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Abstract 

 

Evaluation of tumor response has been extensively investigated using a wide variety of manual 

and computer assisted methods. Oncologists are using the Response evaluation criteria in solid 

tumors (RECIST) and World Health Organization (WHO) criteria, among others, to examine the 

response of the tumor in the therapy process. However, both of these criteria use the dimensions 

of the tumor as a feature e.g. its diameter. As a rseult, these approaches are unable to capture the 

heterogeneity of the tumor tissue structure, which might change after the therapy. For this reason, 

more accurate quantitative methods for assessing tumor response after therapy have been 

introduced. 

In this work we propose describing breast cancer tissue using texture kinetics and multi-scale 

texture for the prediction of neoadjuvant chemotherapy response of the patients. As 

aforementioned, texture features can provide information of the tumor tissue structure in order to 

overcome current limitations in the RECIST and WHO criteria used in clinical practice. In 

addition, we propose a framework of Gabor multi-scale filtering to examine the capabilities of 

multi-scale texture features since texture in different scale provides important information which 

would be not available in a single scale. 

Using a public dataset which includes Dynamic Contrast Enhanced (DCE) Magnetic Resonance 

Imaging (MRI) data, we examined the texture kinetics and multi-scale textural features, since DCE 

- MRI provides 3D spatiotemporal evolution of the tumor. More specifically, Radiomic features 

were extracted, offering a plethora of features describing the tissue heterogeneity of the tumor. 

Considering that, Radiomic features were examined for analyzing their predictive strength in Neo-

adjuvant therapy (NAC) response. Along with this contribution, Radiomic features extracted from 

Gabor multi-scale filtered images were also extracted in order to address a second research 

question regarding the role of the scale and orientation of image texture in predicting the therapy 

outcome. 

Results showed that texture kinetics are able to improve the predictability of tumor response to 

NAC with an area under receiver operating characteristic curve (AUROC) sensitivity of ≈ 81%. 

Similarly, Gabor multi-scale texture features, provided an average accuracy of >= 70%, while the 

best accuracy was 88% with scale set at 0.5, confirming that texture at different scales and 

orientations adds value in the therapy predictive modelling. 
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Περίληψη 

Η αξιολόγηση της ανταπόκρισης του όγκου έχει διερευνηθεί εκτενώς με τη χρήση μιας ευρείας 

ποικιλίας με χειροκίνητες και με τη βοήθεια υπολογιστή μεθόδους. Οι Ογκολόγοι χρησιμοποιούν, 

μεταξύ άλλων, τα κριτήρια αξιολόγησης της απόκρισης σε συμπτώματα συμπαγούς όγκου 

(RECIST) και του Παγκόσμιου Οργανισμού Υγείας (WHO) για να εξετάσουν την ανταπόκριση 

του όγκου στη θεραπεία. Ωστόσο, και τα δύο αυτά κριτήρια χρησιμοποιούν τις διαστάσεις του 

όγκου ως χαρακτηριστικό όπως για παράδειγμα τη διάμετρό του. Για αυτό το λόγο, αυτές οι 

προσεγγίσεις δεν είναι σε θέση να συλλάβουν την ετερογένεια της δομής του όγκου, που μπορεί 

να αλλάξει μετά τη θεραπεία. Για το λόγο αυτό, έχουν αναπτυχθεί πιο αξιόπιστες ποσοτικές 

μέθοδοι για την αξιολόγηση της ανταπόκρισης του όγκου μετά τη θεραπεία.  

 

Σε αυτή την εργασία προτείνουμε να περιγράψουμε τον ιστό του καρκίνου του μαστού 

χρησιμοποιώντας την κινητική της υφής και την υφή πολλών επιπέδων για την πρόβλεψη 

ανταπόκρισης των ασθενών στην νεο-επικουρική (neoadjuvant) χημειοθεραπεία. Όπως 

προαναφέρθηκε, τα χαρακτηριστικά της υφής μπορούν να δώσουν πληροφορία για τη δομή του 

καρκινικού ιστού για να ξεπεραστούν οι περιορισμοί των δημοφιλών κριτηρίων RECIST και 

WHO. Επιπλέον, προτείνουμε ένα υπολογιστικό πλαίσιο φιλτραρίσματος πολλαπλών επιπέδων 

Gabor για να εξετάσουμε τις δυνατότητες των χαρακτηριστικών υφής πολλών μεγεθών στην 

πρόβλεψη του χημειοθεραπευτικού αποτελέσματος.  

 

Με τη χρήση ενός συνόλου δεδομένων που περιλαμβάνει δεδομένα μαγνητικής τομογραφίας με 

χρήση σκιαγραφικού (DCE- MRI), εξετάσαμε την κινητική της υφής και την υφή πολλών 

επιπέδων, καθώς η DCE - MRI παρέχει 3D χωροχρονική εξέλιξη του όγκου. Ειδικότερα, 

εξάχθησαν  Radiomic χαρακτηριστικά υφής, τα οποία παρέχουν μια πληθώρα χαρακτηριστικών 

που περιγράφουν την ετερογένεια του όγκου του όγκου. Στη συνέχεια εξετάστηκαν τα 

χαρακτηριστικά (Radiomics) ως προς την προγνωστικής τους δύναμη στην πρόβλεψη του 

αποτελέσματος της νεο-επικουρικής (neoadjuvant) χημειοθεραπείας. Επιεπλέον, τα 

χαρακτηριστικά Radiomics από τις φιλτραρισμένες εικόνες πολλαπλών κλίμακων του Gabor 

εξετάστηκαν επίσης και συνέβαλαν σε μια δεύτερη έρευνα, για να διερευνηθεί η σημασία της 

κλίμακας και κατεύθυνσης της υφής εικόνας στην πρόβλεψη του αποτελέσματος της θεραπείας.  

 

Τα αποτελέσματα έδειξαν ότι η κινητική της υφής είναι ικανή να βελτιώσει την προβλεψιμότητα 

της ανταπόκρισης του όγκου στην νέο-επικουρική θεραπεία με ευαισθησία ≈ 81% 

(χαρακτηριστική καμπύλης του δέκτη - AUROC). Παρομοίως, τα χαρακτηριστικά της υφής 

πολλαπλής κλίμακας Gabor, οδήγησαν σε προβλέψεις με μέση ακρίβεια> = 70%, ενώ η καλύτερη 

ακρίβεια ήταν 88% με κλίμακα που καθορίστηκε στο 0,5, επιβεβαιώνοντας ότι η ανάλυση υφής 

σε διαφορετικές κλίμακες και προσανατολισμούς προσδίδει αξία στην πρόβλεψη του 

θεραπευτικού αποτελέσματος. 
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1. Introduction 

1.1. Breast Tissue 

The breast is an organ part of the reproductive system of the human and non-human primates and 

lies upon the pectoralis major muscle in the upper chest of the body. Both males and females 

develop this organ and it originates from the same embryological tissues. Breast development 

starts around the fetal development week 5 and 6 and progresses into puberty. By that time, breast 

development in female humans is caused by increased growth hormones and estrogens, while 

androgens in males counteract these effects. Therefore, male humans and other primates 

significantly less develop their breast, while other female primates usually develop their breasts 

during pregnancy.  

The female breast is responsible for the production of nourishing milk for new-born infants. This 

is possible by the acini cells; the smallest functional units of the breast, which produce milk in a 

separate (terminal) duct. Clusters of acini comprise a lobule and numerous lobules comprise a lobe. 

The ducts are the milk passages that connect the lobules and the nipple. Generally, a normal female 

breast consists of 15 to 20 lobes. Both ducts and lobules are supported by fat and tissue of the 

breast. Additionally, a network of ducts increasing in size can eventually form a terminal 

lactiferous duct where these ducts converge the areola forming the lactiferous sinuses beneath it.  

 

Figure 1: Anatomy of the female breast. Source:  breast360.org 
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1.2. Breast Cancer 

Breast cancer is a disease of the breast where cells display an uncontrollable growth in the breast 

tissue and structure. Early signs of breast cancer are typically a lump which feels different than the 

rest of the breast. In most cases, breast cancer is discovered after the female human reports feeling 

a lump in either the breast or the underarm. Other signs of breast cancer may include substantial 

growth or shrinking of one breast, a nipple changing its shape or position, a rash around the tissue 

of a nipple and a persistent pain in the breast. Another case is the inflammatory breast cancer which 

is an aggressive form of breast cancer which can be detected by the swollen areas on the breast. A 

malignant tumor can result in metastatic tumor, one of breast cancer most important characteristic, 

in which case, secondary tumors spread in other organs or tissues. While the site of origin is a 

significant parameter in where the metastasis happens, most common sites include the brain, liver, 

lung and bone. This invasive state is categorized as stage 4 breast cancer with the rate of 

survivability dropping to a small percentage.  

Besides stage 4, which is the last stage of breast cancer and the most fatal one, there are 4 more 

stages, starting from stage 0 increasing to 4. A stage 0 breast cancer is the earliest stage of breast 

cancer and is also called carcinoma in situ. Stage 0 is the stage where the tumor has not spread into 

other parts of the breast and its often difficult to detect. It is also considered a precancerous 

condition where no treatment is required, but a close observation is advisable. Two sub-stages can 

be deducted from this one, named Ductal carcinoma in situ and Lobular carcinoma in situ. A stage 

1 breast cancer characterizes the tumor which has not spread beyond the starting location while its 

size is less than 2 centimeters (cm) while no lymph nodes have been involved. Because of its size, 

it is difficult to detect it. This stage is split into two sub-stages, stage 1A and stage 1B, where the 

first characterizes a tumor less of 2cm and no spreading outside the breast, whilst the second 

includes the spreading of small cancer cells with size of no more than 2 millimeters (mm). The 

mortality rate of stage 1 breast cancer is 98% to 100% [1]. A stage 2 breast cancer is the stage that 

the tumor is measured between 2 and 5 cm, or if the cancer has spread into another part of the 

breast, including the lymph nodes of the underarm. Two sub-stages are also deducted in which 

stage 2A is when the tumor is not within the breast but in the underarm lymph nodes, or when in 

it’s the breast with a size of 2cm or smaller and it spread into the underarm lymph nodes, or when 

the tumor size is between 2 and 5 cm with no spreading to the underarm. The second sub-stage is 

the stage 2B which is when the tumor size is measured between 2 and 5 cm and it has spread to 

the underarm lymph nodes, or when the size of the tumor is more than 5cm with not spreading to 

the underarm. The survival rate of stage 2 breast cancer is 90% to 99%. The next stage is the stage 

3 which characterizes a tumor of more than 2 cm size in diameter and the extensive spreading in 

the underarm lymph nodes or other lymph nodes or tissues near the breast. Stage 3 has three sub 

stages, where stage 3A is when there is no tumor in the breast but in underarm lymph nodes or 

near the breast bone, when the tumor size is less than 2 cm and has spread to axillary lymph nodes 

attached to each other or near the breast bone, when tumor size is between 2 and 4 cm and has 

spread to axillary lymph nodes, or lymph nodes near the breast, or when the tumor size is more 

than 5cm and it has spread axillary lymph nodes or lymph nodes near the breast bone. Stage 3B is 
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when the tumor has spread to the chest wall or breast skin and may have spread to underarm lymph 

nodes or to other structures or to lymph nodes near the breastbone, or when it’s characterized as 

inflammatory breast cancer. Stage 3C is when the tumor has spread to the chest wall or the skin 

with no presence in the breast, or when its present in lymph nodes close to the collarbone, or when 

cancer cells have spread to the lymph nodes close the breastbone. A stage 3 cancer can be operable, 

but inoperable when the cancer has spread to the lymph nodes above the collarbone. The mortality 

rate of a stage 3 breast cancer is between 66% to 98%. Lastly, stage 4 breast cancer is the metastatic 

breast cancer meaning the cancer has spread to other parts of the body including bone, brain, lungs 

or liver. Stage 4 mortality rate is at 35.5%.   

