
Τμήμα Μηχανικών Πληροφορικής, ΕΛ.ΜΕ.ΠΑ. Κρήτης

Επιβλέπων εκπαιδευτικός :Ευάγγελος Μαρκάκης

Επιτροπή Αξιολόγησης :

● Ευάγγελος Μαρκάκης

● Σπυρίδων Παναγιωτάκης

● Ιωάννης Παχουλάκης

Ημερομηνία παρουσίασης : 27/09/19

Πτυχιακή εργασία

Τίτλος:

Ανάλυση ευπαθειών ως υπηρεσία σε υποδομές

λογισμικού/Vulnerability Assessment as a Service over

SDN infrastructures

Ιωάννης Γεώργιος Κεφαλούκος (τπ3736)

Σχολή Τεχνολογικών Εφαρμογών

Τμήμα Μηχανικών Πληροφορικής

Ελληνικό Μεσογειακό Πανεπιστήμιο

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

2

Ευχαριστίες

Θα ήθελα να εκφράσω τις θερμές ευχαριστίες μου στους καθηγητές μου Δρ. Ευάγγελο Πάλλη,

Δρ. Ευάγγελο Μαρκάκη καθώς και τον υποψήφιο διδάκτορά κ. Ιωάννη Νικολουδάκη για την

καθοδήγηση και την βοήθεια, που συνέλαβαν στην βελτίωση της πτυχιακής μου εργασίας καθώς

και στην εκπόνηση της, όπως και για τον ζήλο που μου δημιουργήσαν για να συνεχίσω την

ενασχόληση μου στον κλάδο της έρευνας στα δίκτυα και μετέπειτα στην ασφάλεια των δικτύων.

Τέλος, θέλω να ευχαριστήσω ολόκληρο το ερευνητικό εργαστήριο Pasiphae Lab για την όμορφη

ατμόσφαιρα και την βοήθεια που μου παρείχαν οπότε το χρειαζόμουν.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

3

Abstract
The eruption of new technologies and paradigms such as cloud/edge computing and the Internet

of Things, has brought a new era in the ICT domain, by extending ICT resources to infinity, thus

allowing for the development and deployment of complex and resource-demanding applications

and services, and by introducing millions or even billions of diverse network-enabled devices,

providing context and valuable information. Apart from the tremendous positive aspects of this

technological revolution, several issues have also been risen, the majority of which concern the

security and privacy of infrastructures, data and by extension, the end-users/stakeholders. Large

infrastructures face the pitfall of devices entering and exiting their networks, services and terminals

operated by untrained and (Cyber) security unaware personnel, render them prone to malicious

attacks. Towards addressing these issues, this thesis presents a pure-SDN automated framework

that monitors and detects existing and newly-introduced network-enabled entities (devices,

services, Virtual Machines, etc.) and assesses them against known vulnerabilities, produces a

vulnerability score, based on the CVSS V3.0 standard, and assigns them to a connection-

appropriate network slice, depending on the severity of the result/score. This framework was

evaluated through a series of measurements and by-far outperformed other research initiatives by

more than 70%.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

4

Περίληψη
Η ραγδαία εξέλιξη στον τομέα της τεχνολογίας και η ολοένα αυξανόμενη εμφάνιση νέων

παραδειγμάτων, όπως το cloud/edge computing και το Internet of Things (IoT), μας εισάγουν σε

μια νέα εποχή στον τομέα των Information and Communication Technologies (ICT),

επεκτείνοντας δυναμικά τους πόρους τους, επιτρέποντας μας έτσι να αναπτύσσουμε και να

εγκαθιστούμε πολύπλοκες και απαιτητικές εφαρμογές και υπηρεσίες. Επιπρόσθετα, έχουμε ένα

πλαίσιο στο οποίο εισάγονται εκατομμύρια η ακόμα και δισεκατομμύρια ποικίλες δικτυακές

συσκευές το οποίο μας παρέχει πολύτιμες πληροφορίες για αυτές. Εκτός από τις τεράστιες θετικές

πτυχές αυτής της τεχνολογικής εξέλιξης, έχουν δημιουργηθεί καινούργια ζητήματα και έχουν

αυξηθεί μερικά από τα ήδη υπάρχοντα, τα περισσότερα από τα οποία αφορούν την ασφάλεια και

το απόρρητο των υποδομών, τα δεδομένα και κατ’ επέκταση τους τελικούς χρήστες/εμπλεκόμενα

μέλη. Οι μεγάλες υποδομές αντιμετωπίζουν το πρόβλημα ότι δικτυακές συσκευές εισέρχονται και

εξέρχονται από τα δίκτυα τους συνεχώς, επίσης η ύπαρξη υπηρεσιών και τερματικών τα οποία

διαχειρίζονται από μη εκπαιδευμένο προσωπικό/απληροφόρητο σε θέματα ασφαλείας, τις καθιστά

επιρρεπείς σε κακόβουλες επιθέσεις. Για την αντιμετώπιση αυτών των προβλημάτων, η πτυχιακή

αυτή μελετά, υλοποιεί και παρουσιάζει ένα αυτοματοποιημένο πλαίσιο εφαρμογών SDN το οποίο,

παρακολουθεί και ανιχνεύει υφιστάμενες και νεοεισαχθείσες δικτυακές οντότητες, αξιολογώντας

τις έναντι γνωστών ευπαθειών βάση του CVSS V3.0 standard και τα εκχωρεί σε ένα κομμάτι του

δικτύου του (network slice),ανάλογα με τη σοβαρότητα του βάση του αναφερόμενου

αποτελέσματος. Αυτό το πλαίσιο εφαρμογών αξιολογήθηκε μέσω μιας σειράς μετρήσεων των

οποίων τα αποτελέσματα συγκρίθηκαν με άλλες υφιστάμενες εργασίες και παρατηρήθηκε ότι η

παρούσα λύση είναι κατά 70% αποδοτικότερη.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

