
 Opinion mining from Data of Social Media by Probabilistic Logic Reasoning

by

Stefanos Zervoudakis

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF INFORMATICS ENGINEERING

SCHOOL OF ENGINEERING

HELLENIC MEDITERRANEAN UNIVERSITY

May 2020

Approved by:

Supervisor

Prof. Emmanouil Marakakis

ii

iii

Abstract

This thesis studies opinion mining from social media with probabilistic logic reasoning. Twitter is

one of the most active social networks, with millions of tweets sent daily, where multiple users

express their opinion about travelling, economic issues, political decisions etc. As such, it offers a

valuable source of information for opinion mining. Our approach uses a Bayesian-based opinion

mining framework exploiting Twitter Data. It is described by the following steps. First, the

framework of our approach imports Tweets massively by using Twitter’s API. Next, the imported

Tweets are further processed automatically for constructing a set of untrained rules and random

variables. Then, a Bayesian Network is derived by using the sets of untrained rules, the random

variables and an evidence set. After that, the trained model can be used for the evaluation of new

Tweets. Finally, the constructed model can be retrained incrementally thus becoming more robust.

As application domain for the development of our methodology we have selected tourism because

it is one of the most popular topics in social media. Our system can predict with some probability

users’ preferences, regarding their intention to visit a place or not. We have developed algorithms

which create automatically efficient rules and random variables based on the trainset. Our system

uses for model training the probabilistic logic reasoning system of ProbLog. The advantages of

our approach are the following. First, our system follows an incremental learning strategy. That is,

the derived model can be retrained incrementally with new training sets thus becoming more

robust. Second, our system can be easily adapted to opinion mining from social media on other

topics. Finally, the rules of the derived model are constructed in an efficient way and automatically.

iv

Dedication

To ….

v

vi

Acknowledgements

vii

Table of Contents

Abstract .. iii
Acknowledgements .. vi
Table of Contents ... vii
List of Programs .. ix

List of Figures ... x
List of Tables .. xi
List of Algorithms ... xii

1 Overview and Motivation ... 1
1.1 Introduction .. 1
1.2 Problem Definition ... 1
1.3 Thesis Structure .. 2

2 Background and Related Work.. 3

2.1 Introduction to Machine Learning .. 3

2.2 Machine Learning and Probabilistic Logic Reasoning 4
2.3 The Bayes’ law in our System .. 4
2.4 Bayesian Networks Inference ... 5

2.5 Likelihood function .. 6
2.6 Structure Learning-Parameter Learning ... 8

2.6.1 The parameter estimation problem. .. 8
2.6.2 The structure learning problem ... 13

2.7 Other Graphical Models ... 14
2.8 Estimate of parameters in statistical models ... 15
2.9 Basic Features of ProbLog ... 18

2.10 Related Work .. 24
3 Overview of our Machine Learning System .. 28

3.1 The Main Features of our System ... 28
3.2 Comparison of Our System with Related Work ... 31
3.3 Limitations and Extensions of our System ... 32

4 Architecture of our Machine Learning System .. 33

5 Detail Presentation of the Components of our Machine Learning System 35
5.1 The Pre-processing Phase ... 36
5.2 The Training Phase ... 36
5.3 The Trained Model ... 38

5.4 Implementation issues .. 39
5.4.1 Read CSV and store data into array .. 40
5.4.2 Implementation of random variables and rules .. 40

5.4.3 Implementation of incremental learning method .. 47
5.4.4 Derive Evidences in Trained Model ... 49

6 Sample Sessions of our System ... 51
6.1.1 Train the Model .. 52
6.1.2 Incremental Learning sample session ... 53

6.1.3 Sample Session of Trained Model .. 54
7 Evaluation of our System .. 56

7.1 Evaluation criteria of regression models .. 56

7.2 Evaluation results ... 60

viii

8 Conclusions and Future Work ... 62

9 Bibliography ... 63
Appendix A ... 68

A.1. The implementation of sentiment analysis procedure with VADER 68
A.2. Implementation of Entity Recognition method .. 68
A.3 Check if user’s home location is from Crete or not .. 69

A.4 Create Evidence set based on array of tweets ... 69
A.5 The implementation of incremental learning procedure .. 70
A.6 Test the trained model with new set of tweets ... 72

ix

List of Programs

Program 1 Markov Model in ProbLog ... 15
Program 2: Create rules using probabilistic facts. .. 19
Program 3 Create rules with annotated disjunctions .. 20
Program 4 the possible forms that use ProbLog .. 21

Program 5 Untrained Network with annotated probabilities in every fact 22
Program 6 Examples (specified as evidence, separated by ---) .. 23
Program 7 Trained Bayesian Network ... 24
Program 9: The untrained random variables and rules .. 36
Program 10 Instance of trained model ... 38

x

List of Figures

Figure 1 Bayesian Network and joint probability distributions ... 5
Figure 2 Likelihood function of example ... 8
Figure 3 Probabilistic model M with structure S ... 10
Figure 4 Markov Model ... 14

Figure 5 Burglary Example .. 19
Figure 6 Bayesian Network with unknown parameters ... 22
Figure 7 The two modules of our system ... 34
Figure 8: Incremental training of the model ... 34
Figure 9 Overall architecture of our system ... 35

Figure 10 Trained Bayesian Network .. 39
Figure 11 Bayesian Network of our system ... 45

Figure 12 Home Window of our system .. 51

Figure 13 Train Model session ... 52
Figure 14 The result after press Incremental Learning Button .. 53
Figure 15 Incremental Learning sample Session ... 54
Figure 16 Test the trained model sample 2 .. 55

Figure 17 Visualization of predicted values ... 61

xi

 List of Tables

Table 1 Completed dataset with examples E ... 10
Table 2 Parameters for P(a) .. 10
Table 3 joint distr. with parameters .. 10
Table 4 Dataset with missing values .. 16

Table 5 Latent State .. 16
Table 6 set of Examples E of Bayesian Network ... 23
Table 7 Instance of evidence set .. 38
Table 8 CSV_tweets.csv .. 40
Table 9 Array of tweets for processing(example) .. 40

Table 10 Synonyms table for Entity Identification .. 43
Table 11 Evidences (example) ... 46

xii

List of Algorithms

Algorithm 1 Sentiment analysis with VADER .. 41
Algorithm 2 create random variables-categories .. 43
Algorithm 3 Create Random Variables with E.R method ... 44
Algorithm 4 Create rules based on evidence set .. 47

Algorithm 5 Incremental Learning In Our System .. 49
Algorithm 6 Derive evidences from text (using Sentiment Analysis) 50
Algorithm 7 Extract evidences from text (using Entity Recognition) 50

1

1 Overview and Motivation

1.1 Introduction

The exponential growth of social networks has largely changed the way people interact with each

other, influencing the way they think, eventually changing their opinion on several topics. As such,

analyzing user-generated content offers a great opportunity for automatically detecting opinions

and trends on topics of interest.

Opinion mining is the science which performs text analysis in order to understand the drivers

behind public sentiment. Sentiment analysis is predecessor of opinion mining, because opinion

mining goes a level deeper. For example, sentiment analysis examines how people feel about a

given topic (positive or negative), unlike opinion mining that examines why people feel the way

they do.

In this master thesis we present a system for opinion mining based on information available on

Twitter. Our system performs probabilistic logical reasoning using Bayesian networks. Our

approach can be applied in many other topics such health care, tourism, political opinions,

economic issues etc.

Bayesian networks, are a type of probabilistic graphical models that use Bayesian inference for

probability computations. Bayesian networks aim to model conditional dependence and therefore

causation, by representing conditional dependence by edges in a directed graph. The probability

to reach from one state to the next state (edge), use the joint probability distribution.

Mathematically, the joint probability distribution is the probability of two or more events

happening at the same time (happening together). The joint probability for two events event A and

event B can be written as 𝑃(𝐴 𝑎𝑛𝑑 𝐵) or as 𝑃(𝐴  𝐵)

We have used Twitter data, collected through API’s, in order to construct and train a Bayesian

model which can be applied to new Tweets identifying user preferences. For instance, each user

of social media can post photos for places that he/she has been visited. So, with an appropriate

framework (that use Probabilistic logic through machine learning), questions such as “The user X

likes the city of Chania” can be answered by examining the photos that the user X has posted in

the past. As an application scenario, we focus on travelling. Our system can predict user

preferences, regarding visiting a place or not with some probability.

1.2 Problem Definition

As we have mentioned earlier, our system can predict user preferences, regarding the intention to

visit a place or not with some probability. More specifically, this thesis focuses on mining the

intention of Tweeter users for visiting the Greek island Crete. Initially, we collected data from

Twitter that have been posted by users who have visited Crete or by users which are planning to

visit Crete in the near future. So, data from twitter have been collected based on specific hashtags.

2

The web-page http://best-hashtags.com has been used in order to identify popular hashtags for our

problem [Best- Hashtags, n.d.]. According to this web-page the most popular hashtags used by

users who visited Crete are #visitcrete, #travel, #crete, #creteisland. All tweets with the

aforementioned hashtags have been stored in the form of a Comma-Separated Values (CSV) file

for further proceccing. Then, we developed algorithms in order to generate the evidence set and

the probabilistic rules based on the tweets in the CSV file. Before we present the scientific

methods(Sentiment Analysis, Entity Recognition) that use the algorithms that we have

constructed it is important to define the evidence term. Evidence set is a set of information

decribing events that are true or false. So, the scientific methods that we use in our algorithms are

the following:

• Sentiment Analysis is the process by which we characterize the emotional tone that contains

a set of words [Agarwal, et al., 2011] . That is, how positive or negative the sentiment is.

That process refers to the use of Natural Language Processing (NLP), text analysis,

computational linguistics and biometrics.

• Entity Recognition is a task of information extraction that seeks to locate and classify

named entity mention in unstructured text into some pre-defined categories. Some

categories that are used generaly are location, travel, medical codes, company names etc.

[Ritter, et al., 2011].

The next step, is to use the ProbLog for probabilistic logic reasoning. Probabilistic Logic Programs

are logic programs in which some of the facts are annotated with probabilities. ProbLog is a library

of Python, and with this toolbox we can train the model based on evidence set and probabilistic

rules. In addition, with ProbLog we evaluate the trained model based on new Tweets as mentioned

earlier. In the train process, ProbLog uses the machine learning algorithm Expectation

Maximization E.M. The general idea of E.M algorithm is to estimate the parameters of a statistical

model by an iterative process. We use ProbLog in order to train our model and for the evaluation

of our model as well as. ProbLog uses the machine learning algorithm Expectation Maximization

(E.M.) for training a Bayesian model. The general idea of E.M algorithm is to estimate the

parameters of statistical models with iterative process. A parameter in a probabilistic model is the

quantity entering into the probability in random variables (i.e. P(X=x) = 0.50). The final step is to

evaluate the trained model. Our system takes as input tweets in textual form and then based on the

evidences, returns the opinion about visit Crete with some probability.

1.3 Thesis Structure

The rest of this thesis is organized in the following chapters. In Chapter 2, we present the

background and related work in machine learning and probabilistic logic reasoning. In addition,

the Bayes’ law in presented. Also, the Bayesian method in machine learning, both inference and

learning, is presented. In Chapter 3, an overview of our machine learning system is presented. In

Chapter 4, the architecture of our machine learning system is discussed. In Chapter 5, the basic

components of our system are presented. In Chapter 6, some sample sessions of our system are

illustrated. In Chapter 7, the evaluation of our system using RME metrics is presented. In Chapter

8, the conclusions of this research and future work are discussed.

http://best-hashtags.com/

3

2 Background and Related Work

In this chapter we present all scientific methods that have been used for the development of our

system. Initially, a short review of Machine Learning domain will be presented and how it is

applied in Probabilistic Logic Reasoning. Next, the Bayesian method in the Machine Learning

domain is presented. Finally, all related work of our approach is discussed.

2.1 Introduction to Machine Learning

In computer science, Machine Learning is a very popular and important scientific method[Shindle,

et al, 2018]. Machine Learning is at the core of artificial intelligence research. Machine Learning

is the learning in which machine can learn by its own without being explicitly programmed. This

science, provides to an intelligent system the ability to automatically learn and improve from

experience. The most popular learning algorithms belong in the following categories: supervised

learning, unsupervised learning and reinforcement learning. On one side, supervised learning is

a learning in which we teach or train a model using data which are well labeled, it means that some

or all data are already tagged with the correct answer. On the other side, unsupervised learning is

the training of a model using information that is neither classified nor labeled and allowing the

algorithm to act on that information without guidance. In the reinforcement learning, the system

is given a sequence of examples or states and a reward after completing that sequence, it learns to

predict the action to take in for an individual example or state. This can also be done through

direct interaction with the intended environment.

The algorithms which perform supervised learning are classified into the following two categories:

• Classification: An algorithm performs classification when the output variable is a category,

a class such as “disease” and “no disease”

• Regression: An algorithm performs regression when the output variable is a real value such

as “weight” or “probability”.

The algorithms that use unsupervised learning techniques can be classified into the following two

categories:

• Clustering: An algorithm performs clustering by discovering the inherent groupings in the

data, such as grouping customers by purchasing behavior, etc.

• Rule-based: The rule-based method is the machine learning method for discovering

important relations between variables in large datasets. All significant association rules

between items in the database can be discovered by algorithms which perform machine

learning by the rule-based method [Agarwal, et al, 1993].

4

2.2 Machine Learning and Probabilistic Logic Reasoning

The term “probabilistic logic” was first used by Nils Nilsson in 1986 [Nilsson, 1986], where the

truth values of clauses are probabilities. The proposed semantical generalization induces a

probabilistic logical entailment, which reduces to ordinary logical entailment when the

probabilities of all sentences are either 0 or 1. This generalization applies to any logical system for

which the consistency of a finite set of sentences can be established. Other scientific methods they

use probabilistic logic are Markov Logic Network, Bayesian Logic, Probabilistic Argumentation,

etc. The most popular application areas that use Probabilistic Logic Reasoning are the following:

• Statistics

• Bioinformatics

• Game theory

• Psychology

• Real-life

As we mentioned earlier, there are many scientific methods that use Probabilistic Statistical

relational learning (SRL) studies the integration of probabilistic reasoning with machine learning

and first order and relational representations. Statistical Relational Learning is related to the

research work in this thesis. This is discussed in Section 2.10.

2.3 The Bayes’ law in our System

As it is known the Bayesian Networks use the Bayes theorem (alternatively Bayes’ law or Bayes

rule) in order to perform probabilistic inference. We present the Bayes’ law based on the trained

model of our system.

𝑃𝑀(𝜃|𝐷) =
𝑃𝑀(𝐷|𝜃) ∗ 𝑃𝑀(𝜃)

𝑃𝑀(𝐷)

The items from the model, shown in Figure 8, correspond to the elements of the above formula as

follows:

• PM(θ|D) stands for the probability of hypothesis θ when D is given (evidence). In our

model θ corresponds to the item “visitLocation” (Figure 10 Trained Bayesian Network)

and D corresponds to the evidence data, i.e. “locationInTweet”, “negativeSentiment”,

“positiveSentiment” , “userLocation”, “hotel”,”restaurant”,”tourism” and “vacation”.

• PM(D|θ) stands for the probability of evidence D given that the model parameters θ, i.e.“

visitLocation”, are known

• PM(D) is the total probability of generating these data under each and all possible θ (in our

case we have just one rule about visiting Crete).

