Ay X i
Sy

Hellenic Mediterranean University

School of Engineering

Department of Electrical and Computer Engineering

A Thesis
Bachelor of Science

Katnyyopnyuoatixy emonueioon pue Ty xpyon olovoGUATIKOY
APOAOTAGEWY KAl BabBiwy vevpwvIK®OV OIKTOMV

(Categorical Embedding with Deep Learning)

Giannakos lakovos
TII4127

Suppervisors: Dr. Tsiknakis Manolis, Dr. Koumakis Lefteris and
Dr. Marias Konstantinos.

Categorical Embedding with Deep Learning I. Giannakos

Abstract

The study conducted in the framework of the dissertation on "Categorical embedding
with deep learning”. To clarify, the purpose of the dissertation is to study and implement a
word-embedding neural network for genomic data which is a network consisting of three levels
namely the input level, the hidden level and the output level. All these levels are interconnected
with different forces (weights) which are also called word-embedding.

The selected architecture of the neural network falls in the Natural Language Processing
(NLP) category. NLP is a research field that investigates how a computer can control and extract
knowledge from text or dialogue into a natural language. The model implemented in this
dissertation is the Continues Bags of Words (CBOW), a model that accepts as input a set of
number boxes (contexts) which are the number of words corresponding to a text. Each context
corresponds to several words defined by the developer, has a target context and a table with the
difference of the words in a text that correspond to that context. The network is trained with the
assumption that each context is close to the words that are the target. The aim is to train the
CBOW neural network and to form word embedding using as input known mutations of a
human.

Before we get to the training point, the network requires some data as input. Our data
comes from the human genome using the Ensembl Variant Effect Predictor (VEP). Our main
objective is to get all the human mutations (about 80 million mutations) and train a model that
will handle each mutation as a word and each disease as the context. VEP is a tool for
annotating, evaluating and prioritizing genomic mutations, even in non-coding areas. The VEP
predicts the effects of sequence mutations on transcripts, protein products, regulatory regions,
and binding patterns, utilizing the high quality, wide scope, and comprehensive design of
Ensemble databases with high accuracy. In the next, we pass the variants/mutations to a python
script where we select input features based on specific criteria described in chapter Experiment
1 (sub section Data) and Experiment 2 (sub section Data). After selecting the data, we form the
context list with the data and a target context for each single-nucleotide polymorphism (SNP)
variant. Then the CBOW model is trained with the variants contexts mentioned above and after
some epochs the embedding (weights) that are between the first level and the hidden are formed.
We extract these weights from the network and pass them to the Principal Component Analysis
(PCA) to visualize it as a scatter plot. PCA, is a dimensionality-reduction method that is often
used to reduce the dimensionality of large data sets, by transforming a large set of variables into
a smaller one that still contains most of the information in the large set. Finally, cosine
similarities were used. Cosine similarity is a measurement in data retrieval. The application of
this measurement can be applied to two corpuses (paragraph, sentence and the whole corpus).
If the similarity score is high between two corpus term vector and the query vector, the greater
relevance of text and query. Once we have taken a SNP as a sample and passed it through cosine
similarity we can find other SNP’s close to this that we expect to be more similar so there is a
possibility that this mutation will affect our sample.

We applied this methodology to three experiments. The first one was for the
representation and clustering of human chromosome 22 variants. In this experiment we attempt
to find relevance between random SNPs and verify them. Due to the large amount of
chromosome data and processing time it was hard to have the best possible results. So we
moved to the second and third experiment with less data targeted to a disease, specific in cancer
variant and possible cancer variants. The results of the model are promising and we believe that
such a methodology could be used in the genomics era.

Categorical Embedding with Deep Learning I. Giannakos

Hepiinyn

H mopovca perétn denybn ota mhaicio g mTuylakng epyaciog pe 0épa «Koatnyopnuotikn
EMOMNUEION UE TN YPNOT OLUVUGUATIKOV TOPASTAGE®V Kol BabEwv veupovikdv diktvmvy. O
oKomOg TNG TMTLYWIKNG €pyaciog &ivol vo HeAETNOEL Kol Vo gpappocsl €va word-
embedding vevpwvikd dikTvo Yio yovidimpotikd dedopévo 6mov Oa givar Eva dikTvo TOL
amoteleiton amd tpia emineda, ONAON TO ENIMESO 16000V, TO KPLPO EMIMESO KOl TO EMIMEDO
€E0600v. OAa avTd TO EMIMESD S10LGVVOEOVTAL LLE FLAUPOPETIKES dOLVAELS (Bapn) Tov ovopdlovton
eniong word-embedding. Avti 1 gpyacia ypnoyonotel Bdpn and 1o eninedo 16660V £mMC TO
KpLEO eninedo.

H emdeypévn opyLteKToVIKT TOV VELPIKOD OIKTVOV gumintel otnyv kotnyopia Natural Language
Processing (NLP). To NLP &ivan éva medio €pevvag mov diepevvd ToV TPOTO LE TOV OTOI0 £VOG
VTOAOYIOTNG Umopel vo eEAEYEEL Kal vo eEaydyel YVGES amd éva KEILEVO I O1AAOYO GE [
evotk YAdooa. To poviélo mov epapuoletal oe avtyv v gpyacia eivar to Continues Bags
of Words (CBOW), éva povtélo mov d€xeTol g 10aymyn £va cHVOLO aplOunTikdVv KOuTIdV
(contexts) 6mov eivar ot apBuntikég AEEeC mov avtictoyovy og éva keipevo. Kdébe context
avTioTotyel og apketég AéEeLg mov opilovtat amd ToV TPOYPOUUATIOTY], £XEL éva target context
Ko Evav Tivoka e T dpopd TV AEEEMV GE Eva KEILEVO TTOV avTIoTOLY EL G€ LT TO context.
To diktvo gkmaudevetan pe v vodeon Ot kéOe context glvar kovtd oTig AéEelg mov glvar o
010Y0G. O 010)0¢ cival va ekmadedoel 1o vevpwvikd diktvo CBOW kat vo dapoppmacel 10
word embedding ypnoylonoidvtag ¢ HeTaAAAEELS 16050V TV homo sapiens.

[Tpwv pTdcovpe 6TO onpeio ekmaidevong, 1o dikTLo amattel optopéva dedopéva ¢ gicodo. Ta
dgdopéva pag mpoépyovror and To avlpomivo yovidiopa ypnoiponowvtag to Ensembl Variant
Effect Predictor (VEP). O x0p1og 6tdy0g pog ivat va tapov e OAES TIG avOpOTIVES LETAALAEELS
(mepimov 80 exaToppdpla LeTOAAAEELS) KO VO EKTOEVGOVUE Eva LOVTELO OV Oa yerpileton
KkéOe petdAraln og AEEN ko kdbe acBéveln ¢ 1o context. To VEP eivan o oyvpn
gpyoreodnkn y v a&loddynon, Tov GYoAacUd Kot TNV EPAPYNOT TOV YOVIOLOUATIKOV
TOPOALOY DV, OKOUT KOl GE TEPLOYES TTOL dev Kmdikomotovy. To VEP npofAiénet pe axpifeia ta
QTOTEAEGLLOTO TV TUPOAAALYDV 0KOAOLOTNG GE PETAYPAUPES, TPOTEIVIKA TPOIOVTA, PLOUCTIKES
TEPLOYES KO OEGUEVTIKA HOTIRaL, YPNOUOTOIDOVTOS TNV DYNAY TOIOTNTO Kot TO VPV TEDIO Y10
oV OAOKANpOUEVO GYedtacd Bdoemv dedopévaov Ensemble.

mv ovvéyew, petafifdlovpe Tic mapardayés / petaArdaelg o éva script python émov
EMAEYOVLLE TO YOPOKTNPLOTIKE EIGAYMYNG PAOT GLYKEKPILEVOVY KPITNPi®V TOL TEPLYPAPOVTOL
o10 Ke@AAiowo Experiment 1 (vmogvotnro Data), Experiment 2 (vmoevotnta Data) xon
Experiment 3 (vmoevotnta Data). A@od emidéovpe To Sed0UEVA, SLOULOPPMDVOLLE TN context
Mota pe ta dedopéva kor €va target context yio kdbe mopoAloyn TOALUOPPIGHOD LOVOD
vovkAeotidiov (SNP). T ocvvéyeta, 1o povtého CBOW ekmadeveton pe to variants contexts
OV OVOPEPOVTAL TAPOTAV® Kot HETO amd pepwkd epochs oymuatilovror ta Bépn mwov
Bpiokovtar peTa&d oV TPAOTOL EMITESOL Kot TOL KPLPoL emmédov. EEdyovpe avtd ta Bépn
amd 1o OlkTLOo Kot T petapépovpe otnv Avéivorn Koplov Xvotatikod (Principal Component
Analysis - PCA) yia vo 10 ameikovicovpe pe éva duaypoupa dacmopac. To PCA esivar pia
TEYVIKT TOV YPNOLomotel eEeMYUEVEG LOOMNUATIKES OPYES YIOL TN LETOTPOTT OPKETAOV SOVVNTIKA
GUCYETICUEVOV UETAPANTOV o HIKPOTEPO OaplBud petafAntov mov ovopdlovior KOplo
ovotatikd. Ev cuvtopio Bpioketl péypt 1petg dtaotdoelg amd dcdopéva pe N (N>3) dactdoes.

Téhog, ypnowomomOnke opowdtreg pe ovvnuitova (Cosine Similarity). H opotdtnta
cuvnuitovev glvat pia eVPEMG XPTOLLOTOLOVUEVT] LETPNON GTNV OVAKTIOT TANPOPOPLOV Kot
o€ oyeTikég perétes. H epappoyn avtg g pétpnong umopel vo epappoctel og 600 keipeva
(mpdtacm, moapdypamog 1 oAOKANPO 1O £yypaeo). Oco vynAdtepn eivar 1 Pabporoyio

Categorical Embedding with Deep Learning I. Giannakos

OHOLOTNTOG LETOED TOL JSLUVOGLOTOG OPOL EYYPAPOV KoL TOV SLVOGUATOG OPOV EPMTHLATOG,
TOG0 PEYaADTEPT eivar 1 cLVAPELD HeTAED TOV EYYPAPOV KOL TOV EPOTAUATOC. MOMG TAPOLLLE
éva SNP o¢ deiypa kot 10 mepdoovpe HEGM OHOOTNTAG GUVIUUTOVOL, HUITOpovUE Vo Bpodpie
dAAa SNP kovtd o avtd mov avapévoupe va eivat To Opota, £T61 LITAPYEL TOAVOTNTA VT N
petdAlaén va ennpedoet To detypa Lo,

Epappocape avtyv m pebodoroyia oe tpia mepdpota. To TpdTO fTOV Y10 TV OVOTAPAGTOOT
KOLL TNV OPLOOOTTOIN G TOV TAPUAALYDV TOV avOPOTIVOL YPOUOCHUATOS 22. X avTd TO TEipOLO
nwpoonabovpue va fpovpe cuoyétion petald toyaimv SNP kot va ta erainfedcovpe. Adyw tov
peyaiov Oykov dedopévav katl Tov ypovov enefepyaciog NTav SVCKOAO Vo EYOVUE Mo TNV
KoAOTEPT €KOVA TV anotelecudtov. Etol, mpoywpnoape 610 de0TePO Kat Tpito meipapa pte
AMydtepa 6edoUEVO TOV GTOYELOVY GE W0 ACHEVELD, CLYKEKPIUEVO G PETOAAGEELS KapKivoy
Kot Tavég petodddéels kapkivov. Ta amotedéopato Tov HOVIEAOL gival TOAAL VTOGYOUEVA
KOl TIOTELOVHE OTL piaL TETola pebBodoroyia Ba pmopovoe va ypnoiponombetl oty meptoyn g
YOVIOI®UOTIKNG.