5

Table of Contents
Abstract ... 3

Περίληψη ... 4

Table of Contents .. 5

List of Figures ... 7

List of Tables ... 8

1. Introduction .. 9

2. State of The Art .. 10

3. Technology Enablers ... 12

3.1 Cloud Computing .. 12

3.2 Software Defined Networking (SDN) ... 14

3.3 OpenDaylight Controller ... 15

3.4 POX Controller .. 16

3.5 Project Floodlight .. 17

3.6 Ryu OpenFlow Controller ... 19

3.7 ONOS Controller ... 20

3.8 SDN Controller Selection .. 21

3.9 Infrastructure as a Service (IaaS) ... 22

3.10 Nimbus... 23

3.11 Eucalyptus ... 23

3.12 XSEDE Software Stack ... 23

3.13 OpenNebula ... 24

3.14 OpenStack .. 25

3.15 Infrastructure as a Service Selection ... 27

3.16 OpenVAS... 28

3.17 MongoDB .. 29

3.18 OpenFlow .. 29

4. Implementation .. 31

4.1 System Architecture .. 31

4.1.1 Private Cloud .. 32

4.1.2 OpenStack ... 32

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

6

4.1.3 Logic Service .. 32

4.1.4 VAaaS ... 32

4.1.5 Database .. 33

4.1.6 The Edge: .. 33

4.2 Use Case .. 33

5. Evaluation .. 35

5.1 Aim .. 35

5.2 Method ... 35

5.3 Variables .. 35

5.3.1 Dependent ... 35

5.3.2 Independent ... 35

5.4 Prediction ... 36

5.5 Results ... 36

5.6 Discussion .. 37

5.7 Evaluation .. 38

6. Conclusion ... 39

7. References .. 40

8. Appendix .. 42

8.1 OpenVAS API ... 42

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

7

List of Figures
Figure 1 Cloud Computing Architecture ... 13

Figure 2 Cloud Computing Benefits ... 14

Figure 3Traditional Networks - SDN .. 15

Figure 4 OpenDaylight Dashboard ... 16

Figure 5 POX-Miniedit ... 17

Figure 6 Floodlight Architecture Diagram .. 18

Figure 7 Floodlight Dashboard ... 19

Figure 8 Real Time Monitoring (Ryu) .. 20

Figure 9 ONOS Dashboard ... 21

Figure 10 ONOS Applications .. 21

Figure 11Eucalyptus Dashboard ... 23

Figure 12 XSEDE Portal (Users Active by Field of Science) ... 24

Figure 13 OpenNebula Dashboard .. 25

Figure 14 OpenStack Dashboard (Horizon) .. 26

Figure 15 Nova Function ... 27

Figure 16 OpenVAS Dashboard (Results Section) ... 29

Figure 17 OpenFlow Architecture ... 30

Figure 18 High-Level Architecture Diagram .. 31

Figure 19 Pseudo Code ... 34

Figure 20 100 Entities Results .. 36

Figure 21 200 Entities Results .. 37

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

8

List of Tables

Table 1 Openstack VS OpenNebula .. 28

Table 2 OpenStack - OpenNebula Components ... 28

Table 3 Server Specifications .. 35

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

9

1. Introduction
The ongoing growth of Cloud Computing (CC) Edge Computing (EC) and the Internet of Things

(IoT) in the ICT domain, offers the ability to develop resource-demanding services and

applications especially for complex and multi-layered infrastructures [1][2].

 The recently adopted Bring Your Own Device (BYOD) paradigm, only adds up

to the ever-increasing number of connected devices in ICT infrastructures, wherein network-

enabled devices and entities expose their resources, services and interfaces, creating new

opportunities for attackers, since the attack surface is exponentially widened. Moreover, the

operators of these devices/entities, are often employees with limited knowledge or even complete

lack of awareness concerning (Cyber) security aspects/best-practices, further adding up to the

problem at hand [3]. The vulnerabilities imposed by the afore-mentioned entities, are often

missed, or even neglected by System Administrators, rendering the fortification and maintenance

of the underlying production network, nearly impossible. To tackle this issue, installation,

configuration and maintenance of dedicated appliances/services (e.g. firewalls, proxy-servers, etc.)

is required, which is a costly and complex task.

According to ENISA’s “Cyber Security breaches Survey”, 2018, over four out of ten businesses

in the UK (43%) suffered a breach or attack, whereas 74% of businesses stated that cyber security

is a high priority for their organizations’ senior management, wherein only three out of ten (27%)

businesses have a formal cyber security policy or policies enforced, which is a huge contradiction.

Additionally, according to Gartner’s statistical report, more than 8 million IoT devices were

installed during 2017, and the projection for 2020, was more than 20 million connected IoT

devices, Thus, more than 250% increase.

All the above-mentioned issues illustrate the need for a solution that will allow administrators to

manage and fortify their networks, in an automated manner, without imposing manual interaction.

There have been several research endeavors towards this direction, whereas most of the literature

handles the issue either in a non-fully automated manner, or just focus on the monitoring and

detection of vulnerabilities. Finally, to the best of our knowledge, all existing research initiatives

depend on third party components, not utilizing novel ICT paradigms, such as SDN, at their full

capacity. Therefore, to address these issues, this thesis introduces Vulnerability Assessment as a

Service (VAaaS), by presenting an automated, (private) cloud-based, pure-SDN framework that

monitors, detects and assesses existing and newly introduced network-enabled entities (devices,

services, sensors, etc.), against public databases of reported vulnerabilities. It produces a

classification score, based on the standardized Common Vulnerability Scoring System (CVSS)

V3.0, and finally assigns them to a connectivity-appropriate network slice.

The proposed framework was evaluated through a series of experiments, which illustrated a

significant performance boost (more than 70%), compared to other research initiatives.

The rest of the paper is structured as follows. Section II, presents the state of the art regarding

vulnerability assessment in the ICT domain. Section III, presents the technology enablers. Section

IV, presents the implementation details (System Architecture and Use Case) of the presented

framework. Section V, presents the evaluation procedure of the proposed framework and its

outcomes. Finally, Section VI concludes this paper with a brief discussion on the outcomes of this

thesis and the presentation of foreseen future steps

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

10

2. State of The Art
There have been various studies and research initiatives that tried to tackle the issue of untrusted

devices entering and leaving a network. In this section we will present the most recent and most

relevant ones.

S. Lee et al. proposed a security assessment framework specifically designed for Software Defined

Networking [1]. The framework automatically produces several attack scenarios for SDN

networks and assesses the underlying network, based on them. In addition, blackbox fuzzing

techniques are deployed to detect potential unknown attack scenarios. Although reproducing the

existing attack scenarios is a great way to assess the network, it still requires human interaction.

In addition, new attack patterns can only be detected from a log file, leading to additional human

interaction needed to assess it and act. Following this example, F. Loi et al. proposed a suite

consisting of security tests[2]. The security tests entail assessments on i) Confidentiality (whether

the data is in plaintext, encoded or encrypted) ii) Integrity (checks for replay attacks and DNS

security), iii) Access Control and Availability (DoS attacks) iv) Reflection (malformed packets

that sends ICMP messages, SSDP broadcasts and SNMP requests). While these security tests

assess the system for potential vulnerabilities that each device may be susceptible to, F. Loi et al.

have not taken any measures to address those vulnerabilities.

Taking public networks into consideration, E. T. Tchao et al. presented an assessment framework,

which was evaluated on a University campus, using the Bring Your Own Device (BYOD)

paradigm [3]. In their paper, they proposed a Multi-faceted authentication model to recognize

patterns and usual threats to alert the network administrator. Even though the authors offer

solutions for monitoring and assessment, these solutions also require human supervision.

A solid contribution for security enforcement in the IoT domain, IoT Sentinel, was proposed by

M. Miettinen et al [4]. IoT Sentinel restricts communications between the vulnerable device and

the attacker. It identifies the devices’ types and uses a vulnerability database to pinpoint the

vulnerable devices on the network. Although Sentinel is a well-developed framework, it utilizes a

non-standardized assessment scoring system. Additionally, regardless of the magnitude of the

vulnerability, the vulnerable device will be assigned to a non-trusted virtual network, thus blocking

it even if it has little to no impact at all to the security of the network.

M. Ficco et al. presented a hybrid simulation (Emulation and simulation) platform by utilizing

OpenVAS[5] agents for critical infrastructure systems, to perform penetration testing,

vulnerability analysis and virtual resource allocation to allow the assessment of virtual assets, in a

non-direct manner [6]. Although M. Ficco et al have detailed data from the OpenVAS agent and

the penetration testing, they refrain from taking semi or fully automated actions about the

vulnerable virtual/physical devices.

 Ali et al. approached the issue by adopting the OCTAVE Allegro methodology [7]. This

methodology analyzes how the information is used by devices and users in a system, while it

provides guidance, worksheets and questionnaires for the assessment process. OCTAVE Allegro

is a well-tailored assessment tool for smart homes. While countermeasures have been proposed,

the main focus of Ali et al. lies in identifying the threats.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

11

Ziegler et al. proposed ANASTACIA that demonstrates a holistic solution enabling trust and

security-by-design for cyber-physical systems [8]. ANASTACIA is a suite of distributed trust and

security components and enablers that are able to dynamically orchestrate and deploy security

policies, while assessing risks in complex architectures. ANASTACIA also has an isolation

mechanism that assesses the risk by monitoring information related to system behavior and real-

time monitoring. ANASTACIA is an advanced framework, offering abounding benefits for

security and trust assessment but at the same time not a pure SDN solution, as it presents a more

complex architecture that could lead to possible issues at securing them from untrained or (cyber)

security unaware personnel.