 

 

Figure 2: Illustration of breast cancer stages.    Source: https://www.everydayhealth.com/breast-cancer/stages-what-they-mean 
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Figure 3: Examples of invasive ductal carcinoma in a female patient.. Source  [2]  

Breast cancer is the most common aggressive cancer in women, affecting several of them. [3] An 

estimation of the number of the affected women is 2.1 million patients in the year 2018, with a 

new case being diagnosed approximately every 18 seconds [4]. Moreover, 600 thousand women 

have died due to breast cancer. Globally, there is an increase of breast cancer incidents of 3.1% of 

records beginning in 1980 with 641.000 cases, increasing to more that 1.6 million in 2010. 

Regardless of any socioeconomic status, the increase of incidents can be related to the increase in 

total population since 49.5% of the global population is female with the larger proportion being 

more than 60 years old. Additionally, advanced breast cancer patients’ number is unknown, forcing 

most countries researchers to prioritize its epidemiology. 

Breast cancer is reported to be inherited by 10% of the cases associated with a family history, with 

first-degree relatives of potential cancer patients having a risk of showing breast cancer before the 

age of 35. While family history is an important parameter to consider, there has been developed a 

family history scope to evaluate the chance by considering other factors like environmental, 

relation degree or family size [5]. Environmental and lifestyle factors are important considering 

the national awareness campaigns all around the world. With the increase in 1980s and 1990s, 

screenings and physical examinations have increased, thus increasing the cases and the 

survivability of the patients since the examinations happen in the early stages of the cancer. 

Lifestyle factors like first pregnancy in advanced age has also increased the number of cases 

worldwide, playing a significant role in social and health awareness. Additionally, health factors 

created by certain lifestyles like obesity, lack of physical activity and alcohol consumption, 

comprise an approximate 20% of breast cancer beginning cause. As a report stated, an adult woman 

with a consumption of 10 grams of alcohol daily, will have a 7% to 10% increase in breast cancer 

risk [6].  
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Even though, breast cancer mostly affects women, it can be developed in male population as well. 

Male breast cancer is a rare disease that accounts for less than 1% of all men's cancers and less 

than 1% of all breast cancers. Lifetime risk of breast cancer in men is 1 in 833 when for women is 

1 in 10 [7].  

 

Figure 4: Examples of mammographic appearance of a male breast cancer in a (a) 89-year-old patient with nipple retraction and 
a (b) 68-year-old patient. In (c) an Invasive ductal carcinoma in a 58-year-old man with palpable mass is illustrated. In (a) and 
(b) the mammograms show a high density subareolar irregular shaped mass with spiculated borders. In (c) the mammograms 
depict s high-density mass in the union of the inferior quadrants.  

Source: 
https://posterng.netkey.at/esr/viewing/index.php?module=viewing_poster&task=viewsection&pi=149371&ti=542912&si=1773
&searchkey= 
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Concerning the factors of breast cancer growth, 20% have a first-degree family history while other 

factors like increased estrogens, liver cirrhosis, obesity, smoking and prostate cancer still posing a 

significant addition in risk of developing cancer. Implications of breast cancer in men are present 

in older age and with higher stage than women of the same situation. Invasive ductal carcinoma is 

the most common subtype, while invasive lobular carcinoma being rarer compared to female breast 

cancer. Prognosis is the same with female patients of similar stage, however male patients’ survival 

rate is much less considering the patients’ older age, more comorbidities and also lower life 

expectancy [8], [9]. Therapies for male breast cancer are similar to those of female, with endocrine 

therapy being the most popular one due to the fact that luminal cancers are the most common cases 

of male breast cancer. Recommendations for adjuvant chemotherapy and radiation therapy are 

similar to women, as are recommendations for management of advanced breast cancer [9], [10].  
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1.3. Breast Cancer Imaging  

Breast cancer imaging is achieved by mammography, ultrasound or Magnetic Resonance Imaging 

(MRI). Recent studies show conflicting results regarding which technique is the most effective in 

breast cancer imaging. Mammography is the most popular one, however there is a debate ongoing 

whether mammography is harmful or not to the patient, due to the ionizing radiation dose of X-

ray used. Another reason this debate exists is the false-positive lesion characterization that result 

from mammograms regularly. Additionally, for young women it is suggested to use screening 

methods of ultrasound and MRI instead of mammography. Furthermore, the combination of this 

imaging techniques provides a better cancer detection in high breast density, however there is not 

a clear evaluation of mortality outcome. [21] 

More specifically, mammography is an imaging technique which utilizes low-energy X-rays in 

order to screen the human breast for diagnosis. Mammography’s goal is the detection of breast 

cancer at an early stage. Mammography’s popularity increased after 1960, as there was not an 

existing screening protocol. This includes improvements in sensitive imaging resolution, low x-

ray absorption cassettes, dedicated processors and improved films. 

Figure 5: A normal breast mammography.  

Source: https://undergradimaging.pressbooks.com/chapter/introduction-to-breast-imaging/ 

Screen-film mammography was long considered a "gold standard" for screening breast cancer. As 

well as being able to provide adequate visualization of abnormalities in soft tissue, its specific 

resilience is the ability to portray subtle calcifications. Screen-film mammography's most essential 
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and widely recognized shortcomings are correlated with its restricted dynamic range, contrast 

characteristics, proneness to inadequate conditions for film processing, and granularity. It also 

introduces severe limitations, despite the presence of dense glandular tissue, in detecting very 

subtle lesions. Those limitations were well addressed during digital mammography's preliminary 

development phases. Due to the advent of digital mammography, which provides wide dynamic 

range and provides the simplicity of digital image manipulation, communication and archival, 

additional investment to develop improved screen-film technology is unlikely [11].  

The term "digital mammography" is used for any technology that uses a single or multiple sensor 

unit to capture an electronic image of the x-rays transmitted through the breast that may be 

electronically viewed, processed, and transmitted. Currently, nearly 36 percent of all 

mammography units in the U.S. are digital, and with the higher data throughput, it is possible that 

more than 59 percent of the exams will be carried out using digital mammography [12]. Clinical 

studies evaluating digital mammography with screen-film mammography in a screening 

population indicate equivalence for cancer detection, and digital mammography performed 

significantly better with dense breasts for pre- and postmenopausal women younger than 50 years. 

Ultrasound is an imaging modality that utilizes sound waves in order to produce body images for 

examination purposes. [13] The use of ultrasound in breast, liver, prostate, ovarian, pancreatic, 

thyroid, uterine and kidney tumor detection is perceived to be a popular method of diagnostic 

imaging. During the ultrasonic test, high-frequency sound waves pass through the breast and are 

transformed into images presented on a digital display. The best way to determine whether the 

abnormality is solid (for example, a benign fibroadenoma or cancer) or fluid-filled (such as a 

benign cyst) is to perform an ultrasonic examination when detecting an abnormality on 

mammography, or when detected by physical examination. Ultrasound can determine the internal 

structure, morphology orientation and outlines of lesions from multiple planes with high resolution 

in both thick, glandular structures and primarily fatty breasts. [14] Between those attributes, 

important factors to consider when classifying a lesion are the surrounding tissue, size, margin 

contour, lesion border and dorsal acoustic attributes. Ultrasound is unable to assess whether a solid 

lump is malignant. The major utilization of ultrasound is to direct the biopsies. 
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Figure 6: A normal breast ultrasound image.  

Source: https://iame.com/online/screening_breast_ultrasound 

 

Another imaging technique is Magnetic Resonance Imaging (MRI) used for breast cancer. The last 

two decades, there has been an increased number of MRI referrals. The primary advantage of MRI 

efficiency is based on the superior ability to detect ipsilateral and contralateral diseases opposed 

to mammography and ultrasound. Schelfout et al found in a prospective trial that MRI identified 

96 percent of multifocal / multicentric disease, whereas mammography and ultrasound showed 

only 28.6 percent and 26.5 percent respectively [15]. Considering the histological forms of breast 

cancer, it is well documented that invasive lobular carcinoma has a greater frequency of multifocal, 

multicentric, and contralateral pathology opposed to invasive ductal carcinoma.  

MRI is achieved by using a high-amplitude magnetic field and radio waves. The MR magnetic 

field aligns all the protons in the body in the direction of this external main magnetic field. 

Broadcasting a radio wave through the examining body area to perturb the protons and when it 

stops, the protons align back with the magnetic field. [16], [17] Once they move back into 

alignment with the magnetic field, the protons release energy. Receiver coils covering specific 

regions of the patient's anatomy i.e. knee coils, head coils, etc. detect this liberated energy and is 
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then transformed into electric signal. Through a series of sophisticated, computer-based 

mathematical calculations the original location of the generated signal is detected and positioned 

into an image matrix for display and analysis. Different tissues are described as higher or lower 

signals in MRI examination. The signal represents the energy emitted by the perturbed protons as 

they come back into alignment with the magnetic field. The contrast of the examined tissue 

changes on the basis of the image protocol parameters set by an MR Technologist under the 

supervision of a physicist ensuring optimal image quality. As a result, the acquisition of this set of 

images is called an MRI series, depending on the parameters set. [17] Two basic contrasts are 

achieved from the acquisition process, which in one body fluids appears with low signal density 

(T1 contrast) while the other high signal intensity (T2 contrast). This differentiation in the 

appearance of tissue can be utilized to evaluate whether pathology is present. 

 

 

Figure 7: A display of a fat suppressed T1 MRI (left image) and a fat suppressed T2 MRI (right image) of a breast. Source: [18] 

 

A body coil that generates the radio waves and a dedicate surface receiver collects the radio waves 

are utilized to produce the images is surrounding the body section of interest for MR. Different 

coils exist for various anatomical regions i.e. knee, head, breast, etc. While it remains a safe 

imaging modality, patients with known hyper-sensitivity to contrasting agents should not have 

contrast MRI. This is because of some of the MRI examinations require the injection of 

Gadolinium-based contrast agents. This imaging modality uses magnetic field of very high 

intensity to produce images. There are possible dangers associated with accidents involving the 
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form of missile, where ferromagnetic artifacts are easily drawn into the MR magnet. Furthermore, 

implanted objects can interfere with the magnetic field in patients such as cochlear implants, 

pacemakers and leads, aneurysm recordings, and other medical devices. In order to avert serious 

adverse events related to magnetic field accidents, patients need thorough monitoring by the 

clinicians and the medical physicists. 

MRI demonstrates incredible anatomical description and offers the best anatomical representation 

of any of the imaging techniques. [16] Additionally, MR image sequences which are able to 

identify differential metabolic activity, i.e. MR spectroscopy, throughout the tissue can be 

extended to the evaluation of brain activity, i.e. functional MR (fMRI). [19] Furthermore, MRI 

may be also utilized to describe the flow of blood in the vascular system, i.e. MR perfusion based 

on dynamically acquiring a series of T1 weighted images before, during and after the injection of 

the gadolinium-based contrast agent. Therefore, MRI is one of medical imaging most crucial and 

flexible imaging techniques. 
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1.4. DCE MRI for breast cancer 

Tumors growth beyond a few millimeters in size is achieved by the forming of new blood vessels 

which deliver metabolites and oxygen. [20] A variety of factors cause this angiogenesis, that are 

mainly due to tissue hypoxia in the core of the tumor and largely due to tumor host associations 

that generate a range of agents, most significant ones being the endothelial growth factor (VEGF). 

