Tpuqpe Mnyovikov IIinpogopixiig, EA.ME.ITA. Kpitng

EAANVIKS Meooyelaké [Mavemotiuio

Yol Teyxvoroyikav E@Qappoyov
Tpufqpoe Mnyevikov IIinpo@opuxiyg

toylaxn gpyacia

Tithog:

Avaivon egomafeidv g vanpecioc. € VTOOONES
Aoyopkov/Vulnerability Assessment as a Service over
SDN infrastructures

Ioavvng I'ewpyrog Keparovkog (tn3736)

EmpBrénov ekmondevtikdg :Evayyehoc Mapkaxng

Emtponi A&oldoynong :

e Evayyehogc Mapkaxng
o Xavpidwv Havayiotaxkng
o lwavvng Ilayoviaxng

Hpepopnvia ntapovsiaong : 27/09/19

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Evyoprotieg

®a NBera vo exppacm TIg Oepuéc evyapiotieg pov otovg kabnyntéc pov Ap. Evdyyeio TTdAAn,
Ap. Evdyyeho Mapkdkn kabmg kot tov vmoynelo 010dktopd K. Iwdvvn Nukolovddkn yo tnv
KaBodnynon kot v Ponbeta, mov cuvérafav oty PEATI®ON TNG TTLYLOKNG LOV EPYAGIOG KOOMG
Kol 6TV €kndvnomn g, Onme Kot Yo Tov (A0 TOL OV OMUIOVPYNCAY Y10, VO CLUVEXIC® TNV
EVAGYOANGT LOV GTOV KAGOO TNG £PELVOG OTO SIKTVA KO LETETEITO TNV OAGPAAELN TOV SIKTVMV.
Téhog, BEA® va. evyopLeTHo® OAOKANPO TO EpgLVNTIKO epyactipro Pasiphae Lab yw tnv opopoen
atpoOcealpo Kot Ty fonbeta mov pov mapeiyov ondte T0 XPEiOUOvV.

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Abstract

The eruption of new technologies and paradigms such as cloud/edge computing and the Internet
of Things, has brought a new era in the ICT domain, by extending ICT resources to infinity, thus
allowing for the development and deployment of complex and resource-demanding applications
and services, and by introducing millions or even billions of diverse network-enabled devices,
providing context and valuable information. Apart from the tremendous positive aspects of this
technological revolution, several issues have also been risen, the majority of which concern the
security and privacy of infrastructures, data and by extension, the end-users/stakeholders. Large
infrastructures face the pitfall of devices entering and exiting their networks, services and terminals
operated by untrained and (Cyber) security unaware personnel, render them prone to malicious
attacks. Towards addressing these issues, this thesis presents a pure-SDN automated framework
that monitors and detects existing and newly-introduced network-enabled entities (devices,
services, Virtual Machines, etc.) and assesses them against known vulnerabilities, produces a
vulnerability score, based on the CVSS V3.0 standard, and assigns them to a connection-
appropriate network slice, depending on the severity of the result/score. This framework was
evaluated through a series of measurements and by-far outperformed other research initiatives by
more than 70%.

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Iepianyn

H paydaio €£€MEN otov TOpéN NG TEXVOAOYIOG KOL 1) OAOEVO OLEAVOUEVN EUPAVIOT] VEWV
napaderypdtaov, 6nwog to cloud/edge computing kot to Internet of Things (10T), pog elodyovv g
po véa emoyn otov touéo tov Information and Communication Technologies (ICT),
EMEKTEIVOVTAG OLVOLIKA TOVG TOPOVG TOVG, EMITPEMOVIONG LOG £TCL VO OVOMTOGGOVUE KOl VO
€yKaf1oTOVE TOADTAOKES KOl ATOUTNTIKEG EQUPUOYEG Ko vanpecies. Emmpocbeta, Eyxovpe Eva
TAOIG10 GTO OTOI0 EIGAYOVTIOL EKATOUUVPIN 1] OKOMO KOl OIGEKOTOUUDPLN TOIKIAES OTKTLOKEG
GLOKEVEG TO OTTO10 OGS TOPEYEL TOADTIUEG TANPOPOPIES Yia avTEC. EXTOG amod Tig TepdioTieg OeTikég
TTUYEC OVTNG TNG TEXVOAOYIKNG €EEMENG, €xovv dnuovpynBel kavovpyla {ntuata Kot £xovv
avénBel peptkd amd o NN VIAPYOVTA, TO TEPICTOTEPO GO TO. OTOL0 APOPOVV TNV AGPAAELL KO
TO ATOPPNTO TWV LITOSOUMV, TO SEGOUEVO KOL KOT™ EMEKTACT TOVG TEAMKOVG XPNOTEC/ EUTAEKOEVAL
péEAN. Ot peydideg VTOOOUES OVTILETOTILOVV TO TPOPAN LA OTL SIKTVOKES GLGKEVES ELGEPYOVTOL KO
e&épyovtar amd ta diKTLA TOVG CLVEXMDGS, EMioNg 1 VAPEN VINPECIOV KOt TEPUATIKAOV TO, OTToio
Swyerpifovtar amod U EKTOOEVUEVO TPOCOTIKO/ATANPOPOPNTO G€ BEpata acareiog, Tig KadioTd
emppeneig oe KakoPovdeg emBéoets. [a TV OVIIHETOTION QVTOV TOV TPOPANUATOV, 1] TTLYLOKY|
aVT pehetd, vAomotel kot Tapovotdlel Eva avtopatonomuévo Thaicto epappoydv SDN 1o omoio,
TAPOKOAOVOEL KOl OVIYVEDEL VPICTAUEVES KO VEOEIGAYDEITES SIKTVLAKES OVTOTNTES, OEIOAOYDVTOG
TG évavtl Yvootdv evtodeidv Baorn tov CVSS V3.0 standard kot ta exywpei og Eva Koppdrt Tov
dwktvov tov (network slice),avéioyo pe T coPapdmmrta tov PAon TOL AVOPEPOUEVOL
amoTEAECUATOC. AVTO TO TAOIGI0 EQPApPROY®OV aEloAoyNOnKe HECH HOG GEPAS HLETPNOE®Y TOV
omoimVv ta amoTeAEGHOTA GUYKPIONKAV e AALEC VPIOTAEVES EpYacieg Ko TapatnpnOnke OtL N
mopovoa Ao etvan katd 70% amodoTikoTtep.

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Table of Contents

AADSTFACT ... b b bbbttt b e bbb b e
L ECTo1 1N 1 1V PO RUTRUPR PR
TabIE OF CONTENES ...t bbbttt bbb b ens
LISE OF FIGUIES ...ttt e e et e b e st e et e et e e neesae e teeneeeneeteeneenneenas
[) I o] ST
SR 1o oo [0 Tox 1 o o SRR
Y - (=30 B I 1= Y o OSSR 10
3. Technology ENADIEISc.oii e 12
3.1 ClOUA COMPUEING ...ttt bbbttt bbb bbbttt bbb 12
3.2 Software Defined Networking (SDN)cccveiioii i 14
3.3 0penDaylight CONLIOIIETcc.viiiieece et 15
KR @) Q0] 1170 | - ST 16
3.5 Project FIoOdIightcoviieee e e e 17
3.6 RYU OpenFIow CONTrOIIET ..o s 19
KO 1\ @ IS 0] 1 (0] | T ST 20
3.8 SDIN CoNtroller SEIECLIONc.veiiiieciee et nes 21
3.9 Infrastructure as @ SErViCe (188S).........cciueriiriririiiri e 22
KT8 0N N 110 oS PRPR 23
I8 I LU= 1|V o] (1 SRS 23
3.12 XSEDE SOFtWAIE STACKcveiviiiiiiiiiieiieieiie ettt st 23
3.1 OPENNEDUIAee et ra e 24
314 OPENSTACKttt bbbt bbb bbbttt b b 25
3.15 Infrastructure as a SErvice SEIECTIONcoeoiiiiiiiiiee s 27
B LB OPENVAS ...ttt ettt b ettt a et et re et st neerearenes 28
317 MONQODB ...t 29
3L L8 OPENFIOW ...t b bbbttt bbbt 29
O 100 o] (=T T=T g =L o] o PSSRSO 31
4.1 SYStEM ATCHITECIUIE ... e be e eare e 31
I I o 4 AV (3 4 [Lo PSP 32
A.0.2 OPEBNSTACK ...ttt sttt ettt ettt bt et b et e et ne e be e nne e 32

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

4.1.3 LOGIC SEIVICE ...ttt ettt bttt b bbbttt nb bbb 32
A.LANABAS ...t b bttt e bt et et e be e nteeare e 32
A.1.5 DALADASE ... ettt bt et r b nreeeeene e 33
A.1.6 TR EAQE: ..o bbb 33