 Nikoloudakis et al. proposed a vulnerability assessment framework utilizing an OpenVAS

agent that based on the results of the CVSS score, it assigns each device to a specific VLAN,

limiting traffic, granting WAN and LAN traffic or blocking its inbound and outbound traffic from

the network [9].The proposed framework, as a mitigation action assigns devices to connection-

appropriate VLANs, according to their vulnerability status (CVSS score), providing a layer 2

solution, thus not utilizing SDN at its full capacity.

 In contradiction to some and complementary to some other research initiatives mentioned

above, we propose a pure SDN-based framework that:

• Monitors existing and newly introduced network entities (devices and services), in real-

time

• Maintains a database containing various META-data concerning their vulnerability status,

connectivity, IP/MAC address, etc.

• Performs vulnerability assessment on entities, against a wide range of known

vulnerabilities, periodically and upon discovery, utilizing a VAaaS scanner, based on

OpenVAS

• Produces a detailed report and a standardized CVSS score that reflects the vulnerability

status of the assessed entity

Assigns the assessed entity to a connection-appropriate layer 3 network slice

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

12

3. Technology Enablers
In this chapter we will present all the technologies used, while explaining the use and tasks

expected from each one of them. The afore-mentioned technologies used are all Open-Source and

are available for academic purposes for free.

3.1 Cloud Computing
Cloud Computing[10] provides a way for the end user to have compute and data resources

available on-demand. More specifically, there are advanced data centers that provide computing

power and data storage without the need for the end-user to manage these resources.

The key aspect of cloud computing when paired with SDN, is the scalability it can offer and the

minimization of costs in the up-front IT infrastructures. In addition, cloud computing offers data

loss prevention through its policies and backups. There is also a noticeable improvement regarding

security in cloud computing infrastructures. Lastly, Cloud Computing offers almost no downtime,

with the dynamic allocation of resources offered, software updates can be done with minimum

downtime. Figure 1 illustrates a minimal architecture of Cloud Computing and Figure 2 depicts

the benefits of Cloud Computing.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

13

Figure 1 Cloud Computing Architecture

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

14

Figure 2 Cloud Computing Benefits

3.2 Software Defined Networking (SDN)
 Software-defined networking (SDN)[11] is a technology that allows us to easily and

dynamically configure our networks, by centralizing the network intelligence (control plane) in a

network component (SDN Controller) and manage it programmatically, thus erasing the need to

manually change the configuration of thousands or even million switches whenever there a need.

SDN paradigm separates the logic of the network (control plane) from the forwarding (data plane).

SDN offers considerably better network performance and monitoring utilities. Traditional

networks are decentralized and complex, making it hard to operate and troubleshoot. To establish

communication within our network, the SDN controller creates specific flows for every SDN-

enabled switch in its topology (in a Cluster each controller is aware only of its own switches and

does not interact with the others). In conventional networks we have a forwarding table established

in every router. Flows are a set of rules based on which SDN-enabled switch packets will be

forwarded, thus eliminating the need for routing tables. In addition, SDN-enabled switches accept

flows only from their own controller and don’t have the ability to create their own flows. The

control plane can work with one or more controllers(cluster). The main problem with the SDN

paradigm is the new and old security issues arise with the paradigm. While the security issues are

not to be ignored, we also have new ways to detect attack patterns and mitigate attacks. Lastly, for

the communication between the controller and the underlying switches, SDN utilizes the

OpenFlow[12] protocol that Is widely used for the communication between control and data plane.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

15

It’s important to state that since network configuration is provided only by the SDN controller, the

need for multiple – vendor specific routers, switches and protocols is eliminated, thus simplifying

the network at reduced cost. There are several SDN controllers such as i) OpenDaylight[13], ii)

ONOS[14] , iii) Project Callico[15], iv) NOX/POX[16], V) Project Floodlight [17] , VI) Ryu [18]

and various others. From the afore-mentioned controllers OpenDaylight, ONOS, and Floodlight

are the most well-known production-ready controllers, which offer tremendous aspects into an

SDN network and simplicity compared to others for the configuration

Figure 3 illustrates the simplicity of SDN networks, compared to the complexity of traditional

networks

Figure 3Traditional Networks - SDN

3.3 OpenDaylight Controller
OpenDaylight is a production-ready SDN controller. It is a modular, extensible, scalable and multi-

protocoled controller. The very first version of OpenDaylight (Hydrogen) was released in February

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

16

2014 and the software is written in Java. There are multiple novel characteristics regarding

OpenDaylight such as multitenancy and integration to OpenStack through APIs. Figure 4

illustrates its dashboard

Figure 4 OpenDaylight Dashboard

3.4 POX Controller
Pox is developed in python. One of the biggest key features of POX is that it “runs anywhere” and

uses reusable sample components for path selection, topology discovery etc. The main

disadvantage of POX is that it’s mostly a learning SDN controller and not suitable for production

environments. Figure 5 shows POX terminal and miniedit (tool to create, configure and use

network simulations)

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

17

Figure 5 POX-Miniedit

3.5 Project Floodlight
Project Floodlight not only contains the OpenFlow controller but also includes a collection of

applications and services on top of the controller. Floodlight is a java-based OpenFlow controller.

It is considered an easy to use controller. Figure 6 below shows the interaction between the

controller, the applications (java based) and the applications that interact with the Floodlight REST

API, while Figure 7 illustrates its dashboard

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

18

Figure 6 Floodlight Architecture Diagram

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

19

Figure 7 Floodlight Dashboard

3.6 Ryu OpenFlow Controller
Ryu is an agile framework for SDN application development. It allows modification of existing

and implementation of new components. It is fully written in python and supports various protocols

for networking (OpenFlow, Netconf, OF-config, SNMP etc.). It also supports integration with

other projects (OpenStack, IDS (snort) etc.). Lastly, Ryu is an event driven framework that it is

generic enough to be used without OpenFlow. Figure 8 presents Ryu controller real time

monitoring.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

20

Figure 8 Real Time Monitoring (Ryu)

3.7 ONOS Controller

The Linux Foundation, developed an open-source SDN operating system-community project

called Open Network Operating System (ONOS)[14]. The software is Java based, providing

distributed SDN applications. A significant advantage of ONOS, in contradiction to other SDN

controllers is that its system is designed to operate as a cluster, thus making it a viable solution

whenever there is a failure to a specific node without disruptions. REST API, Graphical User

Interface (GUI) and Command Line Interface (CLI) are the means to communicate with ONOS.

ONOS offers the ability to load-unload its core extensions (services) dynamically via either CLI,

REST API or even GUI. The services do not require the reboot of the system to work. In ONOS

version 1.15.0 there are 172 applications included and the deployment of them is simple. Figure 9

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

21

illustrates the ONOS Dashboard, Figure 10 illustrates ONOS applications.

ONOS is a production ready solution.