[21] The vessels created are different from ordinary tissue vessels because they are heterogeneous 

with many warped and twisted capillaries with fragile walls. There are several high-vascular 

density arteriovenous shunts and regions which are interspersed with hypoxic areas. VEGF is a 

glycoprotein which acts on the receptors of tyrosine kinase. [22] Widened endothelial fenestrae 

and an immature basement membrane lead to defective capillary walls.  

Binding VEGF with endothelial cell receptors leads to higher capillary porosity, permitting the 

leak of plasma proteins and endothelial cells into the extracellular environment. The expression of 

VEGF has a positive correlation with the Microvessel Density (MVD). [23] Due to the relative 

increase in vascularity present in many malignancies, such as breast, primary rectal and colorectal 

cancer, in relation to normal tissues, intravenous contrast has been used to great effect in MRI, 

allowing for better con-spicuity of tumors. There are various types of the contrast agent used in 

magnetic resonance (MR). They can be categorized as per their characteristics including their 

metal center form, magnetic properties, chemical structure and bio distribution. Those utilized in 

contrast-enhanced dynamic (DCE)-MRI trials are usually extravascular and extracellular. [22] 

While mostly injected intravenously due to their liquid form, these contrast agents can also be 

administered orally.  

The contrast agents (CA) most commonly utilized in cancer screening are gadolinium (Gd) based. 

Cas have a low molecular weight that allows easy passage into the extravascular area, especially 

in which the vessels are porous and they are intravenously injected. [24] Such contrast agents do 

not traverse the membranes of cells and stay in extracellular space. The capacity to monitor 

contrast enhancement over time has contributed to information being accessible concerning the 

condition of tissue microvasculature. DCE-MRI demands systematic imaging prior, during and 

afterwards an injection of a contrast agent across the entire anatomical area. The accuracy of the 

DCE MRI has been improved by simple workstation measurements of enhancement proportions 

and signal shift plotting over time, permitting the distinction of benign and malignant breast 

cancer. [25] It has been established that research of sophisticated pharmacokinetic modeling may 

lead to additional useful tumor-related information that can possibly be utilized as a biomarker for 

patients with phenotypes or as a monitoring tool for treatment-response. [26] 

The effects of the contrast agent on hydrogen protons in tissue water are expressed in the alterations 

in the signal strength of a contrast-enhanced MRI study. Choosing the image sequence is required 

to optimize the effects of T1 or T2 relaxation. T1-weighted examinations are frequently conducted 

with short repetition time (TR) and echo time whereas T2-weighted imaging is mostly produced 

utilizing echo planar imaging with long TR and echo time. Fat suppression may be enforced with 
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the goal to improve area visibility. The technique of image acquisition implied in the dynamic 

imagery of a lesion depends on the information needed. [27] 

Dynamic contrast-enhanced MRI (DCE MRI) has been utilized as a tool to increase diagnostic 

accuracy and to enhance non-invasive characterization of lesions. This became widely used in the 

field of breast imaging. Commercial workstations have a range of basic analytical tools for 

describing signal curves over time, maximal slope, time to peak (TTP) and maximum 

enhancement. The TTP is the time required after contrast injection for the signal to reach its 

maximum value. TTP has been proved effectively in the identification of malignant lesions. It 

became apparent that tumors are quite heterogeneous with several displaying a gradual increase in 

signal throughout time with a relatively homogenous enhancement pattern while others can display 

a malignancy-specific rim enhancement with a drastic increase in signal with an early peak and a 

malignancy-typical washout pattern. [28][29]  

There is no gold standard for measuring the physiology of tumors and for verifying the 

pharmacokinetic measurements obtained with this method. Many experiments associated 

pharmacokinetic parameters with clinical outcome or used histopathology with tumor grade, tumor 

size, expression of MVD, lymph node status, or expression of VEGF in quantifiable prognostic 

factors. The slope of the enhancement curve is correlated with MVD and it has been observed that 

enhancement characteristics are closely related with the nodal status of a breast tumor and the 

histological grade. Objective measurements of tumor response such as adjustments in tumor size 

or volume are used as the end point in response-monitoring studies. [30] 

The effects of neo-adjuvant chemotherapy are monitored with response biomarkers. MRI has been 

extensively studied in breast cancer and has been demonstrated to be comparable to standard 

mammography and ultrasound imaging methods in assessing adjustments in tumor size. The use 

of MRI for evaluating neo-adjuvant chemotherapy in women with locally advanced breast cancer 

is documented in a substantial volume of research. [31] Most studies, though, are narrow, with 

subjective approaches and incoherent endpoints rendering it challenging to determine the value or 

reproducibility of this and the benefit of patient care to the clinician. In terms of planning surgery, 

it is accepted that MRI is inferior to mammography, ultrasound and clinical review to determining 

the severity of cancer after completion of chemotherapy.  

Breast cancer studies were conducted to determine if any of baseline MRI variables could be 

utilized in order to estimate treatment response, but none discovered them beneficial to date. A 

precise evaluation of deficiency of responsiveness will enable the oncologist to turn earlier in-

patient treatment towards a more efficient chemotherapy regime. 
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Evaluation of response to chemotherapy is done by using both Ktrans and ve. As a promising 

biomarker, Ktrans has been extensively used in many studies, where reduction more than 50% to 

be correlated to positive response to treatment (biopsy evaluation for confirmation). [32]–[34] It 

has also been demonstrated that the peak amplitude ve is efficient with a decrease in peak 

corresponding in response. [32] Nevertheless, the combination of volume changes with changes 

in enhancement ratio improves the monitoring sensitivity of patients who will obtain a maximum 

pathological response [35], [36]. 

Correlative research proved the ability of DCE-MRI as an imaging biomarker in forms of principle 

evidence. Nonetheless, large-scale randomized controlled research is needed to verify site-wide 

reproducibility and check established protocols for data acquisition and marker quantification [37].  
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1.5. Breast cancer therapy 

Breast cancer treatments options depend on its stage and if it is metastatic or not. Considering that, 

breast cancer is treated with surgery, radiation therapy (RT), endocrine / hormone therapy (HT), 

targeted therapy and chemotherapy (CT). 

The goal for nonmetastatic breast cancer is to eradicate the tumor from the breast and local lymph 

nodes while also preventing metastatic reappearance. Localized therapy is usually consisted of 

surgical resection and sampling or by removing the axillary lymph nodes preceded by radiotherapy 

to completely remove any left cancer cells. Subtype therapies include endocrine therapy, usually 

combined with chemotherapy, antibody therapy and chemotherapy on its own for severe stages of 

breast cancer. Regarding metastatic breast cancer, the goals are to prolong survivability and 

suppressing symptoms. Metastatic breast cancer remains incurable in almost all patients. The same 

treatments are used, while surgery and chemotherapy mostly for the suppression of the symptoms. 

[38] 

Breast conservation operation is the standard strategy in the treatment of localized breast cancer, 

with neoadjuvant therapy preceding the operation to reduce tumor size. In general, surgery is 

accompanied by adjuvant therapy to ensure full rehabilitation and reduce metastasis risk. 

Furthermore, cancer cells which may not be seen during surgery may be eliminated by radiation 

to decrease the risk of cancer recurrence at the local level. Radiation therapy is the procedure of 

exposing cancer cells directly into high radiation levels. Combining chemotherapy and radiation 

therapy after surgery, there is a great possibility of a high shrinking of the tumor. Adjuvant therapy 

should be decided whether there is a certain predicted sensitivity to specific treatment methods 

while benefiting from their use or when there is a risk of relapse. [39]  

Endocrine therapy is used for countering estrogen-promoted tumor growth. A standard endocrine 

therapy is consisted of oral antiestrogen medication daily, usually for 5 years depending on the 

menopausal status. Tamoxifen is a potent modulator of estrogen receptors that competitively 

prevents the binding of estrogen. [31] 

Radiation therapy is a crucial procedure preceding surgery in order to remove any left cancer cells. 

Breast cancer radiation therapy may be given to the whole or portion of the breast (after 

lumpectomy), chest wall (after mastectomy), and regional lymph nodes. Post lumpectomy whole-

breast radiation is a normal part of the therapy for breast survival. A meta-analysis of 10 801 

patients found that radiation administration following lumpectomy was correlated with decrease 

of approximately half in breast cancer recurrence and one-sixth at 10 and 15 years in breast cancer 

deaths respectively. [40] Regarding adjuvant systemic therapies, the radiation's representative 

payoff was fairly stable in spite of the relative risk of breast cancer. Therefore, for patients with 

higher-risk cancer the actual benefits were greater, and alternatively, for patients with the lowest-

risk node-negative tumors, the mortality benefit confidence interval was zero.  
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Prospective studies have investigated the effectiveness after lumpectomy of a shorter radiation 

course and how to classify patients who may recover from increased dose. [41] Whilst the 

historical typical dosage and post lumpectomy radiation schedule was 50 Gy over 25 fractions, 

more recent research has implicated that a hypo fractionated plan (approximately 42.5 Gy over 16 

fractions) is as efficient for reducing the risk of local recurrence and, if not more efficient for 

cosmesis. [42] Consequently, according to current guidelines a hypo fractionated plan for whole-

breast radiation is now "favored." In contrast to the whole breast, post-lumpectomy radiation to 

the partial breast is an approach that has been studied predominantly in lower-risk patients aged 

50 years and older. While studies indicated that partial breast radiation was linked to a slightly 

increased risk of local recurrence and a slightly worse cosmesis, recent findings refute this, and 

consensus recommendations endorse non-intraoperative partial breast radiation in patients with 

low risk. Prescribing a radiation boost precise to the tumor bed enhances local control but not 

morbidity, and therefore should be perceived in patients at higher risk. Furthermore, prospective 

randomized studies have also shown that females 65 years of age and older or 70 years of age and 

older with low-risk breast cancer, entire breast radiation post-lumpectomy has no noticeable effect 

on distant relapse or morbidity (whereas omitting radiation contributes to low-risk loco regional 

event risk). [43] 

Radiation from post mastectomy is radiation to the chest wall, often with a reinforcement to the 

mastectomy area and/or regional nodal radiation. A meta-analysis (N=8135) of randomized 

mastectomy radiation tests indicated that post-mastectomy radiation was not correlated with 

relapse or survivability outcomes in patients with negative lymph nodes. Nevertheless, application 

of post-mastectomy radiation in patients with healthy lymph nodes has been affiliated with 

increased locoregional and relative relapse possibility and mortality from breast cancer [31], [44]. 