Categorical Embedding with Deep Learning I. Giannakos

Table of Contents

R 111 (oo 18 Tox o] I PRSPPSO 8
1.1 PreviouS RESEAICN.......cciiiiiiie et 8
1.1.1 Functional interpretation of genetic variants using deep learning predicts impact

on chromatin accessibility and histone modification.ccccccceveiiiie i 9
1.1.2 A universal sNP and small-indel variant caller using deep neural networks..... 11

1.1.3 Predicting effects of noncoding variants with deep learning—based sequence
model. 12

0 O TU | g To] [1]1 o] o RS 14
2 BACKGIOUNG ... 16
2.1 NEUral NETWOIKS........eeiieie et et enes 16
220 St A o Yo U | 1= U o] SRR 16
2.1.2 A brief introduction to Artificial Neural Networks..........cccccoceviieniniininninninnnn, 16
2.1.3 ACHVALION FUNCHIONcoiiiiiiieie e 17
A S = 1 T USSR 18
2.1.5 0SS ittt bRt e e e bt an e r e nne e nne e 18
2.1.6 BaCKPropagation.........ccocueieieieriiisisesieeee et 18
2.1.7 Stochastic Gradient Descent (SGD)ccccoviiririiiiiiiiieee e 19
2.1.8 SOFtMAX TUNCLIONocvieiieie ettt 19
2.2 Text Mining and Natural Language Processing (NLP): The Deep Learning approach
20
221 WOPU2VEC ...ttt sttt e st te et enneenteeneeaneenneens 20
2.2.2 Word2Vec SKip-Gram MOodelcccoeiiiiiiiiic e 21
2.2.3 CBOW MOGEI ..o 24
2.3 Principal Component Analysis (PCA)........coi it 28
2.4 COSINE SIMIIAMILYcviiiiiicce e re e s 29
S €= 1 [USSR 30
2.5.1 A BIEef INrOQUCTION ...c..oeiicicceee et 30
2.5.2 HUmMaN GENOME PIOJECToviiiiiiiisiieieeieeiee e 30
2.5.3 Ensemble Variant Effect Predictor: Annotating Variant Effects 31
3 MELNOUOIOGY ...t nrne s 34
3.1 Prepare variation data for VEPc.cooiii i 35
3.2 INSEAHING VEPot aa e aree s 35
3.3 Data PrePrOCESSING ..ecuveeiviieiieiiieesiee sttt e ete e ste e ae st e et e e s eesba e st e e s beeenbeesreeanbeearee s 36
B0 |V [T (=] IS T=] =T £ o] o OSSR 36

Categorical Embedding with Deep Learning I. Giannakos

KT £ [To - 11 o] o ISP PTTR PR 37

4 FIrSt EXPEITMENT. ...ttt bbbttt b bbbt 38
4.1 Problem definition 38
B2 DALA......eee e 38
S ot £) TSR 39
A4 RESUILS ..o bbbt bbbt 40

5 SeCONM EXPEIMENT ..ottt 43
5.1 Problem definitioncoiiiiiiiiiiee e s 43
ST B T L - T PO P TP PR OTR PP 43
5.3 RESUILS . bbbt neennes 44

B Third EXPEIIMENT.....oiiiiiiee et be e sreeneenes 48
6.1 Problem definition ..o 48
0.2 DAL ..t r e r e ne e 48
8.3 RESUIS ..ot e b b b 49

A B 15110 [o PSSR 52
ST O] o o 1] o o LSRR 53
D APPENAIX ..ttt bbbttt bbbt e e 55
9.1 FOrmMUIA OF PCA...c ettt ettt nae e enes 55
9.1.1 Example: From 3-Dim to 2-Dim with Principal Component Analysis.............. 55

10 BiDHOGraphyccoeiice e s 58

Categorical Embedding with Deep Learning I. Giannakos

Tables and Figures

Figure 1.1: Computational workflow for Deep Functional Interpretation of Genetic
Variants (DEEPFIGV). ..cve et 10
Figure 1.2: DeepVariant WOrkflow OVEIVIEW.cccovviiiiiiiicie e 11
Figure 1.3: Schematic overview of the DeepSEA pipeline, a strategy for predicting
chromatin effects of noncoding Variants.cccooeviriiiniiicnes e 13
Table 1.4: Differences between Deep Learning Models.ccoooviiiieninenciiiiiiceee, 14
Figure 2.1: StruCtUIe OF @ NEUION. ...c.eiiiiiiieiecie ettt nnes 16
Figure 2.2: Structure of @ Neural NEtWOIK.ccccviiiiieiiiie e 17
Figure 2.3: SIgMOIA FUNCHIONoviiiiiiiii e 17
Figure 2.4: Stochastic Gradient DeSCENt (SGD)ccvvvieiiiiiiieiesie e 19
Figure 2.5: CBOW and SKip-Gram MOEIS.ccccoiiiiiiiiiiiieeeee e 21
Table 2.6: Gene and transcript-related fields reported by the VEP. ..., 32
Table 2.7: Co-located variant-related fields reported by the VEPc.cccooeiiiiiiiiiieene, 33
Figure 3.1: Methodology ArChIteCUIE..........ocveieeie s 35
Table 4.1: Used fields and their descriptions from VEP.c.ccccooviviiiiiieiic e, 39
Code 4.2: A python implementation of CBOW deep learning modelcccovvveinennnnne. 40
Figure 4.3: Embedding Projection of Chromosome 22 variants..............ccocceovveieeieseeieesnene, 41
Table 4.4: Getting and compare variants from a web database.cccecveveiiein e, 42
Table 5.1: CaNCEI VAITANTS.......oiiiiiieieie ettt ettt bbb 44
Figure 5.2: Cancer Variants in 3D before training in neural Networkccccceevvvevvenenne. 44
Figure 5.3: Cancer Variants in 2D PCA plot before training in neural network 45
Figure 5.4: Embedding Projection of 900 Cancer SNPs and Likely Being Cancer SNPs....... 46
Figure 5.5: Embedding Projection of 100 Isolated Cancer SNPs and Likely Being Cancer
SINPS (BD)..ttttiteetieiieie ettt bbbttt bbb nns 47
Table 6.1: Cancer Variants AttribULES..........cooieiriiecree e 48
Figure 6.2: Embedding Projection of 143 Cancer SNPs and Likely Being Cancer SNPs....... 49
Figure 6.3: Embedding Projection of one random chosen SNP from 143 Cancer SNPs and
Likely BeiNg CanCer SNPS. ...t 50
Table 6.4: Compare variants from our dataset.ccccorereriiiniiiieee e, 50
Figure 6.3: Embedding Projection with the separation of “Pathogenic”, “Bening” and
“Likely Benign”.ccccooevivinicnieennnn. X@aipa! Aev £xer oprotel 6EMO0OEIKTNC.

Categorical Embedding with Deep Learning I. Giannakos

1 Introduction

This dissertation investigates the problem of creating an NLP word-embedding from
variants data obtained by the Variant Effect Predictor (VEP) [1]. Nowadays, deep neural
networks, aka deep learning, gain momentum in many research areas especially in image
processing [2][3], even though one can identify many efforts in the fields of data analysis using
deep learning. In this thesis we explore the possibility to use a deep learning methodology for
the classification of diseases based on reported mutations. The rationale behind this effort
comes from the text mining area. Deep learning methods have proven to be very effective in
predicting the next word of a sequence of words [4] or classifying documents. Using the same
principles as document classification we explore the possibility to use the variants of a person
in order to classify/identify possible diseases. Based on our theory, the variants are handled as
words and we try to train a deep learning model that can classify persons to diseases based only
on their variants.

A mutation is a change in our DNA, those errors can be happening during copying DNA
or as a result of environmental factors such a UV light. Our DNA will undergo sequence
changes in the genome bases A, C, G and T over a lifetime. The proteins that are produced are
therefore changed and that can be just a good deal or bad. If those errors where not fixed by the
time, mutations can occur during DNA replication [5]. For instance, a mutation in the gene that
is responsible for the construction of a protein called hemoglobin (Hb) causes the sickle cell
anemia. This produces an irregular, stiff, sickle form of the red blood cells. However, having
this mutation in African populations also protects against malaria [6]. We need a solution to
figure, identify and categorize some correlations of mutations from a patient like the example
above, in order to study them and draw new conclusions and find their similarities as well as
how one mutation can affect another.

Our approach differs from the majority of other tools in the sense that we are using deep
learning algorithms. For the realization of our approach we implemented the following steps.
VEP data was processed and we selected some of the available fields. The data (SNPs that have
impacts to a target SNP) is entered in a neural model type Continuous Bag of Words (CBOW)
and after its training the word embedding - vectors were formed from the hidden level of the
network. The word embedding exported first from the neural and then we imported it into the
Principal Component Analysis (PCA) where three Principal Components formed, i.e. we will
represent the variants in 2 or even 3 dimensions using a scatter plot. The last step was to use
cosine similarity to find the most similar ones and see if the results are valid due to the similarity
of the variants using a database e.g., the SNP database of NCBI.

1.1 Previous Research

This sub-section provides the literature review in the field of variant calling using deep learning.
A mini review of deep learning methodologies for bioinformatics can be found here [2].

https://www.ncbi.nlm.nih.gov/snp/

Categorical Embedding with Deep Learning I. Giannakos

1.1.1 Functional interpretation of genetic variants using deep learning predicts impact
on chromatin accessibility and histone modification.

The difficulty of understanding genetic variants' functional consequences currently
limits the identification and implementation of personalized medicine of the functional variants
underlying risk of disease. The functional consequences of disease related protein coding
variants are more and more routine. Nevertheless, the large majority of risk variants are non-
coding, and the prediction of functionality and priority variants for functional validation
remains a major challenge. Here, the authors (Hoffman G., Bendl J., Girdhar K., Schadt E.,
Roussos P.) developed a deep learning template in order to find specific signals to be predicted
with the input of the DNA sequence from four epigenetic experiments. In view of the expected
epigenetic signals of the DNA sequence and the alternative alleles at a given site, the authors
provided a score of the predicted epigenetic consequences for 438 million variants found in
previous sequencing projects. These impacts are test-specific, are predictive of binding the
transcription factor and are enriched for genetic expression and variants associated with disease-
related risk. Nucleotide-level functional effects score for non-coding variants will refine the
mechanism of functional variants, categorize new risk variants and prioritize the subsequent
experiments. [7]

Categorical Embedding with Deep Learning

I. Giannakos

A Epigenetic data across individuals B Genetics
B =2 I
: . L || T
wﬁh e - SKP i i
LH
a L]
| :':] ' 'ﬁ
__._‘-- - - S
wh o e i M .
— e = e
“ e o
w Ak ﬁ THTG IO TOALTA AN TACACAC TTALT T TLOTATTET S AROCA . TECTTE Tl ik CACTACCATLT T OCTOALD - MAT 0D
EHP
C Convolutional neural network E Predict variant effect
Sequence - Signal Chiary Predictad
BB TTTGTCCTCACTACAATACACACTTACT: CCTCACGCAAGAACTCETACTTGCTACTSTAGTT
i mau ma TEERE B Al i e € —
j=- '__-'ll " " -J- %II&
II:I o |- & -
Commiulons E- J = . .
! Fuby Cornaciat Lispes F In silico mutagenesis

Compute A for each site

D Train model
AN GAGGTTTGTCCTCACTACAATACACACTTACT

VAt~

CARGAGETTTETCOTCACTACAATACACACTTACTECN o s
AACAGCTATGTCOTCACTACAATACACACTTACT -
AACAGCTTTGTCOTCACTACAATACACACTTACT L

oo Max A

TTACTEEETTTGCCTATTCTCCAACCAGTECATET S0,
TTACTCEETTTCCCTATTCTGCAACCACTECTTETS0:A

™ 'n.'

&

el
CCTCACCCAACARCTCCTACTTCCTACTSTACTT

Identify functional variants

A
c

TTETCCCAACACTACCATCTCTSETEACC TAATCCCTA

TTACTGECTTTGACTATTCTCCAACCASTECTTCTE0 G App”ﬂﬂﬂﬂﬂ
TTACTCCETTTCEETATTETCCAACCAS TECATETEREA Pradict Allsle }';]
TTETECEAMGACTACCATETETEC TEARS CAATGECTA Spedfic Binding F . -
TTETCCCAAGACTACCATETCTECTEACS CARTCEETA g Pra ﬁﬁ? R R T
TTETCCCAMGACTACCATCT CACCTCACS CARTGEETA =

Figure 1.1: Computational workflow for Deep Functional Interpretation of Genetic Variants

(DeepFIGV).

Figurel.1 highlights: (A) Epigenetic quantitative signal (i.e. ChIP-seq, DNase-seq) for different

individuals and for genomic regions.

(B) Normal genetic analysis stratifies the quantitative signal by allelic at a given SNP, however

unbalance in linkage complicates the functional variant interpretation.

(C) DeepFIGV encodes a sequence of DNA as a 'Picture’ matrix

usually of zeros

including 1 (i.e. a Dark Box) showing the presence in that location of a specific nucleotide.
Each allele is encoded as 0.5 heterozygous SNPs. Local matrix operations containing parameter
values learned from the data are Convolutions. A neural network predicts the epigenetic signal

of the DNA sequence using the convolutions.

(D) The computational model training ties a wide range of DNA sequences to the epigenetic

signal of each region.

10

Categorical Embedding with Deep Learning I. Giannakos

(E) For a query sequence with the reference and the alternative allele, the epigenetic signal is
calculated. The difference between the predicted signal (for example delta) values shows that
the variant has a predicted effect.

(F) The delta value for any potential nuclear substitution is evaluated in silico mutagenesis.

(G) DeepFIGV delta was used to predict and classify the functional variants of candidates
through allele complex binding of transcription factors.

1.1.2 A universal sNP and small-indel variant caller using deep neural networks

Despite significant advancements in sequence technology, genetic variants from billions of
short misleading sequence readings in a single genome remain difficult to call reliably. Authors
demonstrate in this research that a deep convolutional neural network can call for genetic
variation in aligned next generation read results by learning statistical associations between
pileup images about suppositive variant or true genotype calls. The software, known as Deep
Variant, outperforms the instruments and the learning paradigm extends to all genome
structures and mammalian species, allowing the human to extract earth-reality data from non-
human sequencing projects. Authors also show that the benefits of more automated and
common variable-calling strategies are illustrated with a number of sequencing technologies
and experimental designs. This involves deep genomes from the 10X genomic and ion ampliseq
exomes. [8]

rDeep\Fariam \ f DeepVariant CNN training ‘I f Pileup image evaluation ‘
! E—T . |
| A[li&gar;eﬁd Re;en;ergge N iminingpairs 1] Ir Candidate site N il
g e I Referente e ¢ |
| N o i
images I
| N — 1K c
I v N " S | -.
| Find candidate variants and l | gs:c?t?r;es Stcar:‘t:lg I | _________________
encode pileup images — -
I I l | I I' Pileup image
| | 1 I
I
| v l | + l | : Reference |*.5 12
|) | || FommmmmEEEEEE T A || I reads | ot
Pileup T?ﬁ:d | Training cyche i |
images
I nh | % L
" Stochastic !
I Waorking -
l * I I I CNN gradient : I I Convolutional I
descent
| | | I — 1 | neural network |
Deep leaming model ! A | (CNN)
| likelioods " ! I !] |
| e e | Hom-ref Het Hom-alt |
' ' / s
| Y 1 || ikelinoogs | “-°° ©-85 0.0 |
Variant Trained
I calls I I CNN I I Heterozygous variant call I
\ —— n p— n)

Figure 1.2: DeepVariant workflow overview.

