TECHNOLOGICAL EDUCATIONAL INSTITUTE OF
CRETE

Paravirtualized applications on top

of an L4 /Fiasco Microkernel

by

Emmanouil Fragkiskos Ragkousis

A thesis submitted in partial fulfillment for the

degree of Bachelor of Science
in the

Technological Educational Institute of Crete

Department of Informatics Engineering

March 31, 2019

https://teicrete.gr/
https://teicrete.gr/
manolisragkousis.com
Faculty Web Site URL Here (include http://)
https://www.teicrete.gr/ie/

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2 Uvoyn

Technological Educational Institute of Crete

Department of Informatics Engineering

Bachelor of Science

by Emmanouil Fragkiskos Ragkousis

In this thesis we added Zedboard support to L4/Fiasco, which allowed us to use
it as a hypervisor. In this way we can achieve a better use of resources by sharing
them between multiple operating systems and/or bare metal programs. It also

allows us to achieve better security by controlling access to parts of the hardware.

Thesis Supervisor: Kornaros Georgios

Title: Assistant Professor at Department of Informatics Engineering, TEI of Crete

https://teicrete.gr/
Faculty Web Site URL Here (include http://)
https://www.teicrete.gr/ie/
manolisragkousis.com
kornaros@gmail.com
kornaros@gmail.com

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE

2 uvoyn

Technological Educational Institute of Crete

Department of Informatics Engineering

Bachelor of Science

by Emmanouil Fragkiskos Ragkousis

Ye outh) Ty TTuytoxd, TpooVécaue utoothelEn yio to Zedboard oto L4 /Fiasco, ue
OXOTO VoL TO yenoylonotcouue cav hypervisor. Me autév tov Tpb6T0 unopolue va
emTOYOUPE xUAUTERT YENOT TV TOPWY TOU CUOTHUATOS, HoWdlovTaS Tov PeTal)
OLUPOPETIXMV AELTOURYIXMOY CGUOTNUATWY X0t EQupuoyny. Erlone yag emtpénet va

eTTUYOUUE XOAUTERY aoPIAEL EAEYYOVTOC TO TNV TEdcuor 6To hardware.

EmufBiénwv Hruytonrc: T'edpyloc Kopvdpog

Tithoc: Enixoupog Kodnynthc Tou turjuatog Mryavixov IIinpogpopurc, TEL Kevtng

https://teicrete.gr/
Faculty Web Site URL Here (include http://)
https://www.teicrete.gr/ie/
manolisragkousis.com

Acknowledgements

This bachelor thesis is my first academic milestone and looking back I would like to
thank all the people, that are not listed below, for their support and encouragement

until today.

First of all I would like to thank my thesis supervisor George Kornaros, for his

much needed advice, patience and help, during my thesis.

My friend and colleague Othon Tomoutzoglou for supporting and helping me in

times of need.

My friends Dennis Bautembach and Giannis Halvatzakis for the endless talks for

our aspirations and dreams for the future.

Finally I would like to thank my family for all their support all these years.

iii

Contents

Abstract

YOvodm

Acknowledgements

List of Figures

Abbreviations

1 Introduction

1.1
1.2
1.3

Background and Motivation
Similar Work
Thesis Structure

2 Theory and State of the Art

2.1

2.2

3 Implementation

3.1

3.2

The L4/Fiasco System
2.1.1 Hardware
2.1.2 The Fiasco Microkernel
2.1.3 L4 Runtime Environment
2.1.4 L4Linux
State of the Art
2.2.1 Docker, LXC and Nix/Guix
2.2.2 Xen Hypervisor o
Setting up the environment
311 Sources ...
3.1.2 Tools e
Adding Zedboard Support
3.2.1 Building Fiasco.OC
3.22 Buidling L4Reo oo

v

ii

iii

vi

viii

Contents v

3.2.3 Buidling a Hello App, 11
3.24 Building L4Linuxo oo 12
3.24.1 IL4dLinux statuson Zynq 12
3.2.5 Giving L4Linux access to devices 13
3.25.1 TheloServer 13
3.2.5.2 Devicetreeso 14
3.2.6 Adding clock driver support to L4Linux for Zynq 17
3.2.6.1 The SLCR Registers 17
3.2.6.2 The Zynq Clocks 18
3.2.7 Adding interrupt support 19
3.2.8 Adding peripheral driver support to L4Linux for Zynq . . . 20
3.2.8.1 Device Controller 20
329 Addingabram 20
3.2.10 Access bram through wio 21
4 Results 22
4.1 Testing 22
4.1.1 Simple Hello App 22
4.1.2 LALInux 23
4.1.3 Running Hello App and L4Linux concurrently 23
4.2 Comparisons with bare metal Linux 24
4.2.1 CPU Benchmarks 24
4.2.2 10 Benchmarks 25
4.2.3 Math Operations Benchmarks 29
4.2.4 Security and Resource Management 30
5 Conclusions and Future Work 32
5.1 Conclusions 32
5.2 Improvements and Future work 32
5.2.1 Reduce the L4/Fiasco overhead 33
5.2.2 Abstract Peripheral Devices (Clock Server, Network Server
CEC) . 33
5.2.3 Modify L4Linux’s drivers to use those server through inter-
process communication 0oL L. 33

5.2.4 Being able to control system power settings from L4Linux . 33
5.2.5 Reproduce this thesis on a stronger system than the Zedboard 34

A Appendix 35

Bibliography 46

List of Figures

2.1
2.2

3.1
3.2

4.1
4.2
4.3

L4/Fiasco system architecture 3
L4 /Fiasco system architecture 3
Zynq Clock Subsystem 18
Enabling Generic UIO driver in L4Linux 21
Fiasco Server Printing Geia sou kosme!!! 22
Connecting with SSH to L4Linux 23
L4Linux with Helloapp 24

vi

List of Code Snippets

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
Al

Guix environment exampleo 8
setup_env.sh Seript oL 9
modules.listo 12
hello-test.cfg 12
zedboard.devso 13
hw devices.io Lo 14
zyng.dts ..o 14
arch/14/kernel/arch-arm/1d.c 17
drivers/clk/zyng-14/clke.co o oo 18
arch /14 /include/asm/mach-arm/zynq/mach /irqgs.h 19
zynq.dts ..o 19
drivers/net /ethernet/xilinx/Kconfig 20
zedboard.devs with Bram 0. 21
hw _devices.io with Bram 21
L4Linux bootargs for bram 21
Mlx.cfg . . . o 23
Linux 3.19.0 CPU perfomance 24
L4Linux CPU perfomance 25
Linux 3.19.0 memory bandwidth more is better 26
L4Linux memory bandwidth more is better 26
Linux 3.19.0 memory latency less is better 27
L4Linux memory latency less is better 27
Linux 3.19.0 block device bandwidth and latency 28
L4 Linux block device bandwidth and latency 28
Ishw Linux 30
Ishw L4Linux 31
L4Linux final build configo 35

vil

Abbreviations

CPU -> Central Processing Unit

FPGA -> Field Programmable Gate Array
I/O -> Input/Output

IPC -> Inter-process Communication

IRQ -> Interrupt Request

SLCR -> System-Level Control registers
SoC -> System On Chip

viil

This page is intentionally left blank

1X

Chapter 1

Introduction

This chapter describes the knowledge background to understand this thesis. Fur-
thermore it discusses the motivation behind it, as well similar work done previously.

Lastly, a short description of the thesis structure can be found.

1.1 Background and Motivation

A microkernel system is a system where the functionality of the system is moved
out of the kernel, into a set of userspace applications that have little effect on the

stability of the system.

The Zedboard is a Zynq based board which contains an ARM CPU together with
an FPGA.[1]

A L4/Fiasco microkernel|2|[3] based system is able to be used as a hypervisor to

run other system on top of it. The motivation of this thesis is to prove that:
1. L4/Fiasco can be used on the Zedboard.
2. A Linux system can be used on top of this as a userspace application.

3. We can control which application has access to which parts of the hardware.

4. Access and use FPGA based devices from Linux.

Abbreviations 2

1.2 Similar Work

Perfomance measurements of a second generation .4 micro kernel have been done
by modifying a Linux kernel to run on top of it and compare it to a normal Linux

system.|4]

A number of previous studies have analysed ways to isolate application running on
a cpu either by testing the security of standard lightweight OS level virtualization
technologies [5] by comparing the provided isolation of various implementations,
or implemented a secure kernel level execution environment for ARM processors

and guarantee isolation [6].

Other approaches are being done though hardware by utilizin a system-level MMU
to contol access to the system resources [7], [8], or by segmenting the memory and

implementing access levels based on application priviliges|9].

Studies have been done on improving the perfomance of systems by learning how
a resource is used and how to better allocate it in the future based on a specific

goal [10], or by distributing the workload on energy efficient SoCs [11] .

Other similar engineering work has been done, from Taeung Song and Yeongchann
Han where they ported L4 and L4Linux to Freescale 1. MX6 Quad SABRE SD[12].

1.3 Thesis Structure

Chapter 1 informs the reader of the background of this thesis and contains a

short description of the thesis structure.

Chapter 2 explains the theory needed in order to understand the combination of

hardware and software used.

Chapter 3 describes implementation details on how to reproduce the work, how

Zedboard support was added and how L4Linux can access the hardware.
Chapter 4 presents the results of running applications on 1.4 /Fiasco.

Chapter 5 finishes this thesis with the conclusions of this bachelor thesis and

thoughts on possible future improvements.

Chapter 2

Theory and State of the Art

The purpose of this chapter is to make a basic introduction of the software/hard-
ware architecture used in this thesis. The reader needs to have an understanding

of what he is going to read, regardless of his familiarity with the subject.

2.1 The L4/Fiasco System

[Linux App l [Linux Appl

L4Linux Kernel L4 App

Guest 0S

| J I |

L4Runtime Environment User Mode

Privileged

Processor

Fiasco Microkernel

HARDWARE

FIGURE 2.1: L4/Fiasco system architecture

Abbreviations 4

2.1.1 Hardware

The hardware in this thesis is the ZedBoard using the Zynq 7000 SoC. This thesis

intoduces ZedBoard peripheral support into the L4 /Fiasco upstream code.

2.1.2 The Fiasco Microkernel

Fiasco is a 3rd-generation microkernel developed by the Operating Systems Group
TUD:OS of the TU Dresden in 1998 and released under the GNU General Pub-
lic License version 2 (GPLv2). It implements the L4 ABI, along with various
extensions. Fiasco supports the x86, x86 64, MIPS and Arm architectures.

Fiasco supports running real-time, time-sharing and virtualization applications
concurrently on the same machine. This make it suitable as a hypervisor to run

different kernel on top of it.

