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Abstract 

 
 
 
 
Volatility in financial markets plays a very important role in making or wrecking the fortunes of 
investors. The study of volatility has attracted growing attention by researchers and policy makers 
since it is a measurement of risk, especially during extreme conditions such as financial crisis. 
This thesis through four models based on the opening, closing, high and low prices analyses and 
compares the volatility before and after the financial crisis of 2008. The global financial crisis 
initiated in the United States in early 2008 and then the financial meltdown had spread to the rest 
of the world. The study has been conducted on NASDAQ-100, FTSE-100 spot price indices, E-
mini NASDAQ-100 and FTSE-100 Index Future futures price indices. Furthermore, this thesis 
examines the existence of the ‘monthly effect’ on returns and in volatility in U.S. and UK spot and 
futures markets between January 2006 and March 2019. The data have been partitioned into two 
sub-periods which allowed us to test the presence of monthly effect on returns or in volatility over 
the periods of pre-crisis (pre-2008) and post-crisis (post-2008). 
The sample employed in this dissertation comprise 3333 daily observations on NASDAQ-100, 
FTSE-100 spot price indices, E-mini NASDAQ-100 and FTSE-100 Index Future futures price 
indices. The set period of study was from 3 January 2006 to 4 March 2019. The results show that 
a simple measure of volatility (defined as the logarithmic difference between the high and low 
prices) overestimates the other three volatility estimators. The means of volatility estimators seem 
to have higher values during post-2008 period compared to pre-2008 period. Furthermore, the 
results from an OLS model show that there is no January effect in the UK and the US during the 
entire period and the two sub-periods.  Regarding the impact of January effect in volatility of spot 
and futures indices, the hypothesis of January effect in volatility is accepted for FTSE-100 cash 
and stock index futures markets over the sub-period 2006-2007. 
 
Keywords:  Volatility, High price, Low price, Open price, Closing price, monthly effect, US, UK, 
financial crisis. 
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CHAPTER 1 

Introduction 
 
 
 
 
Financial derivatives are securities, with a value that is dependent upon or derived 
from one or more underlying assets, used to reduce or hedge risks. Their value is 
determined by fluctuations of the values of the underlying asset. Very often the 
financial assets underlying derivatives are the prices of traded assets. For example, a 
stock option is a derivative whose value depends on the price of a stock. Furthermore, 
the last years many new types of derivative products have been created, from stock 
index futures, swaps, options and forward contracts to insurance and energy 
derivatives. 
The major innovation of the introduction of derivatives on stock index futures in April 
1982 have had an enormous impact on financial transactions. The derivatives 
exchanges have provided market participants flexibility, concerning the quickness in 
their transactions. As a result, a noteworthy number of transactions have shifted from 
spot to futures markets. Today, it is obvious that an impressive trading growth has 
taken place in the field of derivative products. After four decades of enormous 
expansion of financial markets the notional amount of derivatives traded in the over-
the-counter (OTC) market rose to 640 trillion US dollars at end-June 2019 and the 
notional amount of exchange-traded futures and options as of September 2019 was 
110 trillion US dollars (BIS,2019). Thus, today financial markets are able to facilitate 
the trading of huge amounts of assets, goods and money minimizing the risk for the 
financial institutions.  
The impact of futures on stock market is still debatable after the introduction of futures 
market. The relationship among stock and futures markets and the interactions 
between them have been an area of intense interest and investigation to financial 
analysts, researchers and practitioners. Previous studies show that the futures market 
leads the stock market (Stoll & Whaley, 1990). The lower transactions costs in the 
futures market make it more advantageous for investors to trade index futures as a 
result the financial markets may lead the returns of the stock market. Furthermore, the 
literature presents arguments that futures markets affect stock market volatility and 
some previous studies suggest cannot conclude clearly whether the introduction of 
futures stabilizes or destabilizes the underlying spot market. Empirical studies for US 
and UK financial markets cannot deduce explicitly if stock index futures trading lead to 
increased or decreased stock market volatility. In addition according to Antoniou and 
Holmes (1995) the arrival of futures trading depends on speculators’ information and 
when speculators have a noisy signal the introduction of futures markets destabilize 
prices. But when speculators have perfect information, there is a stabilizing effect on 
underlying spot share market. 
The global financial crisis initiated in the United States in early 2008 and the largest 
one day drop in market stock prices since Dow Jones began computing index numbers 
happened on September 29, 2008 when Dow Jones Industrial Average (DJIA) fell from 
11,143 to 10,365 (over 777 points) (Schwert, 2011). Less than a month later, on 
October 13, 2008 the DJIA soared 936 points higher, to 9387.61, in one day. Large 
drops in stock and futures markets have been followed by large rises. This is 
characteristic of an increase in stock and futures market volatility. 
Seasonal anomalies in spot and future market indices have attracted attention among 
both researchers and practitioners. Previous studies on the US stock markets report 
monthly seasonality and show that stock returns are significantly higher in January 
than in other months (January effect) (Dzhabarov & Ziemba, 2010). 
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The main objective of this dissertation is to analyze and compare the volatility before 
and after the financial crisis of 2008 along with the examination of the seasonal 
anomalies of spot and futures returns, using daily range data from the US & UK spot 
and futures markets covering two important sub-periods, i.e. pre-crisis (pre-2008) 
period, and post-crisis (post-2008) period. Hence, considering four volatility measures 
for US & UK stock and futures indices following the work of Floros (2009), the daily 
volatility using opening, closing, high and low prices from NASDAQ & FTSE-100 (stock 
indices (cash) and stock indices futures), namely NASDAQ-100 (US), FTSE-100 (UK) 
stock indices, E-mini NASDAQ-100 and FTSE-100 stock indices futures, will be 
examined. Furthermore, this study scrutinizes the highly volatile period by analyzing 
the monthly effect using an ordinary least squares model (OLS) and by evaluating the 
performance of several volatility estimators.  
Specifically, the empirical findings of this dissertation can be summarized as follows. 
Initially, the empirical results clearly indicate that Vs, a simple measure of volatility 
defined as the logarithmic difference between the high and low prices, overestimates 
Vgk, Vp and Vrs and the means of volatility estimators seem to have higher values before 
financial crisis compared to the period after financial crisis. 
Additionally, the results from an OLS model show that there is no January effect in the 
UK and the US. Regarding the impact of January effect in volatility of spot and futures 
indices, the hypothesis of January effect in volatility is accepted for FTSE-100 cash 
and stock index futures markets over the period before the financial crisis (2006-2007). 
The rest of this dissertation is structured as follows: Chapter 2 discusses the review of 
the literature, while Section 3 provides the theoretical framework of derivatives. In 
Chapter 4 the UK & US spot and futures markets are presented, while Chapter 5 
presents the methodology and Chapter 6 provides the data information. In Section 7, 
the empirical results of this study are presented and analyzed. Finally, the last section 
concludes the dissertation and summarizes all the findings.      
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CHAPTER 2 

Literature Review  
 
 
 
 
An extensive research has been conducted on the calculation of volatility based on 
high, low, open and closing prices by using several models. Additionally, numerous 
recent studies suggest that there is evidence of existence or non-existence of monthly 
effects. Various arguments have explained the existence of high stock returns in 
January (January effect).    
The appearance of futures markets opened up new opportunities for investors, 
financial analysts and researchers. Futures contracts are attractive to investors since 
they have low transaction costs and margin requirements. Index futures contracts have 
several advantages over the underlying stock index. Several studies conclude that 
stock index futures markets incorporate information more quickly and efficiently than 
spot markets increasing the overall market depth (Chou & Chung, 2006 ; Bohl, et al., 
2011). These are important for price discovery, enable the transfer of risk, play an 
important role in assesing market stability and may get lower spot volatility. 
Global financial crisis of 2008 has impacted financial insitutions and markets 
substantially all over the world. The global financial crisis of 2008 emerged with the 
collapse of financial markets in the US, boosting cross-volatility spillovers across 
leading markets. As Antonakis et al. (2016) stated, ‘the spot and futures volatilities in 
the UK (the US) are net receivers (net transmitters) of spillovers to volume of futures 
trading’ and a strong evidence of bidirectional interdependence between spot and 
futures volatilities in the US and the UK do exist, which is affected by major economic 
events. Another related work on contagion explains the transmission of volatility 
among stock markets and reveals than the UK and German markets are affected by 
US market (Savva, et al., 2009). Slimane et al. (2013) explain the impact of the crisis 
on stock market behavior among three European stock markets (France, Germany 
and the UK) showing that the three indices (DAX-30, CAC-40 and FTSE-100) are 
highly intercorrelated, especially during the turbulent period and an increase of 
volatility during turmoil period mainly due to the interdependence of markets. 
Reviewing the empirical literature, it is observable that the decision of the Chicago 
Mercantile Exchange (CME) to adopt a cash settlement mechanism instead of physical 
delivery provision of futures contract have effectively contributed to decrease price 
volatility, augment the contract’s hedging performance and attract more interest. The 
above argument is supported by several previous studies including Kenyon, 
Bainbridge, Ernst (1991), Lien & Tse (2002) and Rich & Leuthold (1993). Chan and 
Lien (2003) employed in their study four volatility measures for futures price under the 
assumption of Geometric Brownian motion in order to examine the outcomes of the 
switching to a cash settlement procedure. The results of this study indicated that 
CME’s shift to cash settlement decreases the volatility of volatility of the feeder catle 
futures price. 
It should be mentioned that there has been significant focus on models that explain 
the observation of volatility clustering. The empirical examination include Generalized 
Autoregressive Conditional Heteroskedasticity (GARCH) methodology, first introduced 
by Engle (1982) and stochastic volatility methodology (Hwang & Satchell, 2000). An 
important research is that of Floros (2009) who estimated volatility in the US using four 
models based on open,closing, high and daily prices and considering daily data from 
four US stock indices (S&P 100, S&P 400, S&P500 and S&P Small Cap 600). He 
concluded that daily prices from these US stock indices can be characterized by 
volatility models. 
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An enormous body of financial literature is available and suggests that calendar 
anomalies exist over current periods. The existence of monthly effects contradict the 
weak form of the Efficient Market Hypothesis (EMH) which assumes that stock prices 
reflect all available information. Basically, the monthly effect occurs when stock returns 
are not distributed equally across the months of the year. Various studies have 
supported the establishment of January effect when mean returns are higher 
compared to other months of year. These studies argue that it is better to invest at the 
beginning of the year since investors think about their tax liability and they sell their 
losers in December and then they buy them back in January to lock in a tax loss. In an 
early study the effect is found to be persistent with higher mean return as well as higher 
volatility in January (Rozeff & Kinney, 1976). According to Ritter and Chopra (1989) an 
explanation of the January effect is the portfolio rebalancing. Reinganum and Shapiro 
(1987) provided the evidence from the London Stock Exchange that the tax effect 
happened both in January since the individual invetsors choose April as the tax year. 
A January effect has also been found in US stock market (Choudhry, 2001). Rendon 
and Ziemba (2007) report a persistent January effect in the futures markets. In the 
Chinese and other Asian markets, Ho (1990) provided the evidence that the most of 
Asian countries have no January effect, although Zhang and Li (2006) report a strong 
January effect. 
An other work examines the calendar effects and especially the evolution of the turn 
of the year on cash and futures markets (Szakmary & Kiefer, 2004). They report no 
abnormal returns during the turn of the year the post-1993 period and an evidence of 
a turn of the year effect in both cash and futures for the pre-1993 period. Additionally, 
Moller and Shlomo (2008) investigate the evolution of the January effect and their 
evidence shows higher abnormal returns in the first part of January and lower abnormal 
returns, offsetting each other, in the second part of month for the 1995-2004 period. In 
the Greek stock market, Floros (2008) shows that there is no January effect in ASE for 
all the three indices which examined for the period of 1996-2002. Giovanis (2009) 
investigate if there is certain seasonality on expected returns or in volatility and 
concludes rejecting monthly effects. In their survey Sun and Tong (2010), using a time-
series GARCH framework with the conditional variance/covariance as proxies for 
systematic risk, find clear evidence that January effect is a phenomenon of risk 
compensation in the month.  
The other prominent explanation for the January effect relies on the relationship 
between the phenomenon of January effect and firm characteristics. Haug and 
Hirschey (2006) contend that firm size plays an important role in determining the 
prominence of the January effect. More specifically, they argued that the effect is a 
small-cap phenomenon. 
In addition to the many studies that have attempted to offer an explanation for the 
January effect, Shiller (1999) find that January effect relies on investors’ behavioural 
biases. According to Shiller, investors tend to view the beginning of a year as a new 
opportunity. 
Although there has been strong empirical evidence that supports the January effect, 
recent research report that the magnitude of the calendar anomaly has declined in the 
last decades. Mehdian and Perry (2002) study the DJIA, NYSE and S&P-500 and state 
that after 1987 January returns are not significant indicating that the calendar anomaly 
has disappeared in the US. Finally, Patel (2016), employing data from January 1997 
to December 2014, suggest that January effect does not exist anymore in international 
stock returns. 
Summarising it could be mentioned that seasonal effects on returns and volatlity along 
with modelling volatility are well known in the financial literature, but as far as the 
behaviour of investors and traders in futures and cash markets before and after the 
2008 financial crisis has been given a little attention from past studies. 
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CHAPTER 3 

Theoretical Framework 
 
 
 
 
3.1 Derivative Instruments 
 
3.1.1 The Derivatives Securities 
 
 
The three major types of derivative securities are futures, options and swaps. The last 
three decades derivatives have become progressively paramount in the world of 
finance. Derivative securities are assets whose price derives from the prices of other, 
more basic underlying asset. Hence the derivative value depends on the value of this 
underlying asset. 
Let’s take as an example, a futures contract on Tesla stocks is traded on the Chicago 
Mercantile Exchange (CME). The underlying asset in this contract is the stock of Tesla 
itself, which is traded on NASDAQ. Today’s futures price on Tesla stock quoted by 
CME is a price quote for delivery of Tesla stock in Chicago at a definite date in the 
future (Cuthbertson, et al., 2020). On the contrary, the price of the stock on the 
NASDAQ is for instant delivery of the stock named the cash or spot price. The strong 
relationship between spot and futures market price is due to risk-free arbitrage.   
 