5

2.4 Bayesian Networks Inference

In this sub-section we will describe the inference from Bayesian Networks. As it is known

Bayesian Networks are a type of probabilistic graphical model that uses Bayesian inference for

probability computations. A Bayesian is a Directed Acyclic Graph (DAG) G representing a

dependency structure over a set of random variables X = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛}, where each node 𝑁𝑖

(1≤i≤n) represents a random variable and it has a direct influence on other random variables.

Because each node corresponds to a random variable, i.e. 𝑁𝑖 = 𝑋𝑖 (1≤i≤n) we will denote each

node by the random variable 𝑋𝑖 (1≤i≤n) that it represents. In addition, Bayesian Networks have

conditional probability distribution (CPD) associated with each aforementioned nodes-random

variables. In the Bayesian Networks, the conditional probability distribution of X is denoted by

𝑐𝑝𝑑(𝑋) and the parents of a node X are denoted by 𝑃𝑎(𝑋) . So, for node X its cpd(X) is defined

in terms of its parents of 𝑃𝑎(𝑋) as follows [Farasat et, al. 2015] [De Raedt, 2008].

𝑐𝑝𝑑(𝑋) = 𝑃(𝑋|𝑃𝑎(𝑋))

Let have the following network which is almost a standard example for discussing Bayesian

Networks[Farasat et, al. 2015] [De Raedt, 2008] that is illustrated in Figure 1.

Figure 1 Bayesian Network and joint probability distributions

6

As it is known, conditional dependence is a relationship among random variables, i.e. nodes in

Bayesian nets. More specifically, conditional dependence is a relationship, between two random

variables or events that are dependent when a third occurs. The above network, Figure 1, represents

5 random variables, {Burglary, Earthquake, Alarm, JohnCalls, MaryCalls}. These random

variables have a set of values such {true, false}. The edge (Burglary, Alarm) shows the direct

influence among the random variables Burglary -> Alarm. So, between these two variables we

have conditional dependence. That is, the random variable Alarm conditionally depends on the

random variable Burglary. The network, also represents the conditional independence among the

variables. For example, the variables MaryCalls and Burglary are conditional independent when

Alarm is given. According to [De Raedt, 2008] based on local Markov assumptions, we can write

the joint probability density as:

𝑃(𝑋1, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖| 𝑋1, … , 𝑋𝑖−1) =

𝑛

𝑖=1

∏ 𝑃(𝑋𝑖| 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)).

𝑛

𝑖=1

Let’s denote random variables by their initials, i.e. JohnCalls by J, MaryCalls by M, Alarm by

A, Burglary by B and Earthquake by E. Let’s assume that alarm rang, Mary and John calls, and

we know that there was no earthquake or burglary in the house. The aforementioned events

correspond to joint probability distribution and is defined by the set {J, M, A, ¬B, ¬E}. According

to the above formula, the joint probability distribution of the set {J, M, A,¬B,¬E } is calculated

as follows:

𝑃(J, M, A, ¬B, ¬E) = ∏ 𝑃(𝑋𝑖| 𝑋1, … , 𝑋𝑖−1) = ∏ 𝑃(𝑋𝑖| 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)).

𝑛

𝑖=1

𝑛

𝑖=1

= 𝑃(𝐽|𝐴) ∗ 𝑃(𝑀|𝐴) ∗ 𝑃(𝐴|¬𝐵, ¬𝐸) ∗ 𝑃(¬𝐵) ∗ 𝑃(¬𝐸) = 0.90 ∗ 0.70 ∗ 0.001 ∗ 0.999 ∗ 0.998

= 𝟎. 𝟎𝟎𝟎𝟔𝟐

2.5 Likelihood function

Τhe term parameter means the quantity entering into the probability of a random variable , e.g.

P(X=x) = 0.43. Ιn many probability distributions we do not know its parameters, and in this case,

we use Likelihood function to estimate these parameters using sample data. In general, the

Likelihood function gives us an idea of how well the data summarizes parameters. The Probability

Mass Function (PMF) of a discrete random variable X gives the probability of each numerical

value x that the random variable can take, i.e. pX(x)=P({X=x}) is the probability of the event

{X=x}.

7

Now, we give the definition of discrete likelihood function. Let’s we have the discrete random

variable X with probability mass function p depending on the parameter θ. So, we have the

following equation:

𝐿(𝜃|𝑥) = 𝑝𝜃(𝑥) = 𝑃𝜃(𝛸 = 𝑥)

We know that, the probability of the value x of random variable X for the parameter value θ is

written as follows:

𝑃(𝑋 = 𝑥|𝜃)

Τhe likelihood 𝐿(𝜃) is equal to the probability that a particular outcome (is a possible result of

an experiment) x is observed, when the true value of the parameter is θ.

𝐿(𝜃) is called the 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 and is expressed as follows:

𝐿(𝜃) = 𝑃(𝑋 = 𝑥|𝜃)

To be more accurate, we give an example. Let’s have the experiment of coin flip. We have the

parameter 𝑝𝐻 which corresponds to the “fairness” of the coin. For perfectly fair coin we have the

parameter 𝑝𝐻 = 0.5. Now, we start the experiment, we flip the coin two times and observing the

following data: two heads in two tosses.

We assume that each successive coin flip is identically and independently distributed. A set of

random variables are identically and independently distributed (iid) if each random variable has

the same probability distribution as the others and they are mutually independent. Let X and Y be

the random variables for the 1st and the 2nd coin toss respectively.

P(Y=h|X=h) = P(Y=h  X=h) / P(X=h) (1)

P(Y=h|X=h) = P(Y=h) (2) because the random variables X and Y are iid

From (1) and (2) we have P (Y=h  X=h) = P(X=h) × P(Y=h) = ½ × ½ = ¼

Let X is the random variable and Y be the random variables that corresponds to the 1st and the 2nd

coin toss respectively. In addition, h stands for head. So, according to the above formula we have

the following:

𝑃(𝑌 = ℎ  X = h) = 𝑃(𝑋 = ℎ) ∗ 𝑃(𝑌 = ℎ) = 0.5 ∗ 0.5 = 𝟎. 𝟐𝟓

Hence, given the observed data HH (two heads in two tosses), the likelihood function is written

as follows:

𝐿(𝜃|𝑥) = 𝐿(𝑝𝐻 = 0.5|𝐻𝐻) = 𝑃𝜃(𝛸 = 𝐻) ∗ 𝑃𝜃(𝛸 = 𝐻) = 0.5 ∗ 0.5 = 𝟎. 𝟐𝟓

8

Figure 2 Likelihood function of example

As it is known, the probability is the number between 0 and 1 and it is the description of how likely

an event is to occur. Also, in other words probability is the percentage that a success occurs. In

summary, the likelihood function according to the aforementioned examples, is the conditional

probability that an event occurs by knowing the probability of a success occurrence.

2.6 Structure Learning-Parameter Learning

In this sub-unit, we will describe two very important problems over Bayesian Networks, such

structure learning and parameter learning. In a Bayesian network the DAG is called the structure

and the values in the conditional probability distributions are called the parameters. The learning

problem in a Bayesian Network includes the structure learning and the parameter learning tasks.

2.6.1 The parameter estimation problem.

In this subsection we will discuss the problem of parameter learning from data in Bayesian

networks. In order to study this problem, we have to assume that we know the structure of the

Bayesian network, i.e. the DAG. That is , we know the conditional dependencies of a set of random

9

variables. The problem of parameter learning involves estimates of the values of relative

frequencies. The basic formalism of parameter learning is the following.

Definition

The problem of parameter learning is formalized from a set of elements that are given and a set of

elements that they have to be found [De Raedt, 2008].

Given Elements

• A set of examples E

• A probabilistic model M= (S, λ) with structure S and parameters λ.

• A probabilistic coverage relation P (e | M) that computes the probability of observing the

example e given the model M.

• A scoring function score (E, M), that employs the probabilistic coverage relation P(e|M).

This function is used to quantify the fitting of a Bayesian Network. This function it returns

the maximum score that corresponds the best fit of the Bayesian Network.

Asked Elements

• After we have the above formalism, the problem is to find the parameters 𝜆∗ that maximize

the scoring function, i.e.

𝜆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒(𝐸, (𝑆, 𝜆))

It is mentioned in [De Raedt, 2008] that “the problem specification shows that parameter

estimation is essentially an optimization problem that depends on the scoring function and type of

model employed. The standard scoring function is the probability of the model or hypothesis given

the data as we present earlier in the Given Elements. This yields the maximum a posteriori

hypothesis 𝐻𝑀𝐴𝑃 such:

𝐻𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑃(𝐸|𝐻) ∗ 𝑃(𝐻)

𝑃(𝐸)

The maximum a posteriori hypothesis is the estimate of an unknown quantity that corresponds at

the value that takes a discrete random variable where it has the maximum parameter (probability).

Example 1

10

Let’s have the following Bayesian Network with two nodes. That is a subnetwork of the one

shown in Figure 1. This Bayesian Network is illustrated in Figure 3.

Figure 3 Probabilistic model M with structure S

Let have the full observable data such the ones shown in Table 1. That is, the set of examples E

on the probabilistic model M is {e1, e2, e3, e4}. In the next discussion, the random variables of

this Bayesian network are denoted by their initials which are shorter, Alarm is denoted by α and

JohnCalls is denoted by j. As we mentioned earlier λ is used to denote the parameter of a model.

We have the following parameters 𝑃(𝛼) = 𝜆𝜊 and 𝑃(¬𝑎) = (1 − 𝜆𝜊) which are illustrated in

Table 2 . The distributions of the Probabilistic Model in Figure 3 are specified over {true, false}.

 In Table 3, represented the probability distribution over the model M.

Examples a j

e1 true true

e2 true false

e3 false true

e4 false false

Table 1 Completed dataset with examples E

Table 2 Parameters for P(a)

Table 3 joint distr. with parameters

P(a)

(𝝀𝝄,𝟏 − 𝝀𝝄)

a P(j|a)

true (𝝀1,𝟏 − 𝝀1)

false (𝝀2,𝟏 − 𝝀2)

11

In order to understand the usefulness of the likelihood function in parameter estimation problem

we compute the likelihood of each one of the examples of Table 1.

The likelihood for example e1, satisfying specific values of random variables such a=true and j=

true is the following :

 𝑃(𝑎, 𝑗) = 𝑃(𝑎) ∗ 𝑃(𝑗|𝑎) = 𝝀𝟎 ∗ 𝝀𝟏

The likelihood for example e2, satisfying specific values of random variables such a=true and j=

false is the following :

 𝑃(𝑎, ¬𝑗) = 𝑃(𝑎) ∗ 𝑃(¬𝑗|𝑎) = 𝝀𝝄(1 − 𝝀1).

The likelihood for example e3, satisfying specific values of random variables such a=false and

j= true is the following :

 𝑃(¬𝑎, 𝑗) = 𝑃(¬𝑎) ∗ 𝑃(𝑗|¬𝑎) = (1 − 𝝀𝟎) ∗ 𝝀𝟐

The likelihood for example e4, satisfying specific values of random variables such a=false and

j= false is the following :

 𝑃(¬𝑎, ¬𝑗) = 𝑃(¬𝑎) ∗ 𝑃(¬𝑗|¬𝑎) = (1 − 𝝀𝟎) ∗ (1 − 𝝀𝟐)

As it is known, we have the model M with structure S represented in Figure 3, and we also have

the set of examples E illustrated in table Table 1. In the next, we show in details the required steps

in order to find the maximum likelihood estimation.

Step 1:

The first step, computes the probability of observing the set of examples E given the model M, it

is denoted by the notation P(E|M). So, under the i.i.d assumption, for n=4 examples we have the

following equation that corresponds to the likelihood of the data of the table Table 1. Also, it is

important to mention that we use |x| notation, that corresponds the number of examples of Table 1,

satisfying the logical condition x.

Equation 2.1:

𝑃(𝐸|𝑀) = ∏ 𝑃(𝑒𝑖 | 𝑀)

𝑛=4

𝑖

= 𝑃(𝑒1|𝑀) ∗ 𝑃(𝑒2|𝑀) ∗ 𝑃(𝑒3|𝑀) ∗ 𝑃(𝑒4|𝑀) =

 𝜆0
|𝑎|

(1 − 𝜆0)|¬𝑎| 𝜆1
 |𝑎 ∧ 𝑗 |

(1 − 𝜆1)|𝑎∧¬𝑗 | 𝜆2
 |¬𝑎 ∧ 𝑗 |

(1 − 𝜆2)|¬𝑎∧¬𝑗 |

12

Step 2:

The above function can be maximized by maximizing the logarithm of the function instead, which

is easier as well as justified because the logarithm is a monotonic function. The log-likelihood can

be maximized by computing the derivatives, setting them to 0, and solving for the 𝜆𝑖 with the

following steps:

Equation 2.2

L = log P(E | M) = = log (𝜆0
|𝑎|

 (1 − 𝜆0)|¬𝑎| 𝜆1
 |𝑎 ∧ 𝑗 |

 (1 − 𝜆1)|𝑎∧¬𝑗 | 𝜆2
 |¬𝑎 ∧ 𝑗 |

 (1 −

𝜆2)|¬𝑎∧¬𝑗 |) == log (𝜆0
|𝑎|

) + log (1 − 𝜆0)|¬𝑎| + 𝑙𝑜𝑔 𝜆1
 |𝑎 ∧ 𝑗 |

+ (1 − 𝜆1)|𝑎∧¬𝑗 | +

 𝜆2
 |¬𝑎 ∧ 𝑗 |

+ (1 − 𝜆2)|¬𝑎∧¬𝑗 |) =

 = |𝛼| log 𝜆0 + |¬𝛼| log(1 − 𝜆0) + |𝛼 ∧ ¬𝑗|𝑙𝑜𝑔𝜆1 + |𝑎 ∧ ¬𝑗|log (1 − 𝜆1)

+ |¬𝑎 ∧ 𝑗| log 𝜆2 + |¬𝑎 ∧ ¬𝑗| log(1 − 𝜆2)

The next step is to find the derivates of 𝜆𝑖 as we mentioned. This is calculated as follows.

𝜕𝐿

𝜕𝜆0
=

|𝑎|

𝜆0
−

|¬𝑎|

1 − 𝜆0

𝜕𝐿

𝜕𝜆1
=

|𝑎 ∧ 𝑗 |

𝜆1
−

|¬𝑎 ∧ 𝑗 |

1 − 𝜆1

𝜕𝐿

𝜕𝜆2
=

|𝑎 ∧ 𝑗 |

𝜆1
−

|¬𝑎 ∧ 𝑗 |

1 − 𝜆1

Step 3:

Setting these equal to 0 and solving for the 𝜆𝑖 yields.

𝜆0 =
|𝑎|

|𝑎| + |¬𝑎|

𝜆1 =
|𝑎 ∧ 𝑗 |

|𝑎 ∧ 𝑗| + |𝑎 ∧ ¬𝑗|

𝜆2 =
|¬𝑎 ∧ 𝑗 |

|¬𝑎 ∧ 𝑗| + |¬𝑎 ∧ ¬𝑗|

Summarizes, 𝜆∗ corresponds to the parameters that maximize the likelihood function (maximum

likelihood estimation). These parameters are 𝜆0, 𝜆1, 𝜆2.

13

2.6.2 The structure learning problem

So far, we have analyzed the parameter estimation problem which has been studied in this thesis.