Before DeepVariant, NGS reads are first aligned to a reference genome and cleaned up with
duplicate marking and, optionally, local assembly. NGS reading is first matched to a reference

11

Categorical Embedding with Deep Learning I. Giannakos

genome before DeepVariant and cleaned up by duplicate labeling and optionally local
assembly. The left box: first the aligned reads for various sites of the reference genome are
scanned. For each site of the candidate variant the read and reference data are encoded as an
image. The genotype probabilities of each site are determined by a trained CNN. Whether a
heterozygous or homozygous non-reference is most likely a variant is emitted. Middle Box: the
CNN training reuses the DeepVariant machinery for generating pile-up images for a known
genotype sample. These labeled picture + genotype pairs, together with an original CNN, which
can be a random model, CNN trained for other image classification tests, or an earlier
DeepVariant model, optimize the CNN parameters with the aid of a stochastic gradient descent
algorithm to improve genotype prediction accuracies. The final trained model is frozen and can
then be used in the variant calling after the completion of a maximum number of cycles, times
or the output of the model has converged. The right box: the bases and reading, quality values,
and other read characteristics are encoded in a pile-up image red-green-blue (RGB) in a
candidate version. This image encoded is given by the CNN to measure the probability
genotype of the three homozygotic (hom ref), heterozygotic (het) or homozygotic alternative
diploid genotype states (hom alt). A heterozygous variant name will be given in this case, since
the most likely genotype is "het." Blue boxes are data in all panels and red boxes are procedures.
Online approaches provide descriptions of all procedures.

1.1.3 Predicting effects of noncoding variants with deep learning—based sequence
model.

It is a major challenge in human genetics to recognize functional effects of noncoding
variants. A deep learning-based algorithmic system, DeepSEA (http:/deepsea.princeton.edu/),
implemented in order to predict the non-coding variants effects from a sequence, where learns
a regulatory sequence code from large-scale chromatin-profiling results, enabling prediction of
chromatin effects of single-nucleotide sensitivity sequence alterations. This ability was also
used to enhance the prioritization of functional variants, including quantitative trait loci
(eQTLs) expression and variants associated with disease. [9]

12

http://deepsea.princeton.edu/

Categorical Embedding with Deep Learning I. Giannakos

Output:
variant functionality
prediction Functional-variant prediction
Input
log(allele T/allele A)
Output: 3.0
predicted chromatin -
effect 2.0
1.0
(o]
Compare
DHS TF binding Histone marks

;?r:t:l)i;::ad allele- aeleT O @ @O0 0O O0O0O0@O
ptie o aeen OOQOO0@O00®O

Predict t

Training data: Train

ENCODE, =» | Deep convolutional network

Roadmap Epigenomics | < s (DeepSEA) EmLmLEEEIEE

c h ro ma tl n p ro fl |es ‘..Q_.I._oxo_.ox.x.,o....}-,o_o.o,-.
Input t

Input:

genomic sequences . . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT. . .

(1,000 bp) . . .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT. . .

Variant position

Figure 1.3: Schematic overview of the DeepSEA pipeline, a strategy for predicting
chromatin effects of noncoding variants.

Before analyzing the figure 1.3 it’s important to understand some concepts.

e Transcription Factor (TF) are proteins that binds on a gene regulatory regions to
control the transcription of DNA to mRNA. [10]

e Histone is protein that wraps around the DNA and helps suit the genome into a cell
nucleus. This protein wrap including DNA is called chromatin. [11]

e DNase I hypersensitive sites (DHSs) are chromatin-sensitive regions by enzyme
DNase I, which have lost their concentrated structure, exposed and available DNA in
these unique genome areas. This increases the availability of DNA for enzyme
degradation such as DNase I. [12]

Explanation of Figure 1.3: The DeepSEA model is for estimating noncoding-variant effects
on chromatin. Is pre-trained with a compendium of genome-wide chromatin profiles from the
Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics projects (including
690 TF binding profiles for 160 different TFs, 125 DHS profiles and 104 histone-mark
profiles).

13

Categorical Embedding with Deep Learning I. Giannakos

The model is designed to use as input contexts of genomic sequences with integrated
the variant position which is necessary to find the functional effect of non-coding variants.
After training the context the model will predict an allele candidate chromatin profile. Where
in next phase will help us to detect the chromatin effect of the variant position and also
predict the variant functionality.

The table below summarizes the models, the differences, the purpose between them and
their accuracy. Table is based on publication [2].

Name Publication NN Data Purpose Accuracy
Model
DeepFIGV [71, [2] CNN | Whole Predict quantitative z-scores
genome epigenetic variation DNase rho =
sequence 0.0802,
P =5.32e-
16
DeepVariant [8], [2] CNN | Variant Produced more 99,45% F1
caller accurate results with

greater consistency
across a variety of
quality metrics
DeepSEA [9], [2] CNN | Noncoding | Predicting chromatin | >95%

variants effects of noncoding
(Allelically | variants.
imbalanced
SNPs)
Word2Vec [4], [13] Skip- | Corpus Create a word Necessary
Gramm embedding for words. | Semantic-
or Find word relations by | Syntactic
CBOW, query. Word
NLP, Relationship
DL Analysis
Var2Vec [4], [13] | CBOW, Variants Create a word Necessary
(Thesis NLP, embedding for Semantic
Model) DL variants. Predict Variants
impact variants by Relationship
query. Analysis

Table 1.4: Differences between Deep Learning Models.

1.2 Our Solution

An effective way to help researchers extract new knowledge for multiple diseases is to find and
analyze these mutations by their properties. Our research question is if the deep learning
technology, that has proven to provide impressive results in other domains, can be used for the
classification of mutations and prediction of diseases. The rationale behind this effort comes

14

Categorical Embedding with Deep Learning I. Giannakos

from the text mining area and using the same principles as document classification we explore
the possibility to use the variants of a person in order to classify/identify possible diseases.

In our proposal we create a deep learning model to learn about differences and create a graph
of grouped variants. For start we use linear algebra and neural networks to find and calculate
the SNP’s and visualize the results in a 2D or 3D plot. Specifically, the methodology used is
word-embedding which is the formation of weights after training a Natural Language
Processing neural network type Continuous Bags of Words for the mutations of homo sapiens.

Before training, the network requires some data as input that in our case is generated from the
Ensembl Variant Effect Predictor (VEP). VEP takes the human genetic code (DNA) as input,
processes it and at its output mutations are recorded. Then, after training this neural network
using the variants, the embedding (weights) were visualized using the Principal Component
Analysis (PCA) in two dimensions and in three dimensions. Finally, a formula used to find
cosine similarity (Cosine Similarity) in the vectors to detect the similar mutations, in particular
the closest ones that have some correlation with each other, new conclusions can be drawn
which are from which mutations some of them are affected. In order to find new SNPs that
affect, for example, a disease.

15

Categorical Embedding with Deep Learning I. Giannakos

2 Background

In section 2 we introduce the methodologies that we used for our solution such as word2Vec,
VEP, PCA etc. and provide a short introduction in the corresponding research areas such as
biology and artificial intelligence.

2.1 Neural Networks

2.1.1 About neurons

The human cerebrum compromises of around a hundred billion neurons along with a
much greater quantity of neuroglia for protecting and assisting the neurons. The network is
made up such that a single neuron can be attached to 10,000 more neurons while the signals
passed between them take up around 1,000 trillion of synapses. In relation to the sensory
system, a synapse is a framework which permits the communication between neurons through
signals or for targeting the effector cell by chemical or electrical means. The cell body, dendrite,
and an axon make up each mammalian neuron as visible in the following figure. [14]

Dendrite
Terminal

Node of
R .

Cell body anyter

S AxOon Schwann cell
Myelin sheath
Nucleus

Figure 2.1: Structure of a neuron.
2.1.2 A brief introduction to Artificial Neural Networks

A neural network can be conceptualized as a simulation of interconnected neurons such
as a brain. The artificial neural network consists of many interconnected levels of
interconnected neurons where they can be modulated during training. The neurons are arranged
in layers. In a neural network, there are typically three layers: an input layer. One or more
hidden layers (Deep Learning if more than two hidden layers) and an output layer, with a neuron
or neurons representing the prediction goals.

The neurons connected with different strengths (or weights) of the connection, it used to
answer the question “What pattern or edge in the neuron.” The network learns by analyzing
individual records, creating a prediction for each record, and changing the weights whenever

16

Categorical Embedding with Deep Learning I. Giannakos

it makes a wrong prediction. The process repeated several times until one or more of the
stopping conditions have been met, the network continues to improve its predictions. [15]

Input
(X1,X2..Xn)

Weights or
Interconnections
(W1,W2,.Wn)

Bias (B)

Y=f(w5h1+w6h2 + b3)

Node - Neuron h2=f(w3x1+ w4x2 + b2)

(Activation
Function —f(..))

Output (Y) Input Layer Hidden Layer Output Layer

Figure 2.2: Structure of a Neural Network.

2.1.3 Activation Function

Activation function (f) is a function that takes some numbers as input (like input,
weights, and bias) a calculates a binary number usually from 0 — 1. If the number is bigger from
the threshold (e.g., 0.5), the neuron is activated. One of the most used activation functions are

Sigmoid and ReLU.
1 e
14+e* eXx+1

flx) =
The formula of Sigmoid Function

fle) =f)-(1-fx)

Derivative of sigmoid

1-

05

Figure 2.3: Sigmoid Function
[16, p. 425]

17

Categorical Embedding with Deep Learning I. Giannakos

2.1.4 Bias

There is one more significant attribute for a neuron. It plays a very special role in the
activation of the neuron and goes to the next layer. It is called Bias. The bias represents some
attributes of data such as race, gender and color. Which is a factor in activation of a specific
neuron. [6][17]

215 Loss

We first need a way to quantify how well works our neural network to attempt improve
it before we train our network. That is the loss. One formula for doing that is Mean Squared
Error (MSE).

n
1
L = MSE = EZ(YTRUE _Y)2=(1-Y)?
i=1

Where n is a number of examples, Y TRUE is the true value of a variable (the correct classified
of example, e.g., 1), and Y is the prediction variable (output of network). We needed to make
better predictions as possible. To do that, we need to train the network to have the best lower
loss.

2.1.6 Backpropagation

We want to modify wl. How much loss (L) will change after modification of w1? That
we can find it by calculating the partial derivative of %

dz dz dy
dx dy dx
Example: Chain Rule (Leibniz, 1646-1716)

dL dL dY
awl ™ dy awi
£=d(1—_y)2=_2(1_y)

dy dy

We remember Y = f(w5h1 + w2h2 + b3). So we cannot solve % because w1 affects only
h1, so the new chain is:

dy _ dY dhl
dw1 dhl dw1

dy

<7 = W5 *f'(W5h1 + w6h2 + b3)

18

Categorical Embedding with Deep Learning I. Giannakos

dhl

Tl = x1- f'(wlx1l +w2x2 + b1)
So the final chain will be:

dL dL dY dhl

dWl dy dhl dwl
[18]

2.1.7 Stochastic Gradient Descent (SGD)

Certain modifications of the weights and biases in order to decrease the loss takes place
by the utilization of an optimization algorithm known as Stochastic Gradient Descent (SGD).

dL
W1=W1—nm

The speed at which we train is controlled by a constant n known as Learning Rate.

dL . e e . .
If i 0, Loss will be minimized as w1 will decrease

o If % < 0, Loss will be minimized as w1 will decrease
This needs to be done in case of each weight and bias for enhancing the network forecasts.[18]

A

Initial

Weight ,’
Cost \ I
/]
/
l

Incremental

Step \
’
]
]
!

/ e‘(Minimum Cost
Derivative of Cost -——/

Weight

Gradient

>

Figure 2.4: Stochastic Gradient Descent (SGD)
2.1.8 Softmax function

SoftMax is a function that turns real numbers into probabilities it used on the output
layer. And defined as:

xi

S(xi) =

o7
j=1¢"

19

Categorical Embedding with Deep Learning I. Giannakos

2.2 Text Mining and Natural Language Processing (NLP): The Deep Learning
approach

Text mining is the research area of extracting interesting and relevant patterns from text
sources. Text mining focuses on data processing, data analysis, machine learning, statistics and
linguistic computation [19] and it deals with text that is stored in semi-structured and
unstructured format in a natural language. In business, academia, web applications, the internet
and other areas, text mining techniques are continually applied [20]. For opinion mining, feature
extraction, sentiment, predictive, and trend analysis, application areas such as search engines,
customer relationship management system, filter emails, product recommendation analysis,
spam detection, and social media analytics use text mining. [21]

Natural Language Processing (NLP) is an area of research that tries to give the
computers the ability to understands and control speech or text from a natural language. NLP
researchers seek to collect information about the use of languages from people to help
developers create necessary tools and techniques for computer systems to understand and
control natural languages. NLP implementations include a variety of research areas such as
computer translation, natural language text encoding and interpretation, user interfaces, CLIR
retrieval, language recognition, artificial intelligence, and expert systems (CRIRS). [22] [23]

2.2.1 Word2Vec

The meaning of words in a document is interpreted and vectorized by Word2vec, which
implies words of identical meanings have very near distances within a specific context. In the
next chapter, we will see the CBOW and Skip-gram model architectures, learning algorithms
from word2vec suggested by Mikolov. [24] [25]

2.2.1.1 Word2Vec Models

Numerous NLP functions, such as speech-based tags and machine translation, have
shown that word representation from the neural language models has been improved. Such low-
dimensional representations are learned in a language model as parameters and trained to
optimize the probability of a large raw text corpus. These are then implemented as features
alongside hand-crafted features, or used to initialize neural network parameters that target tasks
for which significantly less training data is available.