 
3.1.2 Overview of Futures Markets  

 
 
Futures markets were introduced in order to annihilate and hedge risk in the cash 
market. The financial futures market began in 1972 when the Chicago Mercantile 
Exchange (CME) started trading futures contracts on foreign currency. The CME 
introduced the Standard & Poor’s (S&P) 500 futures contract in 1982 and this was 
followed by the introduction of the New York Stock Exchange (NYSE) index futures 
contract by the New York Futures Exchange (NYFE). 
Formally, a forward contract is an agreement between two parties to buy or sell a 
specific asset at a prespecified date in the future with certain terms and price, like a 
future contract. Futures contracts are normally traded on an exchange while forward 
contracts are traded in the over-the-counter market-usually between two financial 
institutions or between a financial institution and one of its clients (Hull, 2002). Thus, 
in contrast to forwards, which are specialized nontradeable agreements, futures can 
be very liquid financial instruments (Steland, 2012). The futures is a derivative security 
since every change in the cash market price of the underlying asset is closely linked 
to every change in futures price. Additionally, the futures derive their value from the 
value of a specified underlying asset. To make trading possible, futures exchanges 
provide the mechanism for facilitating the process that not only list a big number of 
contracts but gives the two parties a guarantee that the process-contract will be 
honored. The exchange specifies the period when delivery must be made (fixed 
maturity), the contract size and how the futures price is to be quoted. For some 
contracts physical delivery is not possible and cash payment is initiated. A futures 
contract can be bought and sold at any time till its delivery date and the hedger or 
speculator can take one of two positions on contract (long position-futures purchase, 
or a short position-futures sale). Futures allow trading in either direction, if a holder 
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think that the future asset price is going up, a trade will be opened with a buy order. 
The holder of the short position agrees to sell an asset at a specific price to profit from 
a falling future asset price, with the payment and delivery to occur on the expiration 
date. In a long position, one agrees to buy the contract’s underlying asset at a specified 
price with delivery and payment occurring on the expiration date. Overall it is a zero 
sum game, ignoring transactions costs, since there is always a counterparty to a 
futures contract. 
The corresponding price of the futures contract is the futures price. To provide 
contracts with merchantability, and in order to minimize default risk, futures exchanges 
use clearinghouses. The clearinghouses track all trades and guarantee each contract 
providing a financial protection, having an intermediary role that makes it easier for 
traders to close their positions before expiration and requiring from them to post 
collateral (e.g. T-bills, cash), known as a margin payment (Cuthbertson, et al., 2020). 
At each trading session all exchanges settle trades using computers and actual trades 
are conducted electronically, but some exchanges are also using open outcry (traders 
in the pit indicate prices by using hand signals). The investors have to deposit funds in 
a margin account and they have to pay initial futures margin, fixed by the exchange, 
which is the amount of money that is required to open a buy or sell position on a futures 
contract. The accounts in a futures contract are marked to market on a daily basis and 
the possible losses and gains are adjustable. The clearing house is responsible to 
proceed for all contracts with the clearing of the loss and the profit from the trading 
session. The holder of a long position makes a profit when the futures price rises that 
is exactly equal to the loss of the holder of the short position. As time goes by, the 
margin accounts reflect their daily losses and profits. The daily profit made by a winning 
party is credited to his margin account and debited from the margin account of the 
corresponding losing party.  After the daily settlement, if the margin account falls below 
the maintenance margin, the investor’s margin account have to be deposited by further 
funds since a margin call occurs. Consider a futures contract on gold with a value of 
$ 165,000, if gold futures price is at $ 1,650 per ounce. If the futures price increases 
by $ 10 (from 1,650 to 1,660) the value of one long futures contract changes by $ 1,000 
and the value of one short holder decreases by $ 1,000.  
The shape of the futures curve (futures contract price plot over time) is important for 
hedgers and speculators in order to shape their strategies. The state of the futures 
curve can be either in contango or backwardation. A futures curve is described as 
being in contango state when a futures contract price is above the expected future spot 
price, taking into account the time value of money (Greyserman & Kaminski, 2014). 
The investors in this situation may be willing to pay more for something in the future 
rather than what they should anticipate to pay. In contrast, the backwardation state 
refers to a case when futures price is below the expected future spot price. 
 
 
3.1.3 Types of Futures Contracts & Clearinghouses  
 
 
Futures contracts are now traded very actively all over the world. Currently the largest 
futures exchanges in the United States are the Chicago Mercantile Exchange Group 
(CME Group), after the merger with the Chicago Board of Trade (CBOT) closed on 
July 12, 2007, and the Intercontinental Exchange (ICE). Other large exchanges include 
Eurex, London International Financial Futures and Options Exchange and Tokyo 
International Financial Futures. These exchanges work approximately 23 hours per 
day, excluding weekends, and provide a centralized location for futures contracts in 
order to be traded on electronic trading platforms. Additionally, there are a lot of 
contracts offered by future dealers on the OTC market.  There are many types of future 
contracts to choose, and they are classified as financial and physical futures. Financial 
futures trading usually refers to speculating on non-equity and equity indexes on bond, 
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commodity, volatility, foreign currencies, and spread indexes and interest rate. From 
the other side, physical futures can include energy futures and futures with underlying 
asset a physical commodity. Physical commodities are broadly classified into metals 
and petroleum products, and agricultural that consist of grains, forest products, 
livestock, textile and foodstuffs. Large-scale financial institutions are more likely to 
carry speculative positions, while manufacturers and end users are more likely to 
conduct hedging transactions (Baker, et al., 2018). Finally, some of these contracts 
require physical delivery and others a cash settlement.  
The clearinghouses associated with futures exchanges are an adjunct of the exchange 
and act as intermediaries in futures transactions that can guarantee each contract. 
Thus, the main task of the clearinghouse is to record all the transactions taking place 
during a day in order to calculate the net position of each of its members (Hull, 2002). 
The member of clearinghouse is required to have a clearing margin with the 
clearinghouse to ensure that the futures contracts can be delivered and the 
transactions will be completed, eliminating counterparty risk. In the same way that the 
margin accounts of investors work, the margin accounts for clearinghouse members 
are adjusted at the end of each trading day without maintenance margin. It is 
interesting to note that the clearing house is exposed to counterparty risk at maturity 
and this risk is covered by a system of collateral deposit. 
 
 
3.1.4 Options Markets  
 
 
Another important derivative is an option which is a security that gives the holder the 
right, but not the obligation, to take a long position to buy at a specified price on, or 
possible before, a specific date under certain conditions. These agreements are traded 
on stock indices, individual stocks, commodities, futures contracts, foreign currencies, 
Treasury bonds and notes. Nowadays, there are a vast number of options traded both 
on exchanges and in the over-the-counter (OTC) market. Exchange-traded options 
contracts are listed on exchanges such as the Philadelphia Stock Exchange (PHLX) 
and the Chicago Board Options Exchange (CBOE), the largest organized options 
market with a deep secondary market, in the US and Intercontinental Exchange in 
London. The exchange-traded options are standardized contracts, providing numerous 
benefits but also significant drawbacks, compared with the over-the-counter (OTC) 
options which are negotiated directly between the buyer and the seller. Additionally, 
exchange-traded options attract investors and portfolio manager since they are 
guaranteed by clearinghouses. In many cases, traders find OTC options advantageous 
to meet their trading needs since contracts can be customized to fit the holder’s specific 
targets. However, two significant disadvantages to using the OTC market is the higher 
transaction cost as well as counterparty risk (Cuthbertson, et al., 2020). 
There are two basic types of options, by definition a call option gives the holder the 
right to buy a specific asset or security by a certain date for a certain price, whereas a 
put option gives the holder the right to sell the underlying asset by a certain date for a 
certain price. The price in the contract is referred to as the exercise or strike price and 
is the price specified at which the underlying asset or security can be bought (call) or 
sold (put) at maturity which is the last day the holder can exercise. 
The option buyer is referred to as the holder, and as having a long position in the 
option, buys the right to do something, exercise or invoke the terms of the option claim, 
but the holder is not obligated to exercise this right (Johnson, 2017). From the other 
side, the option seller has a short position and is responsible for fulfilling the obligations 
of the option if the holder exercises. From the aspect of association with the exercise 
date are American style options and European style options. These two features have 
similar characteristics but the key difference between them relates to when the options 
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can be exercised. Thus, a European option can be exercised only on the exercise date, 
while an American style option can be exercised at any time up to the expiration date. 
It has to be mentioned that there is a cost to acquiring an option whereas there are not 
costs to enter into a forward or futures contract. In the end, it has to be pointed out that 
any option contracts that grant the holder, of any style either European either 
American, can be sold to a third party, at any time prior to maturity.  
Table {3.1} shows price quotes on a number of call and put options on AAPL (Apple 
Inc.) stock as of 17/4/2020, and expiration of April 24, accessed from the CBOE. 
 

                                AAPL/Call-Put Options, 17/4/2020 

                                               24/4/2020(7d) 

LAST BID          ASK Calls Strike  Puts Strike LAST BID ASK 

7.2 7.2 7.5 AAPL 
280.000 

 AAPL 
280.000 

4.65 4.6 4.75 

6 5.7 6.05 AAPL 
282.500 

 AAPL 
282.500 

5.7 5.45 5.8 

4.6 4.6 4.75 AAPL 
285.000 

 AAPL 
285.000 

6.9 6.65 7.05 

3.65 3.6 3.7 AAPL 
287.500 

 AAPL 
287.500 

8.45 8.05 8.5 

Table {3.1}: AAPL Stock Options for 17/4/2020 (7 Days to expiration) 

 
As shown in table {3.1}, on 17/4/20, AAPL stock closed at $282.80, the AAPL call 
option with an exercise price of 285 and expiration of April 24 closed at 4.6 and dealers 
were offering to sell the option at 4.75 and to buy the option at 4.6.  
 
3.1.5 Options Strategies  
 
Consider the situation of an investor who buys a European call option and the current 
price of stock-ZYX on the NYSE on 15 June is $70. On 15 June somebody can pay 
the call premium $3 and buy an October-European call option on the stock-ZYX. The 
strike price in the contract (of 100 ZYX-shares) is $70 and maturity in just over four 
months’ time on 26 October. So, the initial investment is $300. If the stock price on the 
expiration date is less than $70, the investor will choose to let the option to expire, 
since it will not be profitable, and to have a loss equal to the call premium. Thus, the 
maximum loss from the call purchase is $300 that was the initial investment. If the 
stock price is above $70 on the expiration date, the option will be exercised in the 
maturity date by paying the strike price. Suppose that the spot price is $77 on 25 
October, then the holder of the call option can exercise the option contract, pay the 
strike price $70 per one stock (by taking delivery). If the investor wanted to sell 
immediately the stock for $77, the cash profit would be $7 per share. An alternative 
way could be the long call option to be cash settled for $7 which is paid via the clearing 
house without any stock to be delivered. Finally, the investor has a percentage return 
of 133.3% over a 4-month period. 
When a speculator hold a call option and the stock prices increases at any time before 
the maturity date of the option leads to a speculative profit. This can be implemented 
by selling (shorting) the call option to another options trader, after the spot price has 
increased, closing out the initial long position in the option (Cuthbertson, et al., 2020). 
Thus, when the spot price of ZYX share increases that also drives to a rise in the call 
premium. For example, if stock-ZYX increases in price by $1.5 over one day that may 
change the call premium from $3 to $3.5. Hence, the speculator who purchased the 
October-call for $3 on 15 June, has the opportunity to sell the call on 16 June to another 
options trader for $3.25, making a return of 8.33% in just one day. The speculator 
closes out the contract and the $3.25 are received from the options clearing house. 
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Another strategy involves the sale of the call option in which the seller does not own 
the underlying stock (Johnson, 2017). This position is known as a naked call write. 
Consider the ZYX call option with the exercise price of $70 and the call premium of $3. 
When the spot price is at $81, the seller has a loss of $8 if the holder exercises the 
right to buy the stock from the writer at $81, since the writer does not own the stock. 
Thus, the net loss of $8 comes from the difference between the loss of $11 for the call 
writer and the $3 the premium received for selling the call. The break-even price for 
the writer and the holder is $73. Finally, when the spot price is $70 or less, the holder 
will not exercise and the writer will profit by the amount of the premium $3.  
Whereas the purchaser of a call option realizes a profit when the stock price increases, 
for the purchaser of a put option profit is realized when the stock price is expected to 
decline in the future. A put option strategy can be used for speculation. The put holder 
can buy the stock at a lower price when the cash market declines, and afterwards to 
sell it at the higher strike price on the put contract. Consider an investor who purchases 
a European put option to sell 100 shares of stock-ZYX with a strike price of $82 and a 
put premium of $2.5, since the investor thinks that the stock price will fall in the future. 
Assume that the spot price decreases to $72, the put holder can purchase stock-ZYX 
and after immediately to use the put contract, with expiration date of the option in three 
months (and initial investment of $250), to sell the stock at the strike price of $82. 
Hence, the put holder realize a profit and receive $7.5 (per one share) and a break-
even price of $79.5. Alternatively, in a case which the speculator cash settle the long 
put contract, clearing house will make a cash payment of $7.5 (per one share) when 
the long put contract is cash settled on maturity date. By using the long put contract to 
speculate on a future stock price fall, the speculator has made a percentage return of 
200%, providing a leveraged return (Cuthbertson, et al., 2020). Suppose a final stock 
price above or equal to $82 at maturity, since the option is European it can be exercised 
only at the expiration date, the put option expires worthless, it will not be rational for 
the put holder to exercise, and as a result the investor will lose $250 that initially was 
paid for the put premium.  Finally, similar to a call purchase strategy, a long put position 
provides the holder with potentially large profit opportunities, while reducing the losses 
to the maximum amount of the premium. 
When the stock price is at $82 or more, the holder will not exercise and the writer will 
realize a profit equal to the amount of the premium $2.5. But if the spot price will be 
$77, the holder will exercise and the put writer has to buy the stock at $82. So, if the 
writer chooses to sell the stock having $5 loss and a paper loss that holds on it. When 
the cash market is $77 and the premium $2.5, this yield a loss of $2.5. 
Another option strategy is the covered put write which requires the writing of put option, 
while shorting the (obligated) shares of the underlying stock. Since a put writer is 
required to buy the stock at the strike price of the put option if the holder exercises, the 
only way to cover this obligation is by selling the underlying equity short position. Let’s 
assume a writer of a YZX 82-put shorts a share of stock-YZX. If the spot price is less 
than the strike price at maturity and the put holder exercises, the covered put writer 
will buy the share with the $82, and after return the share to cover the short sale 
obligation with a profit of the premium call of $2.5. When the spot price is above $79.5 
occur losses from the strategy of covered put write. Finally, losses will be incurred 
above $79.5, but they will always be $2.5 (per share) less than the stock trade alone.   
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3.2 Index Futures 
 
 
3.2.1 Stock Index Futures  
 
 
The first index based contract was introduced in 1982 on Kansas City Board of Trade 
which was the first exchange to offer trading equity index futures that led this type of 
futures contract to become very popular. So fast growing futures contracts have they 
become, that in many cases the volume of futures market trading transcends trading 
volumes in the associated underlying cash market (Loader, 2016). This was followed 
by the introduction of the Standard & Poor’s (S&P) 500 futures contract, traded on 
CME and the New York Stock Exchange (BYSE) index futures contract and launched 
in January of 1983. In the US index futures contracts traded on the CME include those 
on S&P 500, the Mini-S&P 500, the Dow Jones Industrial Average (DJIA) and the 
Nikkei 225(Japanese index) and others. On London International Financial Futures 
and Options Exchange (LIFFE), part of NYSE-Euronext, futures exchange is available 
for various UK stock indices such as the FTSE 100 and FTSE 250 indices, on 
European indices including the FTSE Eurotop 100 and FTSE Eurotop 300 and others 
(Cuthbertson, et al., 2020).  The S&P 500 contract is the most heavily traded equity 
index futures contract by notional value. The futures price on the S&P 500 futures is 
2,843 on April 14, 2020, with a 250x multiplier and the expiration date is 19/6/2020. 
Generally, stock index futures are the only futures contracts having a variable contract 
size. The contract size equals to the multiplier (some amount of money) times the 
current underlying spot index value, whereas the variable contract value is defined by 
the multiplier times the current future price (marked to market). 
For instance, on 19/05/2011, the available contracts for Euro Stoxx 50 futures were 
those of the next June, September, and December, as illustrated in Figure {3.1}. In the 
column “Open Int”-open interest is obvious that the vast majority (of 83.4%) refer to 
the nearest maturity of June indicating the enormous market interest along with the 
high number of still not closed contracts. 
 

