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Abstract 

The study conducted in the framework of the dissertation on "Categorical embedding 

with deep learning". To clarify, the purpose of the dissertation is to study and implement a 

word-embedding neural network for genomic data which is a network consisting of three levels 

namely the input level, the hidden level and the output level. All these levels are interconnected 

with different forces (weights) which are also called word-embedding.  

The selected architecture of the neural network falls in the Natural Language Processing 

(NLP) category. NLP is a research field that investigates how a computer can control and extract 

knowledge from text or dialogue into a natural language. The model implemented in this 

dissertation is the Continues Bags of Words (CBOW), a model that accepts as input a set of 

number boxes (contexts) which are the number of words corresponding to a text. Each context 

corresponds to several words defined by the developer, has a target context and a table with the 

difference of the words in a text that correspond to that context. The network is trained with the 

assumption that each context is close to the words that are the target. The aim is to train the 

CBOW neural network and to form word embedding using as input known mutations of a 

human. 

Before we get to the training point, the network requires some data as input. Our data 

comes from the human genome using the Ensembl Variant Effect Predictor (VEP). Our main 

objective is to get all the human mutations (about 80 million mutations) and train a model that 

will handle each mutation as a word and each disease as the context. VEP is a tool for 

annotating, evaluating and prioritizing genomic mutations, even in non-coding areas. The VEP 

predicts the effects of sequence mutations on transcripts, protein products, regulatory regions, 

and binding patterns, utilizing the high quality, wide scope, and comprehensive design of 

Ensemble databases with high accuracy. In the next, we pass the variants/mutations to a python 

script where we select input features based on specific criteria described in chapter Experiment 

1 (sub section Data) and Experiment 2 (sub section Data). After selecting the data, we form the 

context list with the data and a target context for each single-nucleotide polymorphism (SNP) 

variant. Then the CBOW model is trained with the variants contexts mentioned above and after 

some epochs the embedding (weights) that are between the first level and the hidden are formed. 

We extract these weights from the network and pass them to the Principal Component Analysis 

(PCA) to visualize it as a scatter plot. PCA, is a dimensionality-reduction method that is often 

used to reduce the dimensionality of large data sets, by transforming a large set of variables into 

a smaller one that still contains most of the information in the large set. Finally, cosine 

similarities were used. Cosine similarity is a measurement in data retrieval. The application of 

this measurement can be applied to two corpuses (paragraph, sentence and the whole corpus). 

If the similarity score is high between two corpus term vector and the query vector, the greater 

relevance of text and query. Once we have taken a SNP as a sample and passed it through cosine 

similarity we can find other SNP’s close to this that we expect to be more similar so there is a 

possibility that this mutation will affect our sample. 

We applied this methodology to three experiments. The first one was for the 

representation and clustering of human chromosome 22 variants. In this experiment we attempt 

to find relevance between random SNPs and verify them. Due to the large amount of 

chromosome data and processing time it was hard to have the best possible results. So we 

moved to the second and third experiment with less data targeted to a disease, specific in cancer 

variant and possible cancer variants. The results of the model are promising and we believe that 

such a methodology could be used in the genomics era. 
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Περίληψη 

Η παρούσα μελέτη διεξήχθη στα πλαίσια της πτυχιακής εργασίας με θέμα «Κατηγορηματική 

επισημείωση με τη χρήση διανυσματικών παραστάσεων και βαθέων νευρωνικών δικτύων». Ο 

σκοπός της πτυχιακής εργασίας είναι να μελετήσει και να εφαρμόσει ένα word-

embedding  νευρωνικό δίκτυο για γονιδιωματικά δεδομένα όπου θα είναι ένα δίκτυο που 

αποτελείται από τρία επίπεδα, δηλαδή το επίπεδο εισόδου, το κρυφό επίπεδο και το επίπεδο 

εξόδου. Όλα αυτά τα επίπεδα διασυνδέονται με διαφορετικές δυνάμεις (βάρη) που ονομάζονται 

επίσης word-embedding. Αυτή η εργασία χρησιμοποιεί βάρη από το επίπεδο εισόδου έως το 

κρυφό επίπεδο. 

Η επιλεγμένη αρχιτεκτονική του νευρικού δικτύου εμπίπτει στην κατηγορία Natural Language 

Processing (NLP). Το NLP είναι ένα πεδίο έρευνας που διερευνά τον τρόπο με τον οποίο ένας 

υπολογιστής μπορεί να ελέγξει και να εξαγάγει γνώσεις από ένα κείμενο ή διάλογο σε μια 

φυσική γλώσσα. Το μοντέλο που εφαρμόζεται σε αυτήν την εργασία είναι το Continues Bags 

of Words (CBOW), ένα μοντέλο που δέχεται ως εισαγωγή ένα σύνολο αριθμητικών κουτιών 

(contexts) όπου είναι οι αριθμητικές λέξεις που αντιστοιχούν σε ένα κείμενο. Κάθε context 

αντιστοιχεί σε αρκετές λέξεις που ορίζονται από τον προγραμματιστή, έχει ένα target context 

και έναν πίνακα με τη διαφορά των λέξεων σε ένα κείμενο που αντιστοιχεί σε αυτό το context. 

Το δίκτυο εκπαιδεύεται με την υπόθεση ότι κάθε context είναι κοντά στις λέξεις που είναι ο 

στόχος. Ο στόχος είναι να εκπαιδεύσει το νευρωνικό δίκτυο CBOW και να διαμορφώσει το 

word embedding χρησιμοποιώντας ως μεταλλάξεις εισόδου των homo sapiens. 

Πριν φτάσουμε στο σημείο εκπαίδευσης, το δίκτυο απαιτεί ορισμένα δεδομένα ως είσοδο. Τα 

δεδομένα μας προέρχονται από το ανθρώπινο γονιδίωμα χρησιμοποιώντας το Ensembl Variant 

Effect Predictor (VEP). Ο κύριος στόχος μας είναι να πάρουμε όλες τις ανθρώπινες μεταλλάξεις 

(περίπου 80 εκατομμύρια μεταλλάξεις) και να εκπαιδεύσουμε ένα μοντέλο που θα χειρίζεται 

κάθε μετάλλαξη ως λέξη και κάθε ασθένεια ως το context. Το VEP είναι μια ισχυρή 

εργαλειοθήκη για την αξιολόγηση, τον σχολιασμό και την ιεράρχηση των γονιδιωματικών 

παραλλαγών, ακόμη και σε περιοχές που δεν κωδικοποιούν. Το VEP προβλέπει με ακρίβεια τα 

αποτελέσματα των παραλλαγών ακολουθίας σε μεταγραφές, πρωτεϊνικά προϊόντα, ρυθμιστικές 

περιοχές και δεσμευτικά μοτίβα, χρησιμοποιώντας την υψηλή ποιότητα και το ευρύ πεδίο για 

τον ολοκληρωμένο σχεδιασμό βάσεων δεδομένων Ensemble.  

Στην συνέχεια, μεταβιβάζουμε τις παραλλαγές / μεταλλάξεις σε ένα script python όπου 

επιλέγουμε τα χαρακτηριστικά εισαγωγής βάση συγκεκριμένων κριτηρίων που περιγράφονται 

στο κεφάλαιο Experiment 1 (υποενότητα Data), Experiment 2 (υποενότητα Data) και 

Experiment 3 (υποενότητα Data). Αφού επιλέξουμε τα δεδομένα, διαμορφώνουμε τη context 

λίστα με τα δεδομένα και ένα target context για κάθε παραλλαγή πολυμορφισμού μονού 

νουκλεοτιδίου (SNP). Στη συνέχεια, το μοντέλο CBOW εκπαιδεύεται με τα variants contexts 

που αναφέρονται παραπάνω και μετά από μερικά epochs σχηματίζονται τα βάρη που 

βρίσκονται μεταξύ του πρώτου επιπέδου και του κρυφού επιπέδου. Εξάγουμε αυτά τα βάρη 

από το δίκτυο και τα μεταφέρουμε στην Ανάλυση Κύριου Συστατικού (Principal Component 

Analysis - PCA) για να το απεικονίσουμε με ένα διάγραμμα διασποράς. Το PCA είναι μια 

τεχνική που χρησιμοποιεί εξελιγμένες μαθηματικές αρχές για τη μετατροπή αρκετών δυνητικά 

συσχετισμένων μεταβλητών σε μικρότερο αριθμό μεταβλητών που ονομάζονται κύρια 

συστατικά. Εν συντομία βρίσκει μέχρι τρεις διαστάσεις από δεδομένα με Ν (Ν>3) διαστάσεις. 