Models mentioned in the Word2Vec by (Mikolov et al [26]), particularly in “skip gram”
and “continuous bag of words” (CBOW) models are implemented. However, both models are
not word order sensitive. Word embedding models were developed with these models, thus
capturing semantic knowledge between words, and pre-training use of these models was seen
in several different tasks to lead to substantial improvements. Word2Vec is still a common
alternative because of its efficiency and simplicity among other similar approaches like Glove
and fastText. The CBOW model takes the mean of the vectors of the input context words and
calculates the hidden layer. The model Skip-Gramm was the opposite of the model CBOW,
because the target word was in the input layer, while the context words are on the output layer.

20

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

Categorical Embedding with Deep Learning I. Giannakos

INFUT PROJECTION OuUTPUT INPUT PROJECTION OUTPUT

wit-2)

wit-2)

wit-1)

wit+1) wift+1)

wit+2)

wit+2Z])
cBOW Skip-gram

Figure 2.5: CBOW and Skip-Gram Models.

However, because these models are not sensitive to word order, they are not appropriate
for tasks like grammar, such as speaking tagging or addiction parsing, since they are designed
using these models. This is because "what words go where" is determined by syntax. While
semantics than “what words go together.” Obviously, several syntactic connections between
words cannot be properly captured in a model in which word order is discarded. For example,
although the majority of words occur with the word, only names occur exactly after words (e.qg.,
the cat).

This is confirmed by empirical evidence that insensitivity to order does indeed lead to
low syntactic representations, whereby systems using Word2Vec models pre-trained provide
minor improvements while the computationally far more costly using word order information
embeddings of Collobert et al. [27] yields much better results. [28]

2.2.2 Word2Vec Skip-Gram Model

For Skip-Gram, the input is the central word in Word2Vec's skip-gram architecture,
with the prediction the context words. Think a collection of terms W, where W (i) would be an
input as the central word with context words would be W (i + 2) and W (i + 1). If window
sliding size is 2, then:

21

Categorical Embedding with Deep Learning I. Giannakos

\‘l foothall ——s [1.0,0,0] [0,1,0,0]
[0,0,1,0]

: [0,1,0,0] [1,0,0,0]
like —_— [0.0.10]
[0,0,0,1]

_ [0,0,1,0] [1,0,0,0]

playing — [0,1,0,0]
[0,0,0,1]

I foothall — [0,0,0,1] [0,1,0,0]
[0,0,1,0]

Figure 2.6: Getting context words from a corpus (window slide = 2).

The table below is to understand and remember important parts of the model.

V | Total different words in corpus.

X | Input Layer where input word would be One-Hot encoding.

N | Total neurons present in the secrete layer.

W | Weights among the hidden layers as well as the output layer.
W’ | Weight present between the output layer and hidden layer.

y | Output layer with possibilities of almost each word. (SoftMax)

Input Weights Hidden Weights Output
Layer l Layer Layer
X1 (:/' '\] ‘ J [:\ /:;. v1
x2 | () ARG
X3 / : w W IR
Xk E ' E Y
Vx1 VxN Nx1 NxV Vx1

Figure 2.7: Word2Vec Skip-Gram Model.

2.2.2.1 Forward Propagation

To get started with forward propagation first we multiply the center word (x) one-hot
encoding with basic weight matrix i.e. W to the matrix i.e. h, which is Nx1.

h=wT-X

22

Categorical Embedding with Deep Learning I. Giannakos

In order to achieve the value of u, the hidden vector “h” is multiplied with the 2" weight matrix
GGW”.
u=WwWT-h

(1))

In order to achieve the value for output layer “y”, SoftMax is applied to the layer “u”.

e u; = the j** neuron of “u” layer.
e w; = the term j" in the vocabulary, indicating “j” as index.
o Vyi=J th column of matrix W i.e. the column next to the W;
L u] = VVI'I;U -h
y = softmax(u)
yi = softmax(u;)
y; stands for the probability of Wj as a context term.
et

Z}l”zl euj’

P(W;|W;) indicate the probability of Wj as the context word, with Wi stands for the input
word.

P(W|W;) = y; =

Therefore, the main objective is to increase the value for P(W;,
indices of context word.

W;), in which j* stands for the

Goal is to maximize:

c=1 Z?’:l euj,
Here, the j*c represent the key for unique words that ultimately belongs to the context words.
Moreover, these context words begin from 1, 2, 3,...C.

Now, in order to obtain the loss function, we take the —ive log-probability of function that

should be minimum.
C eujc*
E=—lo]_[_°
g{ C=1Z?I=Ieujl}

E is the loss function. Suppose “t” is the output vector taken for the specific word from the
training data. Now, 1 would be located at the context word position, while 0 would be present
elsewhere. Here, t;,. would be one of the various context words.

Multiplying e*e* to ¢,

c u ¢
E = —log (1_[euJ'C*) + log <Z e”f’>
c=1 j'=1

The resultant equation for loss function would be:

23

Categorical Embedding with Deep Learning I. Giannakos

2.2.2.2 Back Propagation

The two factors that should be accustomed are “W” and the “W’”. So, the partial
derivative should be determined for the loss function in order to apply the method of gradient
descent according to the W and W’

dE
aw’

Our objective is to determine the and ;—fy

dW,ij B duj dWll]

T WSS S
—_ == Ui, . . el
du; =1 ¢ e duj Lujy

dE Cc 1%
S
du] Zc:l j=1y]

dE
du; Vi~ =g
aw'y; 9 aw; 9 T awr,
dE. Y
awy; ~ 9
Nowfinding(fTE
ij

dE dE du; dh

dE , dWl] .Xi
—_ = ej . W ij R
dE ,

[22] [28] [29]
2.2.3 CBOW Model

In Continuous Bag of Word (CBOW) model of Word2Vec, context words are input with
prediction as the center word. The text mining process will be the same as skip-gram described

24

Categorical Embedding with Deep Learning

I. Giannakos

in the figure above 2.6. The difference on this model is we think a set of words W, suppose
input are W (i + 2) and W (i + 1) as conditional words, with center word is W (i). If 2 is the

size for sliding window.

Figure 2.8: Word2Vec CBOW Model.

The table below is to understand and remember important parts of the model.

X1

X2

X3

Xk

Weights

|

Hidden
Layer

Nx1

Weights

l

Output
Layer

\al
y2

vy3

Yj

V | Total different words in corpus.

C | Word window size.

X | Input Layer where input word would be One-Hot encoding.

N | Total neurons present in the secrete layer.

W | Weights among the hidden layers as well as the output layer.
W’ | Weight present between the output layer and hidden layer.

y | Output layer with possibilities of almost each word. (Softmax)

25

Categorical Embedding with Deep Learning I. Giannakos

2.2.3.1 Forward Propagation

To get started with forwarding propagation of CBOW first, we are multiplying one-hot
encoding of every context words (Xi) with the weight matrix W. For every result summed we,
divide it by C. Where, the mean for input vectors is weighted by “W” matrix.

= 2w (Yox)

i=1

We are now calculating the inputs for every node in the output layer:
u] = VV’V]T - h
Where Vy,; indicates the j** column in the W' output matrix.

In the end, the output layer was calculated. The y; output is obtained by passing the input u;
through soft-max function.

el

yi=p (W Wy, .., We) = —

!
u'
jl:le J

After understanding the functioning of forward propagation, the matrices of W and W' can be
understood.

2.2.3.2 Back Propagation

In order to understand the weight matrices, first of all the randomly initialized values
are learnt, followed by inserting different training examples in the model under keen
observation. Then the errors are determined by setting the comparison between real
performance and expected performance. This comparison generates the gradient of error, which
is measured and then corrected in both of the weight matrixes. This sort of optimization is
known as SGD i.e. Stochastic Gradient Descent.

First of all, the loss function is set with the aim of increasing probability of output with
the given context of input. So our loss function will be:

E = —logp(W,|W,)

4
= —u;, — log z exp (u;,)

=1

v
= —VWOT ~h —log Z exp (VWj,T h)

j=1

Where j * is the current output word index, the following step is the derivation of the updated
equation for total weight i.e. W', between the hidden layers and output layers. In next we derive
W i.e.; the weight intermediates the hidden layer and the input layer.

26

Categorical Embedding with Deep Learning I. Giannakos

Update the weight between output layer and hidden layer:

First of all the derivative is calculated for loss function i.e. E of the input to the node j** which
belongs at the output layer u;.

dE

= v. —t;
du] yj 1

Where t; = 1if j = j* otherwise t; = 0. This simplifies the output layer’s prediction error for
the j” node, followed by taking out the derivative of E for the W7; output weight by following
the chain rule.

dW'; du; dW'y;

=-t
At this point, the gradient of W';; the weight of arbitrary output is obtained and now the
stochastic gradient can be defined for the descent equation.
W= Wi—n-—t)h
or
Viw, = Viw,=n-j—t)-h
Here, the n > 0 stands for the learning rate, h; stands for the hidden layer’s i**column, and the

VV’V].indicateS the w;” output vector.

Keeping it under consideration, this updated equation suggests reviewing each word of
vocabulary and analyzes their output probability i.e.y;, followed by comparing y; with ¢; that
is its expected output as 0 or 1.

e In case, y; >t; (“overestimating”), a portion of hidden vector h is subtracted from
the Vvéj, leading to make the Vvéj away from 1j,,,.

e In case, y; <t; (“underestimating”, as it can be accurate if t; =1 and W; = W,
followed by addition of “h” to Vyy, , leading to make the Vy, closer to Vy,.

e In case the y; stands closer to t;, there will be just a slight modification in weights as
per the updated equation.

Must remember that the input vector (V) is different from the output vector i.e. V),

Updating the input-hidden layer weights

Here, the major focus is laid on derivation of updated equation for W;;, which is the

input weight. First of all the derivative of E is calculated according the arbitrary hidden nodes
I.e. h; by following the chain rule.

dE ~- dE dy;

dhi ‘= du] dhl

27

Categorical Embedding with Deep Learning I. Giannakos

v
= Z()’j —t) W'y
=1

Here, the calculation is completed by following the fact that nodeh; of hidden layer is attached
with every node f output layer, hence every prediction error needs to be integrated. Finally the
derivative of E is calculated accordingW, , which is arbitrary input weight.

dE_dE dh
AW, dh; W,
14
:z(yf) Wiy X
=1

Where EH stands for the elements’ N-Dimensional vector Z}-’zl(yj —t;) W'y % - X fromi =

1, ..., N. Although the X inputs are one-hot encoded and there will be just one non-zero row i.e.
N X V matrix % (x - EH). The final SGD equation for the input weight is

1
VWI,C = VWI,C - 77 " E " EH

Where W, . is the c** word in the input context. [26]

The CBOW model was used in our problem. The reason for the selection of CBOW is
that the basic information is the description of the variants (contexts) and the purpose is to
generate vectors for each SNP (e.g. rsXXXX). In Word Embedding templates before training
the model needs to be pre-processed. More specifically, the text has to be broken into words
and after the number of the window defined by an expert, lists are formed - context with each
central word. The difference in our case is that since we have the information of the variants,
the most important fields were selected based on their correlation and the experts. Then we
assign each word to a number. These numbers are the context of the neural network where it
corresponds to an SNP target [4] [24].

2.3 Principal Component Analysis (PCA)

Principal components analysis is a method used for transforming a number of possibly
correlated variables in a small number of variables known as main component using
mathematical principles. The original dataset, which may have involved many variables, can
often be interpreted in just a few variables, using mathematical projection. The basic concept
of the main component analysis is to minimize the dimensionality of a dataset, in which several
similar variables occur, while preserving as much variance as possible in the data set. This
reduction comes by converting the uncorrelated and ordered main components into a new
collection of variables which retained from some first component that contains the most of
variation.

28

Categorical Embedding with Deep Learning I. Giannakos

The main use of Principal Component Analysis (PCA) is to reduce the dimensions of a
dataset that includes a huge number of associated variables and keeping best possible variance.

The goals of PCA are to:

Extract the most important information from the dataset.

Compress the size of the dataset by keeping only most important data.

Simplify the description of the dataset.

Inspect the structure of the observations and the variables.

Compress the data by decreasing the number of dimensions, without losing much
information.

6. This technique used in image compression.

SAEEIR A

We have to be through in statistics and matrix algebra in order to analyze the data by the
Principal Component Analysis. In neural networks an n-dimensional vector with numeric
characteristics represents an object or context. The incorporating semantic similarities between
texts holds an important position. [30]

2.4 Cosine similarity

One of the most common utilized standards for information fetching is Cosine similarity.
A text file is transformed in a vector of terminologies by this standard. Through the utilization
of this standard, the resemblance of two files can be determined by computing the cosine value
among the term vectors of both the files. This standard can be performed on any two blocks of
text (whole document, paragraph, or single line). In instance of a search engine, the likeness
factor of the input query and the documents are retrieved from most resembling to lower
resemblance. The greater the resemblance score among the document’s and query’s term
vectors, the greater the resemblance in both the said excerpts.

The word or term searched should be accommodated while utilizing cosine similarity
method for determining the resemblance ratio between document and the search term given by
the user. The semantic meaning of the search term might not be perfectly accurate using cosine
similarity. The execution of cosine similarity standard may at times give undependable
outcomes between two term vectors in terms of syntax. Comparing the syntax might not provide
solution for the problem of semantic meaning. For additional procedure, i.e., data fetching
framework, it might deliver false outcome and cause corrupting in its presentation.