Figure {3.1}: Euro Stoxx 50 futures: June, September and December contracts of 19/05/2011. 
[Figure taken from Bloomberg] 
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An index futures contract, like the S&P 500 index, allows investors and speculators to 
agree to buy (long) or sell (short) a portfolio of stocks composing the index at a fixed 
level and on a specified delivery date T. Most stock market indexes are capitalization-
weighted indexes, including FTSE 100 index, S&P 500 index and the Nasdaq 
Composite Index (ISIC), ignoring dividend payments as a result they cannot absolutely 
mirror the total returns from the component shares that include dividends.  
Such futures contracts has grown significantly over the last 37 years and these 
derivatives are widely used in index arbitrage, hedging and speculation. Index future 
contracts have a cash settlement feature, unlike many other futures contracts. An index 
futures seller (short position holder) has the obligation to sell a fixed amount of the 
underlying equity market, the cash equal to the closing spot index (ST) on the delivery 
date at futures price (fo), to the index futures purchaser (long position holder). The long 
position holder agrees to buy cash equal to the closing traded spot index (ST) at 
maturity and at futures price (fo). However, futures contracts are usually closed out 
prior settlement by an equal and opposite transaction. If ST<fo the long position holder 
pays the futures seller a cash settlement of ST -fo and if ST>fo the short position holder 
pays the futures buyer the cash difference between the index price at maturity and the 
traded contract price. Finally, the unprecedented growth of these index derivatives 
contracts can be attributed to their usage as a stock portfolio management instrument.   
 
 
3.2.2 Stock Index Futures Pricing  
 
 
According to Cornell and French (1983) the futures price for a non-dividend paying 

stock must be equal to : 𝐹(𝑡, 𝑇) = 𝑆(𝑡)𝑒𝑟(𝑇−𝑡)                                                          (3.1) 
Where S(t) is the stock price at time t, ( r) is the risk-free interest rate, F(t,T) is the 
futures price at time for a contract with maturity at time T. However, this cost of carry 
model relies on some simplifying assumptions:  

1) Capital markets are perfect 
2) The risk-free borrowing and lending rates are equal and constant over time 
3) Dividends don’t exist 

 
For a dividend paying stock case, their model becomes: 

 𝐹(𝑡, 𝑇) = 𝑆(𝑡)𝑒𝑟(𝑇−𝑡) − ∑ 𝐷𝑖𝑒𝑟(𝑇−𝑡𝑖)𝑁
𝑖=1                                                                      (3.2) 

Where the last component presents the dividend payment at time ti compounded to 
the final settlement date of futures contract that are deducted from the index. 
For the special case of a stock with a constant dividend yield (d), in continuous time, 

the futures price can be approximated by (𝑡, 𝑇) = 𝑆(𝑡)𝑒(𝑟−𝑑)(𝑇−𝑡) .                         (3.3) 
Cornell and French (1983) examine this special case and support that dividends 
partially offset the interest cost of carrying stock portfolio. 
 
 
 
3.2.3 Hedging Equity Positions  
 
 
It is widely known that  a well-diversified stock portfolio earn the highest return for the 
least risk, lowering the specific risk, while stock index futures contracts allow investors 
to hedge, stock portfolio positions, against alterations in stock market (market-
‘systemic’ risk). This one of the major uses of stock index derivatives can be 
implemented by several different types of hedging models. 
Stock index futures are used to hedge an equity portfolio. This leans on the positive 
correlation between futures and spot prices. If an investor hold an equity portfolio with 
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long position, then sorting stock index futures contracts has as a result a negative 
correlation between the possible gain on index futures position and the possible loss 
on his cash market portfolio. Generally, in some cases of hedging it is assumed that 
ideal conditions dominate the market in which there is no current timing risk and the 
value of spot position remains stable at expiration. In such rare cases, a prefect hedge 
can be accomplished by usage of naïve hedging model. In this model, the number of 
futures contracts (nf) can be found simply by dividing the current value of the portfolio 
(spot position) (P) by the price of the stocks underlying the futures contract (fo). 

                                                               𝑛𝑓 =
𝑃

𝑓𝑜
                                                      (3.4) 

 
Suppose that a portfolio manager holds a $1 million diversified portfolio of US stocks 
which mirrors the index of the S&P 500 with hedge ratio of 1.0. He feels the stock 
market is likely to be very volatile but he is worried about a general fall and in order to 
eliminate the market risk uses stock index futures. The current value of the index 
futures is 2,000, and each futures contract has $250 multiplier. In this case two 
contracts should be shorted to hedge his stock portfolio. However, this is under ideal 
conditions and the stock portfolio may not be perfectly correlated with the S&P 500 
spot index. In such a case, the naïve hedging model cannot provide a perfect hedge. 
Assuming a more realistic scenario in which the portfolio does not exactly mirror the 
index, it can be shown that the appropriate hedge ratio is the beta of the portfolio. So 
the number of futures contracts or hedge ratio (nf) that minimize the variability of profits 

is:                                                                    𝑛𝑓 = 𝛽
𝑃

𝑓𝑜
                                                       (3.5) 

where (β) is the beta of the stock portfolio. 
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3.3 The Relationship between Spot and Futures Prices 
 
 
3.3.1 Dynamic Relationship & Literature Review  
 
 
This subchapter covers the dynamic relationship between spot and futures market 
based on previous research. The literature has shown that there is a link between spot 
and futures markets that has become more and more complex. 
Some past studies agree with hypothesis that futures prices lead spot prices since 
futures market respond to new information more quickly than the cash market mainly 
due to decreased transaction costs, flexibility of holding a short position and some 
investors who are not interested in the physical commodity or if they are interested and 
face storage constraints. Spot prices will react with a lag because spot transactions 
take longer to implement. 
Herbst et al. (1987) presented the results of the timing relationship between spot and 
futures indices.  They supported that futures tend to move to the leading side of the 
spot index. They also found that instability in the basis for futures contracts can be 
explained by the fact that these broadly based contracts seem to have an intrinsic 
volatility. Furthermore, according to Abhyankar (1995) there is a vast 
contemporaneous relationship between the FTSE-100 index futures and spot markets. 
This study has revealed a strong evidence that futures market seems to lead the cash 
market during periods of ‘’moderate’’ news and when high volatility exists. These 
results are credible given that lower transaction and entry costs in the stock index 
futures market may lead traders with market wide information choosing to use futures 
market. In periods of ‘’good’’ or ‘’bad’’ news, however, no market seems to lead the 
other one, and this also happens during times of low volatility.  Another study is that of 
Koutmos and Tucker (1996) who modelled the joint distribution of stock index returns 
and futures index stock returns. Particularly, the results of the study showed that daily 
volatility in both markets is highly steady on the basis of past innovations and that bad 
news increase volatility more than good news. 
In addition, Lafuente-Luengo (2009), using intraday data from S&P 500 spot index and 
stock index futures market, investigated the price discovery process in the S&P 500 
stock index by examining the intraday lead-lag relationship among market volatilities. 
This study concluded that futures market act as a leader in incorporation of the arrival 
of new information. Finally, his results specified that there is a unidirectional causal 
relationship from futures volatility to cash volatility. From the other side, another prior 
study examined the dynamics of the relationship between spot and futures markets 
using Markov-switching vector error correction model for U.S. S&P500, U.K. FTSE100, 
German DAX, Brazilian BOVESPA and Hungarian BSI (Li, 2009). He concluded that 
the futures market is not so informationally efficient like cash market especially under 
the conditions of high variance state. 
Lastly, Tse and Chan (2010) examined the lead-lag interaction between the futures 
and cash markets of the S&P 500 using a threshold regression model. They showed 
that the restrictions of short selling in the cash market reduce the role of the spot market 
to lead the futures market. They also concluded that the lead effect of the spot market 
over the futures market is weaker when there is more market-wide information.  
The existing literature is ambiguous as to whether futures markets help cash markets 
reduce their volatility and price more efficently. There are two theories in the literature 
about the relationship between futures markets and underlying cash markets. One 
theory supports the argument that the reduction of spot market volatility and the 
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simultaneous broadening of market depth are the aftermath of the introduction of stock 
index futures. The other theory supports that futures markets might distort cash market 
prices by increasing volatility.  
Danthine (1978) claimed that futures markets improve market depth and reduce 
volatility. In the same line, Morgan (1999) suggested that the introduction of futures 
markets have a stablilising effect on the underlying cash market price volatility. The 
price discovery along with the rational decisions taking by traders lead to the 
establishment of conditions for more efficient spot market pricing. Furthermore, Board 
et al. (2001) argued that there was no evidence that futures trading destabilises the 
spot morket. By applying a stochastic volatility model to the UK, they found that  there 
was also no evidence that an increase in volume in one market relative to the other 
destabilises the cash market. According to Illueca and Lafuente (2003) revealed no 
evidence to support the hypothesis of transmission of volatility from futures to Spanish 
stock market volatility. They also disagreed with assumption that futures trading tends 
to destabilize cash market prices in Spanish financial market. Last but not least, Bohl 
et al. (2011) investigated the impact of introduction of index futures trading in Poland 
on the stock market volatility. By applying a Markov-switching-GARCH approach, they 
concluded that the introduction of index futures trading in Poland does not seem to 
increase volatility of the underlying stock market. They confirmed that index futures 
trading does not influence cash market volatility and they rejected the argument of 
destabilization hypothesis.   
On the other hand, the other current of literature presents arguments in favour of the 
idea that futures trading destabilizes the underlying cash market by increasing its 
volatility mainly due to the presence of uninformed traders. To this conclusion arrived 
Finglewski (1981) stating that a lower level of information of futures traders results in 
increased cash market volatility. The aforementioned view of destablizing impact of 
derivatives trading is also based on the fact that futures are characterized by high 
leverage and that a narrowly defined deliverable commodity could attract uninformed 
traders to the market who trade on the basis of noise rather than information. According 
to Gullen and Mayhew (2000) found that the conditional volatility has increased since 
the introduction of futures markets in United States and Japan. 
 
 
3.3.2 Carrying-Cost Model for an Equity Index  
 
 
The relationship between futures and spot prices can be defined by the cost of carry 
model which determines the arbitrage-free price of a futures contract. This states that 
the futures price is determined by the cost of financing an asset with deferred delivery 
in futures market in comparison to buy the asset in the spot market and carrying it. In 
the case of stock index, the stocks can be bought in the spot market instantly or a 
position to be held on a stock index futures contract with deferred settlement. Thus, 
the net carrying cost advantage of delivering stocks later on is equal to the difference 
between the annual risk-free rate and the dividend yield. The spot-futures parity 
theorem describes the theoretically fair relationship between spot and futures prices 
and is expressed as: 

                                                         𝐹𝑜 = 𝑆𝑜(1 + 𝑟𝑓 − 𝑑)                                         (3.5) 

Where (𝐹𝑜) is the futures price, (𝑆𝑜) is the spot price, (𝑑) is the dividend yield of stock 
and (𝑟𝑓) represents the annual risk-free rate.   

The violation of the parity relationship that states that the theoretical correct price of 
an index futures contract should be equal to the spot index price plus the cost of 
carrying the index for the duration of contract, would give rise to arbitrage opportunities. 
If this condition does not hold, the arbitrage opportunities will exist by taking a position 
in the cash market and an opposite one in the futures market. The price of stock index 
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futures and spot price cannot be expected to trade at the same level prior to expiration. 
The difference between the futures and spot prices is referred to as the basis. This 
basis reflects the ‘’cost of carry’’ considerations and it should be equal to the cost of 
carry of the underlying. 
Negative carry prevails when stock index futures tend to price at higher levels than the 
underlying spot index price and the basis increases (positive number- futures less spot) 
(Hull, 2002).On the other hand, when stock index futures tend to decrease compared 
to spot index price, the dividends exceed the financing costs of underlying index, the 
basis is a negative number and positive carry prevails. At the expiration of the futures 
contract the basis should be zero since spot index value is on the same level with the 
futures price on the final settlement date of futures contract. This process is known as 
convergence of spot and futures prices as the delivery date approaches.  
The futures market prices do not exactly equal theoretical (fair) prices, mainly due to 
features like market efficiency and liquidity (Ruttiens, 2013). The theoretical basis can 
differ from market basis depending on market conditions. Furthermore, the theoretical 
basis is also called carry basis, and the difference between the (gross) basis and the 
carry basis is called net basis. Any deviation of futures price from its theoretical (fair) 
value can be soon eradicated by arbitrage activities. Index arbitrage opportunities are 
calculated using computerized real-time high frequency data which refers to as 
program trading. The program trading was a subject of controversy, especially after 
the 1987 crash, since it was blamed for causing extreme volatility that contributed to 
significant market crises. According to Stoll and Whaley (1986) volatility on the stock 
market is higher on the expiration day of futures contracts than on the average of other 
days and the volume is substantially greater than normal in the last hour of trading. 
This resulted in the NYSE imposing higher margins on futures trading along with 
launching rules which prevent program trading during certain times in order to 
decrease volatility. In reality it is not always so easy to implement arbitrage activities 
since transaction costs (commissions, fees, and bid-offer spreads) exist that follow 
entering arbitrage positions. Nowadays, the complex algorithms are executed by 
automated trading robots using very high-frequency data that causes an excess 
volatility in cash market. 
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3.4 Financial Market Volatility 
 
 
3.4.1 The Causes of Volatility  
 
 
Some researchers have claimed that there is a relation between market and 
macroeconomic variables. It is widely accepted that stock market volatility does 
increase during recessions. Others have claimed that volatility seems to have a relation 
with trading activity. During the last decades many studies have argued that volatility 
is not constant over time. The rate of arrival of information is born on the volatility of 
the value of an asset (Fischer, 1986). It is possible that the volatility of a traded asset 
is not the same when the exchange is open as when it is closed. The relevant unit of 
time for the generation of information affecting the prices is the chronological day. 
Fama (1965) found that the variance of the weekend and holiday changes was not 
three times, but only 22% higher, the variance of the day-to-day changes within the 
week. These results turn out the volatility is far greater when the exchange is open 
than when it is closed. 
 