Inside Fiasco we can find tasks, threads and the IPC. A task comprises of a memory
address space (represented by the task’s page table) and an object space (holding
the kernel protected capabilities). Each task can be bound with multiple threads,
which are used to execture code and are controlled by the Fiasco scheduler. The
Inter Process Communication (IPC) is the syncronous communication mechanism
used to transmit arbitrary data between threads and to resolve hardware excep-

tions.

2.1.3 L4 Runtime Environment

The L4 Runtime Environment (L4Re) was developed in order to provide the nec-
essary infrastructure on top of Fiasco.OC for conveniently developing applications.
The microkernel is the only program that runs in privileged processor mode and
it does not include any complex services. L4Re runs on top of the kernel and
provides a user-level infrastructure that includes basic services such as program
loading, memory management and device drivers. L4Re also provides the environ-
ment for applications, including libraries and processing local functionality. The

L4Re includes the IO server which controls access to the hardware.

Abbreviations 5

2.1.4 L4Linux

L4Linux APP

h 4 h 4

10 Server L4 Linux Virtual Bus L4 App Virtual Bus

I A F 3 T r Y

Hardware
SD Card Ethernet UsSB BRAM

FIGURE 2.2: L4/Fiasco system architecture

L4Linux is a port of the Linux kernel, modified to be able to run para-virtualized on
top of a hypervisor L4/Fiasco in our case, completely without privileges. L4Linux
runs in user-mode on top of the micro-kernel, side-by-side with other micro-kernel

applications such as real-time components.

Through the 10 server we create two virtual buses, one called for the Linux guest
and one for the 1.4 App. Each of these buses have a different peripherals assigned
to them. A task (Linux guest/App) is assigned to each bus. The task cannot

access hardware outside of the virtual bus.

2.2 State of the Art

This section presents current alternatives available on ARM platforms.

2.2.1 Docker, LXC and Nix/Guix

Docker, LXC and Nix/Guix all offer a way to have lightweight VMs (called con-
tainers) while sharing the same kernel. The different containers work in completely
seperate environments and cannot access each other’s working internals. This is
achieved through the usage of kernel namespaces and/or virtual chrooted envi-
ronemts. LXC is a userspace interface which offers an API that can be used on
its own or indirectly from Docker, Nix and Guix. The implementation differences

between Docker and Nix/Guix are out of the scope of this thesis.

Abbreviations 6

All the solution described above require running a full Linux system.

2.2.2 Xen Hypervisor

Xen is almost identical to what L4/Fiasco can offer. It has a mikrokernel in
its core which allows for paravirtualized operating systems to run on top of it.
The difference is that while Xen is designed with only virtualization in mind,
L4 /Fiasco can also run simple L4 Apps which directly control only a specific part
of the hardware. These L4 App run as servers which then other application can

communicate with and exchange arbitary data.

Chapter 3

Implementation

This chapter contains details on everything related to reprodue a fully usable
L4/Fiasco based system on the Zedboard. It includes a description of the tools
needed to properly build everything, the details about porting ARM Linux drivers
to L4Linux and lastly how to access FPGA hardware from within L4Linux. This
chapter describes the work which I did.

3.1 Setting up the environment

This sections contains information on how to reproduce the environment needed

to achieve what is described in this thesis.

3.1.1 Sources

The orignal sources used are from the svn and/or git repositories of the related
projects. Listed bellow are the individual svn urls along with which revision/com-
mit was used. Modifications to those are currently in private git repositories and

will probably be upstreamed.

SVN: Fiasco Kernel Revision 72
SVN: L4 Runtime Environment Revision 72
SVN: L4Linux Revision 54

https://svn.l4re.org/repos/oc/l4re/trunk/kernel/fiasco/
https://svn.l4re.org/repos/oc/l4re/trunk/l4
https://svn.l4re.org/repos/oc/l4linux/trunk

Abbreviations 8

rootfs: Linaro precise dev image

3.1.2 Tools

To successfully build the specific source version used, the Linaro 4.9-2014.09
toolchain is needed. In order to automate the tools deployment Guix was used and

a set of bash scripts. Below are some samples. The code is pretty self-explanatory.

The commands to setup the environment are:

1. guix environment l4fiasco-env —pure

2. source setup env.sh

(define-public linaro-toolchain-4.9
(package
(name "linaro-toolchain")
(version "4.9-2014.09 _linux")
(source
(origin
(method url-fetch)
(uri (string-append "https://releases.linaro.org/archive/14.09/components/\
toolchain/binaries/gcc-linaro-arm-linux-gnueabihf-" version ".tar.xz"))
(sha256
(base32
"148q9xnwn8ygqzpxpv8ayj06cdnf27h4p8fzvnbkrsxOmg6arzqc"))))
(build-system trivial-build-system)
(arguments
¢(#:modules ((guix build utils))
#:builder (begin
(use-modules (guix build utils)

(srfi srfi-26))

(let* ((source (assoc-ref Jbuild-inputs "source"))

(tar (assoc-ref Ybuild-inputs "tar"))
(xz (assoc-ref Jbuild-inputs "xz"))
(output (assoc-ref J%outputs "out")))

(setenv "PATH" (string-append xz "/bin"))

(system* (string-append tar "/bin/tar") "xvi"

source)
(copy-recursively "gcc-linaro-arm-linux-gnueabihf-4.9-2014.09_linux/"
output)
#t))))
(native-inputs ‘(("tar" ,tar)

("xz" ,xz)))

https://releases.linaro.org/archive/12.09/ubuntu/precise-images/developer/
https://www.gnu.org/software/guix/

Abbreviations 9

(supported-systems ’("i686-1linux" "x86_64-1linux"))

(home-page "https://releases.linaro.org")

(synopsis "Linaro arm cross-toolchain")

(description

"Linaro arm cross-toolchain binaries that can be used to build Fiasco, L4
and L4Linux")

(license license:gpl2)))

(define-public l4fiasco-env
(package
(name "l4fiasco-env")
(version "0.1")
(source #f)
(build-system trivial-build-system)
(native-inputs
‘(("linaro-toolchain" ,linaro-toolchain-4.9)
("u-boot" ,u-boot-tools)
("dtc" ,dtc)
("doxygen" ,doxygen)))
(synopsis "Octopress Ruby Environment")
(description "This file automates the creation of a cross-arm environment so I can
build Fiasco,L4 and L4Linux.")
(home-page #f£)

(license license:expat)))

CODE SNIPPETS 3.1: Guix environment example

#! /bin/sh

if [-n "$GUIX_ENVIRONMENT"]
then
export GCC_PATH_PREFIX=$GUIX_ENVIRONMENT/bin/arm-linux-gnueabihf -
else
export GCC_PATH_PREFIX=/opt/gcc-linaro-arm-linux-gnueabihf -4.9-2014.09 _linux/bin/arm-linux-g
export PATH=/home/$USER/git_repos/u-boot-xlnx/tools/:$PATH
fi
export PATH=$(pwd)/bin:$PATH
export L4ARCH=arm
export ARCH=arm
export CROSS_COMPILE=arm-linux-

CODE SNIPPETS 3.2: setup env.sh Script

3.2 Adding Zedboard Support

This sections will go through the process of getting a live L4Linux system, on top
L4 /Fiasco. It will describe the problems encountered and how they were solved.

It will also show how a bram was added and accessed from inside the L4Linux.

Abbreviations 10

3.2.1 Building Fiasco.OC

True to its microkernel nature Fiasco is really small. As a result it’s really easy to

configure it to run on the Zynq processor.

The exact steps are:

1. make BUILDDIR=build
2. cd build
3. make config

4. make

In config we should enable:

e Architecture (ARM processor family)
e Platform (Xilinx Zynq)
e UART (Use UART 1)

e CPU (ARM Cortex-A9 CPU)

Everything else can be left at default. UART 1 is the UART port used on the
Zedboard by default.

3.2.2 Buidling L4Re

The L4 runtime environemt is built in two steps. First we need to build the

libraries and servers.

1. mkdir build
2. make O=build config

3. make O=build

Abbreviations 11

The following config options should be enabled:

e Target Architecture (ARM architecture)
e CPU variant (ARMv7A type CPU)

e Platform Selection (Xilinx Zynq Zedboard)

3.2.3 Buidling a Hello App

Before actually building L4Linux it had to be proven that a simple Hello App can

be written and run. The following describes how this simple setup boots.

1. Fiasco.OC — Microkernel
2. Sigma0O — Root Pager

3. Moe — Root Task

4. Ned — Init Process

5. hello — Hello World Application

In order to build the Hello App, one needs a modules.list file containing information
on the modules to be used and a cfg script. Moe is the first task which is started
in L4Re-based systems. What Moe does, is offer basic L4Re abstractions for Ned,
as well as instructions on how to proceed. Moe is used as a loader from Ned, as a

mean for starting applications.

Moe starts Ned as the default init process. Ned’s job is to bootstrap the system
running on L4Re. The main thing to do here is to coordinate the startup of services
and applications as well as to provide the communication channels for them. The
central facility in Ned is the Lua script interpreter with the L4Re and ELF-loader
bindings.

The boot process is based on the execution of one or more Lua scripts that create
communication channels (IPC gates), instantiate other L4Re objects, organize ca-

pabilities (access rights) to these objects in sets, and start application processes

Abbreviations 12

with access to those objects (or based on those objects).

modaddr 0x002000000

entry hello
kernel fiasco -serial_esc
roottask moe rom/hello-test.cfg
module lire
module ned
module hello-test.cfg

module test-bare-hello

CODE SNIPPETS 3.3: modules.list

local L4 = require("L4");
L4.default_loader:start ({}, "rom/test-bare-hello");

CODE SNIPPETS 3.4: hello-test.cfg

Finally, from inside the L4 source dricectory, the ulmage file can be produced with:

make uimage O=build E=hello-test MODULE_SEARCH_PATH=path/to/fiasco/sources

This image when run, will continuesly print 'Geia sou kosme’ in the uart port.

3.2.4 Building L4Linux

Building L4Linux and gaining access to the peripherals was a major challenge. The
purpose of the next sections will be to guide you through the details of adding

support for those devices in L4Linux.

3.2.4.1 L4Linux status on Zynq

Before the work described in this thesis, L4Linux could boot on the Zynq, and had
a basic system with the help of a generic arm ramdisk. But there was no driver

support for any of the devices on the Zedboard.

When running L4Linux

Abbreviations 13

3.2.5 Giving L4Linux access to devices

For L4Linux to find and use the devices we need to 1) describe where the devices

are, and 2) enable the drivers.

3.2.5.1 The Io Server

All platform devices and resources such as I/O memory and interrupts are handled
by the Io Server. Io grants access to the clients based on configuration written in

Lua.