Τέλος, χρησιμοποιήθηκε ομοιότητες με συνημίτονα (Cosine Similarity). Η ομοιότητα 

συνημίτονων είναι μια ευρέως χρησιμοποιούμενη μέτρηση στην ανάκτηση πληροφοριών και 

σε σχετικές μελέτες. Η εφαρμογή αυτής της μέτρησης μπορεί να εφαρμοστεί σε δύο κείμενα 

(πρόταση, παράγραφος ή ολόκληρο το έγγραφο). Όσο υψηλότερη είναι η βαθμολογία 
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ομοιότητας μεταξύ του διανύσματος όρου εγγράφου και του διανύσματος όρου ερωτήματος, 

τόσο μεγαλύτερη είναι η συνάφεια μεταξύ του εγγράφου και του ερωτήματος. Μόλις πάρουμε 

ένα SNP ως δείγμα και το περάσουμε μέσω ομοιότητας συνημίτονου, μπορούμε να βρούμε 

άλλα SNP κοντά σε αυτό που αναμένουμε να είναι πιο όμοια, έτσι υπάρχει πιθανότητα αυτή η 

μετάλλαξη να επηρεάσει το δείγμα μας. 

Εφαρμόσαμε αυτήν τη μεθοδολογία σε τρία πειράματα. Το πρώτο ήταν για την αναπαράσταση 

και την ομαδοποίηση των παραλλαγών του ανθρώπινου χρωμοσώματος 22. Σε αυτό το πείραμα 

προσπαθούμε να βρούμε συσχέτιση μεταξύ τυχαίων SNP και να τα επαληθεύσουμε. Λόγω του 

μεγάλου όγκου δεδομένων και του χρόνου επεξεργασίας ήταν δύσκολο να έχουμε μια την 

καλύτερη εικόνα των αποτελεσμάτων. Έτσι, προχωρήσαμε στο δεύτερο και τρίτο πείραμα με 

λιγότερα δεδομένα που στοχεύουν σε μια ασθένεια, συγκεκριμένα σε μεταλλάξεις καρκίνου 

και πιθανές μεταλλάξεις καρκίνου. Τα αποτελέσματα του μοντέλου είναι πολλά υποσχόμενα 

και πιστεύουμε ότι μια τέτοια μεθοδολογία θα μπορούσε να χρησιμοποιηθεί στην περιοχή της 

γονιδιωματικής. 
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1 Introduction 

 This dissertation investigates the problem of creating an NLP word-embedding from 

variants data obtained by the Variant Effect Predictor (VEP) [1]. Nowadays, deep neural 

networks, aka deep learning, gain momentum in many research areas especially in image 

processing [2][3], even though one can identify many efforts in the fields of data analysis using 

deep learning. In this thesis we explore the possibility to use a deep learning methodology for 

the classification of diseases based on reported mutations. The rationale behind this effort 

comes from the text mining area. Deep learning methods have proven to be very effective in 

predicting the next word of a sequence of words [4] or classifying documents. Using the same 

principles as document classification we explore the possibility to use the variants of a person 

in order to classify/identify possible diseases. Based on our theory, the variants are handled as 

words and we try to train a deep learning model that can classify persons to diseases based only 

on their variants. 

A mutation is a change in our DNA, those errors can be happening during copying DNA 

or as a result of environmental factors such a UV light. Our DNA will undergo sequence 

changes in the genome bases A, C, G and T over a lifetime. The proteins that are produced are 

therefore changed and that can be just a good deal or bad. If those errors where not fixed by the 

time, mutations can occur during DNA replication [5]. For instance, a mutation in the gene that 

is responsible for the construction of a protein called hemoglobin (Hb) causes the sickle cell 

anemia. This produces an irregular, stiff, sickle form of the red blood cells. However, having 

this mutation in African populations also protects against malaria [6].  We need a solution to 

figure, identify and categorize some correlations of mutations from a patient like the example 

above, in order to study them and draw new conclusions and find their similarities as well as 

how one mutation can affect another. 

 Our approach differs from the majority of other tools in the sense that we are using deep 

learning algorithms. For the realization of our approach we implemented the following steps. 

VEP data was processed and we selected some of the available fields. The data (SNPs that have 

impacts to a target SNP) is entered in a neural model type Continuous Bag of Words (CBOW) 

and after its training the word embedding - vectors were formed from the hidden level of the 

network. The word embedding exported first from the neural and then we imported it into the 

Principal Component Analysis (PCA) where three Principal Components formed, i.e. we will 

represent the variants in 2 or even 3 dimensions using a scatter plot. The last step was to use 

cosine similarity to find the most similar ones and see if the results are valid due to the similarity 

of the variants using a database e.g., the SNP database of NCBI. 

1.1 Previous Research 

This sub-section provides the literature review in the field of variant calling using deep learning. 

A mini review of deep learning methodologies for bioinformatics can be found here [2]. 

 

https://www.ncbi.nlm.nih.gov/snp/
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1.1.1 Functional interpretation of genetic variants using deep learning predicts impact 

on chromatin accessibility and histone modification. 

The difficulty of understanding genetic variants' functional consequences currently 

limits the identification and implementation of personalized medicine of the functional variants 

underlying risk of disease. The functional consequences of disease related protein coding 

variants are more and more routine. Nevertheless, the large majority of risk variants are non-

coding, and the prediction of functionality and priority variants for functional validation 

remains a major challenge. Here, the authors (Hoffman G., Bendl J., Girdhar K., Schadt E., 

Roussos P.) developed a deep learning template in order to find specific signals to be predicted 

with the input of the DNA sequence from four epigenetic experiments. In view of the expected 

epigenetic signals of the DNA sequence and the alternative alleles at a given site, the authors 

provided a score of the predicted epigenetic consequences for 438 million variants found in 

previous sequencing projects. These impacts are test-specific, are predictive of binding the 

transcription factor and are enriched for genetic expression and variants associated with disease-

related risk. Nucleotide-level functional effects score for non-coding variants will refine the 

mechanism of functional variants, categorize new risk variants and prioritize the subsequent 

experiments. [7] 
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Figure 1.1:  Computational workflow for Deep Functional Interpretation of Genetic Variants 

(DeepFIGV). 

Figure1.1 highlights: (A) Epigenetic quantitative signal (i.e. ChIP-seq, DNase-seq) for different 

individuals and for genomic regions.  

(B) Normal genetic analysis stratifies the quantitative signal by allelic at a given SNP, however 

unbalance in linkage complicates the functional variant interpretation.  

(C) DeepFIGV encodes a sequence of DNA as a 'Picture' matrix usually of zeros 

including 1 (i.e. a Dark Box) showing the presence in that location of a specific nucleotide. 

Each allele is encoded as 0.5 heterozygous SNPs. Local matrix operations containing parameter 

values learned from the data are Convolutions. A neural network predicts the epigenetic signal 

of the DNA sequence using the convolutions. 

(D) The computational model training ties a wide range of DNA sequences to the epigenetic 

signal of each region.  
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(E) For a query sequence with the reference and the alternative allele, the epigenetic signal is 

calculated. The difference between the predicted signal (for example delta) values shows that 

the variant has a predicted effect. 

(F) The delta value for any potential nuclear substitution is evaluated in silico mutagenesis. 

(G) DeepFIGV delta was used to predict and classify the functional variants of candidates 

through allele complex binding of transcription factors. 

1.1.2 A universal sNP and small-indel variant caller using deep neural networks 

Despite significant advancements in sequence technology, genetic variants from billions of 

short misleading sequence readings in a single genome remain difficult to call reliably. Authors 

demonstrate in this research that a deep convolutional neural network can call for genetic 

variation in aligned next generation read results by learning statistical associations between 

pileup images about suppositive variant or true genotype calls. The software, known as Deep 

Variant, outperforms the instruments and the learning paradigm extends to all genome 

structures and mammalian species, allowing the human to extract earth-reality data from non-

human sequencing projects. Authors also show that the benefits of more automated and 

common variable-calling strategies are illustrated with a number of sequencing technologies 

and experimental designs. This involves deep genomes from the 10X genomic and ion ampliseq 

exomes. [8] 

 

Figure 1.2:  DeepVariant workflow overview.  

Before DeepVariant, NGS reads are first aligned to a reference genome and cleaned up with 

duplicate marking and, optionally, local assembly. NGS reading is first matched to a reference 
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genome before DeepVariant and cleaned up by duplicate labeling and optionally local 

assembly. The left box: first the aligned reads for various sites of the reference genome are 

scanned. For each site of the candidate variant the read and reference data are encoded as an 

image. The genotype probabilities of each site are determined by a trained CNN. Whether a 

heterozygous or homozygous non-reference is most likely a variant is emitted. Middle Box: the 

CNN training reuses the DeepVariant machinery for generating pile-up images for a known 

genotype sample. These labeled picture + genotype pairs, together with an original CNN, which 

can be a random model, CNN trained for other image classification tests, or an earlier 

DeepVariant model, optimize the CNN parameters with the aid of a stochastic gradient descent 

algorithm to improve genotype prediction accuracies. The final trained model is frozen and can 

then be used in the variant calling after the completion of a maximum number of cycles, times 

or the output of the model has converged. The right box: the bases and reading, quality values, 

and other read characteristics are encoded in a pile-up image red-green-blue (RGB) in a 

candidate version. This image encoded is given by the CNN to measure the probability 

genotype of the three homozygotic (hom ref), heterozygotic (het) or homozygotic alternative 

diploid genotype states (hom alt). A heterozygous variant name will be given in this case, since 

the most likely genotype is "het." Blue boxes are data in all panels and red boxes are procedures. 