In this subsection we will discuss the problem of structure learning from data in Bayesian networks

even though we did not study this problem in this thesis. We perform this discussion for the reader

of this thesis in order to have a complete view of the learning problem in Bayesian networks.

Therefore, important techniques have been developed in order to learn the structure of a model

from a given data set. So, we give a short brief in structure learning technique. Τhis technique was

not used in our system in the learning procedure, because our model has known structure of DAG

based on algorithms that we have constructed. Furthermore, in the following bullets we will give

some important definitions of structure learning technique [De Raedt, 2008].

Given Elements:

• We have a set of examples E

• We have also, a language 𝑳𝑴 of possible models of the form M = (S, λ) with parameters

λ and structure S

• A probabilistic coverage relation P(e|M) that computes the probability of observing the

example e given the model M

• A scoring function score (E, M) that employs the probabilistic coverage relation P(e|M).

We use, the same function as we presented in parameter estimation problem. So, this

function is used to quantify the fitting of a Bayesian Network.

Asked Elements:

In the following example we will find the model M = (S, λ) that maximizes score (E, M) that is

𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒(𝐸, 𝑀)

This problem is a search problem, because, there is a space of possible models to be considered,

defined by the language 𝐿𝑀 , and the goal is to find the best one, according to the scoring function

(model with the maximum score). In Bayesian Networks there are two possible cases:

1. The first case is when network is fully connected (where there is an edge between any pair

of random variables)

2. The second case is when no links are contained at all. To evaluate a candidate structure S,

the parameters λ are first estimated and then the scoring function is used to determine the

overall score of the resulting model.

The problem with the scoring function, is that always prefers a fully connected network. To

evaluate a candidate structure S, the parameters λ are first estimated and then the scoring function

is used to quantify the overall score of the resulting model. So, in structure learning problem the

goal is to find the model or hypothesis with the maximum posterior probability such as follows

[De Raedt, 2008]:

14

𝐻 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝐻|𝐸) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑃(𝐸|𝐻)𝑃(𝐻) =

𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑜𝑔 𝑃(𝐸|𝐻)+log P(H)

2.7 Other Graphical Models

 In this subsection, we will make a brief introduction to the other type of probabilistic graphical

models, i.e. the Markov Networks.

Markov Networks: is a graphical model for the joint distribution of a set of variables

X={𝑋1,𝑋2 , … , 𝑋𝑛} ∈ X. Markov model can represent each random variable 𝑋𝑖 with a directed

graph. In the following bullets we mention the properties of Markov models.

• We have a set of states: {𝑠1,𝑠2 , … , 𝑠𝑛}.

• Process moves from one state to another generating a sequence of states such the following

𝑠𝑖1,𝑠𝑖2, 𝑠𝑖3, … , 𝑠𝑖𝑘, …

• Chain property: probability of each subsequent state depends only on what was the

previous state, so, the following is the formula for computing the probability.

 P (𝑠𝑖𝑘,|𝑠𝑖1,𝑠𝑖2, … , 𝑠𝑖𝑘−1) = P (𝑠𝑖1,| 𝑠𝑖𝑘−1)

• To define Markov model, the following probabilities have to be specified, transition

probabilities 𝑎𝑖𝑗 = 𝑃(𝑠𝑖 | 𝑠𝑗) and initial probabilities 𝜋𝑖 = 𝑃(𝑠𝑖).

So, to make it more understandable, we will give an example. Suppose that we have two states

‘Rain’, and ‘Dry’ which represent random variables. In addition, we have transition probabilities

P(‘Rain’|’Rain’) = 0.3, P(‘Dry’|’Rain’) = 0.7, P(‘Rain’|’Dry) = 0.2, P(‘Dry|’Dry’) = 0.8. And final,

we have the initial probabilities P(‘Rain’) = 0.4, P(‘Dry’) = 0.6.

Figure 4 Markov Model

Let have the following sequence of states {‘Dry’, ‘Dry’, ’Rain’, ’Rain’}

According to the aforementioned formula we have the following calculations:

15

P(𝑠𝑖𝑘,| 𝑠𝑖𝑘−1)P(𝑠𝑖𝑘,| 𝑠𝑖𝑘−1)….P(𝑠𝑖2,| 𝑠𝑖1)P(𝑠𝑖1)=

P(‘Rain’ | ‘Rain’)P(‘Rain’|’Dry’)P(‘Dry’|’Dry’)P(‘Dry’)=

0.3*0.2*0.8*0.6=0.0288.

The above Markov model with two states Rain-Dry and the transition probabilities in ProbLog is

expressed as follows:

Program 1 Markov Model in ProbLog

%initial probabilities

0.4::init(rain).

0.6::init(dry).

%transition probabilities

0.3::stateTransition(rain,S,rain).

0.7::stateTransition(rain,S,dry).

0.2::stateTransition(dry,S,rain).

0.8::stateTransition(dry,S,dry).

2.8 Estimate of parameters in statistical models

In this sub-unit we will mention shortly some algorithms that can estimate the parameters of

statistical models. The most popular algorithms are Bayesian Estimation and Expectation

Maximization (E.M). The Bayesian Estimation algorithm is the alternative principle to maximum

likelihood estimation which has been discussed in Section 2.5. The steps of the Bayesian

Estimation algorithm are the following:

Steps of Bayesian Estimation Algorithm

• Start with a prior distribution and use experience (from dataset) to update the distribution.

• Collapse the posterior distribution to the mean value and use this as the final value of the

parameter.

• If we have binary values (True False), let X be a binary value, and we have performed a

number of independent experiments of which n turned up True and m turned up False. Then

starting with even prior distribution for θ the Bayesian estimate for P(X=True) is

16

𝑛 + 1

𝑛 + 𝑚 + 2

The basic steps of Bayesian Estimation algorithm have been presented. The detail presentation of

Expectation Maximization algorithm follows. This algorithm has been used by our system learning

system. The EM algorithm concerns the case where the data are not fully observable, but some

of them are observable (Table 4) [De Raedt, 2008].

 a j

e1 true true

e2 true ?

e3 false false

e4 ? true

Table 4 Dataset with missing values

Missing data occur when some values of the random variables are occasionally unobserved.

Latent state occurs when the values for some random variables are always unobserved. This state

is illustrated in table Table 5. The latent variable is the random variable a because in all examples

of Table 5 the values are unobserved.

 a j

e1 ? true

e2 ? ?

e3 ? false

e4 ? true

Table 5 Latent State

After we mention the above attributes that may have any dataset, we use the log-likelihood in the

data which is illustrated in Table 4 . Let’s we have the log-likelihood function with parameter λ,

17

called Q(λ). The most difficult with this function is its dependence on unobserved values, i.e. the

unobserved values are represented in Table 4 as “?”. According to [De Raedt, 2008] the natural

way of dealing with these values (unobserved – observed) is to compute the expected likelihood

function Q(λ). The expectation is taken over the missing values of the examples that corresponds

to Table 4. Let’s assume that we have examples of the following form:

𝑒𝑖 = 𝑥𝑖 ∪ 𝑦𝑖 (1 ≤ i ≤ 4)

That is, each example 𝑒𝑖 (1 ≤ i ≤4) is composed of an observed part 𝑥𝑖 and an unobserved part

𝑦𝑖. The expectation maximization algorithm consists of the following two steps.

Steps of Expectation Maximization Algorithm.

• E-step: called the expectation step. In this step, the observed data and the present

parameters of the model M, compute a distribution over all possible completions of each

partially observed data case.

• M-step: called the maximization step. This step of the algorithm is described [De Raedt,

2008] as follows, “in M-step using each completion as a fully observed data case weighted

by its probability, compute the updated parameter values using frequency counting

(these frequencies over the completions are called the expected counts)”.

In order to use the expectation maximization algorithm we assume that there is a current model

𝑀(𝜆𝑗) which is used to compute the expected values of unobserved part of dataset 𝑦𝑖 (Table

4). In addition, it is used to compute 𝑄(𝜆). The next formula illustrates the computation of Q(λ).

The E in the formula corresponds to the expectation which is taken with regard to the current

model 𝑀(𝜆𝑗) and the missing values 𝑦𝑖 of dataset in Table 4. The 𝑳(𝝀), corresponds to the

likelihood as a function of parameters λ which we have mentioned in Equation 2.2.

Equation 2.3

𝑄(𝜆) = 𝑬[𝐿(𝜆)] = 𝑬[log 𝑃(𝐸|𝑀(𝜆))] = 𝑬 (∑ log (𝑃(𝑒𝑖|𝑀(𝜆)))

𝑒𝑖∈𝐸

) =

= 𝑬 (∑ log (𝑃(𝑥𝑖 , 𝑦𝑖|𝑀(𝜆)))

𝑒𝑖∈𝐸

) = ∑ 𝑃 (𝑦𝑖|𝑥𝑖, 𝑀(𝜆𝑗))

𝑒𝑖∈𝐸

𝑙𝑜𝑔𝑃(𝑥𝑖 , 𝑦𝑖|𝑀(𝜆))

According to the above formula (Equation 2.3), first need to compute the 𝑃 (𝑦𝑖|𝑥𝑖 , 𝑀(𝜆𝑗)) .

These values are computed by normal inference procedures. In the estimation step, we estimate

the likelihood that the examples 𝑥𝑖 are completed with unobserved part 𝑦𝑖 given the current

18

model M (𝜆𝑗). When these estimates are known, the expected likelihood of function 𝑄(𝜆) is

computed. We give an example that illustrates the steps of E.M algorithm.

Illustration of EM algorithm by an example.

Let have the dataset that is presented in Table 4.

E-step of E.M. algorithm: The first step of E.M algorithm is to complete the data set. As we

mention, in the dataset there are missing values (in 𝑒2, 𝑒4 Table 4). More specifically, the result

of the example 𝑒2 is split into two examples 𝑒2,1 𝑒2,2. The first, 𝒆𝟐,𝟏 has the value true for j (j

corresponds johnCalls random variable) and receives the probability of P (j | a). The second, 𝒆𝟐,𝟐

has the value false, and receives the probability of P (¬𝑗 | 𝑎). These fractional examples can be

used for computing the expected counts and perform the maximization step. For example, in

parameter 𝜆𝑜 can be re-estimated as (the same process corresponds to the all of parameters of the

model 𝜆0𝜆1𝜆2):

𝜆0 =
𝑒𝑐(𝑎)

𝑒𝑐(𝑎) + 𝑒𝑐(¬𝑎)

After we re-estimate the parameter 𝜆0 it follows the maximization step.

M-step of E.M. algorithm: As we mentioned, in this step we compute the updated parameter

values using expected counts. So, 𝑒𝑐𝜆(𝑎) is the expected count of the number of occurrences of a

given the current set of parameters λ = (𝜆0, 𝜆1, 𝜆2), now replaces |a| with the following:

𝑒𝑐𝜆(𝑎) = ∑ 𝑃(𝑎 |𝑒𝑖) = 2 + 𝑃(𝑎 | 𝑒4)
𝑖∈{1,…,4}

Where P (a | 𝑒4) has to be estimated using λ, with the following:

𝑃(𝑎 | 𝑒4) = 𝑃(𝑎|𝑗) =
𝑃(𝑎 ∧ 𝑗)

𝑃(𝑎)
=

𝜆0𝜆1

𝜆0𝜆1 + (1 − 𝜆0)𝜆2

So, the above is the process that follows the E.M algorithm.

2.9 Basic Features of ProbLog

In this subsection we will discuss some basic features of ProbLog [De Raedt et, al., 2007]. As we

mentioned earlier, ProbLog is a probabilistic extension of Prolog. It can be used as a standalone

tool or as a library in Python. In our system, it has been used in connection with Python from the

19

library of Python. ProbLog allows us to encode the uncertainties that are inherent in real world

applications. A ProbLog program consists -as Prolog- of a set of definite clauses. Moreover, in

ProbLog every clause Ci is labeled with probability Pi. Let have the following example. Suppose

there is a burglary in a house, with probability 0.7 and an earthquake with 0.2 probability. We have

the following rules in pseudo-code.

• if there is a burglary and an earthquake then the alarm rings with probability 0.9

• if there is only a burglary then it rings with probability 0.8

• if there is only an earthquake then it rings with probability 0.1

• if there is neither a burglary nor an earthquake then the alarm doesn’t ring.

In Figure 5 illustrates the Bayesian Network of given example.

Figure 5 Burglary Example

The aforementioned rules in pseudo-code and the Figure 5, can be modeled in two different

approaches. In the first approach, the modelling is performed by using probabilistic facts and rules.

More specifically, Program 1 contains probabilistic facts (called also random variables) and

rules.

Program 2: Create rules using probabilistic facts.

%probabilistic facts

0.7::burglary.

0.2::earthquake.

20

0.9::p_alarm1.

0.8::p_alarm2.

0.1::p_alarm3.

%rules

%if there is a burglary and an earthquake the alarm rings with probability 0.9

alarm :- burglary, earthquake, p_alarm1.

%if there is a burglary only, it rings with probability 0.8

alarm :- burglary, \+earthquake, p_alarm2.

%if there is an earthquake only, it rings with probability 0.1

alarm :- \+burglary, earthquake, p_alarm3.

% we know that the alarm rang

evidence(alarm).

%what is the probability of a burglary

query(burglary).

The program Program 2 can also represented in the follow link

https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=564f615f5f657deb2eacb993d5

9d69f6

In the second approach, the modelling is performed by using annotated disjunctions in rules. In

this approach we can replace the clause “alarm :- burglary,earthquake,p_alarm1.” by the following

clause “0.9::alarm :- burglary, earthquake.”.

In every rule, probability is placed in the head of clause. More specifically, Program 3 models

the same problem as the one of Program 2, in addition it uses rules that are annotated with

probability.

Program 3 Create rules with annotated disjunctions

0.7::burglary.

0.2::earthquake.

%probabilistic rules

0.9::alarm :- burglary, earthquake.

https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=564f615f5f657deb2eacb993d59d69f6
https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=564f615f5f657deb2eacb993d59d69f6

21

0.8::alarm :- burglary, \+earthquake.

0.1::alarm :- \+burglary, earthquake.

% we know that the alarm rang

evidence(alarm).

%what is the probability of a burglary

query(burglary).

The program Program 3 can also represented in the follow link

https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=9d7aff7dc8facf16e617edcb256

641ce

We know the E.M uses iteration to estimate the parameters of statistical models, so for that reason

ProbLog uses three forms for defining the iteration. We represent these forms that use ProbLog.

In other words, when learning the probability annotation in a probabilistic fact-random variable or

rule- with ProbLog we can use three possible forms. We give an example to represent that three

forms. Let have the following program Program 4.

Program 4 the possible forms that use ProbLog

t(_)::burglary.

t(0.50)::earthquake.

0.6::alarm.

Based on Program 4, we represent the following forms that can use in ProbLog program. These

three forms are the following [De Raedt et, al., 2007]:

• Probability to be learned corresponds to the form t(_): The form of “t(_)”, as in the

instance “t(_)::burglary”, indicates that the probability of this fact-random variable has to

be learned from data. In the first iteration of EM, each random variable is initialized with

a random probability.

• Intermediate value of the probability corresponds to the form t(p): The form “t(p)”, as

in the instance “t(0.50)::earthquake”, indicates that the probability of this fact has to be

learned from data but in the first iteration the EM algorithm it has been assigned 0.5

probability.