Io’s configuration consists of two parts:

e The description of the real hardware

e The description of virtual buses

Both descriptions represent a hierarchical (tree) structure of device nodes. Where
each device has a set of resources attached to it. And a device that has child

devices can be considered a bus.

local Res = Io.Res
local Hw = Io.Hw

Io.hw_add_devices (function ()

SLCR = Hw.Device(function ()

compatible = {"xlnx,zyngq-slcr", "syscon", "simple-mfd"};
Property.hid = "xlnx,zynq-slcr";
Resource.mem = Res.mmio (0xf8000000, O0xf8000fff);

end);

NIC = Hw.Device (function ()
compatible = {"cdns,zyng-gem", "cdns,gem", "cdns,macb"};
Property.hid = "cdns,zyng-gem";
Resource.irq = Io.Res.irq(54);

Resource.mem = Res.mmio (0xe000b000, 0xeOO0Obfff);

end);

MMC = Hw.Device(function ()
compatible = {"arasan,sdhci-8.9a"};
Property.hid = "arasan,sdhci-8.9a";

Property.flags = Io.Hw_device_DF_dma_supported;
Resource.irq = Io.Res.irq(56);
Resource.regs = Io.Res.mmio(0xe0100000, 0xeO100fff);
end);
DMAC = Hw.Device(function ()

Abbreviations

14

compatible = {"arm,pl330", "arm,primecell"};
Property.hid = "arm,pl330";

-- Property.flags = Io.Hw_device_DF_dma_supported;
Resource.irq = Res.irq(45);

Resource.irq = Res.irq(46);

Resource.irq = Res.irq(47);

Resource.irq = Res.irq(48);
Resource.irq = Res.irq(49);
Resource.irq = Res.irq(72);
Resource.irq = Res.irq(73);
Resource.irq = Res.irq(74);
Resource.irq = Res.irq(75);

Resource.regs = Io.Res.mmio (0xf8003000, O0xf8003fff);
end);
end);

CODE SNIPPETS 3.5: zedboard.devs

local Hw = Io.system_bus ()

Io.add_vbus ("14linux", Io.Vi.System_bus

{
slctrl = wrap(Hw.SLCR);
ethernet = wrap(Hw.NIC);
sdhci = wrap(Hw.MMC);
dmacontroller = wrap (Hw.DMAC);
bram = wrap (Hw.FPGA_BRAM);

B

CODE SNIPPETS 3.6: hw_ devices.io

3.2.5.2 Device trees

We also need to tell Linux where to find those devices. For this we use a modified

device tree file.

/*
* Basic DT for L4Linux on zyng.

*/
/dts-v1/;
/ {
model = "L4Linux (DT)";

compatible = "L4Linux";

#address-cells = <1>;

Abbreviations

15

#size-cells = <1>;
chosen { };

aliases { 7};

amba {
compatible = "simple-bus";
#address-cells = <0x1>;
#size-cells = <0xl1>;
interrupt -parent = <&intc>;
ranges;

intc: ldicu {
compatible = "14,icu";

interrupt -controller;

l4icu-type = "gic";
#interrupt-cells = <3>;
#address-cells = <0>;

gem0: ethernet@e000b000 {
compatible = "cdns,zynqg-gem", "cdns,gem";
reg = <0xe000b000 0x1000>;
status = "okay";
interrupts = <0 22 4>;
clocks = <&clkc 30>, <&clkc 30>, <&clkc 13>;
clock-names = "pclk", "hclk", "tx_clk";
#address-cells = <1>;
#size-cells = <0>;
phy-mode = "rgmii-id";
phy-handle = <ðermet_phy>;

ethernet_phy: ethernet-phy@0 {
reg = <0>;
};
}s

sdhciO: sdhci@e0100000 {

compatible = "arasan,sdhci-8.9a";
status = "okay";
clock-names = "clk_xin", "clk_ahb";

clocks = <&clkc 21>, <&clkc 32>;
interrupt -parent = <&intc>;
interrupts = <0 24 4>;
reg = <0xe0100000 0x1000>;

}s

slcr: slcr@f8000000 {

#address-cells = <1>;
#size-cells = <1>;
compatible = "xlnx,zynq-slcr", "syscon",

reg = <0xF8000000 0x1000>;

"simple -mfd";

Abbreviations

16

ranges;
clkc: clkc@100 {

#clock-cells = <1>;
compatible =

fclk-enable =

"x1lnx ,ps7-clkc";
<0>;

clock-output-names = "armpll", "ddrpll", "iopll", "cpu_6or4x",
"cpu_3or2x", "cpu_2x", "cpu_1x", "ddr2x", "ddr3x
Ildcill’ |Ilqspill’ "SmC", Ilpcapll’ Ilgemoll, "geml",
"fclkO", "fclk1l", "fclk2", "fclk3", "canO", "can
"sdioO", "sdiol", "uwartO", "uartl", "spiO", "spi
"dma", "usbO_aper", "usbl_aper", "gemO_aper",

"geml_aper",

"sdioO_aper",

"sdiol_aper",

"spiO_aper", "spil_aper", "canO_aper", "canl_ape
"i2cO_aper", "i2cl_aper", "uartO_aper", "uartl_a
"gpio_aper", "lgspi_aper", "smc_aper", "swdt",
"dbg_trc", "dbg_apb";

reg = <0x100 0x100>;

ps-clk-frequency = <33333333>;

};

rstc: rstc@200 {
compatible = "xlnx,zyng-reset';
reg = <0x200 0x48>;
##reset -cells = <1>;
syscon = <&slcr>;

}s

pinctrlO: pinctrl@700 {
compatible = "xlnx,pinctrl-zynq";
reg = <0x700 0x200>;
syscon = <&slcr>;

};

}s
dmac_s: dmac@f8003000 {

compatible = "arm,pl330", "arm,primecell";

reg = <0xf8003000 0x1000>;

interrupt -parent = <&intc>;

interrupt -names = "abort", "dmaO", "dmal", "dma2",
"dma4", "dmab", "dma6", "dma7";

interrupts = <0 13 4>,

<0 14 4>, <0 15 4>,
<0 16 4>, <0 17 4>,
<0 40 4>, <0 41 4>,
<0 42 4>, <0 43 4>;
#dma-cells = <1>;
#dma -channels = <8>;
<4>;
27>;

"apb_pclk";

#dma-requests =
clocks = <&clkc
clock-names =

};

"dma3",

CODE SNIPPETS 3.7: zynq.dts

Abbreviations 17

3.2.6 Adding clock driver support to L4Linux for Zynq

There are two way in which L4Linux can access the platform clocks. One is to
give Linux direct access to the clocks and the other is to have a L4 server which

will control the clocks and serve clock requests.

In this thesis the first way was used.

3.2.6.1 The SLCR Registers

The System-Level Control registers (SLCR) consist of various registers that are
used to control the behavior of the system. In order to access the 1/O peripherals,

including the peripheral clocks, the SLCR needs to be unlocked.

The problem was that L4Linux L4 architecture did not have support for this.
Fortunately the SLCR drivers could be ported from the Linux ARM architecture.
After the drivers were added, L4Linux need to be instructed to initialize the SLCR

early in the system boot, before initializing device interrupts.

@@ -30,6 +30,9 @@

#include <14/sys/icu.h>
#include <14/sys/cache.h>
#include <14/io/io.h>

+#ifdef CONFIG_L4_PLATFORM_ZYNQ
+#include <mach/common.h>
+#endif

enum { L4X_PLATFORM_INIT_GENERIC = 1 };

@@ -257,6 +261,10 @@ static void __init l4x_mach_init_of_irq(void)
static void __init 1l4x_mach_init_irq(void)
{
+
+#ifdef CONFIG_L4_PLATFORM_ZYNQ
+ zynq_early_slcr_init ();
+#endif
/* Call our generic IRQ handling code */

141x_irq_init ();

CoDE SNIPPETS 3.8: arch/14/kernel/arch-arm/14.c

Abbreviations 18

: | PLLs !
PS CLK 1 | cpu_Bxdx CPU, SCU,
: Pl | B-bit Clock cpu3xx OCM
g | | — Programm able —h Hatio | pF————-— Sy
: [., [OPL ; | Divider Glich Fee Generator zxfi lTAm o
4 nterconne
| | | Giwh-Free _
: I DOR PLL H &bt
Boot blode | il : Programmable = Gami ddr_3x
PinPLL || |TT T~ Divider Glitch Frea Azyme
Bypass
N 6-bit
@_. POR Programmable [~| Gate H ddr_2x
Latch Bypass Divider pr— e
| Control Gitch-Free ’
| .
L . /0 Peripherals
| .
| ’_. G-t == (0P
. | ML Programmable 1. T
| Bypass Control Regisiers: Divider is) — =
| ARM_PLL_CTRL L. - 0
I DDR_PLL_CTRL —1 . Ememat
| 0_PLL CTRL T SDI3, SMEC,
| 1 . SPI GSPI, UART
| T CAM, (2C
|
I r—===—=—==—==—== A
| | |
| === FL |
| 0= |
| PLCIocs I

UGEAS e i 1mdand

FI1GURE 3.1: Zynq Clock Subsystem

3.2.6.2 The Zynq Clocks

The cpu and ddr clocks are controlled by L4 /Fiasco and providle COMMON CLK
which can be used from L4Linux as the system main clock source. But for example
in order to control the ethernet device, Linux needs access to SLCR_ GEM0 CLK CTRL

#define SLCR_GEMO_CLK_CTRL (zynq_clkc_base + 0x40)
static DEFINE_SPINLOCK(gemOclk_lock);
static const char *gemO_mux_parents[] __initdata = {"gemO_divil", "dummy_name"};

s
static const char *const gemO_emio_input_names[] __initconst = {

"gemO_emio_clk"};

for (i = 0; i < ARRAY_SIZE(gemO_emio_input_names); i++) {
int idx = of_property_match_string(np, "clock-names",
gemO_emio_input_names [i]);
if (idx >= 0)
gemO_mux_parents[i + 1] = of_clk_get_parent_name (np,

idx);

clk = clk_register_mux (NULL, "gemO_mux", periph_parents, 4,
CLK_SET_RATE_NO_REPARENT, SLCR_GEMO_CLK_CTRL, 4, 2, O,
&gemOclk_lock);

clk_register_divider (NULL, "gemO_divO", "gemO_mux", O,
SLCR_GEMO_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED |
CLK_DIVIDER_ALLOW_ZERO, &gemOclk_lock);

clk

Abbreviations

19

clk clk_register_divider (NULL, "gemO_divil", "gemO_divO0",
CLK_SET_RATE_PARENT, SLCR_GEMO_CLK_CTRL, 20, 6,
CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO,
&gemOclk_lock);
clk = clk_register_mux (NULL, "gemO_emio_mux", gemO_mux_parents,
CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT,
SLCR_GEMO_CLK_CTRL, 6, 1, 0,
&gemOclk_lock);
clks [gem0O] = clk_register_gate (NULL, clk_output_name[gemO],
"gemO_emio_mux", CLK_SET_RATE_PARENT,
SLCR_GEMO_CLK_CTRL, 0, O, &gemOclk_lock);

clks [gemO_aper] = clk_register_gate(NULL, clk_output_name[gemO_aper],
clk_output_name [cpu_1x], 0, SLCR_APER_CLK_CTRL, 6, O,
&aperclk_lock);

2,

CODE SNIPPETS 3.9: drivers/clk/zynqg-14/clke.c

The same has to be done for every peripheral device, such us SDIO and USB.