Including regional nodal radiation (exposing the axillary, par clavicular, and/or internal mammary 

nodes) following either lumpectomy or mastectomy was correlated with greatly enhanced disease-

free mortality, was not linked with overall mortality, and was associated with increased radiation 

toxicity such as pneumonitis and lymphedema. Nodal radiation is not universally administered 

even in node-positive patients due to the lack of overall survival benefit, but should also be 

regarded for patients with increased nodal disease burden or high-risk biology. [45] 

Over the past decades, surgical treatment for breast cancer has developed considerably, with 

improvements directed at reducing the long-term cosmetic and functional complications of local 

therapy. [46] The conventional techniques are either a total mastectomy, or an excision plus 

radiation based on extensive studies, presuming straightforward margins can be attained. These 2 

methods have consistently been shown to be comparable in terms of relapse-free and overall 

survivability. Conservative surgery contraindications involve (1) the appearance of dispersed 

abnormal microcalcifications on breast imaging; (2) specific collagen-vascular diseases, e.g. 

scleroderma;  (3) disease which cannot be handled by surgical removal of a single region of breast 

tissue with a reasonable cosmetic result, except in highly selected patients; (4) healthy pathological 

margins following lumpectomy; and (5) leading up breast radiation therapy. The axillary lymph 

nodes should be treated separately from breast surgical therapy. Lymph node removal provides 

both a therapeutic significance (removal of cancer cells) and a diagnostic function (defining breast 
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cancer's anatomical degree). [47] Surgical judgment-making is focused on whether activity of the 

axillary lymph node is visible at diagnosis and whether systemic neoadjuvant therapy is being 

delivered. Axillary lymph node dissection (ALND), which maintains the standard treatment for 

patients with clinically apparent axillary involvement in the diagnosis who undergo surgery as 

initial therapy, was the standard path to axilla before clinical studies found that there is no 

substantial difference in local relapse or survival results in women with clinically node-negative 

(cN0) breast cancer among women who had complete ALND and women who had sentinel lymph 

node (SLN) biopsy, with conversion to ALND only if the SLN was positive. [48] The surgical 

treatment is emerging for patients receiving systemic neo-adjuvant therapy. Several observational 

randomized studies and a recent meta-analysis indicate that neo-adjuvant chemotherapy has 

expanded the availability of patients for breast-conserving therapy without sacrificing long-term 

results. A field of active investigation is the effective management of lymph node disease 

following neoadjuvant therapy. 

Chemotherapy remains an effective procedure in many patients with stage I-III breast cancer, 

given the related short- and long-term risks. Considered the only systematic treatment with 

established efficiency in triple-negative breast cancer, and a major alternative to endocrine therapy 

or controlled therapy in breast cancer patients. [49] 

A study utilized a cohort 100 000 women engaged in controlled early breast cancer chemotherapy 

tests found that a high-dose anthracycline containing chemotherapy regimen (opposed to no 

chemotherapy) greatly reduced 10-year breast cancer survival rate at about one-third, with most 

survival benefits emerging during the first five years of treatment. [50] 

Similarly to adjuvant endocrine therapy for hormone receptor tumors, chemotherapy correlates 

with higher-risk tumors providing an increased total benefit. Several specific regimens of 

neoadjuvant and adjuvant chemotherapy may be recommended for early breast cancer. Generally, 

the regimens of different chemo therapies are all sensible options for smaller-risk patients 

considering the benefits of chemotherapy are lower and toxicity is carefully managed. All 

anthracycline and taxane-containing chemotherapy regimens demonstrate the highest reduction in 

risk and remain the ideal option for high-risk patients. Generally, the use of anthracycline in 

patients with more involvement of the lymph node and with triple negative disease tends to be the 

most significant. For patients receiving a full cycle of neoadjuvant chemotherapy containing 

anthracycline and taxane, if residual disease is detected during surgery, further treatment remains 

uncertain. [31] 

In particular, chemotherapy is given to all women with breast tumors greater than 5 mm, although 

with negative axillary nodes. The only drugs approved by the Food and Drug Administration 

(FDA) for treating non-metastatic disease are chemotherapeutic agents. Since defective repair of 

DNA damage is a biological characteristic of some tumors, triple-negative disease has been of 

interest to investigate the DNA cross-linking platinum chemotherapies. Two studies have recruited 

breast cancer patients to undergo neo-adjuvant chemotherapy both with and without carboplatin, 

and both have reported substantial improvements in pathologic complete response (pCR) with the 
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inclusion of carboplatin in the operation. Although, in the carboplatin - containing group, only one 

of the trials showed significant improvement in disease-free survival, and in this scenario, the other 

elements of the chemotherapy regimen were not coherent with conventional therapy and did not 

include an alkylating agent [31]. Hence, the importance of platinum salts in treating patients with 

triple-negative breast cancer in stage I-III remains unclear. 

Another treatment of cancer is Neoadjuvant therapy (NT). NT is the administration of therapeutic 

agents prior to the main treatment in order to reduce the extent or size of the cancer. That will 

result in an easier operation of surgical removal of the tumor and reduce any additional residues 

that might have existed. NT can either be chemotherapy, radiation therapy or hormone therapy and 

is usually utilized early on patients with not advanced cancer to prevent any expanding of the 

tumor. 

In our case, neo adjuvant chemotherapy (NAC) was administrated to the patients in order to shrink 

tumors volume for a better surgical operation. [51] NAC was introduced in 1980s on patients with 

locally advanced tumor in order to transform the inoperable tumors into operable ones. [52] After 

the positive results of NAC, with its major benefit being the increase of breast conservation, 

researchers were urged to conduct an analysis on randomized trials to evaluate NAC effects on 

earlier stages. [53]  

In a recent review comparing adjuvant and neo adjuvant chemotherapy studies it was perceived 

that the outcome is equivalent with the difference that NAC can help in the preservation of the 

breast. Additionally, NAC can help decrease any adverse events while also having no negative 

affect in the loco regional control of the tumor. Another benefit of NAC is the recovery of patients 

before surgery. Patients without NAC have stressed their immune system after surgery and the 

chemotherapy followed can be harmful. However, NAC patients have shown that their recovery 

time from chemotherapy was faster and enough to move into surgery. [54] Furthermore, NAC 

facilitates the monitoring of tumor response which can save time or unnecessary exposure to 

harmful side-effects that might occur to a patient. [55]–[57] For these reasons, NAC is an excellent 

therapy to determine the most efficient therapy plan for each individual. Thus, enabling us to 

explore further its capabilities and effects by trying to predict each Breast cancer patient therapy 

response and help personalized medicine move further. 

 

 

  



“Texture Kinetics and Multiscale texture extraction based on wavelets for predicting 
breast cancer treatment response”  
 

28 

 

1.6. State of the art in predicting NAC 

Predicting NAC outcome of breast cancer patients can help clinicians move towards personalized 

medicine and individual-specific planning of treatment. For this reason, researchers have shown a 

lot of interest in predicting NAC as early as possible, even at baseline before therapy 

administration.  

Researchers explore the predictive power of imaging biomarkers by using quantitative and semi-

quantitative analytical methods in DCE-MRI. Ah-See et al. [58] discovered that ktrans had great 

predictive ability in a cohort of 28 breast cancer patients, achieving an AUROC score of 93%, 

sensitivity at 94% and specificity 82%. Additionally, important predictive value proved to have 

the Apparent Diffusion Coefficient (ADC) which was acquired from the Diffusion Weighted 

Imaging (DWI) data, revealing inclination of responding to NAC in patients with low ADC on 

baseline exam[59].  

All the above studies, however, use functional information in the form of pathophysiology, image-

derived markers to predict the outcome of NAC therapy. Due to these approaches, spatial structure 

of the image intensities is often overlooked, however, they can reveal useful information 

concerning tumor heterogeneity. Since it is well-known that tumor heterogeneity has a great 

predictive ability [60] it makes sense to investigate it along with texture radiomic features which 

conceivably will lead to improved predictability in the NAC outcome particularly if we consider 

changes in texture patterns over the examination time.  

Texture analysis was used to predict the outcome of NAC treatment for breast cancer. In [61], It 

is shown that the textural features derived from breast cancer DCE images were found to be more 

reliable two minutes after contrast agent (CA) injection to predict patient response to therapy using 

a cohort of 89 patients, 40 of whom were responders and 49 were non-responders. The features 

that were derived 2 minutes after the CA injection showed a better predictive power that the 

features that were derived from all time points of the exam. 

In a research of Agner et al. [62], texture kinetics were introduced as novel technique to categorize 

breast tumor into benign or malignant classes. While the design requirements were a difficult task, 

the textural kinetic characteristics and morphological parameters in the classification process were 

very accurate. Using a cohort of 41 patients (17 benign and 24 malignant), a probabilistic boosting 

tree (PBT) classifier resulted in 90% accuracy, 95% sensitivity, 82% specificity and AUROC 92%. 

Another research from Thibault et al. [63] was conducted applying texture analysis in quantitative 

and semi-quantitative DCE-MRI data of 38 patients. After the first cycle of NAC therapy using 

1043 texture features extracted from 13 parametric maps, they achieved a perfect discrimination 

of responders and non-responders (100% sensitivity and specificity). 

Michoux et al. [64] utilized a cohort of 69 patients with invasive ductal carcinoma of the breast for 

analyzing and extracting morphological and biological parameters. Kinetic and BI-RADS features 
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have been extracted for each lesion texture, while ROC analysis and leave-one-out cross-validation 

assessment measure their performance. Their results shown that four pre-NAC parameters were 

able to predict the responders to NAC with sensitivity of 84%. 

In [65] Teruel et al. explored the role of DCE MRI texture analysis in a cohort of 58 patients with 

locally advanced breast cancer, for the prediction to NAC therapy. Utilizing gray level co-

occurrence matrix, sixteen features were derived from every post contrast acquisition. A number 

of statistically significant texture characteristics were found to be adequate predictors 1 to 3 

minutes after injection of CA. 

Furthermore, as aforementioned, this thesis contributed to 2 researches. While both explore the 

prediction of NAC outcome, the first, as mentioned, investigates the strength of textural kinetics, 

while the second, explores the predictability power of multi-scale Gabor filtered texture features.  

Multi-scale classification common and main problem is that the feature space is highly 

dimensional since it contains features extracted from different scales. In [66] multi-scale texture 

images were created using scaled by-products up to second order and then using combined 

classifiers rather combining features in order to overcome the problem of high dimensionality. The 

features extracted at each scale were used in different classifiers and the results were merged using 

a fixed merging rule for selecting texture classes. Many examples of multiresolution techniques 

have been used for texture analysis in literature including: multiresolution histograms [67], multi-

scale local binary patterns [68], multiresolution Markov random fields [69], wavelets [70], [71], 

Gabor filters [70], [72] and Gabor wavelet filters [73]. 

In [74], DCE-MRI was utilized to assess the response to NAC treatment of the breast cancer 

patients. Using a cohort of 54 patients which underwent two chemotherapy circles, a multivariate 

analysis with cross-validation was performed on features which characterized the kinetics and the 

morphology of the contrast agent in both early and late phases of the exam. Also, utilizing a 

Receiver Operating Characteristic (ROC) analysis, the results for predicting the treatment outcome 

were 73%. 

In another study by Johansen et al. [75], DCE – MRI exams were used as a predictive tool to early 

chemotherapy response and the evaluation of 5-year survival in patients. Relative signal intensity 

(RSI) as well as area under the curve (AUC) were both calculated from the DCE – MRI 

examinations for the comparison with the clinical treatment response. Additionally, a Kohonen 

and probabilistic neural network analysis was conducted for the prediction of 5-year survival. The 

results for the prediction of clinical treatment response were above 90% while the neural network 

analysis in the range of 80% to 92% in the prediction of 5-year survival. 

Additionally, in [76] an evaluation of the response to chemotherapy of breast cancer patients using 

radiomics features of the DCE-MRI was conducted. More specifically, 57 patients exams were 

analyzed, which 47 were responders while the 10 were not, according to the RECIST criteria. One 

hundred and fifty eight radiomic features were extracted from MRI examinations to characterize 
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the heterogeneity of the tumor and to discriminate the background of the image. Using a Wrapper 

Subset Evaluator classifier and an area under the curve calculation to evaluate the classifiers 

performance it was shown that the average accuracy for the prediction to chemotherapy was 

70.3%. 

