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Περίληψη 
 

Οι ροές εργασίας χρησιμοποιούνται ευρέως για την αναπαράσταση μεγάλων 

επιστημονικών εφαρμογών που διευκολύνουν την εκτέλεση τους σε κατανεμημένα συστήματα 

όπως clusters ή cloud. Ωστόσο, τα συστήματα ροής εργασίας είναι άγνωστα ως προς το 

περιβάλλον στο οποίο αναμένεται να εκτελεστεί κάθε βήμα της ροής εργασίας. Ως αποτέλεσμα, 

μια ροή εργασίας μπορεί να εκτελεστεί σωστά στο περιβάλλον στο οποίο σχεδιάστηκε, αλλά στη 

συνέχεια εκτελώντας την σε άλλο περιβάλλον, είναι πιθανό να αποτύχει λόγω διαφορών στο 

λειτουργικό σύστημα, τις εγκατεστημένες εφαρμογές, τις εκδόσεις βιβλιοθήκης, τα διαθέσιμα 

δεδομένα και άλλες εξαρτήσεις του περιβάλλοντος. Αυτός ο παράγοντας είναι ένα σημαντικό 

εμπόδιο στην βιοπληροφορική και γενικότερα στις επιστήμες δεδομένων.  

Οι τεχνολογίες container όπως το Docker προέκυψαν πρόσφατα ως λύση σε αυτό το 

πρόβλημα παρέχοντας ένα καθορισμένο περιβάλλον εκτέλεσης σε επίπεδο λειτουργικού 

συστήματος. Με την χρήση αυτών των τεχνολογιών, μία πολύπλοκη ροή εργασίας μπορεί να 

εκτελεσθεί σε ένα απομονωμένο περιβάλλον στο οποίο ενσωματώνονται όλα τα απαραίτητα 

εργαλεία και βιβλιοθήκες για να πραγματοποιηθεί η εκτέλεση. Πιο συγκεκριμένα, τα Containers 

λειτουργούν ως ένα ελαφρύ ανεξάρτητο λειτουργικό σύστημα μέσα στο υπάρχων σύστημα το 

οποίο μπορούμε να το επεξεργαστούμε εύκολα και γρήγορα χωρίς τον φόβο για οποιαδήποτε 

καταστροφή στο σύστημα φιλοξενίας του.  

Η ευελιξία και η φορητότητα είναι σημαντικά προβλήματα στην εκτέλεσης μίας 

επιστημονικής ροής εργασίας. Υπάρχουν πολλές αξιόλογες πλατφόρμες που σχεδιάζουν και 

εκτελούν αυτές τις ροές. Κάθε μία εξ ’αυτών έχει την δική της γλώσσα-τρόπο για την 

αναπαράσταση μιας ροής εργασίας. Ως εκ τούτου, μία ροή εργασίας η οποία έχει αναπαραχθεί σε 

μία συγκεκριμένη πλατφόρμα εκτέλεσης δεν μπορεί να εκτελεσθεί σε διαφορετική πλατφόρμα 

λόγο της διαφορετικής γλώσσας η οποία χρησιμοποιήθηκε για την παραγωγή της. Κύριο 

αποτέλεσμα αυτού, είναι να απαιτείται από τον εκάστοτε χρήστη, εξειδικευμένη γνώση για την 

ανάπτυξη και την επεξεργασία μιας ροής εργασίας. Επιπλέον, οι πλατφόρμες αυτές δεν είναι 

συνδεδεμένες με κάποιο αποθετήριο έτσι ώστε να γίνετε άμεσα η εκτέλεση και η εξαγωγή 

αποτελεσμάτων μία ροής εργασίας με αυτού, το οποίο είναι ακόμα ένα μείζον πρόβλημα για την 

διαλειτουργικότητα μιας επιστημονικής ροή εργασίας. 

Το OpenBio (https://www.openbio.eu) είναι μια διαδικτυακή πλατφόρμα η οποία είναι υπό 

ανάπτυξη από το Εργαστήριο Υπολογιστικής Βιοϊατρικής του Ινστιτούτου Πληροφορικής του 

Ίδρυματος Τεχνολογίας και Έρευνας σε συνεργασία με το Πανεπηστήμιο Πάτρας για την 

κατασκευή και αποθήκευση ροών εργασίας που μπορούν να συνθέσουν πολλά εργαλεία ή ροές 

εργασίας. Αυτή η πλατφόρμα έχει ως στόχο την μεγιστοποίηση της αναπαραγωγιμότητας και την 

ενοποίηση κοινωτήτων της Βιοπληροφορικής. Η ροή εργασίας αναπτύσσετε χρησιμοποιώντας 

BASH εντολές η οποίες είναι λειτουργικές είτε σε τεχνολογίες container ή σε περιβάλλοντα 

εκτέλεσης ροών εργασίας.  

Στην εν λόγω πτυχιακή εργασία, εξετάσαμε τον τρόπο με τον οποίο μπορούμε να 

ενσωματώσουμε στην πλατφόρμα OpenBio ένα περιβάλλον εκτέλεσης που εκτελείται σε εικονικό 

container μέσω ενός τοπικού υπολογιστή, cluster ή cloud. Με αυτήν την λειτουργία, οι χρήστες 

μπορούν να διαχειριστούν πολλές ροές εργασίας, να παρακολουθήσουν τη χρήση των πόρων οι 
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οποίοι καταναλώνονται από το σύστημα κατά την διάρκεια μίας εκτέλεση, οι οποίες μπορούν να 

συμβάλλουν στην επίτευξη κλιμάκωσης ή βελτιστοποίησης χρήσης πόρων.  

Στα πλαίσια της εργασίας αυτής, δοκιμάσαμε διάφορα συστήματα διαχείρισης ροών 

εργασίας και εργαλείων παρακολούθησης πόρων. Αυτή η προσεκτική αξιολόγηση είχε ως 

αποτέλεσμα την ακόλουθη σειρά εργαλείων. Το AirFlow το οποίο είναι ο μηχανισμός για την 

εκτέλεση των ροών εργασίας(Workflow Management System), το NetData για την 

παρακολούθηση πόρων και ένας διακομιστής που γράφτηκε σε Python Flask και ενεργεί ως API 

για την επικοινωνία με την πλατφόρμα OpenBio. Όσον αφορά τον μηχανισμό εκτέλεσης, το 

Airflow δεν είναι το μόνο εργαλείο που θα μπορεί να ενσωματωθεί μέσα στο περιβάλλον, καθώς 

σκοπός είναι το σύστημα είναι συμβατό με πολλαπλούς μηχανισμούς εκτέλεσης ροών εργασίας. 

Επίσης, χρησιμοποιήθηκε το Docker-Compose για οργάνωση των containers για την καλύτερη 

επικοινωνία και διαλειτουργικότητα μεταξύ των εργαλείων αυτών. Η πλατφόρμα OpenBio σε 

συνεργασία με το περιβάλλον εκτέλεσης παρέχει:  

(1) μια διεπαφή χρήστη(User Interface) που επιτρέπει στους χρήστες την δημιουργία, 

επεξεργασία, επεκτασιμότητα και αποθήκευση σύνθετων ροών εργασίας χωρίς την ανάγκη 

επιπλέον γνώσεων προγραμματισμού (παρά μόνο τις απαραίτητες γνώσεις BASH scripting) 

χρησιμοποιώντας την πλατφόρμα OpenBio,  

(2) φιλικό προς το χρήστη σύστημα παρακολούθησης πόρων σε πραγματικό χρόνο,  

(3) αυτόματη δημιουργία αναφορών με αποτελέσματα και αρχείων καταγραφής κατά την 

διάρκεια της εκτέλεσης,  

(4) φορητότητα σε κατανεμημένα υπολογιστικά περιβάλλοντα όπως clusters και clouds με 

δυνατότητα δημιουργίας πολλαπλών παρουσιών με την χρήση των containers.  

Στην παρούσα πτυχιακή εργασία, αναγράφονται τα εργαλεία τα οποία χρησιμοποιήθηκαν 

για την ανάπτυξη του περιβάλλοντος εκτέλεσης, η αρχιτεκτονική αυτού, αναλυτικές οδηγίες για 

την εγκατάσταση του περιβάλλοντος εκτέλεσης σε οποιοδήποτε σύστημα και ένα παράδειγμα 

εκτέλεσης μία επιστημονικής ουράς εργασίας με μετρήσεις εκτέλεσης ενός παραδείγματος ως 

προς τον χρόνο και σύγκριση με άλλους τρόπους εκτέλεσης. 

Συνολικά, το περιβάλλον εκτέλεσης το οποίο αναπτύχθηκε για να ενσωματοθεί στην 

πλατφόρμα OpenBio για να διευκολύνει τους χρήστες στην εκτέλεση πολύπλοκών επιστημονικών 

ροών εργασίας. Ωστόσω, ο τρόπος ο οποίος αναπτύχθηκε όλο το σύστημα μπόρει εύκολα να 

ενσωματωθεί σε οποιαδήποτε πλατφόρμα με τις κατάλληλες παραμετροποιήσεις. 
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Abstract 
 

Workflows are widely used abstractions for the representation of large scientific 

applications that also ease their execution on distributed systems such as clusters, clouds, and grids. 

However, workflow systems are mainly agnostic on the environment on which each task of the 

workflow is expected to run. As a result, a workflow may run correctly in the environment in 

which it was designed, but then moved to another environment, it is likely to fail due to differences 

in the operating systems, installed applications, library versions, available data, and other 

dependencies. This factor is a major issue in life sciences. Lightweight container technologies like 

Docker have recently arisen as a solution to this problem by providing a well-defined execution 

environment at the operating system level.  

OpenBio (https://www.openbio.eu) is a web-based workflow platform that can compose 

multiple tools or workflows in one and aims to maximize reproducibility. In this thesis, we 

consider how to best integrate the OpenBio platform with an Execution Environment running in a 

virtual container. With this abstraction, users can manage multiple workflows, monitor the use of 

their resources, which can help achieve scalability and optimal resource utilization. Several 

platforms currently exist that design and execute sophisticated pipelines (e.g Galaxy [7], Luigi [8], 

Nextflow [9]). The main drawback of these platforms is the lack of the necessary parallelism, 

flexibility, and portability. 