3.2.7 Adding interrupt support

Finally interrupts need to be enabled. The IO server knows which interrupts each

device has, from the zedboard.devs file, and provides access to Linux.

#ifndef __ASM_ARM__MACH_ZYNQ__IRQS_H__
#define __ASM_ARM__MACH_ZYNQ__IRQS_H__

#define NR_IRQS_HW 210

#include_next <mach/irqs.h>

#endif /* __ASM_ARM__MACH_ZYNQ__IRQS_H */

CoDE SNIPPETS 3.10: arch/14/include/asm/mach-arm/zynq/mach /irgs.h

We also need to make sure Linux will know where to find the L4 interrupt con-

troller.

intc: 1ldicu {
compatible = "14,icu";
interrupt -controller;
l4icu-type = "gic";
#interrupt -cells = <3>;
#address-cells = <0>;

Abbreviations 20

CODE SNIPPETS 3.11: zynq.dts

3.2.8 Adding peripheral driver support to L4Linux for Zynq
Now that the peripheral clocks and interrupts work for L4Linux, the peripheral

drivers need to be enabled for usage on L4Linux. Because of the approach used,

the drivers think they are actually on bare metal system.

3.2.8.1 Device Controller

The first step is to enable the drivers for usage with the L4 architecture.

For example for the ethernet driver:

config NET_VENDOR_XILINX

bool "Xilinx devices"

default y

- depends on PPC || PPC32 || MICROBLAZE || ARCH_ZYNQ

+ depends on PPC || PPC32 || MICROBLAZE || ARCH_ZYNQ || ARCH_L4
---help---

If you have a network (Ethernet) card belonging to this class, say Y.

@@ -18,7 +18,7 @@ if NET_VENDOR_XILINX

config XILINX_EMACLITE
tristate "Xilinx 10/100 Ethernet Lite support"

- depends on (PPC32 || MICROBLAZE || ARCH_ZYNQ)

+ depends on (PPC32 || MICROBLAZE || ARCH_ZYNQ || ARCH_L4)
select PHYLIB
---help---

This driver supports the 10/100 Ethernet Lite from Xilinx.

CODE SNIPPETS 3.12: drivers/net/ethernet/xilinx/Kconfig

In appendix A the whole L4Linux configuration used can be found.

3.2.9 Adding a bram

Adding a bram to the system is simple. First we need to tell IO to give Linux
access to the device, add it to the virtual bus and then inform Linux where to find

it. On the Linux side we will use UIO to test the bram.

Abbreviations 21

FPGA_BRAM = Hw.Device(function ()

compatible = {"generic-uio"};

Property.hid = "generic-uio";

Resource.mem = Res.mmio (0x40000000, 0x40000fff);
end) ;

CODE SNIPPETS 3.13: zedboard.devs with Bram

bram = wrap (Hw.FPGA_BRAM);

CODE SNIPPETS 3.14: hw_ devices.io with Bram

3.2.10 Access bram through uio

First of all we need to build the kernel with generic uio support.

<*s serspace I/0 platform driver with generic IRQ handling
< > serspace platform driver with generic irg and dynamic memory
< > exas Instruments PRUSS driver

FIGURE 3.2: Enabling Generic UIO driver in L4Linux

Finally we need to pass ‘uio_ pdrv__genirq.of id=generic-uio’ to the kernel bootargs

in order for the kernel to match the bram with the uio generic driver.

rom/vmlinuz mem=312M console=ttyLv0 1l4x_dtb=rom/zyng-zed.dtb

root=/dev/mmcblkOp2 rw rootwait uio_pdrv_genirq.of_id=generic-uio

CoDE SNIPPETS 3.15: L4Linux bootargs for bram

And now the bram is ready to be used with a userspace driver.

Chapter 4

Results

This chapter contains proof that the system operates as expected. Proof for each

of the run cases is given as well as code where necessary.

4.1 Testing

4.1.1 Simple Hello App

The first thing I did with L4 /Fiasco was to have a simple server on top of Fiasco,

continuesly printing 'Geia sou kosme!!!” on the serial port.

(]
|-_|-
(ah]

3
3
3
Geia
3
3
3
-'I

(]
|-_|-
(ah]

(]
|-_|-
(ah]

(]
|-_|-
(ah]

(]
|-_|-
(ah]

D
s |-_|-
1

T

FIGURE 4.1: Fiasco Server Printing Geia sou kosme!!!

This was a proof that I could run a server on Fiasco. Next is L4Linux as a server.

22

Abbreviations 23

4.1.2 L4Linux

L4Linux is binary compatible with ARM. As a result Linaro userspace built for
armv7l can be used to have a full system. Bellow I connect to the on such system

using SSH. Remember that L4Linux is running as a server on top of Fiasco.

dirty armv71)

e UNKNOWN group default qlen 1

ast state UP group default qlen 1000

FIGURE 4.2: Connecting with SSH to L4Linux

As was stated before, L4 /Fiasco abstracts the hardware and controls which parts

Linux has access to.

4.1.3 Running Hello App and L4Linux concurrently

Running L4Linux with the Hello App concurrently is simple. We can tell Ned to

start both servers, as shown bellow:

L4.default_loader:start ({}, "rom/test-bare-hello");

L4.default_loader:start(

{ caps = {
vbus = vbus_1l4linux;
},
l4re_dbg = L4.Dbg.Warn,
log = L4.Env.log:m("rws"),

},

"rom/vmlinuz mem=312M console=ttyLvO

"1l4x_dtb=rom/zynq-zed.dtb "

"root=/dev/mmcblkOp2 rw rootwait "

"uio_pdrv_genirq.of_id=generic-uio ");

CODE SNIPPETS 4.1: l4lx.cfg

The hello app will continuesly print on the uart a message, which uart is shared

with L4Linux, and a user can use the system though ssh.

Abbreviations 24

FIGURE 4.3: L4Linux with Hello app

4.2 Comparisons with bare metal Linux

Because of the underlying L4 /Fiasco core used, a Linux guest cannot have full
access to the available memory. In our tests the guest L4Linux has access only to
312M of RAM. Moreover it has only access to parts of the system which the L4

configuration allows, as stated previously.

4.2.1 CPU Benchmarks

sysbench --test=cpu --num-threads=1 run
Running the test with following options:

Number of threads: 1

Doing CPU performance benchmark

Threads started!

Done.

Maximum prime number checked in CPU test: 10000

Test execution summary:
total time: 341.1237s
total number of events: 10000
total time taken by event execution: 341.1105

per-request statistics:

min: 33.96ms
avg: 34.11ms
max: 39.32ms
approx. 95 percentile: 34.14ms

Threads fairness:
events (avg/stddev): 10000.0000/0.00
execution time (avg/stddev): 341.1105/0.00

CODE SNIPPETS 4.2: Linux 3.19.0 CPU perfomance

Abbreviations 25

sysbench --test=cpu --num-threads=1 run
Running the test with following options:
Number of threads: 1

Doing CPU performance benchmark

Threads started!

Done.

Maximum prime number checked in CPU test: 10000

Test execution summary:

total time: 344.4229s

total number of events: 10000

total time taken by event execution: 344.3599

per-request statistics:

min: 33.99ms
avg: 34.44ms
max: 131.99ms
approx. 95 percentile: 34.98ms

Threads fairness:
events (avg/stddev): 10000.0000/0.00
execution time (avg/stddev): 344.3599/0.00

CoDE SNIPPETS 4.3: L4Linux CPU perfomance

L4Linux does have a perfomance overhead on the cpu side, compared to bare metal

Linux.

TABLE 4.1

GZIP compression | Average Time
L4Linux 713.82 s
Linux 653.24 s

Again the same can be seen with compression tests.

4.2.2 10 Benchmarks

This is a simple memory benchmark program, which tries to measure the peak
bandwidth of sequential memory accesses and the latency of random memory ac-
cesses. Bandwidth is measured by running different assembly code for the aligned

memory blocks and attempting different prefetch strategies.

Abbreviations

26

Running memory bandwidth tests on bare metal Linux and L4Linux on L4.

copy backwards

copy backwards (32 byte blocks)

copy backwards (64 byte blocks)

copy

copy prefetched (32 bytes step)

copy prefetched (64 bytes step)

2-pass copy

2-pass copy prefetched (32 bytes step)
2-pass copy prefetched (64 bytes step)
£ill

£fill (shuffle within 16 byte blocks)
£fill (shuffle within 32 byte blocks)
£il1ll (shuffle within 64 byte blocks)

aQ QO o o oo aaaaaaaaQ

standard memcpy
standard memset
ARM fill (STM with 8 registers)
ARM fill (STM with 4 registers)

329.
329.
315.
327.
508.
330.
259.
436.
388.
2124.
2124.
2124.
546.

355.

NN WO NN, O 0o WwN

2124.2

2124.

3

MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s

MB/s
MB/s

MB/s

2124.9 MB/s

CODE SNIPPETS 4.4: Linux 3.19.0 memory bandwidth more is better

copy backwards

copy backwards (32 byte blocks)

copy backwards (64 byte blocks)

copy

copy prefetched (32 bytes step)

copy prefetched (64 bytes step)

2-pass copy

2-pass copy prefetched (32 bytes step)
2-pass copy prefetched (64 bytes step)
£fill

£fill (shuffle within 16 byte blocks)
£fill (shuffle within 32 byte blocks)
£fill (shuffle within 64 byte blocks)

Q O o0 o o o aoaaoaoaaaaaaaQ

standard memcpy
standard memset
ARM fill (STM with 8 registers)
ARM fill (STM with 4 registers)

222.
240.
340.
332.
506.
339.
300.
436.
456.
2120.
2120.
2120.
578.

356.
2120.

2122.
2120.

g W W W N O PN O NN

4
3

MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s
MB/s

MB/s
MB/s

MB/s
MB/s

CODE SNIPPETS 4.5: L4Linux memory bandwidth more is better

While in some cases there is a small drop in perfomance, in other cases we have

almost identical perfomance.