• Fixed probability corresponds to the form p: The form of “p”, as in the instance

“0.6::alarm” indicates that the probability of this fact is fixed (it is not learned).

https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=9d7aff7dc8facf16e617edcb256641ce
https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=9d7aff7dc8facf16e617edcb256641ce

22

After we represent the possible forms that use ProbLog, now it is important to illustrate the

example with a Bayesian Network with some unknown parameters. So, let we have the following

network:

Figure 6 Bayesian Network with unknown parameters

This network Figure 6, corresponds model M, with the following below program.

Program 5 Untrained Network with annotated probabilities in every fact

t(_)::burglary.

0.2::earthquake.

t(_)::p_alarm1.

t(_)::p_alarm2.

t(_)::p_alarm3.

%the untrained rules

t(_)::alarm :- burglary, earthquake, p_alarm1.

t(_)::alarm :- burglary, \+earthquake, p_alarm2.

t(_)::alarm :- \+burglary, earthquake, p_alarm3.

Also, we have the following table as set of examples E.

23

 B E A

e1 false ? false

e2 true false true

e3 false ? ?

Table 6 set of Examples E of Bayesian Network

The Table 6 in ProbLog is represented as follows:

Program 6 Examples (specified as evidence, separated by ---)

% representation of the 1st row of Table 5.

evidence(burglary, false).

evidence(alarm,false).

% representation of the 2nd row of Table 5.

evidence(earthquake,false).

evidence(alarm,true).

evidence(burglary,true).

% representation of the 3rd row of Table 5.

evidence(burglary,false).

Based on the examples – evidences Table 6 that are mentioned earlier, we use lfi/2 function. This

function stands for learning from interpretations. Generally, the interpretations are all probabilistic

facts and evidences that are created. More specifically, the interpretations that use lfi/2 are the

rules and the examples (evidences). So, lfi/2 takes the following as input:

• Evidences: is the set of examples that represent events that are true or false. More

specifically, take the Program 6 as input.

• Rules-random variables are the rules and random variables of Bayesian Network

corresponds to Figure 6.

When, lfi/2, use E.M. algorithm to estimate the parameters of the model Figure 6 , then it returns

the trained model as output. This trained model is illustrated in Program 7

24

 Program 7 Trained Bayesian Network

%trained random variables

0.33::burglary.

0.2::earthquake.

0.27::p_alarm1.

1.0::p_alarm2.

0.35::p_alarm3.

%trained rules

0.39::alarm :- burglary, earthquake, p_alarm1.

1.0::alarm :- burglary, \+earthquake, p_alarm2.

0.0::alarm :- \+burglary, earthquake, p_alarm3.

Also, we can run the above program in the following link. If we run the program many times we

will notice that we will have different results and this is because it does not do the same

iterations in the learning process.

https://dtai.cs.kuleuven.be/problog/editor.html#task=lfi&hash=9f4b2a12d6828366886de83acef5

3156&ehash=e722d0902bfa7c3be7515561dba78c67

2.10 Related Work

Our work is related with Statistical Relational Learning (SRL) called also Probabilistic Logic

Learning. As we have described earlier we use Bayesian Logic and ProbLog library in order to

create a machine learning system. In this section, we will give a short brief review of machine

learning systems that use SRL and other scientific methods such Deep Learning, NLP.

As it is known, SRL combines expressive representation formalisms, able to model complex

relational networks. Some of the formalisms in this domain are logic programs with annotated

disjunctions (LPAD) [Vennekens, et al., 2004], probabilistic horn abduction (PHA) [Poole, et al.,

https://dtai.cs.kuleuven.be/problog/editor.html#task=lfi&hash=9f4b2a12d6828366886de83acef53156&ehash=e722d0902bfa7c3be7515561dba78c67
https://dtai.cs.kuleuven.be/problog/editor.html#task=lfi&hash=9f4b2a12d6828366886de83acef53156&ehash=e722d0902bfa7c3be7515561dba78c67

25

1993], ProbLog [De Raedt et, al., 2007]. First, in the next paragraphs we represent systems that

use Probabilistic Logic in order to create machine learning systems.

Probabilistic Soft Logic over the Social Graph: In [Jiwei, et al., 2014] proposed a framework that

use probabilistic reasoning over the social network graph. This framework answers questions

about Twitter users such the following:

• Does this user like cheese cake?

• Is this user a Barcelona F.C. fan?

According to the article, the above questions are answered by building a probabilistic model that

reasons over the user’s attributes in Twitter such as gender and home location and the social

network of the user, such as the user’s friends and spouse. It is mentioned that it is more likely that

a user is a fan of Barcelona if he/she comes from Spain. Also, it is more likely that a user likes

cheese cake if his/her spouse or a friend likes cheese cake. For extracting user’s attributes i.e.

gender, spouse, home location, and preferences (like-dislike) from text they use semi-supervised

data harvesting and vector space models. For probabilistic reasoner they use Probabilistic Soft

Logic. In short terms, we give an example how to extract the attribute Education/Job of a user. So,

in order to identify the Education and Job attributes, it is mentioned in the article that they use

Google+ API2 service. More specifically, for each user, they obtained his/her full name into the

Google + account. Most of the users of Google+, they use many important attributes, such

education and job that used in the aforementioned framework. Also, mention that, the most

important challenge is to match user’s Twitter accounts to Google+ accounts. In addition, they

adopted the friend shared strategy. With this strategy, taken in that if more that 10 percent of and

at least 20 friends are shared by Google + circles and Twitter followers, they assume that the two

accounts point to the same person [Jiwei, et al., 2014].

Information about user’s attributes and preferences in predicate form is specified as the following:

Spouse(UsrA,UsrB), Friend(UserA,UserB), Like(UsA,Entity1).

In addition, in order to model complex relations, they use Probabilistic Logic such as the following

formulas:

Friend(A,B)⋀ Friend(B,C)=>Friend(A,C) friends of friends are friends

Couple(A,B) ⋀ Friend(B,C)=>Friend(A,C) the friend of one member of a couple is also friend

of the other member of the couple.

FRIEND(A,B) ⋀ LKE-SPORTS(A) => LKE-SPORTS(B) If A and B are friends and a sport likes

A, then that sport likes to his friend B.

The important advantage of the aforementioned framework is that it can be answer questions from

different topics by extracting information from Twitter. On the other hand, the disadvantage is

that the export of user attributes is based on web platforms that are not so popular like Google

+.

26

In addition, important formalisms in SRL are the Bayesian Networks and Markov Logic. So, in

the next paragraphs we discuss a brief review of some systems that use these formalisms in order

to model complex real-life situations.

Using Bayesian networks in social networks: in article [Xu, et al., 2019] they propose a framework

for identifying trustworthy users in social networks using the Bayesian approach. In other words,

they use Bayesian Networks to model user profiles and historical records so that their system

recognizes the trustworthy users. The general idea of the system was to employ user features in

order to create a classifier by formalizing trust prediction as a classification problem. In addition,

they mention that “we emphasize the inner reasoning of people when they endeavor to judge

whether a person can be trusted based on their past records rather than focusing on the complex

process of building a trust network”. Also, they assumed all the aforementioned idea can be well

defined in a directed graph (i.e. Bayesian Network). In this directed graph each of the nodes

represent features extracted from user’s records. Also, each edge of the Network corresponds to a

cause-and-effect relationship. Finally, the main contributions of the aforementioned work is the

following:

1. They apply the Expectation-Maximization (EM) algorithm, in order to handle the latent

components.

2. In their experiments, they use two different datasets for evaluation of the model. One was

from Facebook by [Cambria, et al. 2015] and the other was from Twitter by [Chen, et al.,

2015].

3. They conduct, several experiments on Facebook and Twitter and compare the performance

of their method with other machine learning algorithms (i.e. Random Forest [Cambria, et

al. 2015], Naive Bayes [Amor, et,al., 2004], Decision Trees [Amor, et, al., 2004]).

Learning Bayesian Networks from data: in article [Jie, et al., 2002] they proposed algorithms that

use an information-theoretic analysis to learn Bayesian net., from given data. More specifically,

they developed a three-phase analysis algorithm called Three-Phase Dependency Analysis

(TPDA). They mention that algorithm TPDA requires at most O (𝑁4) conditional independence

tests to learn an N-variable Bayesian Network. In addition, they use the TPDA-Π algorithm (i.e.

this algorithm expects an ordering of the nodes), and requires at most O (𝑁2) conditional

independence tests to learn an N- variable Bayesian Network. The aforementioned two algorithms

have been implemented in a Bayesian Network learning system called BN PowerConstructor. This

system used in order to evaluate the aforementioned algorithms and the results show that these

algorithms are efficient and accurate.

Modeling the Infectiousness of Twitter Hashtags: in the research [Skaza, et al., 2017] they

proposed a system that applies dynamic and statistical techniques in order to quantify the

proliferation and popularity of trending hashtags on Social Media. In addition, the social network

used for this research is Twitter. More specifically, it is mentioned that using timeseries data

reflecting actual tweets in New York City and San Francisco, they present estimates for the

dynamics (i.e., rates of infection and recovery) of several hundred trending hashtags using an

epidemic modeling framework coupled with Bayesian Markov Chain Monte Carlo (MCMC)

methods. So, by using the Bayesian method their approach has two aspects. Firstly, it can quantify

27

the spread of certain trending hashtags on Twitter, and second, the same methodology can be used

in a predictive context.

Probabilistic Inference in Twitter Data: in article [Rao, et at., 2016] they propose a framework

called SocialKB. This system is used to model and justify social media posts to determine their

truthfulness, a first step towards identifying emerging cyber threats. In addition, the SocialKB is

based on Markov Logic Networks. Their framework develops a knowledge base in a cohesive

manner regarding the social media posts (i.e. tweets) and actions of people (i.e. user’s behavior).

In the following bullets we describe the main aspects for the aforementioned framework.

• Domain Expert defines the input KB: initially, they use a domain expert/user for defining

the input of the knowledge base (KB). This KB contains predicates and first order logic

formulas.

• Automatically generate evidences: when the predicates are known, the system generates

automatically evidences, based on the social media data.

• Modeling tweets using a KB: they define a set of different types of predicates in the

knowledge base. The first type makes closed – world assumption. In that case, anything

that is not proven to be true, it is assumed to be false. The second type of predicates makes

open-world assumptions, (i.e. what is not known, it may or may not be true).

For example, the predicate tweeted(userID,tweetID), states whether a user posted a specific tweet

or not, the predicate containsHashtag(tweetID,hashtag), is true when the particular tweet, i.e.

tweetID, contains hashtags. Finally, for learning process (i.e. learn the weighs of formulas) they

use Tuffy and it required 14 hours to learn the weights of formulas.

A deep learning framework for named entity recognition: In this research [Xusheng, et al., 2018],

the authors present a novel method for bacterial named entity recognition. As they mention this

application domain is very important because many human diseases have been associated with

bacteria. The proposed method combines domain features and deep learning models. In other

words, integrates the domain features in a deep learning framework combining two different neural

network architecture. One is the long short-term memory (LSTM) that uses entire sequences of

data (i.e. video or speech) and the other architecture is convolutional neural network. In the

evaluation process, two different metrics are used. The first measure is when domain features are

not added, and the second measure is when part of speech (POS) and dictionary features are added.

In the first metric, F1-mesearue is 89.14% and the second is 89.7%. With these metrics prove that

their model achieves an advanced performance in bacterial NER.

In the next paragraph we give a very short brief review of a system that uses Natural Language

Processing and Linguistic Analysis in order to conduct opinion mining from Social Media.

Opinion Mining from Social Networks: a system which uses Twitter data for mining user opinions

about products or services is proposed in [Khyati, et al. 2014]. That is, they present an approach

to extract data from Twitter by performing linguistic analysis on them. The linguistic analysis is

performed by using techniques of Artificial Intelligence and NLP. In addition, the user opinions

28

about products or services they classified as negative, positive and neutral. Some of the main

aspects in this work are the following:

1. This system can classify each sentence in a review.

2. In addition, for each sentence, this system can recognize the subjects of the feeling and the

feature(s) being described.

3. Finally, the aforementioned system, does not need a training set since it depends on

linguistic analysis.

3 Overview of our Machine Learning System

In this chapter we will discuss the main features of our system. After that, we will compare the

features of our system with the ones of related work. In the final subsection of chapter 3 we will

discuss the limitations and future extensions of our system.

3.1 The Main Features of our System

In this subsection we will discuss the main features of our system. We use data from social media

to train our model. As we have mentioned earlier, the social network that we used in order to learn

our model is Twitter. As it is known Twitter is very popular social network nowadays. In addition,

29

users’ data from Twitter are available for analysis. Every developer can use Twitter API for

constructing web applications that use Twitter data. More specifically, in our system we use

Tweepy, that is a python library [Tweepy, n.d.]. Initially, we construct a python program that get

tweets about vacation in Crete based on hashtags. In other words, with our program, we collect the

top tweets used by people that visited Crete or probably like to visit Crete in near future. In

addition, according the web site [Best-Hastags, n.d.] the most popular hashtag that user is used for

vacation in Crete, are the following: #welovecrete, #visitcrete, #creteisland, #crete, #travel. These

hashtags are stored in a python list, and with iterative process we get tweets for each one of the

aforementioned hashtags. After execution the aforementioned program, we collect more than 1000

tweets. In addition, for each tweet, our system gets the text, the tweet creation date and the user’s

home location, that we can defined as data elements. We use these data elements, to create and

train the Bayesian Network. In order to get additional information from the collected data we use

two scientific methods, that is Sentiment Analysis and Entity Recognition. The sentiment analysis

is performed by incorporations into our system the Valence Aware Dictionary and sEntiment

Reasoner called ‘VADER’ which is a Python package. The sentiment analysis concerns how much

positive or negative is each tweet. For, sentiment analysis, the VADER tool, uses a sentiment

lexicon. More specifically, VADER use a list of lexical features, e.g. words, which are generally

labelled according to their semantic orientation as either negative or positive (how positive or

negative a sentiment is). We used this tool because it is applied very easily to text type of social

media and it doesn’t require any training data [Hutto, et at. 2014] . For example, given the

following input:

“I want to go in Crete, because it’s a great place #visitcrete#creteisland”

The sentiment analysis tool returns positive sentiment score (range of score is -1 – 1) because the

text contains positive words such “want” and “great”.

The sentiment analysis tool returns positive sentiment score because the text contains positive

words such “want” and “great”. VADER returns a real value in the interval [-1, 1] where -1

stands for 100% negative sentiment and 1 stands for 100% positive sentiment. The other number

are rated analogously, i.e. 0 stands for 50% negative sentiment and 50% positive sentiment.

Each user of Twitter can mention his/her home location. As we have mentioned earlier, the user’s

home location is one of the data elements that are used for the derivation of the Bayesian Network.

In addition, our system refers to users who are not from Crete. So, for that reason, we have in a

csv file all toponyms of Crete, i.e. a list of more than 500 names of villages and cities, and our

system checks if the user of each tweet is from Crete or not based on these toponyms [data-gov,

n.d.].

Our system uses the Entity Recognition method that we mentioned in Chapter 1. This method

performs the task of information extraction that seeks to locate and classify named entities in

unstructured text into some pre-defined categories. Our system uses the following pre-defined

categories: tourism, location_in_tweet, vacation, political_issues, hotel, restaurant. The next

example shows us how Entity Recognition works in our system. Let’s assume that we have the

following unstructured text:

30

 “I want to go Crete, because it has very good motels”

Our system recognizes the following pre-defined categories in the above text:

• location_in_tweet: this category is recognized on the text because the text contains the

location “Crete”.