In [77], a cohort of 586 breast cancer patients were used along with the multi parametric MRI 

examinations available for the prediction of NAC response. All of the imaging examinations were 

before the NAC of each patient. Extracting features from coarse to fine, a set of 4 radiomic features 

was created. Using an area under the curve analysis, the average accuracy from all the different 

parametric MRI examinations was 79%.  
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1.7. Scope and research questions 

This thesis is focused on examining the importance of textural features in DCE-MRI towards the 

prediction of NAC. DCE-MRI is an efficient imaging tool for breast cancer used extensively all 

over the world. While RECIST and WHO criteria provide efficient evaluation of tumor response 

to NAC treatment, the heterogeneity of the tumor is often neglected due to the fact that such criteria 

focus on linear measurements such as the diameter of the tumor. For this reason, we proposed the 

use of reliable texture descriptors such as the Gabor filter, on the examination images in order to 

extract textural features that are then use for developing predictive models of NAC response (work 

done outside the scope of this thesis). 

In this work, we use radiomics to extract temporal texture features, utilizing Dynamic Contrast-

Enhanced (DCE) MRI 3D image volume, thus examining the change of texture in time. Exploring 

this change in tumors structure, we hypothesized that radiomic features can help improve the 

prediction procedure due to the use of both dimensional features and textural features. Radiomics 

analysis is really promising for revealing substantial tissue properties offering more precision in 

the management of cancer patients leading to a more personalized diagnosis. 

However, texture can be extracted at different resolutions/scales. Texture contains significant 

information at different scales, thus making scale a continuous variable rather than a simple 

parameter. We propose a framework of Gabor filtering using a set number of orientations and 

scales. Gabor filter provides concurrent optimal resolution in both spatial and frequency domains, 

considered by many contemporary computer vision scientists to be comparable to the human vision 

system. Gabor filters have been used effectively in several implementations, including texture 

analysis and segmentation. The framework’s pipeline includes a pre-processing filtering of the 

images using a Gabor filter bank of different scales and orientations following the extraction of 

radiomic features. Using this approach, we examined whether Gabor-based multi-scale and 

orientation filtering improves the predictive power of radiomic features and how stable they are in 

corresponding feature importance in the prediction algorithm. 

More specifically: 

• Extracting radiomics features in DCE MRI of breast cancer patients for the 

prediction of the tumor response 

• Development of a multi-scale Gabor filter framework investigating the effect of 

scale of textural features in their predictive strength regarding NAC prediction 
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1.8. Outline 

 

This thesis is outlined as follows: 

• In the first chapter, Introduction, basic theoretical concepts, breast and breast cancer 

description as well as epidimology, state-of-the-art research and projects is provided as 

well as the rationale for conducting this thesis 

 

• In the second chapter, an explanation of texture kinetics and how they are used in this work 

is provided. 

 

 

• In the third chapter, Gabor filters are introduced focusing on how they can provide useful 

biomarkers using radiomic texture features. 

 

• In the fourth chapter, the results of this thesis are presented and explained thoroughly as 

part of a machine learning prediction study. 

 

 

• In the last and fifth chapter, Discussion, we discuss our results and methods and propose 

new ideas for extending this work and its applications. 

 

• At the end are listed every source of literature information. 
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1.9. List of Publications 

This thesis has contributed to two publications. The first publication was on a research trying to 

use texture features derived from the patients’ exams original images and wavelet filtered images 

to predict the response of NAC treatment. The second publication was on a research to predict the 

NAC treatment using the texture features derived from a Gabor filtered image of the patients’ 

exams. The contribution of the thesis was on the extraction of the texture-Radiomics features and 

the development of the Gabor scale-orientation framework. 

 

1. Kontopodis, E., Manikis, G., Skepasianos, I., Tsagkarakis, K., Nikiforaki, K., Papadakis Z., G., 

Maris, Th.G., Papadaki, E., Karantanas, A., & Marias, K. (2018). DCE-MRI radiomics features 

for predicting breast cancer neoadjuvant therapy response. 10.1109/IST.2018.8577128 

 

2. Manikis G., Venianaki M., Skepasianos I., Papadakis Z., G., Maris T., Agelaki S., Karantanas 

A., Marias K. (2019). Scale-Space DCE-MRI Radiomics Analysis Based on Gabor Filters for 

Predicting Breast Cancer Therapy Response. 994-1001. 10.1109/BIBE.2019.00185. 
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1.10. Dataset Description 

The database used in this work is an open for public available data set from The Cancer Imaging 

Archive which comprises of a cohort of histologically-proven breast cancer stage II and III, 59 

patients.[78] Included scans are: DCE, DWI MRI and PET/CT, before the starting NAC treatment, 

after the first cycle and before the end of it. Classification of the patients was also available and 

was derived according to the biopsy acquired at the end of the NAC treatment. Classification was 

defined as responders (pCR) and non-responders (non-pCR). According to Sataloff [79], response 

to NAC was determined as the inadequacy of tumor residual in breast and lymph nodes.  

Out of the 59 patients, only 20 had PET/CT exams thus excluded from this work. Furthermore, 4 

patients had only one DCE exam which lead us excluding them because we studied those who had 

two DCE exams. Resulting, patient cohort was reduced to 35 patients out of which, 12 were 

responders (pCR) and 23 non-responders (non-pCR). Additionally, any patients with third exam 

were included, however the third exam was not analyzed. 

 DCE scans were obtained using a bilateral breast coil with 16 channels on a 3.0 T Philips Achieva 

MR scanner. Regarding DCE protocol, 20° flip angle, TR 7.9 ms, TE 4.6 ms, 192x192x20 image 

resolution, 220x220 mm2 field of view (FOV), 5mm slice thickness and 25 dynamic acquisitions 

with 16 seconds temporal resolution was used. The gadopentetate dimeglumine (Gd-DTPA) CA 

was used with a power injector using 0.1mmol/kg. The detailed description of the therapeutic 

regimen and the acquisition protocol is provided in [80]. 

  

Figure 8:A preview of the images included in the dataset used. 
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2. Texture Kinetics 

2.1. Introduction to texture 

Image Texture in image processing is a method to quantify the characteristics of the patterns of an 

image which is perceived as texture. Image texture provides us data on the spatial arrangement of 

the signal strength in an image or area of interest in an image. While a specific definition of texture 

does not exist yet, commonly accepted are “Reference to properties that represent the surface or 

structure of an object”, “Repeated patterns of local variations in image intensity”. 

According to Haralick “Despite the importance and ubiquity in image data, a formal approach or 

precise definition of texture does not exist”. [81]Image texture is an important property, since it 

can provide useful information, especially for classification of images. In order to understand and 

perceive texture, humans use meaningful features of the image. Most important are spectral, 

textural, and contextual features. Textural characteristics provide information on the temporal 

distribution of gray-tone variations within an image. Spectral features contain the average tonal 

variations while contextual features describe the groups of pixels around the area of interest. 

Texture and tonal properties of an image are closely related. Texture is the dominant property in 

the case of a small area with wide variation of discrete tonal features, while grey level is dominant 

when the variation is lower. 
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Figure 9: Brodatz texture images are used extensively as a gold standard for texture classification, segmentation and feature 

extraction [82].  

Discrete tonal features can be expanded to the grey-level primitives. Which are distinct regions in 

an image, defined by both its grey-level and region properties. Spatial distribution and grey-level 

primitives are able to characterize texture. Texture can be described as micro texture if the spatial 

interaction is local and the grey level primitives are small in size. If the grey level primitives are 

larger in size and regularly organized in the image, then the texture can be described as 

macrotexture. For that reason, examination scale is very important in the textural description of 

the image. In other words, texture can change in appearance, depending at which scale it is 

examined. Increasing the scale, regions that had smooth texture, will now have fine and coarse 

textures. This should be considered before examining the texture of mammographic data, because 

the size of the region of interest in this study varies a lot. 

Researchers have also characterized texture as natural or artificial [83]. Artificial textures are 

mostly consisted of symbols which are part of a neutral background image. Autoregressive models 

and Markov random fields can create artificial textures, depending on the parameters given. 

However, natural textures are images which, for example, show brick walls, grass, water etc. 
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As mentioned, texture is a fundamental attribute of images which contains information of the 

arrangements of an image and the relationships between them. Texture can be characterized as 

coarse, smoothed, rippled, irregular and more. For that reason, researchers are using its information 

for segmentation and discrimination purposes. In this work, however, texture analysis and 

extraction of features will be used as a pre-process for the prediction of NAC treatment patients.  

Texture analysis can be achieved using two methods. The first method is called statistical, which 

includes optical transforms, digital transforms, textural edges, structural element, grey-tone co-

occurrence, autocorrelation functions and autoregressive models. Statistical methods have been 

used extensively, especially for the examination of micro textures. On the other hand, structural 

methods follow an idea that views each texture as groups of pixels placed in regular spatial 

distributions. Both of these methods are analyzed to a great extent by Haralick [84].  

Temporal texture feature change or texture kinetics were introduced by [62], in which study, it was 

attempted to classify breast tumors into benign and malignant classes. Although being a difficult 

classification, it was shown that texture kinetics and morphological parameters provided adequate 

accuracy results. 

In this study, temporal texture features are extracted from certain time points of each patient’s 

exam. Four different time points were selected in both baseline and follow up exams. The first 

image set is before the injection of the contrast agent (TP1). This set of images has been chosen 

because they depict the anatomy without contrast agent and can serve as a control image. The 

second set of images is the peak enhancement (TP2), where according to literature, in breast cancer 

exams, peak enhancements is about 120 seconds after the injection of contrast agent [26], which 

in our study occurs at the 8th time point considering the 16 seconds temporal resolution. This set 

has been chosen due to the optimum enhancement of the contrast agent. Additionally, the last time 

point of the exam considered, is called the end phase (TP3), which is when the contrast agent 

dynamics are stable. Finally, the difference between the first two selected time points was chosen 

(TP4 = TP2 – TP1) in order to take account only the enhancement of the tumor.  
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Figure 10: Pipeline of the proposed radiomic features extraction.[85] 

 

In addition, Radiomic features derive a great number of quantitative features using statistics of the 

first and higher order applied to pre-annotated malignant areas of the 3D volume. In [85], we 

extracted from raw and filtered images a total of 1220 imaging features. First order statistics 

include histogram metrics, shape characteristics and second-order statistics relied on the Gray–

Level Co-Occurrence Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM) and Gray-Level 

Size Zone Matrix (GLSZM) were computed composing a large vector of 1220 features for each 

examined DCE-MRI exam. This computation was performed in Python using the PyRadiomics 

package [86]. More information is shown in the table below: 
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Table 1:All of the computed Radiomic Features used in our research 

Radiomics 

 

First-Order 

10 th percentile, 90 th percentile, Energy, Entropy, Interquartile Range, Kurtosis, Mean 

Absolute Deviation (MAD), Mean, Median, Range, Robust Mean Absolute Deviation 
(rMAD), Root Mean Squared (RMS), Skewness, Total Energy, Uniformity, Variance 

 

 

 

 

 

 

 

Second-Order 

 

 

GLCM 

Autocorrelation, Joint Average, Cluster Prominence, 

Cluster Shade, Cluster Tendency, Contrast, 
Correlation, Difference Average, Difference Entropy, 
Difference Variance, Inverse Difference (ID), Inverse 

Difference Moment (IDM), Inverse Difference 
Moment Normalized (IDMN), Inverse Difference 

Normalized (IDN), Informational Measure of 
Correlation (IMC) 1, Informational Measure of 