 
3.4.2 Volatility Models 
 
 
It is widely known that there is an abundance of risks in financial markets especially in 
times of turbulence. The framework that has to be at the heart of finance, is to study 
which risk has to be taken and how much it is expected to be compensated for taking 
them. The implausible amount of news propagation is connected with periods of high 
volatility. Furthermore, unstable or deteriorating macroeconomic circumstances result 
in bigger financial market volatility (Schwartz, et al., 2011). According to Mandelbrot 
and Taylor (1967), the variation of volatility can be associated with arrivals of 
information. Financial theories are often based on assumptions regarding the structure 
of price data (Andreou, et al., 2001). For instance, the empirical research on Efficient 
Market Hypothesis (EMH) has been assumed that security prices at any point in time 
fully reflect particular subsets of available information. The efficient markets model 
were phrased in terms of random walk (Fama, 1970). The assumption that the 
conditions of market equilibrium can be relied on the terms of expected returns is the 
basis of ‘’fair game’’ efficient markets models. The Black-Scholes model assume that 
the returns follow a normal distribution. Financial time series exhibit periods of time 
where the volatility is persistently low and alternate with periods of persistently high 
volatility. Referring to an asset return as a collection of random variables over a period 
of time, consist a time series. The dynamic structure of linear time series helps the 
analysis of the theories of stationarity, autocorrelation function, modeling and 
forecasting. The objective here is to understand the distributional properties of daily 
stock returns. Empirical evidence of time series of daily stock consist of leptokyrtic 
distribution, a distribution with heavy tails, relative to normal distribution, which tends 
to contain some extreme values in the tails, skewness and volatility clustering (large 
movements are followed by the same large movements, while small movements are 
expected to follow small returns) (Floros, 2009). According to theory, the expected 
present value of the asset’s future income flows should be equal to the price of this 
asset. But as time passes, new information is released which alters the expectations. 
This can give an explanation why returns are random and volatility fluctuates over time 
especially in periods of crisis when markets plunge due to flood of bad news. Thus, 
volatility clustering is an outcome of clusters of arrivals of various types of news. 
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However, this explanation is not so easy to examine empirically since the contents of 
any type of news must be measured.  
Measuring volatility is not simple and instantaneous volatility is unobservable that 
needs time to reveal itself. In order to get a true result and to be close to the true 
volatility, the problem of the large sampling error has to be addressed by using the 
appropriate estimator (Sinclair, 2008). Generally, volatility is widely accepted as a time-
varying variable. Additionally, it is widely common to confuse volatility with risk. Price 
fluctuations are bound to happen in markets, as a result volatility is inevitable. But when 
a stock is risky, it means that it can lead to losses.   
Volatility estimation is of central importance to risk management and number of 
attempts have been made the last 50 years to ameliorate volatility measures. Further, 
volatility modelling has received a lot of attention in the literature mainly because of 
the 2008 financial crisis. It has to be pointed out that there are various statistical 
estimators in order to measure volatility. Many of these estimators use information on 
daily trading ranges. Typically in financial theory volatility refers to an asset’s degree 
of unpredictable price change over specific period of time, and contains an element of 
uncertainty. Looking at the basic volatility estimators, five major types of volatility 
measures are listed as following:  
Historical volatility measure refers to the volatility of a financial asset over a specified 
period of the past through the price process (Degiannakis & Floros, 2015). In terms of 
mathematics, historic volatility is the annualized standard deviation of daily returns 
over a specific period of time. Considering a sequence of known historic daily close 
prices from cash market S1,…,SN , the return from day n to day n+1 is calculated as 

𝑅𝑛 = ln (
𝑆𝑛+1

𝑆𝑛
)  and 𝑅̅ the mean return, the historic volatility would be the annualized 

standard deviation of the returns, supposing that there are 252 business-trading days 

and N is the number of observations, that equals to 𝜎ℎ𝑖𝑠𝑡. = √
252

𝑁−1
∑ (𝑅𝑛 − 𝑅̅)2𝑁−1

𝑛=0  . 

Realized volatility refers to the volatility that is directly measured under a general semi-
martingale model setting, using high frequency data from intraday observations 
(Andersen & Bollerslev, 1998 ; Zhang, et al., 2005). A fundamental point in modelling 
realized volatility is the information released  during non-trading hours in global 
financial markets (Ahoniemi & Lanne, 2013). The widespread availability of databases 
providing the intradaily prices of financial assets gave the opportunity to researchers 
to use data sampled at a high frequency in order to compute ex-post measures of 
volatility (Bauwens, et al., 2012). A number of authors, including Bolleslev, Shephard 
and Andersen, used the method known as realized volatility approach. 
Implied volatility is that value of the volatility of the underlying asset which comes from 
the observed option prices of this asset, based on a theoretical option pricing model 
(Black-Scholes-Merton model) and explains the current market price of an option. The 
implied volatility of futures options is important information in order to follow the 
optimum strategy plan since implied volatility changes having effect on the results of 
trading strategies. Implied volatilities are used to monitor the market’s opinion about 
the volatility of an actively traded financial asset. 
The stochastic volatility refers to the fact that the volatility of the underlying asset is not 
constant but it is itself randomly distributed. In other words, stochastic volatility models 
treat price volatility as a random variable. 
The conditional volatility is that value of the volatility which is conditional on the 
available information set (Degiannakis & Floros, 2015).  The Autoregressive 
Conditional Heteroscedasticity (ARCH) model is based on the return series of a 
financial asset and allows the variance to change through time. Finally, stochastic 
volatility (SV) models are more appropriate to represent the behavior of the returns in 
real financial markets (Pederzoli, 2006).  
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3.4.3 Basics of Stochastic Calculus 
 
 
General Wiener processes are widely used as a special stochastic process with zero 
drift and variance proportional to the length of the time interval in order to describe the 
behavior of financial products. This means that the rate of change in expected value is 
zero and the rate of change in variance is one (Tsay, 2010). In practice, the modelling 
of the returns, which are more stable over time than long time series with large prices 
fluctuations, is implemented by a general Wiener process. The generalized Wiener 
process in which the expectation has a drift rate μ and the rate of variance change σ2. 
Then, for a random variable X and combining a deterministic process with a Wiener 
process in dZ : 𝑑𝑋(𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑍(𝑡)                                                                     (3.7) 
Where drift rate and volatility are constant. 
In a continuous series of (spot) prices S, instantaneous return equals: 

                                            𝑋(𝑡) =
𝑑𝑆(𝑡)

𝑆(𝑡)
                                                                   (3.8) 

From (3.7) and (3.8), 𝑑𝑆(𝑡) = 𝜇𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑍                                                    (3.9) 
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CHAPTER 4 

UK & US Derivative Markets 
 
 
 
The 2008 stock market crash in the United States ranks as the second worst drop in 
terms of percentage drop since the Great Depression of the 1930s. From the peak of 
13,930 in October 2007 to a low of 6,544 in Februrary 2009, the Dow Jones average 
took a dive of 53 percent. Previously, the largest bankruptcy filing in the history of the 
United States took place on September 15, 2008. Lehman Brothers Holdings Inc. filed 
for bankruptcy protection having as a consequence the plummeting of global markets. 
In March 2007, the first visible signs of an increase in default of homeowners, followed 
in the end of 2007 by the realization by the financial community that the problem would 
be much more severe. In very simple terms, the 2008 market crash was as a result of 
defaults on consolidated mortgage-backed securities. During the previous years the 
proliferation of financial instruments that promote irresponsible borrowing was vast. 
Therefore an uncontrollable speculation on real estate prices along with the 
simultaneous defaults and rising interest rates led to a real estate bubble to burst. 
Financial crises have always been on the center of investors’, researchers’ and policy 
makers’ attention. Amid financial crisis of 2008, the derivatives market were frequently 
misunderstood. The derivatives attracted enormous attention and have been the target 
of widespread criticism. Advances and innovations in financial technology have 
provided benefits and broad access to capital for buyers and great opportunities for 
higher yields for investors. The transformation of mortgages, written by the lending 
commercial banks, into investable (mortgage-linked) securities like CDOs 
(Collateralized Debt Obligations) and their derivatives, like CDO squared structures 
attracted a lot of individual investors, banks, pension funds, as well as hedge funds 
and other countries. However, the inadequacy of effective regulations contributed to 
abuse of mortgage-linked securities and their derivatives. The growth of the real-estate 
bubble and of the stock market bubble led to a huge extraction of wealth that increased 
the demand. Furthermore, the development of an unregulated over-the-counter (OTC) 
derivatives market was another contributing factor that resulted in the 2008 market 
crises. The unregulated use of credit derivatives such as CDS (Credit Default Swaps) 
was a major part of the development of the 2008 market crises. Last but not least, it 
has to be pointed out that according to the Bank of International Settlements (BIS), the 
total notional amount of credit default swaps was $57.9 trillion in December 2007, 
which was 2,895 times higher than the gross market value of those swaps reflecting 
the enormous growth of the market the last decade (Peery, 2011). Following the 2008 
financial crisis, derivatives were the subject of a historic reform. 
In the aftermath of the global financial crisis, the demand for risk in financial markets 
declined, as investors aimed to rebalance their portfolios and to hedge their risky 
positions in cash markets by opening the offsetting positions in futures markets.  
During periods of domination of bad news in either market may increase volatility in 
both markets.The relation between spot and futures markets is dominated by the 
volatility spillover hypothesis and there is a possibility assymetries in volatility to spill 
over from spot to futures or vice-versa (Tao & Green, 2012). They studied volatility 
asymmetries in the FTSE100 stock index and index futures markets and the linkages 
between the markets using DCC-TGARCH-M analysis. The data covered the period 
from October 28, 1986 through December 30, 2005 including the move to electroning 
trading by the London International Financial Futures Exchange (LIFFE) on 
30/11/1998. Moreover, according to the empirical results of the study, it could be 
mentioned that there is a strong evidence of asymmetry in the conditional variance in 
both markets, the negative information shocks have a larger effect on the conditional 
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variance than do positive shocks. Finally, they suggested that the variance shocks 
originate separately in each market. 
The years following the global financial crisis in 2008 have provided much evidence to 
contend that financial crisis is still ongoing and many changes took place over this 
period till 2013, such as Eurozone debt crisis. In their survey Antonakakis et al. (2016), 
using a dynamic volatility spillover mechanism to examine dynamic spillover effects 
between UK and US spot and futures markets within a generalized VAR framework. 
The dataset covered the period from February 25, 2008 to March 14, 2013 from S&P 
500 (US) and FTSE 100 (UK) markets that includes 1247 trading days. The empirical 
outcomes of their study supported that spot and futures volatilities in the UK are net 
receivers of spillovers to volume of futures trading. They found evidence of bidirectional 
interdependence between spot and futures volatilities in the UK and the US, and that 
volume of futures trading has a greater forecasting ability than open interest. Lastly,  
the empirical findings of their study agreed that trading volume that reflects market 
liquidity is more important than open interest for futures markets in order to improve 
the ability of traders to forecast futures prices. 
For the UK and US markets, Karunanayake et al. (2010) investigated the interaction 
between financial markets and their volatility, focusing on global financial crisis of 
2008-2009. They could not be found any positive significant influence on the mean 
returns in markets resulting from the global financial crisis. However, they supported 
that the 2008 global financial crisis has contributed to the increased stock return 
volatilities and that the positive return spillovers effects are unidirectional from both the 
UK and US markets to the small markets of Australia and Singapore. 
For UK market pre-crisis period, Areal and Taylor (2002) calculated FTSE-100 index 
futures volatility measured at the daily frequency. The FTSE-100 index futures was 
more volatile when the market opened, when American markets were opened and 
when macroeconomic news were released in the US and the UK. 
For US market, Dawson and Staikouras (2009) investigated whether the volatility 
derivatives trading had decreased the volatility of the cash market index by using 
conditional volatility estimators. The data covered the period from January 3, 2000 to 
May 30, 2008 from S&P500. Moreover, the introduction of volatility derivatives had 
altered the way that the unexpected shocks were absorbed. In comparison with U.K. 
equity index (FTSE-100), the shocks were easily absorbed and quickly dissapeared in 
the post-event date era in US equity index. Their empirical findings argued that the UK 
equity index suffered from the persistence of shocks to volatility.  
In their study, Ferris et al. (2002), by using vector autoregressive approach, claimed 
that increased volatility lowered pricing error in the S&P 500 index futures market. 
According to the survey, as market volatility increases, investors sell off their future 
positions with larger declines in futures prices.  
Additionally, Huang (2012) investigated volatility transmission process between the US 
(S&P 500 futures), the UK (FTSE100 index futures) and Japanese (Nikkei 225) stock 
index futures markets. Their sample data included the period from 1 January 1989 to 
31 December 2006. Their results supported that there is strong evidence of a 
bidirectional cross market volatility transmission between the UK and the US. 
According to Yarovaya et al. (2016) volatility spillovers from the US is higher than that 
from the UK in futures markets. 
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CHAPTER 5 

Methodology 
 
 

5.1 Estimation of Volatility 
 
 
 
 
The volatility can be computed ex-post from data of various frequencies. A trading 
session of an exchange trading day can be influenced by a number of local 
phenomena, which are not obvious when using a series of close prices on a daily basis, 
in particular a type of boundaries condition. This has led to several measures of an 
intraday volatility estimator taking into account an open and close price of the session 
and high and low prices that are highest and lowest prices quoted during the session 
respectively (Ruttiens, 2013). 
Let s(t) be the price of the asset at time t and s(t) is generated by the process of 
                                     𝑑𝑠(𝑡) = 𝑎𝑠(𝑡)𝑑𝑡 + 𝜎𝑠(𝑡)𝑑𝑊(𝑡)                                           (5.1) 
 
where a and σ are assumed constants for the moment, and W(t) is a standard 
Brownian motion (Rogers, et al., 1994). The equation (?.?) is based on the hypothesis 
that the continuous-time geometric Brownian motion is followed during periods 
between transactions that prices cannot be observed. It is well known that the solution 
of Equation (3.8) has a logarithmic form 
 

                                 𝑙𝑛 (
𝑠(𝑡)

𝑠(𝑡−1)
) = (𝑎 − 0.5𝜎2) + 𝜎(𝑊(𝑡) − 𝑊(𝑡 − 1))                    (5.2) 

 
 

                             ln(𝑠(𝑡)) = ln(𝑠(𝑡 − 1)) + (𝑎 − 0.5𝜎2) + 𝜀(𝑡)                               (5.3) 

 
From equation (5.3) ln(s(t)) follows a random walk with drift and errors are independent 
and identically distributed. 
 

                       𝜀(𝑡) = 𝜎(𝑊(𝑡) − 𝑊(𝑡 − 1))~𝑁(0, 𝜎2)                                     (5.4) 
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5.2 Range-Based Estimators of Volatility 
 
 
In statistical terminology, the standard definition of volatility it is the square root of the 
variance,  
 

                                                  𝜎2 =
1

𝛮−1
∑ (𝑥𝑖 − 𝜇)𝛮

𝜄=1                                             (5.5) 

 
where (xi) is the return of day (i), and (μ) is the average return over the N-day period. 
In finance it is not easy to distinguish mean returns (drift) from variance since mean 
returns are extremely noisy and for normal distributions the mean is set to zero. Using 
more data gets a sample to be less biased. 
Consider a trading day period, denoted by {t}. The simplest measure of volatility is 
defined as the difference between the high and low prices in logarithms: 

                                                   𝜎2 = ln (
𝐻𝑡

𝐿𝑡
)                                                          (5.6) 

 
where ( Ht ) is the high price at day t and ( Lt ) is the low price. 
Another volatility estimator was developed by Parkinson (1980), following a geometric 
Brownian diffusion process by using only high and low prices and related returns: 
 

                                                  𝜎2 =
1

4𝑙𝑛2
(ln (

𝐻𝑡

𝐿𝑡
))

2
                                                (5.7) 

 
 
The Parkinson’s estimator could be as much as 8.5 times more efficient than log-
squared returns (Chan & Lien, 2003). Both volatility estimators are unbiased when the 
sample data are repeatedly observed. 
Thereafter, the other well-known volatility estimator was developed by Garman and 
Klass (1980), providing an estimator with superior efficiency, which was based on  the 
combination of high, low, opening and closing prices. It is  
 

                                        𝜎2 =
1

2
(ln (

𝐻𝑡

𝐿𝑡
))

2
− (2𝑙𝑛2 − 1) (ln (

𝐶𝑡

𝑂𝑡
))

2
                         (5.8) 

 
 
where ( Ct ) is the closing price at day t and ( Ot ) is the low price. The Parkinson and 
‘’Garman and Klass’’ estimators are based on a geometric Wiener process in prices 
and are valid only for processes with zero-drift. 
Previous studies assume that the underlying follows a driftless geometric Brownian 
motion, cannot be applied when the drift term is not zero.   
Hence, an alternative approach that is more generally applicable, and has substantially 
lower sampling error, was proposed by Rogers, Satchell (1991) and Rogers, Satchell 
and Yoon (1994). They introduce a volatility measure that outperforms the others when 
a nonzero drift term exists:  

 

                                        𝜎2 = (ln (
𝐻𝑡

𝑂𝑡
)) (ln (

𝐻𝑡

𝐶𝑡
)) + (ln (

𝐿𝑡

𝑂𝑡
)) (ln (

𝐿𝑡

𝐶𝑡
))                    (5.9) 

 
 
Brandt and Kinlay (2005) show that this volatility measure is downward biased. Further, 
the correlations between the volatility measures are shown in Table {5.1}, where the 
data was sampled for a 25-day period and volatility was stochastic with a mean of 14 
percent and a drift of 8 percent. Finally, the overall conclusion that is needed to be 
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drawn is that there is no indication that proves and concludes to the best volatility 
measure. 
 

