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Abstract 

This thesis studies opinion mining from social media with probabilistic logic reasoning. Twitter is 

one of the most active social networks, with millions of tweets sent daily, where multiple users 

express their opinion about travelling, economic issues, political decisions etc. As such, it offers a 

valuable source of information for opinion mining. Our approach uses a Bayesian-based opinion 

mining framework exploiting Twitter Data. It is described by the following steps. First, the 

framework of our approach imports Tweets massively by using Twitter’s API. Next, the imported 

Tweets are further processed automatically for constructing a set of untrained rules and random 

variables.  Then, a Bayesian Network is derived by using the sets of untrained rules, the random 

variables and an evidence set.  After that, the trained model can be used for the evaluation of new 

Tweets. Finally, the constructed model can be retrained incrementally thus becoming more robust. 

As application domain for the development of our methodology we have selected tourism because 

it is one of the most popular topics in social media. Our system can predict with some probability 

users’ preferences, regarding their intention to visit a place or not. We have developed algorithms 

which create automatically efficient rules and random variables based on the trainset. Our system 

uses for model training the probabilistic logic reasoning system of ProbLog. The advantages of 

our approach are the following. First, our system follows an incremental learning strategy. That is, 

the derived model can be retrained incrementally with new training sets thus becoming more 

robust. Second, our system can be easily adapted to opinion mining from social media on other 

topics. Finally, the rules of the derived model are constructed in an efficient way and automatically. 
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1 Overview and Motivation 

 

1.1 Introduction 

The exponential growth of social networks has largely changed the way people interact with each 

other, influencing the way they think, eventually changing their opinion on several topics. As such, 

analyzing user-generated content offers a great opportunity for automatically detecting opinions 

and trends on topics of interest. 

Opinion mining is the science which performs text analysis in order to understand the drivers 

behind public sentiment. Sentiment analysis is predecessor of opinion mining, because opinion 

mining goes a level deeper. For example, sentiment analysis examines how people feel about a 

given topic (positive or negative), unlike opinion mining that examines why people feel the way 

they do. 

In this master thesis we present a system for opinion mining based on information available on 

Twitter. Our system performs probabilistic logical reasoning using Bayesian networks. Our 

approach can be applied in many other topics such health care, tourism, political opinions, 

economic issues etc.  

Bayesian networks, are a type of probabilistic graphical models that use Bayesian inference for 

probability computations. Bayesian networks aim to model conditional dependence and therefore 

causation, by representing conditional dependence by edges in a directed graph. The probability 

to reach from one state to the next state (edge), use the joint probability distribution. 

Mathematically, the joint probability distribution is the probability of two or more events 

happening at the same time (happening together). The joint probability for two events event A and 

event B  can be written as 𝑃(𝐴 𝑎𝑛𝑑 𝐵)   or as    𝑃(𝐴   𝐵) 

We have used Twitter data, collected through API’s, in order to construct and train a Bayesian 

model which can  be applied to new Tweets identifying user preferences. For instance, each user 

of social media can post photos for places that he/she has been visited. So, with an appropriate 

framework (that use Probabilistic logic through machine learning), questions such as “The user X 

likes the city of Chania” can be answered by examining the photos that the user X has posted in 

the past. As an application scenario, we focus on travelling. Our system can predict user 

preferences, regarding visiting a place or not with some probability.  

 

1.2 Problem Definition 

As we have mentioned earlier, our system can predict user preferences, regarding the intention to 

visit a place or not with some probability. More specifically, this thesis focuses on mining the 

intention of  Tweeter users for visiting  the Greek island Crete. Initially, we collected data from 

Twitter that have been posted by users who have visited Crete or by users which are planning to 

visit Crete in the near future. So, data from twitter have been collected based on specific hashtags. 
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The web-page http://best-hashtags.com has been used in order to identify popular hashtags for our 

problem [Best- Hashtags, n.d.].  According to this web-page the most popular hashtags used by 

users who visited Crete are #visitcrete, #travel, #crete, #creteisland. All tweets with the 

aforementioned  hashtags have been  stored  in the form of a Comma-Separated Values (CSV) file 

for further proceccing. Then, we  developed  algorithms in order to  generate the  evidence set and 

the  probabilistic rules based on the tweets  in the CSV file. Before we present  the scientific 

methods(Sentiment Analysis, Entity Recognition) that use the algorithms  that we have  

constructed it is important to define the evidence term.  Evidence set is a set of information 

decribing events that are true or false. So, the scientific methods that we use in our algorithms are 

the following: 

• Sentiment Analysis is the process by which we characterize the emotional tone that contains 

a set of words [Agarwal, et al., 2011] . That is, how positive or negative the sentiment is. 

That process refers to the use of Natural Language Processing (NLP), text analysis, 

computational linguistics and biometrics. 

• Entity Recognition is a task of information extraction that seeks to locate and classify 

named entity mention in unstructured text into some pre-defined categories. Some 

categories that are  used generaly are  location, travel, medical codes, company names etc. 

[Ritter, et al., 2011].  

 

The next step, is to use the ProbLog for probabilistic logic reasoning. Probabilistic Logic Programs 

are logic programs in which some of the facts are annotated with probabilities.  ProbLog is a library 

of Python, and with this toolbox we can train the model based on evidence set and probabilistic 

rules. In addition,   with ProbLog we evaluate the trained model based on new Tweets as mentioned 

earlier. In the train process, ProbLog uses the machine learning algorithm Expectation 

Maximization E.M. The general idea of E.M algorithm is to estimate the parameters of a statistical 

model by an  iterative process.  We use ProbLog in order to train our model and for the evaluation 

of  our model as well as. ProbLog uses the machine learning algorithm Expectation Maximization 

(E.M.) for training a Bayesian model. The general idea of E.M algorithm is to estimate the 

parameters of statistical models with iterative process. A parameter in a probabilistic  model is the 

quantity entering into the probability in random variables (i.e. P(X=x) = 0.50).  The final step is to 

evaluate the trained model. Our system takes as input tweets in textual form and then based on the 

evidences, returns the opinion about visit Crete with some probability.     

 

 

1.3 Thesis Structure 

 

The rest of this thesis is organized in the following chapters. In Chapter 2, we present the 

background and related work in machine learning and probabilistic logic reasoning. In addition, 

the Bayes’ law in presented. Also, the Bayesian method in machine learning, both inference and 

learning, is presented.  In Chapter 3, an overview of our machine learning system is presented. In 

Chapter 4, the architecture of our machine learning system is discussed. In Chapter 5, the basic 

components of our system are presented. In Chapter 6, some sample sessions of our system are 

illustrated. In Chapter 7, the evaluation of our system using RME metrics is presented.  In Chapter 

8,  the conclusions of this research and future work are discussed.  

http://best-hashtags.com/
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2 Background and Related Work 

In this chapter we present all scientific methods that have been used for the development of our 

system. Initially, a short review of Machine Learning domain will be presented and how it is 

applied in Probabilistic Logic Reasoning. Next, the Bayesian method in the Machine Learning 

domain is presented. Finally, all related work of our approach is discussed.    

 

 

2.1 Introduction to Machine Learning  
 
In computer science, Machine Learning is a very popular and important scientific method[Shindle, 

et al, 2018]. Machine Learning is at the core of artificial intelligence research. Machine Learning 

is the learning in which machine can learn by its own without being explicitly programmed. This 

science, provides to an intelligent system the ability to automatically learn and improve from 

experience. The most popular learning algorithms belong in the following categories: supervised 

learning, unsupervised learning and reinforcement learning. On one side, supervised learning is 

a learning in which we teach or train a model using data which are well labeled, it means that some 

or all  data are already tagged with the correct answer. On the other side, unsupervised learning is 

the training of a model using information that is neither classified nor labeled and allowing the 

algorithm to act on that information without guidance. In the reinforcement learning, the system 

is given a sequence of examples or states and a reward after completing that sequence, it learns to 

predict the action to take in for an individual example or state.  This can also be done through 

direct interaction with the intended environment.  

The algorithms which perform supervised learning are classified into the following two categories: 

• Classification: An algorithm performs classification when the output variable is a category, 

a class such as  “disease” and “no disease” 

• Regression: An algorithm performs regression when the output variable is a real value such 

as “weight” or “probability”.  

 

The algorithms that use unsupervised learning techniques can be classified into the following two 

categories:  

• Clustering: An algorithm performs  clustering by discovering the inherent groupings in the 

data, such as grouping customers by purchasing behavior, etc. 

• Rule-based: The rule-based method is the machine learning method for discovering 

important relations between variables in large datasets. All significant association rules 

between items in the database  can be  discovered by algorithms which perform  machine 

learning by the rule-based method [Agarwal, et al, 1993].   
 

 

 



 

4 

 

2.2  Machine Learning and Probabilistic Logic Reasoning  
 

The term “probabilistic logic” was first used by Nils Nilsson in 1986 [Nilsson, 1986], where the 

truth values of clauses are probabilities. The proposed semantical generalization induces a 

probabilistic logical entailment, which reduces to ordinary logical entailment when the 

probabilities of all sentences are either 0 or 1. This generalization applies to any logical system for 

which the consistency of a finite set of sentences can be established. Other scientific methods they 

use probabilistic logic are Markov Logic Network, Bayesian Logic, Probabilistic Argumentation, 

etc. The most popular application areas that use Probabilistic Logic Reasoning are the following:  

 

• Statistics 

• Bioinformatics 

• Game theory 

• Psychology 

• Real-life 

 

As we mentioned earlier, there are many scientific methods that use Probabilistic Statistical 

relational learning (SRL) studies the integration of probabilistic reasoning with machine learning 

and first order and relational representations.  Statistical Relational Learning is related to the 

research work in this thesis. This is discussed in Section 2.10. 

 

2.3 The Bayes’ law in our System 

 
As it is known the Bayesian Networks use the Bayes theorem (alternatively Bayes’ law or Bayes 

rule) in order to perform probabilistic inference. We present the Bayes’ law based on the trained 

model of our system.  

𝑃𝑀(𝜃|𝐷) =
𝑃𝑀(𝐷|𝜃) ∗ 𝑃𝑀(𝜃)

𝑃𝑀(𝐷)
 

 

The items from the model, shown in Figure 8, correspond to the elements of the above formula as 

follows: 

• PM(θ|D) stands for the probability of hypothesis θ when D is given (evidence). In our 

model θ corresponds to the item “visitLocation” (Figure 10 Trained Bayesian Network) 

and D corresponds to the evidence data, i.e.  “locationInTweet”, “negativeSentiment”, 

“positiveSentiment”  , “userLocation”, “hotel”,”restaurant”,”tourism” and “vacation”.   

• PM(D|θ) stands for the probability of evidence D given that the model parameters θ,  i.e.“ 

visitLocation”, are known 

• PM(D) is the total probability of generating these data under each and all possible θ (in our 

case we have just one rule about visiting Crete).  
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2.4  Bayesian Networks Inference  
 

In this sub-section we will describe the inference from Bayesian Networks. As it is known 

Bayesian Networks are a type of probabilistic graphical model that uses Bayesian inference for 

probability computations. A  Bayesian is a Directed Acyclic Graph (DAG)  G representing a 

dependency structure over a set of random variables X = {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛}, where each node 𝑁𝑖  

(1≤i≤n) represents a random variable and it has a direct influence on other random variables. 

Because each node corresponds to a random variable, i.e.  𝑁𝑖 = 𝑋𝑖  (1≤i≤n) we will denote each 

node by the random variable 𝑋𝑖  (1≤i≤n) that it represents. In addition, Bayesian Networks have 

conditional probability distribution (CPD) associated with each aforementioned nodes-random 

variables. In the Bayesian Networks, the conditional probability distribution of X is denoted by 

𝑐𝑝𝑑(𝑋)  and the parents of a node X are denoted by 𝑃𝑎(𝑋) . So, for node X its cpd(X) is defined 

in terms of its parents of 𝑃𝑎(𝑋)  as follows [Farasat  et, al. 2015] [De Raedt, 2008].  

 

𝑐𝑝𝑑(𝑋) = 𝑃(𝑋|𝑃𝑎(𝑋)) 

 

Let have the following network which is almost  a standard example for discussing Bayesian 

Networks[Farasat  et, al. 2015] [De Raedt, 2008] that is illustrated in    Figure 1. 

 

 

   

Figure 1 Bayesian Network and joint probability distributions 
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As it is known, conditional dependence is a relationship among random variables, i.e. nodes in 

Bayesian nets. More specifically, conditional dependence is a relationship, between two random 

variables or events that are dependent when a third occurs. The above network, Figure 1, represents 

5 random variables, {Burglary, Earthquake, Alarm, JohnCalls, MaryCalls}. These random 

variables have a set of values such {true, false}. The edge (Burglary, Alarm) shows the direct 

influence among the random variables Burglary -> Alarm. So, between these two variables we 

have conditional dependence. That is, the random variable Alarm conditionally depends on the 

random variable Burglary. The network, also represents the conditional independence among the 

variables. For example, the variables MaryCalls and Burglary are conditional independent when  

Alarm is given.  According to [De Raedt, 2008] based on local Markov assumptions, we can write 

the joint probability density as:   

 

𝑃(𝑋1, … , 𝑋𝑛) =  ∏ 𝑃(𝑋𝑖| 𝑋1, … , 𝑋𝑖−1) =

𝑛

𝑖=1

∏ 𝑃(𝑋𝑖| 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)).

𝑛

𝑖=1

 

 

 

Let’s  denote  random variables by their initials, i.e.  JohnCalls by J, MaryCalls by  M, Alarm by 

A, Burglary by B and Earthquake by E. Let’s assume that alarm rang,  Mary and John calls, and 

we know that there was no earthquake or burglary in the house. The aforementioned events 

correspond to joint probability distribution and is defined by the set {J, M, A, ¬B, ¬E}.  According 

to the above formula, the joint probability distribution of the set {J, M, A,¬B,¬E } is calculated  

as follows: 

𝑃(J, M, A, ¬B, ¬E) =  ∏ 𝑃(𝑋𝑖| 𝑋1, … , 𝑋𝑖−1) =  ∏ 𝑃(𝑋𝑖| 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)).

𝑛

𝑖=1

𝑛

𝑖=1

 

= 𝑃(𝐽|𝐴) ∗ 𝑃(𝑀|𝐴) ∗ 𝑃(𝐴|¬𝐵, ¬𝐸) ∗ 𝑃(¬𝐵) ∗ 𝑃(¬𝐸) = 0.90 ∗ 0.70 ∗ 0.001 ∗ 0.999 ∗ 0.998 

= 𝟎. 𝟎𝟎𝟎𝟔𝟐 

 

2.5  Likelihood function 
 

Τhe term parameter means the quantity entering into the probability of a random variable , e.g.  

P(X=x) =  0.43. Ιn many probability distributions we do not know its parameters, and in this case, 

we use Likelihood function to estimate these parameters using sample data. In general, the 

Likelihood function gives us an idea of how well the data summarizes parameters.  The Probability 

Mass Function  (PMF) of a discrete random variable X gives the probability of each numerical 

value x that the random variable can take, i.e. pX(x)=P({X=x}) is the probability of the event 

{X=x}.  
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Now, we give the definition of discrete likelihood function. Let’s we have the discrete random 

variable X with probability mass function p depending on the parameter θ. So, we have the 

following equation:  

𝐿(𝜃|𝑥) = 𝑝𝜃(𝑥) = 𝑃𝜃(𝛸 = 𝑥) 

We know that, the probability of the value x of random variable X for the parameter value θ is 

written as follows:  

𝑃(𝑋 = 𝑥|𝜃) 

Τhe likelihood  𝐿(𝜃)  is equal to the probability that a particular outcome (is a possible result of 

an experiment) x is observed, when the true value of the parameter is θ.   