According to document-query scenarios, the document is portrayed in the form of a term
vector where the proportions of the vector correspond to the terms present in the document. The
value of the proportion is associated to the frequency of term in the document. The
representation of the document in the form of a vector is:

d = Wao, Wazr, - Wax)
In a similar way as per the document, the representation of query is given as follows:
q= Wao Wa1, s Wer)

the occurrence of terms inside a document is given by wg; and wy; (0 < i < k) which are float
numbers, whereas the value of the proportion is associated to the frequency of term in the

29

Categorical Embedding with Deep Learning I. Giannakos

document. On the basis of vector similarity, the resemblance of two vectors is determined by:
[31]

. God E WX w
Similarity(ﬁ, d) = COoS (9) = 1 | Zk—l qk dk

2.5 Genetics

2.5.1 A Brief Introduction

All in all, genetics is generally viewed as a zone of science that encourages one to
comprehend the systems and techniques utilized in characteristics acquired from parents to
children it additionally crosses with the innate and hereditary varieties in living life forms. It is
emphatically connected to the utilization of genetics to human undertakings. While,
chromosomes are an arranged framework comprised in the cell that contains various genes,
consisting long chains of single atoms of deoxyribonucleic corrosive (DNA) or, at times,
ribonucleic corrosive (RNA) and the connected protein. Many bacterial chromosomes are
basically a solitary, round, twofold linked DNA generally appended to the plasma film, which
consists various qualities.

Hereditary data for the most part has its own job towards genotype (duplication),
phenotype (gene characteristic), and modification. Ordinarily, by correlation, DNA is a long
atom, comprising of our unique hereditary code and accumulating hereditary data. This
comprises of subunit links known as nucleotides (otherwise called "bases") comprising of a
phosphate particle, a sugar atom (5-carbon) and a nitrogen base. Each filament comprises of a
long arrangement of the four essential structure squares or 'bases.’ DNA is a part of its
information accumulated in DNA as a code comprising of four synthetic bases: thymine (T),
cytosine (C), guanine (G) and adenine (A).

Technique for the DNA record and RNA interpretation, earlier known as a core dogma of sub-
atomic science, will at first go through DNA for the advancement of protein. This core dogma
portrays the two stage cycle, record and interpretation through which protein is produced by
data in genes: DNA-RNA protein. RNA is a functioning atom with long nucleotide links. It has
ribose sugar, phosphate., and nitrogen base. In any case, now and again, there are blunders that
cause change when a mistake happened during DNA replication/DNA record. Two major
change related circumstances; DNA duplication blunders/DNA record mistake and synthetic or
actual impacts brought about by explicit transformation related variables or unconstrained
change. In like manner, we may discover different writings while examining current genetics

[5].
2.5.2 Human Genome Project

The principle point of the Human Genome Project is to investigate internationally the
formation of the human genome and to group all qualities of the human genomes. In 2001 to
2003, Venter and Francis Colleins declared the full draft of the human genome pattern with a

30

Categorical Embedding with Deep Learning I. Giannakos

98% human genome sequenced at an accuracy of over 99,9%. In previous occasions, the HGP
was exceptionally eager and pointed toward building up a human hereditary planning
framework, finding 3 billion human genomic nucleotides and describing the whole collection
of these by 24 chromosomes in 2005 [32].

2.5.3 Ensemble Variant Effect Predictor: Annotating Variant Effects

The Ensemble Variant Effect Predictor (VEP) is an apparatus which comments on,
assess and organize genomic variations, including non-coding areas. VEP foresees precisely
the impacts of grouping variations on records, protein items, administrative areas, and
restricting themes by utilizing the Ensemble information bases' top notch, wide degree, and
incorporated plan. It additionally considers correlation with a wide arrangement of existing
freely available variety information inside Ensemble to give understanding into populace and
genealogical hereditary qualities, aggregates and infection. VEP is free and an open source. It
is accessible by means of a straightforward web interface (http:/www.ensembl.org/vep), an
adaptable downloadable bundle and the Perl and REST application programming (API)
administrations of both Ensemble.

VEP clarifies two distinct sorts of genomic variations: (1) arrangement variations with
one of a kind and clearly characterized changes (including SNVs, additions, cancellations,
various base pair replacements, microsatellites, and tandem redundancy); and (2) bigger
primary variations (bigger than fifty nucleotides long) containing contrasts for the quantity of
duplicates or inclusions and DNA erasures. The VEP returns specified examination for all
information variations for consequences for records, proteins, and administrative areas.
Included for distinguished or comparable variations are allele frequencies and data about
infection or aggregate.

The VEP discoveries contain a wide scope of information applicable to genes and
records (Table 2.10). Record sets can be utilized on an essential reference get together or ALT
grouping, yet naturally, the VEP chooses Ensemble explanation.

31

Categorical Embedding with Deep Learning I. Giannakos

Property Description

Gene ID Ensembl stable identifier for affected gene
Gene symbol | Common name for gene, ¢.g., from HGNC
Transcript ID | Ensembl stable identifier for affected transcript
RefSeq ID NCBI RefSeq identifier for affected transcript

CCDS ID Consensus coding sequence (CCDS) identifier uniting Havana,
Ensembl, and NCBI

Biotype GENCODE biotype of affected transcript

cDNA Coordinates of input variant in unprocessed

coordinates cDNA

CDS Coordinates of input variant in processed coding sequence (CDS)

coordinates

Distance Distance to transcript if variant falls outside transcript boundarics

Consequence | SO consequence type of input variant allele on transcript

type

Exon Number(s) of affected exon(s)

Intron Number(s) of affected intron(s)

TSL Transcript Support Level (TSL) highlights well-supported and
poorly supported transcript models

APPRIS Annotation principle splice isoforms (APPRIS) is a system to

annotate alternatively spliced transcripts based on a range of
computational methods, assigning primary and alternative statuses

to transcripts
HGVS HGVS notations for input variant relative to the coding sequence
Phenotype Flag indicating known association with a phenotype or disease

Table 2.6: Gene and transcript-related fields reported by the VEP.

The VEP filters the information bases for the Ensemble Variability, which comprise a
large assortment of freely accessible information on germ line and substantial inconstancy in
vertebrates. Ensemble fuses variations from doSNP and different hotspots for 20 life forms, and
quality controls. Explicit human examples incorporate COSMIC and Human Gene Mutation
Database varieties, and underlying variations, also duplicate number variations from the
Genomic Variants Database information base.

The VEP may thusly contrast a great many variations which characterize the ones
already referenced. The VEP covers allele frequencies as per the activities 1000 Genomes,
NHLBI exome sequencing and EXAC. These can be utilized as channels, taking into account
the avoidance of explicit variations as pathogenic applicants. The VEP gives PubMed
identifiers to referred variations, which likewise explain those related with an aggregate,
confusion, or attribute utilizing information from Orphanet, OMIM, the GWAS Catalog, and
other information sources. Clinical condition of importance given by ClinVar is additionally
basic for human variations. [1]

32

Categorical Embedding with Deep Learning I. Giannakos

Property Description

Variant ID External identifier for variant co-located with input, e.g., rsID
from dbSNP

Somatic Somatic status of co-located variant

GMAF Global minor allele and frequency of co-located variant from
combined 1000 Genomes phase 3 populations

Other Frequency data from continental level 1000 Genomes phase 3

frequencies data and two NHLBI-Exome Sequencing Project populations

Clinical Clinical significance status of co-located variant as reported by

significance ClinVar

Phenotype Flag indicating known association with a phenotype or discase

PubMed ID NCBI PubMed IDs of publications citing co-located variant

Table 2.7: Co-located variant-related fields reported by the VEP

33

Categorical Embedding with Deep Learning I. Giannakos

3 Methodology

In this chapter, we explain the methodology we followed to figure, identify and categorize
the variants and correlations of mutations from a patient like the example above, in order to
study them, draw new conclusions and find their similarities as well as how one mutation can
affect another.

At the beginning, we should download "00-common_all.vcf.gf" which is a file with the
human variations in VCF format without clinical assertions that have been mapped to
assemblies GRCh37 and GRCh38, provided by dbSNP [33]. Furthermore, we should extract
data from the file so is necessary to create a script that reads this file and selects the fields
#CHROM, POS, ID, REF and ALT [34].

Once we have this data, we use it as input to the Ensembl Variant Effect Predictor (VEP).
Next, when VEP data processing is finished and the variants was discovered from VEP.

We selected the Continuous Bags of Words (CBOW), deep learning model that takes as
an input multi-words contexts (developer-defined list which contains numerical representations
of words). When computing the hidden layer output, the CBOW model takes the average of the
vectors of the input context words and use the average vector as the output. The main criteria
of this model is that the input layer use as basic information the selected attributes of the variants
context from VEP database in order to generate vectors for each target SNP (e.g. rsXXXX). In
word embedding before training the model we need to preprocess the data/text e.g. the sentences
will be broken into words and after the length of window (window=context where words are
encoded in unique numbers) defined by an expert or experiments, word lists are formed also
and a context with each central word.

The difference in our case is that we have the variants from VEP, the most important
fields were selected based on their correlation and the experts. These fields are described in the
sections with the Experiments below. Also, we have assigned each word/variant to a number.
These numbers are the context of the neural network where it corresponds to an SNP target [4].

Finally, after training the CBOW model and embedding was formed we extract the word-
embedding (weights between Input Layer and Hidden Layer) and use those embedding’s as
input to the Principal Component Analysis (PCA) in order to represent the output components
with a scatter plot [30]. Figure 3.1 depicts the high-level architecture of our methodology while
the following sub=sections describe the main steps of our implementation.

34

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-common_all.vcf.gz

Categorical Embedding with Deep Learning I. Giannakos

00-common_all vef

l

WVCF EXTRACTOR
SCRIPT

#CHROM, POS, 1D, REF, ALT

Variant Effect
Predictor (VEP)

Variants

Meural Network

Word Embedding

Principal
Compoment
Analysis (PCA)

Figure 3.1: Methodology Architecture
3.1 Prepare variation data for VEP

Step 1. Download all variation dataset from
ftp://ftp.nchi.nih.gov/snp/organisms/human 9606/VVCF/00-common all.vcf.gz

Step 2. Extract data in a folder (file “00-common_all.vcf™).

Step 3. The following script generates some files in ‘data/generated/chrX.vcf’. Those
files contain information about variants. Specific'CHROMOSOME', 'POSITION,
'ID', 'REFERENCE' and 'ALTERNATIVE'. That files will be used as input on VEP.

3.2 Installing VEP

. git clone https://github.com/Ensembl/ensembl-vep.git
. cd ensembl-vep

chmod +x INSTALL.pl

. perl INSTALL.pl

SN

35

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-common_all.vcf.gz

Categorical Embedding with Deep Learning I. Giannakos

While install you must select those numbers-files:

296: homo sapiens merged vep 94 GRCh38.tar.gz
298: homo sapiens refseq vep 94 GRCh38.tar.gz
300: homo sapiens vep 94 GRCh38.tar.gz

If everything is completed download GRCh38 fasta assembly from ensembl and run example:

1. mkdir fasta
. cd fasta
3. curl -0 ftp://ftp.ensembl.org/pub/release-
96/fasta/homo sapiens/dna/Homo sapiens.GRCh38.dna.primary assembly.fa

N

.gz

4. bgzip -d Homo_ sapiens.GRCh38.dna.primary assembly.fa.gz

5. cd ../

6. ./vep -1 examples/homo_sapiens GRCh38.vcf --cache --force overwrite -
-merged --offline --everything --fasta

./fasta/Homo_sapiens.GRCh38.dna.primary assembly.fa.gz --assembly
GRCh38 -o stdout

Now, we can run VEP for all snps of Homo Sapiens. To do that copy the all generated files
“chrX.vcf” from previous steps and paste it on ensembl-vep/input/. Run it and wait to finish
some hours/days and you will see all chromosome variants in ensembl-vep /output folder.

3.3 Data Preprocessing

According to Word2Vec CBOW model, the data was used is a text document. So, for
start the developer must define a length of the sentence that is necessary to start processing a
whole document that he wants to process, a step called “sliding window”. The sliding window
is a container that contains few words encoded in numbers. For every word in this container,
we need to extract the context words and center words. The center word, otherwise called
“target word” is the mark (index) number in whole document words. The previous and next
words among the center word on the current sliding window are the Context words of the
window.

The difference in our methodology is the variants that we have to get from VEP were
selected by an expert along with the correlation of attributes. The selected attributes are
described in the experiment section. The start idea was the attributes will be used as contexts
(encoded as unique numbers) and the SNP as all words in the vocabulary. In shortcut context
(selected attributes) targets a SNP (rsXXXX). That information was used as input in our model.
But we conclude with the final idea in third experiment, the common attributes among SNP’s
will be used as SNP indexing. Those indexes are 1-window contexts and the target is one-hot
encoding of total SNP’s.

3.4 Model Selection

The CBOW model usually is taken as input multi-words contexts. The model predicts the
centre word from its surrounding context [35]. When computing the hidden layer output, the
model takes the average of the vectors of the input context words and use the average vector as
the output. The CBOW model was used in our problem than Skip-Gramm. The reason this

36

ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz

Categorical Embedding with Deep Learning I. Giannakos

model was used is that the basic information is the description of the variants (contexts) and the
purpose is to generate vectors for each target SNP (e.g. rsXXXX) [13] [5].

3.5 Validation

Various word embedding models generate different vector representations. It is a matter
of checking how well the concept of the perceived similarity is taken from the word vector
representations and validating the distribution hypothesis, where the meaning of the terms is
linked with the context in which they occur. For this latter, it is still unclear how similarities are
simulated through distributive semantic models.

The cosine similarity is as an inspector. To clarify, inspector measures the association
between all dimensions of the vector, regardless of their meaning for a given word pair or for a
semantic group [35]. So, we pass the word embedding results into cosine similarity where will
compare all SNPs vector and will select the most similar for one selected SNP. To validate this,
we must compare the SNP attribute for instance REF, ALT and if are almost the same we have
a valid result. This process must be done for every SNP in the dataset to have a clear image
about them.