Correlation Realized StDev Parkinson Garman-
Klass 

Rogers-
Satchell 

Realized 1.00 0.58 0.84 0.85 0.80 

StDev  1.00 0.70 0.69 0.39 

Parkinson   1.00 0.77 0.74 

Garman-Klass    1.00 0.81 

Rogers-Satchell     1.00 

Table {5.1}: Correlations between the Volatility Estimators for Simulated Data.  
Source: M. W. Brandt and J. Kinlay, ‘’Estimating Historical Volatility’’, ‘’Investment Analytics, 
2005. 
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5.3 Construction of Daily Return & Monthly Effect 
 
 
To analyze the monthly seasonality in stock market indices and futures market indices, 
in this thesis, the concept of monthly market return is utilized. The monthly market 
return for spot prices and stock index futures prices at day (t) is calculated as follows: 

                                                           𝛥𝑆𝑡 = ln (
𝑆𝑖,𝑡

𝑆𝑖,𝑡−1
)                                           (5.10) 

 

                                                          𝛥𝐹𝑡 = ln (
𝐹𝑖,𝑡

𝐹𝑖,𝑡−1
)                                            (5.11) 

 
where 𝑆𝑖,𝑡 represents the spot price of cash market index (i) on the trading day of t, 

similarly 𝐹𝑖,𝑡 represents the futures price of stock index futures (i) on the trading day t, 

while 𝑆𝑖,𝑡−1 is the spot price of cash market index (i) on the trading day (t-1) and 𝐹𝑖,𝑡−1 

is the futures price of stock index futures (i) on the trading day (t-1).  
The model of monthly effect has also used by Floros (2008) and is described by 
Guletkin and Guletkin (1983):  

                                                      𝛥𝑆𝑡 = ∑ 𝑎𝑖𝐷𝑖𝑡 + 𝜀𝑡
12
1                                          (5.12) 
 

                                                      𝛥𝐹𝑡 = ∑ 𝑎𝑖
′𝐷𝑖𝑡 + 𝜀𝑡

′12
1                                          (5.13) 

  
where Dit takes the value 1 if the return at time t belongs to month I, and 0 if it belongs 
to any other month, ai is the mean return of stock index in month I, ai

’ is the mean return 
of stock index futures in month I, and εt (εt

’ for futures) and is an error term assumed 
to be independent and identically distributed.  
The null hypothesis to be tested is Ho=a1=a2=…=a12 . 
The test of a January effect is a test of significance of the estimated coefficient a1 in a 
second regression of the form:   

                                                  𝛥𝑆𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                                           (5.14) 
 

                                                  𝛥𝐹𝑡 = 𝑎𝑜
′ + 𝑎1

′ 𝐷1 + 𝜀𝑡
′                                           (5.15) 
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CHAPTER 6 

Data Description 
 
 
 
 
The data employed in this dissertation comprise 3330 daily observations on the FTSE-
100 stock index, 3333 daily observations on FTSE-100 Index Future, 3313 
observations on NASDAQ-100 spot index and 3323 observations on E-mini NASDAQ-
100 Index Future. Daily closing, opening, high and low prices for the aforementioned 
spot and futures indices from US (FTSE-100) and UK (NASDAQ-100) are used over 
the period of 3 January 2006 to 4 March 2019 to calculate volatility and investigate the 
January effect. Closing, open, high and low prices for stock indices and futures indices 
were obtained from Thomson Reuters Eikon.  
The Financial Times Stock Exchange 100 Index is an index of 100 largest, blue chip 
UK companies listed on the London Stock Exchange with the highest market 
capitalization. The NASDAQ-100 is a market-capitalization weighted index of 100 
largest non-financial US companies listed on the Nasdaq stock market. The standard 
FTSE-100 futures contract size is 10 Great Britain pounds per index point of the 
underlying, while the standard E-mini NASDAQ-100 futures contract size is 20 US 
dollars per index point of NASDAQ-100. 
Table {6.1} gives the descriptive statistics for daily spot and futures prices. They are 
presented three statistics, which are calculated using the observations in the full 
sample, skewness, kurtosis and Jarque-Bera. A distribution which presents an 
asymmetric tail extending toward more positive values, corresponds to a positive 
skewness feature. Negative skewness indicates a distribution with a dissymetry in tail 
extending toward more negative values. From the other side, when a distribution 
presents fatter tails along with more or less peaked than a normal distribution, it has a 
kurtosis feature. Positive kurtosis indicates a relatively peaked distribution while 
negative kurtosis a relatively flat distribution in comparison to a normal distribution 
(Szylar, 2014).  
All US series (futures and spot indices) have positive skewness implying that the 
distribution has a long right tail. From the other side all UK series (futures and spot 
indices) show negative skewness meaning that the distribution has a long left tail. The 
values for kurtosis are positive and less than three in UK spot and futures indices 
indicating that the distributions have heavier tails and a sharper peak than the normal 
distribution. As for US spot and futures indices, the values of kurtosis are negative 
imlying that the distributions are not peaked relative to normal having lighter tails and 
a flatter peak than normal. Furthermore, the Jarque-Bera test rejects normality at the 
5% level for all distributions.Hence, the sample of US and UK spot and futures indices 
has platykurtic distribution.   
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FTSE100-Index-
Future 

CLOSE HIGH LOW OPEN 

Mean 6153.4851 6196.2994 6108.0868 6154.4252 

Median 6196.2500 6239.0000 6146.0000 6197.0000 

Std. Deviation 837.9937 828.5024 847.0305 836.8435 

Kurtosis 0.2073 0.1722 0.2238 0.1957 

Skewness -0.5172 -0.4972 -0.5319 -0.5122 

Minimum 3509.0000 3551.0000 3443.0000 3513.0000 

Maximum 7879.5000 7885.5000 7829.0000 7846.5000 

Jarque-Bera 1229.9169 1245.9407 1225.6719 1235.9766 

Observations 3328 3328 3328 3328 

FTSE100-Index CLOSE HIGH LOW OPEN 

Mean 6173.1813 6212.8159 6131.6793 6172.7286 

Median 6198.5900 6240.1000 6156.2300 6198.1000 

Std. Deviation 842.8025 835.1826 851.2655 842.6898 

Kurtosis 0.1605 0.1477 0.1755 0.1606 

Skewness -0.4887 -0.4778 -0.4983 -0.4878 

Minimum 3512.0900 3564.7500 3460.7100 3512.0900 

Maximum 7877.4500 7903.5000 7854.5800 7877.4500 

Jarque-Bera 1250.8978 1255.1460 1244.3724 1250.2737 

Observations 3329 3329 3329 3329 

E-MINI100-
NASDAQ-Future 

CLOSE HIGH LOW OPEN 

Mean 3364.1472 3388.5791 3335.5044 3362.6966 

Median 2700.5000 2721.2500 2675.5000 2700.7500 

Std. Deviation 1748.8217 1758.0709 1736.4709 1747.6039 

Kurtosis -0.4730 -0.4610 -0.4834 -0.4709 

Skewness 0.8253 0.8317 0.8188 0.8260 

Minimum 1037.5000 1084.2500 1015.7500 1041.5000 

Maximum 7719.0000 7749.7500 7683.5000 7723.0000 

Jarque-Bera 2047.3213 2041.6514 2051.3299 2045.8271 

Observations 3323 3323 3323 3323 

NASDAQ100-
Index 

CLOSE HIGH LOW OPEN 

Mean 3300.6590 3320.5028 3277.9145 3300.1501 

Median 2665.8300 2683.2500 2653.4300 2667.3600 

Std. Deviation 1728.3312 1736.3100 1719.0862 1728.2559 

Kurtosis -0.4059 -0.3947 -0.4147 -0.4035 

Skewness 0.8427 0.8486 0.8377 0.8435 

Minimum 1036.5100 1085.5700 1018.8600 1058.8500 

Maximum 7660.1800 7700.5570 7628.5440 7673.0010 

Jarque-Bera 1993.4650 1988.3790 1997.0533 1991.9267 

Observations 3313 3313 3313 3313 

Table {6.1}: Descriptive Statistics (Price)  
NOTE: PROBABILITY (rejecting the null hypothesis of normality/Jarque-Bera Test), 
 (p-value)=0 
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CHAPTER 7 

Empirical Results 
 
 
 
This chapter descibes the empirical work and results of this dissertation about 
modelling volatility and January effect on returns and volatility. Firstly, the first section 
begins with using several models for the calculation of volatility during the entire period 
2006-2019 and during the two sub-periods pre-2008 and post-2008. Secondly, the 
next section investigates the monthly effect in the cash and futures markets returns of 
the US and UK indices using daily data before and after the crisis of 2008. Lastly,this 
chapter ends with examining the January effect in volatility in US and UK spot and 
futures indices. 
 

7.1 Modelling Volatility 
 
7.1.1 Entire Period 

 
This section looks at the empirical results which are related to spot and futures market 
volatility in order to clarify through the analysis of the statistical outputs whether and to 
what extent the four models based on the opening, closing, high and low prices provide 
a satisfying efficiency in the data. The main aim of this section is simply to calculate 
the volatility during the entire period of 2006-2019 through the four aforementioned 
volatility measures. 
As far as the volatilities of the futures and spot indices are concerned, the four volatility 
estimators were considered as the most appropriate measures. In particular, the 
results of applying equations {5.6}-{5.9} are presented in Table {7.1}. From the 
examination of the below table it becomes clear that in all cases VS overestimates Vgk, 
Vp and Vrs. The normal distribution assumption is rejected for each volatility estimator 
using the Jarque-Bera statistic. 
 
 
 

FTSE100-Index-Future Vs Vp Vrs Vgk 

Mean 0.01515 0.00013 0.00015 0.00014 

Median 0.01215 0.00005 0.00006 0.00006 

Std. Deviation 0.01125 0.00031 0.00043 0.00037 

Kurtosis 18.52622 89.00947 140.60201 98.78805 

Skewness 3.44933 8.33444 10.48049 8.90626 

Minimum 0.00241 2.09E-06 0.00000 2.40E-06 

Maximum 0.11889 0.00510 0.00855 0.00592 

Jarque-Bera 40026. 1064333. 2686483. 1316312. 

Observations 3328 3328 3328 3328 

FTSE100-Index Vs Vp Vrs Vgk 

Mean 0.01386 0.00010 0.00009 0.00009 

Median 0.01122 4.55E-05 3.84E-05 4.32E-05 

Std. Deviation 0.00974 0.00023 0.00022 0.00019 

Kurtosis 16.26699 105.63628 207.65270 125.68810 

Skewness 3.09353 8.74155 11.89169 9.34598 
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Minimum 0.00233 1.96E-06 0.00000 1.49E-06 

Maximum 0.10753 0.00417 0.00532 0.00372 

Jarque-Bera 29724. 1503579. 5887943. 2136352. 

Observations 3329 3329 3329 3329 

E-MINI100-NASDAQ-
Future 

Vs Vp Vrs Vgk 

Mean 0.01742 0.00017 0.00017 0.00017 

Median 0.01421 7.29E-05 7.37E-05 7.71E-05 

Std. Deviation 0.01254 0.00037 0.00040 0.00035 

Kurtosis 15.32889 97.01996 198.71206 106.43200 

Skewness 3.03768 8.37500 10.94576 8.40624 

Minimum 0.00053 0.00000 -6.19E-06 0.00000 

Maximum 0.12862 0.00597 0.01070 0.00738 

Jarque-Bera 26156. 1262783. 5369753. 1520388. 

Observations 3323 3323 3323 3323 

NASDAQ100-Index Vs Vp Vrs Vgk 

Mean 0.01429 0.00011 0.00011 0.00011 

Median 0.01159 4.85E-05 4.67E-05 4.93E-05 

Std. Deviation 0.01031 0.00026 0.00030 0.00026 

Kurtosis 17.37665 117.55533 279.01844 194.18604 

Skewness 3.17595 9.22009 13.89939 11.68121 

Minimum 0.00214 1.65E-06 0 2.20E-06 

Maximum 0.11410 0.00470 0.00852 0.00620 

Jarque-Bera 34101. 1858450. 10623541. 5121056. 

Observations 3313 3313 3313 3313 

Table {7.1}: Volatility Estimates (Entire period) 
NOTE: PROBABILITY (rejecting the null hypothesis of normality/Jarque-Bera Test), 
 (p-value)=0 

 
Additionally, E-mini NASDAQ-100 Index Future has the highest daily volatility for all 
the four models between spot and futures UK and US markets. FTSE-100 Index Future 
has the second highest daily volatility calculated by the four volatility estimators. 
Hence, both futures indices show an increase in daily volatility compared to spot 
indices. Moreover, UK spot and futures markets seem to have lower daily volatility than 
US markets. Table {7.1} shows that the means of the simple, Parkinson, Garman-Klass 
and Rogers-Satchell volatility estimates are higher in futures markets in comparison 
with cash markets. The standard deviation of each volatility measure also has higher 
values in futures markets. The estimates become more positively skewed and have 
fatter tails in cash markets than in futures markets. Furthermore, the volatility 
estimators seem to have fatter tails in US cash and futures markets in comparison with 
UK spot and futures markets. Figures {7.1}-{7.8} display the four volatility estimates for 
the UK and US spot and futures markets. In each graph, there is an observable change 
occurring at the switching point, which indicates an abrupt increase of volatility after 
mid-August of 2007 when Fitch downgraded Country wide Financial Corp to BBB+. 
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Figure {7.1}: Volatility Measures Vp, Vrs, Vgk (FTSE-100 Index). 

 
 
 
 
 
 
 

 
 

Figure {7.2}: Volatility Measure Vs (FTSE-100 Index). 
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Figure {7.3}: Volatility Measures Vp, Vrs, Vgk (FTSE-100 Index Future). 

 
 
 
 
 

 
Figure {7.4}: Volatility Measure Vs (FTSE-100 Index Future). 
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Figure {7.5}: Volatility Measures Vp, Vrs, Vgk (E-mini NASDAQ-100 Index Future). 