𝐿(𝜃) is called the 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  and is expressed as follows: 

𝐿(𝜃) =  𝑃(𝑋 = 𝑥|𝜃) 

To be more accurate, we give an example. Let’s have the experiment of coin flip. We have the 

parameter 𝑝𝐻  which corresponds to the “fairness” of the coin. For perfectly fair coin we have the 

parameter 𝑝𝐻 = 0.5. Now, we start the experiment, we flip the coin two times and observing the 

following data: two heads in two tosses.  

We assume that each successive coin flip is identically and independently distributed. A set of 

random variables are identically and independently distributed (iid) if each random variable has 

the same probability distribution as the others and they are mutually independent.  Let X and Y be 

the random variables for the 1st and the 2nd  coin toss respectively.  

P(Y=h|X=h)  = P(Y=h  X=h) / P(X=h)     (1)  

P(Y=h|X=h)  = P(Y=h) (2) because the random variables X and Y are  iid 

From (1) and (2) we have P (Y=h  X=h) = P(X=h) × P(Y=h) = ½ × ½ = ¼  

Let X is the random variable and Y be the random variables that corresponds to the 1st and the 2nd 

coin toss respectively. In addition, h stands for  head.  So, according to the above formula we have 

the following: 

𝑃(𝑌 = ℎ  X = h) = 𝑃(𝑋 = ℎ) ∗ 𝑃(𝑌 = ℎ) = 0.5 ∗ 0.5 = 𝟎. 𝟐𝟓  

 

Hence, given the observed data HH (two heads in two tosses), the likelihood function is written 

as follows: 

  

𝐿(𝜃|𝑥) = 𝐿(𝑝𝐻 = 0.5|𝐻𝐻) = 𝑃𝜃(𝛸 = 𝐻) ∗ 𝑃𝜃(𝛸 = 𝐻) = 0.5 ∗ 0.5 = 𝟎. 𝟐𝟓 
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Figure 2 Likelihood function of example 

 

As it is known, the probability is the number between 0 and 1 and it is the description of how likely 

an event is to occur. Also, in other words probability is the percentage that a success occurs. In 

summary, the likelihood function according to the aforementioned examples, is the conditional 

probability that an event occurs by knowing the probability of a success occurrence.   

 

2.6  Structure Learning-Parameter Learning  
 

In this sub-unit, we will describe two very important problems over Bayesian Networks, such 

structure learning and parameter learning. In a Bayesian network the DAG is called the structure 

and the values in the conditional probability distributions are called the parameters. The learning 

problem in a Bayesian Network includes   the  structure learning and the parameter learning tasks.   

 

2.6.1 The parameter estimation problem. 

 

In this subsection we will discuss the problem of parameter learning from data in Bayesian 

networks. In order to study this problem, we have to assume that we know the structure of the 

Bayesian network, i.e. the DAG.  That is , we know the conditional dependencies of a set of random 
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variables.  The problem of parameter learning involves estimates of the values of relative 

frequencies.  The basic formalism of parameter learning is the following.  

Definition 

The problem of parameter learning is formalized from a set of elements that are given and a set of 

elements that they have to be found [De Raedt, 2008]. 

Given Elements 

• A set of examples E 

• A probabilistic model M= (S, λ) with structure S and parameters λ. 

• A probabilistic coverage relation P (e | M) that computes the probability of observing the 

example e given the model M.  

• A scoring function score (E, M), that employs the probabilistic coverage relation P(e|M). 

This function is used to quantify the fitting of a Bayesian Network. This function it returns 

the maximum score that corresponds the best fit of the Bayesian Network.  

 

Asked Elements 

• After we have the above formalism, the problem is to  find the parameters 𝜆∗ that maximize 

the scoring function, i.e.   

𝜆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒(𝐸, (𝑆, 𝜆)) 

It is mentioned in [De Raedt, 2008] that “the problem specification shows that parameter 

estimation is essentially an optimization problem that depends on the scoring function and type of 

model employed. The standard scoring function is the probability of the model or hypothesis given 

the data as we present earlier in the Given Elements.  This yields the maximum a posteriori 

hypothesis  𝐻𝑀𝐴𝑃 such:  

𝐻𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑃(𝐸|𝐻) ∗ 𝑃(𝐻)

𝑃(𝐸)
 

The maximum a posteriori hypothesis is the estimate of an unknown quantity that corresponds at 

the value that takes a discrete random variable where it has the maximum parameter (probability).  

Example 1 
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Let’s have the following Bayesian Network with two nodes. That is a subnetwork of the one 

shown in Figure 1.  This Bayesian Network is illustrated in Figure 3. 

 

Figure 3 Probabilistic model M with structure S 

 

Let have the full observable data such the ones shown in Table 1.  That is, the set of examples E 

on the probabilistic model M is {e1, e2, e3, e4}.  In the next discussion, the random variables of 

this Bayesian network   are denoted by their initials which are shorter, Alarm is denoted by  α and 

JohnCalls is denoted by  j. As we mentioned earlier λ is used to denote the parameter of a model. 

We have the following parameters  𝑃(𝛼) = 𝜆𝜊 and 𝑃(¬𝑎) = (1 − 𝜆𝜊) which are  illustrated in  

Table 2 . The distributions of the Probabilistic Model in Figure 3 are specified over {true, false}.  

 In Table 3, represented the probability distribution over the model M.  

 

Examples a j 

e1 true true 

e2 true false 

e3 false true 

e4 false false 

 

Table 1 Completed dataset with examples E 

 

 

 

Table 2 Parameters for P(a) 

 

 

 
 

Table 3 joint distr. with parameters 

P(a) 

(𝝀𝝄,𝟏 − 𝝀𝝄) 

a P(j|a) 

true (𝝀1,𝟏 − 𝝀1) 

false (𝝀2,𝟏 − 𝝀2) 
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In order to understand the usefulness of the likelihood function in parameter estimation problem 

we compute the likelihood of each one of the examples of  Table 1.  

The likelihood for example e1, satisfying specific values of random variables such  a=true and j= 

true is the following : 

 𝑃(𝑎, 𝑗) = 𝑃(𝑎) ∗ 𝑃(𝑗|𝑎) = 𝝀𝟎 ∗ 𝝀𝟏 

The likelihood for example e2, satisfying specific values of random variables such  a=true and j= 

false is the following : 

 𝑃(𝑎, ¬𝑗) = 𝑃(𝑎) ∗ 𝑃(¬𝑗|𝑎) = 𝝀𝝄(1 − 𝝀1). 

 

The likelihood for example e3, satisfying specific values of random variables such  a=false and 

j= true is the following : 

 𝑃(¬𝑎, 𝑗) = 𝑃(¬𝑎) ∗ 𝑃(𝑗|¬𝑎) = (1 − 𝝀𝟎) ∗ 𝝀𝟐 

The likelihood for example e4, satisfying specific values of random variables such  a=false and 

j= false is the following : 

 𝑃(¬𝑎, ¬𝑗) = 𝑃(¬𝑎) ∗ 𝑃(¬𝑗|¬𝑎) = (1 − 𝝀𝟎) ∗ (1 − 𝝀𝟐) 

 

 

As it is known, we have the model M with structure S represented in Figure 3, and we also  have 

the set of examples E illustrated in table Table 1. In the next, we show in details the required steps 

in order to find the maximum likelihood estimation.  

Step 1: 

The first step, computes the probability of observing the set of examples E given the model M, it 

is denoted by the notation P(E|M). So, under the i.i.d assumption, for n=4 examples we have the 

following equation that corresponds to the likelihood of the data of the table Table 1. Also, it is 

important to mention that we use |x| notation, that corresponds the number of examples of Table 1, 

satisfying the logical condition x.    

Equation 2.1: 

𝑃(𝐸|𝑀) =  ∏ 𝑃(𝑒𝑖 | 𝑀)

𝑛=4

𝑖

= 𝑃(𝑒1|𝑀) ∗ 𝑃(𝑒2|𝑀) ∗ 𝑃(𝑒3|𝑀) ∗ 𝑃(𝑒4|𝑀) = 

 𝜆0
|𝑎|

(1 − 𝜆0)|¬𝑎|  𝜆1
 |𝑎 ∧ 𝑗 | 

(1 − 𝜆1)|𝑎∧¬𝑗 | 𝜆2
 |¬𝑎 ∧ 𝑗 | 

(1 − 𝜆2)|¬𝑎∧¬𝑗 | 
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Step 2: 

The above function can be maximized by maximizing the logarithm of the function instead, which 

is easier as well as justified because the logarithm is a monotonic function. The log-likelihood can 

be maximized by computing the derivatives, setting them to 0, and solving for the 𝜆𝑖 with the 

following steps:   

Equation 2.2 

L =  log P(E | M) = = log ( 𝜆0
|𝑎|

 (1 − 𝜆0)|¬𝑎|  𝜆1
 |𝑎 ∧ 𝑗 | 

 (1 − 𝜆1)|𝑎∧¬𝑗 |  𝜆2
 |¬𝑎 ∧ 𝑗 | 

 (1 −

𝜆2)|¬𝑎∧¬𝑗 | ) == log ( 𝜆0
|𝑎|

 )  +  log (1 − 𝜆0)|¬𝑎|   + 𝑙𝑜𝑔 𝜆1
 |𝑎 ∧ 𝑗 | 

+ (1 − 𝜆1)|𝑎∧¬𝑗 |  +

 𝜆2
 |¬𝑎 ∧ 𝑗 | 

+ (1 − 𝜆2)|¬𝑎∧¬𝑗 | ) =   

 =  |𝛼| log 𝜆0 + |¬𝛼| log(1 − 𝜆0) + |𝛼 ∧  ¬𝑗|𝑙𝑜𝑔𝜆1 + |𝑎 ∧ ¬𝑗|log (1 − 𝜆1)

+                       |¬𝑎 ∧ 𝑗| log 𝜆2 + |¬𝑎 ∧ ¬𝑗| log(1 − 𝜆2)   
 

The next step is to find the derivates of 𝜆𝑖 as we mentioned. This is calculated as follows.   

𝜕𝐿

𝜕𝜆0
=  

|𝑎|

𝜆0
−

|¬𝑎|

1 − 𝜆0
 

𝜕𝐿

𝜕𝜆1
=  

|𝑎 ∧ 𝑗 |

𝜆1
−

|¬𝑎 ∧ 𝑗 |

1 − 𝜆1
 

𝜕𝐿

𝜕𝜆2
=  

|𝑎 ∧ 𝑗 |

𝜆1
−

|¬𝑎 ∧ 𝑗 |

1 − 𝜆1
 

Step 3:  

Setting these equal to 0 and solving for the 𝜆𝑖 yields. 

𝜆0 =  
|𝑎|

|𝑎| + |¬𝑎|
 

𝜆1 =  
|𝑎 ∧ 𝑗 |

|𝑎 ∧ 𝑗| + |𝑎 ∧  ¬𝑗|
 

𝜆2 =  
|¬𝑎 ∧ 𝑗 |

|¬𝑎 ∧ 𝑗| + |¬𝑎 ∧  ¬𝑗|
 

 

 

Summarizes, 𝜆∗ corresponds to the parameters that maximize the likelihood function (maximum 

likelihood estimation). These parameters are  𝜆0, 𝜆1, 𝜆2.  
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2.6.2 The structure learning problem 
 

So far, we have analyzed the parameter estimation problem which has been studied in this thesis. 

In this subsection we will discuss the problem of structure learning from data in Bayesian networks 

even though we did not study this problem in this thesis.  We perform this discussion for the reader 

of this thesis in order to have a complete view of the learning problem in Bayesian networks.  

Therefore, important techniques have been developed in order to learn the structure of a model 

from a given data set. So, we give a short brief in structure learning technique. Τhis technique was 

not used in our system in the learning procedure, because our model has known structure of DAG 

based on algorithms that we have constructed. Furthermore, in the following bullets we will give 

some important definitions of structure learning technique [De Raedt, 2008].  

Given Elements: 

• We have a set of examples E 

• We have also, a language 𝑳𝑴  of possible models of the form M = (S, λ) with parameters 

λ and structure S 

• A probabilistic coverage relation P(e|M) that computes the probability of observing the 

example e given the model M 

• A scoring function score (E, M) that employs the probabilistic coverage relation P(e|M). 

We use, the same function as we presented in parameter estimation problem. So, this 

function is used to quantify the fitting of a Bayesian Network.  

 

Asked  Elements: 

In the following example we will find the model M = (S, λ) that maximizes score (E, M) that is  

𝑀 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑠𝑐𝑜𝑟𝑒(𝐸, 𝑀) 

This problem is a search problem, because, there is a space of possible models to be considered, 

defined by the language 𝐿𝑀 , and the goal is to find the best one, according to the scoring function 

(model with the maximum score). In Bayesian Networks there are two possible cases:   

1. The first case is when network is fully connected (where there is an edge between any pair 

of random variables)   

2. The second case is when no links are contained at all. To evaluate a candidate structure S, 

the parameters λ are first estimated and then the scoring function is used to determine the 

overall score of the resulting model.  
 

The problem with the scoring function, is that always prefers a fully connected network. To 

evaluate a candidate structure S, the parameters λ are first estimated and then the scoring function 

is used to quantify the overall score of the resulting model.  So, in structure learning problem the 

goal is to find the model or hypothesis with the maximum posterior probability such as follows 

[De Raedt, 2008]: 
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𝐻 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝐻|𝐸) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
= 𝑎𝑟𝑔𝑚𝑎𝑥𝑃(𝐸|𝐻)𝑃(𝐻) =

𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑜𝑔 𝑃(𝐸|𝐻)+log P(H) 

 

2.7 Other Graphical Models 

 
 In this subsection, we will make a brief introduction to the other type of  probabilistic graphical 

models, i.e. the Markov Networks. 

Markov Networks: is a graphical model for the joint distribution of a set of variables 

X={𝑋1,𝑋2 , … , 𝑋𝑛} ∈ X. Markov model can represent each random variable 𝑋𝑖 with a directed 

graph. In the following bullets we mention the properties of Markov models. 

• We have a set of states: {𝑠1,𝑠2 , … , 𝑠𝑛}. 

• Process moves from one state to another generating a sequence of states such the following 

𝑠𝑖1,𝑠𝑖2, 𝑠𝑖3, … , 𝑠𝑖𝑘, … 

• Chain property: probability of each subsequent state depends only on what was the 

previous state, so, the following is the formula for computing the probability.  

 P (𝑠𝑖𝑘,|𝑠𝑖1,𝑠𝑖2, … , 𝑠𝑖𝑘−1 ) = P (𝑠𝑖1,| 𝑠𝑖𝑘−1 ) 

• To define Markov model, the following probabilities have to be specified, transition 

probabilities 𝑎𝑖𝑗 = 𝑃(𝑠𝑖 | 𝑠𝑗) and initial probabilities 𝜋𝑖 = 𝑃(𝑠𝑖).  

So, to make it more understandable, we will give an example. Suppose that we have two states 

‘Rain’, and ‘Dry’ which represent random variables. In addition, we have transition probabilities 

P(‘Rain’|’Rain’) = 0.3, P(‘Dry’|’Rain’) = 0.7, P(‘Rain’|’Dry) = 0.2, P(‘Dry|’Dry’) = 0.8. And final, 

we have the initial probabilities P(‘Rain’) = 0.4, P(‘Dry’) = 0.6. 