Abbreviations 27

Running memory latency tests on bare metal Linux and L4Linux on L4.

block size : single random read / dual random read
1024 0.0 ns / 0.0 ns
2048 0.0 ns / 0.0 ns
4096 0.0 ns / 0.0 ns
8192 0.0 ns / 0.0 ns
16384 0.0 ns / 0.0 ns
32768 0.0 ns / 0.2 ns
65536 22.5 ns / 33.8 ns
131072 : 34.2 ns / 42.2 ns
262144 : 45.2 ns / 50.2 ns
524288 : 52.3 ns / 55.4 ns
1048576 : 110.3 ns / 149.0 ns
2097152 : 141.4 ns / 180.1 ns
4194304 : 158.5 ns / 194.3 ns
8388608 : 171.1 ns / 208.5 ns
16777216 : 184.7 ns / 230.3 ns
33554432 : 197.8 ns / 254.1 ns
67108864 : 211.5 ns / 281.5 ns

CODE SNIPPETS 4.6: Linux 3.19.0 memory latency less is better

block size : single random read / dual random read
1024 : 0.0 ns / 0.0 ns
2048 0.0 ns / 0.0 ns
4096 0.0 ns / 0.0 ns
8192 0.0 ns / 0.0 ns
16384 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.3 ns
65536 16.5 ns / 25.6 ns
131072 : 25.2 ns / 32.8 ns
262144 : 34.7 ns / 43.8 ns
524288 : 42.0 ns / 52.1 ns
1048576 : 100.9 ns / 141.6 ns
2097152 : 131.9 ns / 171.9 ns
4194304 : 149.2 ns / 186.2 ns
8388608 : 161.2 ns / 198.8 ns
16777216 : 172.6 ns / 215.0 ns
33554432 : 185.4 ns / 237.5 ns
67108864 : 198.7 ns / 262.8 ns

CODE SNIPPETS 4.7: L4Linux memory latency less is better

Interestingly latency has actually decreased. The reason for this may be that the
memory access is actually controlled by Fiasco an abstracted. Linux does not have
to worry about the actual mechanism of reading from memory. As a result the

reads end up being faster.

Abbreviations 28

Now running block device related io benchmarks:

sysbench --test=fileio --file-test-mode=seqwr --num-threads=1 run
Running the test with following options:

Number of threads: 1

Extra file open flags: 0

128 files, 16Mb each

2Gb total file size

Block size 16Kb

Periodic FSYNC enabled, calling fsync() each 100 requests.
Calling fsync() at the end of test, Enabled.

Using synchronous I/0 mode

Doing sequential write (creation) test

Threads started!

Done.

Operations performed: O Read, 131072 Write, 128 Other = 131200 Total
Read Ob Written 2Gb Total transferred 2Gb (4.5296Mb/sec)
289.90 Requests/sec executed

Test execution summary:
total time: 452.1343s
total number of events: 131072
total time taken by event execution: 434.4915

per-request statistics:

min: 0.11ms
avg: 3.31ms
max : 5099.59ms
approx. 95 percentile: 29.10ms

Threads fairness:
events (avg/stddev): 131072.0000/0.00
execution time (avg/stddev): 434.4915/0.00

CoODE SNIPPETS 4.8: Linux 3.19.0 block device bandwidth and latency

sysbench --test=fileio --file-test-mode=seqwr --num-threads=1 run
Running the test with following options:
Number of threads: 1

Extra file open flags: 0

128 files, 16Mb each

2Gb total file size

Block size 16Kb

Periodic FSYNC enabled, calling fsync() each 100 requests.
Calling fsync() at the end of test, Enabled.

Using synchronous I/0 mode

Doing sequential write (creation) test

Threads started!

WARNING: Operation time (0.000000) is less than minimal counted value, counting as 1.000000

Abbreviations 29

WARNING: Percentile statistics will be inaccurate

Done.

Operations performed: 0 Read, 131072 Write, 128 Other = 131200 Total
Read Ob Written 2Gb Total transferred 2Gb (6.8747Mb/sec)
439.98 Requests/sec executed

Test execution summary:
total time: 297.9036s
total number of events: 131072
total time taken by event execution: 292.9806

per-request statistics:

min: 0.00ms
avg: 2.24ms
max: 2476.99ms
approx. 95 percentile: 19.99ms

Threads fairness:
events (avg/stddev): 131072.0000/0.00
execution time (avg/stddev): 292.9806/0.00

CODE SNIPPETS 4.9: L4 Linux block device bandwidth and latency

4.2.3 Math Operations Benchmarks

Using matmul, 4 different possible algorithms were tested. The naive, the trans-
posed, sdot without hints and sdot with hints. We did not use any implementa-
tions not supported by our cpu (i.e SSE sdot). The argument ’-n’ is the size of

the matrix.

Implementation | Long description

Naive Most obvious implementation
Transposed Transposing the second matrix for cache efficiency
sdot w/o hints Replacing the inner loop with BLAS sdot/()

sdot with hints sdot() with a bit unrolled loop

TABLE 4.2: Matrix multiplication supported implementations

Algorithm -a | Linux, -n2000 | L4Linux, -n2000 | Linux, -n4000 | L4Linux, -n4000
Naive 0 345.037 328.272 493.473 391.752
Transposed 1 105.02 105.054 859.85 844.593
sdot w/o hints | 4 109.642 105.045 870.752 844.618
sdot with hints | 3 88.5898 88.673 714.472 714.278

TABLE 4.3: Matrix multiplication implementations less is better

Abbreviations 30

As seen the perfomance was again the same or in some cases slighty better. Faster
memory access, as show in previous tests above, does help increasing the perfo-

mance.

4.2.4 Security and Resource Management

On a normal Linux we have access to all the devices available to the system:

linaro-developer
description: Computer
product: Zynq Zed Development Board
width: 32 bits
*-core
description: Motherboard
physical id: 0
capabilities: xlnx_zynq-zed xlnx_zynq-7000
*-cpu:0
description: CPU
product: cpu
physical id: O
bus info: cpu@O
*-cpu:1l
description: CPU
product: cpu
physical id: 1
bus info: cpu@l
*-memory
description: System memory
physical id: 2
size: 499MiB
*-network
description: Ethernet interface
physical id: 1
logical name: ethO
serial: 00:0a:35:00:01:22
size: 1Gbit/s
capacity: 1Gbit/s
capabilities: ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd auton

configuration: autonegotiation=on broadcast=yes driver=macb duplex=full ip=192.168.2.127

CODE SNIPPETS 4.10: Ishw Linux

Naturally the L4Linux case we only have access to those parts we have given access

to.

Abbreviations 31

linaro-developer
description: Computer
product: L4Linux (DT)
width: 32 bits
*-core
description: Motherboard
physical id: O
capabilities: 1l4linux
*-memory
description: System memory
physical id: O
size: 309MiB
*-cpu
physical id: 1
bus info: cpu@O
*-network
description: Ethernet interface
physical id: 1
logical name: ethO
serial: 00:0a:35:00:01:22
size: 1Gbit/s
capacity: 1Gbit/s
capabilities: ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiat

configuration: autonegotiation=on broadcast=yes driver=macb duplex=full ip=192.168.2.127

CODE SNIPPETS 4.11: Ishw L4Linux

In L4Linux case, as we are still running the test applications on top of a Linux

system, all the standard Linux application memory protections exist.

Chapter 5

Conclusions and Future Work

This chapter contains the conclusion of this thesis, possible improvements and

future work.

5.1 Conclusions

This thesis proves that using Fiasco.oc as a hypervisor on an Arm system is indeed
feasible and may even prove beneficial. Instead of running complex monolithic
systems and use programs such as gemu, one can have a very simple microkernel
with a small codebase, which can be verified much easier, and with a smaller point

of failure.

5.2 Improvements and Future work

The are a lot of things that could be improved in this system. Ideally we want to
have every resource managed from a different L4 /Fiasco server and abstract them.
As a result Linux will only have access to a virtual version of the devices, as if
running on Qemu for example. Also it will allows us to share the same resources
between different operating systems/apps running concurrently. The to-do list is

as follows:

1. Reduce the L4 /Fiasco inter-process communication overhead

32

Abbreviations 33

2. Abstract Peripheral Devices (Clock Server, Network Server etc)

3. Modify L4Linux’s drivers to use those server through inter-process commu-

nication
4. Being able to control system power settings from L4Linux

5. Reproduce this thesis on a stronger system than the Zedboard

5.2.1 Reduce the L4/Fiasco overhead

As we saw in chapter 4, there is a decrease in perfomance. A solution could be to
measure which parts of the process introduces the bigest bottleneck and optimize
it.

5.2.2 Abstract Peripheral Devices (Clock Server, Network

Server etc)

Instead of actually having Linux drivers accessing the hardware, use L4 servers to
control it, and have custom Linux drivers just communicate with them. This way

we could also allow multiple guests to have access to the now shared resources.

5.2.3 Modify L4Linux’s drivers to use those server through

inter-process communication

This is actually a continuation of the previous point. In order to fully support
this, the Linux driver subsystem will have to be rewritten to take advantage of

the L4 server design.

5.2.4 Being able to control system power settings from L4Linux

Currently L4Linux cannot properly control the power of the board. As a result
Linux cannot initiate a shutdown. First there is a need to create an authentication
mechanism to determine which guests will have this capability, and then implement

it. Second a server must be created which will accept requests from the guests to

Abbreviations 34

control the board power. Third, in case of Linux, a driver will need to be created

to take care of communicating with the L4 server.

Another alternative is to use the Uvmm virtual machine monitor supported by
L4Re, to control power events. Unfortunately with the approach the guest machine

will have direct control over the hardware.

5.2.5 Reproduce this thesis on a stronger system than the
Zedboard

Ideally this work could be reproduced simply in a stronger Arm system, as long
as there is L4/Fiasco support for it. Depening on the availability of resources,

L4 /Fiasco should be able to scale and take advantage of them.