A2 USE CASE ...ttt ettt ettt ettt ekt R et R e et R et e R e e e e ne e e r e e neeanne e 33
ST V7 1D LA o o PSSR PORPTPPRPRPRN 35
SN AN 13 1 OSSPSR 35
5.2 IMIBENOM. ...ttt r et ans 35
ST AV 4 =1 o] LSS 35
5.3, L DBPENABNT ..ttt bbb bbbt r bbb 35
5.3.2 INAEPENUENT. ...t bbbt b bbb 35

ST 1o | od T o PSP PR 36
5.5 RESUILS ..ttt ettt et n e e R Re et e Rt R e e teene e Re e neaneenneenn 36
IO R B TS oL U 1] o] PSPPSR 37
5.7 EVAIUALION ...ttt bbbttt b e bbbt e et ettt et ans 38
T o] o Tod [V o] o PSSRSO PPRPRPRIN 39
7. RETEIBNCES ...ttt bt e e bbb 40
ST N o] 1< 1o | TP PSP PP TP PRSI 42
B.LOPENVAS APL ..o 42

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

List of Figures

Figure 1 Cloud Computing ArCRITECIUIE.cceiiiieieiie ettt 13
Figure 2 Cloud Computing BeNefitSooiiiiiiiiiiie i 14
Figure 3Traditional NEetWOrKS - SDNooiiiiiiiieieiie sttt 15
Figure 4 OpenDaylight DashbDOArdcccoueiiiiiiiiii e 16
FIGUIE 5 POX-IMINIEAIT ...ttt sttt ettt e e tesneesne et 17
Figure 6 Floodlight ArchiteCture DIAgIam........ccveueiieiieie et sre e 18
Figure 7 Floodlight DashbDOAITccoiiiiiiiiiiiee e 19
Figure 8 Real Time Monitoring (RYU) ..cc.ooueiirieeiiiie et sne e 20
Figure 9 ONOS DaShbDOAITccveiiiieiieie ettt et staere e sreeee s 21
Figure 10 ONOS APPHICALIONScveiiiiieit ettt e te e staere e e sreeee s 21
Figure 11Eucalyptus DashDOArdcovoiiiiiieic et 23
Figure 12 XSEDE Portal (Users Active by Field of SCIENCE).........ccccvvveviiiiiiiiecc e 24
Figure 13 OpenNebula Dashboard.............ccccciiiieiiiic i 25
Figure 14 OpenStack Dashboard (HOFMZON)ccoiiiiioii e 26
FIgUre 15 NOVA FUNCHION.........oiiiie ettt et sreene s e sreeee s 27
Figure 16 OpenVAS Dashboard (ReSUlts SECHION)c.coeiiiiieiiiie e 29
Figure 17 OpenFloW ArCRITECIUIE.......ceiivi et sre e e e e 30
Figure 18 High-Level Architecture DIiagramccoovoiiiiiiecie e 31
FIQUIE 19 PSEUAOD COUE ...tttk bbbttt bbb 34
Figure 20 100 ENLItIES RESUILScc.oiviiiiiiiiiiieie e 36
Figure 21 200 ENLITIES RESUITScvoiviiiiiiiiiiieie et 37

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

List of Tables
Table 1 Openstack VS OPeNNEDUIA...........c.ccoveiiiiiie e
Table 2 OpenStack - OpenNebula COMPONENTSccveiiiiieiiie s
Table 3 Server SPECITICAIIONS.cviiieie et ee e nes

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

1. Introduction
The ongoing growth of Cloud Computing (CC) Edge Computing (EC) and the Internet of Things
(IoT) in the ICT domain, offers the ability to develop resource-demanding services and
applications especially for complex and multi-layered infrastructures [1][2].
The recently adopted Bring Your Own Device (BYOD) paradigm, only adds up

to the ever-increasing number of connected devices in ICT infrastructures, wherein network-
enabled devices and entities expose their resources, services and interfaces, creating new
opportunities for attackers, since the attack surface is exponentially widened. Moreover, the
operators of these devices/entities, are often employees with limited knowledge or even complete
lack of awareness concerning (Cyber) security aspects/best-practices, further adding up to the
problem at hand [3]. The vulnerabilities imposed by the afore-mentioned entities, are often
missed, or even neglected by System Administrators, rendering the fortification and maintenance
of the underlying production network, nearly impossible. To tackle this issue, installation,
configuration and maintenance of dedicated appliances/services (e.g. firewalls, proxy-servers, etc.)
IS required, which is a costly and complex task.

According to ENISA’s “Cyber Security breaches Survey”, 2018, over four out of ten businesses
in the UK (43%) suffered a breach or attack, whereas 74% of businesses stated that cyber security
is a high priority for their organizations’ senior management, wherein only three out of ten (27%)
businesses have a formal cyber security policy or policies enforced, which is a huge contradiction.
Additionally, according to Gartner’s statistical report, more than 8 million 10T devices were
installed during 2017, and the projection for 2020, was more than 20 million connected IoT
devices, Thus, more than 250% increase.

All the above-mentioned issues illustrate the need for a solution that will allow administrators to
manage and fortify their networks, in an automated manner, without imposing manual interaction.
There have been several research endeavors towards this direction, whereas most of the literature
handles the issue either in a non-fully automated manner, or just focus on the monitoring and
detection of vulnerabilities. Finally, to the best of our knowledge, all existing research initiatives
depend on third party components, not utilizing novel ICT paradigms, such as SDN, at their full
capacity. Therefore, to address these issues, this thesis introduces Vulnerability Assessment as a
Service (VAaaS), by presenting an automated, (private) cloud-based, pure-SDN framework that
monitors, detects and assesses existing and newly introduced network-enabled entities (devices,
services, sensors, etc.), against public databases of reported vulnerabilities. It produces a
classification score, based on the standardized Common Vulnerability Scoring System (CVSS)
V3.0, and finally assigns them to a connectivity-appropriate network slice.
The proposed framework was evaluated through a series of experiments, which illustrated a
significant performance boost (more than 70%), compared to other research initiatives.

The rest of the paper is structured as follows. Section I, presents the state of the art regarding
vulnerability assessment in the ICT domain. Section I11, presents the technology enablers. Section
IV, presents the implementation details (System Architecture and Use Case) of the presented
framework. Section V, presents the evaluation procedure of the proposed framework and its
outcomes. Finally, Section VI concludes this paper with a brief discussion on the outcomes of this
thesis and the presentation of foreseen future steps

9

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

2. State of The Art

There have been various studies and research initiatives that tried to tackle the issue of untrusted
devices entering and leaving a network. In this section we will present the most recent and most
relevant ones.

S. Lee et al. proposed a security assessment framework specifically designed for Software Defined
Networking [1]. The framework automatically produces several attack scenarios for SDN
networks and assesses the underlying network, based on them. In addition, blackbox fuzzing
techniques are deployed to detect potential unknown attack scenarios. Although reproducing the
existing attack scenarios is a great way to assess the network, it still requires human interaction.
In addition, new attack patterns can only be detected from a log file, leading to additional human
interaction needed to assess it and act. Following this example, F. Loi et al. proposed a suite
consisting of security tests[2]. The security tests entail assessments on i) Confidentiality (whether
the data is in plaintext, encoded or encrypted) ii) Integrity (checks for replay attacks and DNS
security), iii) Access Control and Availability (DoS attacks) iv) Reflection (malformed packets
that sends ICMP messages, SSDP broadcasts and SNMP requests). While these security tests
assess the system for potential vulnerabilities that each device may be susceptible to, F. Loi et al.
have not taken any measures to address those vulnerabilities.

Taking public networks into consideration, E. T. Tchao et al. presented an assessment framework,
which was evaluated on a University campus, using the Bring Your Own Device (BYOD)
paradigm [3]. In their paper, they proposed a Multi-faceted authentication model to recognize
patterns and usual threats to alert the network administrator. Even though the authors offer
solutions for monitoring and assessment, these solutions also require human supervision.

A solid contribution for security enforcement in the 10T domain, 10T Sentinel, was proposed by
M. Miettinen et al [4]. 10T Sentinel restricts communications between the vulnerable device and
the attacker. It identifies the devices’ types and uses a vulnerability database to pinpoint the
vulnerable devices on the network. Although Sentinel is a well-developed framework, it utilizes a
non-standardized assessment scoring system. Additionally, regardless of the magnitude of the
vulnerability, the vulnerable device will be assigned to a non-trusted virtual network, thus blocking
it even if it has little to no impact at all to the security of the network.

M. Ficco et al. presented a hybrid simulation (Emulation and simulation) platform by utilizing
OpenVAS[5] agents for critical infrastructure systems, to perform penetration testing,
vulnerability analysis and virtual resource allocation to allow the assessment of virtual assets, in a
non-direct manner [6]. Although M. Ficco et al have detailed data from the OpenVAS agent and
the penetration testing, they refrain from taking semi or fully automated actions about the
vulnerable virtual/physical devices.