 

 

 

Figure 4 Markov Model 

 

Let have the following sequence of states {‘Dry’, ‘Dry’, ’Rain’, ’Rain’} 

According to the aforementioned formula we have the following calculations:  
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P(𝑠𝑖𝑘,| 𝑠𝑖𝑘−1 )P(𝑠𝑖𝑘,| 𝑠𝑖𝑘−1 )….P(𝑠𝑖2,| 𝑠𝑖1)P(𝑠𝑖1 )= 

P(‘Rain’ | ‘Rain’)P(‘Rain’|’Dry’)P(‘Dry’|’Dry’)P(‘Dry’)= 

0.3*0.2*0.8*0.6=0.0288. 

  

The above Markov model with two states Rain-Dry and the transition probabilities in ProbLog is 

expressed as follows:  

Program 1 Markov Model in ProbLog 

%initial probabilities 

0.4::init(rain). 

0.6::init(dry). 

%transition probabilities 

0.3::stateTransition(rain,S,rain).  

0.7::stateTransition(rain,S,dry).  

0.2::stateTransition(dry,S,rain). 

0.8::stateTransition(dry,S,dry). 

 
 

 

2.8 Estimate of parameters in statistical models 
 

In this sub-unit we will mention shortly some algorithms that can estimate the parameters of 

statistical models. The most popular algorithms are Bayesian Estimation and Expectation 

Maximization (E.M). The Bayesian Estimation algorithm is the alternative principle to maximum 

likelihood estimation which has been discussed in Section 2.5.   The steps of the Bayesian 

Estimation algorithm are the following:  

Steps of Bayesian Estimation Algorithm 

• Start with a prior distribution and use experience (from dataset) to update the distribution. 

• Collapse the posterior distribution to the mean value and use this as the final value of the 

parameter.  

• If we have binary values (True False), let X be a binary value, and we have performed a 

number of independent experiments of which n turned up True and m turned up False. Then 

starting with even prior distribution for θ the Bayesian estimate for P(X=True) is  
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𝑛 + 1

𝑛 + 𝑚 + 2
 

 

The basic steps of Bayesian Estimation algorithm have been presented. The detail presentation of 

Expectation Maximization algorithm follows.  This algorithm has been used by our system learning 

system.  The EM algorithm concerns   the case where the data are not fully observable, but some 

of them are observable (Table 4) [De Raedt, 2008]. 

 

 

 a j 

e1 true true 

e2 true ? 

e3 false false 

e4 ? true 

Table 4 Dataset with missing values 

 

Missing data occur when some values of the random variables are occasionally unobserved. 

Latent state occurs when the values for some random variables are always unobserved. This state 

is  illustrated in table  Table 5. The latent variable is the random variable a because in all examples 

of Table 5 the values are unobserved.   

 

 

 

 a j 

e1 ? true 

e2 ? ? 

e3 ? false 

e4 ? true 

Table 5 Latent State 

After we mention the above attributes that may have any dataset, we use the log-likelihood in the 

data which  is  illustrated in Table 4 . Let’s we have the log-likelihood function with parameter λ, 
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called Q(λ). The most difficult with this function is its dependence on unobserved values, i.e. the 

unobserved values are represented in Table 4 as “?”. According to [De Raedt, 2008] the natural 

way of dealing with these values (unobserved – observed) is to compute the expected likelihood 

function Q(λ). The expectation is taken over the missing values of the examples that corresponds 

to Table 4.  Let’s assume that we have examples of the following form:  

𝑒𝑖 = 𝑥𝑖 ∪ 𝑦𝑖   (1 ≤  i ≤ 4) 

That is, each example 𝑒𝑖 (1 ≤ i ≤4) is composed of an observed part 𝑥𝑖  and an unobserved part 

𝑦𝑖.  The expectation maximization algorithm consists of the following two steps.  

Steps of Expectation Maximization Algorithm. 

• E-step: called the expectation step. In this step, the observed data and the present 

parameters of the model M, compute a distribution over all possible completions of each 

partially observed data case.   

• M-step: called the maximization step. This step of the algorithm is described [De Raedt, 

2008] as follows, “in M-step using each completion as a fully observed data case weighted 

by its probability, compute the updated parameter values using frequency counting 

(these frequencies over the completions are called the expected counts)”.   

 

In order to use the expectation maximization algorithm we assume that there is a current model      

𝑀(𝜆𝑗)     which is used  to compute the expected values of unobserved part of dataset 𝑦𝑖 (Table 

4). In addition, it is used to compute 𝑄(𝜆).  The next formula illustrates the computation of Q(λ).  

The E in the formula corresponds to the expectation which is taken with regard to the current 

model 𝑀(𝜆𝑗) and the missing values 𝑦𝑖  of dataset in Table 4.  The 𝑳(𝝀), corresponds to the 

likelihood as a function of parameters λ which we have mentioned in Equation 2.2.  

Equation 2.3 

𝑄(𝜆) = 𝑬[𝐿(𝜆)] = 𝑬[log 𝑃(𝐸|𝑀(𝜆))] = 𝑬 (∑ log (𝑃(𝑒𝑖|𝑀(𝜆)))

𝑒𝑖∈𝐸

) = 

= 𝑬 (∑ log (𝑃(𝑥𝑖 , 𝑦𝑖|𝑀(𝜆)))

𝑒𝑖∈𝐸

) = ∑ 𝑃 (𝑦𝑖|𝑥𝑖, 𝑀(𝜆𝑗))

𝑒𝑖∈𝐸

𝑙𝑜𝑔𝑃(𝑥𝑖 , 𝑦𝑖|𝑀(𝜆)) 

 

According to the above formula (Equation 2.3), first need to compute the 𝑃 (𝑦𝑖|𝑥𝑖 , 𝑀(𝜆𝑗)) . 

These values are computed by normal inference procedures. In the estimation step, we estimate 

the likelihood that the examples 𝑥𝑖  are completed with unobserved part 𝑦𝑖 given the current 
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model M (𝜆𝑗). When these estimates are known, the expected likelihood of function 𝑄(𝜆)  is 

computed.  We give an example that illustrates the steps of E.M algorithm.  

Illustration of EM algorithm by an example. 

Let have the dataset that is presented in Table 4.  

E-step of E.M. algorithm: The first step of E.M algorithm is to complete the data set. As we 

mention, in the dataset there are missing values (in 𝑒2, 𝑒4  Table 4). More specifically, the result 

of the example 𝑒2 is split into two examples 𝑒2,1 𝑒2,2. The first, 𝒆𝟐,𝟏 has the value true for j (j 

corresponds johnCalls random variable) and receives the probability of P (j | a). The second, 𝒆𝟐,𝟐 

has the value false, and receives the probability of P (¬𝑗 | 𝑎). These fractional examples can be 

used for computing the expected counts and perform the maximization step. For example, in 

parameter 𝜆𝑜 can be re-estimated as (the same process corresponds to the all of parameters of the 

model 𝜆0𝜆1𝜆2): 

𝜆0 =  
𝑒𝑐(𝑎)

𝑒𝑐(𝑎) + 𝑒𝑐(¬𝑎)
 

 

After we re-estimate the parameter 𝜆0 it follows the maximization step.  

M-step of E.M. algorithm: As we mentioned, in this step we compute the updated parameter 

values using expected counts. So,  𝑒𝑐𝜆(𝑎) is the expected count of the number of occurrences of a 

given the current set of parameters λ = (𝜆0, 𝜆1, 𝜆2), now replaces |a| with the following: 

𝑒𝑐𝜆(𝑎) = ∑ 𝑃(𝑎 |𝑒𝑖) = 2 + 𝑃(𝑎 | 𝑒4)
𝑖∈{1,…,4}

 

Where P (a | 𝑒4 ) has to be estimated using λ, with the following:  

𝑃(𝑎 | 𝑒4) = 𝑃(𝑎|𝑗) =
𝑃(𝑎 ∧ 𝑗)

𝑃(𝑎)
=

𝜆0𝜆1

𝜆0𝜆1 + (1 − 𝜆0)𝜆2
 

So, the above is the process that follows the E.M algorithm.  

 

 

 

 

 

2.9 Basic Features of ProbLog 
 

In this subsection we will discuss some basic features of ProbLog [De Raedt et, al., 2007]. As we 

mentioned earlier, ProbLog is a probabilistic extension of Prolog.  It can be used as a standalone 

tool or as a library in Python. In our system,  it has been used in connection with Python from the 
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library of Python.  ProbLog allows us to encode the uncertainties that are inherent in real world 

applications. A ProbLog program consists -as Prolog- of a set of definite clauses. Moreover, in 

ProbLog every clause Ci is labeled with probability Pi.  Let have the following example. Suppose 

there is a burglary in a house, with probability 0.7 and an earthquake with 0.2 probability. We have 

the following rules in pseudo-code.  

• if there is a burglary and an earthquake then the alarm rings with probability 0.9 

• if there is only a burglary then it rings with probability 0.8 

• if there is only an earthquake then it rings with probability 0.1 

• if there is neither a burglary nor an earthquake then the alarm doesn’t ring. 

 

In Figure 5 illustrates the Bayesian Network of given example.  

 

 

 

 

Figure 5 Burglary Example 

 

The aforementioned rules in pseudo-code and the Figure 5, can be modeled in two different 

approaches. In the first approach, the modelling is performed by using probabilistic facts and rules. 

More specifically, Program 1 contains probabilistic facts (called also random variables) and 

rules.  

Program 2: Create rules using probabilistic facts. 

%probabilistic facts 

0.7::burglary. 

0.2::earthquake. 
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0.9::p_alarm1. 

0.8::p_alarm2. 

0.1::p_alarm3. 

 

%rules 

%if there is a burglary and an earthquake the alarm rings with probability 0.9 

alarm :- burglary, earthquake, p_alarm1. 

%if there is a burglary only, it rings with probability 0.8 

alarm :- burglary, \+earthquake, p_alarm2. 

%if there is an earthquake only, it rings with probability 0.1 

alarm :- \+burglary, earthquake, p_alarm3. 

% we know that the alarm rang 

evidence(alarm). 

%what is the probability of a burglary 

query(burglary). 

 

The program Program 2 can also represented in the follow link 

https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=564f615f5f657deb2eacb993d5

9d69f6 

 

In the second approach, the modelling is performed  by  using annotated disjunctions in rules. In 

this approach we can replace the clause “alarm :- burglary,earthquake,p_alarm1.”  by the following 

clause “0.9::alarm :- burglary, earthquake.”.  

In every rule, probability is placed  in the head of clause. More specifically, Program 3 models  

the same problem as  the one of Program 2, in addition it uses rules that are annotated with 

probability.  

Program 3 Create rules with annotated disjunctions 

0.7::burglary. 

0.2::earthquake. 

%probabilistic rules 

0.9::alarm :- burglary, earthquake. 

https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=564f615f5f657deb2eacb993d59d69f6
https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=564f615f5f657deb2eacb993d59d69f6
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0.8::alarm :- burglary, \+earthquake. 

0.1::alarm :- \+burglary, earthquake. 

% we know that the alarm rang 

evidence(alarm). 

%what is the probability of a burglary 

query(burglary). 

The program Program 3 can also represented in the follow link 

https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=9d7aff7dc8facf16e617edcb256

641ce 

 

We know the E.M uses iteration to estimate the parameters of statistical models, so for that reason 

ProbLog uses three forms for defining the iteration. We represent these forms that use ProbLog. 

In other words, when learning the probability annotation in a probabilistic fact-random variable or 

rule- with ProbLog we can use three possible forms. We give an example to represent that three 

forms. Let have the following program Program 4.   

Program 4 the possible forms that use ProbLog 

t(_)::burglary. 

t(0.50)::earthquake. 

0.6::alarm. 

 

Based on Program 4, we represent the following forms that can use in ProbLog program. These 

three forms are the following [De Raedt et, al., 2007]: 

• Probability to be learned corresponds to the form t(_): The form of “t(_)”, as in the 

instance “t(_)::burglary”, indicates that the probability of this fact-random variable has to 

be learned from data. In the first iteration of EM, each random variable is initialized with 

a random probability. 

• Intermediate value of the probability corresponds to the form t(p): The form “t(p)”, as 

in the instance “t(0.50)::earthquake”, indicates that the probability of this fact has to be 

learned from data but in the  first iteration the EM algorithm it has been assigned 0.5 

probability.  

• Fixed probability corresponds to the form p: The form of “p”, as in the instance 

“0.6::alarm” indicates that the probability of this fact is fixed (it is not learned).  

 

https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=9d7aff7dc8facf16e617edcb256641ce
https://dtai.cs.kuleuven.be/problog/editor.html#task=prob&hash=9d7aff7dc8facf16e617edcb256641ce
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After we represent the possible forms that use ProbLog, now it is important to illustrate the 

example with a Bayesian Network with some unknown parameters. So, let we have the following 

network: 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Bayesian Network with unknown parameters 

 

 

This network Figure 6, corresponds model M, with the following below program.  

Program 5 Untrained Network with annotated probabilities in every fact 

t(_)::burglary. 

0.2::earthquake. 

t(_)::p_alarm1. 

t(_)::p_alarm2. 

t(_)::p_alarm3. 

%the untrained rules 

t(_)::alarm :- burglary, earthquake, p_alarm1. 

t(_)::alarm :- burglary, \+earthquake, p_alarm2. 

t(_)::alarm :- \+burglary, earthquake, p_alarm3. 

 

Also, we have the following table as set of examples E.  
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 B E A 

e1 false ? false 

e2 true false true 

e3 false ? ? 

Table 6 set of Examples E of Bayesian Network 

 

The Table 6 in ProbLog is represented as follows: 

Program 6 Examples (specified as evidence, separated by ---) 

% representation of the 1st row of Table 5. 

evidence(burglary, false). 

evidence(alarm,false). 

% representation of the 2nd row of Table 5. 

evidence(earthquake,false). 

evidence(alarm,true). 

evidence(burglary,true). 

% representation of the 3rd row of Table 5. 

evidence(burglary,false). 

 

Based on the examples – evidences Table 6 that are mentioned earlier, we use lfi/2 function. This 

function stands for learning from interpretations. Generally, the interpretations are all probabilistic 

facts and evidences that are created. More specifically, the interpretations that use lfi/2 are the 

rules and the examples (evidences). So, lfi/2 takes the following as input:  

• Evidences: is the set of examples that represent events that are true or false. More 

specifically, take the Program 6 as input.  

• Rules-random variables  are the rules and random variables of Bayesian Network 

corresponds to Figure 6.  

 

When, lfi/2, use E.M. algorithm to estimate the parameters of the model Figure 6 , then it returns 

the trained model as output. This trained model is illustrated  in Program 7 
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 Program 7 Trained Bayesian Network 

%trained random variables 

0.33::burglary. 

0.2::earthquake. 

0.27::p_alarm1. 

1.0::p_alarm2. 

0.35::p_alarm3. 

%trained rules 

0.39::alarm :- burglary, earthquake, p_alarm1. 

1.0::alarm :- burglary, \+earthquake, p_alarm2. 

0.0::alarm :- \+burglary, earthquake, p_alarm3. 

 

Also, we can run the above program in the following link. If we run the program many times we 

will notice that we will have different results and this is because it does not do the same 

iterations in the learning process.  

https://dtai.cs.kuleuven.be/problog/editor.html#task=lfi&hash=9f4b2a12d6828366886de83acef5

3156&ehash=e722d0902bfa7c3be7515561dba78c67 

 

 

 

 

2.10  Related Work 
 

Our work is related with Statistical Relational Learning (SRL) called also Probabilistic Logic 

Learning. As we have  described earlier we use Bayesian Logic and ProbLog library in order to 

create a machine learning system. In this section, we will give a short brief review of machine 

learning systems that use SRL and other scientific methods such Deep Learning, NLP.  