In this thesis, we test a variety of workflow management systems and resource monitoring 

tools. This careful evaluation resulted in the following stack of tools. AirFlow is used for 

Workflow Execution, NetData used for resource monitoring, and a client written that uses Python 

Flask acts as an API for interface monitoring. Also, we leverage Docker-Compose to orchestrate 

the communication and interoperability between these tools. AirFlow was used due to its ability 

to treat scientific pipelines in a simple, portable, reproducible, and scalable manner, mainly by 

modeling them as DAGs (Directed Acyclic Graphs). AirFlow and NetData both are configured in 

accordance with the Execution Environment prerequisites. OpenBio Platform with the 

collaboration of the Execution Environment provides; (1) a drag and drop user interface using 

OpenBio platform for pipeline composition that allows users to create complex pipelines without 

familiarity in underlying programming languages, (2) User-friendly monitoring system, (3) 

automatic report generation with results and processing logs and (4) portability towards distributed 

computing environments such as cluster, grid, and cloud with the ability to generate multiple 

instances. 
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 Introduction 
 

In this chapter, we describe the background on Workflow Management Systems in 

bioinformatics and present some gaps in existing systems. These gaps, along with their dire 

consequences in reproducibility, motivated most of this work in this thesis. Furthermore, we 

present the general principle of my implementation and a short discussion on the scientific merits 

of this effort.  

 

1.1 Background 
 

Efficient and cost-effective analysis of high-throughput data is now broadly considered a 

major bottleneck in bioinformatics [1]. As a result, the optimal utilization of computation resources 

is a far more important factor than computational power. Consequently, we have important impacts 

on budgetary decisions [2]. The most significant complexity of high-throughput sequencing data 

analysis is that a tremendous number of different steps are frequently executed with a set of 

programs with different interfaces, dependencies and architectures. Thus, each sequence analysis 

requires the integration of components made with different programming languages and 

computation setups. Here we argue that this complexity can be significantly reduced by applying 

component isolation. This isolation is easily achieved today with special tools that offer 

“virtualization”. Virtualization software encapsulates a set of tools, services and configuration 

scripts along with the underlying operating system in an isolated component, called “container”. 

Containers act as independent software, they can run concurrently on the same physical server, 

they can communicate and they can be stopped and started at will. Also, containers can just be 

copied and deployed in multiple execution environments, simplifying the process of scaling a 

demanding computation procedure. All of the above, contribute to the reduction of the complexity 

which leads to explicit cost reduction in service and maintenance cost [3]. One of the most known 

virtualization software is Docker. Docker uses a containerization technique that has increased 

popularity and has brought forward the term “container management software” [4]. Furthermore, 

Docker-Compose [5], a tool of Docker that is responsible for orchestrating containers, as it 

executes multi-container Docker applications. Therefore, the usage of docker is important for this 

dissertation since it can isolate the platform from the host. Also, the container is very lightweight 

and easy to be handled such as to create, edit or remove it from the hosting service [6]. 

 

1.2 Previous Research 
 

Some scientific workflow management systems such as Galaxy [7], Luigi [8] and Nextflow 

[9] have implemented workflow management. All of them have the same actions as unloading and 

executing complicated workflows using a specific workflow language. Also, platforms such as 

Galaxy and Nextflow have already supported Docker and that give us the opportunity to solve 

portability problems. Despite the fact that such platforms are a robust way to merge existing 

programs into pipelines that carry end-to-end data processing, they are restricted in their flexibility. 

In other words, all of these systems have different workflow file types and cannot cooperate. As a 

result, researchers are stacked at one workflow management system and they cannot use their 

existing pipelines/workflows on other management systems. In addition, many of these workflow 

management systems lack parallelization execution and the latency of workflow is increased 
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according to the number of steps of execution. Also, it cannot be denied that no one from these 

Workflow Management Systems have resource monitoring which is essential for users to monitor 

a workflow during the workflow execution. For this reason, flexibility, parallelism and resource 

monitoring have become necessary not only for bioinformatics workflows but generally in 

scientific workflows to become more creative and easier to resolve errors. 

 

1.3 Problem Formulation 
 

 Flexibility is an integral problem of workflow execution. Nowadays, many different 

workflow management systems were introduced in the research community, each of them having 

its own workflow language or library to be executed. Consequently, none of these can be used on 

another WMS except its own. As a result, researchers are bewildered about which of these WMS 

is better for their specific task, creating a vicious circle in the research community, thus, increasing 

the complexity of the workflow execution. During these selfish innovations, we have forgotten the 

simplicity and significance of the pure BASH scripting. To address the compatibility of workflows 

we already have integrated a variety of workflow management systems in our environment. This 

feature can make it easy for users to run any type of workflow they want in our OpenBio 

environment according to their workflow type. About the BASH scripting, the OpenBio can parse 

a workflow which is written in BASH at any workflow language according to the workflow 

executor.  

The computing environments have grown in complexity, which is another negative aspect, 

thus frustrating researchers on how to handle and integrate their WMS. To clarify, every 

educational and/or research institution depends on various sets of computing options such as 

servers, computing clusters, and cloud computing. Consequently, the Execution Environment 

should be portable and utilizable in different environments. Hence, it should not be installable only 

on central computer but should also create many isolated executable environments on the same 

computer in case the system has more than one user.  

The Execution Environment should be able to run large workflows without conflicts, and in 

the event of a collision, the Environment would auto recover from any problems. To put it briefly, 

the virtualization platform should provide self-healing that automatically diagnoses and repairs 

software problems. Additionally, since the Environment executes complex pipelines, it requires a 

resource monitoring system to monitor the resources used during the execution of a workflow. 

Many of common WMSs have not any resource monitoring provider to monitor their workflows. 

 

1.4 Motivation 
 

We believe that combining both the required tools using containerization could allow better 

isolation and performance for our execution environment. The containers of the Execution 

Environment will be federated but diversified from the host Operating System. Taking into 

consideration the advantage of containerization and the orchestration, this project was built using 

both Docker and Docker Compose, which make the execution environment portable. Since Cloud 

Computing raised rapidly and made containerization technology a significant factor in scientific 

society, every one of us prefers to deploy a WMS into a cloud to make the execution of a workflow. 

Hence, the usage of docker is the more compatible solution in our project. 
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It could also be argued that many workflows are not being able to embed and to be embedded. 

To clarify, there are a plethora of Workflow Management Platforms that offer different libraries, 

and programming languages. As a consequence, one workflow can be executed in specific WMS. 

In this thesis, we took into consideration the architecture of the execution environment to be 

modular and set the client to act as a workflow parser in place. That is to say, the client is easy to 

allow other workflow execution engines as well. Also, it cannot be denied that workflow executors 

should be editable and be able to run steps in parallel. Another important feature is the resource 

monitoring system that is integrated into the execution environment and users can receive 

extensive resource information about the process of performing their workflows. 

 

1.5 Scope 
 

In this dissertation, we proposed to utilize a group of containers as the execution engine for 

scientific workflows, having in mind the current limitations of the existing systems. First and 

foremost, it perfectly solves the scientific tool installation problem. We packaged scientific tools 

into the OpenBio Platform, and we can set up them as steps into the pipeline saved on the OpenBio 

server. Subsequently, on the OpenBio platform, we give the environment variables that are needed 

for the execution and instantly we can send it in our execution environment as a parsed file 

according to which WMS (Workflow Management System) is in use. Secondly, this execution 

engine is portable and utilizable, because of the container-based architecture. In other words, this 

workflow engine could work on any hosts only by using the docker-compose.yml file that contains 

the WMS, database, and resource monitoring system. Third, the engine is absolutely isolated. 

Everyone can have multiple execution engines on a computer cluster or at the same host. Fourth, 

the user can integrate any WMS at the execution environment such as AirFlow, NextFlow, etc. As 

we mentioned above, the WMS that we test is Airflow is not bound in our Execution Environment. 

Finally, the same goes for the OpenBio platform, it could also work perfectly with other workflows 

platforms by virtue of handling API easily. 

 

1.6 Target  
 

The target of this thesis is to resolve workflow portability problems as well as collaboration 

with other workflow management systems to make the execution simple and beneficial. 

Previously, we referred to the OpenBio platform which is the main reason that this engine was 

built and consequently integrated into it. Since our testbed is the OpenBio platform, for the first 

step the user should make an account into the system. Then, could trigger the workflow and 

download the results of the logs. In parallel, users have the opportunity to see the resource 

monitoring of their execution engine. Below we provide an extensive report on the tools used to 

implement the mechanism. All these will be able to centralize the bioinformatic field into one 

repository which can execute, share, and publish the results of scientific research. The right usage 

of the execution environment could facilitate scientific research by providing a variety of WMS 

without the need for additional knowledge of workflow language except for the BASH script. 
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1.7 Thesis Structure 
 

This chapter outlines the different sections of the project report.  

 

● Chapter 2: Technical Background that provides the background information about 

virtualization and generally for technologies used to build the workflow execution 

environment. 

 

● Chapter 3: System Design. This chapter refers to the architecture of the thesis, 

containing code and design decisions. 

 

● Chapter 4: Implementation. That section contains a demonstration of the central points 

of my development process. Also, include main details about the implementation of the 

execution environment abilities. 

 

● Chapter 5: Integration & Experimental Results. In this section, I refer to the integration 

of the Execution Environment. Furthermore, we introduce an example by running a 

workflow in the Execution Environment in collaboration with OpenBio. 

 

● Chapter 6: Conclusion. Concluding remarks and future improvements and extensions 

to my project. 
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2 Technical Background 
 

In this chapter, we describe useful tools that contribute to finalizing the Execution 

Environment. Every tool below is described according to which is the usage and what facilitates. 

Moreover, we present some figures to be more comprehensive in the usage of them.  