Ali et al. approached the issue by adopting the OCTAVE Allegro methodology [7]. This
methodology analyzes how the information is used by devices and users in a system, while it
provides guidance, worksheets and questionnaires for the assessment process. OCTAVE Allegro
is a well-tailored assessment tool for smart homes. While countermeasures have been proposed,
the main focus of Ali et al. lies in identifying the threats.

10

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Ziegler et al. proposed ANASTACIA that demonstrates a holistic solution enabling trust and
security-by-design for cyber-physical systems [8]. ANASTACIA is a suite of distributed trust and
security components and enablers that are able to dynamically orchestrate and deploy security
policies, while assessing risks in complex architectures. ANASTACIA also has an isolation
mechanism that assesses the risk by monitoring information related to system behavior and real-
time monitoring. ANASTACIA is an advanced framework, offering abounding benefits for
security and trust assessment but at the same time not a pure SDN solution, as it presents a more
complex architecture that could lead to possible issues at securing them from untrained or (cyber)
security unaware personnel.

Nikoloudakis et al. proposed a vulnerability assessment framework utilizing an OpenVAS
agent that based on the results of the CVSS score, it assigns each device to a specific VLAN,
limiting traffic, granting WAN and LAN traffic or blocking its inbound and outbound traffic from
the network [9].The proposed framework, as a mitigation action assigns devices to connection-
appropriate VLANS, according to their vulnerability status (CVSS score), providing a layer 2
solution, thus not utilizing SDN at its full capacity.

In contradiction to some and complementary to some other research initiatives mentioned
above, we propose a pure SDN-based framework that:

e Monitors existing and newly introduced network entities (devices and services), in real-
time

e Maintains a database containing various META-data concerning their vulnerability status,
connectivity, IP/MAC address, etc.

e Performs vulnerability assessment on entities, against a wide range of known
vulnerabilities, periodically and upon discovery, utilizing a VAaaS scanner, based on
OpenVAS

e Produces a detailed report and a standardized CVSS score that reflects the vulnerability
status of the assessed entity

Assigns the assessed entity to a connection-appropriate layer 3 network slice

11

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

3. Technology Enablers
In this chapter we will present all the technologies used, while explaining the use and tasks
expected from each one of them. The afore-mentioned technologies used are all Open-Source and
are available for academic purposes for free.

3.1 Cloud Computing

Cloud Computing[10] provides a way for the end user to have compute and data resources
available on-demand. More specifically, there are advanced data centers that provide computing
power and data storage without the need for the end-user to manage these resources.
The key aspect of cloud computing when paired with SDN, is the scalability it can offer and the
minimization of costs in the up-front IT infrastructures. In addition, cloud computing offers data
loss prevention through its policies and backups. There is also a noticeable improvement regarding
security in cloud computing infrastructures. Lastly, Cloud Computing offers almost no downtime,
with the dynamic allocation of resources offered, software updates can be done with minimum
downtime. Figure 1 illustrates a minimal architecture of Cloud Computing and Figure 2 depicts
the benefits of Cloud Computing.

12

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

CLIENT Side Infrastructure

Frontend
v
Internet
W T
Application
Management Service Security
Storage

13

Figure 1 Cloud Computing Architecture

Backend

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Reduced Cost Flexilibity Monitoring
e ™ 7 N e ™
/ N / N\ / N
‘/' \ ‘/' \\ ‘/ - \
== / \ : / ‘ /
\ V= / \ / \ | N N /
N a N ya N\ /
Ny s g e S e
Clusters N
Software Updates
e ~. e SN P\/ N
/ \ ' BN / \
A o "A_:_ /I / \
| m \ ' Benefits of Cloud Computing N N |
\) |
\ /
\ / - 1 /‘ \ ‘ /J
N\ / s N\ /
S~ e ~ AN — A . L

s N / AN
“ \ i \
\ / \ l:. /
AN / N /
N s S s

Security Mobility Data Loss Prevention

Figure 2 Cloud Computing Benefits

3.2 Software Defined Networking (SDN)

Software-defined networking (SDN)[11] is a technology that allows us to easily and
dynamically configure our networks, by centralizing the network intelligence (control plane) in a
network component (SDN Controller) and manage it programmatically, thus erasing the need to
manually change the configuration of thousands or even million switches whenever there a need.
SDN paradigm separates the logic of the network (control plane) from the forwarding (data plane).
SDN offers considerably better network performance and monitoring utilities. Traditional
networks are decentralized and complex, making it hard to operate and troubleshoot. To establish
communication within our network, the SDN controller creates specific flows for every SDN-
enabled switch in its topology (in a Cluster each controller is aware only of its own switches and
does not interact with the others). In conventional networks we have a forwarding table established
in every router. Flows are a set of rules based on which SDN-enabled switch packets will be
forwarded, thus eliminating the need for routing tables. In addition, SDN-enabled switches accept
flows only from their own controller and don’t have the ability to create their own flows. The
control plane can work with one or more controllers(cluster). The main problem with the SDN
paradigm is the new and old security issues arise with the paradigm. While the security issues are
not to be ignored, we also have new ways to detect attack patterns and mitigate attacks. Lastly, for
the communication between the controller and the underlying switches, SDN utilizes the
OpenFlow[12] protocol that Is widely used for the communication between control and data plane.

14

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

It’s important to state that since network configuration is provided only by the SDN controller, the
need for multiple — vendor specific routers, switches and protocols is eliminated, thus simplifying
the network at reduced cost. There are several SDN controllers such as i) OpenDaylight[13], ii)
ONOS[14], iii) Project Callico[15], iv) NOX/POX][16], V) Project Floodlight [17] , VI) Ryu [18]
and various others. From the afore-mentioned controllers OpenDaylight, ONOS, and Floodlight
are the most well-known production-ready controllers, which offer tremendous aspects into an
SDN network and simplicity compared to others for the configuration

Figure 3 illustrates the simplicity of SDN networks, compared to the complexity of traditional
networks

Network Network | Network Network
Entity A Entity B | EntityC Entity D

Figure 3Traditional Networks - SDN

3.3 OpenDaylight Controller
OpenDaylight is a production-ready SDN controller. It is a modular, extensible, scalable and multi-
protocoled controller. The very first version of OpenDaylight (Hydrogen) was released in February

15

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

2014 and the software is written in Java. There are multiple novel characteristics regarding
OpenDaylight such as multitenancy and integration to OpenStack through APIs. Figure 4
illustrates its dashboard

=3 YangUul

Request sent successtully

(-] netwon- topciogy |
-] toocicgy v« O L)
0 fow:1
OO0 EXTIT=ITS CIEITITIINTY EIEITITIII O
0 opentiow 1

OEEEEEmOO

Figure 4 OpenDaylight Dashboard

3.4 POX Controller
Pox is developed in python. One of the biggest key features of POX is that it “runs anywhere” and
uses reusable sample components for path selection, topology discovery etc. The main
disadvantage of POX is that it’s mostly a learning SDN controller and not suitable for production
environments. Figure 5 shows POX terminal and miniedit (tool to create, configure and use
network simulations)

16

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Figure 5 POX-Miniedit

3.5 Project Floodlight
Project Floodlight not only contains the OpenFlow controller but also includes a collection of
applications and services on top of the controller. Floodlight is a java-based OpenFlow controller.
It is considered an easy to use controller. Figure 6 below shows the interaction between the
controller, the applications (java based) and the applications that interact with the Floodlight REST
API, while Figure 7 illustrates its dashboard

17

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

REST Applications

Applications in any language leveraging services via |
APl exposed by controller modules and module appl,

" Module Applications

= B
ke e

Applications with
higher bandwidth
communication

with controller
~such as Packetl

18

REST API |

Floodlight Controller

Core services of common interest to SDN applicatior

Figure 6 Floodlight Architecture Diagram

R

* Interfaces defined only & not implemented: FlowCache, NoSal

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

®) o
P
Floodlight O’OO Dashboard Topology Switches Hosts CEIIErEES

Network Topology

0O OG0 RAHB 000
E 00 R 00 < 8 | 000000000041
odenagoacodll 0OR 0obo3 [| 0000
b 000Q10004020 00009000430 | / 000000
00 ON00 004028 &) Y ¢

wodgoodks | | \ f ./
< \ W | { 00000000\ o &
ooooodepood \ | | ~ oot | 4
N 2 2 \ T~ N\ g
oot 00 43 / oo o i
Losococooae. 3\ \ \ | | y\\I//7 g
000000000004 =<3 N\ | N\
. conodnooo00? o NN ”ﬁ;Jﬂ_i'._-,K?mmm%%Tu
) 000000000020, ¥ 50 000096 0002 NN S
00000800 00.R) N 1\
\ \ 4 \

\ N
08.00:10.000001
e \ L\ oyandoraeg
2 \ 10001 0000 o b s cromc0000s | \
0000 0000 0N 1 N \ \
— \ 2 | . \ \ 20001
SO N\ 007
30203 00020000003 : Y‘

0000000000

= 20990000 DT0G000:43 |
— H % 000000 000022
N * 000080002.000001

CODOD0 00022

5 AN S OO DO D00 13
L~ N\
4 000000000016
10003 000000 /00003 2
0000000000 12

Figure 7 Floodlight Dashboard

3.6 Ryu OpenFlow Controller
Ryu is an agile framework for SDN application development. It allows modification of existing
and implementation of new components. It is fully written in python and supports various protocols
for networking (OpenFlow, Netconf, OF-config, SNMP etc.). It also supports integration with
other projects (OpenStack, IDS (snort) etc.). Lastly, Ryu is an event driven framework that it is
generic enough to be used without OpenFlow. Figure 8 presents Ryu controller real time
monitoring.

