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Abstract 

Searching for data throughout the internet is not always an easy task. The reason for that 

is that the internet is flooded with data and the most common searching techniques often 

fail to provide the best possible results for the users’ needs. Therefore, researchers have 

for years been trying to find alternative ways of searching. Through that research, 

searching techniques based on semantic technologies have emerged. Over the years, 

search engines based on semantic technologies have gained a lot of popularity for their 

efficiency, but they are still under development. 

The end goal of this thesis is to examine the use of semantic technologies for 

bioinformatics data annotation by employing domain specific ontologies and also to make 

use of natural language processing methods in order to aid the non-bioinformatics expert 

users to successfully search for bioinformatics related tools using natural language 

through either text or a speech recognition system. In addition, we make use of more 

searching techniques to compare their efficiency and also to ensure that the framework 

that was created throughout this thesis, is be able to provide the user with the best possible 

results for his needs. 

For our experiments, a variety of questions of users searching for bioinformatics related 

tools from the SEQanswers.com forum were collected, and after having irrelevant words 

from those questions removed from two expert bioinformaticians, those questions were 

used as queries in the proposed framework. For the evaluation of the results, they were 

compared with the proposed tools that were given by forum users as answers for the 

collected questions. Our results indicate that in the majority, the framework’s results are 

relevant to the queries, with each searching technique having different precision and 

response times. 
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Περίληψη 

Η αναζήτηση δεδομένων στο διαδίκτυο δεν είναι πάντα εύκολη. Αυτό συμβαίνει επειδή 

το διαδίκτυο έχει πάρα πολλά δεδομένα και οι πιο διαδεδομένες τεχνικές αναζήτησης 

συχνά αποτυγχάνουν στο να παρέχουν τα καλύτερα αποτελέσματα για τις ανάγκες των 

χρηστών. Για αυτό το λόγο, ερευνητές προσπαθούν εδώ και χρόνια να βρουν 

εναλλακτικούς τρόπους αναζήτησης. Από αυτές τις έρευνες, ανακαλύφθηκαν τεχνικές 

αναζήτησης βασισμένες σε σημασιολογικές τεχνολογίες. Με τα χρόνια, μηχανές 

αναζήτησης βασισμένες σε σημασιολογικές τεχνολογίες έχουν απόκτηση πολύ φήμη για 

την αποτελεσματικότητά τους, όμως είναι ακόμα υπό ανάπτυξη. 

Ο τελικός στόχος αυτής της πτυχιακής εργασίας είναι να ερευνηθεί η χρησιμότητα 

σημασιολογικών τεχνολογιών για τον σχολιασμό δεδομένων βιοπληροφορικής 

χρησιμοποιώντας οντολογίες συγκεκριμένου τομέα και επίσης να χρησιμοποιηθούν 

μέθοδοι επεξεργασίας φυσικής γλώσσας με στόχο να βοηθηθούν χρήστες που δεν 

ειδικεύονται στην βιοπληροφορική να κάνουν επιτυχής αναζήτηση για προγράμματα που 

σχετίζονται με την βιοπληροφορική χρησιμοποιώντας φυσική γλώσσα με κείμενο ή 

ομιλία. Επιπλέον, χρησιμοποιούμε περισσότερες τεχνικές αναζήτησης για να 

συγκρίνουμε την αποτελεσματικότητά τους και επίσης για να διασφαλίσουμε ότι το 

πρόγραμμα που αναπτύχθηκε σε αυτή την πτυχιακή εργασία, παρέχει τα καλύτερα 

δυνατά αποτελέσματα για τις ανάγκες του χρήστη. 

Για τον αξιολόγηση του συστήματος, συλλέξαμε μία ποικιλία ερωτήσεων από χρήστες 

που έψαχναν για προγράμματα που σχετίζονται με την βιοπληροφορική από το φόρουμ 

SEQanswers.com, και αφού δύο ειδικοί βιοπληροφορικοί αφαίρεσαν μη-σχετιζόμενες 

λέξεις από τις ερωτήσεις, αυτές οι ερωτήσεις χρησιμοποιήθηκαν σαν ερωτήσεις 

αναζήτησης στο σύστημά μας. Για την αξιολόγηση των αποτελεσμάτων, τα 

αποτελέσματα συγκρίθηκαν με τα προγράaμματα που προτάθηκαν από χρήστες του 

φόρουμ σαν απάντηση για τις ερωτήσεις που συλλέξαμε. Τα αποτελέσματά μας δείχνουν 

ότι στην πλειοψηφία, τα αποτελέσματα του συστήματος σχετίζονται με τις ερωτήσεις 

αναζήτησης, ενώ κάθε τεχνική αναζήτησης έχει διαφορετική ακρίβεια και χρόνο 

ανταπόκρισής. 
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1. Introduction 
1.1. Speech Recognition 

In the past few years, speech recognition has been an active research area. It has for 

years been considered a good bridge of communication between human and machine 

since speech is the primary mean of human communication, but only recently 

technology grew enough for automatic speech recognition systems to develop in a 

usable level. It has been the most exciting area of signal processing and it continues to 

develop rapidly. Many applications use it nowadays to change the way we live and 

work for the better. Those applications include: Voice Search, Digital assistance, 

Gaming, Living room and in-vehicle informative systems. Though, speech recognition 

systems are still far from perfect. Even though the error rates have reduced significantly, 

with the most accurate system having approximately 91% word accuracy, they error 

rates are still high enough to make those systems usable for specific purposes only [1]. 

Older human-machine communication means such as keyboard and mouse are 

significantly more accurate and efficient which have kept speech recognition systems 

in the dark. But the desire for humans to communicate with machines in their most 

common mean of communication, speech, have kept people into trying to improve 

those systems more and more. Converting sound signal to text and creating a pattern 

out of free speech has been the main problem of the attempts to translate natural human 

speech into machine language over the years. 

1.2. Ontology-based Search 

Nowadays there is an enormous amount of data in the web. Therefore, searching for 

something in the web is not an easy task. To make it easier for the users to challenge 

with the massive data that is massively growing in the web and receive the desirable 

result, it is necessary to change the traditional search methods. When searching for 

something specific, a regular search engine retrieves data based on keywords. The user 

has to spend a decent amount of time to screen and filter [2]. That problem can be partly 

resolved by using Ontology-based search engines [3]. An ontology is a vocabulary that 

represents a specific domain or subject matter [4]. Each ontology contains a set of 

terms. Each term can be weighed differently in the searching process which changes 

the results for a given query. The weighing of the terms is made to suit the domain of 

each ontology and improve the accuracy of the resulted data. The use of ontologies for 

searching is a semantic technology technique. Therefore, a search engine that is based 

on ontologies is also considered a semantic search engine. 

1.3. Keyword-based Search vs Semantic Search 

The web is flooded with keyword-based search engines. The most popular are Google, 

Bing and Yahoo with 80.65%, 8.76% and 7.77% volume of search ratios respectively 
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[5]. That means that a total of 97.18% of the searches are done in just 3 keyword-based 

search engines. However, semantic search engines are an alternative to these regular 

search engines. In a keyword-based search engine, the query is processed for 

preprocessing and text cleaning and afterwards the search is done. The retrieved 

documents are based on the amount of the matching words with the query. However, 

in semantic search engines the results are based on more factors. The frequency of the 

words, the syntactic structure of the natural language and other elements. In semantic 

search, the system understands the exact requirement of the user’s search query and 

returns the corresponding documents which saves the user a lot of time discarding 

unrelative documents a regular search engine would have retrieved. Researchers have 

conducted a number of studies into evaluating the effectiveness of keyword-based 

search engines and some have proposed semantic technologies as a better alternative. 

Although the semantic search engines’ popularity is increasing, it still is in very low 

percentages of the population’s preferred search engines. Therefore, researchers have 

to improve such systems even more in order to retrieve more attention by the general 

public. Neither of the searching techniques is perfect, since a perfect search engine 

model would be the one that always returns the exact document the user was looking 

for. But the gap between present search engines and the ‘perfect search engine’ is 

constantly merging. 

1.4. The purpose of the study  

The end goal of this study is to  

I. Investigate the use of semantics for the annotation of free text with domain 

specific ontologies. 

II. Exploit open source systems in empowering the non-IT expert users to 

efficiently search domain specific content using natural language with the aid 

of specialized ontologies. 

III. Create a search engine that takes advantage of both keyword based and ontology 

based techniques and compare their efficiency.  

Our specific focus is to take advantage of existing research results and extend them in 

order to provide the users with the chance to represent their search queries in natural 

language (text or speech) and to dynamically find and retrieve suitable candidate 

resources, with the aid of information extraction algorithms guided by specific domain 

ontologies. For the proposed framework, we used the ontologies Embrace Data and 

Methods(EDAM) [6] and the Software Ontology(SWO) [7]. By taking advantage of 

Apache solr [8], we were able to translate the data from all the tools from the biotools 

registry [9] into ontology terms. By following the same process during the user’s search, 

we translate the user’s query into ontology terms, and by using a matching algorithm, 

we can determine the best tools from the biotools registry for the user’s needs. 
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2. Background 
2.1. Speech Recognition Background 

Speech recognition has been a matter of discussion for almost a century. The first 

machine to recognize speech was manufactured in 1920. A toy, commercially named 

as Radio Rex that would move in the hearing of the word ‘Rex’ [10]. Further research 

on speech recognition began in 1936 with the result being a speech synthesis machine. 