37

Categorical Embedding with Deep Learning I. Giannakos

4 First Experiment

4.1 Problem definition

On the first experiment, the objective is to cluster all the known variants and to preview
all those datasets by their unique attributes. We need a solution to be able to visualize - plot
those datasets to help bioinformaticians and biologists to understand more about mutations.

Another challenge after accomplishing the visualization is that we need a way to be able
to find if a mutation has some correlation (or the opposite) with all other mutations. If they are
similar by their attributes we possibly can watch and study them to found new conclusions
about them (e.g., a possible cancer SNP).

According to the architecture we introduce in the previous chapter we believe a deep
learning neural model and more specific a natural language processing deep neural model will
be able to help us analyses our data while the PCA to plot this type of data. Such a model is
designed to process documents and produce vectors of words to be able to plot them to find the
similarities between them. In this experiment, we will try to use variant data instead of words
to be able to produce vectors of variants.

4.2 Data

The table below shows the results of variants data generated from VEP. Some of these fields
will be use in our neural network as input. Table is available on VEP website [34].

Columns Description Used
LOCATION Location of variant in standard coordinate format YES
(or CHROMOSOME) (chr:start or chr:start-end)

Allele The variant allele used to calculate the consequence. YES
Gene Stable ID of affected gene. YES
Feature Stable ID of feature. YES
Consequence Consequence type. YES
AF Frequency of existing variant in 1000 Genomes YES
combined population.
GIVEN_REF Reference allele from input. YES
SOURCE (Ensembl) Source of transcript. YES
IMPACT Subjective impact classification of consequence type. YES
STRAND Strand of the feature (1/-1). YES
VARIANT _CLASS SO variant class. YES
SYMBOL Gene symbol (e.g. HGNC). YES
SYMBOL_SOURCE Source of gene symbol NO
BIOTYPE Biotype of transcript or regulatory feature. YES
CANONICAL Indicates if transcript is canonical for this gene. YES
TSL Transcript support level. YES
BIOTYPE Biotype of transcript or regulatory feature. YES
USED_REF Reference allele as used to get consequences. YES
INTRON Intron number(s) / total. YES

38

Categorical Embedding with Deep Learning I. Giannakos

EXON Exon number(s) / total. YES

CLIN_SIG ClinVar clinical significance of the dbSNP variant. YES

SOMATIC Somatic status of existing variant. NO

GENE_PHENO Indicates if gene is associated with a phenotype, disease | YES
or trait.

MOTIF_NAME The source and identifier of a transcription factor NO
binding profile (TFBP) aligned at this position.

MOTIF_POS The relative position of the variation in the aligned NO
TFBP.

HIGH_INF_POS A flag indicating if the variant falls in a high information | NO
position of the TFBP.

BAM_EDIT Indicates success or failure of edit using BAM file. NO

miRNA SO terms of overlapped miRNA secondary structure NO
feature(s).

Table 4.1: Used fields and their descriptions from VEP.

4.3 Scripts

1. from tensorflow.keras import utils

2.

3. def generate data():

4. total rs = len(rs)

5.

6. for counter in range (0, total rs):

7. X = np.array([wids[counter]])

8. y = np.array([utils.to categorical (counter, total rs)])

9.

10. yield x, vy

11.

12.

13. # build CBOW architecture

14. cbow = tf.keras.models.Sequential ([

15. tf.keras.layers.Embedding (input dim=vocab size,
output dim=embed size, input length=window size),

16. tf.keras.layers.Lambda (lambda x: tf.keras.backend.mean (x,
axis=1), output shape=(embed size,)),

17. tf.keras.layers.Dense (vocab size, activation='softmax")

18. 1)

19.

20.

21. cbow.compile (optimizer="'rmsprop',

22. loss="'categorical crossentropy')

23.

24. def training() :

25. for epoch in range(l, 150):

26. loss = 0.

27. i =0

28. for x, y in generate data():

29. i +=1

30. loss += cbow.train on batch(x, y)

31. if 1 % 100000 ==

32. print ('Processed {} (context, wvariants)
pairs'.format (i))

33.

34. print ('Epoch:', epoch, '\tLoss:', loss)

35. print/()

39

Categorical Embedding with Deep Learning I. Giannakos

| 36.

|37. training ()

| 38.

|39. weights = cbow.get weights() [0] #Word-Embedding

Code 4.2: A python implementation of CBOW deep learning model

In the code section above, we have reproduced an example of a CBOW deep learning model.
In the function generate_data(), the SNP’s encodes to one-hot array (zeros and ones) by its
index on whole document. Nextly, we create the model architecture were defined by the
vocabulary length, contect length, embedding size and loss function. On training() function, it
IS necessary to define the epochs to start training. At the end, when training have finished we
extract word embedding from our deep learning model.

4.4 Results

In the first experiment for chromosome 22 using a Continues Bag Of Words Model after 5
epochs, and using an NVIDIA CUDA 2080ti card and 64GB RAM over a period of four weeks
shows that our model succeeds a small variation description (~4%) and the results were not
qualitative. Due to the long time required for model training and processing of huge volumes
of data, it resulted in invalid results. To be able to assume that the results are valid would require
more time and more experiments for the reliability of the results. To visualize the accuracy of
the results we use Cosine Similarity and compare our samples (i.e., SNPs) with a database e.g.,
of NCBI we then compare them in terms of Alleles, Position and Variation Type characteristics.
If most SNP’s are close by and there is a lot of similarity between them, then our results are
quite accurate.

After training variation data of chromosome 22 we get 2 files (vectors22.tsv and rs22.dat). We
use them as input to PCA, or you can use also TensorFlow Projector to get the 2-Dimension or
3-Dimension of chromosome 22 embedding.

40

Categorical Embedding with Deep Learning I. Giannakos

15144552065

rEB0000454 [r=100/57775]

1= 19177770 3 27 T 7 2)
IE 6496006 -

m
pTaEs [S1866 /4

TS116.96,1776 1 e e S 554 0.0:29 26
P 507 3082) 1453015748
S0 AT q
15552002890 = 1506 R7I46
15576373019

rs7 3 EE1R03
rs 12455204

rs73BRELAE

Figure 4.3: Embedding Projection of Chromosome 22 variants.

In the figure above, it depicts the embedding results after training our model with variation data
of chromosome 22. In fact, we choose a random SNP and we search and watch the closest
SNP’s using Cosine Similarity. The results are not too accurate concluding that the training was
not enough for a better view. We believe that we need more time for the training since the
variation data was too big. The main problem was that the specific model in Tensorflow does
not work with too large data for all chromosomes. The limiting factor is the size of the final
matrix in a node since its size is calculated by this formula {number of words}
{dimensions}{float size}. In this experiment, we used 21 attributes as context, 1083881
number of words, with 101 dimensions and only 5 epochs, a setup that forced our infrastructure
to train the model for four weeks. With our estimates according to the 2nd experiment, 120
epochs are a good starting point which needs about 2 years with the current hardware to provide
result. Also training it cannot be going faster cause the limit factor {number of words}
{dimensions}{float size}.

41

Categorical Embedding with Deep Learning I. Giannakos

SNP’s CLINVAR
rsl36674 chr22:9.45237239C>T

rs555692692 chr22:9.20013752C>G

.50696649G>A
.34104172G>A
.43438229G>A
.50579775 50579776del
.50579776dup
.50579773 50579776del
.50579776del
.50579774 50579776del
.33269832G>A
.48957989G>T
chr22:9.48957989G>A
rs73878646 chr22:9.23442691G>T
rsl1l80912911 chr22:g.47177568C>A

Table 4.4: Getting and compare variants from a web database.

rs370347263 | chr22:
rs552002890 | chrz2:
rs150667946 | chr22:

rs57632309 chr22:
chr22:
chr22:
chr22:
chr22:
rs73881903 chr22:

rsl1l2485214 chr22:

g

g
rsll1702924 chr22:9.45929200T>C
rsl144594985 chr22:9.24506083A>G
rs550330415 chr22:9.37486227C>T
rs573050197 chr22:9.21187073A>C
rs80000454 chr22:9.42176511C>T
rsl015775 chr22:g9.37251477A>G
chr22:g9.37251477A>T
rs1l86496006 chr22:g9.19835053T>C
rsl91770327 chr22:9.47551418G>A
rsl1l81398 chr22:9.18224781C>T
rs5760435 chr22:g9.24858500C>A
chr22:g9.24858500C>G
chr22:g9.24858500C>T
rs5994443 chr22:9.32275353T>C
rs1l85827560 chr22:9.20043768C>G
chr22:9.20043768C>T
rsll17449195 chr22:9.47381883C>T
rs558777861 chr22:9.24491342G>T
rsl6981761 chr22:9.26725869C>T
rs572267188 chr22:9.45014431G>T
rs547212926 chr22:9.30188731G>A
rsl45973982 chr22:9.32187810G>T
chr22:g9.32187810G>A
rsl1l45305748 chr22:9.41187810C>A
chr22:g.41187810C>T

g9

g

g9

g

g

g

g

g

g

g9

g9

g9

In table above we use the myVariants API in Python 3. We select to download from ClinVar
database. Now we analyze and compare similarities from the table data. “chrXX” is the
Chromosome and “X>Y" is allele. According the top first table rows the alleles are not the same
so results are not valid.

42

Categorical Embedding with Deep Learning I. Giannakos

5 Second Experiment

5.1 Problem definition

Some single nucleotide polymorphism (SNP) are very similar so we need to use some
mathematical methodologies like “Independent Samples T” and “p-value”, to be able to verify
if are really similar [36] but we are not sure for the results because in genetics we must find if
a SNP affects the protein activity [37] of a target disease.

On the second experiment, the objective is to categorize a SNP dataset to a specific
disease. According to dataset where is selected by the criteria if exists a cancerous SNP. An
expert in the field of bioinformatics provided to us a list of mutations that fall into one of the
three following categories LIKELY_BENIGN: 11119, BENIGN: 3547 and PATHOGENIC:
14499 - TOTAL: 29165 SNP’s. We discovered after using Principal Component Analysis
(PCA) and we plot it, that it’s hard to cluster only “cancer” and “possibly cancer” variants and
preview all those datasets by their unique attributes.

One another challenge after the plotting those cancerous SNPs we need to verify the
results and somehow be able to find if a mutation has some correlation (or the opposite) with
another and if they are similar so that we can study them and possibly find new conclusions
about these (e.g. a patient with mutation rs1234 has a predisposition to cancer).

According to the architecture we introduce in the methodology chapter we believe a deep
learning neural model and more specific a natural language processing deep neural model will
be able to help us analyses our data while the PCA to plot this type of data. Such a model is
designed to process documents and produce vectors of words to be able to plot them to find the
similarities between them. Again in the second experiment, we will try to use variant data
instead of words to be able to produce vectors of variants.

5.2 Data

Some of those fields (specific RS and Classification) will be used in the neural network as input.
The dataset fields are described below:

VariantType

Gene

RS
Chr

Start

End

Ref_Allele

Alt_Allele

43

Categorical Embedding with Deep Learning I. Giannakos

Submisson_Review

Num_Submitters

Cancer_MedGen_Pheno

Classification

Table 5.1: Cancer Variants

5.3 Results

In the second experiment, we have a database of cancerous SNPs and possibly
cancerous. This data has many similarities in their information and consist of a
multidimensional structure. To begin with, it was analyzed by PCA, resulting in the observation
that the sample is quite homogeneous in the first phase. Then, contexts and labels where created
for these groups (“Cancer Variants” and “Likely Benign Cancer Variants” group). The need to
separate our dataset in one-hot (binary encode) groups are the cause of the CBOW model
architecture that requires a target context to start processing it. The context and labels where
that are the input for the neural network where word embedding will be formed after the
training. Finally, with the use of PCA, a better representation will be made in terms of their
reparability.

Before Training:

—30000 20000 4@
—20000 "
~10000

Raone

Figure 5.2: Cancer Variants in 3D before training in neural network (Red bullets means
“Cancer Variants ”, Green bullets means “Likely Benign Cancer Variants”).

44

Categorical Embedding with Deep Learning I. Giannakos

50000 (L)
40000 -
30000

20000 1

=10000 A

T T T T T T T T T
—40000-30000-20000-10000 O 10000 20000 30000 40000

Figure 5.3: Cancer Variants in 2D PCA plot before training in neural network (Red bullets
means “Cancer Variants”, Green bullets means “Likely Benign Cancer Variants”).

After Training:

45

Categorical Embedding with Deep Learning I. Giannakos

rs779482890

% 1060504052 ————— :
Qyislir=201656807
%

rs753344188
5793344188

Figure 5.4: Embedding Projection of 900 Cancer SNPs and Likely Being Cancer SNPs.

In Figure 5.2 and 5.4 we noticed the embedding results after the training of our model (150
epochs = 5 days) with 900 SNPs, 900 dimensions and variation data of two categories “Cancer”
and “Likely being cancer”. As an evaluation, we choose a random SNP and we search and
watch the closest SNP’s using Cosine Similarity. Then searching in the literature and genomics
databases we try to find evidence for the similarity or common ground for these two SNPs in
terms of disease. The result seems to be accurate because the data was fewer than Experiment
1 and have class. The total variance description rate is 61.2% (3rd Dimension) on figure 5.4
according to TensorFlow projector. Also, the colours represent how much close is a target SNP
with others by a query using Cosine Similarity.

46

Categorical Embedding with Deep Learning

I. Giannakos

After Isolation:

® , ¢9rS/75930793

r=992919469 ® @rs20165680
®a =

.{fs'a*c:ﬂ,aa .'.-_- 060504055
rs374493057 0y
1202102690

ra761928740

‘:sTli 1928740

q.s‘ 060303871

®rs768655308

E NN

15765653117

i’:‘.’ 03B2974

§z1060504072
i =1 veosoaoss
ts 1050504056
&5?:-::9 2762

Figure 5.5: Embedding Projection of 100 Isolated Cancer SNPs and Likely Being Cancer

SNPs (3D).