19

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

& C (@ ® NotSecure | 10.0.0.101:8008/app/mininet-dashboard/htm|/ ke
Charts Topology About D
* Traffic
12M Src Addr Dst Addr Proto Src Prt Dst Prt
© W 10.0.0.1 10.0.0.3 17 53 0
c 10M
3
]
& e
5 6M
o
o 4aM
o oM
0 T T T ;)
09:35:00 09:36:00 09:37:00 09:38:00 09:39:00 (09:39:54]
~* Topology
12M Switch Port
2 oM M s2 s2-ethl
3 W s3 s3-eth3
& M ms s1-etht
g M| s s2-eth3
o
& M| Es1 s1-eth2
D om
09:35:00 09:36:00 09:37-00 09:38:00 09:39:00 (09:39:54]
.
2 2
Q
E
& 15
[a]
& 1
k=]
a8
05
©
0ol : . r :
09:35:00 09:36:00 09:37:00 09:38:00 09:39:00

Figure 8 Real Time Monitoring (Ryu)

3.7 ONOS Controller

The Linux Foundation, developed an open-source SDN operating system-community project
called Open Network Operating System (ONOS)[14]. The software is Java based, providing
distributed SDN applications. A significant advantage of ONOS, in contradiction to other SDN
controllers is that its system is designed to operate as a cluster, thus making it a viable solution
whenever there is a failure to a specific node without disruptions. REST API, Graphical User
Interface (GUI) and Command Line Interface (CLI) are the means to communicate with ONOS.
ONOS offers the ability to load-unload its core extensions (services) dynamically via either CLI,
REST API or even GUI. The services do not require the reboot of the system to work. In ONOS
version 1.15.0 there are 172 applications included and the deployment of them is simple. Figure 9

20

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

illustrates the ONOS Dashboard, Figure 10 illustrates ONOS applications.
ONOS is a production ready solution.

......

E3 £ 2]
B
2]
Figure 9 ONOS Dashboard
Applications (172 Total) O jl ﬁj 3;
a Search By
TITLE APP ID VERSION CATEGORY

ng Application X

display/ONOS/SONA%3A+DC+Netwi

S 4 40 SRS 8 S L %S

|19 [[[[[[[[[[[[
g z 2z 2 E

| FEATURES
onos-apps-openstacknetworking
" REQUIRED APPS
osproject.openstacknode

PERMISSIONS

ojectdrivers.optical 1.15.0 Drivers ONOS Commur

Figure 10 ONOS Applications

3.8 SDN Controller Selection
Based on the need of our thesis and taking into consideration the afore-mentioned SDN controllers,

we concluded that two of them were suitable for our needs (ONOS and OpenDaylight). The aspects
21

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

we were looking for, was their production-ready status, ease of use, dynamic scaling and
integration with OpenStack

OpenDaylight and ONOS both provide network management for OpenStack, they are both
production-ready controllers and easy to use. ONOS has been designed and built for enhanced
performance and seamless scalability. ONOS’ goal is to keep the response time for requests at its
northbound interface less than 50msec. To achieve that ONOS scales on-demand by introducing
new instances of ONOS when more capacity is required. On the contrary, OpenDaylight is not
optimized for scaling, with issues regarding VXLAN scalability, startup time, memory
consumption and the use of many threads.

Sona[19] is an optimized tenant network virtualization service for ONOS. SONA consists of three
ONOS applications and is responsible for OpenStack integration

e OpenStackNetworking
e OpenStackNode
e Set of assistant applications (Networking Ul,Vtap, Troubleshoot, Telemetry)

OpenStackNode, manages and boostraps compute and gateway nodes

OpenStackNetworking, manages the network slices and provides the flow rules needed to have a
stable network. OpenStackNetworking, calls REST APIs that Neutron (OpenStack) provides.
Whenever there’s a network change request (entity connecting/disconnecting, or the logic service
requesting a specific entity to be assigned to a specific slice) the request is post-committed to
OpenStackNetworking. Then by identifying the entity, which needs to be changed by its port
universally unique identifier (UUID) the service provides the flow rules needed (installation,
deletion or modification). To conclude with, OpenStackNetworking is also responsible for ARP
and DHCP requests.

OpenDaylight is a network management provider for OpenStack through the Modular Layer 2
(ML2) plugin. The ML2 plugin is installed into OpenStack controller node (where Neutron is) and
its available as a Python package.

To conclude, OpenStack is managed through Neutron for both controllers and the reason ONOS
is selected is for the dynamic scalability feature it offers

3.9 Infrastructure as a Service (1aaS)
There are several laaS frameworks, but in this subsection, we will present the most well-known
ones that are Nimbus[20], Eucalyptus [21] , OpenStack [22] , OpenNebula [23] and XSEDE
Software Stack[24]

Nimbus, is open source and the service provided is either via Web Services Resource Framework
(WSRF)-based or with Amazon’s EC2 WSDL web service APIs. Eucalyptus on the other hand is

22

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

mostly used for Amazon Web Services (AWS) but its paid and not opensource. XSEDE Software
Stack are usually requested whenever there is a need for high performance computing.
OpenNebula and OpenStack, are the key laaS of interested and are explained thoroughly. A more
detail description of every laaS mentioned below.

3.10 Nimbus

Nimbus is a highly compatible open source laaS, which with the tools it contains it can provide
computing power and versatility. Nimbus also provides the means to combine it with OpenStack,
Amazon or other clouds.

3.11 Eucalyptus
Eucalyptus

Eucalyptus works on top of Hypervisors such as KVM[25],Xen[26],VMware[27]. It can be
integrated with other laaS platforms such as Amazons Elastic Compute Cloud, to form a hybrid
cloud. Through its interface we can configure compute, network and storage resources. We can
also configure our systems (Controller, Cluster, Storage) to be redundant in order to make them
resistant to failures. In disregard of its paid model, Eucalyptus key feature allows for dynamic
scaling of its computing and storage resources on-demand, based on the load of each application.

Figure 11 illustrates Eucalyptus Dashboard
EUCALYPTUS admingy

O = L = i

Dashboard Images Instances Storage Network & Security

Dashboard

Instances

E r all availabllity zeros Y, 0 m 0 0
- Runring Stopped Ir Scaling
Groups
Storage 4 Netwaork & Security

w . <

pam———)

0 0 - 2 1 0

et Vclumes Snapshots I:i Security Groups Key Pairs P Addresses

Figure 11Eucalyptus Dashboard

3.12 XSEDE Software Stack
The Extreme Science and Engineering Discovery Environment (XSEDE) acts as a virtual
machine[28] (VM) where, mostly scientists use to share computing resources data and expertise.
The XSEDE Software Stack includes a lot of services and software making it a supercompute-like
service for sharing. Figure 12 illustrates the active XSEDE users by field of science Portal

23

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Number of Users: Active: by Field of Science

1. Materials Research

2. Chemistry

3. Computer and Computation Research ol

4. Biophysics
5. Astronomical Sciences

6. Atmospheric Sciences

=
—
w0

w
=

o
(=]

7. Fluid, Particulate, and Hydraulic 5...

w
o

8. Physics

9. Biochemistry and Molecular Structur...

10. Condensed Matter Physics

=
o

11. Avg of 79 others

=1
]
=]
IS
=1
=]
o

80 100 120 140 160 180 200 220
Number of Users

I Number of Users: Active

Figure 12 XSEDE Portal (Users Active by Field of Science)

3.13 OpenNebula

240

They key aspect of OpenNebula’s platform, is the management and creation of public, private and
hybrid cloud implementations of laaS. The platform can either be used for data center
virtualization or cloud infrastructure solutions. Through specific policies, OpenNebula can
combine both cloud and data center resources. OpenNebula, is responsible for the orchestration of
storage, network, security and monitor services, in order to deploy VMs on distributed cloud
infrastructures. OpenNebula, is compatible with several cloud interfaces (Amazon EC2 Query,
OGF Open Cloud Computing Interface and vCloud) and hypervisors such as Xen, KVM and