Researching was abandoned due to a false conclusion that Artificial Intelligence 

technology [11] would be mandatory for further success.  

In the 50s, the first attempts to create a system with automatic speech recognition were 

made. The main logic behind it was to identify the vowel part of each digit which could 

have a result of recognizing distinct syllables. The most successful achievement of that 

period was the vowel recognizer which was constructed at MIT Lincoln Labs [12].  

During the 1960-1970 decade, special hardware for speech recognition were built since 

computers were too slow. Many new labs entered that area of research which helped 

solve the problem of identifying the time frames of each speech event. Being able to 

detect when speech starts and ends, resulted into significantly better recognition scores 

and less variety in the results. In the decade to come, many milestones would be 

achieved. Firstly, singular word recognition would become a usable technology based 

on several studies. There was a significant increase in the use of pattern recognition 

ideas in speech recognition. Other researches showed how ideas of linear predictive 

coding [13] and dynamic programming methods [14] could be applied for speech 

recognition. Also, the variety in the vocabulary recognized by the systems was extended 

greatly which was probably the most important milestone achieved that decade. 

Figure 1. Radio Rex: The first speech recognition machine. 

(Source: https://www.pinterest.com/pin/158963061822822448/) 
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Another achievement of that decade was a system that would exclude a number of 

alternative results by using semantic information [15].  

Now that isolated word recognition was in a desired level, in the next decade, the 1980s, 

the target problem to be solved was to recognize connected words. Which would as a 

result have a system able to recognize a string of words spoken one after the other. To 

achieve that, an algorithm to create a pattern by connecting individual words had to be 

used in various ways. Many matching procedures were used with each of them having 

its own implementation advantages. The one matching procedure that stood out that 

decade was the Hidden Markov Model [16] approach. That technique, with some 

improvements, is being used today on most of the practical speech recognition systems. 

Hidden Markov Model(HMM) is a doubly stochastic process that can be observed only 

through another stochastic process that produces a series of observations. Another 

technology introduced in the 80s was the idea of applying neural networks to solve 

problems in speech recognition systems. Although those networks were introduced in 

the 50s, they were not as useful initially because of the many practical problems they 

had at that time. In the 80s though, there was a deeper understanding of the strengths 

and limitations of neutrals networks which made them useful in improving speech 

recognition. Using the systems mentioned above, a large research program was 

introduced that aimed at achieving high word accuracy for a 1000 word continuous 

speech recognition, database management task. That program was called DARPA [17] 

and it was achieved with major research contributions from many significant 

laboratories.  

In the 90s, many innovations took place in the pattern recognition area. The problem of 

pattern recognition which required estimation of distributions for the data, changed into 

a problem involving minimization of the empirical recognition error. This fundamental 

change happened because it was accepted that the Bayes decision theory [18] could not 

be applied on speech recognition with the desired accuracy since it focused on 

providing the most fitting of a distribution function to the given dataset rather than 

helping to achieve the least recognition error, so that theory became inapplicable. This 

error reducing concept produced many techniques like discriminative training [19] and 

kernel based [20] methods. The Minimum Classification Error(MCE) [21] criterion 

together with a corresponding Generalized Probabilistic Descent(GPD) [22] training 

algorithm was an example of discriminative training and acted to approximate the error 

rate. One more example was the Maximum Mutual Information(MMI) [23] criterion. 

In this training, the common information between the acoustic observation and its 

correct lexical symbol averaged over a training set is maximized. Both MCE and MMI 

can lead to the best possible speech recognition performance. A key issue in those 

techniques, is choosing the most fitting speech material to train the recognition 

algorithm which actually means learning parameters of primitive speech patterns used 

to define basic speech units. The DARPA and HMM systems were also furtherly 

evolved in that decade. 
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During the next decade, the 2000s, some clustering techniques [24] were developed as 

well as a variational Bayesian estimation. This Bayesian approach was based on a 

posterior scattering of parameters. The problem of adaptive learning in speech 

recognition was solved by a technique that was developed and there was an introduction 

of the active learning algorithm [25] for automatic speech recognition. There were some 

improvements on Large Vocabulary Continuous Speech Recognition system [26] in 

2005 to improve performance. In the next couple of years there was an analyzation of 

the difference in acoustic features between spontaneous and read speech using a big 

speech database. The application of Conditional Random Field [27] to combine local 

posterior estimates provided by multilayer perceptions was explored and they also tried 

to overcome time dependency problems by applying straight forward template 

matching methods. Around 2007, there was a proposal of using an alternative method 

that processes the group delay feature for processing the Fourier transform phase for 

extraction speech features [28]. 

2.2. Speech Recognition APIs 
2.2.1. The Microsoft API 

Microsoft’s Speech API [29] has been developing since 1993. There is a series of 

increasingly improving speech recognition platforms released since that time. Speech 

API (SAPI) 5.3 [30] was very useful and worked on Windows Vista. As they announced 

“Windows Vista includes a new WinFX namespace, System.Speech. this allows 

developers to easily speech-enable Windows Forms applications and apps based on the 

Windows Presentation Framework”. Microsoft’s focus was to increase emphasis on SR 

systems and improve SAPI by using Hidden Markov Model(HMM). Recently 

Microsoft made the following announcement “History Achievement: Microsoft 

researchers reach human parity in conversational speech recognition”. 

 

Figure 2. Experimental results of The Microsoft API on random audio files.  

(Source: https://pdfs.semanticscholar.org/2e7e/bdd353c1de9e47fdd1cf0fce61bd33d87103.pdf) 
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2.2.2. The CMU SPHINX  

The Sphinx system was developed at Carnegie Mellon University(CMU). It has a large 

vocabulary and it is an open source system. There are different versions for different 

tasks. Sphinx-4 [31] is written in Java and it supports finite grammar called Java Speech 

API and it doesn’t use the same structure for all models. CMU Sphinx uses a strong 

acoustic model by using HHM model with training large vocabulary and the latest 

version of an HMM-based speech. 

 

Figure 3. Experimental results of The CMU Sphinx system on random audio files. 

(Source: https://pdfs.semanticscholar.org/2e7e/bdd353c1de9e47fdd1cf0fce61bd33d87103.pdf) 

2.2.3. Cloud Speech API 

Cloud Speech [29] is an API created by google. Google has improved its speech 

recognition greatly by using a new technology that uses the deep learning neural 

networks. Google currently has by far the least percent of error rate with that being 

around 8%. Huge improvement in the past few years, in comparison with it being 

around 30 percent in 2013. According to Sundar Pichai, CEO of Google Inc. “We have 

the best investments in machine learning over the past many years. Indeed, Google has 

acquired several deep learning companies over the years, including DeepMind [32], 

DNNresearch [33] and JetPac [34]”. 
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Figure 4. Experimental results of Cloud Speech API on random audio files  

(Source: https://pdfs.semanticscholar.org/2e7e/bdd353c1de9e47fdd1cf0fce61bd33d87103.pdf) 

2.2.4. Comparison Chart 

 

Figure 5. Comparison chart between Sphinx4, Google API and Microsoft API.  

Word Accuracy (WA), Word Error Rate (WER) 

(Source: https://pdfs.semanticscholar.org/2e7e/bdd353c1de9e47fdd1cf0fce61bd33d87103.pdf) 

2.2.5. Speech APIs Conclusion  

As shown on the chart above, Google’s Cloud Speech API is by far superior than the 

other systems in terms of Word Accuracy(WA) which is approximately 91% and Word 

Error Rate(WER) which is by far the lowest with it being approximately 9%.  
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2.3. Systems taking advantage of Speech APIs 

With the rapid growth of systems that use speech recognition for a variety of reasons, 

there is a growth of need for speech recognition APIs as well. As shown on the 

comparison above, the most efficient speech recognition API is by far Google’s Cloud 

Speech API. There are many systems using this API as part of their functionality. 

One of them is Google Assistant [35]. Google is using their own Speech Recognition 

API for their virtual assistant called Google Assistant. This system has been improved 

by using the Deep Neural Networks(DNN)[36] method which has the ability to 

highlight the main component of the dialogue systems and also by using several new 

deep learning architectures. 

 

Figure 6. Google Assistant Structure. 

(Source: https://ieeexplore.ieee.org/document/8301638) 

2.4. Semantic Web Background 

Semantic Web term originated by Tim Berners-Lee in 1999 in his book “Weaving the 

Web” where he also described the importance of metadata [37]. In 2000, Taalee 

company wrote a detailed description of the possible capabilities of the semantic search 

engine and how it could make use of the semantic web [38]. Later that year, the first 

international event about the Semantic Web took place describing already implemented 

semantic applications including semantic search [39]. During the next year, Tim 

Berners-Lee along with James Hendler and Ora Lassila wrote an article called ‘The 

Semantic Web’ [40] which is now the most cited article ever existed featuring the 

semantic web. The article gave emphasis on describing ontologies, knowledge 

representation, the role of agents and made some notes about future applications on the 

Semantic Web [41]. In the years to come, a lot of commercial applications were built 

using the technology that was built by Taalee which was merged with Voquette and 

finally merged to became Semagix [42]. 