Online approaches provide descriptions of all procedures. 

1.1.3 Predicting effects of noncoding variants with deep learning–based sequence 

model. 

It is a major challenge in human genetics to recognize functional effects of noncoding 

variants. A deep learning-based algorithmic system, DeepSEA (http:/deepsea.princeton.edu/), 

implemented in order to predict the non-coding variants effects from a sequence, where learns 

a regulatory sequence code from large-scale chromatin-profiling results, enabling prediction of 

chromatin effects of single-nucleotide sensitivity sequence alterations. This ability was also 

used to enhance the prioritization of functional variants, including quantitative trait loci 

(eQTLs) expression and variants associated with disease. [9] 

http://deepsea.princeton.edu/
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Figure 1.3:  Schematic overview of the DeepSEA pipeline, a strategy for predicting 

chromatin effects of noncoding variants. 

 

Before analyzing the figure 1.3 it’s important to understand some concepts. 

• Transcription Factor (TF) are proteins that binds on a gene regulatory regions to 

control the transcription of DNA to mRNA. [10] 

• Histone is protein that wraps around the DNA and helps suit the genome into a cell 

nucleus. This protein wrap including DNA is called chromatin. [11] 

• DNase I hypersensitive sites (DHSs) are chromatin-sensitive regions by enzyme 

DNase I, which have lost their concentrated structure, exposed and available DNA in 

these unique genome areas. This increases the availability of DNA for enzyme 

degradation such as DNase I. [12] 

Explanation of Figure 1.3: The DeepSEA model is for estimating noncoding-variant effects 

on chromatin. Is pre-trained with a compendium of genome-wide chromatin profiles from the 

Encyclopedia of DNA Elements (ENCODE) and Roadmap Epigenomics projects (including 

690 TF binding profiles for 160 different TFs, 125 DHS profiles and 104 histone-mark 

profiles). 
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The model is designed to use as input contexts of genomic sequences with integrated 

the variant position which is necessary to find the functional effect of non-coding variants. 

After training the context the model will predict an allele candidate chromatin profile. Where 

in next phase will help us to detect the chromatin effect of the variant position and also 

predict the variant functionality. 

 

 

The table below summarizes the models, the differences, the purpose between them and 

their accuracy. Table is based on publication [2]. 

Name Publication NN 

Model 

Data Purpose Accuracy 

DeepFIGV [7], [2] CNN Whole 

genome 

sequence 

Predict quantitative 

epigenetic variation 

z-scores 

DNase rho = 

0.0802,  

P = 5.32e– 

16 

DeepVariant [8], [2] CNN Variant 

caller 

Produced more 

accurate results with 

greater consistency 

across a variety of 

quality metrics 

99,45% F1 

 

DeepSEA [9], [2] CNN Noncoding 

variants 

(Allelically 

imbalanced 

SNPs) 

Predicting chromatin 

effects of noncoding 

variants. 

>95% 

Word2Vec [4], [13] Skip-

Gramm 

or 

CBOW, 

NLP, 

DL 

Corpus Create a word 

embedding for words. 

Find word relations by 

query. 

Necessary 

Semantic-

Syntactic 

Word 

Relationship 

Analysis 

Var2Vec 

(Thesis 

Model) 

[4], [13] CBOW, 

NLP, 

DL 

Variants Create a word 

embedding for 

variants. Predict 

impact variants by 

query. 

Necessary 

Semantic 

Variants 

Relationship 

Analysis 

Table 1.4:  Differences between Deep Learning Models. 

1.2 Our Solution 

An effective way to help researchers extract new knowledge for multiple diseases is to find and 

analyze these mutations by their properties. Our research question is if the deep learning 

technology, that has proven to provide impressive results in other domains, can be used for the 

classification of mutations and prediction of diseases. The rationale behind this effort comes 
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from the text mining area and using the same principles as document classification we explore 

the possibility to use the variants of a person in order to classify/identify possible diseases.  

In our proposal we create a deep learning model to learn about differences and create a graph 

of grouped variants. For start we use linear algebra and neural networks to find and calculate 

the SNP’s and visualize the results in a 2D or 3D plot. Specifically, the methodology used is 

word-embedding which is the formation of weights after training a Natural Language 

Processing neural network type Continuous Bags of Words for the mutations of homo sapiens. 

Before training, the network requires some data as input that in our case is generated from the 

Ensembl Variant Effect Predictor (VEP). VEP takes the human genetic code (DNA) as input, 

processes it and at its output mutations are recorded. Then, after training this neural network 

using the variants, the embedding (weights) were visualized using the Principal Component 

Analysis (PCA) in two dimensions and in three dimensions. Finally, a formula used to find 

cosine similarity (Cosine Similarity) in the vectors to detect the similar mutations, in particular 

the closest ones that have some correlation with each other, new conclusions can be drawn 

which are from which mutations some of them are affected. In order to find new SNPs that 

affect, for example, a disease. 
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2 Background 

In section 2 we introduce the methodologies that we used for our solution such as word2Vec, 

VEP, PCA etc. and provide a short introduction in the corresponding research areas such as 

biology and artificial intelligence.  

2.1 Neural Networks 

2.1.1 About neurons 

 The human cerebrum compromises of around a hundred billion neurons along with a 

much greater quantity of neuroglia for protecting and assisting the neurons. The network is 

made up such that a single neuron can be attached to 10,000 more neurons while the signals 

passed between them take up around 1,000 trillion of synapses. In relation to the sensory 

system, a synapse is a framework which permits the communication between neurons through 

signals or for targeting the effector cell by chemical or electrical means. The cell body, dendrite, 

and an axon make up each mammalian neuron as visible in the following figure.  [14] 

 

 

Figure 2.1:  Structure of a neuron. 

2.1.2 A brief introduction to Artificial Neural Networks 

A neural network can be conceptualized as a simulation of interconnected neurons such 

as a brain. The artificial neural network consists of many interconnected levels of 

interconnected neurons where they can be modulated during training. The neurons are arranged 

in layers. In a neural network, there are typically three layers: an input layer. One or more 

hidden layers (Deep Learning if more than two hidden layers) and an output layer, with a neuron 

or neurons representing the prediction goals. 

The neurons connected with different strengths (or weights) of the connection, it used to 

answer the question “What pattern or edge in the neuron.” The network learns by analyzing 

individual records, creating a prediction for each record, and changing the weights whenever 

Terminal 



Categorical Embedding with Deep Learning I. Giannakos  

17 

it makes a wrong prediction. The process repeated several times until one or more of the 

stopping conditions have been met, the network continues to improve its predictions. [15] 

Input 

(X1,X2..Xn) 

 

Weights or 

Interconnections 

(W1,W2,..Wn) 

Bias (B) 

Node - Neuron 

(Activation 

Function – f(..) ) 

Output (Y) 

Figure 2.2:  Structure of a Neural Network. 

2.1.3 Activation Function 

Activation function (f) is a function that takes some numbers as input (like input, 

weights, and bias) a calculates a binary number usually from 0 – 1. If the number is bigger from 

the threshold (e.g., 0.5), the neuron is activated. One of the most used activation functions are 

Sigmoid and ReLU. 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
=

𝑒𝑥

𝑒𝑥 + 1
 

The formula of Sigmoid Function 

𝑓′(𝑥) = 𝑓(𝑥) ∙ (1 − 𝑓(𝑥)) 

Derivative of sigmoid 

 

Figure 2.3:  Sigmoid Function  

[16, p. 425] 
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2.1.4 Bias 

There is one more significant attribute for a neuron. It plays a very special role in the 

activation of the neuron and goes to the next layer. It is called Bias. The bias represents some 

attributes of data such as race, gender and color. Which is a factor in activation of a specific 

neuron. [6][17] 

2.1.5 Loss 

We first need a way to quantify how well works our neural network to attempt improve 

it before we train our network. That is the loss. One formula for doing that is Mean Squared 

Error (MSE). 

𝐿 = 𝑀𝑆𝐸 =
1

2
∑(𝑌𝑇𝑅𝑈𝐸 − 𝑌)2
𝑛

𝑖=1

= (1 − 𝑌)2 

Where n is a number of examples, YTRUE is the true value of a variable (the correct classified 

of example, e.g., 1), and Y is the prediction variable (output of network). We needed to make 

better predictions as possible. To do that, we need to train the network to have the best lower 

loss. 