As it is known, SRL combines expressive representation formalisms, able to model complex 

relational networks. Some of the formalisms in this domain are logic programs with annotated 

disjunctions (LPAD) [Vennekens, et al., 2004], probabilistic horn abduction (PHA) [Poole, et al., 

https://dtai.cs.kuleuven.be/problog/editor.html#task=lfi&hash=9f4b2a12d6828366886de83acef53156&ehash=e722d0902bfa7c3be7515561dba78c67
https://dtai.cs.kuleuven.be/problog/editor.html#task=lfi&hash=9f4b2a12d6828366886de83acef53156&ehash=e722d0902bfa7c3be7515561dba78c67
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1993], ProbLog [De Raedt et, al., 2007]. First, in the next paragraphs we represent systems that 

use Probabilistic Logic in order to create machine learning systems.  

Probabilistic Soft Logic over the Social Graph: In [Jiwei, et al., 2014] proposed a framework that 

use probabilistic reasoning over the social network graph. This framework  answers questions 

about Twitter users such the following:  

• Does this user like cheese cake? 

• Is this user a Barcelona F.C.  fan? 

 

According to the article, the above questions are answered by building a probabilistic model that 

reasons over the  user’s attributes  in Twitter such as  gender and home location and the social 

network of the user, such as the user’s friends and spouse. It is mentioned that it is more likely that 

a user is a fan of Barcelona if he/she comes from Spain. Also, it is more likely that a user likes 

cheese cake if his/her spouse or a friend likes cheese cake. For extracting user’s attributes i.e. 

gender, spouse, home location, and preferences (like-dislike) from text they use semi-supervised 

data harvesting and vector space models. For probabilistic reasoner they use Probabilistic Soft 

Logic. In short terms, we give an example how to extract the attribute Education/Job of a user. So, 

in order to identify the Education and Job attributes, it is mentioned in the article that they use 

Google+ API2 service. More specifically, for each user, they obtained his/her full name into the 

Google + account. Most of the users of Google+, they use many important attributes, such 

education and job that used in the aforementioned framework. Also, mention that, the most 

important challenge is to match user’s Twitter accounts to Google+ accounts. In addition, they 

adopted the friend shared strategy. With this strategy, taken in that if more that 10 percent of and 

at least 20 friends are shared by Google + circles and Twitter followers, they assume that the two 

accounts point to the same person [Jiwei, et al., 2014].  

Information about user’s attributes and preferences in  predicate  form is specified as the following: 

Spouse(UsrA,UsrB), Friend(UserA,UserB), Like(UsA,Entity1). 

In addition, in order to model complex relations, they use Probabilistic Logic such  as the following 

formulas:  

Friend(A,B)⋀ Friend(B,C)=>Friend(A,C)       friends of friends are friends 

Couple(A,B) ⋀ Friend(B,C)=>Friend(A,C)       the friend of one member  of a couple is also friend 

of the other member of the  couple.  

FRIEND(A,B) ⋀ LKE-SPORTS(A) => LKE-SPORTS(B)   If A and B are friends and a sport likes 

A,  then that sport likes to his friend B.   

The important advantage of the aforementioned framework is that it can be answer questions from 

different topics by extracting  information from  Twitter. On the other hand, the disadvantage is 

that the export of user attributes  is based on web platforms  that are  not so popular like Google 

+.  
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In addition, important formalisms in SRL are the Bayesian Networks and Markov Logic. So, in 

the next paragraphs we discuss a brief review of some systems that use these formalisms in order 

to model complex real-life situations.   

Using Bayesian networks in social networks: in article [Xu, et al., 2019] they propose a framework 

for identifying trustworthy users in social networks using the Bayesian approach. In other words, 

they use Bayesian Networks to model user profiles and historical records so that their system 

recognizes the trustworthy users. The general idea of the system was to employ user features in 

order to create a classifier by formalizing trust prediction as a classification problem. In addition, 

they mention that “we emphasize the inner reasoning of people when they endeavor to judge 

whether a person can be trusted based on their past records rather than focusing on the complex 

process of building a trust network”. Also, they assumed all the aforementioned idea can be well 

defined in a directed graph (i.e. Bayesian Network).  In this directed graph each of the nodes 

represent features extracted from user’s records. Also, each edge of the Network corresponds to a 

cause-and-effect relationship. Finally, the main contributions of the aforementioned work is the 

following:  

1. They apply the Expectation-Maximization (EM) algorithm, in order to handle the latent 

components. 

2. In their experiments, they use two different datasets for evaluation of the model. One was 

from Facebook by [Cambria, et al. 2015] and the other was from Twitter by [Chen, et al., 

2015].   

3. They conduct, several experiments on Facebook and Twitter and compare the performance 

of their method with other machine learning algorithms (i.e. Random Forest [Cambria, et 

al. 2015], Naive Bayes [Amor, et,al., 2004], Decision Trees [Amor, et, al., 2004] ).   
 

Learning Bayesian Networks from data: in article [Jie, et al., 2002] they proposed algorithms that 

use an information-theoretic analysis to learn Bayesian net., from given data. More specifically, 

they developed a three-phase analysis algorithm called Three-Phase Dependency Analysis 

(TPDA). They mention that algorithm TPDA requires at most O (𝑁4)  conditional independence 

tests to learn an N-variable Bayesian Network. In addition, they use the TPDA-Π algorithm (i.e. 

this algorithm expects an ordering of the nodes), and requires at most O (𝑁2) conditional 

independence tests to learn an N- variable Bayesian Network. The aforementioned two algorithms 

have been implemented in a Bayesian Network learning system called BN PowerConstructor. This 

system used in order to evaluate the aforementioned algorithms and the results show that these 

algorithms are efficient and accurate.  

Modeling the Infectiousness of Twitter Hashtags: in the research [Skaza, et al., 2017] they 

proposed a system that applies dynamic and statistical techniques in order to quantify the 

proliferation and popularity of trending hashtags on Social Media. In addition, the social network 

used for this research is Twitter. More specifically, it is mentioned that using timeseries data 

reflecting actual tweets in New York City and San Francisco, they present estimates for the 

dynamics (i.e., rates of infection and recovery) of several hundred trending hashtags using an 

epidemic modeling framework coupled with Bayesian Markov Chain Monte Carlo (MCMC) 

methods. So, by using the Bayesian method their approach has two aspects. Firstly, it can quantify 
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the spread of certain trending hashtags on Twitter, and second, the same methodology can be used 

in a predictive context. 

Probabilistic Inference in Twitter Data: in article [Rao, et at., 2016] they propose a framework 

called SocialKB. This system is used to model and justify social media posts to determine their 

truthfulness, a first step towards identifying emerging cyber threats. In addition, the SocialKB is 

based on Markov Logic Networks. Their framework develops a knowledge base in a cohesive 

manner regarding the social media posts (i.e. tweets) and actions of people (i.e. user’s behavior). 

In the following bullets we describe the main aspects for the aforementioned framework.  

• Domain Expert defines the input KB: initially, they use a domain expert/user for defining 

the input of the knowledge base (KB). This KB contains predicates and first order logic 

formulas. 

• Automatically generate evidences: when the predicates are known, the system generates 

automatically evidences, based on the social media data.  

• Modeling tweets using a KB: they define a set of different types of predicates in the 

knowledge base. The first type makes closed – world assumption. In that case, anything 

that is not proven to be true, it is assumed to be false. The second type of predicates makes 

open-world assumptions, (i.e. what is not known, it may or may not be true).  

 

For example, the predicate tweeted(userID,tweetID), states whether a user posted a specific tweet 

or not, the predicate containsHashtag(tweetID,hashtag), is true when the particular tweet, i.e. 

tweetID,  contains hashtags. Finally, for learning process (i.e. learn the weighs of formulas) they 

use Tuffy and it required 14 hours to learn the weights of formulas.     

A deep learning framework for named entity recognition: In this research [Xusheng, et al., 2018], 

the authors present a novel method for bacterial named entity recognition. As they mention this 

application domain is very important because many human diseases have been associated with 

bacteria. The proposed method combines domain features and deep learning models. In other 

words, integrates the domain features in a deep learning framework combining two different neural 

network architecture. One is the long short-term memory (LSTM) that uses entire sequences of 

data (i.e. video or speech) and the other architecture is convolutional neural network. In the 

evaluation process, two different metrics are used. The first measure is when domain features are 

not added, and the second measure is when part of speech (POS) and dictionary features are added. 

In the first metric,  F1-mesearue is 89.14% and the second is 89.7%. With these metrics prove that 

their model achieves an advanced performance in bacterial NER.     

In the next  paragraph we give a very short brief review of a system that uses Natural Language 

Processing and Linguistic Analysis in order to conduct opinion mining from Social Media.   

Opinion Mining from Social Networks:  a system which uses Twitter data for mining user opinions 

about products or services is proposed in [Khyati, et al. 2014].  That is,  they present an approach 

to extract data from Twitter by  performing linguistic analysis on them. The  linguistic analysis is 

performed by using techniques of Artificial Intelligence and NLP. In addition, the user opinions 
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about products or services they classified as negative, positive and neutral. Some of the main 

aspects in this work are the following:  

1. This system can classify each sentence in a review. 

2. In addition, for each sentence, this system can recognize the subjects of the feeling and the 

feature(s) being described. 

3. Finally, the aforementioned system, does not need a training set since it depends on 

linguistic analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Overview of our Machine Learning System  

In this chapter we will discuss the main features of our system. After that, we will compare the 

features of our system with the ones of related work. In the final subsection of chapter 3 we will 

discuss the limitations and future extensions of our system. 

 

3.1 The Main Features of our System 

In this subsection we will discuss the main features of our system. We use data from social media 

to train our model. As we have mentioned earlier, the social network that we used in order to learn 

our model is Twitter. As it is known Twitter is very popular social network nowadays. In addition, 
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users’ data from Twitter are available for analysis. Every developer can use Twitter API for 

constructing web applications that use Twitter data. More specifically, in our system we use 

Tweepy, that is a python library [Tweepy, n.d.].  Initially, we construct a python program that get 

tweets about vacation in Crete based on hashtags. In other words, with our program, we collect the 

top tweets used by people that visited Crete or probably like to visit Crete in near future. In 

addition, according the web site [Best-Hastags, n.d.] the most popular hashtag that user is used for 

vacation in Crete, are the following: #welovecrete, #visitcrete, #creteisland, #crete, #travel. These 

hashtags are stored in a python list, and with iterative process we get tweets for each one of the 

aforementioned hashtags. After execution the aforementioned program, we collect more than 1000 

tweets. In addition, for each tweet, our system gets the text, the tweet creation date and the user’s 

home location, that we can defined as data elements. We use these data elements, to create and 

train the Bayesian Network. In order to get additional information from the collected data we use 

two scientific methods, that is Sentiment Analysis and Entity Recognition. The sentiment analysis 

is performed by incorporations into our system the Valence Aware Dictionary and sEntiment 

Reasoner called ‘VADER’ which is a Python package. The sentiment analysis concerns how much 

positive or negative is each tweet. For, sentiment analysis, the VADER   tool, uses a sentiment 

lexicon. More specifically, VADER use a list of lexical features, e.g. words, which are generally 

labelled according to their semantic orientation as either negative or positive (how positive or 

negative a sentiment is). We used this tool because it is applied very easily to text type of social 

media and it doesn’t require any training data [Hutto, et at. 2014] . For example, given the 

following input: 

“I want to go in Crete, because it’s a great place #visitcrete#creteisland” 

The sentiment analysis tool returns positive sentiment score (range of score is -1 – 1) because the 

text contains positive words such “want” and “great”. 

The sentiment analysis tool returns positive sentiment score because the text contains positive 

words such “want” and “great”. VADER returns a real value in the interval  [-1,  1]  where -1 

stands for 100% negative sentiment and 1 stands for 100% positive sentiment. The other number 

are rated analogously, i.e. 0 stands for 50% negative sentiment and 50% positive sentiment. 

Each user of Twitter can mention his/her home location. As we have mentioned earlier, the user’s 

home location is one of the data elements that are used for the derivation of the Bayesian Network. 

In addition, our system refers to users who are not from Crete.  So, for that reason, we have in a 

csv file all toponyms of Crete, i.e. a list of more than 500 names of villages and cities, and our 

system checks if the user of each tweet is from Crete or not based on these toponyms [data-gov, 

n.d.].  

Our system uses the Entity Recognition method that we mentioned in Chapter 1. This method 

performs the task of information extraction that seeks to locate and classify named entities in 

unstructured text into some pre-defined categories. Our system uses the following pre-defined 

categories: tourism, location_in_tweet, vacation, political_issues, hotel, restaurant. The next 

example shows us how Entity Recognition works in our system.  Let’s assume that we have the 

following unstructured text:  
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 “I want to go Crete, because it has very good motels” 

Our system recognizes the following pre-defined categories in the above text:  

• location_in_tweet: this category is recognized on the text because the text contains the 

location “Crete”.  

• hotel: this category is recognized on the text because the text contains the related word 

“motel” which belongs to the more general category “hotel”. 

 

So, we construct algorithms that use the aforementioned two scientific methods (i.e. Sentiment 

Analysis, Entity Recognition) for generating the random variables and the evidence set based on 

tweets that are stored in CSV file. The data sentiment analysis is performed by using the VADER 

tool. This is done by creating in order to create the next two random variables. 

• positiveSentiment: this random variable is true when the tweet is positive. That is, it 

contains positive words such “good”, “perfect”, etc. 

• negativeSentiment: this random variable is true when the tweet is negative. That is, it 

contains negative words such “bad”, “terrible”, etc. 

We have constructed an algorithm which performs sentiment analysis. It is shown in Chapter 5  

Algorithm 1. After the sentiment analysis, our system perform Entity Recognition. In order to 

perform  Entity Recognition it  creates  some extra random variables. These extra random variables 

are the following: 

• hotel: if a tweet contains some word related to ‘hotel’ then this random variable, i.e. 

category, is true. 

• political issues: if a tweet contains some word related to ‘political issues’ then this random 

variable, i.e. category, is true. 

• health care: if a tweet contains some word related to ‘health care’ then this random 

variable, i.e. category, is true. 

• vacation: if a tweet contains some word related to ‘vacation’ then this random variable, i.e. 

category, is true. 

• visit: if a  tweet contains some word related to ‘visit’ then this random  variable, i.e. 

category, is true.  

• travel: if a  tweet contains some word related to ‘travel’ then this random variable, i.e. 

category, is true. 

• restaurant: if a tweet contains some word related to ‘restaurant’ then this random variable, 

i.e. category, is true.  

All  tweets of the training set  are stored in a CSV file. This file is given as input into our system 

in order to derive some of the aforementioned random variables. Moreover, our system uses the 

method of incremental learning.  This mean that our system can enhance the derived model by 

applying additional training on the model. This is a dynamic training technique.  It is mentioned 

in  [Gepperth, et al. 2016]  that “dynamic technique is the one that can be applied when input data 

is continuously used to extend the existing model's knowledge (to further train the model)”.  More 

details about all of features of our model in Chapter 5.  
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3.2 Comparison of Our System with Related Work 

Our work capitalized knowledge on Information Extraction on social Media and Statistical 

Relational Learning, offering a unique combination of the aforementioned technologies. We know 

that many researchers use Twitter API to export user data. The most valuable attributes that a user 

can have in social media are location, gender, education/job, published posts (tweets, Facebook 

posts). In our system, we use user home location because we want to know if  a user is from Crete 

or not. At the stage of prediction, our system uses published posts (tweets) from users and performs 

opinion mining  about visiting Crete. The derived opinion is a possible value because it is given  

its truth probability.  

In statistical relational learning, many researchers use Bayesian Logic and Markov Logic in order 

to model uncertainty. These methods can be used to answer queries such as the following: 

• “will this user visit Crete?”  

• “has this patient flu?” 

• “will it rain tomorrow?” 