• hotel: this category is recognized on the text because the text contains the related word

“motel” which belongs to the more general category “hotel”.

So, we construct algorithms that use the aforementioned two scientific methods (i.e. Sentiment

Analysis, Entity Recognition) for generating the random variables and the evidence set based on

tweets that are stored in CSV file. The data sentiment analysis is performed by using the VADER

tool. This is done by creating in order to create the next two random variables.

• positiveSentiment: this random variable is true when the tweet is positive. That is, it

contains positive words such “good”, “perfect”, etc.

• negativeSentiment: this random variable is true when the tweet is negative. That is, it

contains negative words such “bad”, “terrible”, etc.

We have constructed an algorithm which performs sentiment analysis. It is shown in Chapter 5

Algorithm 1. After the sentiment analysis, our system perform Entity Recognition. In order to

perform Entity Recognition it creates some extra random variables. These extra random variables

are the following:

• hotel: if a tweet contains some word related to ‘hotel’ then this random variable, i.e.

category, is true.

• political issues: if a tweet contains some word related to ‘political issues’ then this random

variable, i.e. category, is true.

• health care: if a tweet contains some word related to ‘health care’ then this random

variable, i.e. category, is true.

• vacation: if a tweet contains some word related to ‘vacation’ then this random variable, i.e.

category, is true.

• visit: if a tweet contains some word related to ‘visit’ then this random variable, i.e.

category, is true.

• travel: if a tweet contains some word related to ‘travel’ then this random variable, i.e.

category, is true.

• restaurant: if a tweet contains some word related to ‘restaurant’ then this random variable,

i.e. category, is true.

All tweets of the training set are stored in a CSV file. This file is given as input into our system

in order to derive some of the aforementioned random variables. Moreover, our system uses the

method of incremental learning. This mean that our system can enhance the derived model by

applying additional training on the model. This is a dynamic training technique. It is mentioned

in [Gepperth, et al. 2016] that “dynamic technique is the one that can be applied when input data

is continuously used to extend the existing model's knowledge (to further train the model)”. More

details about all of features of our model in Chapter 5.

31

3.2 Comparison of Our System with Related Work

Our work capitalized knowledge on Information Extraction on social Media and Statistical

Relational Learning, offering a unique combination of the aforementioned technologies. We know

that many researchers use Twitter API to export user data. The most valuable attributes that a user

can have in social media are location, gender, education/job, published posts (tweets, Facebook

posts). In our system, we use user home location because we want to know if a user is from Crete

or not. At the stage of prediction, our system uses published posts (tweets) from users and performs

opinion mining about visiting Crete. The derived opinion is a possible value because it is given

its truth probability.

In statistical relational learning, many researchers use Bayesian Logic and Markov Logic in order

to model uncertainty. These methods can be used to answer queries such as the following:

• “will this user visit Crete?”

• “has this patient flu?”

• “will it rain tomorrow?”

The most popular formalisms for modeling the uncertainty are the following: a) logic programs

with annotated disjunctions (LPAD) [Vennekens, et al., 2004], b) probabilistic horn abduction

[Poole, et al., 1993] and c) ProbLog [De Raedt et, al., 2007]. Our system uses ProbLog to model

uncertainty. The main task of this research work involves the development of a module which

creates automatically evidence set and rules based on tweets that are stored in the CSV file.

Evidences and rules are the basic features that use probabilistic graphical models for inference and

learning procedures. In our system, we have used Bayesian Networks in order to model uncertainty

due the important benefits of this method. The advantages of this method are the following.

• Suitable from small and incomplete data: It is demonstrated in [Kontkanen, et al. 1997] that

Bayesian Networks can show good prediction accuracy even with few samples in the training

set. In addition, according to Myllymäki there are no minimum sample size which is required

in order to perform the analysis [Myllymäki, et al. 2002]. We considered that it is very

important for our approach to be effective even with a small sample of data. In order to

estimate the conditional probabilities of the Bayesian model the E.M algorithm is used. The

E.M. algorithm requires only the model structure to be known, not the estimation of the

parameters. Then, given the data and the structure of the model it iteratively calculates the

maximum likelihood estimates for the parameters.

• Structure learning possible (as future work): structure learning, is the process that can use

any Bayesian Network. So, it is possible to use data to learn the structure of a Bayesian

Network (BN). Our system is given the structure of the Bayesian Network in order to derive

the trained model. The derivation of the structure of the BN from the data is left as extension

of the system in future work. Specifically, we could apply this scientific method in order to

create the conditional dependencies between the random variables, based on training set i.e.

tweets. As it is known, the conditional dependences in Bayesian Network are defined by the

32

structure of DAG. So, in other words, we can use structure learning problem (as future work)

in order to create the DAG of the Bayesian Network based on the training set.

• Combining different sources of knowledge: The most important feature of Bayesian Models

is the use of prior information. It is mentioned in [Uusitalo, 2007] that “priors reflect our

knowledge of the subject before the research is conducted, and can be either highly

informative and detailed, in case there is a lot of knowledge about the subject already, or very

uninformative, if not much is known. These priors are then updated with data, to obtain a

synthesis of old knowledge and new data. This synthesis can then be used as a prior in a new

study. This mechanism makes the scientific learning process explicit, and also makes the

assumptions made by the scientists transparent and open to discussion”. These networks, have

the advantage that they can combine expert knowledge with the data. These data could have

been created by different sources of knowledge.

• Fast Responses: Once a Bayesian Network is compiled, it can provide fast responses to

queries. In other words, a BN contains a conditional probability distribution for every random

variable in the network which is used by the inference procedure. In addition, it can provide

any probability distribution instantly. This has been taken into account in our system, because

a lot of new data (new tweets) are given to the system for prediction and we would like to get

immediate response from the system. Therefore, we think this feature as a very important

advantage of Bayesian Networks.

3.3 Limitations and Extensions of our System

Systems that use machine learning techniques usually have some limitations. The most common

limitation that a machine learning system has is the dataset that use for training. More specifically,

the training set, may not have enough information to properly train the model. We identified some

limitations during our research. In Twitter, each user is assigned a user location in a text field.

This location is the user’s home location, but we cannot confirm that the user lives in that place.

This is the most important limitation in our work because inaccurate location declaration by the

user can result in incorrect predictions. For the training of our model we used specific hashtags

from the tweeters of the training set, i.e. #visitcrete, #travel, #Crete, #creteisland [Best-Hashtags,

n.d.]. We have selected these hashtags as the most appropriate for training the model, on the

other hand users of Twitter may have used different hashtags when are intended to visit Crete. In

other words, it is not certain that the user who is going to visit Crete will use the aforementioned

tags in his/her tweets.

In this section we will discuss future extensions of our system. These extensions are discussed in

the following paragraphs:

• Multiple Bayesian Models. We can create multiple Bayesian Models in order for our

model to be able to answer queries on different topics. For example, we may have a

Bayesian model that can answer questions such the following “is this user intended to

visit Paros?” for tourism topic. Also, may have Bayesian Model that can answer questions

as the following one “Is this user suffering from depression?” for a medical topic.

33

• Structure learning. In our system, the structure of the Bayesian Network is given as part

of the design of the system. The development of a structure learning procedure from the

training set has been left as extension to our system in future work. More specifically, we

could give to our system, a training set of tweets and the system will derive the structure

and the parameters of the Bayesian model.

4 Architecture of our Machine Learning System

In this chapter, we will discuss the architecture of our machine learning system. As we mentioned

before, a Python script has been constructed that it gets all tweets related with vacation in Crete,

with specific hashtags. The Python program stores all tweets (more than 1000) in a CSV file. The

first module of our system is called pre-processing phase. In this module, initially our system gets

tweets as input in the format of an array of Python. Then, it returns as output untrained rules and

random variables. The untrained rules and the random variables are derived by our algorithms.

The next module of our system, called the training phase, takes as input the untrained rules and

random variables and it returns as output the trained rules and random variables. These two

modules are represented in Figure 7.

34

Figure 7 The two modules of our system

As we mentioned earlier, our system performs incremental learning. This feature of our learning

system is very important because it can improve the derived model by applying incremental

training. In this way the trained model is improved in a stepwise manner. The incremental

retraining of the trained model is depicted in figure, Figure 8 Error! Reference source not found.

Figure 8: Incremental training of the model

After the derivation of the trained model, our system takes as input new tweets for evaluation by

the trained model. This is the prediction stage. The output of this module is the prediction of the

model by giving the probability that the tested user will visit or not Crete in the near future or

he/she has already visited Crete. The overall architecture of our system illustrating both stages,

i.e. the training stage and the prediction stage, is illustrated in figure, Figure 9.

35

Figure 9 Overall architecture of our system

5 Detail Presentation of the Components of our Machine Learning

System

In this chapter we will discuss thoroughly the components of our machine learning system. In the

first section we will present the preprocessing phase. In the second section we will present the

36

training phase. In the third section we will discuss and present the trained model. In the final

section we will discuss implementation issues and we will illustrate all algorithms that we have

constructed for our system.

5.1 The Pre-processing Phase

The most important phase of our system is the preprocessing phase. We have constructed

algorithms that call procedures (i.e. methods in object-oriented terminology) which perform

Sentiment analysis and Entity recognition in order to create automatically random variables and

rules based on the given train set. Initially, the algorithm that performs Sentiment Analysis, which

is used to create random variables based on the sentiment of each tweet. More specifically, the

sentiment analysis algorithm uses the VADER tool and it can create automatically up to two

random variables. We have also constructed an algorithm that calls the Entity Recognition

procedure, i.e. a method in object-oriented terminology. With this algorithm our system can

identify some pre-defined categories in unstructured text, i.e. text in tweets. These categories

correspond to the random variables that our algorithm creates. After the execution of the code

corresponding to these two algorithms, ProbLog is used to estimate the parameters of the untrained

model. More specifically, all random variables based on tweets that are stored in table Table 9 are

created in the preprocessing phase of our system.

5.2 The Training Phase

In this subsection we will present the training phase. In this phase we use the ProbLog tool. More

specifically, we call the lfi/2 function. This function, takes as input rules and evidence set and it

returns the trained model. This function uses the Expectation Maximization algorithm in order to

perform training of the model. In this phase, we use ProbLog tool only. The function lfi/2, takes

as input the program Program 8 and the table Table 7. As we mentioned earlier, this function lfi/2

uses the Expectation Maximization algorithm to get the parameters of the random variables. After

the estimation process, lfi/2 returns the trained random variables and rules as output Program 9,

this program is illustrated in the next section.

Program 8: The untrained random variables and rules

t(_)::userLocation.

t(_)::positiveSentiment.

t(_)::negativeSentiment.

t(_)::location.

t(_)::vacation.

t(_)::tourism.

37

t(_)::hotel.

t(_)::restaurant.

t(0.33)::visitLocation :-

 userLocation, positiveSentiment, tourism, location_in_tweet.

t(0.31)::visitLocation :-

 userLocation, positiveSentiment, location_in_tweet.

t(0.23)::visitLocation :-

 userLocation, positiveSentiment.

t(0.13)::visitLocation :-

 userLocation, positiveSentiment, vacation, tourism, location_in_tweet.

Evidence set instance

{(userLocation, True), (positiveSentiment, True),
(negativeSentiment, False), (location, True),
(vacation, False), (tourism, True) }

{(userLocation, True), (positiveSentiment, True) }

38

{(userLocation, True), (positiveSentiment, True),
(negativeSentiment, False), (location, True),
(vacation, False), (tourism, False), (health_care,
False)}

Table 7 Instance of evidence set

5.3 The Trained Model

Our system uses the lfi/2 function of ProbLog in the training phase. The lfi/2 function gets as

input the random variables, rules, and an evidence set. The lfi/2 function performs machine

learning by applying the E.M. algorithm for training the model. Actually, it estimates the

parameters of our Bayesian network. This function returns the following program as output

Program 9.

Program 9 Instance of trained model

0.96::userLocation.

0.94::positiveSentiment.

0.05::negativeSentiment.

0.30::vacation.

0.15::hotel.

0.42::tourism.

0.10::restaurant.

0.75::location_in_tweet.

0.45:: visitLocation :-

 userLocation, positiveSentiment, \+negativeSentiment,location, \+vacation, tourism.

0.17::visitLocation :- userLocation,positiveSentiment.

0.15::visitLocation :- userLocation, positiveSentiment, \+negativeSentiment, location,

 \+vacation, \+tourism, \+health_care.

The derived trained model is illustrated by the figure, Figure 10 .

39

Figure 10 Trained Bayesian Network

5.4 Implementation issues

In this subsection, we will present the implementation issues of our system. Initially, it is

important to mention the main programming components of our system.

• “readCSV.py”: We have a CSV file, “CSV_tweets.csv”, which has more than 1000 tweets.

Sample transactions of this file are illustrated in Error! Reference source not found..

The program “readCSV.py” reads the CSV file “CSV_tweets.csv” row by row, and then

it stores each element of the row of the CSV file, in a Python array. We essentially convert

40

the CSV file “CSV_tweets.csv”, i.e. Error! Reference source not found. , to a Python

array, i.e. Table 9.

• “createModel.py”: This program has the code which implements the algorithms that

perform Sentiment Analysis and Entity Recognition and they create automatically the

evidence set, the random variables and the rules.

5.4.1 Read CSV and store data into array

The tweets that are used to train our model are stored in a CSV file called “CSV_tweets.csv”. A

sample of entries from that file are illustrated in the following table Table 8Error! Reference

source not found..

Table 8 CSV_tweets.csv

The first stage of the preprocessing phase is to read the csv file “CSV_tweets.csv” with the

program “readCSV.py”, and then it stores all tweets in an array format. A sample of entries from

the created array are shown in Table 9. The array of this table has been created by the procedure

“readCSV.py”.

text username create_at userLocation hashtags

Last dawn on the

island of Crete

Christovb7000 9/7/2019

6:03:27 AM

Texas #timeline

#visitCrete

Sunset In Axus Jeanne_8j 10/7/2019

6:03:27 AM

Pretoria, South

Africa

#sunset

#rethymno

#crete

September On

The Beach, is

great

mako671178 3/8/2019

6:03:27 AM

China #rethymno

#create

#seascape

Table 9 Array of tweets for processing(example)

5.4.2 Implementation of random variables and rules

After the construction of the array of tweets (Table 9), a group of algorithms create automatically

random variables and rules. As it is known a discrete random variable X in a sample space Ω is a

function which maps every element of the random experiment to a value, usually a real value. For

each random experiment a random variable gets an element ω where ω  Ω and maps it a value.

41

The elements of Ω are usually mapped to a set of (real) values. For example, the random variable

userLocation takes as values places names from everywhere in the world and returns True if the

place of the user is not in Crete otherwise it returns False. For example, for values such as London

and Athens the userLocation returns the value True, i.e. userLocation(London) = True and

userLocation(Athen) = True. On the other hand, for places like Kisamos, Sitia it gets the value

False, i.e. userLocation(Kisamos) = False and userLocation(Sitia) = False. We express it in a short

way by saying that the random variable gets the value True or False accordingly. In addition, the

random variable hotel, takes as values synonyms words and phrases of hotel. For example the

word ‘motel’ is synonym word of random variable hotel such the following hotel(motel) = True.