VMware. Figure 13 illustrates the OpenNebula Dashboard

24

Vulnerability Assessment as a Service over SDN infrastructures

loannis

Georgios Kefaloukos

’oDen Dashboard & oneadmin @ OpenNebula
/Nebulc
Dashboard
— Virtual Machines Images
HE VMs
& Services 2 4 8 403.7GB
— ACTIVE PENDING FAILED MAGES USED
32 Virtual Ro
Templates
Storage
Network Virtual Networks System
Infrastructure 200 3 2
ot 154
yetem VNETS USED IPs USERS GROUPS
-
&85 Group
ACLs
% Hosts
Settings Allocated CPU Allocated M

Support
Not conn

ectec

120/ 400 6.5
Real CPU Real Memory
A
170/ 400 7GB/7.7GB

Figure 13 OpenNebula Dashboard

3.14 OpenStack

OpenStack[22], as mentioned at the beginning of the chapter, is an open-source software
framework for creating public and private clouds. The communication, between users and
OpenStack, is managed through either CLI or RESTful API. The framework utilizes tools for the
creation and configuration of virtual machines that can have various operating systems (OS). There
are 2 services that are of vital importance to this thesis, Neutron and Nova

25

Neutron
Neutron, provides the network configuration needed in order to successfully connect the
compute node. Neutron is included to the core part of OpenStack

The main idea behind Neutron is the modular layer 2 (ML2) plugin that its main function
is to utilize a variety of layer 2 (12) network technologies at the same time, it implements a
lot of network types (local, GRE, VXLAN, VLAN) and the means to access them.

Nova

Nova is responsible to create virtual machines and bare metal servers. There are 3 ways to
interact with Nova: Horizon (web GUI), OpenStack Client (CLI), Nova Client (advanced
configuration, not recommended). Most of the features are available to be configured
through REST API.

In order for Nova to have some basic function Keystone, Glance, Neutron and Placement
services are required. Figure 14 illustrates OpenStack Dashboard and Figure 15 illustrates
a basic diagram of the components needed in order to have a basic function

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Tl openstack. m oetaut @ admin -
Project v

Project / Compute / Overview
API Access

Compute ~ Overview

Instances | jmit Summary

Volumes > Instances VCPUs RAM Floating IPs
— 5 Used 00f 10 Used 0 of 20 Used 0Bytes of 50GB Allocated 0 of 50
Object Store >

Admin >
Volume Storage

i 4 Used 0Bytes of 1000GB

Usage Summary
Select a period of time to query its usage:

2018-01-05 8 to 2018-01-06

i §

Active Instances: 0
Active RAM: 0Bytes
This Period's VCPU-Hours: 0.00
This Period's GB-Hours: 0.00
This Period's RAM-Hours: 0.00

Instance Name VCPUs Disk RAM

No items to display.

Figure 14 OpenStack Dashboard (Horizon)

26

(b

Security Groups
Used 20f 10

Time since created

& admin v

Volumes.
Used 0 of 10

& Download CSV Summary

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

External service

D Nova service
_)

oslo.messaging

------ » DB
—-->» HTTP

N
—
—_
— e e— - APl F-----a » DB
~... T A
~0 0

.f

.
Ve
Conductor

\

Glance &
Scheduler Cinder

Placement

N —— =

Figure 15 Nova Function

3.15 Infrastructure as a Service Selection

For the needs of the presented solution, OpenStack and OpenNebula were the best choices
available. While, OpenNebula is flexible robust and powerful, OpenStack has the advantage at
networking, computing power and storage[29]. Firstly, OpenNebula is a valid contender taking
into consideration its ease of use, but OpenStack, with the use of Neutron and Nova services
provides us the solution needed to realize network slicing, therefore we selected OpenStack as our
Infrastructure-as-a-service (laaS) framework. Table 1 presents some factors for comparison
between OpenStack and OpenNebula. Table 2 shows the OpenStack Components and the
OpenNebula equivalents

27

Vulnerability Assessment as a Service over SDN infrastructures

loannis Georgios Kefaloukos

Table 1 Openstack VS OpenNebula

OpenStack OpenNebula
License Apache License v2.0 Apache License v2.0
Cloud Types Private & Public Private, Public & Hybrid
0S Most Linux Dist Most Linux Dist
Programming Language Python Java & Ruby
Data Memory Swift Shared FS or SCP
Compatibility (public clouds) | Amazon EC2,S3 Amazon EC2
Commercial Model Free Free

Table 2 OpenStack - OpenNebula Components

OpenStack Component OpenNebula equivalent
Compute (Nova) Builtin

Object Storage (Swift) No match

Image Service (Glance) Builtin

Identity (Keystone) Builtin
Dashboard (Horizon) SunStone
Networking (Neutron) Builtin

Block Storage (Cinder) Builtin + Plugins
Telemetry (Ceilometer) Builtin
Orchestration (Heat) Flow

Database Service (Trove) No match

Data Processing (Sahara) No match

Bare Metal (Ironic) No match

Queue Service (Zagar) No match

Key management (Barbican) No match

DNS Services (Designate) No match

3.16 OpenVAS

OpenVAS[5] is a Vulnerability Assessment Scanner developed by Greenbone Networks GmbH
It can detect security issues/loopholes and contains vulnerability tests for all kind of OSs, Servers
and network devices. Initially it checks for open ports (port scan), depending on the ports found
open It will start the assessment for several services, for known vulnerabilities and miss
configurations using its large database of Network VVulnerability Tests (NVT). Figure 16 illustrates

OpenVAS Dashboard

28

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

@ Filer OXO@F

@ Results 278 of 278 oo
= | = &

— MAC SSLv2 HTTPS Do
s | : 7 Remotessiv:
v : T Suites .= —
Vulnerabililies_w . 1 Prot - B
O 78 [> [+

eeeee

135/eep

I

1- 100278 > [

Figure 16 OpenVAS Dashboard (Results Section)

3.17 MongoDB
A database is a mass collection of data stored in a server. These data are accessible through
terminals. There are 2 major categories that databases fall into, SQL Database management system
(DBMS) and NoSQL. MongoDB is a NoSQL database (document-based). The difference between
a NoSQL and an SQL database is how the data is processed. Document-oriented databases, have
no need to map the data that are being loaded to the database in contradiction to SQL. For the
needs of the thesis we selected MongoDB[30].

3.18 OpenFlow
OpenFlow[12] is the communication protocol used by the majority of SDN networks, between
data and control plane. The OpenFlow protocol, is used on top of Transmission Control Protocol
[31](TCP) and can work as well with the use of Transport Layer Security[32] (TLS) protocol.
OpenFlow, provides us with means to remotely administrate our network by adding, removing or
even modifying flow rules. Figure 17 illustrates OpenFlow Architecture

29

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

Response to Query

OF
Protocol
Query when no flow rule Over TLS Communication
associate is detected

PacketIn

Figure 17 OpenFlow Architecture

30

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

4. Implementation

4.1 System Architecture
The proposed framework is split into two abstract layers, the private cloud and the edge. Figure 18
illustrates the High-Level Architecture of our work.

Private Cloud

— VAaaSs Service
Assessing Entities

= -

Printers SmartDevices Computers Servers

Figure 18 High-Level Architecture Diagram

31

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

4.1.1 Private Cloud

The private cloud is orchestrated by OpenStack, and the network is managed by an SDN controller
(ONOS). The two entities communicate through an ONOS third-party component (SONA). Our
framework operates on top of the SDN controller and comprises three components/services that
constitute the overall proposed functionality. Namely, the respective components are the logic
service, the VAaaS service and the persistence database. The subsections below present each
deployed component and its main functionalities.

4.1.2 OpenStack

Openstack contains Neutron and Nova. Neutron’s ML2 mechanism driver and L3 plugin backend
expose REST APIs that networking-onos calls. OpenStack provides us with a way to virtually
separate our network into 4 slices with the assistance of Neutron. The Neutron component talks
directly to the SDN controller via the SONA component that’s on top of the SDN controller.

4.1.3 Logic Service

The logic service continuously retrieves the list of connected network entities through the ONOS
northbound RESTful API. Whenever a new network entity is discovered, the logic service acquires
its information (IP address, MAC address e.tc.) and stores it into the database.
Consequently, it checks every entity in the database, to find whether they have been assessed or
not. The entities that have not been assessed, are assigned to the assessment network slice
(restricted connectivity). Afterwards, the logic service sends the entities’ information (IP, MAC)
to the VAaaS service. The moment the VAaaS receives the IPs list, the assessment process for
every IP in the list begins. The outcome of the assessment that the VAaaS produces, is a score
value, based on the Common Vulnerability Scoring System (CVSS). Depending on the reported
score, the logic service assigns the assessed entity to one of the four flavors of the predefined layer
3 network slices. Each flavor enforces different connection policies. Namely, the first slice,
restricts all connectivity, the second only allows WAN connectivity, the third allows all incoming
and outgoing traffic towards all network resources and the last, restricts connectivity and is used
as a landing network for newly introduced entities, until they are assessed. The network slicing
and the assignment of entities to the appropriate network slice, is performed by the SONA
controller component and the Neutron OpenStack service. In more detail, the network slices have
been initially created by the administrators, through OpenStack and the Neutron service. The
SONA component, as instructed, installs the appropriate flow rules, so that target network entities
only interact with the appropriate network slice.