In 2005, Peter Norvig wrote a blog called “Semantic Web Ontologies: What Works and 

What Doesn’t” [43] that described problems that might occur by using semantic 

technologies such as lack of RDF [44] and OWL [45] files, multiple ontologies, CYC 

approach [46] to retrieving background knowledge, relying on the content supplier to 
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provide metadata and that the most significant information is mostly in plain text form. 

A blog that was later argued to be mostly inaccurate on what would cause a problem 

and what not in using semantic technologies.  

A few more years passed until big companies like Google and Bing started building 

large knowledge bases but eventually shied away from using Semantic Web standards. 

Microsoft acquired knowledge Powerset after realizing its importance. Apple created 

Siri which was using ontologies to capture knowledge. Google finally acquired 

Metaweb [47] which was consisted of 12 million facts initially and went along to build 

its own Knowledge Graph with automated and semiautomated tools. 

Since then this area is being developed more and more and as a result there are now 

numerous systems using implemented ontology web search engines. They are based on 

a common set of ideas but in contrary to the regular search engines, ontology-based 

search engines retrieve information after a process that uses knowledge of the domain 

ontology. Domain ontology is a structured list of terms that describe a specific domain 

and can be used as a knowledge base.  

2.5. Systems taking advantage of semantic technologies  
2.5.1. Swoogle 

Swoogle [48] was the first search engine for the semantic web and its main contributor 

was Li Ding. Swoogle is a crawler-based retrieval and indexing system for RDF and 

OWL documents. It consists of four main components: Semantic Web 

Document(SWD) discovery, data analysis, metadata creation and interface [49]. The 

SWD discovery component is responsible for searching and finding Semantic Web 

Documents throughout the web and keep up with the SWDs’ updates. The second 

component, metadata creation, caches a snapshot of a semantic web document and it 

generates objective metadata about it in both syntax and semantic level. The data 

analysis component uses the result data of the previous two components to derive 

analytical reports. Lastly, the interface component’s focus is to provide data to the 

Semantic Web community. Those four components of Swoogle can work 

independently and on  different tasks. 

 

Figure 7. An overview of the swoogle architecture. 

(Source: https://www.slideshare.net/suchinipriyangika/swoogle-69623597) 
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2.5.2. Watson Search Engine 

Watson Search Engine [50] by IBM  is called the gateway for the Semantic Web and it 

is an ontology-based semantic search engine that focuses on web ontologies. It searches 

ontologies and semantic documents by using keywords and restrictions that are related 

to the type of the entities. It retrieves metadata about the ontologies that characterizes 

each ontology such as the labels, size and comments. It also sometimes retrieves 

reviews of other users about the ontology. Watson can retrieve measures regarding 

ontologies and entities such us the depth of the hierarchy of an ontology. This allows 

applications to define selection criteria and filters. It also explores the content of each 

ontology through functions that include the possibility to ask for the subclasses of a 

RDF, DAMN or OWL class. Watson consists of three core activities and each one of 

them corresponds to a layer of its architecture. Those layers are the following:  

• The ontology crawling and discovery layer: It explores ontology-based links 

and it collects the available semantic content they provide. 

• The validation and analysis layer: It is the core of the Watson’s architecture, it 

checks the quality and it makes sure that the data of the semantic information 

collected is computed, stored and indexed. 

• The query and navigation layer: It allows access to the data indexed by the 

previous layer through various mechanisms that allow exploring its semantic 

features. 

 

Figure 8. A functional overview of the main components of the Watson architecture. 

(Source: https://www.researchgate.net/figure/A-functional-overview-of-the-main-components-of-

the-Watson-architecture_fig1_48989644) 

2.5.3. IBRI-CASONTO 

IBRI-CASONTO [51] was created as a ontology-based search engine for College of 

Applied Sciences(CAS), Sultanate of Oman. It supports English and Arabic and it is 

based on the RDF dataset and Ontological Graph. The IBRI-CASONTO system follows 

several steps to generate an efficient and scalable ontological graph.  

• First step, the user determines the domain of the ontology. 

• Second step, the user determines the language of the ontology as well as the 

editor. 
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• Third step, creation of the ontological graph. 

• Fourth step, the definition of all the Classes and their sub and super-classes. 

Furthermore, in that step, the relationships between all classes are defined. 

• Fifth step, the instances of each class are defined also called as individuals.  

• Sixth step, the domain and the range of each property is defined as well as the 

relationships between the individuals. 

• Seventh step, the data property is created, and the construct, range and domain 

are defined for each property.  

 

Figure 9. IBRI-CASONTO Structure. 

(Source: https://www.researchgate.net/figure/IBRI-CASONTO-Structure_fig2_312517116) 

2.5.4. PASS 

Personalized Abstract Search Services(PASS) [52] by the IEEE Neural Network 

Council(NNC) is a web-based system used for searching abstracts of research papers. 

It uses fuzzy ontology [53] of term associations to support this feature. This system 

uses a user’s query and in response it displays results based on a keyword-based 

retrieval and it provides a set of terms lists for query refinement. Pass will also provide 

suggestions to the most relevant documents that are related to the user’s query and a 

list of related terms that are based on a collaborative filtering. This is a technique that 

recommends the papers that could be related to the user’s interests based on his own 

interests or on other users with similar interests. PASS also provides shopping cart like 

facilities and personalized folder features. 

2.5.5. GOseek 

GOseek [54] is a biological search engine. Its main function is after given a set of genes 

to return the most important genes that are semantically related to the genes given. The 
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resulted genes are annotated to one of the Lowest Common Ancestors of the Gene 

Ontology(GO) [55] terms annotating the set of genes that are given. Afterwards it 

encodes the contribution of those terms into a numeric format. GOseek returns a 

numerical value which corresponds to the similarity of the GO terms with the given set 

of genes. It supports keyword-based queries with a specific form and as a result it 

returns a set of genes that is semantically related to the given set of genes. 

2.5.6. NCBO Resource Index 

Resource Index [56] is an ontology based index created by the National Center for 

Biomedical Ontology(NCBO). It uses 22 data resources and a set of over 200 ontologies 

in various domains. It also offers its users a user interface that allows them to search in 

multiple resources simultaneously using domain terms. The Resource Index processed 

metadata describing data elements to create semantic annotations of those metadata. It 

makes use of BioPortal [57] by using a concept recognition tool that identifies terms 

from BioPortal’s ontologies and finds the corresponding element with the identified 

terms. 

BioPortal is a huge library that contains 245 biomedical ontologies and it provides 

access to the public. The users can browse, visualize and comment on ontologies either 

through a web interface or programmatically using web services. A number of its 

ontologies is contributed by the Open Biomedical Ontologies Foundry(OBC) [58], an 

effort to collect a collection of ontologies for biomedical use. Apart from OBC’s 

ontologies, BioPortal also uses available terms from the Unified Medical Language 

System(UMLS) [59]. BioPortal contains ontologies available in multiple formats such 

us OWL, OBO, RDF(S) and RRF. 

To access BioPortal, the Resource Index uses BioPortal REST services. It creates a 

dictionary of terms that is meant to be used for direct annotations of data elements in 

biomedical resources. This dictionary contains 6,835,997 terms extracted out of 

3,349,338 concepts from 206 ontologies, numbers that are still growing. Each concept 

is derived by either a unique URI contained in the ontologies or provided by the NCBO.  

Apart from the ontology terms, another big source of information for the Resource 

Index is the data elements from the biomedical resources. The Resource Index currently 

has 22% of the publicly available biomedical resources indexed. Those biomedical 

resources are mostly formatted in XML [60] and most of them offer access through web 

services. The Resource Index used a custom wrapper to access each resources’ 

information which extracts the fields describing the data elements. After accessing the 

data elements describing each biomedical resource, the Resource Index follows 4 steps 

to create annotations: 

I. Creation of direct annotations with ontology terms.  

II. Semantic expansion of annotations. 

III. Aggregation. 

IV. Scoring of annotations. 
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Figure 10. NCBO Resource Index Overview. 

(Source: https://www.sciencedirect.com/science/article/pii/S1570826811000485) 

2.5.7. GoWeb 

GoWeb [61] is a semantic search engine that combines classic keyword-based search 

technology with text-mining and ontology background to achieve fast and efficient 

question answering. It has the ability to filter big result sets according to the Medical 

Subject Headings(MeSH) [62] and the GeneOntology(GO) to discard data that will not 

have any use for the user. Also, GoWeb’s users can use GoPubMed [63] features along 

with the wide range of information sources that are publicly available in the web. It also 

offers highlighting and semi-automatic question answering mechanisms. The interface 

of GoWeb is organized specifically to make it easy to use for the users. It is structured 

in three panels. The first panel contains the background knowledge and possible derived 

metadata. The second panel contains the search bar where the users can structure their 

search queries. Finally, the third panel contains the area the results are presented after 

searching. 

GoWeb uses a keyword based search to retrieve its results. It uses Yahoo! Search BOSS 

service. The results retrieved by the BOSS service is a usually big list of snippets. 