Correlation (IMC) 2, Inverse Variance, Joint Energy, 

Joint Entropy, Maximum Probability, Sum Average, 
Sum Entropy, Sum of Squares 

 

 

 

GLRLM 

Short Run Emphasis (SRE), Long Run Emphasis 
(LRE), Gray Level Non-Uniformity (GLN), Gray 
Level Non- Uniformity Normalized (GLNN), Run 

Length Non- Uniformity (RLN), Run Length Non-
Uniformity Normalized (RLNN), Run Percentage 
(RP), Gray Level Variance (GLV), Run Variance 
(RV), Run Entropy (RE), Low Gray Level Run 

Emphasis (LGLRE), High Gray Level Run Emphasis 
(HGLRE), Short Run Low Gray Level Emphasis 

(SRLGLE), Short Run High Gray Level Emphasis 
(SRHGLE), Long Run Low Gray Level Emphasis 

(LRLGLE), Long Run High Gray Level Emphasis 
(LRHGLE) 

 

 

 

GLSZM 

Small Area Emphasis (SAE), Large Area Emphasis 
(LAE), Gray Level Non-Uniformity (GLN), Gray 
Level Non-Uniformity Normalized (GLNN), Size-

Zone Non- Uniformity (SZN), Size-Zone Non-
Uniformity Normalized (SZNN), Zone Percentage 
(ZP), Gray Level Variance (GLV), Zone Variance 
(ZV), Zone Entropy (ZE), Low Gray Level Zone 

Emphasis (LGLZE), High Gray Level Zone Emphasis 
(HGLZE), Small Area Low Gray Level Emphasis 

(SALGLE), Small Area High Gray Level Emphasis 
(SAHGLE), Large Area Low Gray Level Emphasis 

(LALGLE), Large Area High Gray Level Emphasis 
(LAHGLE) 
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2.2. Radiomic features extraction 

 

As aforementioned, temporal texture features are extracted in order to predict the outcome of the 

NAC treatment. More specifically, we extracted spatiotemporal radiomic features from the 

selected time points. Radiomic features were introduced as the result of progressive computational 

approaches to medical imaging converting this data to quantitative descriptors of oncologic tissues. 

They are separated into five groups: size and shape-based features, descriptors of the image 

intensity histogram, descriptors of the relationships between image voxels and neighborhood area.  

Texture analysis has been extensively used in medical data research since it can provide 

quantitative information of the disease. The major texture analysis approaches [87] are three: i) 

statistical, which are based on the spatial distribution of the pixels, ii) structural, which are based 

on the geometrical properties of the image, and iii) signal processing, which rely on filtering 

methods in the frequency or spatial domain. In this study we focus on signal processing techniques 

using Gabor Filtering, which is a multi-scale technique to quantitatively describe texture at 

different orientations and scales. The fundamental idea behind multi-scale texture techniques is 

that noteworthy information about the image structure is contained at different scales and not only 

at one. Thus, scale is not just a simple parameter but a continuous variable leading to the extraction 

of features at multiple scales, allowing for a multi-scale representation of texture. 

Radiomic features are derived using certain algorithms, as shown in the table before, which analyze 

the patterns of certain areas depending on their intensity, connection and relationship. These 

algorithms will be explained below 
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2.2.1. Gray-Level Co-occurrence Matrix (GLCM) 

 

Gray-Level Co-occurrence Matrix (GLCM) is a method of analyzing the intensity and relationship 

of the pixels in an image. Certain areas within an image can be characterized as texture, depending 

on their pixels’ relationship, whilst helping us understand and extract more information about it 

(e.g. features). These features were first introduced by Haralick [81] and are used extensively as 

of today for quantifying image texture. 

To calculate GLCM one must examine the image pixel by pixel. Starting with a single pixel, which 

is named reference pixel, the relationship between it and the pixels around it are considered. These 

pixels are called neighbor pixels and only a single one of them is examined in each application. 

This examination depends on the direction one is analyzing the image. This direction can either be 

right of it, left of it, above or below it. Additionally, a pixel offset is used for the analysis. In the 

illustration below, the pixel values in blue are the reference pixels while the green ones are the 

neighbor ones.  

  

Considering this illustration and using the east direction (right), counting the number of pixel pairs 

is how a GLCM is constructed. In this scenario, two cases of (0,1), (0,0), (1,1), (2,2) and (2,3) are 

counted with a single case of (0,2). Using this information, we can construct GLCM as shown 

below: 

Figure 12: Example of a GLCM calculation using these images 
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Figure 13: Calculated GLCM outcome. 

Additionally, constructing GLCM in one direction is not the only option. GLCM can be examined 

from several angles, for example four, which results into 4 different GLCM tables. Considering 

that, one can retrieve a thorough, circular investigation of the texture of the image. [88] 

GLCM has proved to be a robust method for extracting texture features from images. Haralick has 

defined fourteen features from GLCM, for the extraction of the image texture characteristics. 

Considering a GLCM of size 𝑁𝑔 × 𝑁𝑔 and the description of second-order joint probability 

function of the image is defined as 𝑃(𝑖, 𝑗 | 𝛿, 𝜃) where i,j represents the times of a certain 

combination that occur in the image which are separated by a δ distance of pixels with angle θ.  

All the proposed features are listed below: 

• Autocorrelation 

Magnitude of texture's smoothness and roughness 

∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗

𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1

 

 

• Join Average 

Gray level intensity distribution 

∑ ∑ 𝑝(𝑖, 𝑗)𝑖

𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1
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• Cluster Prominence 

Skewness and asymmetry of GLCM. Higher values imply asymmetry, lower value indicates 

less variation of mean 

 

∑ ∑(𝑖 + 𝑗 − 𝜇𝜒 −  𝜇𝑦)
4
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1

 

Where 𝜇𝜒 =  ∑ 𝑝𝑥(𝑖)𝑖
𝛮𝑔

𝑖=1
 and 𝜇𝑦 =  ∑ 𝑝𝑦(𝑗)𝑗

𝛮𝑔

𝑗=1
 

  

 

• Cluster Shade 

Measure of uniformity and skewness of GLCM 

 

∑ ∑(𝑖 + 𝑗 − 𝜇𝜒 −  𝜇𝑦)
3
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1

 

 

 

• Cluster Tendency 

Measure of voxels with similar gray level intensities 

 

∑ ∑(𝑖 + 𝑗 − 𝜇𝜒 −  𝜇𝑦)
2
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1

 

 

 

• Contrast 

Local intensity variation 

∑ ∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)𝑖

𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1

 

 

• Correlation 

Linear dependency of gray level values to their respective voxels in the GLCM 

 

∑ ∑ 𝑝(𝑖, 𝑗)𝑖𝑗 − 𝜇𝜒𝜇𝑦
𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1

𝜎𝜒(𝑖)𝜎𝑦(𝑗)
 

Where 𝜎𝜒(𝑖)𝜎𝑦(𝑗) = standard deviation of p in both axes 
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• Difference Average 

Relationship among sets with similar intensity and sets with different intensities 

∑ 𝑘𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=0

 

 

• Difference Entropy 

Measure of randomness in neighboring gray level intensities 

 

∑ 𝑝𝑥−𝑦(𝑘)𝑙𝑜𝑔2(𝑝𝑥−𝑦(𝑘))

𝑁𝑔−1

𝑘=0

 

 

• Difference Variance 

Measurement of heterogeneity, taking into account pairs of different intensity levels that 

vary more from the mean 

∑ (𝑘 − 𝐷𝐴)2𝑝𝑥−𝑦(𝑘)

𝑁𝑔−1

𝑘=0

 

Where DA = Difference Average 

 

 

• Joint Energy 

Measure of homogenous patterns in an image 

 

∑ ∑(𝑝(𝑖, 𝑗))2

𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1

 

 

• Joint Entropy 

Measure of variability in neighborhood intensity values  

 

− ∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗))

𝑁𝑔

𝑗=1

𝛮𝑔

𝑖=1
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• Informational Measure of Correlation 1 and 2 (IMC1 & IMC2) 

IMC1 tests the association between the distributions of probabilities where the entropy of 

x axis is subtracted from the entropy of y axis. IMC2 calculates the same relationship by 

calculating the logarithmic subtraction of the aforementioned entropies  

 

∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(
𝑝(𝑖, 𝑗)

𝑝𝑥(𝑖)𝑝𝑦(𝑗)
)

𝑁𝑔

𝑗=1

=  𝐼𝑀𝐶1

𝛮𝑔

𝑖=1

 

 

√1 − 𝑒−2(−𝐼𝑀𝐶1) =  𝐼𝑀𝐶2 

 

 

 

• Maximal Correlation Coefficient 

Measures the complexity of texture 

 

√∑
𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑗)

𝑁𝑔

𝑘=0

 

While these are the Haralick features, more have been introduced into the GLCM textural features 

which are mentioned before. 
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2.2.2. Gray-Level Size-Zone Matrix (GLSZM) 

 

An additional statistical texture descriptor is the Gray-Level Size-Zone Matrix. Similarly to 

GLCM, GLSZM calculates the pixel intensities of an image. GLSZM considers the relationship 

between same pixel intensities and areas. While GLCM uses one direction, GLSZM is calculated 

in all directions. To calculate a GLSZM one has to measure the probabilities of different sized 

voxels with certain intensities. A simple visualization is shown below: 

 

Figure 14: GLSZM example matrix 

Considering the above matrix of pixel intensities of an image, the calculation of GLSZM requires 

to count the size of the relationship between same intensity pixels. The connection which defines 

a relationship is same intensity value with a pixel offset regardless the direction. A simpler 

approach/explanation would be to “follow” a single intensity of a pixel and count how many times 

it occurred in our path. 

 

Figure 15: Calculation of the GLSZM of the example matrix 
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For example, pixels with intensity of 4 value, are connected consisting a zone of the same intensity 

with size 5. Similarly, for intensity value 3, which occupy a zone of size 4. 