4.1.4 VAaaS

The VAaaS service initiates its assessment process, the moment it receives the list of IP’s to be
assessed. It utilizes online Vulnerability Assessment Patterns repositories (NVTs) that store,
maintain and daily update thousands of new and well-known vulnerability detection schemes. The
produced outcomes (CVSS scores) of the assessed network entities, are propagated to the logic
service, which with its turn stores those results in the database, and instructs appropriate actions
(network assignments according to score). In order to dynamically communicate with the VAaaS

32

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

service we created an API for the OpenVAS that our logic service use for automation of the service
the code can be found at Appendix

4.1.5 Database

The database stores all the information of every entity in the infrastructure. It only interacts with
the logic service, which periodically pushes new entities to store and check the tables of the
database for entities that have not been assessed yet.

4.1.6 The Edge:

Every entity which is deployed in this layer, can potentially bear vulnerabilities. Either the entity
itself could be susceptible to attacks, or the end-user that has no experience and knowledge on
cybersecurity could pose a threat to the other entities of the network as a whole.
On the grounds that the SDN Controller has a full view of the underlying network topology, any
unassessed network entity will be assessed for vulnerabilities. The connectivity of every entity
until it gets assessed, is restricted.

4.2 Use Case
In this section, we will present a general use case of the proposed framework. Figure 19 presents
the pseudo code that describes the sequence of actions that take place during the logic service
lifecycle in detail.

Infrastructures that have free available network connectivity such as healthcare institutions,
Municipality structures and generally public and private networks where untrusted devices connect
and operate, are in need of a dynamic vulnerability assessment service that fast tracks the
assessment (minimum wait time to have access), which creates no conflict over the policy rule
since no one else will have the privileges to modify flow rules than SONA (application of ONOS
SDN Controller) , provide real time monitoring through the capabilities of ONOS and lastly make
administrative work easier through the capabilities of the SDN. Our Use-Case will be explained
thoroughly below.

The SDN controller by nature is aware of any new entity, that connects to the network (OpenFlow
messages instantiated by the OFSwitch that are sent to the controller whenever the entities interact
with the network (DHCP Requests, API Requests, Applications)). The logic service, periodically
initiates a script that acquires the entity list of the connected devices, through our controller
(Northbound API — GET request). The logic service stores each entities data in the persistence
database (ID, MAC address, IP address, Device Type, Port, Protocol, Assessment, Score, Slice).
When the logic service detects an entity that has not been assessed, it initiates the vulnerability
assessment process with OpenVAS. Prior to the assessment and while the assessment is on-going,
the network entity will be assigned to a slice of the network that restricts any kind of
communication. The moment the OpenVAS agent produces the score (CVSS standardized score)
the logic service informs the SDN Controller about the slice the entity should be placed at, based
on the score produced. Lastly the SDN Controller will inform SONA about the entity and the slice

33

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

it needs to be on. Sona then replies with flow rules suitable for the entity and the SDN controller
applies them on the corresponding OFSwitch.

The OpenVAS agent produces the score based on four categories: i) None (Vulnerability Rating
0.0), ii) Low(Vulnerability Rating 0.1-3.9), iii)Medium(Vulnerability Rating 4.0-6.9), iv)
High(Vulnerability Rating 7.0-10.0). According to the score reported, if a network entity is rated
as “None” then the flow rules installed for that specific entity from SONA will allow full access
to that entity(LAN-WAN).If the entity is rated as “Low” OR “Medium” the flow rules will allow
it to interact only with the default gateway(therefore access to WAN only).Similarly if the entity
is rated “High” then SONA will drop every packet originated from that entity
The process described initiates whenever a new entity is detected. To conclude with the logic
service, re-assess already existing entities in a set period of time

function policy(entitylist)(contains all the information needed to assess any entity)
entitiesToAssess = []
assessmentProgress =0

for i of entitylist do
if isAssessed)(i) == false then
entitiesToAssess.push(i)
end if
end for
if entitiesToAssess.length() > 0 then
AssessEntities(entitiesToAssess)
end if
while assessmentProgress < 100 do
assessmentProgress = assessmentReports.progress
end while

assessmentReports = getAssessmentReports|)
saveToDatabase(entitiesToAssess, assessmentReports)

end function

Figure 19 Pseudo Code

34

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

5. Evaluation

5.1 Aim
The proposed framework was evaluated in a controlled-conditions environment, through a
simulation procedure wherein we measured the individual assessment duration for 100 and 200
devices. The aim of this evaluation was to benchmark the capabilities of the proposed framework
by performing a large number of assessments.

5.2 Method
During the evaluation, we assessed 100 and 200 network entities respectively, deployed as virtual
machines. The virtual machines hosted a deployed version of MySQL server, WordPress and
Apache Tomcat. The selection for each VM was made randomly. All the VMs were deployed on
a dedicated ESXi server (Dell EMC PowerEdge R940). The server’s specifications are depicted in
Table 3.

Table 3 Server Specifications

CPU 4x Intel Xeon Gold
6126 2.6G (12 cores
& 24 threads)

RAM 128GB DDR4 RAM
@2667 MT/s

Storage 5.6TB mixed storage

The simulation was performed in two iterations, for 100 and 200 VMs. For each iteration, different
scan configurations were used. The main assumption for our evaluation, was that on a working
deployment of our framework, 100 and 200 network-enabled entities join the network. The logic
service detects that event and sends the list of newly introduced network entities to the VAaaS.
The measurements start, the moment the VVAaaS starts the first assessment for the first entity in its
list.

5.3 Variables

5.3.1 Dependent

During the two-phase evaluation procedure (100 and 200 entities), we measured the assessment
duration for each entity, the produced score (CVSS). Finally, we measured the overall duration of
the evaluation.

5.3.2 Independent

As mentioned above, we performed the evaluation for 100 and 200 network-enabled entities. For
the first iteration, the “Full and very deep” configuration was used. This is a deep and persistent
scanning configuration our system can perform, but it allows for fast conclusion. For the latter
35

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

iteration, the “Full and fast” configuration was used. This is a moderately persistent and fast
configuration.

5.4 Prediction
We know beforehand that the individual assessment duration for each entity will not be fast, since
all entities are complex virtual machines, and the vulnerability assessment is a tedious task, taking
into consideration that entities are assessed against thousands of penetration tests. But
nevertheless, we presume that the assessment will be a matter of minutes to conclude. More
specifically, since the scanning configurations vary in each iteration, we expect to get different
results concerning the duration, as well as the produced score for each entity

5.5 Results

The graphs below depict the produced outcomes for the two-phase evaluation. Figure 27 presents
the results for the assessment for 100 entities and Figure 28 presents the results for 200 entities

100 Entities

20,00
15,00

HIHH‘H|!H|!H|H!|Hr|!|r|’||!‘Hrlrl“H’H‘!HIHHI"!IH‘!HHHIHH‘I|I|||

5,00

(%]
L
=
S5)
z
S

0,00 i \
NI AR IS AR A I RS

e duration(min) e cyss

Figure 20 100 Entities Results

36

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

200 Devices

(%]
w
=
=)
=
S

N AP a> 90 AD D O YAV XD o N DD
N2 %7 B2 57 08 A BTN K R A K IRO KN 'WD7RD

DEVICE NUMBER

duration (min) e cyss

Figure 21 200 Entities Results

5.6 Discussion
By examining the presented results, we observe a rather linear behavior of our framework. We can
observe some minor deviations (really low assessment duration) but we can also see the correlation
with the produced CVSS score, which is also low. This means that the scanner found very few
vulnerabilities on the assessed entity, thus the assessment concluded earlier. This is the case for
both iterations since we used the same VMs, although the occurrence ratio is different, since the
selection of VMs was made randomly.

The average assessment duration, was 13.77 and 9.59 minutes for 100 and 200 entities
respectively. From a shallow point of view, these are rather contradictory results, as one would
expect the duration would take longer for the assessment of 200 network entities. On a deeper
observation, these results not only indicate the robustness of the evaluated framework, but also
demonstrate the observable difference between the two different scanning configurations. This is
obvious by observing the variation in the produced score in the first iteration, and the more static
nature of the produced score in the second.

The results more or less agreed with our initial predictions, nevertheless we did not expect the
duration to exceed the ten-minute barrier. To summarize, the measured results indicate the overall
robustness and stability of the presented framework, by demonstrating linear behavior in both
scenarios. Based on Nikoloudakis et al. [4], where they presented an average assessment time of
approximately 38 minutes, these results, demonstrate a remarkable improvement. The performance
difference is due to the different system architecture (cloud deployment in comparison to edge
deployment) and the scanner’s API redesign.