Afterwards, GoWeb uses its ontology background knowledge to map concepts to the 

snippets. It then uses GoPubMed algorithms to identify ontological concepts in the text 

lists. In order to identify gene names and protein, GoWeb uses the approach by 

Hakenberg. For names and places identification GoWeb makes use of the OpenCalais 

service. Then, GoWeb’s filter mechanisms take place which uses the part-of and is-a 

relations from GO and the tree structure of MeSH. The most important concepts are 

selected by the occurrence frequency, the hierarchy level and, if it exists, a global 

frequency from a corpus that is pre-analyzed. 
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Figure 11. GoWeb workflow representation. 

(Source: https://www.researchgate.net/figure/GoWeb-workflow-General-workflow-for-GoWeb-

showing-the-main-components-and-the_fig1_26862850) 

2.6.      Apache Lucene 

Before describing Apache Solr, the search platform the proposed framework makes use 

of, it is best to start with its core technology, Apache Lucene [64]. Lucene was 

developed in 2000 by Doug Cutting and it is actively been evolving since then. It is 

now the most used search technology with a strong community. Lucene is neither a 

server nor a web crawler, it is a code library. To use Lucene you have to write your own 

search code by using its API and you supply it with index documents. For Lucene, a 

document is a collection of fields. Each field consists of a name and a value which is 

either a text or a number. Lucene gives the user the ability to tokenize a field’s string 

into a series of words called tokens, change words with their synonyms or perform other 

processes. After processing, the resulted indexed tokens are the terms. After that 

process, Lucene indexes every document in a disk. A mapping of a field’s terms to 

associated documents is stored by the index together with the starting word position 

from the original text and then, the user can search for documents by providing a query. 

Lucene parses that query according to its syntax and after scoring each matching 

document it returns the top scoring documents. 

Lucene offers many features. The most significant are: 

• An inverted index that retrieves documents efficiently by using indexed terms. 

• Text analysis components that turn a string into a series of words called terms. 

• A query syntax with a parser and a plethora of query types. 

• A flexible scoring algorithm based on sound Information Retrieval(IR) used to 

score matching documents. 

• Many search enhancing features such as highlighting, query spellchecker, 

suggesters for query completion and various analysis components.  
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2.7.      Apache Solr 

Even though Apache Solr [8] is not a semantic search tool, it is one of the most popular 

open source enterprise search platforms. Solr is written in java and it offers search and 

indexing technology as well as highlighting, spellchecking and advanced tokenization 

capabilities. It is open source and it is integrated in the Apache Lucene project. The 

ideology behind Solr’s usage is simple. You feed it tons of information and afterwards 

you can retrieve data by asking questions. Providing Solr with information is called 

feeding and asking a question is called querying. Field analysis tells Solr how to deal 

with incoming data when building an index. Analysis is used both during indexing and 

searching. An analyzer generates token streams by examining the text of fields. 

Analyzers may consist of a number of tokenizers and filters. Tokenizers decompose 

field data into tokens and then filters examine those tokens and they either change them, 

discard them or create new ones. Even though analysis is used during indexing and 

querying, not the same process is used for both. During indexing, analysis often 

normalizes words to increase query-time precision. During querying the simple 

analyzer’s normalization is converting the query terms to lowercase. By using a simple 

<analyzer> for a field type your query must be very precise. Searching in Solr is very 

flexible. This process is handled by a request handler. A request handler is the logic 

that is used during searching. They can be customized in a variety of ways for ones 

needs. Solr gives a number of results after the query is handled by the request handler. 

The results are sorted by score and the result with the highest score is more likely to be 

what the user is looking for. 

 

Figure 12. Apache solr architecture.  

(Source: https://slideplayer.com/slide/2293397/) 
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2.7.1. Apache Stanbol 

Apache Stanbol [65] extends traditional content management systems by adding 

semantic services to them. Integrating Stanbol into your system is an easy task since all 

its features are accessible via RESTful web services [66]. Apache Stanbol’s Usage 

Scenarios are:  

• Content Enhancement: Analyzation and enhancement of content. 

• Using Custom Variables: Create and use locally defined entities. 

• Using Multiple Languages: Enhancing content written in multiple languages. 

• Semantic Search in Portals: Index enhancements and content items. 

• Refactoring Enhancements: Refactor the property names and ontology types of 

the enhancement result. 

• Transforming CMS [67] repository structures into ontologies. 

• Provide repository structures as domain ontology. 

Apache Stanbol consists of a set of components. Each of them is independent and 

is accessible via its own RESTful web interface. All components are implemented 

as OSGi bundles [68]. 

 

Figure 13. The Apache Stanbol Components. 

(Source: https://stanbol.apache.org/docs/trunk/components/) 

2.7.2. Redlink Solr Plugin 

The Redlink Solr plugin [69] adds semantic capabilities to an existing Apache Solr 

build. Redlink uses Apache’s Analysis API and it extracts named entities of documents 

during Solr updates. Integrating Redlink into an existing Solr build is simple and can 

be done within a few minutes. 

2.7.3. Open Semantic Search 

The Open Semantic Search [70] is a software that can be integrated on one’s search 

engine. It contains research tools for easier monitoring, analytics, searching, discovery 

and text mining of large document sets and can be used for free on your own server. By 

entering a search query, you can navigate through the results found in multiple data 
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sources. Interactive filters can be used to filter out unwanted data results. Your 

documents can be tagged with keywords, names, categories or text notes to make 

searching easier and more efficient in the future. Open Semantic Search can also be 

used for data visualization by using charts and graph views. It supports a large variety 

of formats so no matter how your documents are structured you can still use this 

software for searching. The supported formats are: txt, PDF, E-mail, JPG, TIFF [71], 

CSV [72], doc Word documents, Open documents(ODF) [73] and all video formats. 

Text can be automatically recognized from images or scanned documents with the 

Optical Character Recognition (OCR) system [74]. 

2.7.4. Solr and OLS 

Ontology Lookup Service(OLS) [75] is a repository that contains biomedical 

ontologies. It aims to provide access to the latest version of every biomedical ontology. 

Browsing those ontologies can be done either within their website or by using the OLS 

API. Ontology Lookup Service uses Apache Solr in order to index ontologies for 

search. Two Solr cores are being used by OLS. The one is used to add an autosuggest 

feature and the other for storing documents for ontology and term meta-data. 
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3. Methods 
3.1. System architecture 

For the ontology-based search of OntoSearch, during setup, we used Apache solr as a 

semantic annotator to extract ontology terms for each tool from the biotools registry. 

The results were saved in a database along with a score provided by Apache solr for 

each extracted term. 

During runtime, the user can use either text or speech as input that is translated to text 

by the framework. The framework then uses Apache solr to extract ontology terms for 

the user’s query from the same ontologies that were used during setup. With a matching 

algorithm and by using the data saved in the database during setup, the framework finds 

the best possible results for the user’s query and returns them to the user.  

 

Figure 14. OntoSearch’s ontology-based search Architecture. 

For the keyword-based search of OntoSearch, during setup, we fed Apache solr with 

all the tools from the biotools registry.  

During runtime, the user can use either text or speech as input that is translated to text 

by the framework. The framework then takes advantage of Apache solr and with the 

query given by the user finds the best possible results for the user’s query and returns 

them to him. 



Computer Engineering, Kyriakakis Alexandros – Bachelor’s Thesis 

 

28 

 

 

Figure 15. OntoSearch's keyword-based search architecture. 

For the Hybrid search of Ontosearch, during setup, we fed Apache solr with the EDAM 

and the Software ontologies. Then, we used all tools from the biotools registry as 

queries and retrieved the 5 terms with the highest score assigned by solr from each 

ontology for each tool. We then created a new JSON file ,added the biotools registry in 

it and then added the top 5 terms from each ontology for each tool as free text in new 

fields. Lastly, we created a new Apache solr core and fed it with the new JSON file that 

we created. 

During runtime, the user can use either text or speech as input that is translated to text 

by the framework. The framework then takes advantage of Apache solr and the core 

that was created during setup for the hybrid search. Then, with the query given by the 

user, it finds the best possible results for the user’s query and returns them to him. 

 

Figure 16. Ontosearch's hybrid search architecture. 
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Ontosearch, combines the three searching techniques and retrieves the best possible 

results from each one to the user. 

 

Figure 17. OntoSearch Architecture. 

3.2. Speech to text solution 

Speech to text is a process that consists of two main parts. Recognizing speech and 

transforming it into signal and turning that signal into text. This concept has concerned 

the biggest companies over the years. After comparing many speech-to-text APIs, the 

API that was used for the proposed framework was Web Speech API [76].  

The Web Speech API accesses Google’s speech recognition web service to transform 

speech into text. It is designed purely in JavaScript and it provides speech analysis and 

speech synthesis. The API is still in experimental phase and the reason for that is that 

its introduction has remained mostly speculative. A significant feature of the API is that 

the actual speech recognition happens through a web service. The developer doesn’t 

directly interact with it but communicates with the user agent(browser) through certain 

events. It is the browser’s responsibility to communicate with the web service. The Web 

Speech API is developed by the World Wide Web Consortium (W3C) Community and 

the initiative is mostly driven by Google and Openstream.  