2.1.6 Backpropagation 

We want to modify w1. How much loss (L) will change after modification of w1? That 

we can find it by calculating the partial derivative of 
𝑑𝐿

𝑑𝑊1
 

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
 

Example: Chain Rule (Leibniz, 1646-1716) 

 

𝑑𝐿

𝑑𝑊1
=
𝑑𝐿

𝑑𝑌
∙
𝑑𝑌

𝑑𝑊1
 

𝑑𝐿

𝑑𝑌
=
𝑑(1 − 𝑌)2

𝑑𝑌
= −2(1 − 𝑌) 

We remember 𝑌 = 𝑓(𝑤5ℎ1 + 𝑤2ℎ2 + 𝑏3). So we cannot solve 
𝑑𝑌

𝑑𝑊1
 because w1 affects only 

h1, so the new chain is: 

𝑑𝑌

𝑑𝑊1
=
𝑑𝑌

𝑑ℎ1
∙
𝑑ℎ1

𝑑𝑊1
 

𝑑𝑌

𝑑ℎ1
= 𝑤5 ∙ 𝑓′(𝑤5ℎ1 + 𝑤6ℎ2 + 𝑏3) 
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𝑑ℎ1

𝑑𝑤1
= 𝑥1 ∙ 𝑓′(𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏1) 

So the final chain will be: 

𝑑𝐿

𝑑𝑤1
=
𝑑𝐿

𝑑𝑌
∙
𝑑𝑌

𝑑ℎ1
∙
𝑑ℎ1

𝑑𝑤1
 

[18] 

2.1.7 Stochastic Gradient Descent (SGD) 

Certain modifications of the weights and biases in order to decrease the loss takes place 

by the utilization of an optimization algorithm known as Stochastic Gradient Descent (SGD). 

𝑤1 = 𝑤1 − 𝜂
𝑑𝐿

𝑑𝑤1
 

The speed at which we train is controlled by a constant η known as Learning Rate. 

• If 
𝑑𝐿

𝑑𝑊1
> 0, Loss will be minimized as w1 will decrease 

• If 
𝑑𝐿

𝑑𝑊1
< 0, Loss will be minimized as w1 will decrease 

This needs to be done in case of each weight and bias for enhancing the network forecasts.[18] 

 

Figure 2.4:  Stochastic Gradient Descent (SGD) 

2.1.8 Softmax function 

SoftMax is a function that turns real numbers into probabilities it used on the output 

layer. And defined as: 

𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑛
𝑗=1
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2.2 Text Mining and Natural Language Processing (NLP): The Deep Learning 

approach 

Text mining is the research area of extracting interesting and relevant patterns from text 

sources. Text mining focuses on data processing, data analysis, machine learning, statistics and 

linguistic computation [19] and it deals with text that is stored in semi-structured and 

unstructured format in a natural language. In business, academia, web applications, the internet 

and other areas, text mining techniques are continually applied [20]. For opinion mining, feature 

extraction, sentiment, predictive, and trend analysis, application areas such as search engines, 

customer relationship management system, filter emails, product recommendation analysis, 

spam detection, and social media analytics use text mining. [21] 

Natural Language Processing (NLP) is an area of research that tries to give the 

computers the ability to understands and control speech or text from a natural language. NLP 

researchers seek to collect information about the use of languages from people to help 

developers create necessary tools and techniques for computer systems to understand and 

control natural languages. NLP implementations include a variety of research areas such as 

computer translation, natural language text encoding and interpretation, user interfaces, CLIR 

retrieval, language recognition, artificial intelligence, and expert systems (CRIRs). [22] [23] 

2.2.1 Word2Vec 

The meaning of words in a document is interpreted and vectorized by Word2vec, which 

implies words of identical meanings have very near distances within a specific context. In the 

next chapter, we will see the CBOW and Skip-gram model architectures, learning algorithms 

from word2vec suggested by Mikolov. [24] [25] 

2.2.1.1 Word2Vec Models 

Numerous NLP functions, such as speech-based tags and machine translation, have 

shown that word representation from the neural language models has been improved. Such low-

dimensional representations are learned in a language model as parameters and trained to 

optimize the probability of a large raw text corpus. These are then implemented as features 

alongside hand-crafted features, or used to initialize neural network parameters that target tasks 

for which significantly less training data is available. 

Models mentioned in the Word2Vec by (Mikolov et al [26]), particularly in “skip gram” 

and “continuous bag of words” (CBOW) models are implemented. However, both models are 

not word order sensitive. Word embedding models were developed with these models, thus 

capturing semantic knowledge between words, and pre-training use of these models was seen 

in several different tasks to lead to substantial improvements. Word2Vec is still a common 

alternative because of its efficiency and simplicity among other similar approaches like Glove 

and fastText. The CBOW model takes the mean of the vectors of the input context words and 

calculates the hidden layer. The model Skip-Gramm was the opposite of the model CBOW, 

because the target word was in the input layer, while the context words are on the output layer. 

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
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Figure 2.5:  CBOW and Skip-Gram Models. 

 

However, because these models are not sensitive to word order, they are not appropriate 

for tasks like grammar, such as speaking tagging or addiction parsing, since they are designed 

using these models. This is because "what words go where" is determined by syntax. While 

semantics than “what words go together.”  Obviously, several syntactic connections between 

words cannot be properly captured in a model in which word order is discarded. For example, 

although the majority of words occur with the word, only names occur exactly after words (e.g., 

the cat). 

This is confirmed by empirical evidence that insensitivity to order does indeed lead to 

low syntactic representations, whereby systems using Word2Vec models pre-trained provide 

minor improvements while the computationally far more costly using word order information 

embeddings of Collobert et al. [27] yields much better results. [28] 

2.2.2 Word2Vec Skip-Gram Model 

For Skip-Gram, the input is the central word in Word2Vec's skip-gram architecture, 

with the prediction the context words. Think a collection of terms W, where W (i) would be an 

input as the central word with context words would be W (i + 2) and W (i + 1). If window 

sliding size is 2, then: 
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Figure 2.6: Getting context words from a corpus (window slide = 2). 

Τhe table below is to understand and remember important parts of the model. 

V Total different words in corpus. 

X Input Layer where input word would be One-Hot encoding. 

N Total neurons present in the secrete layer. 

W Weights among the hidden layers as well as the output layer. 

W’ Weight present between the output layer and hidden layer.  

y Output layer with possibilities of almost each word. (SoftMax) 

 

 

Figure 2.7: Word2Vec Skip-Gram Model. 

 

2.2.2.1 Forward Propagation 

To get started with forward propagation first we multiply the center word (x) one-hot 

encoding with basic weight matrix i.e. W to the matrix i.e. h, which is Nx1.  

ℎ = 𝑊𝑇 ∙ 𝑋 
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In order to achieve the value of u, the hidden vector “h” is multiplied with the 2nd weight matrix 

“W”. 

𝑢 = 𝑊′𝑇 ∙ ℎ 

In order to achieve the value for output layer “y”, SoftMax is applied to the layer “u”.  

• 𝑢𝑗  = the 𝑗𝑡ℎ neuron of “u” layer. 

• 𝑤𝑗 = the term 𝑗𝑡ℎ in the vocabulary, indicating “j” as index. 

• 𝑉𝑤𝑗 = 𝑗𝑡ℎ column of matrix W’ i.e. the column next to the Wj  

• 𝑢𝑗 = 𝑉𝑊𝑖𝑗
𝑇 ∙ ℎ 

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢) 

𝑦𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑢𝑗) 

𝑦𝑖 stands for the probability of Wj as a context term. 

𝑃(𝑊𝑗|𝑊𝑖) = 𝑦𝑖 =
𝑒𝑢𝑗

∑ 𝑒𝑢𝑗′𝑢
𝑗′=1

 

𝑃(𝑊𝑗|𝑊𝑖) indicate the probability of Wj as the context word, with Wi stands for the input 

word.  

Therefore, the main objective is to increase the value for 𝑃(𝑊𝑗∗|𝑊𝑖), in which j* stands for the 

indices of context word.   

Goal is to maximize: 

∏
𝑒𝑢𝑗𝑐∗

∑ 𝑒𝑢𝑗′𝑢
𝑗′=1

𝑪

𝑐=1
 

Here, the j*c represent the key for unique words that ultimately belongs to the context words. 

Moreover, these context words begin from 1, 2, 3,…C.  

Now, in order to obtain the loss function, we take the –ive log-probability of function that 

should be minimum.  

𝐸 = − log {∏
𝑒𝑢𝑗𝑐∗

∑ 𝑒
𝑢𝑗′𝑢

𝑗′=1

𝑪

𝑐=1
} 

E is the loss function. Suppose “t” is the output vector taken for the specific word from the 

training data. Now, 1 would be located at the context word position, while 0 would be present 

elsewhere. Here, 𝑡𝑗∗𝑐  would be one of the various context words. 