Figure 9 ONOS Dashboard

Figure 10 ONOS Applications

3.8 SDN Controller Selection
Based on the need of our thesis and taking into consideration the afore-mentioned SDN controllers,

we concluded that two of them were suitable for our needs (ONOS and OpenDaylight). The aspects

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

22

we were looking for, was their production-ready status, ease of use, dynamic scaling and

integration with OpenStack

OpenDaylight and ONOS both provide network management for OpenStack, they are both

production-ready controllers and easy to use. ONOS has been designed and built for enhanced

performance and seamless scalability. ONOS’ goal is to keep the response time for requests at its

northbound interface less than 50msec. To achieve that ONOS scales on-demand by introducing

new instances of ONOS when more capacity is required. On the contrary, OpenDaylight is not

optimized for scaling, with issues regarding VXLAN scalability, startup time, memory

consumption and the use of many threads.

Sona[19] is an optimized tenant network virtualization service for ONOS. SONA consists of three

ONOS applications and is responsible for OpenStack integration

• OpenStackNetworking

• OpenStackNode

• Set of assistant applications (Networking UI,Vtap,Troubleshoot,Telemetry)

OpenStackNode, manages and boostraps compute and gateway nodes

OpenStackNetworking, manages the network slices and provides the flow rules needed to have a

stable network. OpenStackNetworking, calls REST APIs that Neutron (OpenStack) provides.

Whenever there’s a network change request (entity connecting/disconnecting, or the logic service

requesting a specific entity to be assigned to a specific slice) the request is post-committed to

OpenStackNetworking. Then by identifying the entity, which needs to be changed by its port

universally unique identifier (UUID) the service provides the flow rules needed (installation,

deletion or modification). To conclude with, OpenStackNetworking is also responsible for ARP

and DHCP requests.

OpenDaylight is a network management provider for OpenStack through the Modular Layer 2

(ML2) plugin. The ML2 plugin is installed into OpenStack controller node (where Neutron is) and

its available as a Python package.

To conclude, OpenStack is managed through Neutron for both controllers and the reason ONOS

is selected is for the dynamic scalability feature it offers

3.9 Infrastructure as a Service (IaaS)
There are several IaaS frameworks, but in this subsection, we will present the most well-known

ones that are Nimbus[20], Eucalyptus [21] , OpenStack [22] , OpenNebula [23] and XSEDE

Software Stack[24]

Nimbus, is open source and the service provided is either via Web Services Resource Framework

(WSRF)-based or with Amazon’s EC2 WSDL web service APIs. Eucalyptus on the other hand is

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

23

mostly used for Amazon Web Services (AWS) but its paid and not opensource. XSEDE Software

Stack are usually requested whenever there is a need for high performance computing.

OpenNebula and OpenStack, are the key IaaS of interested and are explained thoroughly. A more

detail description of every IaaS mentioned below.

3.10 Nimbus
Nimbus is a highly compatible open source IaaS, which with the tools it contains it can provide

computing power and versatility. Nimbus also provides the means to combine it with OpenStack,

Amazon or other clouds.

3.11 Eucalyptus
Eucalyptus

Eucalyptus works on top of Hypervisors such as KVM[25],Xen[26],VMware[27]. It can be

integrated with other IaaS platforms such as Amazons Elastic Compute Cloud, to form a hybrid

cloud. Through its interface we can configure compute, network and storage resources. We can

also configure our systems (Controller, Cluster, Storage) to be redundant in order to make them

resistant to failures. In disregard of its paid model, Eucalyptus key feature allows for dynamic

scaling of its computing and storage resources on-demand, based on the load of each application.

Figure 11 illustrates Eucalyptus Dashboard

Figure 11Eucalyptus Dashboard

3.12 XSEDE Software Stack
The Extreme Science and Engineering Discovery Environment (XSEDE) acts as a virtual

machine[28] (VM) where, mostly scientists use to share computing resources data and expertise.

The XSEDE Software Stack includes a lot of services and software making it a supercompute-like

service for sharing. Figure 12 illustrates the active XSEDE users by field of science Portal

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

24

Figure 12 XSEDE Portal (Users Active by Field of Science)

3.13 OpenNebula
They key aspect of OpenNebula’s platform, is the management and creation of public, private and

hybrid cloud implementations of IaaS. The platform can either be used for data center

virtualization or cloud infrastructure solutions. Through specific policies, OpenNebula can

combine both cloud and data center resources. OpenNebula, is responsible for the orchestration of

storage, network, security and monitor services, in order to deploy VMs on distributed cloud

infrastructures. OpenNebula, is compatible with several cloud interfaces (Amazon EC2 Query,

OGF Open Cloud Computing Interface and vCloud) and hypervisors such as Xen, KVM and

VMware. Figure 13 illustrates the OpenNebula Dashboard

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

25

Figure 13 OpenNebula Dashboard

3.14 OpenStack
OpenStack[22], as mentioned at the beginning of the chapter, is an open-source software

framework for creating public and private clouds. The communication, between users and

OpenStack, is managed through either CLI or RESTful API. The framework utilizes tools for the

creation and configuration of virtual machines that can have various operating systems (OS). There

are 2 services that are of vital importance to this thesis, Neutron and Nova

• Neutron

Neutron, provides the network configuration needed in order to successfully connect the

compute node. Neutron is included to the core part of OpenStack

The main idea behind Neutron is the modular layer 2 (ML2) plugin that its main function

is to utilize a variety of layer 2 (l2) network technologies at the same time, it implements a

lot of network types (local, GRE, VXLAN, VLAN) and the means to access them.

• Nova

Nova is responsible to create virtual machines and bare metal servers. There are 3 ways to

interact with Nova: Horizon (web GUI), OpenStack Client (CLI), Nova Client (advanced

configuration, not recommended). Most of the features are available to be configured

through REST API.

In order for Nova to have some basic function Keystone, Glance, Neutron and Placement

services are required. Figure 14 illustrates OpenStack Dashboard and Figure 15 illustrates

a basic diagram of the components needed in order to have a basic function

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

26

Figure 14 OpenStack Dashboard (Horizon)

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

27

Figure 15 Nova Function

3.15 Infrastructure as a Service Selection
For the needs of the presented solution, OpenStack and OpenNebula were the best choices

available. While, OpenNebula is flexible robust and powerful, OpenStack has the advantage at

networking, computing power and storage[29]. Firstly, OpenNebula is a valid contender taking

into consideration its ease of use, but OpenStack, with the use of Neutron and Nova services

provides us the solution needed to realize network slicing, therefore we selected OpenStack as our

Infrastructure-as-a-service (IaaS) framework. Table 1 presents some factors for comparison

between OpenStack and OpenNebula. Table 2 shows the OpenStack Components and the

OpenNebula equivalents

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

28

Table 1 Openstack VS OpenNebula

 OpenStack OpenNebula

License Apache License v2.0 Apache License v2.0

Cloud Types Private & Public Private, Public & Hybrid

OS Most Linux Dist Most Linux Dist

Programming Language Python Java & Ruby

Data Memory Swift Shared FS or SCP

Compatibility (public clouds) Amazon EC2,S3 Amazon EC2

Commercial Model Free Free

Table 2 OpenStack - OpenNebula Components

OpenStack Component OpenNebula equivalent

Compute (Nova) Builtin

Object Storage (Swift) No match

Image Service (Glance) Builtin

Identity (Keystone) Builtin

Dashboard (Horizon) SunStone

Networking (Neutron) Builtin

Block Storage (Cinder) Builtin + Plugins

Telemetry (Ceilometer) Builtin

Orchestration (Heat) Flow

Database Service (Trove) No match

Data Processing (Sahara) No match

Bare Metal (Ironic) No match

Queue Service (Zaqar) No match

Key management (Barbican) No match

DNS Services (Designate) No match

3.16 OpenVAS
OpenVAS[5] is a Vulnerability Assessment Scanner developed by Greenbone Networks GmbH

 .It can detect security issues/loopholes and contains vulnerability tests for all kind of OSs, Servers

and network devices. Initially it checks for open ports (port scan), depending on the ports found

open It will start the assessment for several services, for known vulnerabilities and miss

configurations using its large database of Network Vulnerability Tests (NVT). Figure 16 illustrates

OpenVAS Dashboard

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

29

Figure 16 OpenVAS Dashboard (Results Section)

3.17 MongoDB
A database is a mass collection of data stored in a server. These data are accessible through

terminals. There are 2 major categories that databases fall into, SQL Database management system

(DBMS) and NoSQL. MongoDB is a NoSQL database (document-based). The difference between

a NoSQL and an SQL database is how the data is processed. Document-oriented databases, have

no need to map the data that are being loaded to the database in contradiction to SQL. For the

needs of the thesis we selected MongoDB[30].