 
 
 
 
 
 
 

 
Figure {7.6}: Volatility Measure Vs (E-mini NASDAQ-100 Index Future). 
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Figure {7.7}: Volatility Measures Vp, Vrs, Vgk  (NASDAQ-100 Index). 

 
 
 
 

 
Figure {7.8}: Volatility Measure Vs (NASDAQ-100 Index). 

 
Not surprisingly, there are periodic spikes in futures and spot daily volatility, many of 
which could be associated with macroeconomic events and considering that many 
changes took place during the years in the sample 2006-2019, such as the global 
financial crisis, Eurozone debt crisis and ‘’Brexit’’. Two large spikes are far larger than 
the others. The first occurred on 18/9/2008 in US cash and futures markets, which 
corresponds to three days after Lehman Brothers filed for Chapter 11 bankruptcy 
(15/9/2008), and on 19/9/2008 in UK spot and futures markets. The variability of 
markets was dominant the next period of the height of the global financial crisis, when 
US market was plummeting, with some smaller but persistent spikes in daily volatility 
on the mid of October (10/10/2008 & 16/10/2008) and on November 13, 2008 in US 
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and UK futures and spot indices. It is worth noting that VIX closed at about 87 on 
November 20, 2008 and simultaneously S&P-500 dropped to an 11 year low following 
continued signs of economic contraction. The second extreme spike of daily volatility 
appeared on May 4, 2010 in US cash market and UK futures market, while this spike 
of realized volatility happened the next day in US futures market during the correction 
of U.S. stock indices amid continued evidence of a slow economic recovery. This 
finding proves that futures investors and traders in both the UK and the US markets 
monitor developments in both the US and the UK. Lastly, two notable spikes occurred 
on August 24, 2015 in UK and US market, when Brussels task force group charged 
with handling issues relating to the Brexit referendum in UK and began its work, and 
on June 24, 2016 which led to a notable shift in UK spot and futures markets since 
Britain voted to leave the European Union on June 23, 2016. 
Figures {7.1}-{7.8} suggest that both daily volatilities for both the NASDAQ-100 and 
FTSE-100 indices are informative about the variability in the cash and futures markets. 
Furthermore, the market-wide news is impounded into the NASDAQ-100 and E-Mini 
NASDAQ-100 simultaneously and this also happens with FTSE-100 spot and futures 
markets. 
 
 
7.1.2 Two Sub-periods 
 
 
Tables {7.2}-{7.5} show summary statistics for the US and UK spot and futures indices 
with data covering the period from January 2006 to March 2019 over two sub-periods: 
a ‘’Pre-2008’’ period from January 2006 to 2007-12-31, when Lehman Brothers filed 
for Chapter 11 bankruptcy protection, and a ‘’Post-2008’’ period from  January 2008 to 
2019-03-04 , when global financial crisis took place that led to a strong recession in 
UK and US economies till the end of 2009, while CBOE Volatility Index (VIX) jumped 
to high levels during the turbulent days in summer and fall 2008 and Eurozone debt 
crisis took place in the end of 2009. For all distributions of volatility estimators for US 
and UK cash and stock indices futures markets, the Jarque-Bera test easily rejects the 
hypothesis that volatility is normally distributed. 
From the examination of the below tables it becomes clear that in all cases and sub-
periods VS overestimates Vgk, Vp and Vrs. Again, in all cases the distributions of volatility 
estimators are highly positevely skewed. E-mini NASDAQ-100 Index Future has the 
highest daily volatility for all the four models and sub-periods between spot and futures 
UK and US markets. FTSE-100 Index Future has the second highest daily volatility 
calculated by the four volatility estimators. Hence, both futures indices show an 
increase in daily volatility compared to spot indices. Furthermore, UK spot and futures 
markets seem to have lower daily volatility than US markets. Tables {7.2}-{7.5} show 
that the means of the simple, Parkinson, Garman-Klass and Rogers-Satchell volatility 
estimates are higher during post-2008 period in markets. The standard deviation of 
each volatility measure also has higher values in futures markets in post-2008 period. 
The estimates become more positively skewed during post-2008 period compared to 
the other sub-period. It’s worth mentioning that there is convergence between 
Parkinson, Garman-Klass and Rogers-Satchell volatility estimates, especially in US 
market, in spot and futures markets. Lastly, during the post-2008 period, the volatility 
estimators seem to be heavy-tailed in cash market in comparison with future market 
indicating that financial global crisis tend to lead to the profusion of outliers. 
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PRE-CRISIS Vs Vp Vrs Vgk 

Mean 0.011830 0.000065 0.000052 0.000055 

Median 0.010097 0.000037 0.000030 0.000035 

Std. Deviation 0.006432 0.000088 0.000070 0.000070 

Kurtosis 5.386009 30.040783 29.341959 46.727088 

Skewness 1.938743 4.390628 4.226068 5.167548 

Minimum 0.002523 0.000002 -0.000001 0.000002 

Maximum 0.052255 0.000986 0.000785 0.000907 

Jarque-Bera 436.15 17008.28 16103.98 42480.44 

Observations 505 505 505 505 

POST-CRISIS Vs Vp Vrs Vgk 

Mean 0.014218 0.000110 0.000097 0.000098 

Median 0.011469 0.000047 0.000040 0.000045 

Std. Deviation 0.010183 0.000243 0.000237 0.000209 

Kurtosis 15.427393 93.546926 181.997786 110.880698 

Skewness 3.046446 8.292189 11.202776 8.837395 

Minimum 0.002332 0.000002 0.000000 0.000001 

Maximum 0.107531 0.004174 0.005324 0.003722 

Jarque-Bera 22540.63 997082.32 3829134.11 1406192.34 

Observations 2824 2824 2824 2824 

Table {7.2}: Volatility Estimates for FTSE-100 Index  
NOTE: PROBABILITY (rejecting the null hypothesis of normality/Jarque-Bera Test), 
 (p-value)=0 

 
PRE-CRISIS Vs Vp Vrs Vgk 

Mean 0.011592 0.000061 0.000061 0.000062 

Median 0.009966 0.000036 0.000038 0.000040 

Std. Deviation 0.005982 0.000080 0.000073 0.000076 

Kurtosis 6.665663 48.924864 26.803098 41.249325 

Skewness 1.956912 5.386126 4.056423 4.871121 

Minimum 0.003148 0.000004 0.000001 0.000004 

Maximum 0.053671 0.001040 0.000801 0.000946 

Jarque-Bera 606.25 46913.25 13333.22 32846.19 

Observations 506 506 506 506 

POST-CRISIS Vs Vp Vrs Vgk 

Mean 0.015791 0.000141 0.000165 0.000158 

Median 0.012677 0.000058 0.000063 0.000063 

Std. Deviation 0.011836 0.000334 0.000467 0.000404 

Kurtosis 16.882206 76.860148 120.397659 84.708868 

Skewness 3.329613 7.779791 9.724211 8.276643 

Minimum 0.002406 0.000002 0.000001 0.000002 

Maximum 0.118892 0.005103 0.008550 0.005920 

Jarque-Bera 27874.41 669921.87 1665033.07. 817245.36 

Observations 2822 2822 2822 2822 

Table {7.3}: Volatility Estimates for FTSE-100 Index Future 
NOTE: PROBABILITY (rejecting the null hypothesis of normality/Jarque-Bera Test) 
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PRE-CRISIS Vs Vp Vrs Vgk 

Mean 0.013622 0.000081 0.000079 0.000079 

Median 0.012126 0.000053 0.000054 0.000057 

Std. Deviation 0.006305 0.000083 0.000092 0.000084 

Kurtosis 2.063382 15.797777 22.876318 23.751886 

Skewness 1.207667 2.988055 3.952636 3.923836 

Minimum 0.003926 0.000006 0.000000 0.000004 

Maximum 0.047837 0.000826 0.000918 0.000845 

Jarque-Bera 140.38 4172.81 9570.66 10295.74 

Observations 502 502 502 502 

POST-CRISIS Vs Vp Vrs Vgk 

Mean 0.014412 0.000116 0.000114 0.000113 

Median 0.011509 0.000048 0.000045 0.000047 

Std. Deviation 0.010866 0.000276 0.000325 0.000281 

Kurtosis 16.229524 102.442951 243.224231 169.582217 

Skewness 3.132837 8.663259 13.053217 10.983940 

Minimum 0.002140 0.000002 0.000000 0.000002 

Maximum 0.114099 0.004700 0.008523 0.006198 

Jarque-Bera 25097.43 1193399.36 6838838.21 330669.11 

Observations 2811 2811 2811 2811 

Table {7.4}: Volatility Estimates for NASDAQ-100 Index  
NOTE: PROBABILITY (rejecting the null hypothesis of normality/Jarque-Bera Test), 
 (p-value)=0 

 
PRE-CRISIS Vs Vp Vrs Vgk 

Mean 0.014958 0.000099 0.000097 0.000099 

Median 0.013660 0.000067 0.000067 0.000070 

Std. Deviation 0.007087 0.000105 0.000106 0.000102 

Kurtosis 2.693966 14.560531 14.944138 13.271152 

Skewness 1.291671 3.156664 3.358582 3.123825 

Minimum 0.000531 0.000001 -0.000006 0.000001 

Maximum 0.049477 0.000884 0.000815 0.000830 

Jarque-Bera 142.11 3643.58 3943.44 3035.12 

Observations 504 504 504 504 

POST-CRISIS Vs Vp Vrs Vgk 

Mean 0.017864 0.000178 0.000181 0.000179 

Median 0.014330 0.000074 0.000075 0.000079 

Std. Deviation 0.013236 0.000395 0.000427 0.000381 

Kurtosis 13.958301 84.093641 172.773893 92.484263 

Skewness 2.941583 7.836484 10.247145 7.871564 

Minimum 0.003074 0.000003 0.000002 0.000004 

Maximum 0.128625 0.005972 0.010699 0.007380 

Jarque-Bera 18170.33 801279.68 3434856.42 969651.36 

Observations 2819 2819 2819 2819 

Table {7.5}: Volatility Estimates for E-Mini-NASDAQ-100 Index Future 
NOTE: PROBABILITY (rejecting the null hypothesis of normality/Jarque-Bera Test) 
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7.2 Monthly Effect-Returns 
 
 
7.2.1 Entire Period 
 
 
Before examining if the January effect is present, an estimation of the daily return for 
the US and UK spot and futures indices is implemented. Table {7.6} reports the 
descriptive statistics of the returns of the FTSE-100 stock index, FTSE-100 Index 
Future, NASDAQ-100 spot index and E-mini NASDAQ-100 Index Future, and shows 
the mean, minimum, maximum, standard deviation, skewness, kurtosis, Jarque-Bera 
statistic and its associated probability value (p-value) for entire period 2006-2019. As 
shown in Table {7.6}, the mean and kurtosis coefficients for UK and US spot and 
futures indices are positive, while skewness is negative that means that the series is 
skewed to the left. Therefore, the UK and US indices show excess kurtosis (i.e. the pdf 
is leptokyrtic), implying fatter tails than a normal distribution. Due to the presence of 
excess kurtosis, all the series are non-normal by means of the Jarque-Bera statistics. 
  

FTSE-100  
index 

FTSE-100 
index future  

NASDAQ-
100 index 

E-mini 
NASDAQ-
100 index 

future 
Mean 2.92E-05 2.94E-05 0.00019 0.00017 

Median 0.00015 0.00019 0.00044 0.00042 

Std. Deviation 0.00505 0.00505 0.00579 0.00564 

Kurtosis 8.03985 7.92849 7.84460 10.75071 

Skewness -0.13888 -0.21933 -0.20423 -0.12891 

Minimum -0.04024 -0.04212 -0.04827 -0.04597 

Maximum 0.04076 0.04161 0.05146 0.05593 

Jarque-Bera 3531. (0.000) 3393. (0.000) 3261. (0.000) 8299. (0.000) 

Observations 3327 3327 3312 3312 

Table {7.6}: Summary Statistics for returns (2006-2019) 
NOTE: Probability value in parentheses (rejecting the null hypothesis of normality/Jarque-Bera 
Test) 

 
Figure {7.9}: Graphical plot of FTSE-100 Index price. 
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Figure {7.10}: Graphical plot of FTSE-100 Index return. 

 

 
 
 
 
 
 

  
Figure {7.11}: Graphical plot of FTSE-100 Index Future price. 
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Figure {7.12}: Graphical plot of FTSE-100 Index Future return. 

 
 
 
 
 
 

 

 
 Figure {7.13}: Graphical plot of NASDAQ-100 Index price. 
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Figure {7.14}: Graphical plot of NASDAQ-100 Index return. 

 
 
 
 
 
 
 

 
 Figure {7.15}: Graphical plot of E-Mini-NASDAQ-100 Index Future price. 
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Figure {7.16}: Graphical plot of E-Mini-NASDAQ-100 Index Future return. 

 
 
 
 

Additionally, NASDAQ-100 index has the highest mean returns between spot and 
futures UK and US markets and E-mini NASDAQ-100 Index Future has the second 
highest mean return. Hence, UK spot and futures markets seem to have lower mean 
returns than US markets. It is evident that Figures {7.9-7.16}, which are the graphical 
plots of UK and US spot and futures indices and their returns, depict the above 
outcomes.   
 
If January effect is present, the positive January returns would be higher than the 
returns for any other month. The results for the FTSE-100 Index, FTSE-100 Index 
Future, NASDAQ-100 Index and E-Mini NASDAQ-100 Index Future are presented in 
Tables {7.7}-{7.10}, respectively. 
For FTSE-100 index, the higher returns occur in April and December and lower in June 
and January and the hypothesis of January effect is rejected. It has to be pointed out 
that results are not statistically significant for all months using a 95% confidence 
interval since T-statistics are under 1.96. 
 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 

January -0.000207 0.000293 -0.705085 0.4808 

February  0.000144 0.000300 0.478896 0.6320 

March 0.000042 0.000300 0.139722 0.8889 

April 0.000489 0.000316 1.547543 0.1218 

May -0.000077 0.000311 -0.247661 0.8044 

June -0.000379 0.000304 -1.248705 0.2119 

July 0.000333 0.000298 1.117194 0.2640 

August -0.000142 0.000304 -0.466146 0.6411 

September -0.000120 0.000304 -0.398763 0.6901 

October 0.000139 0.000297 0.467970 0.6398 
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November  -0.000191 0.000302 -0.630830 0.5282 

December 0.000377 0.000313 1.202888 0.2291 

Table {7.7}: FTSE-100 Index (regression equation (5.12), method: least squares). 

 
 

 
For FTSE-100 index future, the higher returns occur in April and July and lower in June 
and January. The lower returns are found to occur in the same months in UK spot and 
futures markets. It is worth mentioning that returns for all months are not again 
statistically significant. For the entire period, it is clear that there is no evidence of a 
monthly effect in UK futures and cash markets. 

 
Dependent variable: Rt (Return) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

January -0.000215 0.000293 -0.731064 0.4648 

February  0.000213 0.000300 0.711007 0.4771 

March -0.000009 0.000300 -0.031277 0.9750 

April 0.000527 0.000316 1.670302 0.0950 

May -0.000037 0.000311 -0.120515 0.9041 

June -0.000436 0.000303 -1.436458 0.1510 

July 0.000334 0.000298 1.120139 0.2627 

August -0.000051 0.000304 -0.168297 0.8664 

September -0.000148 0.000303 -0.487646 0.6258 

October 0.000128 0.000297 0.430932 0.6665 

November  -0.000123 0.000302 -0.407912 0.6834 

December 0.000216 0.000314 0.688475 0.4912 

Table {7.8}: FTSE-100 Index Future (regression equation (5.13), method: least squares). 