 

2.1 Virtualization Technology 

 

Virtualization technology is mentioned as the abstraction of computing resources such as 

memory, storage, CPU, database from applications and end users consuming the service. 

Virtualization technology counts on software components to simulate the hardware functionality 

by creating virtual resources. The main motivations of virtualization are isolation and rapid 

elasticity. More concretely, with virtualized environments, two or more customers can co-exist on 

the same host without interference [28]. Every one of these environments is limited to its own 

context and will not be aware of other environments unless specifically defined on the host. 

Nowadays, virtualization is used at hardware and operating system level. 

 

2.1.1 Operating System Level Virtualization 

 

Operating System Level Virtualization has acquired traction over the years. Hardware level 

virtualization is considered as heavyweights because it relies on hardware emulation. Otherwise, 

there is containerization that uses kernel features like cgroups (control groups), namespaces etc., 

creating isolated instances known as containers, on the top of the host machine as it depicted in 

Fig. 1. More specifically, the containers share the host machine’s kernel with the help of the 

container engine rather than running a full operating system. Consequently, containerization 

technology reduces the overall overhead. 

Containerization was developed in the UNIX operating system back in 1979 using chroot 

[30]. Subsequently, as containerization technology evolved, more essential features were 

implemented for file system, users, and networking isolation. The first container manager is LXC 

(Linux Containers), then Docker is represented with a full ecosystem to manage containers. 

 

2.1.2 Hypervisor-based virtualization 

 

On the other hand, a Virtual Machine (VM) is a simulated machine that runs into another 

physical or virtual machine. In the way of physical machines, VM acts the same, but it has 

emulated hardware. The machine that hosts the VM is named Hypervisor. The hypervisor can 

manage multiple VMs, which signifies that more than one user can effectively be isolated and 

concurrently served within a single physical machine. A VM runs on its own Operating System 

that does not integrally have to be the same as the host machine. All of the VMs are found on disk 

images which are either operating systems or packaged together with software. Also, VM is 

utilizable and it can be paused or stopped and its state can be saved to a new image. 

Fig. 1 shows us the differences between Virtual Machine and Containerization technology.  



 

   
 

6 
 

 

 

 

Figure 1. Comparing Virtual Machines (VM) Docker containerization Technology 

 

 

2.2 Container-based Virtualization 
 

As we mentioned before, an application container is an isolated unit of software that is 

packaged code so it can be run dependably from all computing environments. Furthermore, a 

container image is lightweight because only the dependencies of software are installed inside of 

the container. Consequently, containerization methods make the application integration simpler 

and applicable to all data centers, public clouds, or even a developer's computer [13]. The most 

common containerization solution is Docker, but Singularity [24], Shifter [25] are recent 

alternatives that prevent users from running containers with root privileges, addressing most 

common security issues when deploying containers in multi-tenant computing clusters such as on 

high-performance computing (HPC) clusters. Docker containers are usually shared via Docker 

Hub (https://hub.docker.com/), but there are also initiatives for standardizing containers in the life 

sciences like BioContainers [26]. As we mentioned above, the containers are stand-alone and that 

is the reason that we decided to integrate the execution environment into containers. Fig. 1 shows 

us a diagram that explains the container-based virtualization and what are the differences between 

containers and VMs. 

 

2.2.1 Docker 

 

To be able to facilitate the execution environment to be isolated and portable, software for 

management and runtime is required. Docker is practical to use because it has a large active 

community and is rapidly growing in popularity among the bioinformatics. Another great aspect 

of Docker is that the containers are system-agnostic by doing them isolated from the host’s OS 

[14]. More specifically, Docker uses images as a basis for the container's creation. Also, users can 

set environment variables or add software with complex dependencies via Dockerfile. Then, 

Docker builds the container based on that Dockerfile, creating an executable package with the 
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dependencies set. from the user. Docker adds a layer on top of the host OS for controlling the 

containers during the build process and when the container runs. Generally speaking, Docker 

solves the issues of portability and consistency between environments. Portability in Docker is not 

represented by the possibility to migrate VMs or OSs but it makes it possible to ship only the code 

of the application.  

 

2.2.2 Docker Compose 

 

Docker-Compose is a Docker tool that is utilized to run isolated environments as containers 

that build and run an application. Docker-compose simplifies the process of setting up and running 

the applications by defining a YAML file to configure your application’s services. Then, we can 

create and run all the federated services that contain in a YAML file with a single command. The 

YAML is a format to create human-readable files and a great tool to construct a configuration file. 

Undoubtedly, Docker Compose facilitates the integration of the Execution Environment for any 

cloud provider, personal computer, or cluster. Table 1 is an example of docker-compose.yml that 

is for container orchestration. 

services: 

  web: 

    build: . 

    ports: 

      - "5000:5000" 

    volumes: 

      - .:/code 

    environment: 

      FLASK_ENV: development 

  redis: 

    image: "redis:alpine" 

Table 1. Example of docker-compose.yml file. 

 

2.3 Web Application 
 

In general, Web application is a client-server system where a browser represents the client and 

a web-server as the server. Web application logic is the relation between the client and the server, 

data storage is performed mainly on the server. Data is interchanged over the network through the 

Hypertext Transfer Protocol (HTTP). This approach takes advantage of the web and is the fact that 

users do not depend on a specific operating system or hardware configuration. Thus, web 

applications are cross-platform services and provide interoperability due to the containerization 

techniques which can be used for the development. 
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2.3.1 Flask Framework 

 

Flask [21] is a python-based framework for Web-Applications. This framework supports 

extensions that can add application capabilities as if they were applied to Flask itself. There are 

several extensions such as validation form, upload handling, and generally several common 

framework related tools. These extensions used to be updated more often than the core Flask 

framework. The main components of the Flask are: 

● Werkzeug: It is a toolkit for Web Server Gateway Interface (WSGI) application. 

Werkzeug can perform software objects for request, response, and utility functions. 

● Jinja Template: It is a template engine for the Python programming language that handles 

templates in sandbox. Jinja has an expressive language that gives template authors a more 

robust set of tools.  

Our Execution Environment is implemented with the Flask framework. The system provides a 

useful API for create, update and delete workflows from the environment. Additionally, facilitates 

communication using requests to handle and get information from the other tools that contribute 

to our environment.  

 

2.4 Back-end 
 

Back-end development is the implementation of server-side, which focuses on web application 

logic or, in other words, how the application works. It is a process of creating the core of a web 

application, developing the platform for the application and filling it with all the required 

functionality. The Server-side manipulates the data that is received from the front-end and returns 

the results back in the form that is understandable by the client-side. For our circumstances, the 

Back-end was implemented using a Python framework and it was necessary for the API 

implementation and for the communication with the OpenBio platform. Back-end usually 

comprises three parts: a web server software, an application logic, and a database. 

 

2.5 Workflow Management System 
 

Workflow Management System (WMS) plays an important role for scientific computing. 

WMS is designed to compose, edit, share and execute a sequence of computational steps, or 

workflows in a scientific application. The purpose of WMS is the automation of complex processes 

on large volumes of data, becoming more agile, reducing costs, and increasing productivity. In 

addition, WMS can visualize workflows using diagrams, depicting inputs, outputs of workflow, 

and allow to save workflow for sharing and publishing [10]. 
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Figure 2. Architectural characterization of WMSs 

Many scientific WMSs emerged with the diffusion of Cloud Computing, Web Service, and 

Grid technologies, which offered the possibility to access robust services and infrastructures in a 

more natural way than before [11]. Therefore, they were mainly targeted towards these 

architectures and not focused on portability. Nevertheless, by evolving in strict contact with the 

scientific community, they acquired maturity from the functional design point of view and 

established consensus among researchers. Moreover, some of them currently provide workflows 

repositories or are evolving to support diverse newer architectures. Some well-known WMS are 

Galaxy [7], Apache Taverna [12] that includes an interface allowing users to build and modify 

complex workflows with little to no programming knowledge. Thanks to these systems, 

researchers are able to focus on their research issues rather than worrying about the workflow 

execution mechanism.  

 

Figure 3. Architecture for Scientific Workflow Management. 



 

   
 

10 
 

Taking into consideration how Big Data are spreading in every scientific field, dataflow 

management is growing. As a result, more and more workflow languages, libraries and systems 

arise, and that restricts the research. For this reason, the execution environment can be compatible 

with many Workflow management systems. Below, we refer to some of these systems but by the 

time only the Airflow [15] is integrated. To clarify, Airflow is not the only solution, there are many 

WMS that could work in our Execution Environment without execution problems.  

 

● Airflow [15] is a lightweight workflow manager. Developed by Airbnb, it is now maintained 

by Apache Incubator. Airflow executes workflows as directed acyclic graphs (DAGs) of tasks. 

Every task is standalone and does not share any resources with other tasks. The DAG objects 

are utilized from Python scripts describing the relationship between the tasks and their order 

of execution. Airflow has a modular architecture and can allocate tasks to an arbitrary number 

of workers and across multiple servers, according to the task sequence and dependencies 

defined in the DAG. Airflow is easy to install, and can be used to run task-based workflows in 

various environments ranging from personal computers and servers to cloud environments.  

  

Figure 4. Apache Airflow General Architecture 

 

● Nextflow [9] is developed in Java and it is a main framework for the Bioportainer Pipeline 

Runner based on the dataflow programming model and based on the UNIX pipe concept. 

Nextflow can leverage parallel execution, error tolerance, execution provenance and 

traceability. Parallelization, is defined by the processes inputs and outputs declarations and can 

scale-up and scale-out, transparently, without having a specific platform architecture. Also, 

this WMS works in all infrastructures as well as cloud, Docker, and Singularity. During the 

pipeline execution, all the intermediate results are automatically tracked. This feature allows 

us to resume the execution, from the last successful executed stem, no matter the reason for it 

stopping. 
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Figure 5. The Pipeliner (Nextflow-Based) framework (source: 

https://www.frontiersin.org/articles/10.3389/fgene.2019.00614/full) 

● Luigi [8] is an open-source project from Spotify. It can be able to build and execute complex 

workflows. As I mentioned for the previous WMSs, Luigi can specify workflows as tasks and 

dependencies between them. Also, Luigi has a robust python package to build and run 

pipelines. Also, it has support for the Apache Hadoop [17] and Apache Spark [18] execution 

environments together with support for the local file system in the same framework. Some of 

the important features it provides are Workflow definition, Failure handling, Common event 

handling, Task tracking, Smooth integration of regular tasks and Spark jobs. 