GLSZM is particularly effective in characterizing texture homogeneity. Considering that 𝑁𝑔 is the 

number of discreet signal intensities in the image, 𝑁𝑠 the number of discreet zones sizes, 𝑁𝑝 the 

number of voxels, 𝑁𝑧 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1
 the number of zones and 𝑝(𝑖, 𝑗) the size zone matrix, the 

features that can be extracted are listed below: 

• Small Area Emphasis 

Measures small area distribution, higher value suggests smaller areas and fine textures 

∑ ∑
𝑝(𝑖, 𝑗)

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

 

• Large Area Emphasis 

Measures the distribution of large size zones, larger values indicate larger size zone and 

coarse textures 

 

∑ ∑ 𝑝(𝑖, 𝑗)𝑗2𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

• Gray Level Non-uniformity (GLN) 

Measures the variance of gray intensity values with a lower value that indicates a greater 

diversity of intensity values 

 

∑ (∑ 𝑝(𝑖, 𝑗))
𝑁𝑠
𝑗=1

2𝑁𝑔

𝑖=1

𝑁𝑧
 

• Gray Level Non-uniformity Normalized (GLNN) 

Normalized GLN 

 

∑ (∑ 𝑝(𝑖, 𝑗))
𝑁𝑠
𝑗=1

2𝑁𝑔

𝑖=1

𝑁𝑧
2

 

• Size-Zone Non-Uniformity (SZN) 

Measures the diversity of the image size zone volumes with a lower value showing 

increased homogeneity in the volumes of the size zone 

 

∑ (∑ 𝑝(𝑖, 𝑗))
𝑁𝑔

𝑗=1

2𝑁𝑠
𝑖=1

𝑁𝑧
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• Size-Zone Non-Uniformity Normalized (SZNN) 

Normalized SZN 

 

∑ (∑ 𝑝(𝑖, 𝑗))
𝑁𝑔

𝑗=1

2𝑁𝑠
𝑖=1

𝑁𝑧
2

 

 

• Zone Percentage 

Measures the texture coarseness by taking the ratio of zones and number of voxels in the 

ROI 

 
𝑁𝑧

𝑁𝑝
 

 

• Gray Level Variance 

Measures the zones’ variation of gray level intensity  

 

∑ ∑ 𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

Where 𝜇 =  ∑ ∑ 𝑝(𝑖, 𝑗)𝑖
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1
 

 

• Zone Variance 

Measures the zones’ size volume variations 

 

∑ ∑ 𝑝(𝑖, 𝑗)(𝑗 − 𝜇)2

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

Where 𝜇 =  ∑ ∑ 𝑝(𝑖, 𝑗)𝑗
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1
 

 

 

• Zone Entropy 

Measures the randomness in the variation of zone sizes and gray levels with larger values 

indicating greater heterogeneity in texture patterns 

 

∑ ∑ 𝑝(𝑖, 𝑗)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗))

𝑁𝑠

𝑗=1

𝑁𝑔

𝑖=1

 

 

 

 



“Texture Kinetics and Multiscale texture extraction based on wavelets for predicting 
breast cancer treatment response”  
 

50 

 

• Low Gray Level Zone Emphasis (LGLZE) 

Measures the dispersion of lower gray-level size zones with grater values suggesting 

higher proportion of lower gray-level values and size zones 

 

∑ ∑
𝑝(𝑖, 𝑗)

𝑖2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

 

 

• High Gray Level Zone Emphasis (HGLZE) 

Measures the dispersion of higher gray-level values with grater values suggesting higher 

proportion of higher gray-level values and size zones 

 

∑ ∑ 𝑝(𝑖, 𝑗)𝑖2𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

 

 

• Small Area Low Gray Level Emphasis (SALGLE) 

Measures the ratio of the joint allocation of smaller size zones with lower gray-level values 

 

∑ ∑
𝑝(𝑖, 𝑗)
𝑖2𝑗2

𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

 

 

• Small Area High Gray Level Emphasis (SAHGLE) 

Measures the proportion of the joint allocation of smaller size zones with higher gray-level 

values 

 

∑ ∑
𝑝(𝑖, 𝑗)𝑖2

𝑗2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
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• Large Area Low Gray Level Emphasis (LALGLE) 

Measures the ratio of the joint allocation of larger size zones with lower gray-level values 

 

∑ ∑
𝑝(𝑖, 𝑗)𝑗2

𝑖2
𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
 

 

 

• Large Area High Gray Level Emphasis (LAHGLE) 

Measures the proportion of the joint allocation of larger size zones with higher gray-level 

values 

 

 

∑ ∑ 𝑝(𝑖, 𝑗)𝑖2𝑗2𝑁𝑠
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑧
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2.2.3. Gray Level Run Length Matrix (GLRLM) 

 

A Gray Level Run Length Matrix (GLRLM) quantifies gray level runs of consecutive pixels with 

the same gray level value, which are defined as the number of pixels. In a GLRLM the y axis 

represents the number of runs of the gray levels and the x axis the occurrences in the image. 

GLRLM is calculating for a single angle, however, one can calculate for several angles depending 

on the application. As with the former matrices, more angles can provide better textural 

information. The calculation of a GLRLM is illustrated below: 

 

Figure 16: An exemplary image/matrix. 

 

As we can see in the figure above (fig.7), for the intensity value 1, there are 4 occasions of a Run 

Length of 1, 1 occasion of Run Length 2, while for the intensity value 4, one occasion of Run 

Length 4. Thus, GLRLM is calculated as shown in the figure below where the x axis represents 

the Run Length and the y axis the intensity value: 

 

Figure 17: Calculated GLRLM of the fig.7 matrix. 

 



“Texture Kinetics and Multiscale texture extraction based on wavelets for predicting 
breast cancer treatment response”  
 

53 

 

One can deduct several textural features from a GLRLM. Considering 𝑁𝑝 is the number of voxels 

in the image, 𝑁𝑟 the number of discreet run lengths, 𝑁𝑟(𝛩) the number of run along angle Θ, 𝑁𝑔 

the number of discreet intensity values and 𝑝(𝑖, 𝑗|𝜃) the run length matrix along an angle. Several 

features are described briefly in the list below: 

• Short Run Emphasis 

Measures the variation of short run lengths with a higher value suggesting shorter run 

lengths and fine texture 

 

∑ ∑
𝑝(𝑖, 𝑗|𝜃)

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

 

• Long Run Emphasis 

Measures the variation of long run lengths with a higher value suggesting longer run 

lengths and more coarse textures 

 

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑗2𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

 

• Gray Level Non-Uniformity (GLN) 

Measures the similarity of gray-level intensity values in the image where a lower value 

correlates with a higher intensity similarity 

 

∑ (∑ 𝑝(𝑖, 𝑗|𝜃))
𝑁𝑟
𝑗=1

2𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

 

• Gray Level Non-Uniformity Normalized (GLNN) 

GLN normalized version 

 

∑ (∑ 𝑝(𝑖, 𝑗|𝜃))
𝑁𝑟
𝑗=1

2𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)2
 

 

• Run Length Non-Uniformity (RLN) 

Measure the similarity of run lengths throughout the image with a lower value showing 

greater homogeneity between run lengths in the image 

 

∑ (∑ 𝑝(𝑖, 𝑗|𝜃))
𝑁𝑔

𝑗=1

2
𝑁𝑟
𝑖=1

𝑁𝑟(𝜃)
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• Run Length Non-Uniformity Normalized (RLNN) 

RLN normalized version 

 

∑ (∑ 𝑝(𝑖, 𝑗|𝜃))
𝑁𝑔

𝑗=1

2
𝑁𝑟
𝑖=1

𝑁𝑟(𝜃)2
 

 

• Run Percentage (RP) 

Measures the texture coarseness considering the number of runs and the number of voxels 

in the image with greater values suggesting a larger portion of the image consisting of 

short runs 

 

𝑁𝑟(𝜃)

𝑁𝑝
 

 

• Gray Level Variance (GLV) 

Measures the runs’ variance in gray level intensity 

 

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)(𝑖 − 𝜇)2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

Where 𝜇 =  ∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑖
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1
 

 

 

• Run Variance 

Measures the variance in runs for the run lengths 

 

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)(𝑗 − 𝜇)2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

Where 𝜇 =  ∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑗
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1
 

 

• Run Entropy 

Measures random distribution of run lengths and gray levels with higher values suggesting 

higher texture pattern heterogeneity 

 

− ∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑙𝑜𝑔2(𝑝(𝑖, 𝑗|𝜃))

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1
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• Low Gray Level Run Emphasis (LGLRE) 

Measures the distribution of low gray-level values, with a higher value suggesting a higher 

concentration of low gray-level image values 

 

∑ ∑
𝑝(𝑖, 𝑗|𝜃)

𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

 

 

 

• High Gray Level Run Emphasis (HGLRE) 

Measures the distribution of higher gray-level values, with a greater value suggesting a 

higher concentration of high gray-level image values 

 

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑖2𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

 

 

 

• Short Run Low Gray Level Emphasis (SRLGLE) 

Measures the joint distribution of shorter run lengths with lower gray-level values. 

 

∑ ∑
𝑝(𝑖, 𝑗|𝜃)

𝑖2𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

 

 

 

• Short Run High Gray Level Emphasis (SRHGLE) 

Measures the joint distribution of shorter run lengths with higher gray-level values 

 

∑ ∑
𝑝(𝑖, 𝑗|𝜃)𝑖2

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
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• Long Run Low Gray Level Emphasis (LRLGLE) 

Measures the joint distribution of long run lengths with lower gray-level values 

 

∑ ∑
𝑝(𝑖, 𝑗|𝜃)𝑗2

𝑖2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
 

 

 

 

• Long Run High Gray Level Emphasis (LRHGLE) 

Measures the joint distribution of long run lengths with higher gray-level values 

 

∑ ∑ 𝑝(𝑖, 𝑗|𝜃)𝑖2𝑗2𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
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3. Gabor Filters 

Decomposing a signal into its dominant frequency components has been studied a lot in image 

processing and signal processing. Especially for local texture recognition, one has to localize the 

filter in both space and spatial frequency. This is where Gabor filters excel by minimizing the 

spatial frequency uncertainty relation. [89], [90]. Gabor filters were first introduced in 1946 by 

Dennis Gabor [89] and were extended, by J. Daugman [90] 42 years later, to a 2-D Gabor filter 

which provides simultaneous optimal resolution in both spatial and frequency domains. Gabor 

filters’ representations of frequency and orientation, is considered by many contemporary vision 

scientists to be similar of those of the human visual system[91]. Recently, they have been 

successfully used in numerous applications, such as texture segmentation[92]–[94], edge 

detection[95], texture analysis, image analysis and compression[90], character recognition[96], 

[97], fingerprint recognition[98], [99], face recognition[100], [101], target detection, document 

analysis and fractal dimension management. Most of these applications face a common problem, 

the design of the Gabor filter or Gabor filter bank with the appropriate parameters.  

The general function form of a 2-D Gabor filter family can be specified as: 

𝑔𝑥,𝑦;𝜆,𝜃,𝜓,𝜎,𝛾 =  𝑒
− 

(𝑥′2
+𝛾2𝑦′2

)
2𝜎2 𝑒

(𝑖(2𝜋
𝜒′

𝜆
+𝜑))

  

Where: 𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 

   𝑦′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 

The standard deviation σ of the Gaussian factor defines the scale of the surrounding area of a pixel 

in which weighted summation takes place. The eccentricity of the Gaussian and the convolution 

kernel g is determined by the parameter γ, referred as spatial aspect ratio. It has a limited range of 

0.23 < γ < 0.92.[102]  
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The parameter λ is the wavelength of the sinusoidal factor and 
1

𝜆
 the spatial frequency of the 

harmonic factor. The ratio 
𝜎

𝜆
 determines spatial frequency bandwidth of the Gabor Filters. The half-

response spatial frequency bandwidth b (in octaves) and the ratio  
𝜎

𝜆
 are related as follows: 

𝑏 = log2

𝜎

𝜆
𝜋+ √

𝑙𝑛2

2

𝜎

𝜆
𝜋− √

𝑙𝑛2

2

  , 
𝜎

𝜆
=  

1

𝜋
  √

𝑙𝑛2

2
 ∙  

2𝑏+1

2𝑏−1
 

The orientation parameter θ specifies the orientation of the Gabor function. Its value belongs in 

the interval [0°, 360°]. However, values in the interval [0°, 180°] are taken, due to symmetry, the 

other directions become redundant.[103] 

Finally, parameter Φ, which is the phase offset of the harmonic factor, determines the symmetry 

of the function of the Gabor filter. 
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3.1. Gabor Filter Bank Parameter selection 

A sole Gabor filter will be able to identify a pattern of a single orientation and frequency, but to 

be able to distinguish sophisticated texture patters one must acquire all orientations and 

frequencies.  

Thus, a Gabor filter bank needs to be created. It includes several of the aforementioned parameters, 

as vectors, which are adjusted to identify patterns of different frequencies and orientations. This 

provides us multiple Gabor filters that can detect all possible texture patterns. The design of a 

Gabor filter bank is dependent on the application that it is used for. However, researchers mostly 

use similar parameters since they provide sufficient results. As shown in the table below (table 2), 

the number of orientations vary between 3 and 8 with the most favorable ones being 4 and 8, while 

the number of scales vary between 3 and 8, the distribution of the values is almost similar. 