 
 

Table {7.9} details the result of the ordinary least squares model for the full period in 
US cash market (NASDAQ-100 index). For NASDAQ-100, the results show higher 
returns in July, April and March and lower in June and November. However, all the p-
value of T-tests is statistically insignificant and the hypothesis of January effect is 
rejected.  
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 

January 0.000101 0.000345 0.292505 0.7699 

February  0.000225 0.000353 0.637064 0.5241 

March 0.000434 0.000343 1.265357 0.2058 

April 0.000515 0.000354 1.455009 0.1458 

May 0.000166 0.000349 0.475680 0.6343 

June -0.000277 0.000347 -0.798767 0.4245 

July 0.000618 0.000350 1.765409 0.0776 

August 0.000146 0.000341 0.428956 0.6680 

September 0.000181 0.000357 0.505942 0.6129 

October 0.000196 0.000342 0.571339 0.5678 



~ 43 ~ 
 

November  -0.000033 0.000355 -0.093020 0.9259 

December -0.000005 0.000352 -0.014928 0.9881 

Table {7.9}: NASDAQ-100 Index (regression equation (5.12), method: least squares). 
 

 
For E-Mini-NASDAQ-100 index future, the results show higher returns in July and April 
and lower returns in the following months: June, November, December and January. 
In fact, all the p-values of t-tests are insignificant indicating that there is no significant 
month of monthly effect during 2006 to 2019 and the hypothesis of January effect is 
rejected. 

 
Dependent variable: Rt (Return) 

Variable                      Coefficient                SE                t-statistic        Probability 
 

January 0.000068 0.000335 0.201969 0.8399 

February 0.000237 0.000344 0.688051 0.4915 

March 0.000418 0.000333 1.253746 0.2100 

April 0.000483 0.000342 1.411769 0.1581 

May 0.000176 0.000340 0.518308 0.6043 

June -0.000292 0.000338 -0.865411 0.3869 

July 0.000595 0.000340 1.753343 0.0796 

August 0.000139 0.000332 0.417984 0.6760 

September 0.000159 0.000347 0.457499 0.6473 

October 0.000160 0.000332 0.482901 0.6292 

November -0.000030 0.000346 -0.087646 0.9302 

December -0.000025 0.000341 -0.074668 0.9405 

Table {7.10}: E-Mini-NASDAQ-100 Index Future (regression equation (5.13), method: least 
squares). 

 
Hence, it is noticeable that there is no January effect in US over the entire period 
(1/2016-3/2019) examined.  
Furthermore, the January effect can be examined by a simply test for significance of 

the estimated coefficient α1 in regression: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                                   (1) 
The above regression should show significant positive slope coefficient to indicate a 
January effect. Tables {7.11}-{7.14} present results for US and UK spot and futures 
indices, respectively. The dummy variable of January ( α1 of D1) is not significant for 
all indices, and therefore the hypothesis of unusual large stock and futures returns is 
rejected. These findings confirm previous results obtained from the other regression 
equation.      

 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  -0.000053                 0.000092                 -0.576359           0.5644 

𝑎1                                  -0.000260                 0.000307                 -0.845292           0.3980 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.11}: FTSE-100 Index for the whole period. 
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Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                   0.000053                0.000092                0.581016               0.5613 

𝑎1                                  -0.000268                0.000307               -0.871525               0.3835 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.12}: FTSE-100 Index Future for the whole period. 
 
 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000197                  0.000105             1.870007            0.0616 

𝑎1                                 -0.000096                  0.000361             -0.265237           0.7908 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.13}: NASDAQ-100 Index for the whole period. 

 
 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000184                  0.000102              1.799615           0.0721 

𝑎1                                 -0.000116                  0.000350             -0.332830           0.7393 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.14}: E-Mini-NASDAQ-100 Index Future for the whole period. 

 
 
 
 
7.2.2 Two Sub-periods 
 
 
 
Tables {7.15}-{7.18} report the descriptive statistics of the returns of the FTSE-100 
stock index, FTSE-100 Index Future, NASDAQ-100 spot index and E-mini NASDAQ-
100 Index Future for the two sub-periods: pre-2008 period and post-2008 period. As 
shown in Tables {7.15}-{7.18}, the kurtosis coefficients for UK and US spot and futures 
indices are positive, while skewness is negative that means that the series is skewed 
to the left. Sample of post-2008 period shows the lowest mean daily returns whereas 
sample of pre-2008 has the highest mean daily returns in UK market. On the contrary, 
sample of post-2008 period shows higher mean daily returns compared to sample of 
pre-2008 period in US spot and futures markets. Notably, the descriptive statistics 
show higher daily mean returns in US market. 
It has to be pointed out that the UK and US indices show excess kurtosis (i.e. the pdf 
is leptokyrtic) during post-2008 period, implying fatter tails than a normal distribution. 
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However, the descriptive statistics for the other sub-period show that kurtosis of daily 
returns of UK and US cash and futures indices is less than three which means that 
daily returns are light-tailed. In all cases the standard deviation of daily returns 
increases during the post-2008 period. Lastly, during all the sub-periods, the standard 
deviation of daily returns of US spot and futures markets has higher values compared 
to UK market. 
  

Pre-2008 Post-2008 

Mean 0.000110 0.000015 

Median 0.000277 0.000134 

Std. Deviation 0.004160 0.005195 

Kurtosis 2.036365 8.271520 

Skewness -0.399299 -0.111422 

Minimum -0.018175 -0.040240 

Maximum 0.014958 0.040756 

Jarque-Bera 32.8933  
(0.0000) 

3275.6732 
(0.0000) 

Observations 504 2824 

     Table {7.15}: Summary Statistics for returns of the FTSE-100 Index 
                       NOTE: Probability value in parentheses (rejecting the null 

hypothesis of normality/Jarque-Bera Test) 

  
Pre-2008 Post-2008 

Mean 0.000110 0.000015 

Median 0.000211 0.000186 

Std. Deviation 0.004099 0.005200 

Kurtosis 1.984912 8.103737 

Skewness -0.357263 -0.202289 

Minimum -0.017938 -0.042123 

Maximum 0.015136 0.041607 

Jarque-Bera 32.4242  
(0.0000) 

3082.0724 
(0.0000) 

Observations 505 2822 

               Table {7.16}: Summary Statistics for returns of the FTSE-100 Index Future 
                       NOTE: Probability value in parentheses (rejecting the null 

hypothesis of normality/Jarque-Bera Test) 
 
 

  
Pre-2008 Post-2008 

Mean 0.000187 0.000189 

Median 0.000546 0.000424 

Std. Deviation 0.004713 0.005967 

Kurtosis 0.933248 8.092829 

Skewness -0.190057 -0.203791 

Minimum -0.018069 -0.048271 

Maximum 0.018008 0.051461 

Jarque-Bera 92.1829  
(0.0000) 

3057.3170 
(0.0000) 
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Observations 501 2811 

    Table {7.17}: Summary Statistics for returns of the NASDAQ-100 Index 
                    NOTE: Probability value in parentheses (rejecting the null 

hypothesis of normality/Jarque-Bera Test) 

 
 
  

Pre-2008 Post-2008 

Mean 0.000106 0.000186 

Median 0.000437 0.000402 

Std. Deviation 0.004333 0.005839 

Kurtosis 1.505243 10.864320 

Skewness -0.293364 -0.118480 

Minimum -0.019914 -0.045970 

Maximum 0.016224 0.055931 

Jarque-Bera 54.0421  
(0.0000) 

7271.1026 
(0.0000) 

Observations 503 2819 

        Table {7.18}: Summary Statistics for returns of the E-mini NASDAQ-100 Index 
NOTE: Probability value in parentheses (rejecting the null hypothesis of                           

normality/Jarque-Bera Test) 

 
 
The results for the FTSE-100 Index, FTSE-100 Index Future, NASDAQ-100 Index and 
E-Mini NASDAQ-100 Index Future over the two sub-periods are presented in Tables 
{7.19}-{7.26}, respectively. 
For FTSE-100 index, the higher returns occur in October and March and lower in 
November and May and the hypothesis of January effect is rejected over the sub-
period of pre-2008. 
 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 

January 0.000110 0.000638 0.172760 0.8629 

February  0.000003 0.000662 0.005004 0.9960 

March 0.000495 0.000624 0.793610 0.4278 

April 0.000374 0.000688 0.544070 0.5866 

May -0.000255 0.000646 -0.394003 0.6937 

June 0.000171 0.000638 0.267644 0.7891 

July -0.000223 0.000638 -0.349278 0.7270 

August -0.000126 0.000631 -0.198969 0.8424 

September 0.000369 0.000654 0.564088 0.5729 

October 0.000642 0.000624 1.028298 0.3043 

November  -0.000564 0.000631 -0.893907 0.3718 

December 0.000364 0.000679 0.535540 0.5925 

Table {7.19}: FTSE-100 Index over pre-2008 period (regression equation (5.12), method: 
least squares). 
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For FTSE-100 index, the higher returns occur in April and July and lower in June and 
January and the hypothesis of January effect is rejected for the sub-period of 2008-
2019. 

 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 

January -0.000260 0.000326 -0.798495 0.4246 

February  0.000167 0.000333 0.500800 0.6165 

March -0.000043 0.000336 -0.129360 0.8971 

April 0.000508 0.000351 1.446465 0.1481 

May -0.000043 0.000349 -0.124495 0.9009 

June -0.000480 0.000340 -1.413244 0.1577 

July 0.000431 0.000333 1.296069 0.1951 

August -0.000145 0.000341 -0.424481 0.6712 

September -0.000206 0.000338 -0.609418 0.5423 

October 0.000046 0.000333 0.139359 0.8892 

November  -0.000121 0.000339 -0.356614 0.7214 

December 0.000379 0.000349 1.087059 0.2771 

Table {7.20}: FTSE-100 Index over post-2008 period (regression equation (5.12), method: 
least squares). 

 

 
For FTSE-100 index future, the higher returns occur in March and October and lower 
in November and May for the period 2006-2007. It is worth mentioning that returns for 
all months are not again statistically significant.  

 
Dependent variable: Rt (Return) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

January 0.000058 0.000629 0.092154 0.9266 

February  -0.000009 0.000652 -0.014559 0.9884 

March 0.000598 0.000615 0.972302 0.3314 

April 0.000365 0.000678 0.538800 0.5903 

May -0.000301 0.000636 -0.472657 0.6367 

June 0.000217 0.000629 0.345553 0.7298 

July -0.000286 0.000629 -0.454472 0.6497 

August -0.000078 0.000615 -0.127361 0.8987 

September 0.000485 0.000644 0.752359 0.4522 

October 0.000578 0.000615 0.940551 0.3474 

November  -0.000557 0.000622 -0.895478 0.3710 

December 0.000276 0.000669 0.412812 0.6799 

Table {7.21}: FTSE-100 Index Future 2006-2007 (regression equation (5.13), method: least 
squares). 
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For FTSE-100 index future over the sub-period of post-2008, the higher returns occur 
in April and July and lower in June and January and the hypothesis of January effect 
is rejected for the sub-period of 2008-2019. 

 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 

January -0.000260 0.000326 -0.797450 0.4253 

February  0.000250 0.000334 0.749520 0.4536 

March -0.000124 0.000336 -0.367621 0.7132 

April 0.000554 0.000352 1.577431 0.1148 

May 0.000012 0.000350 0.035758 0.9715 

June -0.000556 0.000340 -1.634577 0.1022 

July 0.000443 0.000333 1.330549 0.1834 

August -0.000046 0.000342 -0.134004 0.8934 

September -0.000258 0.000339 -0.761490 0.4464 

October 0.000045 0.000333 0.134992 0.8926 

November  -0.000042 0.000339 -0.124218 0.9011 

December 0.000205 0.000349 0.587840 0.5567 

Table {7.22}: FTSE-100 Index Future 2008-2019 (regression equation (5.13), method: least 
squares). 

 
Tables {7.23} and {7.24} detail the result of the ordinary least squares model for the 
two sub-periods in US cash market (NASDAQ-100 index). For NASDAQ-100, the 
results show higher returns in October, September and August and lower in February 
and July for the sub-period 2006-2007. However, all the p-value of T-tests is 
statistically insignificant and the hypothesis of January effect is rejected. From Table 
{7.24}, it is obvious that July has the highest mean return, while June has the lowest 
mean return for the sub-period 2008-2019. July is also found to have significantly 
average returns, since t-statistic values is higher than 1.96. 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 

January 0.000414 0.000747 0.553802 0.5800 

February  -0.000469 0.000767 -0.611227 0.5413 

March 0.000248 0.000705 0.351696 0.7252 

April 0.000564 0.000757 0.745841 0.4561 

May -0.000415 0.000713 -0.582362 0.5606 

June 0.000003 0.000721 0.004241 0.9966 

July -0.000463 0.000738 -0.627472 0.5306 

August 0.000703 0.000697 1.008412 0.3138 

September 0.001071 0.000757 1.415776 0.1575 

October 0.001106 0.000705 1.570314 0.1170 

November  -0.000372 0.000729 -0.509893 0.6104 

December -0.000232 0.000747 -0.310349 0.7564 

Table {7.23}: NASDAQ-100 Index 2006-2007 (regression equation (5.12), method: least 
squares). 
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Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 

January 0.000049 0.000383 0.128648 0.8976 

February  0.000339 0.000393 0.863704 0.3878 

March 0.000469 0.000385 1.218089 0.2233 

April 0.000507 0.000395 1.284671 0.1990 

May 0.000276 0.000392 0.704486 0.4812 

June      -0.000328 0.000389 -0.844683 0.3984 

July 0.000809 0.000391 2.067132* 0.0388 

August 0.000041 0.000383 0.106936 0.9148 

September 0.000026 0.000398 0.065576 0.9477 

October 0.000026 0.000384 0.068151 0.9457 

November  0.000030 0.000399 0.076334 0.9392 

December 0.000034 0.000392 0.086303 0.9312 

Table {7.24}: NASDAQ-100 Index 2008-2019 (regression equation (5.12), method: least 
squares). 
Note: * significant at the 5 per cent level 

 
 
For E-Mini-NASDAQ-100 index future, the results show higher returns in October, 
September and August and lower in July and February for the sub-period 2006-2007. 
In fact, all the p-values of t-tests are insignificant indicating that there is no significant 
month of monthly effect during 2006-2007 and the hypothesis of January effect is 
rejected. From Table {7.26}, it is obvious that July has the highest mean return, while 
June has the lowest mean return for the sub-period 2008-2019. Again, July is also 
found to have significantly average returns, since t-statistic values is higher than 1.96. 