In the other hand the word girl is not synonym of hotel, and that express it such hotel(girl)=False.

Also, the random variable vacation, takes as values synonyms words and phrases of vacation. For

example, the word ‘holiday’ is synonym word of vacation, and illustrated as follows

vacation(holiday)=True. In the other hand , the word test is not synonym word of vacation, that

represented as follows vacation(test)=False. In our case, the set of values of random variables are

synonyms of random variables (i.e. hotel, health, political issues, vacation) and toponyms of Crete.

As we mentioned earlier, the discrete random variables are created automatically using the

algorithms that we constructed and we present below. The algorithm Algorithm 1 creates random

variables for sentiment analysis (positive - negative). Initially, in list randomVariables the random

variable userLocation is entered. This random variable consists the user’s home location. Then,

the VADER sentiment analyzer is called, it takes the array of tweets as input Table 9. If there is a

negative sentence-tweet in the array of tweets, then the function returns -1 and creates the random

variable negativeSentiment. Also, if there is a positive sentence-tweet in the array of tweets, then

the function returns 1 and creates the random variable positiveSentiment. We illustrate below the

algorithm, Algorithm 1, for sentiment analysis.

procedure sentimentIdentificationWithVADER(in: arrayOfTweets; out: randomVariables)

begin

 randomVariables := [“userLocation”];

 if (sentimentAnalizer(arrayOfTweets) = 1) then

 randomVariables := append(randomVariables, [”positiveSentiment”]);

 if (sentimentAnalizer(arrayOfTweets) = -1) then

 randomVariables := append(randomVariables, [”negativeSentiment”]);

end

Algorithm 1 Sentiment analysis with VADER

• The variable negativeSentiment is created if the function of VADER after sentiment

analysis of tweet returns number in range [-1,0), this random variable gets the value true.

• The variable positiveSentiment is created if the function of VADER after sentiment

analysis of tweet returns a number in range (0,1], this random variable gets the value true.

42

• If the function of VADER after sentiment analysis of tweet returns 0, this tweet is further

processed in order to be classified as either positive or negative.

Summarizing for the random variables positiveSentiment and negativeSentiment, when the

program that we have created finds in array of tweets Table 9 positive sentence-tweet it returns a

value for the random variable positiveSentiment. Also, when it finds negative sentiment-tweet it

returns a value for the random variable negativeSentiment. When VADER returns 0, our system

use the additional insights of Entity Recognition method for classification of tweet.

The algorithm Algorithm 2 categorizes tweets based on pre-defined categories. More specifically,

the Algorithm 2 it gets the array of tweets as input and it returns a subset of the random variables

that are identified. Each of these categories corresponds to a random variable. The remaining

random variables – categories are the following: location_in_tweet, tourism, vacation, health

care, political issues, hotel and restaurant. The algorithm Algorithm 2 is based on the idea of the

Entity Recognition method. As it is known, this task is a task of information extraction that seeks

to locate and classify named entities mentioned in unstructured text (such tweet, newspaper) into

some pre-defined categories. The categories that our system uses are presented in the following

bullets.

• location_in_tweet: If in the text of the tweet is mentioned some location of Crete, then our

program will identify it.

• tourism: If in the text of the tweet is mentioned some word related to tourism then our

program will identify it.

• vacation: If in the text of the tweet is mentioned some word related to vacation then our

program will identify it.

• health care: If in the text of the tweet is mentioned some word related to health care domain

then our program will identify it.

• political issues: If in the text of the tweet is mentioned some word related to political issues

then our program will identify it.

• hotel : If in the text of the tweet is mentioned some word related to hotels then our program

will identify it.

• restaurant : If in the text of the tweet is mentioned some word related to restaurants then

our program will identify it.

Initially, we will describe how our program “createModel.py”, identify the above random

variables-categories in tweets based on Algorithm 2. We have a CSV file, called

“synonymsTable.csv”, that is illustrated in Table 10. All the random variables-categories are

presented in the first row of the file “synonymsTable.csv”. In the remaining rows of the csv file

“synonymsTable.csv” Table 10 are possible values of the categories that presented in the first row

[Power-thesaurus, nd]. Ιn other words, for each random variable the column of its synonym words

corresponds to its domain. i.e. the values of the random variable. Possible values stands for words

with similar meaning. In the category location_in_tweet we have a list of possible values which

43

do not have similar meaning. The only similarity they have is that all are locations-toponyms of

Crete, i.e. villages, cities, places etc.

Table 10 Synonyms table for Entity Identification

procedure tweetsClassification(in: arrayOfTweets, synonymsCSVtable; out:

categoriesList)

begin

 for each tweetText  arrayOfTweets do

 for each rowSynonyms  synonymsCSVtable do

 for fieldValue := 1 to size_of_rowSynonyms do

 if (prefix(tweetText, rowSynonyms[fieldValue]) or

 infix(tweetText, rowSynonyms[fieldValue]) or

 postfix (tweetText, rowSynonyms[fieldValue])) then

 if fieldname ∌ categoriesList then

 categoriesList := append(categoriesList, fieldname);

end

Algorithm 2 create random variables-categories

Note: the functions prefix/2, infix/2, and postfix/2 defined as follows. These functions, take a tweet

tweetText as input, and the value of a field of a row, i.e. rowSynonyms[fieldValue], from the

table. They return true if the value of field of the row exists at the beginning, in the middle or at

the end of the tweet. In that case, the corresponding value of the field is inserted in the list

categoriesList (if doesn’t exist already).

We give an example of Algorithm 2. Let’s we have the following tweet that is stored in table

Table 9.

‘I want to go in Crete because it is wonderful place #visitCrete#travel’

The algorithm, Algorithm 2, will be tested if there exists a value of a random variable, such as

tourism, vacation, health care, political issues, location_in_tweet, in the above text. In that case,

44

the algorithm will identify the random variable(s) whose values have been found in the text of the

tweet. In this case, values for the random variables location_in_tweet and tourism have been

found. That is:

• The algorithm, Error! Reference source not found., finds that the text contains the value

‘Crete’ , so,the random variable (category) location_in_tweet because it refers to a location

in Crete.

 It also finds that the text has two values ‘visit’ and ‘travel’ of the random variable (category)

tourism.

Then algorithm which finds values for the remaining random variables is the algorithm Algorithm

3. That is, this algorithm finds values for the RVs vacation, health care, political issues, hotel and

restaurant. The Algorithm 3Algorithm 3 if it finds some values of the aforementioned random

variables in the tweet (array of tweets - Table 9) then it assigns them to the corresponding random

variable only if the RV tourism has already been created.

procedure createRandomVariables(in arrayOfTweets; out randomVariables)

begin

 for each tweetText  arrayOfTweets do

 for each rowSynonyms  synonymsCSVtable do

 for fieldValue := 1 to size_of_rowSynonyms do

 if (prefix(tweetText, rowSynonyms[fieldValue]) or

 infix(tweetText, rowSynonyms[fieldValue]) or

 postfix(tweetText, rowSynonyms[fieldValue])) then

 if fieldname ∌ randomVariables then

 randomVariables:=append(randomVariables, fieldname);

end

Algorithm 3 Create Random Variables with E.R method

The code of the algorithms Error! Reference source not found., Error! Reference source not

found., and Algorithm 3, is included in the Python program "createModel.py". When this

program runs it creates the following Bayesian Network, It is shown in Figure 11 Bayesian Network

of our systemError! Reference source not found. with the corresponding random variables.

45

Figure 11 Bayesian Network of our system

The evidence set is an array that contains the random variables and their values True-False. That

is, the values they map to the values of the experiment as they have been discussed above. After

the execution of algorithms Error! Reference source not found., Error! Reference source not

found. and Algorithm 3

The evidence set is returned by the program which implements the algorithms Error! Reference

source not found., Error! Reference source not found. and Algorithm 3. The evidence set has

values of each one of the random variables.

The general form of the evidence set is as follows:

{(userLocation, Value), (positiveSentiment, Value), (negativeSentiment, Value),

(location_in_tweet, Value), (vacation, Value), (tourism, Value) , (hotel, Value) , (political_issues,

Value) }

The possible values of a RV are True, False or Null. If a random variable in the evidence set does

not appear in instance of the evidence set then it means that the corresponding instance of the

evidence set has a value Null.

Table 11 contains in each row an instance of the above general form of the evidence set as well as

the number of occurences.

We give an example for that process. Let have the following text:

’ I booked tickets for Chania today #holiday#visitCrete’

46

Τhe evidence set with the random variables and their values is shown below:

{(tourism,True), (health_care,False), (location_in_tweet,True), (vacation,True)}.

Evidence set instance Number of occurrences

{(userLocation, True), (positiveSentiment,
True), (negativeSentiment, False), (location,
True), (vacation, False), (tourism, True) }

975

{(userLocation, True), (positiveSentiment,
True) }

375

{(userLocation, True), (positiveSentiment,
True), (negativeSentiment, False), (location,
True), (vacation, False), (tourism, False),
(health_care, False)}

330

Table 11 Evidences (example)

In order to create the evidence set, (i.e. Table 11) , Error! Reference source not found., Error!

Reference source not found. and Algorithm 3 runs for every tweet. The second column of the

Table 11 has the repetitions of the occurrences of each evidence set instance in the array of tweets,

i.e. Table 9. The number of occurrences of each instance of evidence set is used to give each rule a

probability. The probability of each rule is derived as follows:

probabilityOfRule = numberOfOccurances/sizeOfArrayOfTweets

“numberOfOccurance” is the number of occurrences of each evidence in the array of tweets and

“sizeOfArrayOfTweets” is the size of the array of tweets. The size of the array of tweets

corresponds the sum of all tweets in dataset. So, the probability of the first rule of the constructed

modes is derived from the corresponding evidence set in Table 11 as follows:

probabilityOfRule = 975/2145=0.45.

For each element of the table a rule is constructed. The construction procedure is illustrated by

algorithm, Algorithm 4

procedure createRulesBasedOnEvidence (in evidenceSet; out rules)

begin

47

 rules:= [] ;

 headOfRule := ‘’;

 for each (instanceOfEvidence, numberOfEccurances)  evidenceSet do

 probabilityOfRule = numberOfOccurances/sizeOfArrayOfTweets

 stringConcat(probabilityOfRule,’visitLocation:-’,headOfRule)

 rules := append(rules,headOfRule)

 for each (randomVariable,Value)  instanceOfEvidence do

 if value = True then

 rules:=append(rules, [randomVariable])

 else

 rules: =append (rules, [\+randomVariable])

end

Algorithm 4 Create rules based on evidence set

5.4.3 Implementation of incremental learning method

Our system uses an incremental learning procedure. We constructed an algorithm, Algorithm 5,

that applies incremental learning in the trained Bayesian network model. The trained model is

stored in txt file called “model.txt”, also the evidence set is stored in an array of Python language

called “evidence.npy”. More specifically, the ‘model.txt’ file contains all trained random variables

and rules of our system. The “evidence.npy’ array, contains all evidences that were used for

constructing the trained model ‘model.txt’. Our system uses incremental learning, to further train

the model over time with additional data sets. In other words, we give a new train set to the trained

model in order to be trained further in an incremental way. The new training starts from the point

where the previous training had stopped. It is not done from the beginning all over again with a

larger data set. Our system applies a clear Incremental Learning method. The trained rules, they

are based on the random variables, and the new evidence set are created by using the algorithms

Algorithm 1 and Algorithm 2 and with the function of ProbLog lfi/2. Let’s call the new trained

rules “newModel” and the new evidence set “newEvidenceSet”. At this point, our system has two

trained models and two evidence set for this reason we have the following:

• “newEvidenceSet”: this set contains all the new evidences that emerged from the new

training data.

• “evidenceSet.npy”: this set contains all the previous evidences in order to train the

previous “model.txt”.

• “setOfRandomVariablesOfModel”: this set contains the random variables of the previous

model “model.txt”.

• “setOfRandomVariablesOfNewModel” this set contains the random variables of the new

model “newModel”.

The incremental training is performed by algorithm Algorithm 5. The algorithm get as input two

sets of random variables (the random variables of the model “model.txt” and the one of the

48

“newModel”). It also takes as input two evidence sets, i.e. “evidenceSet.npy” and

“newEvidenceSet” and it returns the final trained model. The first step of this algorithm is to join

the two arrays of evidences into one (finalEvidenceSet). Τhe second step is to create the updated

probabilities of random variables based on the two sets that we mentioned earlier, i.e.

setOfRandomVariablesOfModel and setOfRandomVariablesOfNewModel. Lets assume that we have

the following use case of Algorithm 5:

numberOfSamplesOfModel: is the number of previous samples(tweets) that was trained the

model ‘model.txt’

numberOfSamplesOfNewModel: is the number of new samples (tweets) that is trained the

model “newModel”.

We have the trained model “model.txt” that was trained with 900 samples-tweets. Also, we have

the trained model “newModel” that was trained with 500 samples. So, the total samples-tweets of

two modes that was trained is 1400.

totalSamples = numberOfSamplesOfModel + numberOfSamplesOfNewModel = 900 + 500 =

1400

Also, we have the percentage of two models based on total samples.

percentageOfModel = ((100 * 900) / 1400)/100 = 0.64

percentageOfNewModel= 1-percentageOfModel = 0.36

Also, let we have the following set of random variables

setOfRandomVariablesOfModel={(userLocation,0.90),(travel,0.40)}

setOfRandomVariablesOfNewModel = {(userLocation,0.60), (travel,0.80)}

Calculate the new probability is based on percentage of each model :

updateProb = 0.90 * 0.64 = 0.57

updateProb = newProb + (0.60*0.36) = 0.792

Τhis procedure is executed for each random variable of two sets, i.e.

setOfRandomVariablesOfModel and setOfRandomVariablesOfNewModel.

procedure incrementalLearning (in setOfRandomVariables; in numberOfSamplesOfModel in

setOfNewRandomVariables; in numberOfSamplesOfNewModel in evidenceSet;

in newEvidenceSet; out trainedModel; out finalEvidenceSet)

begin

 finalEvidenceSet:=[]

49

 finalRandomVariables:={}

 finalEvidenceSet = append (finalEvidenceSet, evidenceSet)

 finalEvidenceSet = append (finalEvidenceSet, newEvidenceSet)

 totalNumberOfSamples = numberOfSamplesOfModel + numberOfSamplesOfNewModel

 percentageOfModel = (100 * numberOfSamplesOfModel) / total

 percentageOfNewModel= 100 - percentageOfModel

 for each (randomVariable, probability)  setOfRandomVariables

 newProb = percentageOfModel * probability

 tempProb= readSet(randomVariable, setOfNewRandomVariables)

 newProb = newProb + tempProb * percentageOfNewModel

 finalRandomVariables := append((randomVariable,newProb))

end

Algorithm 5 Incremental Learning In Our System

*Note: the function readSet/2, takes as input a random variable and a set of random variables and

it returns the probability of random variable that has been given as input. If the random variable

that that has been given as input doesn’t exist in set of random variables then it returns 0.

5.4.4 Derive Evidences in Trained Model

In this subsection we will present how to derive evidences for evaluation. The program

“evaluationOfModel.py” in our system takes as input a new tweet-text message and it returns the

opinion about visiting Crete or not based on evidences that are derived from the new tweet. The

program “evaluationOfModel.py” uses some algorithms that we have constructed which create

evidences (such as the training of the model). The algorithm Algorithm 6 which uses the

VADER tool takes as input a new tweet-text and returns a list with the values of random variables

negativeSentiment, positiveSentiment. Let’s assume that we have as input to this algorithm the

following tweet-text.