Out of the six most popular browsers, Google Chrome, Mozilla Firefox, Microsoft 

Internet Explorer, Microsoft Edge, Safari and Opera [77], only Google Chrome (version 

25+) currently supports the Web Speech API. That’s mostly because of the API’s 

experimental nature but it is expected that more browsers will support the API in the 

near future. 

The Web Speech API allows users to record audio from their microphone, after their 

permission is granted. That audio is sent through a HTTPS POST request to the web 

service and the results are processed within the limits of the browser.  

The chosen API is used to form the users’ questions in the search bar while the users 

can see their speech transformed into text in real time to identify any possible errors 

made by the API. Given the sound waves from the users, the API will encode those 

waves into wave files and finally into FLAC files. The proposed framework will 

retrieve responses from the API and the final text will be formed ready to be used and 

translated into a query by the NLP [78]. 
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For the evaluation, 2 children, 12 females and 11 males spoke several sentences to 

evaluate the API. On the table below, the speakers are identified by a two-letter 

combination with the first letter indicating whether the speaker is a male (M), female 

(F) or child (C). the second column indicates the number of the sentences spoken by 

each speaker. The third column shows the percentages of the sentences that were 

recognized correctly. The fourth column shows the total number of words spoken in all 

sentences for each speaker. Finally, the last column provides the percentages of the 

words that were recognized correctly. 

Table 1.  Results of the Web Speech API evaluation grouped by the 24 speakers. 

(Source: http://www.juliusadorf.com/pub/web-speech-api.pdf) 

Speaker Sentences Correct Words 
Word 

Accuracy 

CA 60 33% 466 83% 

CB 6 17% 49 75% 

FA 60 23% 466 77% 

FB 60 8% 467 65% 

FC 60 20% 475 74% 

FD 60 18% 478 74% 

FE 60 24% 461 76% 

FF 60 23% 484 77% 

FG 60 17% 456 62% 

FH 60 15% 481 61% 

FI 60 20% 495 72% 

FJ 60 35% 497 84% 

FK 60 15% 503 65% 

FL 60 27% 480 73% 

MA 60 22% 466 72% 

MB 60 28% 467 78% 

MC 60 15% 475 71% 

MD 60 37% 478 84% 

MF 60 13% 484 68% 

MG 60 22% 456 75% 

MH 60 25% 481 77% 

MI 60 23% 495 74% 

MJ 60 10% 497 62% 

MK 60 12% 503 72% 

ML 60 23% 480 76% 

 

3.3. Concept recognizer (ontology terms) from NLP 

The concept recognizer is the core of the system. It is used by most of the components 

in the framework. The main objective of the concept recognizer is to retrieve the most 

http://www.juliusadorf.com/pub/web-speech-api.pdf
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suitable result for a given query created by the user in free text form. For all three 

searching techniques of the framework, ontology based, keyword based and hybrid, 

Apache solr full text search server is used but in a different fashion and for a different 

purpose. 

• For the ontology based search, two ontologies were used, Embrace Data and 

Methods(EDAM) and the Software Ontology(SWO). The two ontologies are used 

separately and have different results but use the concept recognizer in the same way. 

For each ontology, a JSON-format [79] file was created with specific fields that can 

be weighed differently during search. Those JSON files were imported into separate 

cores in Apache solr. The two ontologies have different fields and have their own 

custom made weight formula. 

➢ For EDAM, the weight formula that was used is biased to the uri, the name and 

the definition of each term. That means that if the searched text matches with 

any of those fields, then the ontology term is assigned a score which is directly 

bound to the weights assigned to the fields. The custom made weight for the 

EDAM ontology is : (uri * 1) + (name * 2) + (definition * 5). 

 

Figure 18. Example of a random EDAM term retrieved from Apache solr. 

➢ For SWO, the weight formula that was used is biased to the id, the description, 

the label and the comment of each term. That means that if the searched text 

matches with any of those fields, then the ontology term is assigned a score 

which is directly bound to the weights assigned to the fields. The custom made 

weight for SWO is : (id * 1) + (description * 10) + (label * 4) + (comment *4).

 

Figure 19. Example of a random SWO term retrieved from Apache solr. 
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• For the keyword based search one Apache solr core is used. A JSON-format file 

was created that contains the ids, homepages, names and descriptions of all the tools 

from the biotools registry. This JSON file is imported in Apache solr and during 

search the fields are weighed differently. Each tool that was matched through either 

their description or their name or both, is assigned with a score from Apache solr 

that is directly bound with the weights of the fields. After running the search query, 

the tool that was assigned with the highest score represents the most suitable tool in 

the biotools registry for the user’s needs. The custom made weight for the keyword 

based search is : (name * 1) + (description * 2). 

 

Figure 20. Example of a random tool retrieved from Apache solr. 

• For the hybrid search Apache solr was fed with a JSON file that contained the 

EDAM ontology and the Software ontology. Then, all descriptions from the tools 

in the biotools registry were used as queries. The 5 terms with the highest score 

assigned by solr were saved for each tool. We then created a new JSON file that 

contained the ids, homepages, names and the 5 EDAM and SWO ontology terms 

retrieved previously for all the tools from the biotools registry. This JSON file was 

imported in Apache solr in a new core and during search the fields are weighed 

differently. Each tool that was matched through any of its fields, is assigned with a 

score from Apache solr that is directly bound with the field weights. After running 

the search query, the tool that was assigned with the highest score represents the 

most suitable tool in the biotools registry for the user’s needs. The custom made 

weight for the hybrid search is: (name * 25) + (description * 50) + 

(edam1Description * 10) + (edam2Description * 10) + (edam3Description * 10) 

+ (edam4Description * 10) + (edam5Description * 10) + (swo1Description * 10) 

+ (swo2Description * 10) + (swo3Description * 10) + (swo4Description * 10) + 

(swo5Description * 10) + (edam1Term * 7) + (edam2Term * 7) + (edam3Term * 

7) + (edam4Term * 7) + (edam5Term * 7) + (swo1Term * 7) + (swo2Term * 7) + 

(swo3Term * 7) + (swo4Term * 7) + (swo5Term * 7). 
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Figure 21. Example of a random tool retrieved from apache solr from the hybrid core. 

3.4. Data storage and retrieval 

The data storage and retrieval phase is needed only for the ontology based search. 

After importing the two ontologies, EDAM and SWO, in Apache solr, a database table 

is created for each ontology. All data for each tool from the biotools registry exists in a 

JSON formatted file. The data that is needed for our framework is each tool’s id, name, 

homepage and description. All descriptions from all the tools were used as queries in 

Apache solr. The two database tables created contain the results from those query runs. 

Apache solr has two cores created for the ontology based search, the one has the EDAM 

ontology imported and the other has the SWO ontology imported.  

• For the core that has the EDAM ontology imported, the descriptions of all the 

tools were used as queries. The ids of the terms that were retrieved from that 

query execution, as well as their paths and scores assigned by Apache solr, were 

saved in the solrresultsedam table. Each table record contains the id, url and 

name of the tool as well as the ids, scores and paths of each term that was a 

result from the query execution in Apache solr with a maximum number of 500 

terms. 
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Figure 22. Database table used to store and retrieve solr results using EDAM. 

• For the core that has the Software ontology (SWO) imported, the descriptions 

of all the tools were used as queries. The ids of the terms that were retrieved 

from that query execution, as well as their scores assigned by Apache solr, were 

saved in the solrresultsswo table. Each table record, contains the id, url and 

name of the tool as well as the ids, scores and paths of each term that was a 

result from the query execution in Apache solr with a maximum number of 500 

terms. 

 

Figure 23. Database table used to store and retrieve solr results using SWO. 

The data from the two tables are used during search, and with a matching algorithm the 

most suitable tools for the user’s needs are found during run time. 

3.5. Query Mechanism 

The query mechanism works differently for the keyword based search, the ontology 

based searches and the hybrid search. The moment the user runs a search, the first step 

is to clear the query from any possibly ‘harmful’ characters. Apache solr uses some 

characters as special characters for a more complex query run. The list of Apache solr’s 

special characters is: ( \, +, -, &&, ||, !, (, ), [, ], {, }, ", ^, ~, *, ?, :, /, AND, OR, NOT ). 

To prevent Apache solr from using those characters or words in a special way, the 

character ‘\’ is added before each one of them before the query run. After that process, 

the query is ready to run. 

• For the ontology based searches, the query runs in both Apache solr cores that 

have EDAM and SWO ontologies imported respectively. For each ontology, 
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Apache solr returns a maximum of 22 ontology terms that matched with the 

user’s query with each one having a score that represents how well each term 

matches with the query. Then, with a matching algorithm and with all the data 

of the terms and the scores that are matched with each tool from the biotools 

registry that are stored in our database, for each tool, the average score of the 

terms that match with both the tool and the user’s query is saved. The tools that 

collect the highest scores from that process are the result for each ontology 

respectively. 

• For the keyword based search, the query runs in the Apache solr core that has 

all the biotools imported in. The results that are retrieved are ordered 

descendingly by the score that Apache solr assigned them with. The higher the 

score, the most matching is the tool for the user’s needs. The result the user 

receives from the keyword based search is the top scoring tools retrieved by the 

solr search.  

• For the hybrid search, the query runs in the Apache solr core that has all the 

biotools imported in and the top 5 terms from the EDAM ontology for each tool. 