3.18 OpenFlow
OpenFlow[12] is the communication protocol used by the majority of SDN networks, between

data and control plane. The OpenFlow protocol, is used on top of Transmission Control Protocol

[31](TCP) and can work as well with the use of Transport Layer Security[32] (TLS) protocol.

OpenFlow, provides us with means to remotely administrate our network by adding, removing or

even modifying flow rules. Figure 17 illustrates OpenFlow Architecture

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

30

Figure 17 OpenFlow Architecture

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

31

4. Implementation

4.1 System Architecture
The proposed framework is split into two abstract layers, the private cloud and the edge. Figure 18

illustrates the High-Level Architecture of our work.

Figure 18 High-Level Architecture Diagram

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

32

4.1.1 Private Cloud

The private cloud is orchestrated by OpenStack, and the network is managed by an SDN controller

(ONOS). The two entities communicate through an ONOS third-party component (SONA). Our

framework operates on top of the SDN controller and comprises three components/services that

constitute the overall proposed functionality. Namely, the respective components are the logic

service, the VAaaS service and the persistence database. The subsections below present each

deployed component and its main functionalities.

4.1.2 OpenStack

Openstack contains Neutron and Nova. Neutron’s ML2 mechanism driver and L3 plugin backend

expose REST APIs that networking-onos calls. OpenStack provides us with a way to virtually

separate our network into 4 slices with the assistance of Neutron. The Neutron component talks

directly to the SDN controller via the SONA component that’s on top of the SDN controller.

4.1.3 Logic Service

The logic service continuously retrieves the list of connected network entities through the ONOS

northbound RESTful API. Whenever a new network entity is discovered, the logic service acquires

its information (IP address, MAC address e.tc.) and stores it into the database.

Consequently, it checks every entity in the database, to find whether they have been assessed or

not. The entities that have not been assessed, are assigned to the assessment network slice

(restricted connectivity). Afterwards, the logic service sends the entities’ information (IP, MAC)

to the VAaaS service. The moment the VAaaS receives the IPs list, the assessment process for

every IP in the list begins. The outcome of the assessment that the VAaaS produces, is a score

value, based on the Common Vulnerability Scoring System (CVSS). Depending on the reported

score, the logic service assigns the assessed entity to one of the four flavors of the predefined layer

3 network slices. Each flavor enforces different connection policies. Namely, the first slice,

restricts all connectivity, the second only allows WAN connectivity, the third allows all incoming

and outgoing traffic towards all network resources and the last, restricts connectivity and is used

as a landing network for newly introduced entities, until they are assessed. The network slicing

and the assignment of entities to the appropriate network slice, is performed by the SONA

controller component and the Neutron OpenStack service. In more detail, the network slices have

been initially created by the administrators, through OpenStack and the Neutron service. The

SONA component, as instructed, installs the appropriate flow rules, so that target network entities

only interact with the appropriate network slice.

4.1.4 VAaaS

The VAaaS service initiates its assessment process, the moment it receives the list of IP’s to be

assessed. It utilizes online Vulnerability Assessment Patterns repositories (NVTs) that store,

maintain and daily update thousands of new and well-known vulnerability detection schemes. The

produced outcomes (CVSS scores) of the assessed network entities, are propagated to the logic

service, which with its turn stores those results in the database, and instructs appropriate actions

(network assignments according to score). In order to dynamically communicate with the VAaaS

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

33

service we created an API for the OpenVAS that our logic service use for automation of the service

the code can be found at Appendix

4.1.5 Database

The database stores all the information of every entity in the infrastructure. It only interacts with

the logic service, which periodically pushes new entities to store and check the tables of the

database for entities that have not been assessed yet.

4.1.6 The Edge:

Every entity which is deployed in this layer, can potentially bear vulnerabilities. Either the entity

itself could be susceptible to attacks, or the end-user that has no experience and knowledge on

cybersecurity could pose a threat to the other entities of the network as a whole.

On the grounds that the SDN Controller has a full view of the underlying network topology, any

unassessed network entity will be assessed for vulnerabilities. The connectivity of every entity

until it gets assessed, is restricted.

4.2 Use Case
In this section, we will present a general use case of the proposed framework. Figure 19 presents

the pseudo code that describes the sequence of actions that take place during the logic service

lifecycle in detail.

Infrastructures that have free available network connectivity such as healthcare institutions,

Municipality structures and generally public and private networks where untrusted devices connect

and operate, are in need of a dynamic vulnerability assessment service that fast tracks the

assessment (minimum wait time to have access), which creates no conflict over the policy rule

since no one else will have the privileges to modify flow rules than SONA (application of ONOS

SDN Controller) , provide real time monitoring through the capabilities of ONOS and lastly make

administrative work easier through the capabilities of the SDN. Our Use-Case will be explained

thoroughly below.

The SDN controller by nature is aware of any new entity, that connects to the network (OpenFlow

messages instantiated by the OFSwitch that are sent to the controller whenever the entities interact

with the network (DHCP Requests, API Requests, Applications)). The logic service, periodically

initiates a script that acquires the entity list of the connected devices, through our controller

(Northbound API – GET request). The logic service stores each entities data in the persistence

database (ID, MAC address, IP address, Device Type, Port, Protocol, Assessment, Score, Slice).

When the logic service detects an entity that has not been assessed, it initiates the vulnerability

assessment process with OpenVAS. Prior to the assessment and while the assessment is on-going,

the network entity will be assigned to a slice of the network that restricts any kind of

communication. The moment the OpenVAS agent produces the score (CVSS standardized score)

the logic service informs the SDN Controller about the slice the entity should be placed at, based

on the score produced. Lastly the SDN Controller will inform SONA about the entity and the slice

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

34

it needs to be on. Sona then replies with flow rules suitable for the entity and the SDN controller

applies them on the corresponding OFSwitch.

The OpenVAS agent produces the score based on four categories: i) None (Vulnerability Rating

0.0), ii) Low(Vulnerability Rating 0.1-3.9), iii)Medium(Vulnerability Rating 4.0-6.9), iv)

High(Vulnerability Rating 7.0-10.0). According to the score reported, if a network entity is rated

as “None” then the flow rules installed for that specific entity from SONA will allow full access

to that entity(LAN-WAN).If the entity is rated as “Low” OR “Medium” the flow rules will allow

it to interact only with the default gateway(therefore access to WAN only).Similarly if the entity

is rated “High” then SONA will drop every packet originated from that entity

The process described initiates whenever a new entity is detected. To conclude with the logic

service, re-assess already existing entities in a set period of time

Figure 19 Pseudo Code

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

35

5. Evaluation

5.1 Aim
The proposed framework was evaluated in a controlled-conditions environment, through a

simulation procedure wherein we measured the individual assessment duration for 100 and 200

devices. The aim of this evaluation was to benchmark the capabilities of the proposed framework

by performing a large number of assessments.