  

The most popular formalisms for modeling the uncertainty are the following: a)  logic programs 

with annotated disjunctions (LPAD) [Vennekens, et al., 2004], b) probabilistic horn abduction 

[Poole, et al., 1993] and  c) ProbLog [De Raedt et, al., 2007]. Our system uses ProbLog to model 

uncertainty. The main task of this research work involves the development of a module which 

creates automatically evidence set and rules based on tweets that are stored in the CSV file. 

Evidences and rules are the basic features that use probabilistic graphical models for inference and 

learning procedures. In our system, we have used Bayesian Networks in order to model uncertainty 

due the important benefits of this method. The advantages of this method are the following. 

• Suitable from small and incomplete data: It is demonstrated in [Kontkanen, et al. 1997] that 

Bayesian Networks can show good prediction accuracy even with few samples in the training 

set. In addition, according to Myllymäki   there are no minimum sample size which is required 

in order to perform the analysis [Myllymäki, et al. 2002]. We considered that it is very 

important for our approach to be effective even with a small sample of data. In order to 

estimate the conditional probabilities of the Bayesian model the E.M algorithm is used. The 

E.M. algorithm requires only the model structure to be known, not the estimation of the 

parameters. Then, given the data and the structure of the model  it iteratively calculates the 

maximum likelihood estimates for the parameters. 

• Structure learning possible (as future work): structure learning, is the process that can use 

any Bayesian Network. So, it is possible to use data to learn the structure of a Bayesian 

Network (BN). Our system is given the structure of the Bayesian Network in order to derive 

the trained model.  The derivation of the structure of the  BN from the data is left as extension 

of the system in future work. Specifically, we could apply this scientific method in order to 

create the conditional dependencies between the random variables, based on training set i.e. 

tweets. As it is known, the conditional dependences in Bayesian Network are defined by the 
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structure of DAG. So, in other words, we can use structure learning problem (as future work) 

in order to create the DAG of the Bayesian Network based on the training set. 

• Combining different sources of knowledge: The most important feature of Bayesian Models 

is the use of prior information. It is mentioned in [Uusitalo, 2007] that “priors reflect our 

knowledge of the subject before the research is conducted, and can be either highly 

informative and detailed, in case there is a lot of knowledge about the subject already, or very 

uninformative, if not much is known. These priors are then updated with data, to obtain a 

synthesis of old knowledge and new data. This synthesis can then be used as a prior in a new 

study. This mechanism makes the scientific learning process explicit, and also makes the 

assumptions made by the scientists transparent and open to discussion”. These networks, have 

the advantage that they can combine expert knowledge with the data. These data could have 

been created by different sources of knowledge.     

• Fast Responses: Once a Bayesian Network is compiled, it can provide fast responses to 

queries. In other words, a BN contains a conditional probability distribution for every random 

variable in the network which is used by the inference procedure. In addition, it can provide 

any probability distribution instantly. This has been taken into account in our system, because 

a lot of new data (new tweets) are given to the system for prediction and we would like to get 

immediate response from the system. Therefore, we think this feature as a very important 

advantage of Bayesian Networks.  

 

 

3.3 Limitations and Extensions of our System 

Systems that use machine learning techniques usually have some limitations. The most common 

limitation that a  machine learning system has is the dataset that use for training. More specifically, 

the training set, may not have enough information to properly train the model. We identified some 

limitations during our research. In Twitter, each user is assigned a user location in a  text field. 

This location is the user’s home location, but we cannot confirm that the user lives in that place.  

This is the most important limitation in our work because inaccurate location declaration by the 

user can result in incorrect predictions. For the training of our model we used specific hashtags 

from the tweeters of the training set, i.e.  #visitcrete, #travel, #Crete, #creteisland [Best-Hashtags, 

n.d.]. We have selected these hashtags as the most appropriate for training the model,    on the 

other hand users of Twitter  may have used different hashtags when are intended to visit Crete. In 

other words, it is not certain that the user who is going to visit Crete will use the aforementioned 

tags in his/her tweets. 

In this section we  will discuss future  extensions of our system. These extensions are discussed in 

the following paragraphs:  

• Multiple Bayesian Models. We can create multiple Bayesian Models in order for our 

model to be able to answer queries on different topics. For example, we may have a  

Bayesian model that can  answer questions such the following “is this user intended  to 

visit Paros?” for tourism topic. Also, may have Bayesian Model that can answer questions 

as the following one “Is this user suffering from depression?” for a  medical topic.  
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• Structure learning. In our system, the structure of the Bayesian Network is given as part 

of the design of the system. The development of a structure learning procedure from the 

training set has been left as extension to our system in future work.  More specifically, we 

could give to our system, a training set of tweets and the system will derive the structure 

and the parameters of the Bayesian model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Architecture of our Machine Learning System   

In this chapter, we will discuss the architecture of our machine learning system. As we mentioned 

before, a Python script has been constructed that it gets all tweets related with vacation in Crete, 

with specific hashtags. The Python program stores all tweets (more than 1000) in a CSV file. The 

first module of our system is called pre-processing phase. In this module, initially our system gets 

tweets as input in the format of an array of Python.  Then, it returns as output untrained rules and 

random variables. The untrained rules and the random variables are derived by our algorithms. 

The next module of our system, called the training phase, takes as input the untrained rules and 

random variables and it returns as output the trained rules and random variables. These two 

modules are represented in Figure 7. 
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Figure 7 The two modules of our system 

 

 

 

As we mentioned earlier, our system performs incremental learning. This feature of our learning 

system is very important because it can improve the derived model by applying incremental 

training.  In this way the trained model is improved in a stepwise manner. The incremental 

retraining of the trained model is depicted in figure, Figure 8 Error! Reference source not found.   

 

Figure 8: Incremental training of the model 

After the derivation of the trained  model,  our system takes as input new tweets for evaluation by 

the trained model.  This is the prediction stage. The output of this module is the  prediction of the 

model by giving the probability that the tested user will visit or not  Crete in the  near future or  

he/she has already visited Crete.  The overall architecture of our system illustrating both stages, 

i.e. the training stage and the prediction stage, is  illustrated in figure, Figure 9.  
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Figure 9 Overall architecture of our system 

 

 

 

 

 

 

 

 

 

5 Detail Presentation of the Components of our Machine Learning 

System 

In this chapter we will discuss thoroughly the components of our machine learning system. In the 

first section we will present the preprocessing phase. In the second section we will present the 
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training phase. In the third section we will discuss and present the trained model. In the final 

section we will discuss implementation issues and we will illustrate all algorithms that we have 

constructed for our system.  

 

5.1 The   Pre-processing Phase  

The most important phase of our system is the preprocessing phase. We have constructed 

algorithms that call procedures (i.e. methods in object-oriented terminology) which perform 

Sentiment analysis and Entity recognition in order to create automatically random variables and 

rules based on the given train set.  Initially, the algorithm that performs Sentiment Analysis, which 

is used to create random variables based on the sentiment of each tweet. More specifically, the 

sentiment analysis algorithm uses the VADER tool and it can create automatically up to two 

random variables. We have also constructed an algorithm that calls the Entity Recognition 

procedure, i.e. a method in object-oriented terminology. With this algorithm our system can 

identify some pre-defined categories in unstructured text, i.e. text in tweets. These categories 

correspond to the random variables that our algorithm creates.  After the execution of the code 

corresponding to these two algorithms, ProbLog is used to estimate the parameters of the untrained 

model. More specifically, all random variables based on tweets that are stored in table Table 9 are 

created in the preprocessing phase of our system.   

 

5.2 The Training Phase  

In this subsection we will present the training phase. In this phase we use the ProbLog tool. More 

specifically, we call  the lfi/2 function. This function, takes as input  rules and evidence set and  it 

returns the trained model. This function  uses the  Expectation Maximization algorithm in order to 

perform training of the model.  In this phase, we use ProbLog tool only. The function lfi/2, takes 

as input the program Program 8 and the  table Table 7. As we mentioned earlier, this function lfi/2 

uses the Expectation Maximization algorithm to get the parameters of the random variables. After 

the estimation process, lfi/2 returns  the trained random variables and rules  as output  Program 9, 

this program is illustrated  in the next section. 

Program 8: The untrained random variables and rules 

t(_)::userLocation. 

t(_)::positiveSentiment. 

t(_)::negativeSentiment. 

t(_)::location. 

t(_)::vacation. 

t(_)::tourism. 
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t(_)::hotel. 

t(_)::restaurant. 

t(0.33)::visitLocation :- 

                   userLocation, positiveSentiment, tourism, location_in_tweet. 

t(0.31)::visitLocation :- 

                  userLocation, positiveSentiment, location_in_tweet. 

t(0.23)::visitLocation :- 

                 userLocation, positiveSentiment. 

t(0.13)::visitLocation :-  

               userLocation, positiveSentiment, vacation, tourism, location_in_tweet. 

 

 

 

 

 

 

 

 

 

 

Evidence set instance 

{(userLocation, True), (positiveSentiment, True), 
(negativeSentiment, False), (location, True), 
(vacation, False), (tourism, True) }  

{(userLocation, True), (positiveSentiment, True) } 
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{(userLocation, True), (positiveSentiment, True), 
(negativeSentiment, False), (location, True), 
(vacation, False), (tourism, False), (health_care, 
False)} 

Table 7 Instance of evidence set 

 

 

5.3 The Trained Model  

Our system uses the lfi/2 function of ProbLog in the training phase. The  lfi/2 function gets as 

input the random variables, rules, and an evidence set. The lfi/2 function performs  machine 

learning by applying the  E.M. algorithm for training the model. Actually, it estimates the 

parameters of our Bayesian network. This function returns the following program as output 

Program 9. 

 

Program 9 Instance of trained model 

0.96::userLocation. 

0.94::positiveSentiment. 

0.05::negativeSentiment. 

0.30::vacation. 

0.15::hotel. 

0.42::tourism. 

0.10::restaurant. 

0.75::location_in_tweet. 

0.45:: visitLocation :-  

       userLocation, positiveSentiment, \+negativeSentiment,location, \+vacation, tourism. 

0.17::visitLocation :- userLocation,positiveSentiment. 

0.15::visitLocation :- userLocation,  positiveSentiment, \+negativeSentiment, location,  

                            \+vacation, \+tourism, \+health_care. 

 

The derived  trained model is  illustrated by the  figure, Figure 10 . 
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Figure 10 Trained Bayesian Network 

 

 

 

5.4 Implementation issues 

 

In this subsection, we will present the implementation issues of our system. Initially, it is 

important to mention the main  programming components of our system.  

• “readCSV.py”: We have a CSV file, “CSV_tweets.csv”, which has more than 1000 tweets. 

Sample transactions of this file are  illustrated  in Error! Reference source not found.. 

The program “readCSV.py” reads the CSV file “CSV_tweets.csv” row by row, and then 

it stores each element of the row of the CSV file, in a Python array. We essentially convert 
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the CSV file “CSV_tweets.csv”, i.e. Error! Reference source not found. , to a Python 

array, i.e. Table 9. 

• “createModel.py”: This program has the code which implements  the  algorithms that 

perform Sentiment Analysis and Entity Recognition and they  create automatically the 

evidence set, the  random variables and  the rules.  
 

5.4.1 Read CSV and store data into array 
 

The tweets that are used to train our model are stored in a  CSV file called “CSV_tweets.csv”.  A 

sample of entries from that file are illustrated  in the following table Table 8Error! Reference 

source not found.. 

 

Table 8 CSV_tweets.csv 

The first stage of the preprocessing phase is to read the csv file “CSV_tweets.csv” with the 

program “readCSV.py”, and then it stores all tweets in an array format.  A sample of entries from 

the created array are shown in Table 9.  The  array of this table has been created by  the procedure  

“readCSV.py”.   

 

text username create_at userLocation hashtags 

Last dawn on the 

island of Crete 

Christovb7000 9/7/2019  

6:03:27 AM 

Texas #timeline 

#visitCrete 

Sunset In Axus Jeanne_8j 10/7/2019  

6:03:27 AM 

Pretoria, South 

Africa 

#sunset 

#rethymno 

#crete 

September On 

The Beach, is 

great 

mako671178 3/8/2019  

6:03:27 AM 

China #rethymno 

#create 

#seascape 

Table 9 Array of tweets for processing(example) 

 

5.4.2 Implementation of random variables and rules 
 

After the construction of the array of tweets (Table 9),  a group of algorithms create automatically 

random variables and rules. As it is known a discrete random variable X in a sample space Ω is a 

function which maps every element of the random experiment to a value, usually a real value. For 

each random experiment a random variable gets an element ω where ω  Ω and maps it  a value. 
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The elements of Ω  are usually mapped to a set of (real) values. For example, the random variable 

userLocation takes as values  places names from everywhere in the world  and returns True if the 

place of the user is not in Crete otherwise  it returns False. For example, for values such as London 

and  Athens the userLocation returns the value True, i.e.  userLocation(London) = True and 

userLocation(Athen) = True.  On the other hand, for places like Kisamos, Sitia it gets the value 

False, i.e. userLocation(Kisamos) = False and userLocation(Sitia) = False.  We express it in a short 

way by saying that the random variable gets the value True or False accordingly. In addition, the 

random variable hotel, takes as values synonyms words and phrases of hotel. For example the  

word ‘motel’ is synonym word of random variable hotel such the following hotel(motel) = True. 

In the other hand the word girl is not synonym of hotel, and that express it such hotel(girl)=False. 

Also, the random variable vacation, takes as values synonyms words and phrases of vacation. For 

example, the word ‘holiday’ is synonym word of vacation, and illustrated as follows 

vacation(holiday)=True. In the other hand , the word test is not synonym word of vacation, that 

represented as follows vacation(test)=False. In our case, the set of values of random variables are 

synonyms of random variables (i.e. hotel, health, political issues, vacation)  and toponyms of Crete.     

As we mentioned earlier, the discrete random variables are created automatically using the 

algorithms that we constructed and we present below. The algorithm  Algorithm 1 creates random 

variables for sentiment analysis (positive - negative). Initially, in list randomVariables the random 

variable userLocation is entered. This random variable consists the user’s home location. Then, 

the VADER sentiment analyzer is called, it takes the array of tweets as input Table 9. If there is a 

negative sentence-tweet in the array of tweets, then the function returns -1 and creates the random 

variable negativeSentiment. Also, if there is a positive sentence-tweet in the array of tweets, then 

the function returns 1 and creates the random variable positiveSentiment. We illustrate  below the 

algorithm, Algorithm 1, for sentiment analysis.  

 

 

procedure sentimentIdentificationWithVADER(in: arrayOfTweets; out: randomVariables) 

begin  

      randomVariables  := [“userLocation”]; 

      if (sentimentAnalizer(arrayOfTweets) = 1) then 

                randomVariables :=  append(randomVariables, [ ”positiveSentiment”]); 

      if (sentimentAnalizer(arrayOfTweets)  = -1) then  

              randomVariables :=  append(randomVariables, [ ”negativeSentiment”]); 

end 

Algorithm 1 Sentiment analysis with VADER 

 

• The variable negativeSentiment is created if the function of VADER after sentiment 

analysis of tweet returns number in range [-1,0), this random variable gets the value true. 

• The variable positiveSentiment is created if the function of VADER after sentiment 

analysis of tweet returns a number in range (0,1], this random variable gets the value true. 
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• If the function of VADER after sentiment analysis of tweet returns 0, this tweet is further 

processed in order to be classified as either positive or negative. 

 

Summarizing for the random variables positiveSentiment and negativeSentiment, when the 

program that we have created finds  in array of tweets Table 9 positive sentence-tweet it returns a 

value for  the random variable positiveSentiment. Also, when it finds negative sentiment-tweet it 

returns a value for the random variable  negativeSentiment. When VADER returns 0, our system 

use the additional insights of Entity Recognition method for classification of tweet.  