The results that are retrieved are ordered descendingly by the score that Apache 

solr assigned them with. The higher the score, the most matching is the tool for 

the user’s needs. The result the user receives from the hybrid search is the top 

scoring tools retrieved by the solr search.  

3.6. Implementation of the framework 

The developed framework, named OntoSearch, gives you the option to either type or 

record the search query. After having the search query, the user can press the search 

button to retrieve the results from OntoSearch. The framework will run the query and 

if found, retrieve the most suitable tools for the user’s query, categorized by the results 

retrieved from each search technique.  

 

Figure 24. OntoSearch interface. (Screenshot taken from the developed framework) 
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After running an example query search using the query ‘Genome sequence analyser’, 

OntoSearch retrieved a list with the most suitable tools for that purpose that exist in the 

biotools registry. The first column indicates the results that were retrieved from the 

EDAM ontology-based search. The second column indicates the results that were 

retrieved from the SWO ontology-based search. The third column indicates the results 

that were retrieved from the keyword-based search and the fourth column indicates the 

results that were retrieved from the hybrid search. All four columns are ordered 

descendingly with the first tool from each column being the most suitable for the user 

according to each searching technique. The fifth column contains all the tools that all 

four searches retrieved as a result and it is ordered descendingly by the average position 

each tool was ranked in all four searches. Each result is a link for each tool’s web page. 

 

Figure 25. OntoSearch results modal. (Screenshot taken from the developed framework) 
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4. Deployment 
4.1. Setup 

For the construction and compilation of this framework, NetBeans IDE 8.2 [80] was 

used and it was compiled using jdk1.8.0_191. JavaServer Pages(JSP) [81] technology 

was used for its creation as a web application which runs on Apache Tomcat [82] server 

v8.0.27.0 and takes advantage of the Apache Maven software tool [83]. The server-side 

part, runs on the Java [84] language while client-side is based on web languages: 

JavaScript [85], PHP [86], CSS [87] and HTML [88]. The SQL [89] language was used 

to connect with the database, retrieve and save data. PostgreSQL [90] v9.5 was used 

through the XAMPP [91] control panel v3.2.2 and pgAdmin3 software v1.22.2 was 

used to design the tables. The framework, during search, takes advantage of Apache 

solr [8] v7.5.0. 

4.2. Installation Guide 

Firstly, download Apache solr v7.5.0 binary release and unzip it. Then through the 

command prompt, navigate inside solr-7.5.0/bin folder as shown in the picture below 

by using your own path to that folder. After that, write the command ‘solr start’ and 

Apache solr should start on port 8983. 

 

Figure 26. Starting apache solr from cmd. 

Then, create four folders named edam, swo, biotools and hybrid under solr-

7.5.0/server/solr directory. You will need to copy and paste all the files and folders that 

exist under solr-7.5.0\server\solr\configsets\_default\conf directory to all four folders 

created previously as shown to the example figure below. Do that for edam, swo, 

biotools and hybrid folders. 
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Figure 27. Example of the EDAM folder. 

After completing that step, navigate to localhost:8983 through a browser. You will need 

to create four new cores with the names and instanceDirs edam, swo, biotools and 

hybrid respectively as shown in the example figure below. 

 

Figure 28. Example of creating EDAM core in apache solr. 

For all three cores, you will need to upload the given json files, EDAMSolr.json, 

swoSolr.json, biotoolsSolr.json and hybridSolr.json for each core respectively as shown 

in the example figure. 
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Figure 29. figure of uploading the edam json file in apache solr's EDAM core. 

The last step to finish with Apache solr configuration, is to open solrconfig.xml file for 

all four cores that is located under solr-7.5.0\server\solr\edam, solr-

7.5.0\server\solr\swo,  solr-7.5.0\server\solr\biotools and solr-7.5.0\server\solr\hybrid 

respectively. You will need to add the line ‘<str name="fl">*,score</str>’ in the /select 

requestHandler as shown in the figure below. 

 

Figure 30. Apache solr cores' configuration. 

After completing those steps, Apache solr is set and ready. The next step is to download 

and install pgAdmin software. After installing it, create a new database named 

ontosearch and run the sql script given in the file OntoSearchDB.sql. After running that 
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script, you should have two tables created in the ontosearch database with the names 

solrresultsedam and solrresultsswo like shown in the figure below.  

 

Figure 31. PGadmin3 ontosearch database. 

After the database is set, download and install XAMPP Control Panel. Download 

MySQL service through XAMPP, if you haven’t downloaded it already during 

installation, and start it as shown in the figure. 

 

Figure 32. XAMPP Control Panel. 
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Next step, is to download and install NetBeans IDE v8.2 and open the given NetBeans 

project ‘OntoSearch.zip’. In the DBController class, you will need to change the 

username and password to your own database username and password as shown in the 

figure below. 

 

Figure 33. OntoSearch DBController class. 

The last step, is to build and run the project under Tomcat server in NetBeans. The web 

application should start under http://localhost:8084/OntoSearch/ . 

  

http://localhost:8084/OntoSearch/
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5. Experiment (Storing and searching tools from the 
biotools registry) 

5.1. Biotools  

Biotools [9] is supported by the European Research Infrastructure for life science 

information(ELIXIR). It is a registry that contains tools that associate with 

bioinformatics and it is meant to aid bioinformaticians and scientists find, understand, 

and select resources and also use and connect them in workflows. Each tool has well-

defined data processing functions. Biotools contain software applications available 

either for immediate use as online services or in a form an individual can download, 

install, configure and run. Biotools registry is based on 6 main objectives:  

I. Build and maintain a complete registry of high quality software 

descriptions/metadata.  

II. Provide a web portal enabling registration, editing, search and discovery for 

the registry content.  

III. Support a community for the continuous maintenance of the registry content 

and development of the web portal features. 

IV. Expose results of tool performance benchmarking, online service 

monitoring and other metrics of software and service quality. 

V. Integrate the registry with common workbench environments in order to 

improve resource interoperability. 

VI. Support registry stakeholders including tool providers and end-users. 

In an attempt to highlight the domain independent nature of our solution we will 

evaluate the system using tools from the biotools repository as resources to be searched 

and the EDAM and Software Ontologies in comparison to a keyword based and a 

hybrid search. 

5.2. Embrace Data and Methods (EDAM) Ontology 

The EDAM ontology [6] has been actively developed since 2009 releasing multiple versions 

per year, resulting in the current version 1.21. The EDAM ontology was developed to provide 

a comprehensive means of classifying bioinformatics operations, types of identifiers and data, 

data formats and topics suitable for large scale semantic annotations. EDAM Ontology’s main 

design principles are relevance to its target applications, simple usability for the users and 

efficient maintainability for its developers. 

To ensure the first principle, relevance, EDAM has to fully cover the concepts of common 

bioinformatics. In order to achieve this, an ontology named myGrid [92] that had a similar 

purpose had to be used as a starting point. A number of resources were analyzed and used as 

sources of concepts. Those resources included many collections of tools, as well as the 

EMBOSS [93] suite and the BioMoby Service Ontology [94]. The Nucleic Acids Research’s 

database [95] and Web server catalogues were used as sources of topics. 
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To ensure convenient usability by humans, EDAM ontology does not have excessively broad 

or deep branches. The ontology is oriented around a small number of sub ontologies with each 

one having a specific meaning. The main sub ontologies rooted in the top level of EDAM’s 

hierarchy are: Operation, Data, Topic and Format. 

Lastly, to keep EDAM ontology maintainable, the software development methods that are used 

are agile and dynamic. That way, changes can be delivered with good response time using 

limited resources.  

 

Figure 34. Embrace data and methods (EDAM) ontology schema. 

(Source: https://academic.oup.com/bioinformatics/article/29/10/1325/255660) 

5.3. The Software Ontology (SWO) 

The Software Ontology (SWO) [7] is an ontology that describes the software used 

within computational biology. This includes bioinformatics resources as well as any 

software tools that were used during the preparation and maintenance of data. SWO is 

being actively developed due to the interest in the recording and reproducibility of 

biomedical investigations. It provides the required vocabulary and identifiers for the 

software part of describing the provenance of computations automatically.  

Describing software and its input and output data is also important for software 

searching and application development as well as workflows construction. An ontology 

used to describe softwares, such as SWO, can help all the areas stated above. The scope 

of the ontology though, is not limited only in covering bioinformatics. It needs to cover 

any tools used during the analysis, management and presentation of biological data. For 

each software, SWO needs to develop to include the software’s range, the descriptions 

of its objectives, the input and output data, its version as well as some aspects of its 

project details. To date though, neither SWO nor any other ontology that describes 

softwares cover all that information. 

The Software Ontology project is based on the following agile principles:  

I. The SWO’s users, domain experts and ontology engineers are all active 

contributors on this project.  
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II. Tight engagement with the users in order to gather requirements and to 

have ontology modelling sessions as iterative activities with a new 

increment being a result of each iteration. 

III. Acknowledgement that requirements and priorities my alter during the 

development phase. 

IV. Encouragement of organized and cross functional groups of developers.  

V. Testing is mandatory and it has to occur frequently.  

VI. Provision of frequent interactions with the associates for discussion, 

testing and refinement. 