In Figure 5.5 we notice after using isolate in TensorFlow Projector that the total variance
description was increased on 77.5% to a specific region based of the cosine similarity of one
random chosen SNP. Also the dataset had some duplicate SNP’s with some variations on
START and END fields. In the figure above, it proves that the model works by putting them
side by side the same contexts. And we guess that remains to find the SNP key that separates
the "potentially cancerous" SNPs from the "cancerous". To do that we must check where are
concentrated the most of cancerous variants and where “potentially cancerous variants” until
guess semantically the category of each. The logic of some embedding it's like the roots of a
tree. Based on some experiments such as the "Word Embedding Visual Inspector™.

47

http://ronxin.github.io/wevi/

Categorical Embedding with Deep Learning I. Giannakos

6 Third Experiment

6.1 Problem definition

On the third experiment, the objective is to categorize a SNP dataset to a specific
disease. According to dataset where is selected by the criteria if exists a cancerous SNP. An
expert in the field of bioinformatics provided to us a list of mutations that fall into one of the
three following categories LIKELY_ BENIGN: 11119, BENIGN: 3547 and PATHOGENIC:
14499 - TOTAL: 29165 SNP’s. We discovered after using Principal Component Analysis
(PCA) and we plot it, that it’s hard to cluster only “cancer” and “possibly cancer” variants and
preview all those datasets by their unique attributes.

Another challenge after plotting those cancerous SNPs is to verify the results and
somehow be able to find if a mutation has some correlation (or the opposite) with another one
and if they are similar so that we can study them and possibly find new conclusions about these
(e.g. a patient with mutation rs1234 has a predisposition to cancer).

According to the architecture we introduced in the methodology chapter we believe a
deep learning neural model and more specific a natural language processing deep neural model
will be able to help us analyses our data while the PCA to plot this type of data. Such a model
is designed to process documents and produce vectors of words to be able to plot them to find
the similarities between them. Again in the third experiment, we will try to use variant data
instead of words to be able to produce vectors of variants.

6.2 Data

Some of these fields in table below will be used in the neural network as input. Those fields
are a basic description of a mutation.

VariantType

Gene

RS

Chr

Ref_Allele

Alt_Allele

Cancer_MedGen_Pheno

Classification

Table 6.1: Cancer Variants Attributes

48

Categorical Embedding with Deep Learning I. Giannakos

6.3 Results

In the third experiment, we have a database of cancerous SNPs and possibly cancerous.
This data has many similarities in their information and consist of a multidimensional structure.
To begin with, it was analyzed by PCA, resulting in the observation that the sample is quite
homogeneous in the first phase. Then, contexts and labels where created for these groups
(“Cancer Variants” and “Likely Benign Cancer Variants” group). The need to separate our
dataset in groups for a better experience in visualization. The context (positions of attributes)
and labels (RS) where that are the input for the neural network where word embedding will be
formed after the training. Finally, with the use of PCA, a better representation will be made in
terms of their reparability.

After Training:

/ ' qis1060503759

..--._.'!__.-'f"i'"]_.-',q_
o8 ®S/o0/009/

(&]

.3rs1060503751 131060499819
!
rsT060503752, ., 100ade

rs1060503751 #rs1060499815

Figure 6.2: Embedding Projection of 143 Cancer SNPs and Likely Being Cancer SNPs (Red
bullets are cancer SNPs).

In Figure 6.2 we noticed the embedding results after the training of our model (118 epochs ~ 8
hours) with 143 SNPs, 143 dimensions and variation data of two categories “Cancer” and
“Likely being cancer”. The result seems to be accurate because the data was fewer than
Experiment 1 and have class as attribute and visualization taxonomy. The total variance
description rate is 95.5% (3rd Dimension).

49

Categorical Embedding with Deep Learning I. Giannakos

neighbors @ -@ 100

distance COSINE EUCLIDEAN

Nearest points in the original space:

51555461517 0.002

51555461413 0.003

51555461413

51060503764

T
T
T
[e !
W1060503763 S g
?ﬂ 555461517 151060503764
T
T
T
T

51060503757 0.012

rs1060300009

51060503757 0013

f=1060499815
t=1060503751

re1060503752 BOOKMARKS (0) @ A

Figure 6.3: Embedding Projection of one random chosen SNP from 143 Cancer SNPs and
Likely Being Cancer SNPs.

In Figure 6.3 as an evaluation, we choose a random SNP and we search and watch the closest
SNP’s using Cosine Similarity. The colours represent how much close is a target SNP with
others by a query using Cosine Similarity. Then searching in the literature and genomics
databases we try to find evidence for the similarity or common ground for these two SNPs in
terms of disease. We notice in TensorFlow Projector that the dataset had some duplicate SNP’s
with some variations on START and END fields (OR data from another variants database). In
the figure above, it proves that the model works by putting them side by side the same contexts.
The next step is to verify some of the similarities of rs1555461517.

No SNPs ATTRIBUTES

1 rs1555461517 | ['duplication' 'PALB2' 'rsl1555461517' 'le'
'23635570" '23635570'" 'A' 'AA'

'criteria provided, multiple submitters, no
conflicts' '2' 'C0006142'

'Pathogenic']

2 rs1555461413 | ['duplication' 'PALB2' 'rsl1555461413' '1lo6'
'23635360" '23635360" 'A' 'AA'

'criteria provided, multiple submitters, no
conflicts' '2' 'C0006142'

'Pathogenic']

3 rs1060503764 | ['duplication' 'SDHB' 'rsl1060503764' '1' '1
7349151" '17349151"'" 'A' 'AA'

'criteria provided, multiple submitters, no
conflicts' '2' 'C0031511"

'Pathogenic']

Table 6.4: Compare variants from our dataset.

50

Categorical Embedding with Deep Learning I. Giannakos

According table 6.4 the result seems valid | choose the SNP rs1555461517 as target and the
results is like a chain.

The rs1555461517 (no. 1) with rs1555461413 (no. 2) they are almost the same. Specific the:

e VariantType = ‘duplication’

e Gene = ‘PALB2’

e Chromosome =16

e Ref Allele="‘A’

o Alt Allele=°“AA’

e Cancer_MedGen_Pheno = ‘C0006142’
e Category = ‘Pathogenic’ (Cancer).

The no. 1,2 shares with no.3:

e VariantType = ‘duplication’

o Ref Allele=‘A’,

e Alt Allele=°‘AA’

e Category = ‘Pathogenic’ (Cancer).

51

Categorical Embedding with Deep Learning I. Giannakos

7 Discussion

The thesis aimed to represent and compare mutations in the human genome using deep
learning methodologies. Deep learning is an Al discipline that the last years have gained great
momentum in many research areas. One of the areas is the bioinformatics where we can find
methodologies for gene expression inference [38] response to therapy [39], predicts missing
methylation states [40] and many other in the fields of gene signatures, pathway analysis
[41][42] and radiogenomics [43][44]. To our knowledge, this is the first study that tries to map
the human mutations as a text mining problem where the DNA sequencing per sample/human
can act as a document and the known mutations as words of this imaginary vocabulary. There
is a lot of research in the field of natural language processing for word prediction and the last
years' solutions that take advantage of deep learning methods have proven to provide much
better results that traditional method [45][46].

NLP methods can assist us in predicting protein activity after found a valid SNP from
experiments, wherein bioinformatics is one of the most basic research topics. It includes the
localization of subcellular protein [47], prediction of protein to protein interactions and
interaction sites [48], the detection of protein remote homology, the classification of protein
functions, the prediction and classification of a transmembrane protein, the recognition of
multifunctional enzymes and the identification of DNA binding protein. [37]

In this dissertation, we did three experiments to analyze human DNA and find mutations.
Regarding the first experiment, the desired result was to produce the appropriate vectors to
highlight the best representation of the mutations. We conclude that the volume of data greatly
affects the processing time of the results in a long delay. This affects the validity of the results
because it will take months for the validity of the results to be able to verify and compare the
mutations according to the model used. Also, for this particular experiment, an analysis was
made only for chromosome 22, which shows us that for a multidimensional mutation that will
target more chromosomes, the diagnosis will be more complex and time-consuming.

For the realization of the second experiment we followed the almost the same procedure
with the first experiment with the exception that the input is encoded in one-hot and not
implemented in Tensorflow. We concluded that the results given could be said to be quite valid
by classification criteria. The improved accuracy can be attributed to the reduced input used
instead of the whole number of mutations to two specific categories of carcinogens and potential
carcinogens. Using categorization, we concluded that the data in our experiment due to the
training of the neural model (150 epochs) and the production of vectors can become more
efficient operations and find inhomogeneity. An important part that facilitated this process is
that the volume of data is now smaller and the training of the model used required a shorter
period of time than the first experiment performed. This provided a solution to the above
experiment for which its main problem was the long processing time due to the oversized
volume of information.

Again, with the realization of the third experiment which followed the same procedure with
the first experiment, we concluded that the results given could be said are valid. Using this
technique, we concluded that the data in our experiment due to the training of the neural model
(118 epochs) and the production of vectors can provide valuable results. An important part that
facilitated this process is that the volume of data is now smaller and the training of the model
used required a shorter period of time than the first experiment performed. This provided a
solution to the first experiment for which its main problem was the long processing time due to
the oversized volume of information. Thus, according to the first experiment, it is understood
that the categorization and focus on specific groups of mutations result in the export of faster
and more valid results so that verification can be performed in a shorter period of time.

52

Categorical Embedding with Deep Learning I. Giannakos

8 Conclusions

This section presents a brief synopsis of the dissertation, assessing major points of the
implemented model and experiments. After all, we conclude by mentioning some beneficial
improvements and extensions that could be developed in the near future.

To begin with, the need for identification of differences between variants for a better
understanding of the human mutations is the key-point of the specific dissertation. To deal with
such a problem, specific data selected as input to our deep learning model. This data was
generated through Ensembl Variant Effect Predictor (VEP) [1] giving us the mutations that are
taking place. At the next step, we preprocess the mutation data and transform them into numbers
and choose the most valuable information about the variants. The main criteria for this selection
are the uniqueness, statistics, the correlation of attributes and of course the contribution of
bioinformaticians and biologists. Those attributes were used as input to a Continues Bags of
Words Model (CBOW) [4] [49], and NLP model that gives us the ability to use as input multi-
words contexts. When computing the hidden layer output, the CBOW model takes the average
of the vectors of the input context words and use the average vector as the output. That model
allows us to cluster N number of SNPs by their correlation since it uses the contexts as input
and as target all the SNP’s. Those vectors, also called word embeddings, used as input to PCA
[30] to calculate the principal components (2D or 3D), and visualize our results. After that
analysis will see and understand the general picture of variants and the differences between
them.

It could also be argued that with the implementation of the first experiment we concluded
that the volume of data affects the data processing time resulting in a long delay in the creation
of a representation. Also, for this particular experiment, an analysis was made only for
chromosome 22 were described by 1.083.881 variants, which highlight that for an extended
analysis with more chromosomes, the diagnosis will be more complex and time-consuming.
Then with the completion of the second experiment which followed the same procedure as the
first experiment, we concluded that the results given could be said to be quite valid. The reason
is that instead of using the whole number of mutations we limited to two specific categories
(carcinogens and potential carcinogens). Using categorization, we concluded that the model in
our second and third experiment can produce more efficient operations and find inhomogeneity.
Furthermore, an important part that facilitated this process is that the volume of data is now
smaller and the training of the model used required less time than the first experiment.

Unfortunately, there can be no doubt that the problem of optimization in TensorFlow
version 2.X remains. Taking into consideration this problem, future research about the
optimization and the training time. Moreover, another research in this area could be done to
optimize CBOW and prevent the use of target contexts. Last but not least, results presentation
improvements could be made, where a program could be created using an APl in SNP databases
(e.g., MCBI) where the software would compare an SNP with the nearest SNPs and some from
the fields described in the database. The user will increase the success rate of our model so that
we can make a second evaluation of it beyond the training.

Upon completion of the research, the essential conclusions are that the human genome
consists of a chaotic set of information in which the method we followed confirmed both the
difficulty and the complexity of analyzing this information. For this reason, categorizing and

53

Categorical Embedding with Deep Learning I. Giannakos

focusing on a smaller amount of information can give us specific information relatively more
effectively and clarifying, giving us a more meaningful picture.

54

Categorical Embedding with Deep Learning I. Giannakos

9 Appendix

9.1 Formulaof PCA

9.1.1 Example: From 3-Dim to 2-Dim with Principal Component Analysis

Imagine that you have a 3-dimensional dataset A with 5 row and 3 columns. Where every
dimension named X, y and z.