The algorithm Algorithm 2 categorizes tweets based on pre-defined categories. More specifically, 

the Algorithm 2 it gets the array of tweets as input and it returns  a subset of the random variables 

that are identified. Each of these categories corresponds to a random variable. The remaining 

random variables – categories are the following:  location_in_tweet, tourism, vacation, health 

care, political issues, hotel and restaurant. The algorithm Algorithm 2 is based on the idea of the 

Entity Recognition method. As it is known, this task is a task of information extraction that seeks 

to locate and classify named entities mentioned in unstructured text (such tweet, newspaper) into 

some pre-defined categories. The categories that our system uses   are presented in the following 

bullets.  

• location_in_tweet: If in the text of the tweet is mentioned  some location of Crete, then our 

program will identify it. 

• tourism:  If in the text of the tweet is mentioned some word  related to tourism then our 

program will identify it. 

• vacation: If in the text of the tweet is mentioned some word related to vacation  then our 

program will identify it. 

• health care: If in the text of the tweet is mentioned some word related to health care domain 

then our program will identify it. 

• political issues: If in the text of the tweet is mentioned some word related to political issues 

then our program will identify it. 

• hotel : If in the text of the tweet is mentioned some word  related to hotels then our program 

will identify it. 

• restaurant : If in the text of the tweet is mentioned  some word  related to restaurants  then 

our program will identify it. 

 

Initially, we will describe how our program “createModel.py”, identify the above random 

variables-categories in tweets based on Algorithm 2. We have a CSV file, called 

“synonymsTable.csv”, that is illustrated in Table 10. All the random variables-categories  are 

presented in the first row of the file “synonymsTable.csv”. In the remaining rows of the csv file 

“synonymsTable.csv” Table 10 are possible  values of the categories that presented in  the first row 

[Power-thesaurus, nd]. Ιn other words,  for each random variable the column of  its synonym words  

corresponds to its domain. i.e. the values of the random variable.  Possible values stands for words 

with similar meaning. In the category location_in_tweet we have a list of  possible values which 
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do not have similar meaning. The only similarity they have is that all are  locations-toponyms of 

Crete, i.e. villages, cities, places etc.  

 

Table 10 Synonyms table for Entity Identification 

 

procedure  tweetsClassification(in: arrayOfTweets, synonymsCSVtable; out: 

categoriesList ) 

begin 

 for each tweetText   arrayOfTweets do 

    for each rowSynonyms  synonymsCSVtable do 

               for fieldValue := 1 to size_of_rowSynonyms  do 

                   if (prefix(tweetText, rowSynonyms[fieldValue])  or  

    infix(tweetText, rowSynonyms[fieldValue])  or 

    postfix (tweetText, rowSynonyms[fieldValue])) then 

                              if fieldname ∌ categoriesList  then            

                                categoriesList :=  append(categoriesList,  fieldname); 

                     

end 

 

Algorithm 2 create random variables-categories 

 

Note: the functions prefix/2, infix/2, and postfix/2 defined as follows. These functions, take a tweet 

tweetText as input, and the value of a field of a  row, i.e.  rowSynonyms[fieldValue], from the 

table. They return true if the  value  of field of the row exists at the beginning, in the  middle or at 

the end of the tweet. In that case, the corresponding value of the field is  inserted in the list 

categoriesList (if doesn’t exist already).  

We give an example of Algorithm 2. Let’s we  have the following tweet that is stored in table 

Table 9.  

‘I want to go in Crete because it is wonderful place #visitCrete#travel’ 

The algorithm, Algorithm 2, will be tested  if there exists  a value of a  random variable, such as 

tourism, vacation, health care, political issues, location_in_tweet,  in the above text. In that case, 
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the algorithm will identify the random variable(s) whose values have been found in the text of the 

tweet. In this case, values for the random variables  location_in_tweet and tourism have been 

found. That is:  

• The algorithm, Error! Reference source not found., finds that the text contains the  value  

‘Crete’ , so,the random variable (category) location_in_tweet because it refers to a location 

in Crete. 

 

 It also finds that the text has two values  ‘visit’ and ‘travel’ of  the random variable (category) 

tourism. 

Then algorithm which finds values for the remaining random variables is the algorithm  Algorithm 

3. That is, this algorithm finds values for the RVs vacation, health care, political issues, hotel and 

restaurant.  The Algorithm 3Algorithm 3 if  it finds some  values of the aforementioned random 

variables in the tweet  (array of tweets - Table 9) then it  assigns  them to the corresponding random 

variable only if the  RV tourism  has already been created.  

procedure   createRandomVariables(in arrayOfTweets; out randomVariables) 

begin 

  for each tweetText   arrayOfTweets do 

    for each rowSynonyms  synonymsCSVtable do 

       for fieldValue := 1 to size_of_rowSynonyms  do 

           if (prefix(tweetText, rowSynonyms[fieldValue])  or  

            infix(tweetText, rowSynonyms[fieldValue])  or 

    postfix(tweetText, rowSynonyms[fieldValue])) then   

                    if fieldname ∌ randomVariables  then          

                       randomVariables:=append(randomVariables,  fieldname); 

 

end 

 

Algorithm 3 Create Random Variables with E.R method 

 

The code of the algorithms Error! Reference source not found., Error! Reference source not 

found., and   Algorithm 3, is included in the Python program "createModel.py". When this 

program runs it creates the following Bayesian Network, It is  shown in Figure 11 Bayesian Network 

of our systemError! Reference source not found. with the corresponding random variables.  
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Figure 11 Bayesian Network of our system 

 

The evidence set is  an array that contains the random variables and their values True-False.  That 

is, the values they map to the values of  the experiment as they have been discussed above. After 

the execution of algorithms Error! Reference source not found., Error! Reference source not 

found. and   Algorithm 3   

The evidence set is returned  by the program  which implements the algorithms Error! Reference 

source not found., Error! Reference source not found. and   Algorithm 3. The evidence set has  

values of each one of the random variables.  

The general form of the evidence set is as follows: 

{(userLocation, Value), (positiveSentiment, Value), (negativeSentiment, Value), 

(location_in_tweet, Value), (vacation, Value), (tourism, Value) , (hotel, Value) , (political_issues, 

Value) }   

The possible values of a RV are  True,  False or Null. If a random variable in the evidence set does 

not appear in instance of the evidence set then it means that the corresponding instance of the 

evidence set has a value Null. 

Table 11 contains in each row an instance of the above general form of the evidence set as well as 

the number of occurences.  

We give an example for that process. Let have the following text:  

’ I booked tickets for Chania today #holiday#visitCrete’ 
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Τhe evidence set with the random variables and their values is  shown below:  

{(tourism,True), (health_care,False), (location_in_tweet,True), (vacation,True)}.  

 

 

 

Evidence set instance Number of occurrences 

{(userLocation, True), (positiveSentiment, 
True), (negativeSentiment, False), (location, 
True), (vacation, False), (tourism, True) }  

975 

{(userLocation, True), (positiveSentiment, 
True) } 

375 

{(userLocation, True), (positiveSentiment, 
True), (negativeSentiment, False), (location, 
True), (vacation, False), (tourism, False), 
(health_care, False)} 

330 

Table 11 Evidences (example)  

 

In order to create the evidence set, (i.e. Table 11) , Error! Reference source not found., Error! 

Reference source not found. and   Algorithm 3 runs for every tweet. The second column of the 

Table 11  has the repetitions of  the occurrences of each evidence set instance in the array of tweets, 

i.e. Table 9. The number of occurrences of each instance of evidence set is used to give each rule a 

probability. The probability of each rule  is derived as follows: 

probabilityOfRule = numberOfOccurances/sizeOfArrayOfTweets 

“numberOfOccurance” is the number of occurrences of each evidence in the array of tweets and 

“sizeOfArrayOfTweets” is the size of the array of tweets. The size of the array of tweets 

corresponds the sum of all tweets in dataset. So, the probability of  the first rule  of the constructed 

modes is derived from the corresponding  evidence set in Table 11 as follows:  

probabilityOfRule = 975/2145=0.45.    

For each element of the table  a rule is constructed. The construction procedure is illustrated by 

algorithm, Algorithm 4   

 

procedure   createRulesBasedOnEvidence (in evidenceSet; out rules) 

begin 
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  rules:= [ ] ; 

  headOfRule := ‘’; 

  for each (instanceOfEvidence, numberOfEccurances)   evidenceSet do 

    probabilityOfRule = numberOfOccurances/sizeOfArrayOfTweets 

    stringConcat(probabilityOfRule,’visitLocation:-’,headOfRule) 

    rules := append(rules,headOfRule) 

    for each (randomVariable,Value)  instanceOfEvidence do 

        if value = True then 

           rules:=append(rules, [randomVariable])  

        else 

           rules: =append (rules, [\+randomVariable])     

 

end 

Algorithm 4 Create rules based on evidence set 

 

5.4.3 Implementation of incremental learning method 

 

Our system uses an incremental learning procedure.  We constructed an  algorithm,  Algorithm 5,  

that applies incremental learning in the trained Bayesian network model. The trained model is 

stored in txt file called “model.txt”, also the evidence set is stored in an  array of Python language 

called “evidence.npy”. More specifically, the ‘model.txt’ file contains all trained random variables 

and rules of our system. The “evidence.npy’ array, contains all evidences that were used for 

constructing the  trained model ‘model.txt’. Our system uses incremental learning, to further train 

the model over time with additional data sets. In other words, we give a new train set to  the trained 

model in order to be trained further  in an incremental way. The new  training starts from the point 

where the previous training had stopped. It is not done from the beginning all over again with a 

larger data set.  Our system applies a clear  Incremental Learning method. The trained rules, they 

are based on the random variables, and the  new evidence set are created by using the algorithms  

Algorithm 1 and  Algorithm 2 and with the function of ProbLog lfi/2. Let’s call  the new trained 

rules “newModel” and the new  evidence set “newEvidenceSet”. At this point, our system has two 

trained models and two evidence set for this reason we have the following: 

• “newEvidenceSet”: this set contains all the new evidences that emerged from the new 

training data. 

•  “evidenceSet.npy”: this set contains all the previous evidences in order to train  the 

previous “model.txt”. 

• “setOfRandomVariablesOfModel”: this set contains the random variables of the previous  

model “model.txt”.  

• “setOfRandomVariablesOfNewModel” this set contains the random variables of the new 

model “newModel”.   

 

The incremental training is performed by algorithm Algorithm 5. The algorithm get as input  two 

sets of random variables (the random variables of the model “model.txt” and the one of the  
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“newModel”). It also takes as input  two evidence sets, i.e. “evidenceSet.npy” and 

“newEvidenceSet” and it returns the final trained model. The first step of this algorithm is to join 

the two arrays of evidences into one (finalEvidenceSet).  Τhe second step is to create the updated 

probabilities of random variables based on the two sets that we mentioned earlier, i.e. 

setOfRandomVariablesOfModel and  setOfRandomVariablesOfNewModel.  Lets  assume that we  have 

the following use case of Algorithm 5:  

numberOfSamplesOfModel: is the number of  previous samples(tweets) that was trained the 

model ‘model.txt’ 

numberOfSamplesOfNewModel: is the number of new  samples (tweets) that  is  trained the 

model “newModel”. 

We have the trained model “model.txt” that was trained with 900 samples-tweets. Also, we have 

the trained model “newModel” that was trained with 500 samples. So, the total samples-tweets of 

two modes that was trained is 1400. 

totalSamples = numberOfSamplesOfModel + numberOfSamplesOfNewModel = 900 + 500 = 

1400 

Also, we have the percentage of two models based on total samples.  

percentageOfModel = ((100 * 900) / 1400)/100 = 0.64  

percentageOfNewModel= 1-percentageOfModel = 0.36 

Also, let we have the following set of random variables 

setOfRandomVariablesOfModel={(userLocation,0.90),(travel,0.40)} 

setOfRandomVariablesOfNewModel = {( userLocation,0.60), (travel,0.80)} 

 

Calculate the new probability is based on percentage of each model : 

updateProb = 0.90 * 0.64 = 0.57 

updateProb = newProb + (0.60*0.36) = 0.792 

 

Τhis procedure is executed for each random variable of two sets, i.e. 

setOfRandomVariablesOfModel and  setOfRandomVariablesOfNewModel.  

 

procedure   incrementalLearning (in setOfRandomVariables; in numberOfSamplesOfModel in 

setOfNewRandomVariables; in numberOfSamplesOfNewModel in evidenceSet; 

in newEvidenceSet; out trainedModel; out finalEvidenceSet) 

begin 

  finalEvidenceSet:=[]  
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  finalRandomVariables:={} 

  finalEvidenceSet = append (finalEvidenceSet, evidenceSet) 

  finalEvidenceSet = append (finalEvidenceSet, newEvidenceSet) 

  totalNumberOfSamples = numberOfSamplesOfModel + numberOfSamplesOfNewModel 

  percentageOfModel = (100 * numberOfSamplesOfModel) / total 

  percentageOfNewModel= 100 - percentageOfModel 

  for each (randomVariable, probability)  setOfRandomVariables 

      newProb = percentageOfModel * probability 

      tempProb= readSet(randomVariable, setOfNewRandomVariables) 

      newProb = newProb + tempProb * percentageOfNewModel 

      finalRandomVariables := append((randomVariable,newProb)) 

 

end 

Algorithm 5 Incremental Learning In Our System 

 

*Note: the function readSet/2, takes as input a  random variable and a  set of random variables and 

it returns the probability of random variable that has been given as input. If the random variable 

that that has been given as input doesn’t exist in set of random variables then it  returns 0.  

 

5.4.4 Derive Evidences in Trained Model 

 

In this subsection we will present how to derive evidences for evaluation. The program 

“evaluationOfModel.py” in our system takes as input a new tweet-text message and it returns the 

opinion about visiting Crete or not based on evidences that are derived from the new tweet. The 

program “evaluationOfModel.py” uses some algorithms that we have constructed which create 

evidences (such as the training of the model).  The algorithm Algorithm 6  which uses the  

VADER tool  takes as input a new tweet-text and returns a list with the values of random variables 

negativeSentiment, positiveSentiment. Let’s assume that we have as input  to this  algorithm the 

following tweet-text.  

‘I’m going to a fantastic place #visitCrete #travel’ 

Its  output is the following:  

positiveSentiment = True 

negativeSentiment = False.  

The  Algorithm 6   is shown below:  

procedure sentimentIdentificationWithVADER(in:newTweet; out: randomVariables) 

begin  

    randomVariables := [];   

   if (sentimentAnalizer(newTweet) = 1) then 
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          randomVariables:=append([(positiveSentiment,True),randomVariables]) 

          randomVariables:=append([(negativeSentiment,False),randomVariables]) 

           

       

  if (sentimentAnalizer(newTweet)  = -1) then  

          randomVariables:=append([(positiveSentiment,True),randomVariables]) 

          randomVariables:=append([(negativeSentiment,False),randomVariables]) 

 

 

end 

Algorithm 6 Derive evidences from text (using Sentiment Analysis) 

 

In addition, the program “evaluationOfModel.py” uses the algorithm Algorithm 7 in order to  

extract evidences based on the  Entity Recognition method. This algorithm, takes  as input a new 

tweet-text and it  returns the list with the values that the random variables-categories will have. 