Appendix A

Appendix

CONFIG_L4=y

CONFIG_L4_ARCH_ARM=y
CONFIG_USE_QF=y
CONFIG_L4_PLATFORM_ZYNQ=y
CONFIG_L4_ARM_UPAGE_TLS=y
CONFIG_L4_SERVER=y
CONFIG_L4_VBUS=y
CONFIG_L4_BLK_DS_DRV=y
CONFIG_L4_CHR_DS_DRV=y
CONFIG_L4_EVENTS=y
CONFIG_L4_SERIAL=y
CONFIG_L4_SERIAL_CONSOLE=y
CONFIG_L4_SERIAL_SHM=y
CONFIG_L4_DEBUG=y
CONFIG_L4_DEBUG_REGISTER_NAMES=y
CONFIG_L4_DEBUG_SEGFAULTS=y
CONFIG_L4_VCPU=y
CONFIG_L4_CONFIG_CHECKS=y
CONFIG_L4_USE_L4SHMC=y
CONFIG_ARM=y
CONFIG_MIGHT_HAVE_PCI=y
CONFIG_SYS_SUPPORTS_APM_EMULATION=y
CONFIG_HAVE_PROC_CPU=y
CONFIG_STACKTRACE_SUPPORT=y
CONFIG_LOCKDEP_SUPPORT=y
CONFIG_TRACE_IRQFLAGS_SUPPORT=y
CONFIG_RWSEM_XCHGADD_ALGORITHM=y
CONFIG_FIX_EARLYCON_MEM=y
CONFIG_GENERIC_HWEIGHT=y
CONFIG_GENERIC_CALIBRATE_DELAY=y
CONFIG_NEED_DMA_MAP_STATE=y
CONFIG_ARCH_SUPPORTS_UPROBES=y
CONFIG_NEED_MACH_MEMORY_H=y
CONFIG_GENERIC_BUG=y
CONFIG_TIRQ_WORK=y
CONFIG_BUILDTIME_EXTABLE_SORT=y

35

Abbreviations

36

CONFIG_BROKEN_ON_SMP=y
CONFIG_LOCALVERSION_AUTO=y
CONFIG_HAVE_KERNEL_GZIP=y
CONFIG_HAVE_KERNEL_LZMA=y
CONFIG_HAVE_KERNEL_XZ=y
CONFIG_HAVE_KERNEL_LZO=y
CONFIG_HAVE_KERNEL_LZ4=y
CONFIG_KERNEL_GZIP=y
CONFIG_SWAP=y
CONFIG_SYSVIPC=y
CONFIG_SYSVIPC_SYSCTL=y
CONFIG_POSIX_MQUEUE=y
CONFIG_POSIX_MQUEUE_SYSCTL=y
CONFIG_CROSS_MEMORY_ATTACH=y
CONFIG_FHANDLE=y
CONFIG_GENERIC_IRQ_PROBE=y
CONFIG_GENERIC_IRQ_SHOW=y
CONFIG_GENERIC_IRQ_SHOW_LEVEL=y
CONFIG_HARDIRQS_SW_RESEND=y
CONFIG_IRQ_EDGE_EOI_HANDLER=y
CONFIG_TIRQ_DOMAIN=y
CONFIG_HANDLE_DOMAIN_IRQ=y
CONFIG_IRQ_FORCED_THREADING=y
CONFIG_GENERIC_CLOCKEVENTS=y
CONFIG_HZ_PERIODIC=y
CONFIG_TICK_CPU_ACCOUNTING=y
CONFIG_TINY_RCU=y
CONFIG_SRCU=y
CONFIG_GENERIC_SCHED_CLOCK=y
CONFIG_CGROUPS=y
CONFIG_SYSFS_DEPRECATED=y
CONFIG_SYSFS_DEPRECATED_V2=y
CONFIG_BLK_DEV_INITRD=y
CONFIG_RD_GZIP=y
CONFIG_RD_BZIP2=y
CONFIG_RD_LZMA=y
CONFIG_RD_XZ=y
CONFIG_RD_LZO=y
CONFIG_RD_LZ4=y
CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE=y
CONFIG_SYSCTL=y
CONFIG_ANON_INODES=y
CONFIG_HAVE_UID16=y
CONFIG_BPF=y

CONFIG_EXPERT=y
CONFIG_UID16=y
CONFIG_MULTIUSER=y
CONFIG_SYSFS_SYSCALL=y
CONFIG_SYSCTL_SYSCALL=y
CONFIG_KALLSYMS=y
CONFIG_KALLSYMS _BASE_RELATIVE=y
CONFIG_PRINTK=y
CONFIG_PRINTK_NMI=y
CONFIG_BUG=y
CONFIG_ELF_CORE=y

Abbreviations

37

CONFIG_BASE_FULL=y

CONFIG_FUTEX=y

CONFIG_EPOLL=y

CONFIG_SIGNALFD=y

CONFIG_TIMERFD=y

CONFIG_EVENTFD=y

CONFIG_SHMEM=y

CONFIG_AIO=y
CONFIG_ADVISE_SYSCALLS=y
CONFIG_MEMBARRIER=y
CONFIG_EMBEDDED=y
CONFIG_HAVE_PERF_EVENTS=y
CONFIG_PERF_USE_VMALLOC=y
CONFIG_VM_EVENT_COUNTERS=y
CONFIG_COMPAT_BRK=y

CONFIG_SLAB=y
CONFIG_HAVE_OPROFILE=y
CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS=y
CONFIG_ARCH_USE_BUILTIN_BSWAP=y
CONFIG_HAVE_KPROBES=y
CONFIG_HAVE_KRETPROBES=y
CONFIG_HAVE_OPTPROBES=y
CONFIG_HAVE_NMI=y
CONFIG_HAVE_ARCH_TRACEHOOK=y
CONFIG_HAVE_DMA_CONTIGUOUS=y
CONFIG_GENERIC_SMP_IDLE_THREAD=y
CONFIG_GENERIC_IDLE_POLL_SETUP=y
CONFIG_HAVE_REGS_AND_STACK_ACCESS_API=y
CONFIG_HAVE_CLK=y
CONFIG_HAVE_DMA_API_DEBUG=y
CONFIG_HAVE_PERF_REGS=y
CONFIG_HAVE_PERF_USER_STACK_DUMP=y
CONFIG_HAVE_ARCH_JUMP_LABEL=y
CONFIG_ARCH_WANT_IPC_PARSE_VERSION=y
CONFIG_HAVE_CC_STACKPROTECTOR=y
CONFIG_CC_STACKPROTECTOR_NONE=y
CONFIG_HAVE_CONTEXT_TRACKING=y
CONFIG_HAVE_VIRT_CPU_ACCOUNTING_GEN=y
CONFIG_HAVE_IRQ_TIME_ACCOUNTING=y
CONFIG_HAVE_MOD_ARCH_SPECIFIC=y
CONFIG_MODULES_USE_ELF_REL=y
CONFIG_ARCH_HAS_ELF_RANDOMIZE=y
CONFIG_HAVE_ARCH_MMAP_RND_BITS=y
CONFIG_HAVE_EXIT_THREAD=y
CONFIG_CLONE_BACKWARDS=y
CONFIG_OLD_SIGSUSPEND3=y
CONFIG_OLD_SIGACTION=y
CONFIG_ARCH_HAS_GCOV_PROFILE_ALL=y
CONFIG_HAVE_GENERIC_DMA_COHERENT=y
CONFIG_SLABINFO=y
CONFIG_RT_MUTEXES=y
CONFIG_MODULES=y

CONFIG_BLOCK=y

CONFIG_LBDAF=y
CONFIG_MSDOS_PARTITION=y

Abbreviations 38

CONFIG_EFI_PARTITION=y
CONFIG_IOSCHED_NOOP=y
CONFIG_IOSCHED _DEADLINE=y
CONFIG_IOSCHED_CFQ=y
CONFIG_DEFAULT_CFQ=y
CONFIG_INLINE_SPIN_UNLOCK_IRQ=y
CONFIG_INLINE_READ_UNLOCK=y
CONFIG_INLINE_READ_UNLOCK_IRQ=y
CONFIG_INLINE_WRITE_UNLOCK=y
CONFIG_INLINE_WRITE_UNLOCK_IRQ=y
CONFIG_ARCH_SUPPORTS_ATOMIC_RMW=y
CONFIG_FREEZER=y

CONFIG_MMU=y

CONFIG_ARCH_L4=y
CONFIG_MACH_L4=y
CONFIG_L4_ARM_BUILD_FOR_V7=y
CONFIG_CPU_V7=y
CONFIG_CPU_32v6K=y
CONFIG_CPU_32v7=y
CONFIG_CPU_ABRT_EV7=y
CONFIG_CPU_PABRT_V7=y
CONFIG_CPU_CACHE_V7=y
CONFIG_CPU_CACHE_VIPT=y
CONFIG_CPU_COPY_V6=y
CONFIG_CPU_TLB_V7=y
CONFIG_CPU_HAS_ASID=y
CONFIG_CPU_CP15=y
CONFIG_CPU_CP15_MMU=y
CONFIG_ARM_THUMB=y
CONFIG_ARM_VIRT_EXT=y
CONFIG_KUSER_HELPERS=y
CONFIG_OUTER_CACHE=y
CONFIG_OUTER_CACHE_SYNC=y
CONFIG_MIGHT_HAVE_CACHE_L2XO=y
CONFIG_CACHE_L2X0=y
CONFIG_ARM_L1_CACHE_SHIFT_6=y
CONFIG_ARM_DMA_MEM_BUFFERABLE=y
CONFIG_ARM_HEAVY_MB=y
CONFIG_HAVE_SMP=y
CONFIG_VMSPLIT_3G=y
CONFIG_PREEMPT_NONE=y
CONFIG_HZ_100=y
CONFIG_ARM_PATCH_IDIV=y
CONFIG_AEABI=y
CONFIG_OABI_COMPAT=y
CONFIG_HAVE_ARCH_PFN_VALID=y
CONFIG_ARCH_WANT_GENERAL_HUGETLB=y
CONFIG_FLATMEM=y
CONFIG_FLAT_NODE_MEM_MAP=y
CONFIG_HAVE_MEMBLOCK=y
CONFIG_NO_BOOTMEM=y
CONFIG_NEED_PER_CPU_KM=y
CONFIG_GENERIC_EARLY_IOREMAP=y
CONFIG_ALIGNMENT_TRAP=y
CONFIG_SWIOTLB=y

Abbreviations 39

CONFIG_IOMMU_HELPER=y
CONFIG_ATAGS=y
CONFIG_FPE_NWFPE=y
CONFIG_VFP=y

CONFIG_VFPv3=y
CONFIG_BINFMT_ELF=y
CONFIG_ELFCORE=y
CONFIG_BINFMT_SCRIPT=y
CONFIG_BINFMT_MISC=y
CONFIG_COREDUMP=y
CONFIG_SUSPEND=y
CONFIG_SUSPEND_FREEZER=y
CONFIG_PM_SLEEP=y

CONFIG_PM=y

CONFIG_PM_CLK=y
CONFIG_CPU_PM=y
CONFIG_ARCH_SUSPEND_POSSIBLE=y
CONFIG_ARM_CPU_SUSPEND=y
CONFIG_ARCH_HIBERNATION_POSSIBLE=y
CONFIG_NET=y

CONFIG_PACKET=y

CONFIG_UNIX=y

CONFIG_XFRM=y

CONFIG_INET=y

CONFIG_IP_PNP=y
CONFIG_IP_PNP_DHCP=y
CONFIG_INET_XFRM_MODE_TRANSPORT=y
CONFIG_INET_XFRM_MODE_TUNNEL=y
CONFIG_INET_XFRM_MODE_BEET=y
CONFIG_INET_DIAG=y
CONFIG_INET_TCP_DIAG=y
CONFIG_TCP_CONG_CUBIC=y
CONFIG_HAVE_NET_DSA=y
CONFIG_NET_RX_BUSY_POLL=y
CONFIG_BQL=y