1.5 24 19
20 0.7 1.2
A=1|12 29 49
1.4 2.2 4.2
l5.1 30 5 0J

The mean for matrix A is:
[(1.5 -x)=-094 (24-y)=016 (19-2)= —1.54]
(20—-%)=-044 (0.7—-y)=-154 (1.2-2)=-2.24
Mean, = |(1.2—-x%) =-0.24 (29-y)=0.66 (49—-27) =146
14—-%)=-104 (22-y)=-0.04 (42-2)=0.76
(5.1 —x) = 2.66 (3.0—-y) =0.76 (5.0-2)=1.56
The covariance for Meany:

conv(x,x) conv(x,y) conv(x,z)
cov(Mean,) = |conv(y,x) conv(y,y) conv(y,z)
conv(z,x) conv(z,y) conv(zz)

(—=0.94)? + (—0,44)% + (—0.24)? + (—1.04)? + (2.66)?

cov(x,x) = var(x) = G-D = 2.3230
24 (_ 2 24 (_ 2 2

cov(y,y) = var(y) = (0.16)* + (—1.54)* + 2362) + (—0.04)- + (0.76) — 0.8530

Cov(2.7) var(z) — (—1.54)2 + (—2.24)? st(izrf))z +(0.76) + (1.56)* _ 21330

cov(x,y) = cov(y, x)

Sy [(—0.94 — %)(0.16 — ¥) + (—0.44 — %)(1.54 — ¥)

+(—0.24 — %)(0.66 — ¥) + (—1.04 — %)(—0.04 — ¥)
+ (2.66 — %)(0.76 — ¥)] = 0.6080

cov(x,z) = cov(z,x)

oy [(F0.94 - D154 = 2) + (044 - (=224 = 2)

+ (—0.24 — x)(1.46 — 2) + (—1.04 — %)(0.76 — Z) + (2.66 — X)(1.56 — 2)]
= 1.3605

55

Categorical Embedding with Deep Learning I. Giannakos

cov(y,z) = cov(z,y)

7D [(0.16 — ¥)(—1.54 — 2) + (—1.54 — ¥)(—2.24 — %)

+ (0.66 — ¥)(1.46 — 2) + (—0.04 — 7)(0.76 — 2) + (0.76 — y)(1.56 — %)
= 1.3305

2.3230 0.6080 1.3605
covy = |0.6080 0.8530 1.3305
1.3605 1.3305 3.1330

2.3230 0.6080 1.3605 1 0 O
det|10.6080 0.8530 1.3305|—A|0 1 O
1.3605 1.3305 3.1330 0O 0 1
= —2346,3091% — 7,94107251 + 1,559964375
Now we must solve: =13 + 6,3091% — 7,94107251 + 1,559964375 = 0

You can use Newton-Raphson method to find roots with formula:

f(Xn)
Xpt+1 :Xn_f'(Xn)
So we found 3 Eigen Values:
A= 0.24072
A= 1.38316
A= 4.68510

And Eigen Vectors are:

2.0827 0.6080 1.3605
eigl = (cov_.A—Al) = (0.6080 0.61227 1.3305
1.3605 1.3305 2.89227

a b
Now let’s reduce the matrix to this form: (O O)
0 0 ¢

(2.0827 0.6080 1'3605>R2<—R2—0.29198-R1 (2.0827 0.6080 1.3605)

0.6080 0.61227 1.3305 0 0.43474 0.93324
1.3605 1.3305 2.89227 1.3605 1.3305 2.89227

2.0827 0.6080 1.3605) R2GR3 (2.0827 0.6080 1.3605)

0 0.43474 0.93324 | —— 0 0.93324 2.00336
0 0.93324 2.00336 0 0.43474 0.93324

2.0827 0.6080 1.3605)

R3<R3-0,65337-R1 <

0 0.93324 2.00336
0 0 0

R3<R3-0,46584'R2 <

56

Categorical Embedding with Deep Learning

I. Giannakos

1 b
Reduce matrix to this form (0)
0 0 1

2.0827 0.6080 1.3605 \ p,. 1 0715pm (2-0827 0.6080 1.3605
0 093324 200336 |——=| 0 1 2.14665

0 0 0 0 0 0

RleR1_ocoars (20827 0 0.05533\ picousopars (1 O 0.02657
———— 0 1 214665|=————= |0 1 2.14665

0 0 0 0 0 0
The system with Eigen value A~0.24072:

X 1 0 0.02657 x 0
(A—0.24072-1) <y> =10 1 2.14665 |- ()’) =10
z 0 0 0 z 0

—0.0265
y¥21366345-0} = yZ21366345-0} = | —2.14665
1

We do the same to find the Eigen vector 1 and Eigen vector 2. So:

—1.76308 0.69366
eig2 = < 0.48766 | eig3 = | 0.45725

1 1

)

Next we must sort all Eigen vectors, as Inversed Feature Vector (Descending Sort):

0.53354838 0.3517079 0.76917337
Feature Vector = | 0.84569511 —0.23391879 —0.47966842
—0.01122093 -0.90641246 0.42224464

PCA = ORIGINAL DATAT x Feature Vector

And the dot product is:

PC1 PC2
-1.629789 -0.093691
-2.499340 1.062586

1.227069 -1.057669

0.015613 -1.234714

2.886447 1.323488
[30]

57

|

Categorical Embedding with Deep Learning I. Giannakos

10 Bibliography

[1]
[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]

W. Mclaren et al., “The Ensembl Variant Effect Predictor,” 2016.

L. Koumakis, “Deep learning models in genomics; are we there yet?,” Computational
and Structural Biotechnology Journal, vol. 18. Elsevier B.V., pp. 1466-1473, 01-Jan-
2020.

S. Min, B. Lee, and S. Yoon, “Deep Learning in Bioinformatics.”
X. Rong, “word2vec Parameter Learning Explained,” 2016.

N. Anas et al., “A review of human genome project (HGP) from ethical perspectives,”
Artic. Int. J. Adv. Appl. Sci., vol. 4, no. 12, pp. 125-132, 2017.

L. Luzzatto, “Sickle Cell Anaemia and Malaria,” Open J. Syst. Mediterr. J. Hematol.
Infect. Dis. Cit. Mediterr J Hematol Infect Dis, vol. 4, no. 1, p. 2012065, 2012.

G. E. Hoffman, J. Bendl, K. Girdhar, E. E. Schadt, and P. Roussos, “Functional
interpretation of genetic variants using deep learning predicts impact on chromatin
accessibility and histone modification,” Nucleic Acids Res., vol. 47, pp. 10597-10611,
20109.

R. Poplin et al., “A universal snp and small-indel variant caller using deep neural
networks,” Nat. Biotechnol., vol. 36, no. 10, p. 983, 2018.

J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants with deep
learning-based sequence model,” vol. 12, no. 10, 2015.

D. S. Latchman, “Transcription factors: an overview Function of transcription factors,”
1993.

F. Molnar, “Histone Modifications Human Epigenomics View project.”

A. P. Boyle et al., “High-Resolution Mapping and Characterization of Open Chromatin
across the Genome.”

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space.”

J. Zhang, “Basic Neural Units of the Brain: Neurons, Synapses and Action Potential.”

IBM, “The Neural Networks Model,” 2012. [Online]. Available:
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.mod
eler.help/neuralnet_model.htm. [Accessed: 07-Feb-2020].

I. H. Witten, E. Frank, and M. A. Hall, Data Mining. 2011.

B. Kim, H. Kim, K. Kim, S. Kim, and J. Kim, “Learning Not to Learn: Training Deep
Neural Networks with Biased Data.”

V. Zhou, “Machine Learning for Beginners: An Introduction to Neural Networks,”
2019. [Online]. Available: https://towardsdatascience.com/machine-learning-for-
beginners-an-introduction-to-neural-networks-d49f22d238f9. [Accessed: 07-Feb-
2020].

W. Fan, L. Wallace, and Z. Zhang, “Tapping the Power of Text Mining Text Analytics

58

Categorical Embedding with Deep Learning I. Giannakos

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

View project Customer Agility View project,” Artic. Commun. ACM, 2006.

S. H. Liao, P. H. Chu, and P. Y. Hsiao, “Data mining techniques and applications - A
decade review from 2000 to 2011,” Expert Syst. Appl., vol. 39, no. 12, pp. 11303—
11311, 2012.

R. Talib, M. K. Hanif, S. Ayesha, and F. Fatima, “Text Mining: Techniques,
Applications and Issues,” 2016.

Y. Wilks, “Natural Language Processing,” Commun. ACM, vol. 39, no. 1, pp. 60-62,
1996.

G. G. Chowdhury, “Natural language processing,” 2003.

Y. Goldberg et al., “Word2Vec Explained: Deriving Mikolov et al.’s Negative-
Sampling Word-Embedding Method,” 2014.

B. Jangid, I. Kim, and J. W. Kim, “Word2vec convolutional neural networks for
classification of news articles and tweets,” 2019.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Distributed Representations of Words
and Phrases and their Compositionality.”

R. Collobert, J. Weston, J. Com, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural
Language Processing (Almost) from Scratch,” 2011.

W. Ling, I. Trancoso, C. Dyer, and A. Black, “Two/Too Simple Adaptations of
Word2Vec for Syntax Problems,” 2015.

“CS 224D: Deep Learning for NLP 1.”

U. Sarkar, S. Taraphder, and S. Datta, “Principal Component Analysis,” 2017.
T. Kitasuka, M. Aritsugi, and F. Rahutomo, “Semantic Cosine Similarity,” 2012.
H. Zwart, “Human Genome Project: History and Assessment,” 2015.

“Human Variation Sets in VCF Format.” [Online]. Available:
https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/. [Accessed: 18-
Dec-2020].

“VEP Data formats.” [Online]. Available:
https://www.ensembl.org/info/docs/tools/vep/vep_formats.html. [Accessed: 20-Aug-
2020].

B. Wang, A. Wang, C. Fenxiao, Y. Wang, and C.-C. J. Kuo, “Evaluating Word
Embedding Models: Methods and Experimental Results.”

L. Lovmar, A. Ahlford, and A.-C. Syvinen, “Silhouette scores for assessment of SNP
genotype clusters,” 2005.

Z.Zeng, H. Shi, Y. Wu, and Z. Hong, “Survey of Natural Language Processing
Techniques in Bioinformatics,” 2015.

Y. Chen, Y. Li, R. Narayan, A. Subramanian, and X. Xie, “Gene expression inference
with deep learning,” Bioinformatics, vol. 32, no. 12, pp. 1832-1839, Jun. 2016.

T. Sakellaropoulos et al., “A Deep Learning Framework for Predicting Response to
Therapy in Cancer,” Cell Rep., vol. 29, no. 11, pp. 3367-3373.e4, Dec. 2019.

59

Categorical Embedding with Deep Learning I. Giannakos

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

C. Angermueller, H. J. Lee, W. Reik, and O. Stegle, “DeepCpG: Accurate prediction of
single-cell DNA methylation states using deep learning,” Genome Biol., vol. 18, no. 1,
p. 67, Apr. 2017.

L. Koumakis, V. Moustakis, M. Zervakis, D. Kafetzopoulos, and G. Potamias,
“Coupling regulatory networks and microarays: revealing molecular regulations of
breast cancer treatment responses.” Springer, Berlin, Heidelberg, pp. 239-246, 2012.

L. Koumakis et al., “MinePath: mining for phenotype differential sub-paths in
molecular pathways,” PL0S computational biology 12, vol. 11, PLoS, 2016.

Mehta, Shaveta et al., “Radiogenomics monitoring in breast cancer identifies
metabolism and immune checkpoints as early actionable mechanisms of resistance to
anti-angiogenic treatment.” EBioMedicine 10, pp. 109-116, 2016.

E. Trivizakis et al., “Artificial intelligence radiogenomics for advancing precision and
effectiveness in oncologic care.,” Int. J. Oncol. 57, vol. 1, pp. 43-53, 2020.

L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A survey.,”
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8, vol. 4, no. €1253, 2018.

V. Menger, F. Scheepers, and M. Spruit, “Comparing deep learning and classical
machine learning approaches for predicting inpatient violence incidents from clinical
text.,” Appl. Sci. 8, vol. 6, no. 981, 2018.

Z. Wang, Q. Zou, Y. Jiang, Y. Ju, and X. Zeng, “Review of Protein Subcellular
Localization Prediction,” Curr. Bioinform., vol. 9, no. 3, pp. 331-342, Sep. 2014.

B. Liu, X. Wang, L. Lin, and Q. Dong, “Exploiting three kinds of interface propensities
to identify protein binding sites,” Comput. Biol. Chem. no.4, vol. 33, pp. 303-311,
2009.

S. Kuang, B. D. Davison, S. Kuang, and B. D. Davison, “Learning class-specific word
embeddings.”

60

	1 Introduction
	1.1 Previous Research
	1.1.1 Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification.
	1.1.2 A universal sNP and small-indel variant caller using deep neural networks
	1.1.3 Predicting effects of noncoding variants with deep learning–based sequence model.

	1.2 Our Solution

	2 Background
	2.1 Neural Networks
	2.1.1 About neurons
	2.1.2 A brief introduction to Artificial Neural Networks
	2.1.3 Activation Function
	2.1.4 Bias
	2.1.5 Loss
	2.1.6 Backpropagation
	2.1.7 Stochastic Gradient Descent (SGD)
	2.1.8 Softmax function

	2.2 Text Mining and Natural Language Processing (NLP): The Deep Learning approach
	2.2.1 Word2Vec
	2.2.1.1 Word2Vec Models

	2.2.2 Word2Vec Skip-Gram Model
	2.2.2.1 Forward Propagation
	2.2.2.2 Back Propagation

	2.2.3 CBOW Model
	2.2.3.1 Forward Propagation
	2.2.3.2 Back Propagation

	2.3 Principal Component Analysis (PCA)
	2.4 Cosine similarity
	2.5 Genetics
	2.5.1 A Brief Introduction
	2.5.2 Human Genome Project
	2.5.3 Ensemble Variant Effect Predictor: Annotating Variant Effects

	3 Methodology
	3.1 Prepare variation data for VEP
	3.2 Installing VEP
	3.3 Data Preprocessing
	3.4 Model Selection
	3.5 Validation

	4 First Experiment
	4.1 Problem definition
	4.2 Data
	4.3 Scripts
	4.4 Results

	5 Second Experiment
	5.1 Problem definition
	5.2 Data
	5.3 Results

	6 Third Experiment
	6.1 Problem definition
	6.2 Data
	6.3 Results

	7 Discussion
	8 Conclusions
	9 Appendix
	9.1 Formula of PCA
	9.1.1 Example: From 3-Dim to 2-Dim with Principal Component Analysis

	10 Bibliography