Let have the following  text of a tweet:  

‘I’m going to a fantastic place #visitCrete #travel’ 

The algorithm returns the list with the following values:  

For the RV vacation it returns  True because referred in the text the related word ‘travel’ 

as input,  health_care it returns False because not referred in the text some related word of 

health care domain 

as input,  location_in_Tweet it returns   True because referred in the text the word ‘Crete’ 

procedure evidenceOfTweet (in: newTweet, synonymsCSVtable; out: randomVariablesList) 

begin 

   for each rowSynonyms  synonymsCSVtable do 

       for fieldValue := 1 to size_of_rowSynonyms  do 

          if (prefix(newTweet, rowSynonyms[fieldValue])  or  

           infix (newTweet, rowSynonyms[fieldValue])  or 

      postfix (newTweet, rowSynonyms[fieldValue])) then 

            randomVariablesList:=append((fieldname,True), randomVariablesList); 

                     

end 

Algorithm 7  Extract evidences from text (using Entity Recognition) 

 

The algorithms  Algorithm 6 Algorithm 7 are implemented in the Python program 

"evaluationOfModel.py".  After the successful execution of this program the ProbLog function 

get_evaluate/1 is called.   This function, takes as input  evidences by using the  Bayes' rule it returns 

the probability of visiting Crete.  For the above example, it will return the following answer. 
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yes, will visit Crete (visitLocation:0.7)  
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6 Sample Sessions of our System 

In this chapter we will illustrate some sample sessions of our system. First, we present the 

graphical environment of our system. We use ‘Tkinter’ libraryof Pyhton. The Tkinter module is 

the standard Python interface to the TK GUI toolkit [docs.python, nd][Data-camp,nd] . The home 

window has 3 buttons, “train model”, “trained model” and “exit” Figure 12. 

 

 

Figure 12 Home Window of our system 
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6.1.1 Train the Model 
 

When user press the button “Train Model”, the train model window appears. Because, is this 

sample session there are not have any trained model, we inform the user with appropriate 

message(i.e. ‘There is no trained model’ green arrow in Figure 13).    

Let us have the follow sample session of our system that is illustrated in Figure 13. We have a 

dropdown list, that user can choose the trainset for train the system.  We choose the dataset 

“trainSet.csv”, and then we press the button “Incremental Learning”.  The response is illustrated 

in Figure 14. Our system informs the user with an appropriate message when the model has been 

successfully trained (Figure 14 red arrow). Also, informs the user the number of samples that they 

were used to train the model (Figure 14 green arrow).   

 

 

Figure 13 Train Model session 
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Figure 14 The result after press Incremental Learning Button 

 

6.1.2 Incremental Learning sample session 
 

In this subsection we will illustrate a sample session of incremental learning method. Our system 

uses incremental training when it already has a  trained model. A user of this  system can select an 

option from the option list, i.e. the option list has  all datasets that they have been  mentioned in 

Section 6.1.1. Let’s assume that the file  “test20.csv” is selected  for further training the model,  

Figure 15. By selecting ‘incremental learning’ the response of our system is a pop-up window with 

an appropriate message such the one in Figure 15.  The training process takes a few seconds to 

complete and  to  return its response. In this window there is a  button  back to the home window, 

i.e. “Back to Home”.  
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Figure 15 Incremental Learning sample Session 

 

6.1.3  Sample Session of Trained Model 
 

In home window,  the user  by  selecting  the “trained model” button, the trained model window 

appears. In this window, the user can write a text message, that is a tweet,  and he is asked also to 

insert  his/her home location. Let’s consider the following example. The user writes the following 

text message.   

“I think Chania is perfect destination!! I want to go there!! #visitCrete#vacation#chania” 

The home location of the user is “Texas”.  This sample session is  illustrated  in figure Figure 16 

Test the trained model sample 2. Then, the user presses the  “Evaluate” button. The system  derives 

its answer in the text field “Opinion for tweet”. The derivation of the answer is based on the user’s 

answer. When the  user press  the “clear” button, he/she can write a new text message for evaluation 

by the trained model. Another example will be shown in which a user does not mention anything 

about Crete. Let’s assume that the user gives the following text message in the trained model.  

“FOX POLL: 
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54% of Americans want #trump impeached. 50% want him impeached and removed from 

office. 

I'm sure trump will be attacking FOX for its faulty polling. The thing is,  

this is exactly what all major polls are finding.” 

The answer of the system is shown in figure Figure 16  

 

Figure 16 Test the trained model sample 2 
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7 Evaluation of our System 

In this chapter, we will discuss the evaluation of our system. As it is known, Machine learning 

continues to be an increasingly integral component of our lives, whether we’re applying the 

techniques to research or to business problems. Systems of  this kind are  able to give accurate 

predictions in order to create real value for a given organization. Many, researchers, mention that 

the key step in machine learning systems is the training of the model of the system. We think, it is 

also important the evaluation of system. More specifically, it is very crucial to know whether the 

trained model actually works effectively in real applications, that is it makes   trustworthy  

predictions. There are two approaches for evaluating  the performance of a model, holdout and 

Cross-validation. Both of these approaches use test data to evaluate the system. The evaluation 

data  have to be  different from the data that were used to build the model. In the  holdout approach  

the dataset is divided in the following subsets: 

• The training set which is a subset of the dataset that is used to build predictive models. 

• The validation set which is a subset of the dataset that is used to assess the performance of 

the model built in the training phase. 

• The test set, or unseen data, which  is a subset of the dataset that is used to assess the likely 

future performance of the model. 
 

This approach is useful because of its speed, simplicity, and flexibility. On the other side, the most 

common method in cross-validation approach (called also, rotation estimation), is k-fold cross 

validation. In this popular method, the original dataset is partitioned into k equal size subsamples, 

called folds. The k is  specified by the user (usually 5-10 preferred).  This is repeated k times, such 

that each time, one of the k subsets is used as the test set/validation set and the other k-1 subsets 

are put together to form a training set. The error estimation is averaged over all k trials to get the 

total effectiveness of our model. In our system the dataset for evaluation is tweets that are not 

included in the training set. In the following subsection we discuss the evaluation of our system. 

More specifically, in the first subsection, we will discuss  the evaluation criteria of our machine 

learning system with all metrics that are used. In the second subsection we will present the results 

of the evaluation metrics. These metrics are created by the Python program called 

“evaluationOfSystem.py”.  

The above sub-sections (7.1, 7.2) presented as follows. In sub-section we present the evaluation 

criteria of regression models. In sub-section  7.2 we present the evaluation results in our system 

based on metrics that we present in 7.1.  

 

7.1 Evaluation criteria of regression models 

In this sub-section we present the evaluation criteria of regression models. More specifically, we 

will first briefly describe the basic metrics of regression models. These metrics are the mean 

absolute error (MAE) , root mean squared error (RMSE), mean squared error(MSE). These three 
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metrics we choose to use in our machine learning system for evaluation where we present it in the 

next section. So, in this section we describe the aforementioned metrics.  

Mean Absolute Error (MAE)  is a measure of difference between two continuous variables 

[Willmot, et al. 2005] [Willmot, et al. 2006]. This measure is also called  MAE and it is very 

popular metric for the accuracy  of model. Furthermore, in general terms, MAE follows the  next    

formula: 

Prediction Error := Actual Value - Predicted Value   

Actual Value: is the value that is obtained by observation or by measuring the available data. It is 

also called the observed value.  

Predicted value: is the value of the variable predicted based on the regression model.  

This prediction error is taking for each record in dataset after which we convert all error to positive. 

This is achieved by taking Absolute value for each error as below:  

 Absolute Error := |Prediction Error| 

 Finally, we calculate the mean for all recorded absolute errors (Average sum of all absolute 

errors). 

𝑚𝑎𝑒 =
∑ 𝑎𝑏𝑠(𝑦𝑖 − 𝜆(𝑥𝑖))𝑛

𝑖=1

𝑛
 

 

 

An example using this metric is discussed in order to illustrate its accuracy. So, let have the 

following actual values of  houses based on bedrooms that contains each house. 

 

Let have the following actual costs (assumed actual cost of houses in this example also the actual 

costs corresponds to the actual value in mae metric):  

The house with two bedrooms costs — $200K 

The house with three bedrooms costs 3 bedroom — $300K 

The house with four bedrooms costs 4 bedroom — $400K 

The house with five bedrooms costs 5 bedroom — $500K 

So, let we have the following predicted costs by an regression model: 

The house with two bedrooms costs  — $230K 

The house with three bedrooms costs — $290K 

The house with four bedroom costs — $740K 
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The house with five bedrooms costs  bedroom — $450K 

We calculate the ERROR as follows:  

The house of two bedroom house calculate the Error such as follows: 

Actual Price = $200K 

Predicted Price = $230K 

Error := Actual Price — Predicted Price 

Absolute Error 1 := |Error| (Absolute or positive value of our error) = |200-230| = 30 

So, this measurement is performed on each the aforementioned houses of demonstration example.  

According to the next formula the mae metrics is the following:  

𝑚𝑎𝑒 =
∑ 𝑎𝑏𝑠(𝑦𝑖 − 𝜆(𝑥𝑖))𝑛

𝑖=1

𝑛
= 

 

=
30$ + 10$ + 340$ + 50$

4
= 𝟏𝟎𝟕. 𝟓$ 

The measure of  the evaluation of the model  has been calculated by the above formula. We are 

therefore able to say that, averagely, our model-example predictions are off by approximately 

$107.5K. 

Root Mean Squared Error (RMSE): this is a  measurement to accuracy of a  machine learning 

model. More specifically, it’s the square root of the average of squared differences between 

prediction and actual observation. It is very similar to MAE measure, the most common similarity 

of the  two measurements are the  negatively-oriented scores, which means the closer to 0 the 

measurement is, the better the model accuracy [Willmot, et al. 2005].  The root mean squared error 

is calculated as follows:  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑗 − 𝑜𝑗)

𝑛

𝑗=1

 

When p is the  predicted value and o is the observed value. So, we give an illustration examples of 

the aforementioned metrics. Let have the same example , with the five houses. The actual costs 

(that corresponds the observed  of the four houses are the following: 

The house with two bedrooms costs — $200K 

The house with three bedrooms costs 3 bedroom — $300K 

The house with four bedrooms costs 4 bedroom — $400K 
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The house with five bedrooms costs 5 bedroom — $500K 

And also, we have the following predicted costs by an regression model: 

The house with two bedrooms costs  — $230K 

The house with three bedrooms costs — $290K 

The house with four bedroom costs — $740K 

The house with five bedrooms costs  bedroom — $450K 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑗 − 𝑜𝑗)

4

𝑗=1

= 

√
1

4
 (230$ − 200$) ∗ (290$ − 300$) ∗ (740$ − 400$) ∗ (450$ − 500$) = 

 

= 𝟏, 𝟐𝟕𝟓, 𝟏𝟓𝟑 

 

 

Mean Squared Error (MSE): called also Mean Squared Deviation (MSD). In statistics, MSE 

measures the average of the squares of the errors. It is also non-negative, closer to 0 the 

measurement is, the better the model accuracy. With above formula calculate the mean squared 

error in statistical model, when p is predicted value and o is observed value.  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑝𝑗 − 𝑜𝑗)

𝑛

𝑗=1

 

The only difference between RMSE and MSE metrics, is that RMSE formula use root to calculate 

the measure. So, in the same example with the two aforementioned metrics are the following: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑝𝑗 − 𝑜𝑗)

𝑛

𝑗=1

= 

1

4
(230$ − 200$) ∗ (290$ − 300$) ∗ (740$ − 400$) ∗ (450$ − 500$) = 

𝟓, 𝟏𝟎𝟎, 𝟎𝟎𝟎 
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So, we gave the example of the aforementioned metrics (RMSE, MSE, MAE) because is the 

evaluation criteria of our system. We choose these metrics, because in our test set, we know the 

actual value of each tweet (e.g. the true value is the maximum probability, 1). The predicted value, 

as we mentioned earlier, is the value predicted of machine learning system. Also, the output of our 

model is a continue value (range 0.0-1.0), which is the main feature of regression models. Finally, 

in the next sub-section, we give the evaluation results of our machine learning system.  

7.2  Evaluation results  

In this subsection we will present the evaluation results of our system. We use the metrics that they 

were presented in subsection 7.1. More specifically, we create the program 

“evaluationOfOurSystem.py”. In this program we use the scikit-learn library to evaluate our 

system.  It is a Python library integrating classical machine learning algorithms in the tightly-knit 

world of scientific Python packages. Initially, we collect tweets which mention that their users 

have  visited Crete. We have collected 100 tweets in “testTweets.csv” file. Then, the next step is 

to use scikit-learn library. More specifically, for Mean Squared Error measure we use the 

mean_squared_error/2 function. This function takes two arrays as input such as the following:  

• y_true: This array contains the true value. The true value is the maximum probability(i.e. 

1)  that the tweet posted by the user who actually visit Crete.  

• y_predict: This array contains the predicted value. The predicted value in our system has 

the probability that has   each tweet in the test set “testTweets.csv”.   
 

Also, we use mean_absolute_error/2 to calculate the mean absolute error (MAE) of our model. 

Mean_absolute_error/2 also take two arrays as input (y_true, y_predict), and returns the MAE. 

For root mean squared error (RMSE) we also use mean_squared_error/2 function but with root 

instead.   

Our evaluation  program ‘evaluationOfModel.py’ returned the following metrics.  

Mean Squared Error: 0.11 

Root Mean Squared Error: 0.34 

Mean Absolute Error: 0.33 

The visualization of the predicted values  is illustrated in the next figure, Figure 17 Visualization of 

predicted values  The  y-axis has the probabilities with range 0-1 and the x-axis has the number of 

samples that are in the “testTweets.csv” file.  
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Figure 17 Visualization of predicted values 
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8 Conclusions and Future Work 

Conclusions 

In this research work, we represent a system for applying probabilistic logical reasoning for 

opinion mining in problems related to social media. As a use case we used Twitter data, describing 

a scenario where we would like to predict whether a user is intended to visit Crete with obvious 

applications for travel agencies and in all domains of the tourism industry. We use Sentiment 

Analysis and Entity Recognition methods in order to automate important tasks such as the 

following: 

• Create random variables. 

• Create rules. 

• Create evidence set. 

 

These aforementioned tasks are the basic features of a probabilistic graphical models like the 

Bayesian Network. After the completion of these automated tasks by our system it proceeds to the 

training of the model using the ProbLog toolbox. After that, new Tweets can be classified 

according to the desired outcome, i.e. whether their users will visit Crete with some probability. 

The evaluation of the system was based on metrics that has any regression model. More 

specifically, we use root mean square error, mean absolute error and mean squared error to 

measures the average of the errors that has our system. With these metrics, we conclude that our 

system, has derived a satisfactory model but not perfect.    

We will summarize the benefits of our system which we have discussed in various sections of the 

thesis. An important feature of our system is its ability to be very easily adapted to many topics in 

social media in order perform opinion mining. In our approach, we used Twitter but our approach 

and system can also be used for any other social network such Facebook, Instagram etc. 

Furthermore, in the train procedure, our system   Finally, our system supports incremental learning 

so the derived model can be improved.  

Future work 

In order to be able our system to answer queries on different topics we can create multiple Bayesian 

Models. This idea can be considered as a future work. More specifically, we may have a Bayesian 

Model that can answer question such “is this user intended to visit Paros?” for tourism perspective. 

Also, may have a Bayesian Network that can answer question such “Is this user suffering from 

depression?” for medical topic. Also, we can create multiple Bayesian Models to answer queries 

of the same topic such the topic of tourism i.e. same topic, but for different places. For example, 

we can have a Bayesian Model to answer query such “is this user intended to visit Paros?” and 

other Bayesian Model to answer question such “is this user intended to visit Crete?”. Also, as 

future work can be considered the structure learning procedure. As we mentioned in the first 

Chapters, the structure of our model is known and given. So, we can developed the structure 

learning and for that reason, we could give to our system, a training set of tweets and the system 

will derive the structure.  