Multiplying 𝑒𝑢𝑗𝑐∗ to 𝑡𝑗𝑐∗ 

𝐸 = − log (∏ 𝑒𝑢𝑗𝑐∗
𝐶

𝑐=1
) + log (∑ 𝑒𝑢𝑗′

𝑢

𝑗′=1
)

𝑪

 

The resultant equation for loss function would be: 
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𝐸 = −∑ 𝑢𝑗𝑐∗
𝑪

𝑐=1
+ 𝐶 ∙ log (∑ 𝑒𝑢𝑗′

𝑢

𝑗′=1
) 

2.2.2.2 Back Propagation 

The two factors that should be accustomed are “W” and the “W’”. So, the partial 

derivative should be determined for the loss function in order to apply the method of gradient 

descent according to the W and W’   

Our objective is to determine the 
𝑑𝐸

𝑑𝑊′ and 
𝑑𝐸

𝑑𝑊
 

𝑑𝐸

𝑑𝑊′
𝑖𝑗
=
𝑑𝐸

𝑑𝑢𝑗
∙
𝑑𝑢𝑗

𝑑𝑊𝑖𝑖𝑗
 

𝑑𝐸

𝑑𝑢𝑗
= −∑ 𝑢𝑗𝑐∗

𝑪

𝑐=1
+ 𝐶 ∙

1

∑ 𝑒𝑢𝑗′𝑢
𝑗′=1

∙
𝑑

𝑑𝑢𝑗
∑ 𝑒𝑢𝑗

𝑉

𝑗=1
 

𝑑𝐸

𝑑𝑢𝑗
= −∑ 1

𝑪

𝑐=1
+∑ 𝑦𝑗

𝑉

𝑗=1
 

𝑑𝐸

𝑑𝑢𝑗
= 𝑦𝑗 − 𝑡𝑗 = 𝑒𝑗 

𝑑𝐸

𝑑𝑊′
𝑖𝑗
= 𝑒𝑗 ∙

𝑑𝑢𝑗

𝑑𝑊′
𝑖𝑗
= 𝑒𝑗 ∙

𝑑𝑊′
𝑖𝑗 ∗ ℎ𝑖

𝑑𝑊′
𝑖𝑗

 

𝑑𝐸

𝑑𝑊′
𝑖𝑗
= 𝑒𝑗 ∙ ℎ𝑖 

Now finding 
𝑑𝐸

𝑑𝑊𝑖𝑗
 

𝑑𝐸

𝑑𝑊𝑖𝑗
=
𝑑𝐸

𝑑𝑢𝑗
∙
𝑑𝑢𝑗

𝑑𝑊𝑖𝑗
 

𝑑𝐸

𝑑𝑊𝑖𝑗
=
𝑑𝐸

𝑑𝑢𝑗
∙
𝑑𝑢𝑗

𝑑ℎ𝑖
∙
𝑑ℎ𝑖
𝑑𝑊𝑖𝑗

 

𝑑𝐸

𝑑𝑊𝑖𝑗
= 𝑒𝑗 ∙ 𝑊

′
𝑖𝑗 ∙
𝑑𝑊𝑖𝑗 ∙ 𝑋𝑖

𝑑𝑊𝑖𝑗
 

𝑑𝐸

𝑑𝑊𝑖𝑗
= 𝑒𝑗 ∙  𝑊′𝑗 ∙ 𝑋𝑖 

[22] [28] [29] 

2.2.3 CBOW Model  

In Continuous Bag of Word (CBOW) model of Word2Vec, context words are input with 

prediction as the center word. The text mining process will be the same as skip-gram described 
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in the figure above 2.6. The difference on this model is we think a set of words W, suppose 

input are W (i + 2) and W (i + 1) as conditional words, with center word is W (i). If 2 is the 

size for sliding window.  

 

 

Figure 2.8: Word2Vec CBOW Model. 

 

Τhe table below is to understand and remember important parts of the model. 

V Total different words in corpus. 

C Word window size. 

X Input Layer where input word would be One-Hot encoding. 

N Total neurons present in the secrete layer. 

W Weights among the hidden layers as well as the output layer. 

W’ Weight present between the output layer and hidden layer.  

y Output layer with possibilities of almost each word. (Softmax) 
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2.2.3.1 Forward Propagation 

To get started with forwarding propagation of CBOW first, we are multiplying one-hot 

encoding of every context words (𝑋𝑖) with the weight matrix 𝑊. For every result summed we, 

divide it by C. Where, the mean for input vectors is weighted by “W” matrix.  

ℎ =  
1

𝐶
𝑊 ∙ (∑𝑋𝑖

𝐶

𝑖=1

) 

We are now calculating the inputs for every node in the output layer: 

𝑢𝑗 = 𝑉𝑊𝑗
′ 𝑇

∙ ℎ 

Where 𝑉𝑊𝑗
′  indicates the 𝑗𝑡ℎ column in the 𝑾′ output matrix. 

In the end, the output layer was calculated. The 𝒚𝒊 output is obtained by passing the input 𝑢𝑗  

through soft-max function. 

𝑦𝑖 = 𝑝 (𝑊𝑦𝑗|𝑊1, … ,𝑊𝐶) =  
𝑒𝑢𝑗

∑ 𝑒𝑢𝑗
′

𝑉
𝑗′=1

 

After understanding the functioning of forward propagation, the matrices of W and W' can be 

understood.  

2.2.3.2 Back Propagation 

In order to understand the weight matrices, first of all the randomly initialized values 

are learnt, followed by inserting different training examples in the model under keen 

observation. Then the errors are determined by setting the comparison between real 

performance and expected performance. This comparison generates the gradient of error, which 

is measured and then corrected in both of the weight matrixes. This sort of optimization is 

known as SGD i.e. Stochastic Gradient Descent.   

First of all, the loss function is set with the aim of increasing probability of output with 

the given context of input. So our loss function will be: 

𝐸 =  − log 𝑝(𝑊𝑜|𝑊𝐼) 

= −𝑢𝑗∗ − log ∑ exp (𝑢𝑗′)

𝑉

𝑗′=1

 

= −𝑉𝑊𝑜
𝑇 ∙ ℎ − log ∑ exp (𝑉𝑊

𝑗′

𝑇 ∙ ℎ)

𝑉

𝑗′=1

 

Where 𝑗 ∗ is the current output word index, the following step is the derivation of the updated 

equation for total weight i.e. W', between the hidden layers and output layers. In next we derive 

W i.e.; the weight intermediates the hidden layer and the input layer.  
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Update the weight between output layer and hidden layer: 

First of all the derivative is calculated for loss function i.e. E of the input to the node 𝑗𝑡ℎ which 

belongs at the output layer 𝑢𝑗 . 

𝑑𝐸

𝑑𝑢𝑗
= 𝑦𝑗 − 𝑡𝑗 

Where 𝑡𝑗 = 1 if 𝑗 = 𝑗* otherwise 𝑡𝑗 = 0. This simplifies the output layer’s prediction error for 

the “j” node, followed by taking out the derivative of E for the 𝑾𝒊𝒋
′  output weight by following 

the chain rule.   

𝑑𝐸

𝑑𝑊′𝑖𝑗
=
𝑑𝐸

𝑑𝑢𝑗
∙
𝑑𝑢𝑗

𝑑𝑊′𝑖𝑗
 

= (𝑦𝑗 − 𝑡𝑗) ∙ ℎ𝑖 

At this point, the gradient of 𝑾′𝒊𝒋 the weight of arbitrary output is obtained and now the 

stochastic gradient can be defined for the descent equation.   

𝑊′𝑖𝑗 = 𝑊′𝑖𝑗 − 𝜂 ∙ (𝑦𝑗 − 𝑡𝑗) ∙ ℎ𝑖 

or 

𝑉′𝑊𝑗 = 𝑉′𝑊𝑗 − 𝜂 ∙ (𝑦𝑗 − 𝑡𝑗) ∙ ℎ 

Here, the η > 0 stands for the learning rate, ℎ𝑖 stands for the hidden layer’s 𝑖𝑡ℎcolumn, and the 

𝑉𝑊𝑗
′ indicates the 𝑤𝑗’ output vector.   

Keeping it under consideration, this updated equation suggests reviewing each word of 

vocabulary and analyzes their output probability i.e.𝑦𝑗, followed by comparing 𝑦𝑗 with 𝑡𝑗 that 

is its expected output as 0 or 1.     

• In case, 𝑦𝑗 > 𝑡𝑗 (“overestimating”), a portion of hidden vector h is subtracted from 

the 𝑉𝑤𝑗
′ , leading to make the 𝑉𝑤𝑗

′  away from 𝑉𝑤𝐼. 