 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                SE                t-statistic        Probability 

 

January 0.000302 0.000678 0.445016 0.6565 

February -0.000497 0.000705 -0.704774 0.4813 

March 0.000166 0.000648 0.256486 0.7977 

April 0.000448 0.000687 0.651878 0.5148 

May -0.000434 0.000655 -0.663233 0.5075 

June -0.000060 0.000662 -0.090224 0.9281 

July -0.000506 0.000678 -0.745919 0.4561 

August 0.000584 0.000640 0.912236 0.3621 

September 0.000946 0.000696 1.359835 0.1745 

October 0.000977 0.000648 1.508590 0.1320 

November -0.000455 0.000670 -0.679348 0.4972 

December -0.000293 0.000687 -0.426295 0.6701 

Table {7.25}: E-Mini-NASDAQ-100 Index Future 2006-2007 (regression equation (5.13), 
method: least squares). 
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Dependent variable: Rt (Return) 
Variable                      Coefficient                SE                t-statistic        Probability 

 

January 0.000028 0.000375 0.074864 0.9403 

February 0.000357 0.000384 0.929256 0.3528 

March 0.000465 0.000376 1.236007 0.2166 

April 0.000489 0.000384 1.274359 0.2026 

May 0.000292 0.000384 0.760458 0.4470 

June -0.000335 0.000380 -0.879677 0.3791 

July 0.000787 0.000381 2.065873* 0.0389 

August 0.000054 0.000375 0.144928 0.8848 

September 0.000022 0.000390 0.057452 0.9542 

October 0.000010 0.000374 0.025638 0.9795 

November 0.000049 0.000390 0.126513 0.8993 

December 0.000003 0.000382 0.007075 0.9944 

Table {7.26}: E-Mini-NASDAQ-100 Index Future 2008-2019 (regression equation (5.13), 
method: least squares). 
Note: * significant at the 5 per cent level 

 
Hence, it is noticeable that there is no January effect in US over the two sub-periods 
examined.  
Furthermore, the January effect can be examined by a simply test for significance of 
the estimated coefficient α1 in regression (1). 
The above regression should show significant positive slope coefficient to indicate a 
January effect. Tables {7.23}-{7.30} present results for US and UK spot and futures 
indices, respectively. The dummy variable of January ( α1 of D1) is not significant for 
all indices, and therefore the hypothesis of unusual large stock and futures returns is 
rejected. These findings confirm previous results obtained from the other regression 
equation.      

 
Dependent variable: Rt (Return) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000110                 0.000193                 0.568420           0.5700 

𝑎1                                  0.000001                 0.000663                 0.000461           0.9996 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.23}: FTSE-100 Index over pre-2008 period. 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000043                 0.000102                 0.415663           0.6777 

𝑎1                                  -0.000303                0.000342                 -0.886702           0.3753 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.24}: FTSE-100 Index over post-2008 period. 
 



~ 51 ~ 
 

 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                   0.000114                0.000190                0.598874               0.5495 

𝑎1                                  -0.000056                0.000653               -0.085888               0.9316 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.25}: FTSE-100 Index Future over pre-2008 period. 
 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000042                 0.000103                 0.412222           0.6802 

𝑎1                                  -0.000303                0.000342                 -0.884598          0.3764 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.26}: FTSE-100 Index Future over post-2008 period. 
 
 

Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000167                  0.000219             0.762635            0.4460 

𝑎1                                  0.000247                  0.000777             0.317578            0.7509 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.27}: NASDAQ-100 Index over pre-2008 period. 
 

 
Dependent variable: Rt (Return) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000202                  0.000118             1.716964            0.0861 

𝑎1                                 -0.000153                  0.000401            -0.381777            0.7027 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.28}: NASDAQ-100 Index over post-2008 period. 

 
Dependent variable: Rt (Return) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000098                  0.000202              0.484187           0.6285 

𝑎1                                  0.000204                  0.000706              0.289343           0.7772 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.29}: E-Mini-NASDAQ-100 Index Future 2006-2007. 
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Dependent variable: Rt (Return) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000199                  0.000115              1.734204           0.0830 

𝑎1                                 -0.000171                  0.000392             -0.437464           0.6618 

 

Note: 𝑅𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.30}: E-Mini-NASDAQ-100 Index Future 2008-2019. 
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7.3 Monthly Effect-Volatility 
 
 
7.3.1 Entire Period 
 
 
 
The impact of January effect in volatility of spot and futures indices is tested by a simply 
test of significance of the estimated coefficient α1 in a second regression as follows:  
                              𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                                                  (2) 

 
Where VRS,t is the Rogers and Satchell volatility measure; D1 takes the value 1 since 
the daily volatility at day t belongs to January, α1 is the mean daily volatility of (spot or 
futures) index in January, and εt is an error term assumed to be independent and 
identically distributed.  
The above regression should show significant positive slope coefficient to indicate an 
important impact of January effect on volatility. Tables {7.30}-{7.33} present results for 
US and UK spot and futures indices, respectively. However, the dummy variable of 
January ( α1 of D1) is not significant for all indices rejecting the seasonality in volatility. 
 

Dependent variable: VRS,t (Volatility estimator) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000089                  0.000004             22.207354*          0.0000 

𝑎1                                  0.000019                  0.000013              1.398842             0.1620 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.30}: FTSE-100 Index (entire period). 
Note: * significant at the 5 per cent level 

 
Dependent variable: VRS,t (Volatility estimator) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000151                  0.000008              19.22838*          0.0000 

𝑎1                                 -0.000016                  0.000026             -0.593191           0.5531 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.31}: FTSE-100 Index Future (entire period). 
Note: * significant at the 5 per cent level 

 
Dependent variable: VRS,t (Volatility estimator) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000109                  0.000005              19.77028*          0.0000 

𝑎1                                 -0.000003                  0.000019             -0.145749           0.8843 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.32}: NASDAQ-100 Index (entire period). 
Note: * significant at the 5 per cent level 
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Dependent variable: VRS,t (Volatility estimator) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000167                  0.000007              23.200118*           0.0000 

𝑎1                                  0.000019                  0.000025               0.756585              0.4493 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.33}: E-Mini-NASDAQ-100 Index Future (entire period). 
Note: * significant at the 5 per cent level 

 
 
 
 

7.3.2 Two Sub-periods 

 
 
 
Tables {7.34}-{7.41} present results for US and UK spot and futures indices for the two 
sub-periods, respectively. However, the dummy variable of January ( α1 of D1) is not 
significant for US spot and futures indices rejecting the seasonality in volatility. In the 
case of the January effect in volatility for UK spot and futures indices over the sub-
period 2006-2007 dummy variables of January are significant, and therefore, the 
hypothesis of January effect in volatility is accepted, while during the sub-period 2008-
2019 both slope coefficients are not significant indicating a non-existence of January 
effect. 

Dependent variable: VRS,t (Volatility estimator) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000055                  0.000003             16.890785*          0.0000 

𝑎1                                 -0.000031                  0.000011              -2.758670*          0.0060 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.34}: FTSE-100 Index (2006-2007). 
Note: * significant at the 5 per cent level 
 

Dependent variable: VRS,t (Volatility estimator) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000095                  0.000005             20.216859*          0.0000 

𝑎1                                  0.000027                  0.000016               1.716619            0.0862 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.35}: FTSE-100 Index (2008-2019). 
Note: * significant at the 5 per cent level 
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Dependent variable: VRS,t (Volatility estimator) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000064                  0.000003              19.22838*          0.0000 

𝑎1                                 -0.000031                  0.000012             -2.683788*          0.0075 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.36}: FTSE-100 Index Future (2006-2007). 
Note: * significant at the 5 per cent level 
 

Dependent variable: VRS,t (Volatility estimator) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000167                  0.000009              18.102257*          0.0000 

𝑎1                                 -0.000014                  0.000031             - 0.454529            0.6495 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.37}: FTSE-100 Index Future (2008-2019). 
Note: * significant at the 5 per cent level 

 
Dependent variable: VRS,t (Volatility estimator) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000079                  0.000004              18.432309*          0.0000 

𝑎1                                 -0.000002                  0.000015             -0.155539             0.8765 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.38}: NASDAQ-100 Index (2006-2007). 
Note: * significant at the 5 per cent level 

 
Dependent variable: VRS,t (Volatility estimator) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000114                  0.000006              17.726517*          0.0000 

𝑎1                                 -0.000003                  0.000022             -0.148400             0.8820 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.39}: NASDAQ-100 Index (2008-2019). 
Note: * significant at the 5 per cent level 

 
Dependent variable: VRS,t (Volatility estimator) 

Variable                      Coefficient                    SE                     t-statistic        Probability 
 

Method: least squares 

𝑎0                                  0.000098                  0.000005              19.857278*           0.0000 

𝑎1                                 -0.000013                  0.000017              -0.744099             0.4572 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.40}: E-Mini-NASDAQ-100 Index Future (2006-2007) 
Note: * significant at the 5 per cent level 
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Dependent variable: VRS,t (Volatility estimator) 
Variable                      Coefficient                    SE                     t-statistic        Probability 

 
Method: least squares 

𝑎0                                  0.000179                  0.000008              21.310400*           0.0000 

𝑎1                                  0.000023                  0.000029               0.808757              0.4187 

 

Note: 𝑉𝑅𝑆,𝑡 = 𝑎0 + 𝑎1𝐷1 + 𝜀𝑡                

Table {7.41}: E-Mini-NASDAQ-100 Index Future (2008-2019) 
Note: * significant at the 5 per cent level 
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CHAPTER 8 

Conclusions 
 
 
 
 
The goal of this dissertation is to explicitly examine the volatility before and after the 
financial crisis of 2008 and to analyze the monthly effect on daily returns and in volatility 
in the UK and the US futures and spot markets. In this study, the Floros (2009) models 
are used to model volatility adopting four models based on open, closing, high and low 
daily prices during the entire period 2006-2019 and during the two sub-periods pre-
2008 (2006-2007) and post-2008 (2008-2019). In particular, by means of this 
methodology, the daily prices can be characterized by volatility models. The empirical 
analysis was applied on the total of 13299 daily observations for FTSE-100 stock 
index, FTSE-100 Index Future, NASDAQ-100 spot index and E-mini NASDAQ-100 
Index Future, arising from 3330, 3333, 3313 and 3323, respectively, trading days for 
each index. Additionally, the other objective of this dissertation to examine the 
seasonal effects on daily returns and in volatility, in the US and UK markets, was 
implemented by using an OLS model from data comprised of daily closing prices of 
the US and the UK cash and futures indices before and after financial crisis of 2008 
(entire period and two sub-periods).   
The empirical findings are summarized as follows. First, in the entire period of study 
(2006-2019), the results show that Vs, a simple measure of volatility defined as the 
logarithmic difference between the high and low prices, overestimates Vgk, Vp and Vrs. 
In the two sub-periods of 2006-2007 and 2008-2019, the results are exactly consistent 
with aforementioned overestimation. It has to be pointed out that these findings are in 
line with Floros (2009). In addition, the means of the simple, Parkinson, Garman-Klass 
and Rogers-Satchell volatility estimates are higher in futures markets (UK &US) in 
comparison with cash markets during the entire period and the two sub-periods. 
Another major outcome of the present study is that daily volatilities for both the 
NASDAQ-100 and FTSE-100 spot and futures indices are informative about the 
variability in the cash and futures markets. Second, the means of volatility estimators 
seem to have higher values during post-2008 period compared to pre-2008 period. 
Third, the results from an OLS model show that there is no January effect in the UK 
and the US during the entire period and the two sub-periods. For FTSE-100 spot and 
futures indices, the higher returns occur in April, and lower in June during the entire 
period 2006-2019. On the contrary, for NASDAQ-100 index and E-mini-NASDAQ-100 
index future, the results show higher returns in July and lower in June during 2006 to 
2019. For FTSE-100 index, the higher returns occur in October and lower in November 
over the sub-period of pre-2008, while the results show higher returns in April and 
lower in June for the sub-period of 2008-2019. For FTSE-100 index future, the higher 
returns occur in March and lower in November over the sub-period of pre-2008, while 
the results show higher returns in April and lower in June for the sub-period of 2008-
2019. Additionally, for NASDAQ-100, the results show higher returns in October and 
lower in February for the sub-period 2006-2007, whereas the higher returns occur in 
July and lower in June during the sub-period 2008-2019. For E-Mini-NASDAQ-100 
index future, the results show higher returns in October and lower in July over the sub-
period of 2006-2007, while higher returns occur in July and lower in June for the sub-
period 2008-2019. These findings confirm results obtained from the test for 
significance of the coefficient a1 in regression equation (1) rejecting the hypothesis of 
unusual large stock and futures returns in January. In accordance with previous studies 
(Mehdian and Perry (2002); Patel (2016)) substantial evidence of non-existence of the 
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January effect is reported. Finally, the findings of this dissertation are in contrast with 
Rendon and Ziemba (2007). 
Regarding the impact of January effect in volatility of spot and futures indices, the 
hypothesis of January effect in volatility is accepted for FTSE-100 cash and stock index 
futures markets over the sub-period 2006-2007, since dummy variables of January 
from equation (2) are significant. So, a significant negative January effect is found for 
the sub-period 2006-2007 that seems to produce a negative pressure on volatility in 
January for the UK market. However, in all other cases, the seasonality in volatility is 
rejected. 
The above empirical findings are strongly recommended to risk managers dealing with 
the US and UK spot and futures indices. Investors should notice that January has not 
abnormal returns, not standing for a good time to invest in market, and they should 
consider adjusting their hedging strategies so as to minimize risk associated with spot 
and futures trading. Further research may (i) study the volatility asymmetries in the US 
and the UK cash and stock index futures markets using VAR models, (ii) and 
investigate further the causal relationship between futures volatility and trading volume 
that can leads to the improvement of ability to forecast futures prices. 

 
 
 
.. 
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Appendix   

 

 

 
FTSE-100 Index Futures Contract Specifications 
 
Underlying Asset:  FTSE-100 (a market-capitalization weighted index of UK listed 
blue chip companies 
 
Commodity Code:  Z    
 
Unit of Trading:  Contract Valued at £10 per index point (e.g. value £65,000 at 
6,500.0) 
 
Delivery Months:  4 quarterly months from in the March, June, September, 
December quarterly cycle 
 
Quotation:  Index points (e.g. 6500.0) 
  
Minimum price fluctuation (Tick):  0.5 (£5.00) 
 
Settlement Date:  First business day after the Last Trading Day 
 
Last Trading Day:  Third Friday in delivery month, Trading shall cease as soon as 
reasonably practicable after 10:15 (London time) once the Expiry Value of the Index 
has been determined. 
 
Exchange Delivery Settlement Price:  The value of the FTSE-100 Index is 
calculated by FTSE International with reference to the outcome of the EDSP intra-
day auction at the London Stock Exchange carried out on the Last Trading Day. 
 
Final Settlement:  Cash settlement based on the Exchange Delivery Settlement 
Price 
 
Block Trade Minimum:  500  
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E-mini-NASDAQ-100 Index Futures Contract Specifications 
 
 
 
Underlying Asset:  NASDAQ-100 
 
Commodity Code:  NQ    
 
Unit of Trading:  Contract Valued at $20 per index point  
 
Delivery Months:  4 quarterly months from in the March, June, September, 
December quarterly cycle 
 
Quotation:  Index points  
  
Minimum price fluctuation (Tick):  0.25 ($5.00) 
 
Settlement Date:  First business day after the Last Trading Day 
 
Last Trading Day:  Third Friday in delivery month, Trading shall cease at 09:30 
once the Expiry Value of the Index has been determined. 
 
Final Settlement:  Special Opening Quotation of the Nasdaq-100 Index to be 
determined by the Nasdaq Stock Market Inc..  
 
 
 

 