 

64 

 

9 Bibliography 

 

[Agarwal, et al, 2012] 

Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R.J. (2011). Sentiment Analysis of 

Twitter Data, LSM ’11 Proceedings of the Workshop on Languages in Social Media,USA, pp 

30-38 

 

[Agarwal, et al, 1993] 

Agrawal, R., Imielinski, T., & Swami, A.N. (1993). Mining association rules between sets of 

items in large databases. Proceedings of the 1993 ACM SIGMOD International Conference on 

Management of Data, USA, pp 207-216. 

 

7[Amor, et, al., 2004]   

Amor, N.B., Benferhat, S., Elouedi, Z., Naive Bayes vs decision trees in intrusion detection 

systems, Proceedings of the 2004 ACM symposium on applied computing, Cyprus, pp. 420-424. 

 

[Barber,  2007] 

Barber, D. (2011). Bayesian Reasoning and Machine Learning. Cambridge University Press.  
 

[docs.python, nd]  

https://docs.python.org/3/library/tkinter.html 

 

[Best-Hashtags,n.d] 

http://best-hashtags.com/ 

 

[Cambria, et al. , 2013] 

Cambria, E., Schuller, B.W., Xia, Y., & Havasi, C. (2013). New Avenues in Opinion Mining and 

Sentiment Analysis. IEEE Intelligent Systems, 28, 15-21. 

  

5.[Cambria, et al. 2015] 

5.Cambria, E., & Hussain, A. (2015). Sentic Computing: A Common-Sense-Based Framework 

for Concept-Level Sentiment Analysis. Springer- DOI 10.1007/978-3-319-23654-4 

https://docs.python.org/3/library/tkinter.html
http://best-hashtags.com/


 

65 

 

6.[Chen, et al., 2015] 

Chen C., Zhang J., Chen X., Xiang, Y., Zhou, W., 6 million spam tweets: a large ground truth 

for timely twitter spam detection, IEEE international conference on communications, London, 

pp. 7065-7070 

[Cunningham, et al., 2002] 

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan, V. (2002). GATE: an Architecture for 

Development of Robust HLT applications, Proceedings of the 40th Annual Meeting on 

Association for Computational Linguistics, ACL ’02, USA, pp168-175   

[Data-camp, n.d.] 

https://www.datacamp.com/community/tutorials/gui-tkinter-python 

 

[data-gov, n.d] 

http://www.data.gov.gr/dataset/poleis-xwria-ths-krhths. 

 

[De Raedt et, al., 2007] 2 

2.Raedt, L.D., Kimmig, A., & Toivonen, H. (2007). ProbLog: A Probabilistic Prolog and Its Application in 

Link Discovery, Proceedings of the 20th International Joint Conference on Artificial Intelligence. India, pp 

2468-2473 

 

[De Raedt, 2008] 

Raedt, L.D. (2008). Logical and Relational Learning. Springer-Verlag 2010.  

 

[De Raedt et, al. 2008] 

Raedt, L.D. and Kersting, K., Probabilistic Inductive Logic Programming  (2008).  In 

Probabilistic Inductive Logic Programming - Theory and Applications, edited by Raedt, L.D., 

Frasconi, P., Kersting, K., & Muggleton, S., Springer. 

[Esposito, et al. 2012] 

Esposito, F., Ferilli, S., Basile, T.M., & Mauro, N.D. (2012). Social networks and statistical 

relational learning: a survey. International Journal of Social Network Mining Volume 1 Issue 2, 

pp 185-208. 

[Farasat  et, al. 2015] 

https://www.datacamp.com/community/tutorials/gui-tkinter-python
http://www.data.gov.gr/dataset/poleis-xwria-ths-krhths


 

66 

 

Farasat, A, Nikolaev, A, Srihari, S, & Blair, R.H, (2015), Probabilistic graphical models in 

modern social network analysis, Social Network Analysis and Mining, 5, 62 (2015). 

https://doi.org/10.1007/s13278-015-0289-6 

[Gepperth, et al. 2016] 

Gepperth, A., & Hammer, B. (2016). Incremental learning algorithms and applications. 

European Symposium on Artificial Neural Networks 2016 proceedings, Belgium,  pp 357-368. 

 

[Hutto, et at. 2014] 

Hutto, C.J., & Gilbert, E. (2014). VADER: A Parsimonious Rule-Based Model for Sentiment 

Analysis of Social Media Text. Proceedings of the Eighth International AAAI Conference on 

Weblogs and Social Media. Ann Arbor, MI.  

[Jie, et al., 2002] 

Jie, C., Greiner, R., Kelly, J., Bell, D., Liu, W., (2002) Learning Bayesian networks from data: 

An information-theory based approach, Artificial Intelligence 137, pp 43-90 

 

[Li, et al., 2016] 

Li, J., Ritter, A., & Jurafsky, D. (2014). Inferring User Preferences by Probabilistic Logical 

Reasoning over Social Networks,  In 19th International Conference, DS 2016, Bari, Italy, edited 

by Calders, T., Ceci, M., Malerba, Springer.  

[Khyati, et al. 2014] 

Khyati, D., Surbhi, C., Ashika, S., (2014) Opinion Mining from Social Networks, International 

Journal of Computer Science and Network Vol (3) Issue(6), pp 554-558 

[Kontkanen, et al. 1997] 

Kontkanen, P., Myllymäki, P., Silander, T., Tirri, H., (1997), Comparing predictive inference 

methods for discrete domains, Sixth International Workshop on Artificial Intelligence and 

Statistics pp 311-318 

[Lourentzou, et, al., 2017] 

I. Lourentzou,I., Morales, A.,  Zhai, C.,  Text-based geolocation prediction of social media users 

with neural networks, 2017 IEEE International Conference on Big Data (Big Data), Boston, 

USA,  pp. 696-705. 

[Medium, nd] 

https://medium.com/@abhinav.mahapatra10/probability-vs-likelihood-bab5b2b42150 

 

https://medium.com/@abhinav.mahapatra10/probability-vs-likelihood-bab5b2b42150


 

67 

 

[Myllymäki, et al. 2002] 

Myllymäki, P., Silander, T., Tirri, H., & Uronen, P. (2002). B-Course: A Web-Based Tool for 

Bayesian and Causal Data Analysis. International Journal on Artificial Intelligence Tools, 11, 

369-387. 

[Nilsson, 1986] 

Nilsson, N.J. (1986). Probabilistic logic" artificial intelligence, Proceedings Second National 

Conference on Artificial Intelligence, Pittsburgh, Volume 28, Issue 1, pp 71-87 

[Power-thesaurus, n.d.] 

https://www.powerthesaurus.org/ 

[Rao, et at., 2016] 

Rao, P., Katib,A., Kamhoua,C., Kwiat K., Njilla,L., Probabilistic Inference on Twitter Data to 

Discover Suspicious Users and Malicious Content,  (2016),  IEEE International Conference on 

Computer and Information Technology (CIT), Nadi,  pp. 407-414. 

[Ritter, et al., 2011] 

Ritter, A., Clark, S., Mausam, & Etzioni, O. (2011). Named Entity Recognition in Tweets: An 

Experimental Study, Proceedings of the 2011 Conference on Empirical Methods in Natural 

Language Processing, Scotland, pp 1524-1534 

[Satya , et al., 2016] 

Satya P.R.B., Lee K., Lee D, (2016). Uncovering fake likers in online social networks. CIKM’ 

16 Proceedings of the 25th ACM international on conference on information and knowledge 

management, Indianapolis, pp 2365–2370.  

[Skaza, et al., 2017 ] 

Skaza, J., & Blais, B., (2017). Modeling the Infectiousness of Twitter Hashtags, Physica A: 

Statistical Mechanics and its Applications, Volume 465, pp 289-296 

4[Xu, et al., 2019] 

4.Xu,C., Yuyu, Y., Mehmet, O., (2019), Using Bayesian networks with hidden variables for 

identifying trustworthy users in social networks, Journal Inference Science, pp 1-16 

[Xusheng, et al., 2018]  

Xusheng, L.,, Chengcheng, F., Ran, Z., Duo Z., Tingting, H., Xingpeng, J., (2018) A hybrid deep 

learning framework for bacterial named entity recognition with domain features, IEEE 

International Conference on Bioinformatics and Biomedicine 2018, Spain, pp 1-9. 

[Tweepy, nd] 

https://www.tweepy.org/ 

https://www.sciencedirect.com/science/journal/00043702/28/1
https://www.powerthesaurus.org/
https://www.tweepy.org/


 

68 

 

 

 

[1 Vennekens, et al., 2004] 

1.Vennekens, J., Verbaeten, S., Bruynooghe, B., (2004). Logic programs with annotated 

disjunctions. International Conference on Logic Programming, Springer, Berlin, Heidelberg, pp 

431-445. 

 

[Shindle, et al, 2018] 

Shinde, P. P., Shah, S., (2018), A Review of Machine Learning and Deep Learning Applications, 

Fourth International Conference on Computing Communication Control and Automation, India, 

pp 1-6. 

[Willmott, et al. 2005] 

Willmott, C.J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the 

root mean square error (RMSE) in assessing average model performance, Climate Research, 

Vol 30,pp 79-82.  

 

[Willmot, et al. 2006] 

Willmott, C.J., & Matsuura, K. (2006). On the use of dimensioned measures of error to evaluate 

the performance of spatial interpolators. International Journal of Geographical Information 

Science, 20, 89-102. 

[Uusitalo, 2007] 

Uusitalo, L. (2007). Advantages and challenges of Bayesian networks in environmental 

modelling, Ecological Modelling, Vol 223, pp 312-318.  

 

 



 

69 

 

Appendix A 

 

A.1.  The  implementation of  sentiment analysis procedure with VADER 

 

The above function corresponds to the algorithm Algorithm 1 that illustrated in chapter 5.  

facts = """t (_)::userLocation.\n""" 

neg = False 

pos = False 

randomVariables = {}  

for i in range (1, len(tweetsList)): 

        if sentiment_analyzer(tweetsList[i].text, analyzer) == -1 and neg == False: 

            facts = facts + "t (_)::negativeSentiment.\n" 

            neg = True 

        if sentiment_analyzer(tweetsList[i].text, analyzer) == 1 and pos == False: 

            facts = facts + "t(_)::positiveSentiment.\n" 

            pos = True 

if pos == True and neg==True: 

      break 

    

 

A.2. Implementation of  Entity Recognition method  

The above function corresponds to the algorithm Algorithm 2   

def readRelatedWordsDict(sentence,tempdictionary): 

    tempList = returnFirstColByRelatedWords() 

    with open ('datasets/relatedWords.csv', 'r', encoding='utf-8-sig') as csvFile: 

        reader = csv.reader(csvFile) 

        for row in reader: 

            for i in range(0, len(tempList)): 

                if row[i] in sentence and row[i] not in "" and checkKey(tempdictionary,tempList[i]) == 1: 
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                  tempdictionary[tempList[i]] = True 

                  break 

    return tempdictionary 

    csvFile.close()  

 

A.3  Check if user’s home location is from Crete or not 
 

def checkPlace(text,randomVariables): 

    str = [] 

    with open('datasets/placesCopy.csv', 'r', encoding='utf-8-sig') as csvFile: 

        reader = csv.reader(csvFile) 

        str = text.split(",") 

        for row in reader: 

            for i in range(len(str)): 

                if row[0] == str[i].capitalize(): 

                    randomVariables['userLocation']=False 

                    return randomVariables 

                    csvFile.close() 

    randomVariables['userLocation'] = True 

    return randomVariables 

    csvFile.close() 

 

A.4  Create Evidence set based on array of tweets 
 

The above part of program “createModel.py” use the aforementioned function to create the 

evidence set based on array of tweets.  

  for i in range(1, len(tweetsList)): 

    tempDict = initialDict.copy() 

    tempDict = sentiment_analyzer_scores(tweetsList[i].text, analyzer, 

                                         tempDict)   

    tempDict = readRelatedWordsDict(tweetsList[i].text, 

                                    tempDict)   

    tempDict = checkPlace(tweetsList[i].location, tempDict)   

 

    orderedDictionary = collections.OrderedDict(sorted(tempDict.items())) 

    orderedDictionary = {Term(k): v for k, v in orderedDictionary.items()}           

examples.append([(key, value) for key, value in orderedDictionary.items()])  
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A.5 The implementation of incremental learning procedure 
 

The above code corresponds to the algorithm Algorithm 5 that we mentioned earlier in chapter 5.  

 

def incrementalLearning (currentRandomVars, sizeOfCurrentSet, currentEvidence): 

    oldRandomVariables = {} 

    newRandomVariables = {} 

    evidenceOld = {} 

    newEvidence = [] 

    txtEvidence = {} 

    content = [] 

    if os. path. exists('models/model.txt'): 

        with open('models/model.txt') as f: 

            content = f.readlines() 

            content = [x.strip() for x in content] 

    if os.path.exists('models/examples.npy'): 

        numpyArray = np.load("models/examples.npy") 

        oldEvidence = [] 

        oldEvidence = convertToSet(numpyArray) 

        newEvidence = oldEvidence + currentEvidence 

 else: 

        newEvidence = currentEvidence 

 if len(content) > 0: 

        total = int(content[0]) + sizeOfCurrentSet 

        percentageOfCurrentDataset = (100 * sizeOfCurrentSet) / total 

        percentageOfOldDataset = 100 - percentageOfCurrentDataset 

        for i in range(1, len(content)): 

            if ":-" in content[i]: 
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                break 

            variable = content[i].split("::") 

            tempVar = variable[1].split(".") 

            oldRandomVariables[tempVar[0]] = variable[0] 

    else: 

        percentageOfCurrentDataset = 100 

 

    facts = ""  

    if os.path.exists('models/examples.npy'): 

        for key, value in currentRandomVars.items(): 

            if checkKey(oldRandomVariables, key) == 1: 

        sumWeight = float((percentageOfOldDataset / 100))*float(oldRandomVariables[key]) 

        sumWeight = sumWeight + float((percentageOfCurrentDataset / 100)) * float(value) 

            newRandomVariables[key] = sumWeight 

            else: 

                sumWeight1 = float(value)*100/total 

                newRandomVariables[key] = sumWeight1 

        for key,value in oldRandomVariables.items(): 

            if checkKey(currentRandomVars,key)==0: 

                sumWeight2= float(value)*100/total 

                newRandomVariables[key]=sumWeight2 

        for key, value in newRandomVariables.items(): 

            facts = facts + str(value) + "::" + key + ".\n" 

    else: 

        for key, value in currentRandomVars.items(): 

            facts = facts + str(value) + "::" + key + ".\n" 

    np.save("models/examples.npy", np.array(newEvidence)) 
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return newEvidence, facts, len(newEvidence) 

 

A.6 Test the trained model with new set of tweets 
 

for i in range(1, len(tweetsList)): 

    evidence = [] 

    evidenceDict = {} 

    evidenceDict = randomVariables.copy() 

    tweet1 = NewTweet(tweetsList[i].text, tweetsList[i].create, tweetsList[i].location) 

    evidenceDict = sentiment_analyzer_scores(tweet1.text, analyzer, 

                                             evidenceDict)   

    evidenceDict = readRelatedWordsDict(tweet1.text, 

                                        evidenceDict)   

    evidenceDict = checkPlace(tweet1.location, 

                              evidenceDict)   

    evidenceDict = {Term(k): v for k, v in evidenceDict.items()} 

    evidence = [(key, value) for key, value in evidenceDict.items()] 

    lf = engine.ground_all(db, evidence=evidence, queries=[query]) 

    result = get_evaluatable().create_from(lf).evaluate() 

  

 
 

 

 

 

 

 

 

 

 

 

 