• In case, 𝑦𝑗 < 𝑡𝑗 (“underestimating”, as it can be accurate if 𝑡𝑗 = 1 and 𝑊𝑗 = 𝑊𝑂, 

followed by addition of “h” to 𝑉𝑊𝑂
′ , leading to make the 𝑉𝑊𝑂

′  closer to 𝑉𝑊𝐼. 

• In case the 𝑦𝑗 stands closer to 𝑡𝑗, there will be just a slight modification in weights as 

per the updated equation. 

Must remember that the input vector (𝑉𝑊) is different from the output vector i.e. 𝑉𝑊
′  

Updating the input-hidden layer weights 

Here, the major focus is laid on derivation of updated equation for 𝑊𝑖𝑗, which is the 

input weight. First of all the derivative of E is calculated according the arbitrary hidden nodes 

i.e. ℎ𝑖 by following the chain rule.  

𝑑𝐸

𝑑ℎ𝑖
=∑

𝑑𝐸

𝑑𝑢𝑗

𝑉

𝑗=1

∙
𝑑𝑢𝑗

𝑑ℎ𝑖
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=∑(𝑦𝑗 − 𝑡𝑗) ∙ 𝑊′𝑖𝑗

𝑉

𝑗=1

 

Here, the calculation is completed by following the fact that nodeℎ𝑖 of hidden layer is attached 

with every node f output layer, hence every prediction error needs to be integrated. Finally the 

derivative of E is calculated according𝑊𝑘𝑖 , which is arbitrary input weight.   

𝑑𝐸

𝑑𝑊𝑘𝑖
=
𝑑𝐸

𝑑ℎ𝑖
∙
𝑑ℎ𝑖
𝑑𝑊𝑘𝑖

 

=∑(𝑦𝑗 − 𝑡𝑗) ∙ 𝑊′𝑖𝑗

𝑉

𝑗=1

∙
1

𝐶
∙ 𝑋𝑘 

=
1

𝐶
(𝑥 ∙ 𝐸𝐻) 

Where EH stands for the elements’ N-Dimensional vector ∑ (𝑦𝑗 − 𝑡𝑗) ∙ 𝑊′𝑖𝑗
𝑉
𝑗=1 ∙

1

𝐶
∙ 𝑋𝑘 from 𝑖 =

1, … , 𝑁. Although the X inputs are one-hot encoded and there will be just one non-zero row i.e. 

𝑁 ×  𝑉 matrix 
1

𝐶
(𝑥 ∙ 𝐸𝐻). The final SGD equation for the input weight is   

𝑉𝑊𝐼,𝑐
′ = 𝑉𝑊𝐼,𝑐

′ − 𝜂 ∙
1

𝐶
∙ 𝐸𝐻 

Where 𝑊𝐼,𝑐 is the 𝑐𝑡ℎ word in the input context. [26]  

 The CBOW model was used in our problem. The reason for the selection of CBOW is 

that the basic information is the description of the variants (contexts) and the purpose is to 

generate vectors for each SNP (e.g. rsXXXX). In Word Embedding templates before training 

the model needs to be pre-processed. More specifically, the text has to be broken into words 

and after the number of the window defined by an expert, lists are formed - context with each 

central word. The difference in our case is that since we have the information of the variants, 

the most important fields were selected based on their correlation and the experts. Then we 

assign each word to a number. These numbers are the context of the neural network where it 

corresponds to an SNP target [4] [24]. 

2.3 Principal Component Analysis (PCA) 

Principal components analysis is a method used for transforming a number of possibly 

correlated variables in a small number of variables known as main component using 

mathematical principles. The original dataset, which may have involved many variables, can 

often be interpreted in just a few variables, using mathematical projection. The basic concept 

of the main component analysis is to minimize the dimensionality of a dataset, in which several 

similar variables occur, while preserving as much variance as possible in the data set. This 

reduction comes by converting the uncorrelated and ordered main components into a new 

collection of variables which retained from some first component that contains the most of 

variation. 
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 The main use of Principal Component Analysis (PCA) is to reduce the dimensions of a 

dataset that includes a huge number of associated variables and keeping best possible variance. 

The goals of PCA are to: 

1. Extract the most important information from the dataset. 

2. Compress the size of the dataset by keeping only most important data. 

3. Simplify the description of the dataset. 

4. Inspect the structure of the observations and the variables. 

5. Compress the data by decreasing the number of dimensions, without losing much 

information. 

6. This technique used in image compression. 

We have to be through in statistics and matrix algebra in order to analyze the data by the 

Principal Component Analysis. In neural networks an n-dimensional vector with numeric 

characteristics represents an object or context. The incorporating semantic similarities between 

texts holds an important position. [30] 

2.4 Cosine similarity 

One of the most common utilized standards for information fetching is Cosine similarity. 

A text file is transformed in a vector of terminologies by this standard. Through the utilization 

of this standard, the resemblance of two files can be determined by computing the cosine value 

among the term vectors of both the files. This standard can be performed on any two blocks of 

text (whole document, paragraph, or single line). In instance of a search engine, the likeness 

factor of the input query and the documents are retrieved from most resembling to lower 

resemblance. The greater the resemblance score among the document’s and query’s term 

vectors, the greater the resemblance in both the said excerpts.  

The word or term searched should be accommodated while utilizing cosine similarity 

method for determining the resemblance ratio between document and the search term given by 

the user. The semantic meaning of the search term might not be perfectly accurate using cosine 

similarity. The execution of cosine similarity standard may at times give undependable 

outcomes between two term vectors in terms of syntax. Comparing the syntax might not provide 

solution for the problem of semantic meaning. For additional procedure, i.e., data fetching 

framework, it might deliver false outcome and cause corrupting in its presentation. 

According to document-query scenarios, the document is portrayed in the form of a term 

vector where the proportions of the vector correspond to the terms present in the document. The 

value of the proportion is associated to the frequency of term in the document. The 

representation of the document in the form of a vector is: 

𝑑 = (𝑊𝑑0,𝑊𝑑1, … ,𝑊𝑑𝑘) 

In a similar way as per the document, the representation of query is given as follows: 

𝑞⃗ = (𝑊𝑞0,𝑊𝑞1, … ,𝑊𝑞𝑘) 

the occurrence of terms inside a document is given by 𝑤𝑑𝑖 and 𝑤𝑞𝑖 (0 ≤ 𝑖 ≤ 𝑘) which are float 

numbers, whereas the value of the proportion is associated to the frequency of term in the 
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document. On the basis of vector similarity, the resemblance of two vectors is determined by: 

[31] 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑞⃗, 𝑑) = cos (𝜃) =
𝑞⃗ ∙ 𝑑

|𝑞⃗|  ∙ |𝑑|
=

∑ 𝑤𝑞𝑘 × 𝑤𝑑𝑘
𝑡
𝑘=1

√∑ (𝑤𝑞𝑘)2
𝑡
𝑘=1 ∙ √∑ (𝑤𝑑𝑘)2

𝑡
𝑘=1

 

2.5 Genetics 

2.5.1 A Brief Introduction 

All in all, genetics is generally viewed as a zone of science that encourages one to 

comprehend the systems and techniques utilized in characteristics acquired from parents to 

children it additionally crosses with the innate and hereditary varieties in living life forms. It is 

emphatically connected to the utilization of genetics to human undertakings. While, 

chromosomes are an arranged framework comprised in the cell that contains various genes, 

consisting long chains of single atoms of deoxyribonucleic corrosive (DNA) or, at times, 

ribonucleic corrosive (RNA) and the connected protein. Many bacterial chromosomes are 

basically a solitary, round, twofold linked DNA generally appended to the plasma film, which 

consists various qualities. 

Hereditary data for the most part has its own job towards genotype (duplication), 

phenotype (gene characteristic), and modification. Ordinarily, by correlation, DNA is a long 

atom, comprising of our unique hereditary code and accumulating hereditary data. This 

comprises of subunit links known as nucleotides (otherwise called "bases") comprising of a 

phosphate particle, a sugar atom (5-carbon) and a nitrogen base. Each filament comprises of a 

long arrangement of the four essential structure squares or 'bases.' DNA is a part of its 

information accumulated in DNA as a code comprising of four synthetic bases: thymine (T), 

cytosine (C), guanine (G) and adenine (A). 

Technique for the DNA record and RNA interpretation, earlier known as a core dogma of sub-

atomic science, will at first go through DNA for the advancement of protein. This core dogma 

portrays the two stage cycle, record and interpretation through which protein is produced by 

data in genes: DNA-RNA protein. RNA is a functioning atom with long nucleotide links. It has 

ribose sugar, phosphate., and nitrogen base. In any case, now and again, there are blunders that 

cause change when a mistake happened during DNA replication/DNA record. Two major 

change related circumstances; DNA duplication blunders/DNA record mistake and synthetic or 

actual impacts brought about by explicit transformation related variables or unconstrained 

change. In like manner, we may discover different writings while examining current genetics 

[5]. 