 

Figure 6. Luigi workflow execution diagram. (source: https://medium.com/@prasanth_lade/luigi-all-you-need-to-

know-f1bc157b20ed) 

 

2.5.1 Scientific Workflows 

 

Generally, a scientific workflow contains isolated data transformations, analysis steps, and 

mechanisms to link them according to data dependencies among them. In other words, it can be 

represented as a sequence of computational operations or data manipulation steps to complete a 

process. In Bioinformatics, there are some common Workflow Management Systems like Galaxy 

[7], Nextflow [9], Snakemake [19] that are able to make this abstraction. Nevertheless, the flow-

centric construction of workflows has been implemented from industrial design systems and is not 

absolutely suited to the flexibility of modern scientific research such as bioinformatics research. 

Consequently, the construction of workflows necessitates exquisite IT skills. In cooperation with 
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OpenBio.eu, users construct Workflows by simply importing bash commands that execute a step. 

Obviously, these commands are the same as those that they use in a terminal. According to the 

above, a scientific workflow emerged from the need to model complex, distributed applications. 

In literature, a scientific workflow is usually represented as a directed acyclic graph (DAG) [29], 

where nodes denote data processing tasks and the edges represent data flow. Fig. 7 represents an 

example that uses BeCAS [22] to annotate NCBI Disease Corpus [23]. According to this diagram, 

every circle is bash commands that have to be executed and the cubes are tools that are used in the 

execution. During the build process, we tested many workflows to check the consistency of the 

execution environment. 

 

Figure 7. Workflow example in bioinformatics from OpenBio Platform 

 

2.6 Resource Monitoring System 

 

Resource Monitor, is a software or a service that displays information about the hardware 

usage throughout the system’s processes. A resource monitor software includes many information 

about the system such as CPU, memory, disk, network etc. Modern resource monitor software has 

implemented more features describing and other information about the container's lifecycle and 

resource consumption. 

During the workflow execution, the Execution Environment has an additional feature that 

stands to monitor the system's resource consumption. More specifically, the Environment prοvides 

extensive information about the responsiveness of the environment as well as the difficulties 

during the execution of a workflow. 
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 Netdata [16] is an isolated, free, open-source, real-time performance monitoring system 

hosted by Cloud Native Computing Foundation (CNCF). It runs on all systems (physical and 

virtual servers, containers) without disrupting their core function. Also, provides a database that 

stores long-term resource metrics, all at 1-second, as well as could be integrated with other 

toolchains (Prometheus, Grafana, InfluxDB, and more). The metrics visualizer is interactive, super 

fast, and easy exported to a custom dashboard. This monitoring system has integrated with our 

execution environment that offers to user’s real time information about the Disk, RAM, CPU that 

consumes the Execution Environment. 
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3 System Design 
 

This chapter is vital to the comprehension of both the purpose and the rationale of the 

thesis. In this section, we make an extensive explanation of the flow and the reasoning that resulted 

in the implementation of features. Previously, we introduced the system that consists of different 

components, which will be integrated in a topology and orchestration ecosystem.  

 

3.1 Architecture 
 

 

Figure 8. Execution Environment Architecture 

The architecture of our system is depicted in Fig 8. It consists of 5 main components: The 

Workflow Repository, the Client, the Workflow Engine, the Database, and the Resource 

Monitoring Service. All these components are configured by using a docker-compose file. Every 

one of them is an isolated container except for the OpenBio server. For our case, OpenBio works 

as a Workflow Repository that provides a workflow to be executed. The purpose of the Client is 

to operate as a mediator between the Workflow repository and the Execution Environment. In 

addition, during the communication with the workflow repository, the workflow is parsed in a 

specific workflow file type (DAG) to be congruent with the Workflow Engine. Then, using the 

Client’s API, users can edit, delete or run the workflow. The Workflow Engine (described in detail 

in Section 2.5) is the software that executes the workflow. When the execution finishes the reports, 

the logs, and the data that is used for the execution are placed into persistent volumes and are 

shareable into the OpenBio. Moreover, the usage of a Database is necessary to update the execution 

statuses. The choice of Database has to be compatible with the Workflow engine and specifically 

configured because of the vulnerable data that are recorded. For example, we use Airflow WMS 

and according to the workflow schedule used we need to integrate the PostgreSQL database. 

Finally, the Resource Monitoring Service (described in detail in Section 2.6) is the component that 

monitors the whole Execution environment, generating a custom dashboard with essential metrics 

such as CPU usage, RAM usage, Disk usages, and network usage. To prevent traceability, we also 

integrate Nginx that reverses the proxy of the Monitoring service. When the Execution 
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Environment starts, the custom dashboard is available in a specific URL. Aforementioned, this 

architecture is the same for all infrastructures such as cloud, cluster, personal computer etc.  

 

3.2 Containers 

 

The general benefits of containerization have already been covered in Chapter 2. During the 

years the increased popularity of Docker special attention was drawn towards the deployment of 

Docker containers [20]. As a result, a tremendous community has been established, providing a 

huge variety of Docker Images that are hosted on docker image repository (Docker Hub). All 

images have public access and can be pulled from the engine during deployment. Leveraging this 

feature, we constructed our images (docker-obc-airflow, netdata_nginx) that are essential for the 

Execution Environment and they pushed into DockerHub for public use. Additionally, utilizing 

the features that DockerHub gives, we have more capabilities when we use the Execution 

Environment in the cloud. To clarify, cloud providers like AWS, Microsoft Azure and Google 

already started including container technologies such as Amazon EC2, Google Container Engine 

and Azure Container Service and we can easily pull images through DockerHub. 

 

3.3 Orchestration Tool 
 

The orchestration platform organizes our container and constructs communication among 

them. The modeling of distributed applications for Docker-Compose including their lifecycle, 

dependencies, environment variables, and components are also defined using a YAML file. The 

YAML file is a human-readable data-serialization language. It is usually used for configuration 

files or applications such as Docker-Compose to define our dependencies. Below, we explain the 

docker-compose file per service with figures that integrated into our system. 

Before we start the file explanation, we have to say that services have defined some values 

as environment variables that have been taken from a separate file (named: .env). This file is a 

hidden file that can be found in the same directory with docker-compose.yml. 

● PostgreSQL 

postgres: 

  image: postgres:9.6 

  environment: 

    - POSTGRES_USER=${POSTGRES_USER} 

    - POSTGRES_PASSWORD=${POSTGRES_PASSWORD} 

    - POSTGRES_DB=${POSTGRES_DB} 

  ports: 

    - “${EXECUTOR_DB_PORT}:5432” 

  container_name: “local_executor_db_${EXECUTOR_INSTANCE}” 

Table 2. PostgreSQL container into docker-compose.yml 
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In Table 2, we define the PostgreSQL, a powerful database that used to record information 

during the workflow execution. Is an image that was pulled from DockerHub. The other keys such 

as environment, ports and container name are definitions that are used for the container. In 

PostgreSQL we have to define username, password and database name, this information is 

implemented into the container as environment variables that are included in service definition. In 

the ports key we export the port that service is running, on the left side of definition is the port of 

your system, on the other side is the port that is allocated into the container. Finally, 

container_name key is to name the container that runs. 

 

● Monitoring System (Netdata) and Nginx 

netdata_monitor: 

  image: manoskoutoulakis/netdata_nginx:latest 

  environment: 

    - ID=${NETDATA_ID} 

  ports: 

    - 19998:19998 

  volumes: 

    - /etc/passwd:/host/etc/passwd:ro 

    - /etc/group:/host/etc/group:ro 

    - /proc:/host/proc:ro 

    - /sys:/host/sys:ro 

    - /var/run/docker.sock:/var/run/docker.sock:ro 

  container_name: “obc_resource monitoring” 

Table 3. Netdata with nginx container into docker-compose.yml 

 In Table 3, we have another utilized image with two services. The first service is the 

Netdata for resource monitoring and the second service is the Nginx. The "volumes" keys are the 

host's directories that collect information for the system resources and are for read-only because 

this service can monitor the whole system not only the containers. For our purposes, the most 

significant volume is the final one that allows netdata to monitor Docker containers. The other 

keys that are defined are the same as the previous service. 

 

● Workflow Management System and Client 

 airflowserver: 

    image: manoskoutoulakis/docker-obc-airflow:1.10.9 

    restart: always 

    depends_on: 

      - postgres 

      - netdata_monitor 
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    environment: 

      #Airflow configuration 

      - AIRFLOW__CORE__SQL_ALCHEMY_CONN= 

postgresql+psycopg2://airflow:airflow@postgres:${EXECUTOR_DB_PORT}/airflow 

      - AIRFLOW__WEBSERVER__BASE_URL=http://localhost:8080/${OBC_USER_ID} 

      - LOAD_EX=n 

      - EXECUTOR=Local 

      - FERNET_KEY=jsDPRErfv8Z_eVTnGfF8ywd19j4pyqE3NpdUBA_oRTo= 

      #OBC Client environment variables 

      - NETDATA_ID=${NETDATA_ID} 

      - OBC_USER_ID=${OBC_USER_ID} 

      - PUBLIC_IP=${PUBLIC_IP} 

      - EXECUTOR_INSTANCE=${EXECUTOR_INSTANCE} 

      - POSTGRES_USER=${POSTGRES_USER} 

      - POSTGRES_PASSWORD=${POSTGRES_PASSWORD} 

      - POSTGRES_DB=${POSTGRES_DB} 

      - NETDATA_MONITORING_PORT=${NETDATA_MONITORING_PORT} 

      - OBC_EXECUTOR_PORT=${OBC_EXECUTOR_PORT} 

      - OBC_AIRFLOW_PORT=${OBC_AIRFLOW_PORT} 

      - EXECUTOR_DB_PORT=${EXECUTOR_DB_PORT} 

    volumes: 

      - dagvolume:/usr/local/airflow/dags 

      - logvolume:/usr/local/airflow/logs 

      - reportvolume:/usr/local/airflow/REPORTS 

      - /var/run/docker.sock:/var/run/docker.sock 

    ports: 

      - "${OBC_AIRFLOW_PORT}:8080" 

      - "${OBC_EXECUTOR_PORT}:5000" 

    command: webserver 

    healthcheck: 

      test: ["CMD-SHELL", "[ -f /usr/local/airflow/airflow-webserver.pid ]"] 

      interval: 15s 

      timeout: 15s 

      retries: 3 

    container_name: "executor_airflow_${EXECUTOR_INSTANCE}" 

Table 4. Execution environment’s API with the Airflow WMS container into docker-compose.yml. 
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The last service applied to the executable environment can be found in Table 4, it is more 

complicated than the other services. The reason that makes this container complex is that it must 

take into consideration all the information about other services, such as ports, database 

information, but also the Workflow Management System configuration. All this information is 

collecting using environment variables. There are two services integrated there, the Workflow 

Management System and the Client.  