In order for these principles to apply and succeed on creating an agile ontology, a 

certain engineering method has to be followed. That method can be summarized in the 

following steps:  

I. Requirements gathering from stakeholders. 

II. Requirements prioritization, the complexity of implementing each 

requirement has to be estimated and requirements have to be ranked by 

the participants. 

III. Implementation of the top ranked requirements that resulted from the 

previous step. 

IV. Evaluation of the product, the results of questions act as queries within 

the ontology are evaluated. 

Apart from SWO, other promising efforts that have been made to develop an ontology 

that describes softwares broadly are: Description Of A Project(DOAP) [96], OWL-S 

[97], Data mining tools ontologies, the Ontology of Biomedical Investigations(OBI) 

[98], EDAM, the Bioinformatics Resource Ontology(BRO) [99] and myGrid Ontology. 

 

Figure 35. Software ontology (SWO) schema. 

(Source:https://www.semanticscholar.org/paper/The-Software-Ontology-(SWO)%3A-a-

resource-for-in-data-Malone-Brown/a585548fccdfe3e3bf89c78f7126ccf332617e77/figure/1) 
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5.4. Test case 

To test the efficiency of the framework, we collected 13 questions from SEQanswers 

[100] from users that were searching for a bioinformatics related tool for a specific 

purpose. For each question, we collected the tools that were proposed as answers from 

the users to check if each proposed tool is contained in the results of the framework. 

Things to be taken into consideration by using this method of case testing are that the 

users might haven’t proposed the most suitable tools for the users’ questions, the users’ 

requirements might not be completely senseful and that the most suitable tools for the 

user might have been released later than the question was asked. The original questions 

of the users were : 

1. “Hi everyone,I am doing exome sequencing, paired end, but not used to analyze 

reads.After alignement, how do i proceed the BAM file?Thank you” 

2. “Hi,I am trying to quantify the number of reads mapping to genes in a highly 

redundant bacterial genome (i.e., often several exact gene copies in the 

genome).Ive mapped reads to genes with bbmap, and quantified using 

featurecounts. My problem is that reads are only counted for one of the copies 

of redundant genes, and not all of them.I just want to count the number of 

expressed genes (I want to count all of the copies since I cant distinguish them). 

Ive tried playing around with multi-mapping parameters in featurecounts, but 

nothing has changed.Does anyone here know how to do this?Thanks!" 

3. “Hello im trying to calculate the percentage of covered CpG sites in my RRBS 

library and compare it with total CpG sites in reference genome. i got splitting 

report from Bismark (see bellow)q1- could i say CpG sites in my RRBS library 

are equal to number of Total methylated Cs in CpG context + number of Total 

C to T conversions in CpG context (around 19 million) ? if No how i can find 

total CpG sites in RRBS library?q2- i downloaded pig CGI annotation and 

counted all CpG sites but the total was around 2 million. sound very low for me. 

how i can find the actual number of CpG sites in reference genome?q3- is there 

a way to determine CpG sites per chromosome and compare it with CpG sites 

in each chromosome of reference genome?Final Cytosine Methylation Report 

= Total number of Cs analysed- 141645338Total methylated Cs in CpG context- 

7904886Total methylated Cs in CHG context- 50683Total methylated Cs in 

CHH context- 107717Total C to T conversions in CpG context: 12298571Total 

C to T conversions in CHG context: 35912924Total C to T conversions in CHH 

context: 85370557" 

4. “Hi All,I have a fastq file which I would like to split into 2 files with every other 

read going into the 2 separate files. What would the Split function command 

line be for this? I am a new to computing, so it you are most explicit that would 

be helpful.Best," 

5. “Hello everyone, is it possible to calculate depth of coverage and read depth 

using Bismark ? if yes how and if No what is the best way to calculate depth of 
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coverage and read of depth from RRBS reads taking from illumina sequencing 

?Best" 

6. “Hi all,Do you think there is an efficient way of downsampling only a few 

regions of a bam files (in my case the regions with a too high coverage).The 

idea, would be too randomly remove reads in regions where the coverage is 

above a given coverage.Indeed, in my analyses, those regions cause some steps 

of the pipeline to become really slow.Thanks for all your suggestions” 

7. “Hi, community,I am analyzing the taxonomic profiling of my shotgun data. 

Which are 100bp paired-end reads from Illumina Hiseq. Now I am using 

Metaphlan2 to do the metagenomics profiling. However, the profiling result is 

far away from Illumina 16S miseq results. Since I have also been using Illumina 

16S Miseq to test the taxonomy of my samples for several years. I have two the 

control samples and treatment samples. In Metaphlan2 results, it gave me 

around 30 archaea and 70 bacteria for control samples, while Miseq 16S reads 

tell me that only around 15 archaea and 85 bacteria for control samples. For 

treatment, shotgun profiling told me 60 archaea and 40 bacteria, while Miseq 

gave me 20 archaea and 80 bacteria. For my experience, this kind of sample 

could not achieve that much archaea abundance than bacteria. Furthermore, 

some(not all) bacteria and archaea composition are different between Miseq 

result and Metaphlan2 result.Why is the result so different? Are there any 

suggestions why the two method result differs so much?I am confused. Looking 

forward to a help." 

8. “Hello,Human RNA-seq dataset was generated from Illumina HiSeq 3000 with 

2X100 cycles run.The first step is making alignment of the reads to the human 

genome. These are many aligner, such as: Bowtie, GASSST, PASS, SOAP, 

BOAT. Each aligners has different performs in different kinds of data.Which is 

the best suitable aligner for RNA-seq data?Thank you in advance for great 

help!Sincerely,Yue" 

9. “Is there a tool that can tell me coverage per some uniform interval along a set 

of reference contigs? I know I could use bedtools coverage and build a bed file 

defining the intervals, but I was asked if there was not already a tool that could 

just do uniform intervals on its own without having to setup a bedfile to define 

the intervals." 

10. “I have two fastq files from paired end sequencing. I got those two files after 

converting a bam file to fastq. I was doing a quality check on the files, when I 

saw the number of sequences option in FASTQC tool gave different number for 

both files.The number of sequences for read 1 was : 508168252The number of 

sequences for read 2 was : 512336921Shouldnt this be the same?" 

11. “Hi, Im very new to the forum, if you have any suggestions, please share 

them.So im working with honey bee to identify QTL associated to a resistance 

trait (quantitative trait) using GWAS (by calling SNPs).Honey bee queens are 

diploid and males progeniture inherit 1/2 of their genes (so they are haploid).We 
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want to sequence the queens, but cant use them, so we sampled the males 

progeny. I made 4 pools of 6 males for each queen.My question is this: Is it 

better to do all my pipeline to SNP calling on each of the 4 pools individually 

before joining the results together, or should i joint the pools raw reads before 

starting my pipeline to enhance statistical power?My logic is that if I dont 

initially joint them, I can later compare allele frequency between each replicate 

to insure that rare variants are not eliminated.thanks" 

12. “Hello everyone.I have a questions on gene expression profiling.1. Does the end 

product of gene expression profiling is in a DNA sequence? If so, does the 

sequence is in normal DNA sequence or mutated DNA sequence?2. What are 

the method use to develop the expression profile?3. Please share any related 

article of the method. Ive have search a lot on the method, but i cant understand 

since im not from bioinformatic background.4. If anyone familiar with BRCA1 

gene expression profiling, can anyone share with me the development of the 

profile? Thank you for your time and reply." 

13. “Dear users,Id like to ask you for your advise on a certain project that I am 

working on.My job is to retrospectively analyse NGS data from patients 

suffering from ALL and MM (IGH).However, I am not a bioinformatician. I 

just received the sequencing data in Excel (and .csv) files and Im supposed to 

analyse these data.Of course, Ive heard of IMGT/VQUEST and IgBlast and it 

is no problem for me to work with these programmes. But the issue is that I cant 

do this with tens of thousands of sequences.After further research, I came across 

the R tool tcR. It seems to be a well-done programme. Unfortunately, I always 

receive error messages when trying to integrate my files in it.I found out that it 

might be useful to convert my files into .txt files or to work with VDJ-tools, 

Immunoseq, mixcr or other tools. But I do not have access to these programmes 

or they require Linux (which I dont have; Windows).In addition, the sequencing 

data in my Excel files are not in fasta-format. But if I would change this by 

editing the sequences manually Id be busy for the next three months.My goal is 

to analyse my data for gene usage and to be able to search quickly for potential 

subclones.I look forward to hearing your opinion! :)Thanks in advance!Pablo" 

Those questions were reviewed and made ‘search engine friendly’ by two expert 

bioinformaticians. Irrelevant words were removed from the questions and the result is 

only the keywords that would be used in a search engine. All those questions were used 

as queries in the framework and the purpose was to check if the tools that were proposed 

by the users were retrieved as a result from the search. The framework was set to give 

a maximum of 1000 results per query. The queries we used to run that test after the 

cleanup process were: 

1. “BAM, analyze reads, exome sequencing, paired end” 

2. “quantifying transcripts, including redundants, map using bbmap” 

3. “annotate, bismark, chromosome, conversion, cover, cpg coverage, cytosine, 

methylate, rrbs, split, rrbs library, actual number in reference genome” 
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4. “command line, compute, fastq, read, split, partition the odd or even reads” 

5. “calculate depth of coverage, read depth, Bismark, RRBS reads” 

6. “downsampling, regions of a bam files, remove read above coverage” 

7. “shotgun metagenomics, 16S amplicon, taxonomic profiles, Metaphlan, Miseq, 

differences” 

8. “alignment, boat, bowtie, gassst, genome, hiseq, human, aligner, RNA-seq, 

HiSeq 3000” 

9. “coverage per 10kb interval, reference contigs” 

10. “reads, paired end fastq, number of sequences” 

11. “allele, allele frequency, bee queen, call, diploid, frequence, gene, gwas, 

haploid, inhertit, join, male, pipeline, progeniture, progeny, qtl, rare, raw, read, 

replicate, resistance, sequence, snp, statistic, statistical power, trait, variant” 

12. “article, bioinformatic, brca1, dna, expression, gene, method, normal, profile, 

sequence” 

13. “analyse NGS, csv file, non fasta-format” 

5.5. Results – first iteration 

Initially we wanted to assess the power of pure semantic search against the common 

keyword-based search. For this experiment we used the keyword-based search, the 

EDAM search and the SWO search. The results for the 13 questions are shown in the 

following table. 