5.2 Method
During the evaluation, we assessed 100 and 200 network entities respectively, deployed as virtual

machines. The virtual machines hosted a deployed version of MySQL server, WordPress and

Apache Tomcat. The selection for each VM was made randomly. All the VMs were deployed on

a dedicated ESXi server (Dell EMC PowerEdge R940). The server’s specifications are depicted in

Table 3.

Table 3 Server Specifications

CPU 4x Intel Xeon Gold

6126 2.6G (12 cores

& 24 threads)

RAM 128GB DDR4 RAM

@2667 MT/s

Storage 5.6TB mixed storage

The simulation was performed in two iterations, for 100 and 200 VMs. For each iteration, different

scan configurations were used. The main assumption for our evaluation, was that on a working

deployment of our framework, 100 and 200 network-enabled entities join the network. The logic

service detects that event and sends the list of newly introduced network entities to the VAaaS.

The measurements start, the moment the VAaaS starts the first assessment for the first entity in its

list.

5.3 Variables

5.3.1 Dependent

During the two-phase evaluation procedure (100 and 200 entities), we measured the assessment

duration for each entity, the produced score (CVSS). Finally, we measured the overall duration of

the evaluation.

5.3.2 Independent

As mentioned above, we performed the evaluation for 100 and 200 network-enabled entities. For

the first iteration, the “Full and very deep” configuration was used. This is a deep and persistent

scanning configuration our system can perform, but it allows for fast conclusion. For the latter

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

36

iteration, the “Full and fast” configuration was used. This is a moderately persistent and fast

configuration.

5.4 Prediction
We know beforehand that the individual assessment duration for each entity will not be fast, since

all entities are complex virtual machines, and the vulnerability assessment is a tedious task, taking

into consideration that entities are assessed against thousands of penetration tests. But

nevertheless, we presume that the assessment will be a matter of minutes to conclude. More

specifically, since the scanning configurations vary in each iteration, we expect to get different

results concerning the duration, as well as the produced score for each entity

5.5 Results
The graphs below depict the produced outcomes for the two-phase evaluation. Figure 27 presents

the results for the assessment for 100 entities and Figure 28 presents the results for 200 entities

Figure 20 100 Entities Results

0,00

5,00

10,00

15,00

20,00

M
IN

U
TE

S

100 Entities

duration(min) cvss

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

37

Figure 21 200 Entities Results

5.6 Discussion
By examining the presented results, we observe a rather linear behavior of our framework. We can

observe some minor deviations (really low assessment duration) but we can also see the correlation

with the produced CVSS score, which is also low. This means that the scanner found very few

vulnerabilities on the assessed entity, thus the assessment concluded earlier. This is the case for

both iterations since we used the same VMs, although the occurrence ratio is different, since the

selection of VMs was made randomly.

The average assessment duration, was 13.77 and 9.59 minutes for 100 and 200 entities

respectively. From a shallow point of view, these are rather contradictory results, as one would

expect the duration would take longer for the assessment of 200 network entities. On a deeper

observation, these results not only indicate the robustness of the evaluated framework, but also

demonstrate the observable difference between the two different scanning configurations. This is

obvious by observing the variation in the produced score in the first iteration, and the more static

nature of the produced score in the second.

The results more or less agreed with our initial predictions, nevertheless we did not expect the

duration to exceed the ten-minute barrier. To summarize, the measured results indicate the overall

robustness and stability of the presented framework, by demonstrating linear behavior in both

scenarios. Based on Nikoloudakis et al. [4], where they presented an average assessment time of

approximately 38 minutes, these results, demonstrate a remarkable improvement. The performance

difference is due to the different system architecture (cloud deployment in comparison to edge

deployment) and the scanner’s API redesign.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

M
IN

U
TE

S

DEVICE NUMBER

200 Devices

duration (min) cvss

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

38

5.7 Evaluation
The presented evaluation presented the performance and behavior of the presented framework.

The results were definitive of the enhanced performance and stability of our framework, compared

to other research initiatives. Nevertheless, the combination of the independent variables for the

experiment, could be more elaborate. From our point of view, the results would be more accurate,

if we performed a two-phase iteration evaluation, but applying the same scanning configuration

both for 100 as well as for 200 entities. Thus, we would have a series of measurements for 100 and

200 entities, with the “Full and very deep” and “Full and fast” scanning configuration

respectively.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

39

6. Conclusion
In this thesis we presented a pure-SDN automated vulnerability assessment framework that

monitors the underlying network for existing and newly introduced network-enabled entities

(devices, services, VMs, etc.) and performs assessments against known vulnerabilities. It produces

a score based on the CVSS V3.0 standard and depending on the severity of the assessment result

of each entity, it assigns it to a specific connectivity-appropriate network slice. We evaluated the

framework through a series of measurements and concluded that compared to other research

initiatives, it performed more than 70% better. Nonetheless there is still more room for

improvement. As a future goal we firstly plan to further redesign the framework to be even more

lightweight, so that we could achieve an even better performance, and finally we plan to thoroughly

benchmark the framework by performing exhaustive assessments with all available scanning

configurations, to gain a complete overview of the scanner’s, and by extension the whole

framework’s capabilities.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

40

7. References
[1] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras, “DELTA: A Security

Assessment Framework for Software-Defined Networks,” no. March, 2017.

[2] F. Loi, A. Sivanathan, H. H. Gharakheili, A. Radford, and V. Sivaraman, “Systematically

Evaluating Security and Privacy for Consumer IoT Devices,” no. I, pp. 1–6, 2017.

[3] E. T., R. Y., and S. D., “Barrier Free Internet Access: Evaluating the Cyber Security Risk

Posed by the Adoption of Bring Your Own Devices to e-Learning Network Infrastructure,”

Int. J. Comput. Appl., vol. 176, no. 3, pp. 53–62, 2017.

[4] M. Miettinen et al., “IoT Sentinel Demo: Automated Device-Type Identification for

Security Enforcement in IoT,” Proc. - Int. Conf. Distrib. Comput. Syst., pp. 2511–2514,

2017.

[5] “OpenVAS.” [Online]. Available: http://www.openvas.org.

[6] M. Ficco, M. Choraś, and R. Kozik, “Simulation platform for cyber-security and

vulnerability analysis of critical infrastructures,” J. Comput. Sci., vol. 22, pp. 179–186,

2017.

[7] B. Ali and A. I. Awad, “Cyber and physical security vulnerability assessment for IoT-based

smart homes,” Sensors (Switzerland), vol. 18, no. 3, pp. 1–18, 2018.

[8] S. Ziegler, A. Skarmeta, J. Bernal, E. E. Kim, and S. Bianchi, “ANASTACIA: Advanced

networked agents for security and trust assessment in CPS IoT architectures,” GIoTS 2017

- Glob. Internet Things Summit, Proc., 2017.

[9] Y. Nikoloudakis, E. Pallis, G. Mastorakis, C. X. Mavromoustakis, C. Skianis, and E. K.

Markakis, “Vulnerability assessment as a service for fog-centric ICT ecosystems: A

healthcare use case,” Peer-to-Peer Netw. Appl., 2019.

[10] “Cloud Computing.” [Online]. Available: https://en.wikipedia.org/wiki/Cloud_computing.

[11] “SDN.” [Online]. Available: https://en.wikipedia.org/wiki/Software-defined_networking.

[12] “OpenFlow.” [Online]. Available: https://en.wikipedia.org/wiki/OpenFlow.

[13] “ODL.” [Online]. Available: https://www.opendaylight.org.

[14] “ONOS.” [Online]. Available: https://onosproject.org.