CONFIG_WIRELESS=y
CONFIG_MAY_USE_DEVLINK=y
CONFIG_HAVE_CBPF_JIT=y
CONFIG_ARM_AMBA=y
CONFIG_UEVENT_HELPER=y
CONFIG_DEVTMPFS=y
CONFIG_DEVTMPFS_MOUNT=y
CONFIG_STANDALONE=y
CONFIG_PREVENT_FIRMWARE_BUILD=y
CONFIG_FW_LOADER=y
CONFIG_FIRMWARE_IN_KERNEL=y
CONFIG_ALLOW_DEV_COREDUMP=y
CONFIG_REGMAP=y
CONFIG_REGMAP_MMIO=y
CONFIG_DTC=y

CONFIG_OF=y
CONFIG_OF_FLATTREE=y
CONFIG_OF_EARLY_FLATTREE=y
CONFIG_OF_ADDRESS=y
CONFIG_OF_TRQ=y

Abbreviations

40

CONFIG_OF_NET=y
CONFIG_OF_MDIO=y
CONFIG_OF_RESERVED_MEM=y
CONFIG_ARCH_MIGHT_HAVE_PC_PARPORT=y
CONFIG_BLK_DEV=y
CONFIG_BLK_DEV_RAM=y
CONFIG_SCSI_MOD=y
CONFIG_NETDEVICES=y
CONFIG_NET_CORE=y
CONFIG_ETHERNET=y
CONFIG_NET_VENDOR_ARC=y
CONFIG_NET_CADENCE=y
CONFIG_MACB=y
CONFIG_NET_VENDOR_BROADCOM=y
CONFIG_NET_VENDOR_CIRRUS=y
CONFIG_NET_VENDOR_EZCHIP=y
CONFIG_NET_VENDOR_FARADAY=y
CONFIG_NET_VENDOR_HISILICON=y
CONFIG_NET_VENDOR_INTEL=y
CONFIG_NET_VENDOR_I825XX=y
CONFIG_NET_VENDOR_MARVELL=y
CONFIG_NET_VENDOR_MICREL=y
CONFIG_NET_VENDOR_NATSEMI=y
CONFIG_NET_VENDOR_NETRONOME=y
CONFIG_NET_VENDOR_8390=y
CONFIG_NET_VENDOR_QUALCOMM=y
CONFIG_NET_VENDOR_RENESAS=y
CONFIG_NET_VENDOR_ROCKER=y
CONFIG_NET_VENDOR_SAMSUNG=y
CONFIG_NET_VENDOR_SEEQ=y
CONFIG_NET_VENDOR_SMSC=y
CONFIG_NET_VENDOR_STMICRO=y
CONFIG_NET_VENDOR_SYNOPSYS=y
CONFIG_NET_VENDOR_VIA=y
CONFIG_NET_VENDOR_WIZNET=y
CONFIG_NET_VENDOR_XILINX=y
CONFIG_PHYLIB=y
CONFIG_MARVELL_PHY=y
CONFIG_WLAN=y
CONFIG_WLAN_VENDOR_ADMTEK=y
CONFIG_WLAN_VENDOR_ATH=y
CONFIG_WLAN_VENDOR_ATMEL=y
CONFIG_WLAN_VENDOR_BROADCOM=y
CONFIG_WLAN_VENDOR_CISCO=y
CONFIG_WLAN_VENDOR_INTEL=y
CONFIG_WLAN_VENDOR_INTERSIL=y
CONFIG_WLAN_VENDOR_MARVELL=y
CONFIG_WLAN_VENDOR_MEDIATEK=y
CONFIG_WLAN_VENDOR_RALINK=y
CONFIG_WLAN_VENDOR_REALTEK=y
CONFIG_WLAN_VENDOR_RSI=y
CONFIG_WLAN_VENDOR_ST=y
CONFIG_WLAN_VENDOR_TI=y
CONFIG_WLAN_VENDOR_ZYDAS=y
CONFIG_INPUT=y

Abbreviations

41

CONFIG_INPUT_MOUSEDEV=y
CONFIG_INPUT_MOUSEDEV_PSAUX=y
CONFIG_INPUT_EVDEV=y
CONFIG_TTY=y

CONFIG_VT=y
CONFIG_CONSOLE_TRANSLATIONS=y
CONFIG_VT_CONSOLE=y
CONFIG_VT_CONSOLE_SLEEP=y
CONFIG_HW_CONSOLE=y
CONFIG_VT_HW_CONSOLE_BINDING=y
CONFIG_UNIX98_PTYS=y
CONFIG_LEGACY_PTYS=y
CONFIG_DEVMEM=y
CONFIG_DEVKMEM=y
CONFIG_SERIAL_CORE=y
CONFIG_SERIAL_CORE_CONSOLE=y
CONFIG_ARCH_HAVE_CUSTOM_GPIO_H=y
CONFIG_SSB_POSSIBLE=y
CONFIG_BCMA_POSSIBLE=y
CONFIG_MFD_SYSCON=y
CONFIG_FB=y
CONFIG_FIRMWARE_EDID=y
CONFIG_FB_CMDLINE=y
CONFIG_FB_NOTIFY=y
CONFIG_DUMMY_CONSOLE=y
CONFIG_FRAMEBUFFER_CONSOLE=y
CONFIG_LOGO=y
CONFIG_LOGO_LINUX_MONO=y
CONFIG_LOGO_LINUX_VGA16=y
CONFIG_LOGO_LINUX_CLUT224=y
CONFIG_HID=y
CONFIG_HID_GENERIC=y
CONFIG_USB_OHCI_LITTLE_ENDIAN=y
CONFIG_MMC=y
CONFIG_PWRSEQ_EMMC=y
CONFIG_PWRSEQ_SIMPLE=y
CONFIG_MMC_BLOCK=y
CONFIG_MMC_BLOCK_BOUNCE=y
CONFIG_MMC_ARMMMCI=y
CONFIG_MMC_SDHCI=y
CONFIG_MMC_SDHCI_PLTFM=y
CONFIG_MMC_SDHCI_OF_ARASAN=y
CONFIG_MMC_MTK=y
CONFIG_EDAC_ATOMIC_SCRUB=y
CONFIG_EDAC_SUPPORT=y
CONFIG_EDAC=y
CONFIG_EDAC_LEGACY_SYSFS=y
CONFIG_RTC_LIB=y
CONFIG_DMADEVICES=y
CONFIG_DMADEVICES _DEBUG=y
CONFIG_DMADEVICES_VDEBUG=y
CONFIG_DMA_ENGINE=y
CONFIG_DMA_VIRTUAL_CHANNELS=y
CONFIG_DMA_OF=y
CONFIG_AXI_DMAC=y

Abbreviations

42

CONFIG_UIO=y
CONFIG_UIO_PDRV_GENIRQ=y
CONFIG_CLKDEV_LOOKUP=y
CONFIG_HAVE_CLK_PREPARE=y
CONFIG_COMMON_CLK=y
CONFIG_IOMMU_SUPPORT=y
CONFIG_IRQCHIP=y
CONFIG_HAVE_ARM_SMCCC=y
CONFIG_DCACHE_WORD_ACCESS=y
CONFIG_EXT4_FS=y
CONFIG_EXT4_USE_FOR_EXT2=y
CONFIG_JBD2=y
CONFIG_FS_MBCACHE=y
CONFIG_EXPORTFS=y
CONFIG_FILE_LOCKING=y
CONFIG_MANDATORY_FILE_LOCKING=y
CONFIG_FSNOTIFY=y
CONFIG_DNOTIFY=y
CONFIG_INOTIFY_USER=y
CONFIG_AUTOFS4_FS=y
CONFIG_FAT_FS=y
CONFIG_VFAT_FS=y
CONFIG_PROC_FS=y
CONFIG_PROC_SYSCTL=y
CONFIG_PROC_PAGE_MONITOR=y
CONFIG_KERNFS=y

CONFIG_SYSFS=y

CONFIG_TMPFS=y
CONFIG_MISC_FILESYSTEMS=y
CONFIG_CRAMFS=y
CONFIG_NETWORK_FILESYSTEMS=y
CONFIG_NLS=y
CONFIG_DEBUG_INFO=y
CONFIG_ENABLE_WARN_DEPRECATED=y
CONFIG_ENABLE_MUST_CHECK=y
CONFIG_DEBUG_FS=y
CONFIG_SECTION_MISMATCH_WARN_ONLY=y
CONFIG_MAGIC_SYSRQ=y
CONFIG_DEBUG_KERNEL=y
CONFIG_HAVE_DEBUG_KMEMLEAK=y
CONFIG_DETECT_HUNG_TASK=y
CONFIG_SCHED_DEBUG=y
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_BUGVERBOSE=y
CONFIG_HAVE_FUNCTION_TRACER=y
CONFIG_HAVE_FUNCTION_GRAPH_TRACER=y
CONFIG_HAVE_DYNAMIC_FTRACE=y
CONFIG_HAVE_FTRACE_MCOUNT_RECORD=y
CONFIG_HAVE_SYSCALL_TRACEPOINTS=y
CONFIG_HAVE_C_RECORDMCOUNT=y
CONFIG_TRACING_SUPPORT=y
CONFIG_FTRACE=y
CONFIG_BRANCH_PROFILE_NONE=y
CONFIG_HAVE_ARCH_KGDB=y
CONFIG_ARCH_HAS_DEVMEM_IS_ALLOWED=y

Abbreviations

43

CONFIG_ARM_UNWIND=y
CONFIG_DEFAULT_SECURITY_DAC=y
CONFIG_CRYPTO=y
CONFIG_CRYPTO_ALGAPI=y
CONFIG_CRYPTO_ALGAPI2=y
CONFIG_CRYPTO_AEAD2=y
CONFIG_CRYPTO_BLKCIPHER2=y
CONFIG_CRYPTO_HASH=y
CONFIG_CRYPTO_HASH2=y
CONFIG_CRYPTO_RNG2=y
CONFIG_CRYPTO_AKCIPHER2=y
CONFIG_CRYPTO_MANAGER2=y
CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=y
CONFIG_CRYPTO_NULL2=y
CONFIG_CRYPTO_WORKQUEUE=y
CONFIG_CRYPTO_CRC32C=y
CONFIG_CRYPTO_AES=y
CONFIG_CRYPTO_DRBG_HMAC=y
CONFIG_CRYPTO_HW=y
CONFIG_BITREVERSE=y
CONFIG_HAVE_ARCH_BITREVERSE=y
CONFIG_RATIONAL=y
CONFIG_GENERIC_NET_UTILS=y
CONFIG_GENERIC_PCI_IOMAP=y
CONFIG_GENERIC_IO=y
CONFIG_ARCH_USE_CMPXCHG_LOCKREF=y
CONFIG_CRC16=y

