning," p. 8.

[10] B. Martinez, M. F. Valstar, X. Binefa and M. Pantic, "Local Evidence Aggregation for Regression

Based Facial Point Detection," p. 16.

[11] J. F. Henriques, R. Caseiro, P. Martins and J. Batista, "High-Speed Tracking with Kernelized

Correlation Filters," IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

p. 14, 5 November 2014.

[12] "OpenCV," [Online]. Available: https://opencv.org/. [Accessed 19 June 2018].

[13] "Tracking.js," [Online]. Available: https://trackingjs.com/. [Accessed 19 June 2018].

[14] "Intel Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Intel. [Accessed 19 June

2018].

[15] "Willow Garage Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Willow_Garage.

[Accessed 19 June 2018].

[16] "Emscripten," [Online]. Available: http://kripken.github.io/emscripten-site/. [Accessed 19 June

2018].

[17] "asm.js," [Online]. Available: https://en.wikipedia.org/wiki/Asm.js.

[18] "WebAssembly," [Online]. Available: https://webassembly.org/.

[19] "OpenCV.js Tutorial," [Online]. Available:

https://docs.opencv.org/3.4.1/d5/d10/tutorial_js_root.html.

Video Tracking & 3D Visualization Web Application

[45]
 Eleftherios Kalykakis © TEI Crete 2018

[20] "HTML 5 wiki," [Online]. Available: https://en.wikipedia.org/wiki/HTML5.

[21] "HTML video wiki," [Online]. Available: https://en.wikipedia.org/wiki/HTML5_video.

[22] B. Shero, "Shero Commerce," [Online]. Available: https://sherocommerce.com/html5-video-

and-what-are-the-advantages-of-using-it/.

[23] "Three.js wiki," [Online]. Available: https://en.wikipedia.org/wiki/Three.js.

[24] "PlayCanvas," [Online]. Available: https://playcanvas.com/.

[25] "x3dom," [Online]. Available: https://www.x3dom.org/.

[26] "Blender," [Online]. Available: https://www.blender.org/.

[27] "Open Wonderland," [Online]. Available: http://openwonderland.org/.

[28] "wrapper function wiki," [Online]. Available: https://en.wikipedia.org/wiki/Wrapper_function.

[29] "Wrapper library wiki," [Online]. Available:

https://en.wikipedia.org/wiki/Wrapper_library#C++_wrapper.

[30] Z. Kalal, K. Mikolajczyk and J. Matas, "Forward-Backward Error: Automatic Detection of

Tracking Failures," p. 4.

[31] "Three.js," [Online]. Available: https://threejs.org/.

[32] "babylon.js," [Online]. Available: https://www.babylonjs.com/#specifications.