The client makes communication with the workflows repository (OpenBio) that generates 

the appropriate data and triggers the execution. The most significant part of this service is the 

volumes section. The volumes are persistent and save the data that have been created during the 

execution. These volumes have no relationship with the local system, only with the containers. 

When the execution has finished, the data can download into your system using the client's API. 

Also, we have to notice that we expose two ports to our local system, this occurred because of the 

usage of two services into the container. We have the healthcheck key that checks the container’s 

health by running a command inside the container. This can detect crucial cases during the 

workflow’s execution such as being stuck in an infinite loop or unable to handle the execution, 

even though the service process is still running. 

The entire docker-compose.yml file and related files of the project are available at Github 

(https://github.com/manoskout/OpenBioC_Execution). 

 

3.4 Docker Volumes 
 

 Docker Volumes are not controlled by the storage driver. Reads and writes to data volumes 

bypass the storage driver and operate at native host speeds. We can mount any number of data 

volumes into a container. Multiple containers can also share one or more data volumes. After 

mounting the container process writes to the specific directory of docker volume instead of writing 

directly on the host’s filesystem. The advantages of this mounting are data is safe on Docker host 

by providing centrally located persistent storage and act as a central data storage facility that 

temporarily aggregates fragments of federated data for the need for analysis. Also, Docker volume 

preserves data regardless of the container lifecycle. These Volumes have specific directories in the 

Docker host and are created and managed by Docker itself. The volume is named according to the 

container's name or it is anonymous in case the container does not have a name.  

 

Figure 9. Execution Environment Docker Volumes 

 

As we demonstrate in Fig. 9, the containers of the execution environment have generated 3 

volumes that are used to preserve data, in case the system is interrupted unexpectedly. Firstly, 

volume named dagvolume keeps the workflows that are prepared for the execution process. 

Secondly, the logvolume saves the logs that the WMS records during the execution. Finally, the 

reportvolume keeps the results of workflow’s execution. All of these are defined into a Docker 

Compose file. 

https://github.com/manoskout/OpenBioC_Execution/blob/master/docker-compose.yml
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4 Implementation 
 

In this chapter, we provide a detailed description of the Execution Environment and OpenBio 

extension. We analyze obstacles encountered and try to put our design decisions into practice and 

the steps we took to overcome them. Lastly, we describe the methods and tools applied to assure 

the correctness of our code. The whole source code is available in GitHub 

(https://github.com/manoskout/OpenBioC_Execution). 

 

4.1 Project Structure 

 

The structure of the project is complex due to the usage of multiple tools and libraries. No one 

of the tools and libraries has to be pre-installed in our system except for Docker and Docker-

Compose. The whole project’s services are federated using docker-compose and installing all the 

dependencies into the containers. To put it briefly, the project contains HTML and CSS and JS for 

resource monitoring UI construction, Dockerfiles to build isolated environments for the services 

that are in use, Docker-compose file to organize and configure the containers, related configuration 

files to NGINX, Netdata and Airflow to parametrize our needs and Bash Scripts to make the 

installation files. The only file that is necessary for the integration of the Execution environment 

is the installation file. 

 Because of multiple tools and libraries, we encounter some problems during the project's 

development. We distribute all services into isolated images to avoid conflicts among the libraries, 

pushing them to DockerHub. Consequently, we had extended debugging information for every 

service separately thanks to Docker Compose. We finished our development by combining all 

required tools using docker-compose. 

 

4.2 Containerizing Services 

  

We already discussed the docker-compose file in the previous section with no reference for 

the Dockerfiles. Dockerfiles are the core of the implementation of our project. There were two 

Docker Images created for this thesis and only the most remarkable aspects of the ones created 

will be covered. A Dockerfile should be typically simplified as much as possible. For example, 

Fig. 10 describes a very simple piece of Netdata-Nginx image using the Debian package manager 

APT. However, in the second container was Python Image which is Debian-based too but there 

are also different package managers such as Fedora which uses YUM etc. Basically, any tool can 

be containerized and the Docker will allow for these to run with no operating system restriction. 

https://github.com/manoskout/OpenBioC_Execution
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Figure 10. A base of our Netdata-Nginx Dockerfile for creating a Docker image with these services. 

  Installing and compiling from source is also possible in cases where the software is not 

available in the Linux core library. In Fig. 11, Dockerfile installs Netdata from source and Nginx 

from Linux core library. All the steps are identical to how the software would be installed on a 

local machine using bash, the only difference being the keywords are not included. At the end of 

the previous figure shows two important keywords called "COPY" and "ENTRYPOINT". The 

"COPY" as it is named copy the host's file or directory inside the container. The "ENTRYPOINT" 

executes the defined file whenever the container starts. Inside this bash script, we have defined 

some important configuration to run the webserver.  

 

Figure 11. The second piece of script of Netdata-Nginx Dockerfile. 

In our case, third-party software is used, it can be difficult and not always efficient to know 

which essential dependencies are using Debian as a base image. In cases where third-party image 
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software is not used, a minimalistic base image can be used. For example, there are Linux 

distributions with a base image of size ~5Mb. 

Like the previous Dockerfile, so in the second we follow the same structure but with some 

differences. First and foremost, we use Python as a base image. Subsequently, we set up some 

folders and files for the workflow management's data and the API. Also, another important 

configuration is that this container can handle our Docker platform, providing us more flexibility 

to leverage our workflow execution. Below, Fig. 12 only shows the important part of the code that 

was implemented. 

 

Figure 12. Airflow and Execution Environment’s API Dockerfile. 

 

4.3 Environment installation 
 

The project was developed using an Ubuntu server. Thus, the first installation script was 

written in the BASH script and it is compatible with all debian-based distributions. The installation 

file defines some crucial information as environment variables and port allocation to facilitate the 

communication between the containers and integrate Docker and Docker Compose if necessary. 

The environment variables such as public IP, user unique IDs, and services' ports, database 

credentials are saved in a hidden file, provided if the installation succeeds. Then, the system 

downloads all the required data for the existence of the Execution Environment and following the 

installation instructions, the users need to copy the generated URL into the OpenBio platform to 

establish a connection between the platform and the execution environment. Fig. 13 depicts the 

results when the installation succeeds. 
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Figure 13. Successful installation output. 

Besides the execution environment, we add another important tool named NetData for 

resource monitoring. Furthermore, another unique ID was generated in installation for security 

purposes for the Netdata recognizable only for you and our platform. Finally, the installation runs 

the constructed containers by running the docker-compose file to report if the system faces 

difficulties. As it shown in Fig. 13, we have a Netdata-URL which connects us on Netdata UI. 

Netdata provides a useful User Interface with crucial resources information not only for the 

execution environment, but also for the whole system. 

 

4.4 Environment Features 

  

The execution environment was developed as a web service to facilitate procedures such as 

creating, executing, and managing a scientific workflow. The developed service provides many 

features that are required. Nevertheless, more functionality can be easily integrated to the service. 

At the moment, the following capabilities were implemented: 

● An interface according to the workflow management system to provision the scientific 

workflow during the execution. 

● A plethora of compatible Workflow Management Systems which can be used to execute a 

workflow. 

● A real-time resource monitoring dashboard that monitors the Workflow management 

systems that are used. 

● Limited access to files, making input and output data invulnerable to attacks and used only 

for workflow purposes. 

● A useful API that used to collaborate with the OpenBio platform. Apart from OpenBio 

platform, users can send, edit, delete, download results, and provision the execution. 

● Automatically zip execution’s results and logs for download. 

As can be seen from the list above, the service consists of the three main parts: User, Workflow 

Management System, API to handle workflow. As we mentioned in the previous section, the whole 

service was integrated using Docker. Below we make an extended explanation of these features. 
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4.5 Workflow Management System Interface 

 

In general, the Execution Environment works mainly as background service but facilitates its 

usage by providing to the users a flexible UI for workflow monitor. According to our needs, WMSs 

already provide user-friendliness UI and implement them into our execution environment. To 

clarify, all WMSs that tested our project had UI for workflow monitoring. Below we depict some 

examples of User Interfaces of WMSs. The Execution Environment uses the OpenBio platform to 

provide the process information and actions of workflow making the platform interoperable by 

facilitating the execution.  

Fig. 14 shows us Luigi’s user interface, using the web interface users can handle all the 

features that this WMS contains. Unfortunately, there are some restrictions such as the DAG of 

tasks cannot be viewed before execution. Thus, users wouldn’t know what code is running in 

correlating tasks during deployment. 

 

 

Figure 14. Luigi Workflow Management System User Interface 

 Next, Fig. 15 depicts the Apache Airflow user interface. Contrary to Luigi, Airflow UI has 

a plethora of features such as Gantt Chart, Task Duration, Code View, Task instance content menu, 

etc. Contrary to these features, this WMS is not a preferred tool to execute bioinformatic 

workflows but is a great opportunity to implement it.  