2.5.2 Human Genome Project 

The principle point of the Human Genome Project is to investigate internationally the 

formation of the human genome and to group all qualities of the human genomes. In 2001 to 

2003, Venter and Francis Colleins declared the full draft of the human genome pattern with a 



Categorical Embedding with Deep Learning I. Giannakos  

31 

98% human genome sequenced at an accuracy of over 99,9%. In previous occasions, the HGP 

was exceptionally eager and pointed toward building up a human hereditary planning 

framework, finding 3 billion human genomic nucleotides and describing the whole collection 

of these by 24 chromosomes in 2005 [32]. 

2.5.3 Ensemble Variant Effect Predictor: Annotating Variant Effects 

The Ensemble Variant Effect Predictor (VEP) is an apparatus which comments on, 

assess and organize genomic variations, including non-coding areas. VEP foresees precisely 

the impacts of grouping variations on records, protein items, administrative areas, and 

restricting themes by utilizing the Ensemble information bases' top notch, wide degree, and 

incorporated plan. It additionally considers correlation with a wide arrangement of existing 

freely available variety information inside Ensemble to give understanding into populace and 

genealogical hereditary qualities, aggregates and infection. VEP is free and an open source. It 

is accessible by means of a straightforward web interface (http:/www.ensembl.org/vep), an 

adaptable downloadable bundle and the Perl and REST application programming (API) 

administrations of both Ensemble. 

VEP clarifies two distinct sorts of genomic variations: (1) arrangement variations with 

one of a kind and clearly characterized changes (including SNVs, additions, cancellations, 

various base pair replacements, microsatellites, and tandem redundancy); and (2) bigger 

primary variations (bigger than fifty nucleotides long) containing contrasts for the quantity of 

duplicates or inclusions and DNA erasures. The VEP returns specified examination for all 

information variations for consequences for records, proteins, and administrative areas. 

Included for distinguished or comparable variations are allele frequencies and data about 

infection or aggregate. 

The VEP discoveries contain a wide scope of information applicable to genes and 

records (Table 2.10). Record sets can be utilized on an essential reference get together or ALT 

grouping, yet naturally, the VEP chooses Ensemble explanation. 
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Table 2.6: Gene and transcript-related fields reported by the VEP. 

The VEP filters the information bases for the Ensemble Variability, which comprise a 

large assortment of freely accessible information on germ line and substantial inconstancy in 

vertebrates. Ensemble fuses variations from dbSNP and different hotspots for 20 life forms, and 

quality controls. Explicit human examples incorporate COSMIC and Human Gene Mutation 

Database varieties, and underlying variations, also duplicate number variations from the 

Genomic Variants Database information base. 

The VEP may thusly contrast a great many variations which characterize the ones 

already referenced. The VEP covers allele frequencies as per the activities 1000 Genomes, 

NHLBI exome sequencing and ExAC. These can be utilized as channels, taking into account 

the avoidance of explicit variations as pathogenic applicants. The VEP gives PubMed 

identifiers to referred variations, which likewise explain those related with an aggregate, 

confusion, or attribute utilizing information from Orphanet, OMIM, the GWAS Catalog, and 

other information sources. Clinical condition of importance given by ClinVar is additionally 

basic for human variations. [1] 
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Table 2.7: Co-located variant-related fields reported by the VEP 
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3 Methodology 

In this chapter, we explain the methodology we followed to figure, identify and categorize 

the variants and correlations of mutations from a patient like the example above, in order to 

study them, draw new conclusions and find their similarities as well as how one mutation can 

affect another. 

At the beginning, we should download "00-common_all.vcf.gf" which is a file with the 

human variations in VCF format without clinical assertions that have been mapped to 

assemblies GRCh37 and GRCh38, provided by dbSNP [33]. Furthermore, we should extract 

data from the file so is necessary to create a script that reads this file and selects the fields 

#CHROM, POS, ID, REF and ALT [34]. 

Once we have this data, we use it as input to the Ensembl Variant Effect Predictor (VEP). 

Next, when VEP data processing is finished and the variants was discovered from VEP.  

We selected the Continuous Bags of Words (CBOW), deep learning model that takes as 

an input multi-words contexts (developer-defined list which contains numerical representations 

of words). When computing the hidden layer output, the CBOW model takes the average of the 

vectors of the input context words and use the average vector as the output. The main criteria 

of this model is that the input layer use as basic information the selected attributes of the variants 

context from VEP database in order to generate vectors for each target SNP (e.g. rsXXXX). In 

word embedding before training the model we need to preprocess the data/text e.g. the sentences 

will be broken into words and after the length of window (window=context where words are 

encoded in unique numbers) defined by an expert or experiments, word lists are formed also 

and a context with each central word. 

The difference in our case is that we have the variants from VEP, the most important 

fields were selected based on their correlation and the experts. These fields are described in the 

sections with the Experiments below. Also, we have assigned each word/variant to a number. 

These numbers are the context of the neural network where it corresponds to an SNP target [4]. 

Finally, after training the CBOW model and embedding was formed we extract the word-

embedding (weights between Input Layer and Hidden Layer) and use those embedding’s as 

input to the Principal Component Analysis (PCA) in order to represent the output components 

with a scatter plot [30]. Figure 3.1 depicts the high-level architecture of our methodology while 

the following sub=sections describe the main steps of our implementation. 

 

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-common_all.vcf.gz
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Figure 3.1: Methodology Architecture 

3.1 Prepare variation data for VEP 

Step 1. Download all variation dataset from 

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-common_all.vcf.gz 

 

Step 2. Extract data in a folder (file “00-common_all.vcf”). 

 

Step 3. The following script generates some files in ‘data/generated/chrX.vcf’. Those 

files contain information about variants. Specific 'CHROMOSOME', 'POSITION', 

'ID', 'REFERENCE' and 'ALTERNATIVE'. That files will be used as input on VEP. 

3.2 Installing VEP 

1. git clone https://github.com/Ensembl/ensembl-vep.git 
2. cd ensembl-vep 
3. chmod +x INSTALL.pl 
4. perl INSTALL.pl 

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/00-common_all.vcf.gz
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While install you must select those numbers-files: 

296: homo_sapiens_merged_vep_94_GRCh38.tar.gz 

298: homo_sapiens_refseq_vep_94_GRCh38.tar.gz 

300: homo_sapiens_vep_94_GRCh38.tar.gz 

If everything is completed download GRCh38 fasta assembly from ensembl and run example: 

1. mkdir fasta 
2. cd fasta 
3. curl -O ftp://ftp.ensembl.org/pub/release-

96/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa

.gz 

4. bgzip -d Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz 
5. cd ../ 
6. ./vep -i examples/homo_sapiens_GRCh38.vcf --cache --force_overwrite -

-merged --offline --everything --fasta 

./fasta/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz --assembly 

GRCh38 -o stdout 

Now, we can run VEP for all snps of Homo Sapiens. To do that copy the all generated files 

“chrX.vcf” from previous steps and paste it on ensembl-vep/input/. Run it and wait to finish 

some hours/days and you will see all chromosome variants in ensembl-vep /output folder. 

3.3 Data Preprocessing 

According to Word2Vec CBOW model, the data was used is a text document. So, for 

start the developer must define a length of the sentence that is necessary to start processing a 

whole document that he wants to process, a step called “sliding window”. The sliding window 

is a container that contains few words encoded in numbers. For every word in this container, 

we need to extract the context words and center words. The center word, otherwise called 

“target word” is the mark (index) number in whole document words. The previous and next 

words among the center word on the current sliding window are the Context words of the 

window. 

The difference in our methodology is the variants that we have to get from VEP were 

selected by an expert along with the correlation of attributes. The selected attributes are 

described in the experiment section. The start idea was the attributes will be used as contexts 

(encoded as unique numbers) and the SNP as all words in the vocabulary. In shortcut context 

(selected attributes) targets a SNP (rsXXXX). That information was used as input in our model. 

But we conclude with the final idea in third experiment, the common attributes among SNP’s 

will be used as SNP indexing. Those indexes are 1-window contexts and the target is one-hot 

encoding of total SNP’s. 

3.4 Model Selection 

 The CBOW model usually is taken as input multi-words contexts. The model predicts the 

centre word from its surrounding context [35]. When computing the hidden layer output, the 

model takes the average of the vectors of the input context words and use the average vector as 

the output. The CBOW model was used in our problem than Skip-Gramm. The reason this 

ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz
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model was used is that the basic information is the description of the variants (contexts) and the 

purpose is to generate vectors for each target SNP (e.g. rsXXXX) [13] [5]. 

3.5 Validation 

 Various word embedding models generate different vector representations. It is a matter 

of checking how well the concept of the perceived similarity is taken from the word vector 

representations and validating the distribution hypothesis, where the meaning of the terms is 

linked with the context in which they occur. For this latter, it is still unclear how similarities are 

simulated through distributive semantic models. 