Regarding the selection of the orientation, 4 orientations were selected (figure 9) starting from 0π 

to 3π/4 with a step of π/4 due to the fact that these orientations cover the most important angles of 

the image. 

Figure 18: A single Gabor Filter kernel set at orientation = 0π and 
scale = 0.1 
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Orientations/ 

Directions 

Scales/ 

Frequencies 

Maximum 

Scale 

Scale 

ratio 

Standard 

Deviation 

Wavelength Authors 

𝜽𝒎 =
𝒎𝝅

𝜧
 , 

M = 8 

4(n) 3𝜋

4 ∙ 2𝑛−1
 

1 𝑐1 = 3, 

𝑐2 = 5.093 

- Zheng et al. 

8 5(n) π/4 √2𝑛 - 3 ∙ 10−6 Lades et al. 

8 3(n) π/4 √2𝑛 π/0.25 - Hen et al. 

8 8(n) π/4 √2𝑛 2π - Wang et al. 

4 6 1/40 √3 1 - Ilonen et al. 

8 5 1/4π 2 2π - Jahanbin et al. 

8 3 0.56 1/5.47 0.5 0.89 Kruizinga et al. 

4 4 √2/4 √2/16 π/4 - Clausi et al. 

6 4 0.49 0.01 10 - Mirzapour et al. 

- 6 π π/6 - - Hammouda 

3 6 0.8 0.01   Imani et al. 

8 5 2π √2 [2.4π, 2.5π… 

3π] 

- Heng-Chao et al. 

8 3 π/4 π/2 2 - Yi tou et al. 

3 3 2 √2 [0.5, 1, 1.5]  Bianconni et al. 

6 6 0.5, 

0.04(minimum) 

- - - Shutao Li, 

Shawe-Taylor 

Table 2: Gabor parameters selected in literature 
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Concerning scales selection, as aforementioned, we want to explore the multi-scale representation 

of Gabor filtering and investigate its power on increasing the predictability of the NAC outcome 

on patients. For that reason, while most of the researches use scales in the range of [0.01,  …, 0.5], 

we chose [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] due to the fact that our regions of interests 

were small in size, thus requiring larger scale to capture detailed textural information. 

Additionally, the phase offset was set to 0 (φ=0) and the parameters 𝜎𝜒, 𝜎𝑦 were selected to be 

equal in order to have a circular Gaussian with similar extent in both directions [104]. The standard 

deviations were not set directly but they were calculated through the wavelength λ and were chosen 

as: 𝜎𝜒= 𝜎𝑦= 0.56 λ which is the result of setting the half-response spatial frequency bandwidth 

equal to 1 [72].  

 

 

  

Figure 19: Display of the selected four orientations at scale 0.1. a) is set at 0π, b) is set at π/4, c) is set at π/2 and d) is set at 3π/4 
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In our study, using the mentioned parameters, we applied 40 Gabor kernels (Gabor filter bank) to 

each end-phase DCE-MRI exam. As shown in the figure below (Figure 12), we can visually 

understand the reason for selecting larger scales, since the size of our ROIs is small, smaller scales 

provide us with a coarse texture response while larger provide adequate textural information. For 

each Gabor scale-orientation image representation radiomics feature extraction was performed 

followed by machine learning predictive model analysis (discussed below). 

  

Figure 20: Samples of the Gabor Filter Bank kernels. Shown orientations are: 0π, π/2, π/4 and 3π/4. Shown scales are: 0.1, 0.3, 
0.6 and 1 
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4. Results 

As mentioned, this thesis contributed to a project focusing on predicting NAC outcome using 

textural features as predictive factors. The work in this thesis contributed in two conference papers, 

the first one concerned the predictive strength of radiomic features while the second investigated 

the predictive strength of multi-scale texture features. 

In the first publication regarding texture kinetics, subsequent statistical analysis from co-workers, 

estimated the predictive strength of the extracted features. This statistical analysis found that 57 

features stemming from the four different image sets demonstrated statistical significance (p-

value<0.05). In particular, from the baseline exam there were 18 features while from the first 

follow-up early in the NAC cycle, 39 features. Each feature was calculated in 4 time points of the 

DCE-MRI: pre-contrast (TP1), peak enhancement (TP2), end-phase (TP3) and difference image 

between the peak enhancement and the pre-contrast (TP4 = TP2-TP1). Regarding the different 

image sets, 10 statistically significant features were found on the first (TP1) image-set, 14 from 

the difference image-set (TP4), 23 from the peak enhancement image set and lastly, 10 features 

from the end-phase (TP3) as shown in table 3.  

Table 3: Number of significant Radiomic Features Per Exam and Image-Set 

NAC Exam – DCE-MRI time point Number of radiomic features 

baseline_TP1 5.26% (3/57) 

baseline_TP4 8.77% (5/57) 

baseline_TP2 7.02% (4/67) 

baseline_TP3 10.53% (6/57) 

1st follow-up_TP1 12.28% (7/57) 

1st follow-up_TP4 15.79% (9/57) 

1st follow-up_TP2 33.33% (19/57) 

1st follow-up_TP3 7.02% (4/57) 
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The 8th time point provided the best features for prediction, thanks to the increased contrast of the 

malignant areas due to the peak enhancement of the contrast agent. Additionally, size-zone non-

uniformity normalized feature from the wavelet decomposition of level 2 of the first follow-up 

using the subtraction image-set (TP4) demonstrated the best predictive performance in the first 

follow-up NAC exam with AUROC 81.34%. Moreover, about the prediction of outcome at 

baseline (before therapy administration), the median of the first order statistics from the wavelet 

decomposition of level 2 end-phase time point image-set, revealed the best predictive ability with 

AUROC of 80.80%. 

In the second publication, both Gabor filtered images and raw images were used to extract radiomic 

features.[105] However, members of our team conducted a statistical analysis and found that raw-

image derived radiomics were not significant in terms of therapy prediction. On the other hand, it 

was revealed that Gabor filtered derived radiomics were important assets of the classifier used. 

The XGBoost selected classifiers using the Gabor filtered data, orientations 45° and 90° proved to 

be persistent among several scale values. More specifically, classifiers of orientation 45° and scale 

0.5, orientation 90° and scale 0.7, and orientation 90° and scale 0.9 achieved the highest agreement 

among all the examined classifiers in terms of the predictive power of features. A visual 

representation of the relative importance of all radiomic features across the selected classifiers is 

illustrated in the heatmap below (Figure 14). 

The top bar of the figure is related to the feature class (1st order, GLCM, GLRLM and GLSZM) 

of the radiomic features. Likewise, all selected models were grouped according to their Gabor 

orientation. Feature importance was scaled from 0 to 100 for comparative purposes. It is visible 

that different groups of features play important roles in different scale-orientations. Among the 

most important radiomic features, 3 out of 4 are GLSZM based features which aim to quantify 

gray level zones in an image. Kurtosis belongs to 1st order statistics, characterize the sharpness of 

the histogram resulting from the signal intensities of the image.  
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5. Discussion 

In this study, QIN-Breast public dataset was used for investigating the predictive strength of 

radiomic features from raw and Gabor filtered images. QIN-Breast was consisted of 35 breast 

cancer patients receiving NAC treatment with stage II/II providing us with baseline exam data and 

1st follow-up exam. In order to examine the predictive precision of radiomic features, four different 

time points were used, the pre-contrast (TP1), peak enhancement (TP2), the end phase which 

represents the steady state of the contrast uptake (TP3) and the difference of the 1st time point from 

the 8th time point (TP2) as a denoting of the pure contrast enhancement (TP4). Results from our 

first publication revealed that NAC treatment response can be predicted in both baseline and early 

in the NAC cycle (1st follow-up), with the best predictor features being the median and the size-

zone non-uniformity normalized (SZNN) extracted from the wavelet decomposition of level 2 of 

the baseline and the 1st follow-up exam, achieving an AUROC of 80.80% and 81.34% respectively. 

In a similar research of Wu et al. [106], based on texture analysis on the same dataset, the most 

significant result of their multivariate analysis was AUROC = 79%, comparatively our method 

showed a slight increase on the first follow-up AUROC = 81.34%. Our approach completes an 

extensive investigation in a large number of texture radiomic features extracted at different DCE-

MRI time points whilst taking into account the whole tumor image region.  

It is notable from our results that prediction of NAC outcome before the first cycle is possible. 

Prediction of NAC outcome early in the treatment (after the first cycle) has been investigated to a 

great extend [107], [108], however, prediction on the baseline exam is still under investigation. 

Additionally, it is crucial to predict since it could help clinicians on decision making along with 

optimizing the treatment plan. Several studies have reported that morphological, functional and 

clinical features are able to distinguish responders from non-responders before the start of NAC 

treatment [109], [110]. Regardless, these researches were performed on heterogenous data and are 

not yet established [111]. For this reason, a larger cohort of patients is required to confirm the 

predictive ability of the baseline exam texture features.  

The limitation faced in this research was the small cohort of patients used, as well as being biased 

in terms of the number of the responders versus non-responders (12 pCR vs 23 non-pCR). 

Nonetheless, some interesting findings stemmed from this study. Radiomic features proved to have 

strong predictive abilities and potential and help with understanding tumors architecture. In any 

case, to establish their clinical significance, more extended studies must be conducted. 

The second study emanating from this thesis work investigated the role of Gabor scale-orientation 

filtering in radiomics-based prediction of NAC therapy. Extreme gradient boosting (XGBoost) 

was selected to classify DCE-MRI data from the baseline exam and the end-phase time point of 

the exam. A total of 41 datasets were created consisted of the original image data and their Gabor 

representation using four orientations {0°, 45°, 90°, 135°} and ten scales {0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8, 0.9, 1} for each orientation. A radiomics analysis framework was implemented and 

71 features were calculated from 4 distinct feature classes (1st order statistics, GLCM, GLRLM 
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and GLSZM) for each dataset. Results from the statistical analysis our findings indicated that 9 

out of 41 image representations achieved a moderate or good score. All these datasets were based 

on Gabor-filtered image data generated solely from 45° and 90° of orientation while varying in 

scale (0.1 to 1). Although maximizing the predictive performance was not the main scope of the 

current study, all the selected models showed a balanced accuracy above 70%. These results are 

in line with other recent studies [77], [112], reconfirming the feasibility of baseline prediction of 

NAC treatment with radiomic features, helping clinicians move towards personalized treatments. 

From the statistical analysis using XGBoost, four texture features had the highest feature 

importance when trained, while kurtosis had the overall best performance across scale and 

orientation having average to high feature importance in most of the selected models. 

Ultimately, our results suggest that the proposed Gabor multi-scale orientation methodology can 

add value in breast cancer therapy prediction. Using this technique, one can explore the scale-

orientation persistence of candidate, predictive biomarkers and our results reconfirm that clinically 

significant texture information exists at different scale while important radiomic features persist 

in most of the best performing scale-orientation predictive models. 

Considering these results and observations, further research on breast cancer therapy prediction 

can be assisted using multi-scale texture analysis contributing to more personalized treatment 

decision support tools.  Future work can investigate the use of other wavelet decomposition 

schemes for computing multi-scale texture features. Another suggestion for further work is to use 

the Gabor filtered extracted features in conjunction with an artificial neural network or deep 

learning algorithm for the prediction of NAC since such techniques have already proved their 

importance in many relevant research fields and applications.  
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