 

Figure 15. Apache Airflow Workflow Management System User Interface 
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4.6 Application Programming Interface (API) 

 

An Application Programming Interface is a computing interface that manages the 

interaction between software mediators. It is a crucial factor, during the development making the 

software flexible and manageable. An API is a custom, and design based on industry to ensure 

interoperability. Usually, the term API is used to refer to the set of software entities that serve to 

implement the API of some encompassing component or system. 

 During project development, an API simplifies programming by isolating the underlying 

implementation, exposing only objects or actions that the developer needs. Below we show some 

examples of the features provided from our Execution Environment. Each of these tested using the 

CURL Linux command. To clarify, The API structure is not stable. We expect the endpoint 

definitions to change. Also, I would like to refer to the structure of these requests that were built 

according to the OpenBio platform needs and being collaborative with OpenBio User Interface. 

 

4.6.1 ENDPOINTS 

 

● Trigger DAG from OpenBio Repository 

Executing this request, we receive the tool or workflow from the OpenBio platform as a 

dag file and automatically perform the workflow. This call requests a dag according to the data 

that gives. Hence, the table below shows us a POST request with data such as name, edit, type, 

callback, workflow_id.  

curl --header "Content-Type: application/json" \ 

  --request POST \ 

  --data '{ 

        "name":"test", 

        "edit":"1", 

        "type":"workflow", 

        "callback":"<Repository URL>", 

        "workflow_id":"2"}' \ 

  http://<IP>:<Port>/<Unique ID>/run 

Table 5. POST request to save and run a DAG 

Name: We pass the name of the tool or the workflow that we would like to execute. 

Edit: This is the specific version of the workflow from OpenBio. If the request is addressed to 

a tool, then the edit remains empty.   

Type: There are two different types in OpenBio which are tools or workflows. 

Workflow_id: This is a unique id auto-generated from the platform that we use or hardcoded 

from you. 
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At the end of this command, we have to specify the URL of our execution environment. 

During the installation of the execution environment in your system, you get a URL consisting of 

the IP of the execution environment, the Port that environment runs, and a unique ID which is 

known only from you. 

 

● Execution Status 

 Obviously, everyone wants to know the status of their workflow during the process. Thus, 

we build a request providing extended information about the workflow. More specifically, this 

instruction inquires the database of what state is our workflow and returns a json object with the 

state and the current task that executes. 

curl --header "Content-Type: application/json" \ 

  --request GET \ 

  http://<IP>:<Port>/<Unique ID>/check/id/<dag_id> 

Table 6. GET request to get info about the status of the executed workflow. 

id: This id is the unique id that was given when we triggered that dag. This is auto-created from 

the platform that we use. 

 

● Download the results 

 In our environment, the data are separated into three different folders (Tool, Data, 

Workflow). At the end of workflow execution, all the results are collected and compressed to a tar 

file. Then, users can download the compressed file from the OpenBio platform or by requesting 

the specific id of the dag which they are interested in. 

curl --header "Content-Type: application/json" \ 

  --request GET \ 

  http://<IP>:<Port>/<Unique ID>/download/<dag_id> 

Table 7. GET request to download the results from a workflow execution. 

 

● Execution Logs 

 Logging during the execution is an essential factor in debugging our workflow. During the 

execution, the WMS collects logs from the workflow's execution, compressing them into a zip file. 

In the OpenBio platform, users can get all the logs related to their workflows that are executed. 

The related request is written below. 

curl --header "Content-Type: application/json" \ 

  --request GET \ 

  http://<IP>:<Port>/<Unique ID>/logs/<dag_id> 

Table 8. GET request for the logs of the executed workflow. 
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● Delete a workflow 

 One more useful action in our environment is the deletion of a DAG. This request can be 

worked with DELETE or GET method. In other words, the user sends the delete request to delete 

the workflow. This action removes the workflow file, the database records from the workflow 

management system and all related files that had been created throughout the execution. 

curl --header "Content-Type: application/json" \ 

  --request DELETE \ 

  http://<IP>:<Port>/<Unique ID>/workflow/delete/<dag_id> 

Table 9. DELETE request to delete a workflow from the environment. 

 

● Executor Information 

 Executor information such as failed, succeed, paused, running DAGs and workflow 

management engine information are provided in a get request using a data stream in real time. The 

update the statuses every 5 seconds. The usage of this endpoint is mainly for the monitoring 

system. 

curl --header "Content-Type: application/json" \ 

  --request GET \ 

  http://<IP>:<Port>/<Unique ID>/executor_info 

Table 10. Real-time workflows statuses streaming. 

 

4.7 Execution and file access 

 

 Each workflow management system must assure that the assigned tasks must be 

executable. Hence, every single task depends on compiled binaries and libraries at the expected 

position into the file system to successfully proceed for execution. The most prominent ways of 

ensuring this are “virtualization” and “installation”. The first is an innovative way that facilitates 

the execution in an isolated container-based environment. Contrary to container-based 

virtualization, Virtual Machine is considered as a performance-harming method, requiring time-

consuming programming to configure the environments. The second is the most usual way that 

requires the installation of a proper runtime environment in the operating system. By combining 

the container-based virtualization and the installation methods and leveraging Docker Volumes 

we built our environment. To facilitate these execution requirements, we constructed a simplistic 

file system structure into our Execution Environment container connecting into a specific 

persistent volume communicating with the OpenBio platform. 
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4.7.1 File System Structure and Docker Volumes 

 

 The file system structure is constructed according to the workflow type. A workflow is 

imported as a DAG in our environment. It could be a simple tool, a data collection, or a group of 

multiple tasks that contains tools, libraries, and so on. When the DAG is imported, we analyze the 

file and the execution starts automatically. Subsequently, the workflow management system 

informs us by providing extended logging records. Thus, the Execution Environment has three 

volumes each of them for a different purpose. All the above considered of the construction of these 

volumes as I/O (Input and Output) Manager. The events of the I/O Manager are handled from the 

API and OpenBio platform.  

 

Figure 16. Container’s Volume structure as a I/O Manager. 

The first volume named DAGs saves the imported DAGs from the OpenBio platform to 

prepare them for the execution. The second volume is to persist the logs during the execution. Each 

of the log folders is a related workflow and saves the execution's logs per task. Finally, the volume 

named Reports provides the outputs of the executed workflow as well as the related tools or data 

that needed it. All the files used are grouped by the unique workflow_id that has been given from 

the OpenBio platform. 

For the current work, it is sufficient to point out that we have not done extensive research 

on security issues. Although, volumes are inaccessible from the host, preventing unexpected 

attacks. The only way to edit or track the files can be achieved only from the OpenBio Platform.  

 

4.8 Resource Monitoring Integration 

 

Nginx server is an open-source, high-performance HTTP server and a reverse proxy tool. 

In general, the use of Nginx has centralized at web servers and it is commonly used as a load 

balancer managing incoming traffic. Nginx offers low resource consumption, simple 

configuration, and stability. Netdata is implemented in the environment for real-time metrics that 

provides to users (described in detail in Section 2.7). Nevertheless, the Netdata shares crucial 

information for the host over the Internet, making the system vulnerable to attacks from the 

internet. Thus, by using the reverse proxy we prevent unexpected attacks from the global network.  
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The reverse proxy provides an additional level of abstraction and control to secure the flow 

of network traffic between clients and servers. Also, reverse proxy control access to a server on 

private networks and it can perform cache or decrypt data. As I mentioned above, the system has 

been built with containerization technology and the Netdata with Nginx works perfectly. For 

additional security in this Docker image, Nginx has a unique ID auto-generated from the system 

throughout the installation that is set into the URL, providing the appropriate resource metrics 

during the workflow execution. The resource monitoring URL is reserved when the installation 

finishes or from the OpenBio platform. Fig. 17 shows a basic diagram of how the NGINX works 

in our project. 

 

 

Figure 17. Netdata with NGINX. 
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5 Integration & Experimental Results 
 

 In this chapter, we describe an approach that we have used to integrate the Execution 

Environment with the Airflow [15] workflow manager. In addition, we introduce an example in 

bioinformatics to determine how widely-used large-scale data management infrastructure systems 

are in bioinformatics. 

 

5.1 System Specifications 

 

 The system specifications used for the Execution Environment deployment are in Table 

11. These specifications were sufficient to reproduce tests to monitor the robustness of our 

Environment. The only restriction we encountered was the CPU. As a result, the executions took 

place by using 2 and 4 cores.  

CPU RAM DISK Operating System 

Intel Core i7-3770 

CPU 3.40GHz, 4 

Cores, 8 threads 

32Gb 2.7 Tb Ubuntu Server 18.04 

Table 11. Host’s specifications 

 In general, high-performance data analysis in bioinformatics demands faster CPUs as well 

as more RAM to run concurrently more than one complex workflow. Another crucial factor is the 

Hard Drive, during the execution, the workflow downloads plenty of datasets.  

 

5.2 Execution Environment Integration 

  

 As I mentioned before, the system was tested only in Ubuntu Server. Thus, the installation 

of the Execution Environment can only be established in Debian distributions for the moment. The 

executable file written in Bash commands is readable and ready to install any tool that the 

Execution Environment needs. The installation is divided in three layers that each of them contains 

a sequence of bash commands. Below, we explain with simple instructions step-by-step how to 

deploy the Environment and connect it with the OpenBio Platform. Also, we show several pieces 

of each step that we have to consider such as useful ids or functions that used to create multiple 

instances in our machine. 

 

5.2.1 Local Installation Steps 

 

● Download install.sh 

The install.sh and whole project are published on GitHub. We download the installation 

file. In our case we use the “wget” library to pull the file from the repository. When the file 

will have downloaded, we execute the executable file. 
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$ wget 

https://raw.githubusercontent.com/manoskout/OpenBioC_Execution/master/obc_scripts

/install.sh 

$ bash install.sh 

Table 12. Installation bash commands. 

● Docker Installation (First Step) 

When the installation starts, the first operation that is done is to install Docker. To prevent 

override problems such as multiple Docker platforms the system checks if the Docker is 

preinstalled. If the Docker is installed, bypass this step and continue on the next step. 