[15] “Project Callico.” [Online]. Available: https://github.com/projectcalico/calico.

[16] “POX.” [Online]. Available: https://github.com/noxrepo/.

[17] “Floodlight.” [Online]. Available: http://www.projectfloodlight.org/floodlight/.

[18] “Ryu.” [Online]. Available: https://github.com/osrg/ryu/wiki.

[19] “SONA.” [Online]. Available:

https://wiki.onosproject.org/display/ONOS/SONA+Architecture.

[20] “Nimbus.” [Online]. Available: https://www.nimbusframework.com.

[21] “Eucalyptus.” [Online]. Available: https://en.wikipedia.org/wiki/Eucalyptus_(software).

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

41

[22] “OpenStack.” [Online]. Available: https://www.openstack.org.

[23] “Nebula.” [Online]. Available: https://opennebula.org.

[24] “XSEDE.” [Online]. Available: http://www.xsede.org/ecosystem/software.

[25] “KVM.” [Online]. Available: https://en.wikipedia.org/wiki/Kernel-

based_Virtual_Machine.

[26] “xen.” [Online]. Available: https://xenproject.org.

[27] “VMWare.” [Online]. Available: https://www.vmware.com.

[28] “VM.” [Online]. Available: https://en.wikipedia.org/wiki/Virtual_machine.

[29] “Stack Vs Nebula.” [Online]. Available: https://stackshare.io/stackups/opennebula-vs-

openstack.

[30] “Mongo.” [Online]. Available: https://www.mongodb.com.

[31] “TCP.” [Online]. Available: https://en.wikipedia.org/wiki/Transmission_Control_Protocol.

[32] “TLS.” [Online]. Available: https://en.wikipedia.org/wiki/Transport_Layer_Security.

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

42

8. Appendix

8.1 OpenVAS API
from pyvas import Client

from pyvas.exceptions import ElementExists

from flask import Response

from uuid import uuid4

from configurations.credentials import USERNAME,PASSWORD,HOST

PORT=9390

omp --port=9390 --host=localhost --username=admin --password=UUID-PASSWD -G -i

import json

'''

Filter a list based on some predicate

'''

def filter_list(list_obj,predicate):

 items = []

 for item in list_obj:

 if predicate(item):

 items.append(item)

 return items

Tasks endpoint

def create_new_task(name,hosts,config_uuid=None,comment=None):

 def name_predicate(item):

 config_name = "Full and very deep ultimate"

 return item.get('name') == config_name

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

43

 if not name or not hosts:

 message = {'error':'No name or hosts were provided'}

 return Response(json.dumps(message),status = 400,mimetype='application/json')

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 result = {}

 status = 200

 try:

 # Investigate how to choose a different config

 #conf = cli.list_configs().data[0]

 conf = None

 if config_uuid is not None:

 conf = cli.get_config(config_uuid).data

 else:

 list_of_configs = cli.list_configs().data

 filtered_configs = filter_list(list_of_configs,name_predicate)

 if len(filtered_configs) == 1:

 print('Found filtered configs')

 print(filtered_configs)

 conf = filtered_configs.pop()

 else:

 print('Not one but....')

 print(list_of_configs)

 conf = list_of_configs[0]

 print('information for current task config')

 print(conf)

 target = cli.create_target("Task Name {}.Intermediate scan of

{}".format(name,hosts),hosts=hosts).data

 config = cli.create_config(name,copy_uuid=conf.get('@id')).data

 print('Created configuration {}'.format(config))

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

44

 task =

cli.create_task(name,config_uuid=config.get('@id'),comment=comment,target_uuid=target.get('

@id')).data

 result = json.dumps(task)

 except ElementExists as e:

 status = 500

 result = {"error":"Task with same name/config exists"}

 except Exception as e:

 status = 500

 result = {'error':e.message}

 finally:

 return _json_response(result,status=status)

def create_multiple_tasks(addresses):

 def predicate_function(item):

 config_name = 'Full and very deep ultimate'

 return item.get('name') == config_name

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 print(cli.list_configs().data)

 configs = cli.list_configs().data

 conf = [config for config in configs if predicate_function(config)][0]

print("==

===

==================================")

 print('Create multiple tasks current config {}'.format(conf))

print("==

===

==================================")

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

45

 tasks = []

 for ip in addresses:

 name = "Automated task for {}".format(ip)

 target = cli.create_target("Task Name {}.Intermediate scan of

{}".format(name,ip),hosts=ip).data

 task =

cli.create_task(name,config_uuid=conf.get('@id'),comment=None,target_uuid=target.get('@id')).

data

 tasks.append(task)

 return _json_response({'tasks':tasks})

def get_tasks(type=None,projection=None):

 '''

 Get all tasks. type is used to determine whether we want all tasks

 or we only want finished/pending tasks

 '''

 output = None

 tasks = []

 #Investigate if this code throws an error

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 tasks = cli.list_tasks()

 output = tasks.data if tasks else []

 if not tasks.ok:

 output['status_code']=tasks['status_code']

 if type is not None:

 status = 'Done' if type == 'finished' else 'New'

 output = [t for t in output if t.get('status') == status]

 if projection_exists(projection):

 output = [_projection(x,projection) for x in output]

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

46

 return _json_response(output)

def get_task(uuid,projection=None):

 output = {}

 task = {}

 status = 200

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 try:

 task = cli.get_task(uuid)

 output = task.data

 except TypeError as e:

 output = {'error':'Make sure that you entered a correct task uuid'}

 projection = None

 status = 400

 if projection_exists(projection):

 output = _projection(task.data,projection)

 if 'ok' in task and not task.ok:

 output['status_code'] = task['status_code']

 return _json_response(output,status=status)

def start_task(uuid):

 output = {}

 status = 200

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 try:

 res = cli.start_task(uuid)

 output = res.data

 except TypeError:

 status = 400

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

47

 output = {'error':'Make sure that you entered a correct task uuid'}

 finally:

 return _json_response(output,status=status)

def start_multiple_tasks(ids):

 for id in ids:

 start_task(id)

 return _json_response({})

def stop_task(uuid):

 output = {}

 status = 200

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 try:

 res = cli.stop_task(uuid)

 output = res.data

 except TypeError:

 status = 400

 output = {'error':'Make sure that you entered a correct task uuid'}

 finally:

 return _json_response(output,status=status)

def delete_task(uuid):

 output = {}

 status = 200

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 try:

 task = cli.get_task(uuid).data

 target = task['target']

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

48

 res = cli.delete_task(uuid)

 # Must delete target **AFTER** deleting task

 cli.delete_target(target['@id'])

 output = res.data

 except TypeError:

 status = 400

 output = {'error':'Make sure that you entered a correct task uuid'}

 return _json_response(output,status=status)

Targets endpoint

def get_targets(projection=None):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 targets = cli.list_targets().data

 if projection_exists(projection):

 targets = [_projection(target,projection) for target in targets]

 return _json_response(targets)

def get_target(uuid,projection=None):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 status = 200

 try:

 target = cli.get_target(uuid).data

 except TypeError as e:

 status = 400

 target = {'error':'Make sure that you entered a correct report uuid'}

 projection = None

 if projection_exists(projection):

 target = _projection(target,projection)

 return _json_response(target,status=status)

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

49

def create_target(name,hosts):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 try:

 data = cli.create_target(name,hosts).data

 except ElementExists:

 data = {"error":"target exists"}

 return _json_response(data)

def delete_target(uuid):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 data = {}

 status = 200

 try:

 data = cli.delete_target(uuid).data

 except :

 data = {"error":"Make sure that you entered a correct target uuid"}

 status = 400

 finally:

 return _json_response(data,status)