Table 2. Test case results for each question. 

No. 

Proposed 
Tools 

EDAM SWO Keyword-based 

 Yes/No Rank Yes/No Rank Yes/No Rank 

1 SAMtools No - No - No - 

2 
BBMap Yes 462 No - Yes 1 

BWA No - No - No - 

3 

SeqMonk No - No - No - 

Bismark Yes 807 Yes 267 Yes 5 

Methylkit No - Yes 591 Yes 27 

4 BBMap Yes 569 Yes 170 Yes 284 

5 SeqMonk Yes 908 No - No - 

6 VariantBam Yes 816 Yes 107 Yes 521 

7 Kraken Yes 16 Yes 60 Yes 305 

8 
STAR Yes 246 Yes 225 Yes 4 

Hisat2 Yes 398 Yes 227 Yes 21 

9 
Mosdepth No - No - No - 

deepTools No - No - No - 

10 BBMap Yes 195 Yes 305 No - 

11 SAMtools No - No - Yes 775 
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12 

DESeq2 Yes 150 Yes 161 Yes 645 

edgeR Yes 454 Yes 388 No - 

LIMMA Yes 820 Yes 904 No - 

13 Galaxy No - Yes 593 No - 

From all 20 proposed tools by users, 15 of them were found by the search engine from 

at least one search. That makes the ensemble of predictors find rate being at 75%. 

The following table contains the final results of each search. 

Table 3. Test case final results. 

 EDAM SWO Keyword-based Ensemble of 

predictors 

Tools Found 12 12 10 15 

Find Rate(%) 60 60 50 75 

Average Rank 486 333 257 359 

The results retrieved from the two searching techniques differ significantly. The 

semantic searches have similar results with each other with the SWO-based being better  

than the EDAM-based in terms of average rank but both semantic searches gave 

remarkably different results than the keyword-based search. The ontology-based 

searches having a higher average rank may be due to the keyword-based search using 

not only the description but also the name of the tools to rank them. Another explanation 

can be that the EDAM ontology isn’t as fitting for our use since the SWO ontology has 

only a slightly higher average rank than the keyword-based search. 

5.6. Results – second iteration 

The results from the first iteration indicate that the keyword-based search provide better 

results that the pure semantic search in terms of average rank. On the other hand the 

semantic search provided better results in terms of accuracy. Looking at the results from 

the first iteration, and other test experiments that we used, we can safely come into the 

conclusion that the ontology searches (EDAM and SWO) provide similar results but 

different than the keyword-based. An indicative example is shown in the screenshot of 

the UI at Figure 25. These findings indicate that a combination of semantic search and 

free text search could provide better results and that was our motivation to create the 

hybrid search even though it was not planned in the beginning. 

As explained in section 3.3 the hybrid search is an Apache solr search over JSON files 

that contain: 

• All names and descriptions from the tools in the biotools registry  

• 5 EDAM terms and their (free text descriptions) with the highest score assigned 

by solr when searched using the description of the tool. 
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• 5 EDAM terms and their (free text labels) with the highest score assigned by 

solr when searched using the description of the tool.  

• 5 SWO terms and their (free text descriptions) with the highest score assigned 

by solr when searched using the description of the tool. 

• 5 SWO terms and their (free text labels) with the highest score assigned by solr 

when searched using the description of the tool. 

The results of the three previous searches (EDAM, SWO, Keyword-based) and the 

hybrid search are shown in the following table. 

Table 4. Test case results for each question with hybrid search. 

No. 

Proposed 
Tools 

EDAM SWO Keyword-based Hybrid 

 Yes/No Rank Yes/No Rank Yes/No Rank Yes/No Rank 

1 SAMtools No - No - No - No - 

2 
BBMap No - No - Yes 1 Yes 30 

BWA Yes 462 No - No - No - 

3 

SeqMonk No - No - No - No - 

Bismark No - No - Yes 5 Yes 25 

Methylkit Yes 807 Yes 267 Yes 27 Yes 77 

4 BBMap No - Yes 591 Yes 284 Yes 488 

5 SeqMonk Yes 569 Yes 170 No - No - 

6 VariantBam Yes 908 No - Yes 521 Yes 534 

7 Kraken Yes 816 Yes 107 Yes 305 Yes 211 

8 
STAR Yes 16 Yes 60 Yes 4 No - 

Hisat2 Yes 246 Yes 225 Yes 21 Yes 244 

9 
Mosdepth Yes 398 Yes 227 No - Yes 367 

deepTools No - No - No - No - 

10 BBMap No - No - No - No - 

11 SAMtools Yes 195 Yes 305 Yes 775 Yes 396 

12 

DESeq2 No - No - Yes 645 Yes 500 

edgeR Yes 150 Yes 161 No - No - 

LIMMA Yes 454 Yes 388 No - Yes 600 

13 Galaxy Yes 820 Yes 904 No - No - 

After adding the Hybrid search, the ensemble of predictors find rate is 80% since 16 

out of the 20 proposed tools were found from at least one search. 

The Hybrid search found 11 tools which is 55% accuracy and the average rank of the 

tools is 315. We have to state that the hybrid search is more complicated than the other 

searches in terms of combinations and weights of the variables that we are using. 

EDAM search has 3 variables, SWO search has 4 variables, and keyword-search two 

variables while hybrid search 22 variables.  The high number of variables in the case 

of the hybrid search give us the opportunity to test various combinations of variables-
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weights for different domains and fine tune our search engine even more. This, along 

with deployment of other domains and ontologies could be a future work for this thesis.  

The results can be found in the following table.  

Table 5. Test case results with hybrid search. 

 EDAM SWO Keyword-

based 

Hybrid Ensemble of 

predictors 

Tools Found 12 12 10 11 16 

Find 

Rate(%) 

60 60 50 55 80 

Average 

Rank 

486 333 257 315 348 

As show, the Hybrid search has almost the same average rank as the SWO-based search. 

That enhances the possibility of the EDAM ontology being less fitting than the SWO 

ontology for our use and lessens the possibility of the average rank difference being a 

result of the usage of the name of the tools for ranking since both keyword-based and 

hybrid use it. 

The implemented ontology search has been implemented with an architecture that takes 

advantage of the Apache Solr indexing system and relational databases. On the other 

hand the free text and hybrid search take advantage of the Apache Solr solely. The 

average response times for each search methodology can be found in the following 

table. 

Table 6. Test case response times. 

 EDAM SWO Keyword-based Hybrid 

Response Time (ms) 475 285 202 376 

The response times are acceptable for a real time search engine (even with a corpus of 

12000 tools). 

We have also to mention that the results when we used as input the original question 

without the cleaning from the experts have a big differentiation on precision and 

average rank which was significantly lower. This is expected since the plain text 

contains a lot of “noise” in our case due to grammar and syntax. We do not expect to 

be an issue for our system since the end users in reality are used to search with keywords 

and not plain text, an indicative example is the well-known search engine Google. 
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6. Conclusions 
The end goal of this thesis has been to examine the use of semantic technologies for 

bioinformatics data annotation by employing domain specific ontologies and also to 

make use of natural language processing methods in order to aid the non-bioinformatics 

expert users to successfully search for bioinformatics related tools using natural 

language through either text or a speech recognition system. By using different search 

methods, we were able to create a hybrid search engine that takes advantage of multiple 

searching techniques to ensure that the users receive the best results possible for their 

needs. We were also able to compare the efficiency of those techniques by 

experimenting on the system with different test case scenarios. 

As part of this thesis, we developed a web based framework that is able to interact with 

the user through free speech or text and allows him to search for bioinformatics related 

tools in real time. The user describes the functionality or the name of the tool he is 

seeking for and the framework, using semantic and non-semantic technologies, if 

found, retrieves the tools that fit the user’s description. The results obtained by the 

framework are ordered descendingly, with the first tool from each list being the best 

possible solution for the user for each searching technique and they are also separated 

in different lists, with each one being a result of a different searching technique.  

The results that were obtained by the experiment, show that the system returns relevant 

results to the users’ needs, with each searching technique having different results and 

response times.  
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