‘I’m going to a fantastic place #visitCrete #travel’

Its output is the following:

positiveSentiment = True

negativeSentiment = False.

The Algorithm 6 is shown below:

procedure sentimentIdentificationWithVADER(in:newTweet; out: randomVariables)

begin

 randomVariables := [];

 if (sentimentAnalizer(newTweet) = 1) then

50

 randomVariables:=append([(positiveSentiment,True),randomVariables])

 randomVariables:=append([(negativeSentiment,False),randomVariables])

 if (sentimentAnalizer(newTweet) = -1) then

 randomVariables:=append([(positiveSentiment,True),randomVariables])

 randomVariables:=append([(negativeSentiment,False),randomVariables])

end

Algorithm 6 Derive evidences from text (using Sentiment Analysis)

In addition, the program “evaluationOfModel.py” uses the algorithm Algorithm 7 in order to

extract evidences based on the Entity Recognition method. This algorithm, takes as input a new

tweet-text and it returns the list with the values that the random variables-categories will have.

Let have the following text of a tweet:

‘I’m going to a fantastic place #visitCrete #travel’

The algorithm returns the list with the following values:

For the RV vacation it returns True because referred in the text the related word ‘travel’

as input, health_care it returns False because not referred in the text some related word of

health care domain

as input, location_in_Tweet it returns True because referred in the text the word ‘Crete’

procedure evidenceOfTweet (in: newTweet, synonymsCSVtable; out: randomVariablesList)

begin

 for each rowSynonyms  synonymsCSVtable do

 for fieldValue := 1 to size_of_rowSynonyms do

 if (prefix(newTweet, rowSynonyms[fieldValue]) or

 infix (newTweet, rowSynonyms[fieldValue]) or

 postfix (newTweet, rowSynonyms[fieldValue])) then

 randomVariablesList:=append((fieldname,True), randomVariablesList);

end

Algorithm 7 Extract evidences from text (using Entity Recognition)

The algorithms Algorithm 6 Algorithm 7 are implemented in the Python program

"evaluationOfModel.py". After the successful execution of this program the ProbLog function

get_evaluate/1 is called. This function, takes as input evidences by using the Bayes' rule it returns

the probability of visiting Crete. For the above example, it will return the following answer.

51

yes, will visit Crete (visitLocation:0.7)

52

6 Sample Sessions of our System

In this chapter we will illustrate some sample sessions of our system. First, we present the

graphical environment of our system. We use ‘Tkinter’ libraryof Pyhton. The Tkinter module is

the standard Python interface to the TK GUI toolkit [docs.python, nd][Data-camp,nd] . The home

window has 3 buttons, “train model”, “trained model” and “exit” Figure 12.

Figure 12 Home Window of our system

53

6.1.1 Train the Model

When user press the button “Train Model”, the train model window appears. Because, is this

sample session there are not have any trained model, we inform the user with appropriate

message(i.e. ‘There is no trained model’ green arrow in Figure 13).

Let us have the follow sample session of our system that is illustrated in Figure 13. We have a

dropdown list, that user can choose the trainset for train the system. We choose the dataset

“trainSet.csv”, and then we press the button “Incremental Learning”. The response is illustrated

in Figure 14. Our system informs the user with an appropriate message when the model has been

successfully trained (Figure 14 red arrow). Also, informs the user the number of samples that they

were used to train the model (Figure 14 green arrow).

Figure 13 Train Model session

54

Figure 14 The result after press Incremental Learning Button

6.1.2 Incremental Learning sample session

In this subsection we will illustrate a sample session of incremental learning method. Our system

uses incremental training when it already has a trained model. A user of this system can select an

option from the option list, i.e. the option list has all datasets that they have been mentioned in

Section 6.1.1. Let’s assume that the file “test20.csv” is selected for further training the model,

Figure 15. By selecting ‘incremental learning’ the response of our system is a pop-up window with

an appropriate message such the one in Figure 15. The training process takes a few seconds to

complete and to return its response. In this window there is a button back to the home window,

i.e. “Back to Home”.

55

Figure 15 Incremental Learning sample Session

6.1.3 Sample Session of Trained Model

In home window, the user by selecting the “trained model” button, the trained model window

appears. In this window, the user can write a text message, that is a tweet, and he is asked also to

insert his/her home location. Let’s consider the following example. The user writes the following

text message.

“I think Chania is perfect destination!! I want to go there!! #visitCrete#vacation#chania”

The home location of the user is “Texas”. This sample session is illustrated in figure Figure 16

Test the trained model sample 2. Then, the user presses the “Evaluate” button. The system derives

its answer in the text field “Opinion for tweet”. The derivation of the answer is based on the user’s

answer. When the user press the “clear” button, he/she can write a new text message for evaluation

by the trained model. Another example will be shown in which a user does not mention anything

about Crete. Let’s assume that the user gives the following text message in the trained model.

“FOX POLL:

56

54% of Americans want #trump impeached. 50% want him impeached and removed from

office.

I'm sure trump will be attacking FOX for its faulty polling. The thing is,

this is exactly what all major polls are finding.”

The answer of the system is shown in figure Figure 16

Figure 16 Test the trained model sample 2

57

7 Evaluation of our System

In this chapter, we will discuss the evaluation of our system. As it is known, Machine learning

continues to be an increasingly integral component of our lives, whether we’re applying the

techniques to research or to business problems. Systems of this kind are able to give accurate

predictions in order to create real value for a given organization. Many, researchers, mention that

the key step in machine learning systems is the training of the model of the system. We think, it is

also important the evaluation of system. More specifically, it is very crucial to know whether the

trained model actually works effectively in real applications, that is it makes trustworthy

predictions. There are two approaches for evaluating the performance of a model, holdout and

Cross-validation. Both of these approaches use test data to evaluate the system. The evaluation

data have to be different from the data that were used to build the model. In the holdout approach

the dataset is divided in the following subsets:

• The training set which is a subset of the dataset that is used to build predictive models.

• The validation set which is a subset of the dataset that is used to assess the performance of

the model built in the training phase.

• The test set, or unseen data, which is a subset of the dataset that is used to assess the likely

future performance of the model.

This approach is useful because of its speed, simplicity, and flexibility. On the other side, the most

common method in cross-validation approach (called also, rotation estimation), is k-fold cross

validation. In this popular method, the original dataset is partitioned into k equal size subsamples,

called folds. The k is specified by the user (usually 5-10 preferred). This is repeated k times, such

that each time, one of the k subsets is used as the test set/validation set and the other k-1 subsets

are put together to form a training set. The error estimation is averaged over all k trials to get the

total effectiveness of our model. In our system the dataset for evaluation is tweets that are not

included in the training set. In the following subsection we discuss the evaluation of our system.

More specifically, in the first subsection, we will discuss the evaluation criteria of our machine

learning system with all metrics that are used. In the second subsection we will present the results

of the evaluation metrics. These metrics are created by the Python program called

“evaluationOfSystem.py”.

The above sub-sections (7.1, 7.2) presented as follows. In sub-section we present the evaluation

criteria of regression models. In sub-section 7.2 we present the evaluation results in our system

based on metrics that we present in 7.1.

7.1 Evaluation criteria of regression models

In this sub-section we present the evaluation criteria of regression models. More specifically, we

will first briefly describe the basic metrics of regression models. These metrics are the mean

absolute error (MAE) , root mean squared error (RMSE), mean squared error(MSE). These three

58

metrics we choose to use in our machine learning system for evaluation where we present it in the

next section. So, in this section we describe the aforementioned metrics.

Mean Absolute Error (MAE) is a measure of difference between two continuous variables

[Willmot, et al. 2005] [Willmot, et al. 2006]. This measure is also called MAE and it is very

popular metric for the accuracy of model. Furthermore, in general terms, MAE follows the next

formula:

Prediction Error := Actual Value - Predicted Value

Actual Value: is the value that is obtained by observation or by measuring the available data. It is

also called the observed value.

Predicted value: is the value of the variable predicted based on the regression model.

This prediction error is taking for each record in dataset after which we convert all error to positive.

This is achieved by taking Absolute value for each error as below:

 Absolute Error := |Prediction Error|

 Finally, we calculate the mean for all recorded absolute errors (Average sum of all absolute

errors).

𝑚𝑎𝑒 =
∑ 𝑎𝑏𝑠(𝑦𝑖 − 𝜆(𝑥𝑖))𝑛

𝑖=1

𝑛

An example using this metric is discussed in order to illustrate its accuracy. So, let have the

following actual values of houses based on bedrooms that contains each house.

Let have the following actual costs (assumed actual cost of houses in this example also the actual

costs corresponds to the actual value in mae metric):

The house with two bedrooms costs — $200K

The house with three bedrooms costs 3 bedroom — $300K

The house with four bedrooms costs 4 bedroom — $400K

The house with five bedrooms costs 5 bedroom — $500K

So, let we have the following predicted costs by an regression model:

The house with two bedrooms costs — $230K

The house with three bedrooms costs — $290K

The house with four bedroom costs — $740K

59

The house with five bedrooms costs bedroom — $450K

We calculate the ERROR as follows:

The house of two bedroom house calculate the Error such as follows:

Actual Price = $200K

Predicted Price = $230K

Error := Actual Price — Predicted Price

Absolute Error 1 := |Error| (Absolute or positive value of our error) = |200-230| = 30

So, this measurement is performed on each the aforementioned houses of demonstration example.

According to the next formula the mae metrics is the following:

𝑚𝑎𝑒 =
∑ 𝑎𝑏𝑠(𝑦𝑖 − 𝜆(𝑥𝑖))𝑛

𝑖=1

𝑛
=

=
30$ + 10$ + 340$ + 50$

4
= 𝟏𝟎𝟕. 𝟓$

The measure of the evaluation of the model has been calculated by the above formula. We are

therefore able to say that, averagely, our model-example predictions are off by approximately

$107.5K.

Root Mean Squared Error (RMSE): this is a measurement to accuracy of a machine learning

model. More specifically, it’s the square root of the average of squared differences between

prediction and actual observation. It is very similar to MAE measure, the most common similarity

of the two measurements are the negatively-oriented scores, which means the closer to 0 the

measurement is, the better the model accuracy [Willmot, et al. 2005]. The root mean squared error

is calculated as follows:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑗 − 𝑜𝑗)

𝑛

𝑗=1

When p is the predicted value and o is the observed value. So, we give an illustration examples of

the aforementioned metrics. Let have the same example , with the five houses. The actual costs

(that corresponds the observed of the four houses are the following:

The house with two bedrooms costs — $200K

The house with three bedrooms costs 3 bedroom — $300K

The house with four bedrooms costs 4 bedroom — $400K

60

The house with five bedrooms costs 5 bedroom — $500K

And also, we have the following predicted costs by an regression model:

The house with two bedrooms costs — $230K

The house with three bedrooms costs — $290K

The house with four bedroom costs — $740K

The house with five bedrooms costs bedroom — $450K

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑗 − 𝑜𝑗)

4

𝑗=1

=

√
1

4
 (230$ − 200$) ∗ (290$ − 300$) ∗ (740$ − 400$) ∗ (450$ − 500$) =

= 𝟏, 𝟐𝟕𝟓, 𝟏𝟓𝟑

Mean Squared Error (MSE): called also Mean Squared Deviation (MSD). In statistics, MSE

measures the average of the squares of the errors. It is also non-negative, closer to 0 the

measurement is, the better the model accuracy. With above formula calculate the mean squared

error in statistical model, when p is predicted value and o is observed value.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑝𝑗 − 𝑜𝑗)

𝑛

𝑗=1

The only difference between RMSE and MSE metrics, is that RMSE formula use root to calculate

the measure. So, in the same example with the two aforementioned metrics are the following:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑝𝑗 − 𝑜𝑗)

𝑛

𝑗=1

=

1

4
(230$ − 200$) ∗ (290$ − 300$) ∗ (740$ − 400$) ∗ (450$ − 500$) =

𝟓, 𝟏𝟎𝟎, 𝟎𝟎𝟎

61

So, we gave the example of the aforementioned metrics (RMSE, MSE, MAE) because is the

evaluation criteria of our system. We choose these metrics, because in our test set, we know the

actual value of each tweet (e.g. the true value is the maximum probability, 1). The predicted value,

as we mentioned earlier, is the value predicted of machine learning system. Also, the output of our

model is a continue value (range 0.0-1.0), which is the main feature of regression models. Finally,

in the next sub-section, we give the evaluation results of our machine learning system.

7.2 Evaluation results

In this subsection we will present the evaluation results of our system. We use the metrics that they

were presented in subsection 7.1. More specifically, we create the program

“evaluationOfOurSystem.py”. In this program we use the scikit-learn library to evaluate our

system. It is a Python library integrating classical machine learning algorithms in the tightly-knit

world of scientific Python packages. Initially, we collect tweets which mention that their users

have visited Crete. We have collected 100 tweets in “testTweets.csv” file. Then, the next step is

to use scikit-learn library. More specifically, for Mean Squared Error measure we use the

mean_squared_error/2 function. This function takes two arrays as input such as the following:

• y_true: This array contains the true value. The true value is the maximum probability(i.e.

1) that the tweet posted by the user who actually visit Crete.

• y_predict: This array contains the predicted value. The predicted value in our system has

the probability that has each tweet in the test set “testTweets.csv”.

Also, we use mean_absolute_error/2 to calculate the mean absolute error (MAE) of our model.

Mean_absolute_error/2 also take two arrays as input (y_true, y_predict), and returns the MAE.

For root mean squared error (RMSE) we also use mean_squared_error/2 function but with root

instead.

Our evaluation program ‘evaluationOfModel.py’ returned the following metrics.

Mean Squared Error: 0.11

Root Mean Squared Error: 0.34

Mean Absolute Error: 0.33

The visualization of the predicted values is illustrated in the next figure, Figure 17 Visualization of

predicted values The y-axis has the probabilities with range 0-1 and the x-axis has the number of

samples that are in the “testTweets.csv” file.

62

Figure 17 Visualization of predicted values

63

8 Conclusions and Future Work

Conclusions

In this research work, we represent a system for applying probabilistic logical reasoning for

opinion mining in problems related to social media. As a use case we used Twitter data, describing

a scenario where we would like to predict whether a user is intended to visit Crete with obvious

applications for travel agencies and in all domains of the tourism industry. We use Sentiment

Analysis and Entity Recognition methods in order to automate important tasks such as the

following:

• Create random variables.

• Create rules.

• Create evidence set.

These aforementioned tasks are the basic features of a probabilistic graphical models like the

Bayesian Network. After the completion of these automated tasks by our system it proceeds to the

training of the model using the ProbLog toolbox. After that, new Tweets can be classified

according to the desired outcome, i.e. whether their users will visit Crete with some probability.

The evaluation of the system was based on metrics that has any regression model. More

specifically, we use root mean square error, mean absolute error and mean squared error to

measures the average of the errors that has our system. With these metrics, we conclude that our

system, has derived a satisfactory model but not perfect.

We will summarize the benefits of our system which we have discussed in various sections of the

thesis. An important feature of our system is its ability to be very easily adapted to many topics in

social media in order perform opinion mining. In our approach, we used Twitter but our approach

and system can also be used for any other social network such Facebook, Instagram etc.