Configs endpoint

def get_configs(projection=None):

 print('requesting configs')

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 configs = cli.list_configs().data

 if projection_exists(projection):

 configs = [_projection(conf,projection) for conf in configs]

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

50

 return _json_response(configs)

def get_config(id):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 config = None

 status = 200

 try:

 config = cli.get_config(id)

 except:

 status = 400

 config = {"error":"Make sure you provided a valid uuid"}

 finally:

 return _json_response(config,status=status)

def create_config(name,copy_uuid=None):

 print(len(copy_uuid))

 print(name,copy_uuid)

 if not copy_uuid or not len(copy_uuid) is 0 or copy_uuid is None:

 return _json_response({"error":"Provide a valid uuid"},400)

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 config = {}

 status = 200

 try:

 config = cli.create_config(name,copy_uuid=copy_uuid)

 if config.ok:

 config = config.data

 except:

 config = {"error":"Provide a valid uuid"}

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

51

 status = 400

 return _json_response(config,status)

def delete_config(uuid):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 data = cli.delete_config(uuid).data

 return _json_response(data)

Tasks endpoint

def get_pending_tasks(projection=None):

 tasks = get_tasks('pending',projection=projection)

 return tasks

def get_finished_tasks(projection=None):

 tasks = get_tasks('finished',projection=projection)

 return tasks

def get_task_progress(uuid):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 data = {}

 projection=['progress']

 status = 200

 # prevent Unbound local error

 task = None

 try:

 task = cli.get_task(uuid).data

 if not task:

 raise TypeError

 # Do not use 'is' for string comparison

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

52

 # see here: https://stackoverflow.com/a/1504742/7180331

 if task.get('progress') == "-1":

 data['progress'] = 100

 elif task['progress']=="1":

 data['progress'] = 1

 else:

 data['progress'] = task.get('progress')

 data['progress'] = data['progress']['#text']

 except TypeError as err:

 status = 400

 #@FIX typo

 print('Error while trying to get task progress')

 data = {'error':'Make sure that you entered a correct task uuid'}

 except ConnectionResetError as con:

 status = 500

 data = {'error':con}

 return _json_response(data,status=status)

Reports endpoint

def get_reports(projection=None):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 reports = cli.list_reports().data

 if projection_exists(projection):

 reports = [_projection(rep,projection) for rep in reports]

 return _json_response(reports)

def get_report(uuid,projection=None):

 report = {}

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

53

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 status = 200

 try:

 report = cli.get_report(uuid).data

 if projection_exists(projection):

 report = _projection(report,projection)

 except TypeError:

 status = 400

 report = {'error':'Make sure that you entered a correct report uuid'}

 finally:

 return _json_response(report,status=status)

def delete_report(uuid):

 with Client(host=HOST,username=USERNAME,password=PASSWORD,port=PORT) as cli:

 status = 200

 result = {}

 try:

 result = cli.delete_report(uuid).data

 except TypeError:

 result = {'error':'Make sure that you entered a correct report uuid'}

 status = 400

 except Exception as e:

 status = 400

 if "Failed to find report" in str(e):

 result = {'error':'Make sure that you entered a correct report uuid'}

 else:

 result = {'error':str(e)}

 finally:

 return _json_response(result,status=status)

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

54

def get_report_results(uuid):

 projection = "report.results.result"

 with Client(host=HOST,password=PASSWORD,port=PORT,username=USERNAME) as cli:

 status = 200

 try:

 report = cli.get_report(uuid).data

 data = {

 #

 "results":report['report']['results']['result']

 }

 except TypeError as e:

 data = {'error':'Make sure that you entered a correct report uuid'}

 # Bad request

 status = 400

 return _json_response(data,status)

Utilities

def projection_exists(projection=None):

 '''

 Determines whether a projection string is

 is an empty projection

 '''

 return projection is not None and len(projection) is not 0

def deep_extract(data,key):

 '''

 Wander what this does?

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

55

 It shall remain a mystery for the eternity

 '''

 base_key = None

 keys = key.split(".")

 # Take the first key as the base property name

 # e.g. for the following keys ['task','owner','name'] base would be the task

 base_key = keys[0]

 del keys[0]

 # reverse the keys to work easier with

 # ['name','owner']

 keys.reverse()

 # Let the fun begin

 data = data.get(base_key)

 while len(keys) > 0:

 cur_property_name = keys.pop()

 # If we have passed an invalid property name

 # data will become None or an empty string

 if isinstance(data,dict):

 data = data.get(cur_property_name)

 # Unicorns have finished their job

 # Time to continue our non unicorn-related work

 # Maybe I should send an empty string instead of {}

 return data if not data is None else {}

def _projection(data,keys):

 # If the projection string is an empty string

 # _projection would return as an empty object

 # but no more

 if not projection_exists(keys):

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

56

 return data

 '''

 Extract only the projected keys from a data object

 This helps save bandwith.Imagine an object having 20 maybe 30 properties.

 This would be an overkill to transfer.That's why with a projection

 you can specify what you want

 '''

 projected = {}

 for key in keys:

 # No need to check if key exists in data

 projected[key] = deep_extract(data,key)

 return projected

def parse_projection(projection):

 if projection is None:

 return []

 # Maybe projection is alreay a list

 projection_keys = projection if isinstance(projection,list) else projection.split(',')

 # Let's handle the following scenario

 # A user does a get request and then as a url parameter

 # they pass an array of keys like this

 # ?projection=[a,b,c] instead of projection="a,b,c"

 # So as a key we also get the opening/closing brackets

 if projection_keys[0] is '[':

 del projection_keys[0]

 last_key_index = len(projection_keys) -1

 #Bring the last element to the front

 if projection_keys[last_key_index] is ']':

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

57

 del projection_keys[last_key_index]

 return projection_keys

def _json_response(data,status=200):

 return Response(json.dumps(data),status=status,mimetype='application/json')

def clean_db(username,password):

 data = {}

 # There are specific targets and specific configs that cannot be deleted

 predefined_configs = ['empty','Full and fast','Full and very deep','Host Discovery','Network

Diskovery']

 predefined_targets = ['Localhost']

 if(username != USERNAME or password != password):

 return _json_response({'error':'invalid credentials'},status=401)

 with Client(host=HOST,password=PASSWORD,port=PORT,username=USERNAME) as cli:

 print('Cleaning up')

 status = 200

 try:

 tasks = cli.list_tasks().data

 configs = cli.list_configs().data

 targets = cli.list_targets().data

 reports = cli.list_reports().data

 message_template = "Found {} tasks {} targets {} configs and {} reports to delete"

 print(message_template.format(len(tasks),len(targets),len(configs),len(reports)))

 for task in tasks:

 id = task['@id']

 cli.delete_task(id)

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

58

 for target in targets:

 in_use = target['in_use'] == "1"

 owner = target['owner']['name']

 id = target['@id']

 # only targets not in use and created by admin can be deleted

 # if not in_use and owner == "admin":

 # cli.delete_target(id)

 try:

 cli.delete_target(id)

 except:

 pass

 for config in configs:

 in_use = config['in_use'] == "1"

 owner = config['owner']['name']

 id = config['@id']

 try:

 cli.delete_config(id)

 except:

 pass

 for report in reports:

 id = report['@id']

 try:

 cli.delete_report(id)

 except:

 pass

 except TypeError as e:

 data = {'error':'Make sure that you entered a correct report uuid'}

 # Bad request

 status = 400

Vulnerability Assessment as a Service over SDN infrastructures

Ioannis Georgios Kefaloukos

59

 finally:

 return _json_response(data,status)