37

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

5.7 Evaluation

The presented evaluation presented the performance and behavior of the presented framework.
The results were definitive of the enhanced performance and stability of our framework, compared
to other research initiatives. Nevertheless, the combination of the independent variables for the
experiment, could be more elaborate. From our point of view, the results would be more accurate,
if we performed a two-phase iteration evaluation, but applying the same scanning configuration
both for 100 as well as for 200 entities. Thus, we would have a series of measurements for 100 and
200 entities, with the “Full and very deep” and “Full and fast” scanning configuration
respectively.

38

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

6. Conclusion

In this thesis we presented a pure-SDN automated vulnerability assessment framework that
monitors the underlying network for existing and newly introduced network-enabled entities
(devices, services, VMs, etc.) and performs assessments against known vulnerabilities. It produces
a score based on the CVSS V3.0 standard and depending on the severity of the assessment result
of each entity, it assigns it to a specific connectivity-appropriate network slice. We evaluated the
framework through a series of measurements and concluded that compared to other research
initiatives, it performed more than 70% better. Nonetheless there is still more room for
improvement. As a future goal we firstly plan to further redesign the framework to be even more
lightweight, so that we could achieve an even better performance, and finally we plan to thoroughly
benchmark the framework by performing exhaustive assessments with all available scanning
configurations, to gain a complete overview of the scanner’s, and by extension the whole
framework’s capabilities.

39

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21]
40

7. References

S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras, “DELTA: A Security
Assessment Framework for Software-Defined Networks,” no. March, 2017.

F. Loi, A. Sivanathan, H. H. Gharakheili, A. Radford, and V. Sivaraman, “Systematically
Evaluating Security and Privacy for Consumer IoT Devices,” no. I, pp. 1-6, 2017.

E. T.,R. Y., and S. D., “Barrier Free Internet Access: Evaluating the Cyber Security Risk
Posed by the Adoption of Bring Your Own Devices to e-Learning Network Infrastructure,”
Int. J. Comput. Appl., vol. 176, no. 3, pp. 53-62, 2017.

M. Miettinen et al., “IoT Sentinel Demo: Automated Device-Type Identification for
Security Enforcement in IoT,” Proc. - Int. Conf. Distrib. Comput. Syst., pp. 2511-2514,
2017.

“OpenVAS.” [Online]. Available: http://www.openvas.org.

M. Ficco, M. Choras, and R. Kozik, “Simulation platform for cyber-security and
vulnerability analysis of critical infrastructures,” J. Comput. Sci., vol. 22, pp. 179-186,
2017.

B. Aliand A. I. Awad, “Cyber and physical security vulnerability assessment for [oT-based
smart homes,” Sensors (Switzerland), vol. 18, no. 3, pp. 1-18, 2018.

S. Ziegler, A. Skarmeta, J. Bernal, E. E. Kim, and S. Bianchi, “ANASTACIA: Advanced
networked agents for security and trust assessment in CPS IoT architectures,” GIoTS 2017
- Glob. Internet Things Summit, Proc., 2017.

Y. Nikoloudakis, E. Pallis, G. Mastorakis, C. X. Mavromoustakis, C. Skianis, and E. K.
Markakis, “Vulnerability assessment as a service for fog-centric ICT ecosystems: A
healthcare use case,” Peer-to-Peer Netw. Appl., 2019.

“Cloud Computing.” [Online]. Available: https://en.wikipedia.org/wiki/Cloud computing.
“SDN.” [Online]. Available: https://en.wikipedia.org/wiki/Software-defined_networking.
“OpenFlow.” [Online]. Available: https://en.wikipedia.org/wiki/OpenFlow.

“ODL.” [Online]. Available: https://www.opendaylight.org.

“ONOS.” [Online]. Available: https://onosproject.org.

“Project Callico.” [Online]. Available: https://github.com/projectcalico/calico.

“POX.” [Online]. Available: https://github.com/noxrepo/.

“Floodlight.” [Online]. Available: http://www.projectfloodlight.org/floodlight/.

“Ryu.” [Online]. Available: https://github.com/osrg/ryu/wiki.

“SONA.” [Online]. Available:
https://wiki.onosproject.org/display/ONOS/SONA+Architecture.

“Nimbus.” [Online]. Available: https://www.nimbusframework.com.

“Eucalyptus.” [Online]. Available: https://en.wikipedia.org/wiki/Eucalyptus_(software).

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

[22]
[23]
[24]
[25]

[26]
[27]
[28]
[29]

[30]
[31]
[32]

41

“OpenStack.” [Online]. Available: https://www.openstack.org.
“Nebula.” [Online]. Available: https://opennebula.org.
“XSEDE.” [Online]. Available: http://www.xsede.org/ecosystem/software.

“KVM.” [Online]. Available: https://en.wikipedia.org/wiki/Kernel-
based_Virtual_Machine.

“xen.” [Online]. Available: https://xenproject.org.
“VMWare.” [Online]. Available: https://www.vmware.com.
“VM.” [Online]. Available: https://en.wikipedia.org/wiki/Virtual_machine.

“Stack Vs Nebula.” [Online]. Available: https://stackshare.io/stackups/opennebula-vs-
openstack.

“Mongo.” [Online]. Available: https://www.mongodb.com.
“TCP.” [Online]. Available: https://en.wikipedia.org/wiki/Transmission_Control_Protocol.

“TLS.” [Online]. Available: https://en.wikipedia.org/wiki/Transport Layer Security.

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

8. Appendix

8.1 OpenVVAS API
from pyvas import Client

from pyvas.exceptions import ElementExists
from flask import Response
from uuid import uuid4

from configurations.credentials import USERNAME,PASSWORD,HOST

PORT=9390
omp --port=9390 --host=localhost --username=admin --password=UUID-PASSWD -G -i

import json

Filter a list based on some predicate
def filter_list(list_obj,predicate):
items =[]
for item in list_obj:
if predicate(item):
items.append(item)

return items

Tasks endpoint
def create_new_task(name,hosts,config_uuid=None,comment=None):
def name_predicate(item):
config_name = "Full and very deep ultimate"

return item.get('name’) == config_name

42

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

if not name or not hosts:

message = {'error':"No name or hosts were provided'}

return Response(json.dumps(message),status = 400,mimetype="application/json’)

with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:

result = {}
status = 200
try:

Investigate how to choose a different config
#conf = cli.list_configs().data[0]
conf = None
if config_uuid is not None:
conf = cli.get_config(config_uuid).data
else:
list_of _configs = cli.list_configs().data
filtered_configs = filter_list(list_of configs,name_predicate)
if len(filtered_configs) == 1:
print('"Found filtered configs')
print(filtered_configs)
conf = filtered_configs.pop()
else:
print('Not one but....")
print(list_of _configs)
conf = list_of _configs[0]
print(‘information for current task config’)
print(conf)

target = cli.create_target("Task Name {}.Intermediate
{}".format(name,hosts),hosts=hosts).data

config = cli.create_config(name,copy_uuid=conf.get('@id")).data

print('Created configuration {}'.format(config))

43

scan of

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

task =
cli.create_task(name,config_uuid=config.get('@id'),comment=comment,target_uuid=target.get(’
@id")).data

result = json.dumps(task)
except ElementExists as e:

status = 500

result = {"error":"Task with same name/config exists"}
except Exception as e:

status = 500

result = {"error':e.message}
finally:

return _json_response(result,status=status)

def create_multiple_tasks(addresses):
def predicate_function(item):
config_name = 'Full and very deep ultimate'
return item.get('name’) == config_name
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
print(cli.list_configs().data)

configs = cli.list_configs().data

conf = [config for config in configs if predicate_function(config)][0]

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

tasks =[]
for ip in addresses:
name = "Automated task for {}".format(ip)

target = cli.create_target(*"Task Name {}.Intermediate scan of
{}".format(name,ip),hosts=ip).data

task =
cli.create_task(name,config_uuid=conf.get('@id'),comment=None,target_uuid=target.get('@id’)).
data

tasks.append(task)

return _json_response({'tasks':tasks})

def get_tasks(type=None,projection=None):
Get all tasks. type is used to determine whether we want all tasks
or we only want finished/pending tasks
output = None
tasks =[]
#Investigate if this code throws an error
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
tasks = cli.list_tasks()
output = tasks.data if tasks else []
if not tasks.ok:
output['status_code']=tasks['status_code']
if type is not None:
status = 'Done’ if type == 'finished' else 'New'
output = [t for t in output if t.get('status’) == status]
if projection_exists(projection):

output = [_projection(x,projection) for x in output]

45

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

return _json_response(output)

def get_task(uuid,projection=None):

output = {}
task = {}
status = 200

with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
try:
task = cli.get_task(uuid)
output = task.data
except TypeError as e:
output = {'error':'Make sure that you entered a correct task uuid'}
projection = None
status = 400
if projection_exists(projection):
output = _projection(task.data,projection)
if 'ok" in task and not task.ok:
output['status_code'] = task['status_code']

return _json_response(output,status=status)

def start_task(uuid):
output = {}
status = 200
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
try:
res = cli.start_task(uuid)
output = res.data
except TypeError:
status = 400