Furthermore, in the train procedure, our system Finally, our system supports incremental learning

so the derived model can be improved.

Future work

In order to be able our system to answer queries on different topics we can create multiple Bayesian

Models. This idea can be considered as a future work. More specifically, we may have a Bayesian

Model that can answer question such “is this user intended to visit Paros?” for tourism perspective.

Also, may have a Bayesian Network that can answer question such “Is this user suffering from

depression?” for medical topic. Also, we can create multiple Bayesian Models to answer queries

of the same topic such the topic of tourism i.e. same topic, but for different places. For example,

we can have a Bayesian Model to answer query such “is this user intended to visit Paros?” and

other Bayesian Model to answer question such “is this user intended to visit Crete?”. Also, as

future work can be considered the structure learning procedure. As we mentioned in the first

Chapters, the structure of our model is known and given. So, we can developed the structure

learning and for that reason, we could give to our system, a training set of tweets and the system

will derive the structure.

64

9 Bibliography

[Agarwal, et al, 2012]

Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R.J. (2011). Sentiment Analysis of

Twitter Data, LSM ’11 Proceedings of the Workshop on Languages in Social Media,USA, pp

30-38

[Agarwal, et al, 1993]

Agrawal, R., Imielinski, T., & Swami, A.N. (1993). Mining association rules between sets of

items in large databases. Proceedings of the 1993 ACM SIGMOD International Conference on

Management of Data, USA, pp 207-216.

7[Amor, et, al., 2004]

Amor, N.B., Benferhat, S., Elouedi, Z., Naive Bayes vs decision trees in intrusion detection

systems, Proceedings of the 2004 ACM symposium on applied computing, Cyprus, pp. 420-424.

[Barber, 2007]

Barber, D. (2011). Bayesian Reasoning and Machine Learning. Cambridge University Press.

[docs.python, nd]

https://docs.python.org/3/library/tkinter.html

[Best-Hashtags,n.d]

http://best-hashtags.com/

[Cambria, et al. , 2013]

Cambria, E., Schuller, B.W., Xia, Y., & Havasi, C. (2013). New Avenues in Opinion Mining and

Sentiment Analysis. IEEE Intelligent Systems, 28, 15-21.

5.[Cambria, et al. 2015]

5.Cambria, E., & Hussain, A. (2015). Sentic Computing: A Common-Sense-Based Framework

for Concept-Level Sentiment Analysis. Springer- DOI 10.1007/978-3-319-23654-4

https://docs.python.org/3/library/tkinter.html
http://best-hashtags.com/

65

6.[Chen, et al., 2015]

Chen C., Zhang J., Chen X., Xiang, Y., Zhou, W., 6 million spam tweets: a large ground truth

for timely twitter spam detection, IEEE international conference on communications, London,

pp. 7065-7070

[Cunningham, et al., 2002]

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan, V. (2002). GATE: an Architecture for

Development of Robust HLT applications, Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics, ACL ’02, USA, pp168-175

[Data-camp, n.d.]

https://www.datacamp.com/community/tutorials/gui-tkinter-python

[data-gov, n.d]

http://www.data.gov.gr/dataset/poleis-xwria-ths-krhths.

[De Raedt et, al., 2007] 2

2.Raedt, L.D., Kimmig, A., & Toivonen, H. (2007). ProbLog: A Probabilistic Prolog and Its Application in

Link Discovery, Proceedings of the 20th International Joint Conference on Artificial Intelligence. India, pp

2468-2473

[De Raedt, 2008]

Raedt, L.D. (2008). Logical and Relational Learning. Springer-Verlag 2010.

[De Raedt et, al. 2008]

Raedt, L.D. and Kersting, K., Probabilistic Inductive Logic Programming (2008). In

Probabilistic Inductive Logic Programming - Theory and Applications, edited by Raedt, L.D.,

Frasconi, P., Kersting, K., & Muggleton, S., Springer.

[Esposito, et al. 2012]

Esposito, F., Ferilli, S., Basile, T.M., & Mauro, N.D. (2012). Social networks and statistical

relational learning: a survey. International Journal of Social Network Mining Volume 1 Issue 2,

pp 185-208.

[Farasat et, al. 2015]

https://www.datacamp.com/community/tutorials/gui-tkinter-python
http://www.data.gov.gr/dataset/poleis-xwria-ths-krhths

66

Farasat, A, Nikolaev, A, Srihari, S, & Blair, R.H, (2015), Probabilistic graphical models in

modern social network analysis, Social Network Analysis and Mining, 5, 62 (2015).

https://doi.org/10.1007/s13278-015-0289-6

[Gepperth, et al. 2016]

Gepperth, A., & Hammer, B. (2016). Incremental learning algorithms and applications.

European Symposium on Artificial Neural Networks 2016 proceedings, Belgium, pp 357-368.

[Hutto, et at. 2014]

Hutto, C.J., & Gilbert, E. (2014). VADER: A Parsimonious Rule-Based Model for Sentiment

Analysis of Social Media Text. Proceedings of the Eighth International AAAI Conference on

Weblogs and Social Media. Ann Arbor, MI.

[Jie, et al., 2002]

Jie, C., Greiner, R., Kelly, J., Bell, D., Liu, W., (2002) Learning Bayesian networks from data:

An information-theory based approach, Artificial Intelligence 137, pp 43-90

[Li, et al., 2016]

Li, J., Ritter, A., & Jurafsky, D. (2014). Inferring User Preferences by Probabilistic Logical

Reasoning over Social Networks, In 19th International Conference, DS 2016, Bari, Italy, edited

by Calders, T., Ceci, M., Malerba, Springer.

[Khyati, et al. 2014]

Khyati, D., Surbhi, C., Ashika, S., (2014) Opinion Mining from Social Networks, International

Journal of Computer Science and Network Vol (3) Issue(6), pp 554-558

[Kontkanen, et al. 1997]

Kontkanen, P., Myllymäki, P., Silander, T., Tirri, H., (1997), Comparing predictive inference

methods for discrete domains, Sixth International Workshop on Artificial Intelligence and

Statistics pp 311-318

[Lourentzou, et, al., 2017]

I. Lourentzou,I., Morales, A., Zhai, C., Text-based geolocation prediction of social media users

with neural networks, 2017 IEEE International Conference on Big Data (Big Data), Boston,

USA, pp. 696-705.

[Medium, nd]

https://medium.com/@abhinav.mahapatra10/probability-vs-likelihood-bab5b2b42150

https://medium.com/@abhinav.mahapatra10/probability-vs-likelihood-bab5b2b42150

67

[Myllymäki, et al. 2002]

Myllymäki, P., Silander, T., Tirri, H., & Uronen, P. (2002). B-Course: A Web-Based Tool for

Bayesian and Causal Data Analysis. International Journal on Artificial Intelligence Tools, 11,

369-387.

[Nilsson, 1986]

Nilsson, N.J. (1986). Probabilistic logic" artificial intelligence, Proceedings Second National

Conference on Artificial Intelligence, Pittsburgh, Volume 28, Issue 1, pp 71-87

[Power-thesaurus, n.d.]

https://www.powerthesaurus.org/

[Rao, et at., 2016]

Rao, P., Katib,A., Kamhoua,C., Kwiat K., Njilla,L., Probabilistic Inference on Twitter Data to

Discover Suspicious Users and Malicious Content, (2016), IEEE International Conference on

Computer and Information Technology (CIT), Nadi, pp. 407-414.

[Ritter, et al., 2011]

Ritter, A., Clark, S., Mausam, & Etzioni, O. (2011). Named Entity Recognition in Tweets: An

Experimental Study, Proceedings of the 2011 Conference on Empirical Methods in Natural

Language Processing, Scotland, pp 1524-1534

[Satya , et al., 2016]

Satya P.R.B., Lee K., Lee D, (2016). Uncovering fake likers in online social networks. CIKM’

16 Proceedings of the 25th ACM international on conference on information and knowledge

management, Indianapolis, pp 2365–2370.

[Skaza, et al., 2017]

Skaza, J., & Blais, B., (2017). Modeling the Infectiousness of Twitter Hashtags, Physica A:

Statistical Mechanics and its Applications, Volume 465, pp 289-296

4[Xu, et al., 2019]

4.Xu,C., Yuyu, Y., Mehmet, O., (2019), Using Bayesian networks with hidden variables for

identifying trustworthy users in social networks, Journal Inference Science, pp 1-16

[Xusheng, et al., 2018]

Xusheng, L.,, Chengcheng, F., Ran, Z., Duo Z., Tingting, H., Xingpeng, J., (2018) A hybrid deep

learning framework for bacterial named entity recognition with domain features, IEEE

International Conference on Bioinformatics and Biomedicine 2018, Spain, pp 1-9.

[Tweepy, nd]

https://www.tweepy.org/

https://www.sciencedirect.com/science/journal/00043702/28/1
https://www.powerthesaurus.org/
https://www.tweepy.org/

68

[1 Vennekens, et al., 2004]

1.Vennekens, J., Verbaeten, S., Bruynooghe, B., (2004). Logic programs with annotated

disjunctions. International Conference on Logic Programming, Springer, Berlin, Heidelberg, pp

431-445.

[Shindle, et al, 2018]

Shinde, P. P., Shah, S., (2018), A Review of Machine Learning and Deep Learning Applications,

Fourth International Conference on Computing Communication Control and Automation, India,

pp 1-6.

[Willmott, et al. 2005]

Willmott, C.J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the

root mean square error (RMSE) in assessing average model performance, Climate Research,

Vol 30,pp 79-82.

[Willmot, et al. 2006]

Willmott, C.J., & Matsuura, K. (2006). On the use of dimensioned measures of error to evaluate

the performance of spatial interpolators. International Journal of Geographical Information

Science, 20, 89-102.

[Uusitalo, 2007]

Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental

modelling, Ecological Modelling, Vol 223, pp 312-318.

69

Appendix A

A.1. The implementation of sentiment analysis procedure with VADER

The above function corresponds to the algorithm Algorithm 1 that illustrated in chapter 5.

facts = """t (_)::userLocation.\n"""

neg = False

pos = False

randomVariables = {}

for i in range (1, len(tweetsList)):

 if sentiment_analyzer(tweetsList[i].text, analyzer) == -1 and neg == False:

 facts = facts + "t (_)::negativeSentiment.\n"

 neg = True

 if sentiment_analyzer(tweetsList[i].text, analyzer) == 1 and pos == False:

 facts = facts + "t(_)::positiveSentiment.\n"

 pos = True

if pos == True and neg==True:

 break

A.2. Implementation of Entity Recognition method

The above function corresponds to the algorithm Algorithm 2

def readRelatedWordsDict(sentence,tempdictionary):

 tempList = returnFirstColByRelatedWords()

 with open ('datasets/relatedWords.csv', 'r', encoding='utf-8-sig') as csvFile:

 reader = csv.reader(csvFile)

 for row in reader:

 for i in range(0, len(tempList)):

 if row[i] in sentence and row[i] not in "" and checkKey(tempdictionary,tempList[i]) == 1:

70

 tempdictionary[tempList[i]] = True

 break

 return tempdictionary

 csvFile.close()

A.3 Check if user’s home location is from Crete or not

def checkPlace(text,randomVariables):

 str = []

 with open('datasets/placesCopy.csv', 'r', encoding='utf-8-sig') as csvFile:

 reader = csv.reader(csvFile)

 str = text.split(",")

 for row in reader:

 for i in range(len(str)):

 if row[0] == str[i].capitalize():

 randomVariables['userLocation']=False

 return randomVariables

 csvFile.close()

 randomVariables['userLocation'] = True

 return randomVariables

 csvFile.close()

A.4 Create Evidence set based on array of tweets

The above part of program “createModel.py” use the aforementioned function to create the

evidence set based on array of tweets.

 for i in range(1, len(tweetsList)):

 tempDict = initialDict.copy()

 tempDict = sentiment_analyzer_scores(tweetsList[i].text, analyzer,

 tempDict)

 tempDict = readRelatedWordsDict(tweetsList[i].text,

 tempDict)

 tempDict = checkPlace(tweetsList[i].location, tempDict)

 orderedDictionary = collections.OrderedDict(sorted(tempDict.items()))

 orderedDictionary = {Term(k): v for k, v in orderedDictionary.items()}

examples.append([(key, value) for key, value in orderedDictionary.items()])

71

A.5 The implementation of incremental learning procedure

The above code corresponds to the algorithm Algorithm 5 that we mentioned earlier in chapter 5.

def incrementalLearning (currentRandomVars, sizeOfCurrentSet, currentEvidence):

 oldRandomVariables = {}

 newRandomVariables = {}

 evidenceOld = {}

 newEvidence = []

 txtEvidence = {}

 content = []

 if os. path. exists('models/model.txt'):

 with open('models/model.txt') as f:

 content = f.readlines()

 content = [x.strip() for x in content]

 if os.path.exists('models/examples.npy'):

 numpyArray = np.load("models/examples.npy")

 oldEvidence = []

 oldEvidence = convertToSet(numpyArray)

 newEvidence = oldEvidence + currentEvidence

 else:

 newEvidence = currentEvidence

 if len(content) > 0:

 total = int(content[0]) + sizeOfCurrentSet

 percentageOfCurrentDataset = (100 * sizeOfCurrentSet) / total

 percentageOfOldDataset = 100 - percentageOfCurrentDataset

 for i in range(1, len(content)):

 if ":-" in content[i]:

72

 break

 variable = content[i].split("::")

 tempVar = variable[1].split(".")

 oldRandomVariables[tempVar[0]] = variable[0]

 else:

 percentageOfCurrentDataset = 100

 facts = ""

 if os.path.exists('models/examples.npy'):

 for key, value in currentRandomVars.items():

 if checkKey(oldRandomVariables, key) == 1:

 sumWeight = float((percentageOfOldDataset / 100))*float(oldRandomVariables[key])

 sumWeight = sumWeight + float((percentageOfCurrentDataset / 100)) * float(value)

 newRandomVariables[key] = sumWeight

 else:

 sumWeight1 = float(value)*100/total

 newRandomVariables[key] = sumWeight1

 for key,value in oldRandomVariables.items():

 if checkKey(currentRandomVars,key)==0:

 sumWeight2= float(value)*100/total

 newRandomVariables[key]=sumWeight2

 for key, value in newRandomVariables.items():

 facts = facts + str(value) + "::" + key + ".\n"

 else:

 for key, value in currentRandomVars.items():

 facts = facts + str(value) + "::" + key + ".\n"

 np.save("models/examples.npy", np.array(newEvidence))

73

return newEvidence, facts, len(newEvidence)

A.6 Test the trained model with new set of tweets

for i in range(1, len(tweetsList)):

 evidence = []

 evidenceDict = {}

 evidenceDict = randomVariables.copy()

 tweet1 = NewTweet(tweetsList[i].text, tweetsList[i].create, tweetsList[i].location)

 evidenceDict = sentiment_analyzer_scores(tweet1.text, analyzer,

 evidenceDict)

 evidenceDict = readRelatedWordsDict(tweet1.text,

 evidenceDict)

 evidenceDict = checkPlace(tweet1.location,

 evidenceDict)

 evidenceDict = {Term(k): v for k, v in evidenceDict.items()}

 evidence = [(key, value) for key, value in evidenceDict.items()]

 lf = engine.ground_all(db, evidence=evidence, queries=[query])

 result = get_evaluatable().create_from(lf).evaluate()