Otherwise, the installation continues the docker installation. 

 

Figure 18. Installation step 1. Docker Installation. 

● Docker-Compose (Second step) 

The second step is akin to the previous step. More specifically, the system checks if the 

Docker Compose is installed in our system. Correspondingly, if the Docker Compose is 

preinstalled, bypass the installation and executes the final step or else the installation of 

Docker Compose starts. 

 

Figure 19. Installation step 3. Docker-compose Installation. 

● Setting up environment variables and OpenBio Executor installation (Third step) 
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The final step is the most essential in our installation process. In this step, the installation 

defines some environment variables that are necessary for communication between 

OpenBio. The system examines the ports that are needed for the services. If ports are in 

use, automatically indicates the next ports of the host from the built function inside of the 

installation file. Fig 20 depicts the installation during Step 3. The only input required is the 

Execution Environment's name. To put it briefly, this name must be unique because it can 

be more than one Environments integrated into the host.  

 

Figure 20. Installation step 3. Insert Execution Environment name. 

As the name is set, the installation process creates unique IDs for the OpenBio server and 

Netdata service. These IDs are utilized as the only way to communicate our machine with 

the platform. Therefore, the IDs are unique and are only known by OpenBio and the users. 

Besides these, the installation collects and generates other environment variables such as 

Database credentials, host’s public IP, and the ports that run services. Importing 

environment variables, we increase the interoperability by trading plenty of information 

between the services. In Fig. 21 is the environment variables' hidden file that contains all 

the required environment variables into the containers.  

 

Figure 21. Hidden file with environment variables 

The installation continued by downloading the docker-compose.yml file that is responsible 

for developing the executable environment. Also, the installation process downloads 

another file that configures workflow management. As we mentioned above, the WMS 

used is airflow. Thus, the configuration file to set aside the required WMS. This process 

downloads and installs the images, making the configuration that docker-compose file has. 
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Figure 22. Building the services and checking for conflicts. 

Finally, the last output has all the information that we need to implement into OpenBio and 

how to run the Environment. The only action that remains is to add the host into the 

platform. Fig. 23 depicts the steps that we have to follow to connect the Environment with 

OpenBio. 

 

Figure 23. Last output of the installation with instructions. 

 

5.2.2 OpenBio Connection 

 

 In this section, we represent the final guidelines for the communication between OpenBio 

and Execution Environment. The OpenBio platform has a simplified UI that makes the deployment 

easier. Below, we show an example of this deployment. 

● Connect to the Platform 

First and foremost, we must follow the previous instructions to build the environment into our host 

or cloud provider to perform the connection between the server and Execution environment. Then, 

we should open our browser and sign in to the OpenBio Platform 

(https://www.openbio.eu/platform/). If we don’t have signup, we have to do that before we 

continue. Then, we navigate to the User Profile setting -> Execution Environment to add the 

Execution Environment’s URL into the platform. Fig. 24 depicts the inputs that needed to make 

the integration. 

https://www.openbio.eu/platform/
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Figure 24. OpenBio Profile settings page. 

At this point, we should insert some information. The one is the name of the environment, and the 

second is the URL containing the unique ID. As we mentioned before, the unique id has already 

created the installation complete. When we insert these two inputs, we click the plus button next 

to them and the environment is defined into the OpenBio platform.  

 

5.3 Experiment 

  

 In this section, we present an experiment that was designed to estimate the efficiency of 

the proposed environment. It describes a workflow and the experimental environment used to 

perform the test. This evaluation methodology is designed to validate the overall proposed 

approach and its key components such as the workflow reproducibility, workflow provenance 

comparison and execution environment's interoperability. It then discusses the identified 

experiment, resources that consumed and expected output that will be discussed and analyzed in 

Subchapter 5.4. It also provides detailed information about the test environment and the workflow 

management system used to perform the experiment in order to validate the work carried out in 

this dissertation. 

 

5.3.1 Execution Infrastructure 

 

 To carry out the experiments and workflow execution on the Execution Environment, a 

host-based infrastructure was used in this research study. Airflow has been used as a workflow 

management system to submit and monitor workflow execution. The workflow execution took 

place on a local computer, using the Airflow as workflow management service and Netdata as a 

resource monitoring service. This infrastructure uses Docker to offer SaaS services. To support 

data over a Docker-based storage service, docker has created virtual volumes. Since OpenBio 

supports RESTful interfaces, this service can also be called from RESTful clients. Using this API, 

the OpenBio can interact with Execution Environment's compute and storage services. 



 

   
 

34 
 

 

Figure 25. Execution Environment. Flow of operations. 

 Fig. 25, shows the steps performed during execution. The steps to perform the workflow 

that make the Execution Environment are: 

● Firstly, it is obvious that the users have followed the instruction of how to install the 

Execution environment into their system and add it to the OpenBio platform. 

● If the environment is in action, the Resource Monitoring Dashboard is running 

automatically. Users can have access to the custom dashboard that monitors the workflow 

management service. Alternatively, they can use the URL with the unique id from the 

installation output (see Figure 23). 

● Users select the workflow that they would like to execute and the Execution Environment 

from the OpenBio platform. 

● Then, OpenBio parses the workflow into a specific workflow language according to the 

workflow management service that the users have integrated into their execution 

environment. 

● The execution environment’s server gets the request containing the workflow with a unique 

ID provided from the platform. 

● The server pushes the workflow to the Workflow Management Service for execution and 

sends a response to OpenBio.  

● When the execution starts, the user can handle and get the status of the execution from the 

platform. The actions that are provided from the platform are the resource monitor, 

execution monitor, execution status, and delete or pause the execution. Concurrently, the 

database starts to update the status of the workflow in real-time. 

● Οnce the execution is complete; the results and execution logs are saved into persistent 

container's volumes and they can be downloaded from the platform from the new buttons 

that are generated when the status is “success” or “failed”. 
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5.3.2 Workflow explanation 

 

 The main purpose of this workflow is to build a scatter plot according to the HapMap 

dataset using Principal Component Analysis (PCA). As shown in Fig. 26, the main workflow is 

the hapmap3_pca/1 which calls another sub-workflow named pca_plink_and_plot/1. 

Subsequently, the pca_plink_and_plot/1 call two more workflows the pca_plink/1 and the 

2d_scatter_of_plink_pca/1. The workflow finishes by creating a scatter plot as a report. Below we 

make an extended reference about the workflow’s tools that were used to implement this workflow 

in our execution environment. 

  

Figure 26. Hapmap dataset to PCA scatter plot. Workflow Graph 

● Hapmap3 

 The HapMap (Haplotype Map) [30] is a dataset of common genetic variants called single 

nucleotide polymorphisms (SNPs). Every one SNP depicts a variance in a single DNA building 

block called a nucleotide. These variations eventuate normally in every part of a person’s DNA. 

When several SNPs grouped together on a chromosome, they are inherited as a haplotype. The 

HapMap traces out haplotypes, including their locations in the genome and how common they are 

in different populations all over the world. The tool named hapmap3/broad/1 that downloads the 

dataset is called from the main workflow (hapmap3_pca/1). 

● Plink 

 Plink [31] is an open-source whole genome association analysis toolset, designed to 

perform a range of basic, large-scale analyses in a computationally efficient manner. It focuses on 

analysis of genotype/phenotype data. This tool is performed from the pca_plink/1 workflow. To 

put it briefly, plink executes the hapmap dataset using Principal Component Analysis and returns 

the eigenvectors to prepare the construction of the plot. 

● Anaconda 

 Anaconda [32] is an open-source data science toolkit. It provides a wide range of libraries. 

Under our circumstances, we used the NumPy library to construct a scatter plot of the PCA 

analysis. More specifically, this step gets the eigenvectors from the previous step and creates the 

scatter plot. Finally, the workflow ends by auto generating a report containing the scatter plot as 

an output of the workflow.  
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 The workflow was written in bash using the OpenBio platform. Then, the platform parsed 

this workflow and converted it to airflow DAG to make the execution into the Execution 

Environment. We provide this workflow in OpenBio Repository 

(https://www.openbio.eu/platform/w/hapmap3_pca/1).  

 

5.3.3 Workflow Execution 

 

 As we mentioned above, we assume that we have already created an account and we have 

added the execution environment into OpenBio (we provide extended information in previous 

sections). Also, we have to create our own workflow or use an existing workflow from other users. 

The first phase of the execution is depicted in Fig 26, as shown, we have chosen the workflow and 

by hitting the Run button it opens a dropdown menu. This dropdown menu contains the execution 

environments we have added into the platform. We choose the test_thesis (the specs of this 

environment are depicted in Table 11). 

 

Figure 27. Openbio platform. Execution Environment selection. 

 When the execution begins, the Platform informs us that the execution was sent to our 

execution environment providing notification right up square of the platform. In case of error, the 

platform provides the error to us with a possible solution. Furthermore, a Report id is generated 

automatically and a new report is created on the left side of the platform in the Reports catalog. 

Fig 27 illustrates a successful submission for execution. 

https://www.openbio.eu/platform/w/hapmap3_pca/1
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Figure 28. OpenBio. Successful submission for execution. 

 When the execution begins, we obtain the id of the workflow, by selecting this Report Id 

that the workflow has on the left side of the platform (more information in Fig 27), we can have 

access to the workflow execution. By clicking the unique id, the right side of the platform changes, 

and the workflow controller takes place. In this phase, we can pause, delete, or take the status of 

the workflow. These operations facilitate the execution because we do not implicate the WMS or 

other intermediate configurations.  

 

Figure 29. Workflow report and control panel. 

Although, the OpenBio, provides us two more buttons as shown in Fig. 30. The first button 

is the Monitor Execution, which redirects us in the execution environment's WMS if we would 

like to make additional configurations. The second button is the Monitor Resources, which 
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redirects us in a custom dashboard that collects information from the Netdata Service which is 

integrated into the execution environment and general information for the workflows that the 

system has. 

 

Figure 30. Workflow Successful execution. 