CONFIG_CRC32=y
CONFIG_CRC32_SLICEBY8=y
CONFIG_ZLIB_INFLATE=y
CONFIG_LZO_COMPRESS=y
CONFIG_LZO_DECOMPRESS=y
CONFIG_LZ4_DECOMPRESS=y
CONFIG_XZ_DEC=y
CONFIG_XZ_DEC_X86=y
CONFIG_XZ_DEC_POWERPC=y
CONFIG_XZ_DEC_IA64=y
CONFIG_XZ_DEC_ARM=y
CONFIG_XZ_DEC_ARMTHUMB=y
CONFIG_XZ_DEC_SPARC=y
CONFIG_XZ_DEC_BCJ=y
CONFIG_DECOMPRESS_GZIP=y
CONFIG_DECOMPRESS_BZIP2=y
CONFIG_DECOMPRESS_LZMA=y
CONFIG_DECOMPRESS_XZ=y
CONFIG_DECOMPRESS_LZ0=y
CONFIG_DECOMPRESS_LZ4=y
CONFIG_GENERIC_ALLOCATOR=y
CONFIG_HAS_IOMEM=y
CONFIG_HAS_IOPORT_MAP=y
CONFIG_HAS_DMA=y

CONFIG_DQL=y

CONFIG_NLATTR=y
CONFIG_ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE=y
CONFIG_LIBFDT=y

Abbreviations

44

CONFIG_FONT_SUPPORT=y
CONFIG_FONT_8x8=y
CONFIG_FONT_8x16=y

CODE SNIPPETS A.1: L4Linux final build config

// C program to multiply two square matrices.
#include <stdio.h>
#define N 4

// This function multiplies matl[][] and mat2([][],
// and stores the result in res[][]
void multiply(int matl [J[N], int mat2[]J[N], int res[][N])
{
int i, j, k;

for (i = 0; i < N; i++)
{
for (j = 0; j < N; j++)
{
res[i][j] = 0;
for (k = 0; k < N; k++)
res[i]1[j] += mat1[i][k]l*mat2[k][j];
}

int main ()

{

int mati[NI[N] = { {1, 1, 1, 1},
{2, 2, 2, 2},
{3, 3, 3, 3},
{4, 4, 4, 4}%};

int mat2[NI[N] = { {1, 1, 1, 1},
{2, 2, 2, 2},
{3, 3, 3, 3},
{4, 4, 4, 4}};

int res[N][N]; // To store result
int i, j;

multiply (matl, mat2, res);

printf ("Result matrix is \n");
for (i = 0; i < N; i++)
{
for (j = 0; j < Nj; j++)
printf ("%d ", res[il[jl1);
printf ("\n");

return O;

Abbreviations

45

CODE SNIPPETS A.2: Matrix multiplication in ¢

Bibliography

[1] Xilinx. Zyng-7000 all programmable soc. 1:1-4, 2016. URL
https://www.xilinx.com/support/documentation/product-briefs/

zynq-7000-product-brief.pdf.

[2] TU Dresden. The fiasco microkernel. Project website, page 1, June 2016.
URL https://os.inf.tu-dresden.de/fiasco/.

[3] TU Dresden. The 14 runtime environment. Project website, page 1, June 2016.
URL https://l4re.org/.

[4] Hermann Hértig, Michael Hohmuth, Jochen Liedtke, Jean Wolter, and Se-
bastian Schénberg. The performance of u-kernel-based systems. SIGOPS
Oper. Syst. Rev., 31(5):66-77, October 1997. ISSN 0163-5980. doi: 10.1145/
269005.266660. URL http://doi.acm.org/10.1145/269005.266660.

[5] Elena Reshetova, Janne Karhunen, Thomas Nyman, and N. Asokan. Security
of os-level virtualization technologies. In Karin Bernsmed and Simone Fischer-
Hiibner, editors, Secure IT Systems, pages 77-93, Cham, 2014. Springer In-
ternational Publishing. ISBN 978-3-319-11599-3.

[6] Ahmed M. Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen,
Ruowen Wang, and Peng Ning. SKEE: A lightweight secure kernel-level
execution environment for ARM. In 23rd Annual Network and Distributed
System Security Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. The Internet Society, 2016. URL http://wp.
internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
skee-lightweight-secure-kernel-level-execution-environment-for-arm.

pdf.

46

https://www.xilinx.com/support/documentation/product-briefs/zynq-7000-product-brief.pdf
https://www.xilinx.com/support/documentation/product-briefs/zynq-7000-product-brief.pdf
https://os.inf.tu-dresden.de/fiasco/
https://l4re.org/
http://doi.acm.org/10.1145/269005.266660
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/skee-lightweight-secure-kernel-level-execution-environment-for-arm.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/skee-lightweight-secure-kernel-level-execution-environment-for-arm.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/skee-lightweight-secure-kernel-level-execution-environment-for-arm.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/skee-lightweight-secure-kernel-level-execution-environment-for-arm.pdf

Bibliography 47

7]

18]

19]

[10]

[11]

George Kornaros, Konstantinos Harteros, Ioannis Christoforakis, and Maria
Astrinaki. I/O virtualization utilizing an efficient hardware system-level mem-
ory management unit. In Jari Nurmi, Peeter Ellervee, Dragomir Milojevic,
Ondrej Daniel, and Tommi Paakki, editors, 201/ International Symposium on
System-on-Chip, SoC 2014, Tampere, Finland, October 28-29, 201/, pages 1—
4. IEEE, 2014. ISBN 978-1-4799-6890-9. doi: 10.1109/ISSOC.2014.6972448.
URL https://doi.org/10.1109/ISS0C.2014.6972448.

George Kornaros, Miltos D. Grammatikakis, and Marcello Coppola. Towards
full virtualization of heterogeneous noc-based multicore embedded architec-
tures. In 15th IEEE International Conference on Computational Science
and Engineering, CSE 2012, Paphos, Cyprus, December 5-7, 2012, pages
345-352. IEEE Computer Society, 2012. ISBN 978-1-4673-5165-2. doi:
10.1109/ICCSE.2012.55. URL https://doi.org/10.1109/ICCSE.2012.55.

George Kornaros, loannis Christoforakis, Othon Tomoutzoglou, Dimitrios
Bakoyiannis, Kallia Vazakopoulou, Miltos D. Grammatikakis, and Antonis
Papagrigoriou. Hardware support for cost-effective system-level protection in
multi-core socs. In 2015 Euromicro Conference on Digital System Design,
DSD 2015, Madeira, Portugal, August 26-28, 2015, pages 41-48. IEEE Com-
puter Society, 2015. ISBN 978-1-4673-8035-5. doi: 10.1109/DSD.2015.65.
URL https://doi.org/10.1109/DSD.2015.65.

Gianluca Durelli, Marcello Coppola, Karim Djafarian, George Kornaros, An-
tonio Miele, Michele Paolino, Oliver Pell, Christian Plessl, Marco D. Santam-
brogio, and Cristiana Bolchini. SAVE: towards efficient resource management
in heterogeneous system architectures. In Diana Goehringer, Marco Domenico
Santambrogio, Joao M. P. Cardoso, and Koen Bertels, editors, Reconfigurable
Computing: Architectures, Tools, and Applications - 10th International Sym-
posium, ARC 2014, Vilamoura, Portugal, April 14-16, 2014. Proceedings,
volume 8405 of Lecture Notes in Computer Science, pages 337-344. Springer,
2014. ISBN 978-3-319-05959-4. doi: 10.1007/978-3-319-05960-0" 38. URL
https://doi.org/10.1007/978-3-319-05960-0_38.

Marcello Coppola, Babak Falsafi, John Goodacre, and George Kornaros. From
embedded multi-core socs to scale-out processors. In Enrico Macii, editor,
Design, Automation and Test in Europe, DATE 13, Grenoble, France, March
18-22, 2013, pages 947-951. EDA Consortium San Jose, CA, USA / ACM

https://doi.org/10.1109/ISSOC.2014.6972448
https://doi.org/10.1109/ICCSE.2012.55
https://doi.org/10.1109/DSD.2015.65
https://doi.org/10.1007/978-3-319-05960-0_38

Bibliography 48

DL, 2013. ISBN 978-1-4503-2153-2. doi: 10.7873/DATE.2013.199. URL
https://doi.org/10.7873/DATE.2013.199.

[12] Yeongchann Han Taeung Song. L4 /fiasco.oc & 14 linux — porting
& device driver guide. Personal Blog, 1:4-11, August 2016. URL
https://www.dropbox.com/s/0os65yqiieay83hs/L4_Porting_and_

Device_Driver_Guide.pdf.

https://doi.org/10.7873/DATE.2013.199
https://www.dropbox.com/s/os65yqiieay83hs/L4_Porting_and_Device_Driver_Guide.pdf
https://www.dropbox.com/s/os65yqiieay83hs/L4_Porting_and_Device_Driver_Guide.pdf

	Abstract
	Σύνοψη
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.2 Similar Work
	1.3 Thesis Structure

	2 Theory and State of the Art
	2.1 The L4/Fiasco System
	2.1.1 Hardware
	2.1.2 The Fiasco Microkernel
	2.1.3 L4 Runtime Environment
	2.1.4 L4Linux

	2.2 State of the Art
	2.2.1 Docker, LXC and Nix/Guix
	2.2.2 Xen Hypervisor

	3 Implementation
	3.1 Setting up the environment
	3.1.1 Sources
	3.1.2 Tools

	3.2 Adding Zedboard Support
	3.2.1 Building Fiasco.OC
	3.2.2 Buidling L4Re
	3.2.3 Buidling a Hello App
	3.2.4 Building L4Linux
	3.2.4.1 L4Linux status on Zynq

	3.2.5 Giving L4Linux access to devices
	3.2.5.1 The Io Server
	3.2.5.2 Device trees

	3.2.6 Adding clock driver support to L4Linux for Zynq
	3.2.6.1 The SLCR Registers
	3.2.6.2 The Zynq Clocks

	3.2.7 Adding interrupt support
	3.2.8 Adding peripheral driver support to L4Linux for Zynq
	3.2.8.1 Device Controller

	3.2.9 Adding a bram
	3.2.10 Access bram through uio

	4 Results
	4.1 Testing
	4.1.1 Simple Hello App
	4.1.2 L4Linux
	4.1.3 Running Hello App and L4Linux concurrently

	4.2 Comparisons with bare metal Linux
	4.2.1 CPU Benchmarks
	4.2.2 IO Benchmarks
	4.2.3 Math Operations Benchmarks
	4.2.4 Security and Resource Management

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Improvements and Future work
	5.2.1 Reduce the L4/Fiasco overhead
	5.2.2 Abstract Peripheral Devices (Clock Server, Network Server etc)
	5.2.3 Modify L4Linux's drivers to use those server through inter-process communication
	5.2.4 Being able to control system power settings from L4Linux
	5.2.5 Reproduce this thesis on a stronger system than the Zedboard

	A Appendix
	Bibliography