46

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

output = {'error':'Make sure that you entered a correct task uuid'}
finally:

return _json_response(output,status=status)

def start_multiple_tasks(ids):
for id in ids:
start_task(id)

return _json_response({})

def stop_task(uuid):
output = {}
status = 200
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
try:
res = cli.stop_task(uuid)
output = res.data
except TypeError:
status = 400
output = {'error':'Make sure that you entered a correct task uuid'}
finally:

return _json_response(output,status=status)

def delete_task(uuid):
output = {}
status = 200
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
try:
task = cli.get_task(uuid).data

target = task['target']

47

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

res = cli.delete_task(uuid)
Must delete target **AFTER** deleting task
cli.delete_target(target[' @id'])
output = res.data
except TypeError:
status = 400
output = {'error':'Make sure that you entered a correct task uuid'}

return _json_response(output,status=status)

Targets endpoint
def get_targets(projection=None):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
targets = cli.list_targets().data
if projection_exists(projection):
targets = [_projection(target,projection) for target in targets]

return _json_response(targets)

def get_target(uuid,projection=None):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:

status = 200

try:
target = cli.get_target(uuid).data

except TypeError as e:
status = 400
target = {'error':'Make sure that you entered a correct report uuid'}
projection = None

if projection_exists(projection):
target = _projection(target,projection)

return _json_response(target,status=status)

48

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

def create_target(name,hosts):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
try:
data = cli.create_target(name,hosts).data
except ElementEXxists:
data = {"error":"target exists"}

return _json_response(data)

def delete_target(uuid):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:

data = {}
status = 200
try:

data = cli.delete_target(uuid).data
except :
data = {"error":"Make sure that you entered a correct target uuid"}
status = 400
finally:
return _json_response(data,status)

Configs endpoint

def get_configs(projection=None):
print(‘'requesting configs’)
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:

configs = cli.list_configs().data

if projection_exists(projection):

configs = [_projection(conf,projection) for conf in configs]

49

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

return _json_response(configs)

def get_config(id):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
config = None
status = 200
try:
config = cli.get_config(id)
except:
status = 400
config = {"error":"Make sure you provided a valid uuid"}
finally:

return _json_response(config,status=status)

def create_config(name,copy_uuid=None):
print(len(copy_uuid))
print(name,copy_uuid)
if not copy_uuid or not len(copy_uuid) is 0 or copy_uuid is None:
return _json_response({"error":"Provide a valid uuid"},400)

with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:

config = {}
status = 200
try:

config = cli.create_config(name,copy_uuid=copy_uuid)
if config.ok:
config = config.data
except:

config = {"error":"Provide a valid uuid"}

50

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

status = 400

return _json_response(config,status)

def delete_config(uuid):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
data = cli.delete_config(uuid).data
return _json_response(data)

Tasks endpoint

def get_pending_tasks(projection=None):
tasks = get_tasks('pending’,projection=projection)

return tasks

def get_finished_tasks(projection=None):
tasks = get_tasks(‘finished',projection=projection)

return tasks

def get_task progress(uuid):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
data = {}
projection=['progress'’]
status = 200
prevent Unbound local error
task = None
try:
task = cli.get_task(uuid).data
if not task:
raise TypeError

Do not use 'is' for string comparison

51

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

see here: https://stackoverflow.com/a/1504742/7180331
if task.get('progress’) =="-1":
data['progress'] = 100
elif task['progress’]=="1":
data['progress] =1
else:
data['progress'] = task.get('progress’)
data['progress'] = data['progress'][‘#text']
except TypeError as err:
status = 400
#@FIX typo
print('Error while trying to get task progress')
data = {'error':'Make sure that you entered a correct task uuid'}
except ConnectionResetError as con:
status = 500
data = {"error:.con}

return _json_response(data,status=status)

Reports endpoint

def get_reports(projection=None):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
reports = cli.list_reports().data
if projection_exists(projection):
reports = [_projection(rep,projection) for rep in reports]

return _json_response(reports)

def get_report(uuid,projection=None):
report = {}

52

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:
status = 200
try:
report = cli.get_report(uuid).data
if projection_exists(projection):
report = _projection(report,projection)
except TypeError:
status = 400
report = {'error':'Make sure that you entered a correct report uuid'}
finally:

return _json_response(report,status=status)

def delete_report(uuid):
with Client(host=HOST ,username=USERNAME,password=PASSWORD,port=PORT) as cli:

status = 200
result = {}
try:

result = cli.delete_report(uuid).data
except TypeError:
result = {'error':'Make sure that you entered a correct report uuid'}
status = 400
except Exception as e:
status = 400
if "Failed to find report” in str(e):
result = {"'error':'Make sure that you entered a correct report uuid'}
else:
result = {"error":str(e)}
finally:

return _json_response(result,status=status)

53

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

def get_report_results(uuid):
projection = "report.results.result”
with Client(host=HOST ,password=PASSWORD,port=PORT,username=USERNAME) as cli:
status = 200
try:
report = cli.get_report(uuid).data
data = {
#
"results":report['report’]['results’]['result’]
¥
except TypeError as e:
data = {'error':'Make sure that you entered a correct report uuid'}
Bad request
status = 400

return _json_response(data,status)

Utilities

def projection_exists(projection=None):

Determines whether a projection string is

IS an empty projection

return projection is not None and len(projection) is not 0

def deep_extract(data,key):

Wander what this does?

54

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

It shall remain a mystery for the eternity
base_key = None
keys = key.split(".")
Take the first key as the base property name
e.g. for the following keys ['task’,'owner’,'name'] base would be the task
base_key = keys[0]
del keys[O]
reverse the keys to work easier with
['name’,'owner’]
keys.reverse()
Let the fun begin
data = data.get(base_key)
while len(keys) > 0:
cur_property_name = keys.pop()
If we have passed an invalid property name
data will become None or an empty string
if isinstance(data,dict):
data = data.get(cur_property _name)
Unicorns have finished their job
Time to continue our non unicorn-related work
Maybe | should send an empty string instead of {}

return data if not data is None else {}

def _projection(data,keys):
If the projection string is an empty string
projection would return as an empty object
but no more

if not projection_exists(keys):

55

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

return data
Extract only the projected keys from a data object
This helps save bandwith.Imagine an object having 20 maybe 30 properties.
This would be an overkill to transfer. That's why with a projection
you can specify what you want
projected = {}
for key in keys:
No need to check if key exists in data
projected[key] = deep_extract(data,key)

return projected

def parse_projection(projection):
if projection is None:
return []
Maybe projection is alreay a list

projection_keys = projection if isinstance(projection,list) else projection.split(’,")

Let's handle the following scenario
A user does a get request and then as a url parameter
they pass an array of keys like this
?projection=[a,b,c] instead of projection="a,b,c"
So as a key we also get the opening/closing brackets
if projection_keys[0] is '["
del projection_keys[0]
last_key_index = len(projection_keys) -1
#Bring the last element to the front

if projection_keys[last_key index] is]":

56

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

del projection_keys[last_key_index]

return projection_keys

def _json_response(data,status=200):

return Response(json.dumps(data),status=status,mimetype="application/json’)

def clean_db(username,password):
data = {}
There are specific targets and specific configs that cannot be deleted

predefined_configs = ['empty','Full and fast','Full and very deep','Host Discovery','Network
Diskovery']

predefined_targets = ['Localhost']
if(username = USERNAME or password != password):
return _json_response({'error"'invalid credentials'},status=401)
with Client(host=HOST ,password=PASSWORD,port=PORT,username=USERNAME) as cli:
print(‘Cleaning up')
status = 200
try:
tasks = cli.list_tasks().data
configs = cli.list_configs().data
targets = cli.list_targets().data
reports = cli.list_reports().data
message_template = "Found {} tasks {} targets {} configs and {} reports to delete"
print(message_template.format(len(tasks),len(targets),len(configs),len(reports)))
for task in tasks:
id = task['@id']

cli.delete_task(id)
57

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

for target in targets:
in_use = target['in_use'] == "1"
owner = target['owner']['name’]
id = target[' @id']
only targets not in use and created by admin can be deleted
if not in_use and owner == "admin":
cli.delete_target(id)
try:
cli.delete_target(id)
except:
pass
for config in configs:
in_use = config['in_use'] =="1"
owner = config['owner']['name’]
id = config[' @id']
try:
cli.delete_config(id)
except:
pass
for report in reports:
id = report[' @id']
try:
cli.delete_report(id)
except:
pass
except TypeError as e:
data = {'error':'Make sure that you entered a correct report uuid'}
Bad request
status = 400

58

Vulnerability Assessment as a Service over SDN infrastructures
loannis Georgios Kefaloukos

finally:

return _json_response(data,status)

59