 By clicking the refresh button, the platform communicates with the execution environment 

to collect information about the execution. The final status that a workflow implements is a 

SUCCESS or FAIL. In Fig 29, the workflow executed successfully. As a result, two more buttons 

were shown when the execution finished. Aforementioned, the workflow's output is integrated into 

the HTML that is available if we click the Report button. We also provide logs that facilitate the 

debugging of the workflow mainly. We can download the logs by clicking the Logs button. 

Nevertheless, the Delete button remains in the foreground and the users could delete the report 

whenever they would from the OpenBio and the execution environment permanently. 

 Below, we provide some figures containing the compressed file, the results and the report 

of the workflow.  

 

Figure 31. The compressed file of the workflow report. When we download the compressed folder there is the report 

and the outputs inside the file. 

 

Figure 32. Workflow’s Report. This HTML file contains the inputs and the outputs of the workflow. Also, we can 

have access to the outputs by clicking them. 

As we mentioned before, the Report is constructed from the workflow as an integrated step. Report 

provides useful information such as the inputs and the outputs of the workflow. Also, we can have 
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access to the report file from the HTML file, because it uses tags that redirect us to the file that we 

choose. In Fig. 33, the output of the workflow is a scatter plot constructed from the workflow. 

 

Figure 33. The scatter plot (Workflow’s output). 

 

5.4 Results 

  

 The HapMap PCA analysis takes approximately 9 minutes to run on a server with 8 cores 

clocked at 3.40GHz and 32Gb of memory. The PCA is computational unit intensive. Also, the 

workflow tested with parameterized resources which are represented below. In Fig. 33 we 

visualized the performance of the previous workflow with different resource allocations. As 

expected, an increase in the number of CPUs and amount of memory to the WMS decreases the 

execution time. The time it takes for the workflow to start the first time is approximately 30 

seconds which is not considered in this comparison. After the first deployment the system is much 

faster (~ 15 seconds) because of the cache of the WMS. Furthermore, if the tool that contains the 

workflow is already installed from another workflow the execution times decreased drastically.  

The time it takes for the workflow to finish reaches over 8 minutes at best but is then 

saturated. A big increase in performance is seen when comparing the machine with 4 core vs the 

eight cores. It is almost twofold decrease in time, now given a larger dataset might take days to 

run, a two-fold decrease in execution time is good. 
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Figure 34. Workflow Performance of the Execution Environment measured in minutes with different machine setups. 

Each triplet of bars has a different amount of memory. The general trend being that the execution time decreases as 

the resources increases which is expected. 

 The results of the workflow performance were tested using Airflow as WMS. We expect 

that the results will vary when we use different WMS. The main purpose of these tests is to check 

the consistency of the workflow by performing heavy computational tasks. Because of the lack of 

process units, we decided not to testmore than eight cores. Although, for time sufficiency the more 

cores we have, the less execution time is. 

 

Figure 35. Workflow Performance. Comparison between Bash Execution and Execution Environment. 

 Additional tests, such as comparing the execution environment using a workflow 

management system and the execution environment using bash script have radical differences 

especially in terms of time. As it shown in Fig 34, the bash execution is beneficial according to the 

execution time but difficult for debugging. The bash execution lacks a proper workflow monitoring 

and logging throughout the execution. More specifically, using a WMS we have extensive 

information about the status and the progress of the execution. Nevertheless, we could leverage 
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the bash execution using container-based workflows. Containerized workflows are one of our 

priorities for integration into the execution environment. 

The results are not only relative to the system's performance, but of the users' facilitation 

to execute a workflow in different environments. To put it briefly, if we compare the difference 

between execution time and the cores that are set, the results are varied. The more cores there are, 

the faster the execution is. Consequently, the difference in execution time, if we have more than 

eight-core, is a minor according to the benefits that we earn using the execution environment with 

the workflow management system of our choice. The main purpose of the Execution Environment 

is to run complex scientific workflows as well as extended workflow monitoring. Also, without a 

doubt, Bash execution can not co-work with platforms such as OpenBio and it does not have the 

interoperability that the Execution Environment has. 
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6. Conclusion 
 

 In this final chapter, we present a brief synopsis of our work assessing some principal 

points of the design process. Following that, we conclude by mentioning a few possible 

extensions and improvements that could be developed in the future. 

6.1. Concluding remarks 

  

The primary goal of this thesis was to implement and design a system covering our 

rationale to support multiple workflow management systems into one execution environment. 

Despite that, there was one more underlying goal: to effectively cooperate with developers and 

OpenBio users. We may now conclude that both objectives were met. 

 Regarding the main goal, the Execution Environment extension into the OpenBio platform, 

we achieved a breaking change: OpenBio platform can now execute multiple types of workflows 

using cloud, host or clusters. As proof of this concept for our implemented rationale, there are 

several reports into OpenBio repository which were created using the Execution Environment.  

As far as the second goal is concerned, the collaboration was a first-time experience 

including constructive stress and the integral support from my supervisors by providing useful 

advice about my thesis purposes.  

On this basis, we conclude that the Workflow Management Systems (WMS) allows life 

science communities to collaborate to make scalable and portable scientific research. The 

combination of multiple WMSs into one environment which communicates with a 

Bioinformatician Repository, without a doubt, brings a lot of benefits. This thesis proposed many 

resolutions to problems such as workflow adaptability and flexibility over the life science 

communities. The proposed environment of the workflow execution works through the interaction 

with users by logging in to the OpenBio platform. 

All in all, this project aims to facilitate scientific research, providing a scalable and 

interoperable execution environment for sharing and publishing scientific research. The execution 

environment provides extended information about the workflow execution and it could work 

perfectly at any platform or repository such as OpenBio, because of the operable API it provides. 

 

6.2. Lesson Learn 
 

Nowadays, computational science demands a high-performance infrastructure that can be 

able to run complex workflows [1,2]. With the term of complex workflows, we mean workflows 

that integrate multiple methods such as programs and services from different organizations or 

algorithms, and high-throughput data and other components that are orchestrated as steps in a 

workflow [31]. 

Workflow Management Systems (WMS) lay the foundation for data and biomedical 

research. The main benefits of workflow execution by using a WMS are the effectiveness, 

reproducibility of procedures and traceability [32-35]. As we mentioned in previous sections, a 
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tremendous number of WMS are available in public, collaborating with the scientific research. 

Although, WMSs have limitations and they reduce their impact in biomedical research since each 

WMS has its own workflow language, a frustration for the users and demand for additional 

programming knowledge. 

In this thesis, we provide a comprehensive presentation of different issues that directly 

affect interoperability among the execution of scientific workflows, except for the performance 

results that make the difference. The insertion of multiple workflow execution engines into one 

execution environment could diminish the “lock-in” syndrome [36], making the workflows 

reusable, accessible for users with no additional programming knowledge rather than BASH 

commands only. Additionally, multiple organizations and workflow system vendors have 

proposed a user-friendly workflow language called Common Workflow Language (CWL) [37] 

aiming to promote portability of workflow specifications. This workflow language has already 

integrated into our environment and it can work with many workflow management systems [38]. 

 

6.3. Current limitations 

 

 By the time, the execution environment had integrated Airflow as a WMS, t a widely used 

pipeline engine. The support of other workflow execution engines such as Snakemake [19], 

Nextflow [9], Luigi [8], and CWL [37] based workflow execution engines would increase the 

functionality of the execution environment. The Execution environment’s structure has developed 

and prepared for further WMSs addition and this is the main reason for the implementation of this 

thesis.  

 According to execution time results, the bash execution is better than the WMS execution. 

In order to balance the execution time, we have to integrate lightweight WMSs or edit the existing 

execution scheduler. This is a minor limitation according to the benefits that a workflow execution 

engine provides like debugging from the execution logs and the extended execution monitoring. 

Nevertheless, we did not test with different WMSs to perform a complete comparison with other 

workflow engines. 

 In general, scientific workflows do not have loop conditions. Many proposals have 

presented the theoretical background of this abstraction [43,44], with no implementation in 

practice. This is a severe limitation and reproduces problems such as time and resource-consuming 

[45]. This is an exquisite topic for improvements and it is one of our future work, the 

implementation of conditions in scientific workflows. 

 

6.4. Future work 
 

Although we have implemented a couple of enhancements through the OpenBio platform’s 

User Interface upgrading the overall User Experience we should make radical improvements into 

the Engine's core. Also, there are crucial additions to the Execution Environment’s API and that 

makes the workflow execution flexible.  
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In addition, we have to integrate more workflow management engines such as Galaxy [7], 

Nextflow [9], Taverna [12] which are specifically developed for the field of bioinformatics. This 

could robust the portability of scientific research by providing to the users a plethora of workflow 

execution engines from only one service. The Execution Environment’s design is adaptable and it 

can facilitate the integration for additional workflow management engines. 

Another future work is Kubernetes integration. Kubernetes [39] is a platform for container 

and services management that facilitates the configuration and automation. It has a rapidly 

expanding ecosystem and supports widely available tools. Kubernetes can solve several problems 

by providing a framework to run distributed systems resiliently. More specifically, it takes care of 

scaling requirements, failover, deployment patterns, and more. Also, the Kubernetes platform 

provides service discovery and load balancing, self-healing to improve the Execution environment 

rejuvenation [40] (restarts the containers that fail), and storage orchestration. 

Last but not least, an intermediate layer of this project could be a job manager. In general, 

a job manager is a resource management system which controls program execution of jobs in the 

background on supercomputers, clusters, and grids. The resource management system can manage 

jobs that users submit to various queues on a computer system. Under our circumstances it could 

be useful if we can parametrize every step of a workflow under our demands. There are many job 

managers such as Globus [41] and Torque [42]. 

Finally, as shown in the results section, the workflow can be faster by executing processes 

using bash rather than using a workflow management system. By leveraging the simple bash and 

running the workflow into a container we could earn a lot of benefits about the execution time 

efficiency. On the other hand, it cannot be denied that using a workflow management system we 

lose severe advantages such as workflow execution status, extended workflow logging, and 

portability. 
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