 The cosine similarity is as an inspector. To clarify, inspector measures the association 

between all dimensions of the vector, regardless of their meaning for a given word pair or for a 

semantic group [35]. So, we pass the word embedding results into cosine similarity where will 

compare all SNPs vector and will select the most similar for one selected SNP. To validate this, 

we must compare the SNP attribute for instance REF, ALT and if are almost the same we have 

a valid result. This process must be done for every SNP in the dataset to have a clear image 

about them. 
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4 First Experiment 

4.1 Problem definition 

On the first experiment, the objective is to cluster all the known variants and to preview 

all those datasets by their unique attributes. We need a solution to be able to visualize - plot 

those datasets to help bioinformaticians and biologists to understand more about mutations. 

Another challenge after accomplishing the visualization is that we need a way to be able 

to find if a mutation has some correlation (or the opposite) with all other mutations. If they are 

similar by their attributes we possibly can watch and study them to found new conclusions 

about them (e.g., a possible cancer SNP). 

According to the architecture we introduce in the previous chapter we believe a deep 

learning neural model and more specific a natural language processing deep neural model will 

be able to help us analyses our data while the PCA to plot this type of data. Such a model is 

designed to process documents and produce vectors of words to be able to plot them to find the 

similarities between them. In this experiment, we will try to use variant data instead of words 

to be able to produce vectors of variants. 

4.2 Data 

The table below shows the results of variants data generated from VEP. Some of these fields 

will be use in our neural network as input. Table is available on VEP website [34]. 

Columns Description Used 
LOCATION 

(or CHROMOSOME) 
Location of variant in standard coordinate format 

(chr:start or chr:start-end) 

YES 

Allele The variant allele used to calculate the consequence. YES 
Gene Stable ID of affected gene. YES 
Feature Stable ID of feature. YES 
Consequence Consequence type. YES 
AF Frequency of existing variant in 1000 Genomes 

combined population. 

YES 

GIVEN_REF Reference allele from input. YES 
SOURCE (Ensembl) Source of transcript. YES 
IMPACT Subjective impact classification of consequence type. YES 
STRAND Strand of the feature (1/-1). YES 
VARIANT_CLASS SO variant class. YES 
SYMBOL Gene symbol (e.g. HGNC). YES 
SYMBOL_SOURCE Source of gene symbol NO 
BIOTYPE Biotype of transcript or regulatory feature. YES 
CANONICAL Indicates if transcript is canonical for this gene. YES 
TSL Transcript support level. YES 
BIOTYPE Biotype of transcript or regulatory feature. YES 
USED_REF Reference allele as used to get consequences. YES 
INTRON Intron number(s) / total. YES 
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EXON Exon number(s) / total. YES 
CLIN_SIG ClinVar clinical significance of the dbSNP variant. YES 
SOMATIC Somatic status of existing variant. NO 
GENE_PHENO Indicates if gene is associated with a phenotype, disease 

or trait. 

YES 

MOTIF_NAME The source and identifier of a transcription factor 

binding profile (TFBP) aligned at this position. 

NO 

MOTIF_POS The relative position of the variation in the aligned 

TFBP. 

NO 

HIGH_INF_POS A flag indicating if the variant falls in a high information 

position of the TFBP. 

NO 

BAM_EDIT Indicates success or failure of edit using BAM file. NO 
miRNA SO terms of overlapped miRNA secondary structure 

feature(s). 

NO 

Table 4.1:  Used fields and their descriptions from VEP. 

4.3 Scripts 

1. from tensorflow.keras import utils 
2.   
3. def generate_data(): 
4.     total_rs = len(rs) 
5.   
6.     for counter in range(0, total_rs): 
7.         x = np.array(  [ wids[counter] ] ) 
8.         y = np.array( [ utils.to_categorical(counter, total_rs) ]  ) 
9.   
10.         yield x, y 

11.   

12.   

13. # build CBOW architecture 

14. cbow = tf.keras.models.Sequential([ 

15.   tf.keras.layers.Embedding(input_dim=vocab_size, 

output_dim=embed_size, input_length=window_size ), 

16.   tf.keras.layers.Lambda(lambda x: tf.keras.backend.mean(x, 

axis=1), output_shape=(embed_size,)), 

17.   tf.keras.layers.Dense(vocab_size, activation='softmax') 

18. ]) 

19.   

20.   

21. cbow.compile(optimizer='rmsprop', 

22.               loss='categorical_crossentropy') 

23.   

24. def training(): 

25.     for epoch in range(1, 150): 

26.         loss = 0. 

27.         i = 0 

28.         for x, y in generate_data(): 

29.             i += 1 

30.             loss += cbow.train_on_batch(x, y) 

31.             if i % 100000 == 0: 

32.                 print('Processed {} (context, variants) 

pairs'.format(i)) 

33.   

34.         print('Epoch:', epoch, '\tLoss:', loss) 

35. print() 
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36.   

37. training() 

38.   

39. weights = cbow.get_weights()[0] #Word-Embedding 

Code 4.2: A python implementation of CBOW deep learning model 

In the code section above, we have reproduced an example of a CBOW deep learning model. 

In the function generate_data(), the SNP’s encodes to one-hot array (zeros and ones) by its 

index on whole document. Nextly, we create the model architecture were defined by the 

vocabulary length, contect length, embedding size and loss function. On training() function, it 

is necessary to define the epochs to start training. At the end, when training have finished we 

extract word embedding from our deep learning model.  

4.4 Results 

In the first experiment for chromosome 22 using a Continues Bag Of Words Model after 5 

epochs, and using an NVIDIA CUDA 2080ti card and 64GB RAM over a period of four weeks 

shows that our model succeeds a small variation description (~4%) and the results were not 

qualitative. Due to the long time required for model training and processing of huge volumes 

of data, it resulted in invalid results. To be able to assume that the results are valid would require 

more time and more experiments for the reliability of the results. To visualize the accuracy of 

the results we use Cosine Similarity and compare our samples (i.e., SNPs) with a database e.g., 

of NCBI we then compare them in terms of Alleles, Position and Variation Type characteristics. 

If most SNP’s are close by and there is a lot of similarity between them, then our results are 

quite accurate. 

After training variation data of chromosome 22 we get 2 files (vectors22.tsv and rs22.dat). We 

use them as input to PCA, or you can use also TensorFlow Projector to get the 2-Dimension or 

3-Dimension of chromosome 22 embedding. 
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Figure 4.3:  Embedding Projection of Chromosome 22 variants. 

In the figure above, it depicts the embedding results after training our model with variation data 

of chromosome 22. In fact, we choose a random SNP and we search and watch the closest 

SNP’s using Cosine Similarity. The results are not too accurate concluding that the training was 

not enough for a better view. We believe that we need more time for the training since the 

variation data was too big. The main problem was that the specific model in Tensorflow does 

not work with too large data for all chromosomes. The limiting factor is the size of the final 

matrix in a node since its size is calculated by this formula {number of words} 

*{dimensions}*{float size}. In this experiment, we used 21 attributes as context, 1083881 

number of words, with 101 dimensions and only 5 epochs, a setup that forced our infrastructure 

to train the model for four weeks. With our estimates according to the 2nd experiment, 120 

epochs are a good starting point which needs about 2 years with the current hardware to provide 

result. Also training it cannot be going faster cause the limit factor {number of words} 

*{dimensions}*{float size}. 
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SNP’s CLINVAR 

rs136674 chr22:g.45237239C>T 

rs555692692 chr22:g.20013752C>G 

rs11702924 chr22:g.45929200T>C 

rs144594985 chr22:g.24506083A>G 

rs550330415 chr22:g.37486227C>T 

rs573050197 chr22:g.21187073A>C 

rs80000454 chr22:g.42176511C>T 

rs1015775 chr22:g.37251477A>G 

chr22:g.37251477A>T 

rs186496006 chr22:g.19835053T>C 

rs191770327 chr22:g.47551418G>A 

rs181398 chr22:g.18224781C>T 

rs5760435 chr22:g.24858500C>A 

chr22:g.24858500C>G 

chr22:g.24858500C>T 

rs5994443 chr22:g.32275353T>C 

rs185827560 chr22:g.20043768C>G 

chr22:g.20043768C>T 

rs117449195 chr22:g.47381883C>T 

rs558777861 chr22:g.24491342G>T 

rs16981761 chr22:g.26725869C>T 

rs572267188 chr22:g.45014431G>T 

rs547212926 chr22:g.30188731G>A 

rs145973982 chr22:g.32187810G>T 

chr22:g.32187810G>A 

rs145305748 chr22:g.41187810C>A 

chr22:g.41187810C>T 

rs370347263 chr22:g.50696649G>A 

rs552002890 chr22:g.34104172G>A 

rs150667946 chr22:g.43438229G>A 

rs57632309 chr22:g.50579775_50579776del 

chr22:g.50579776dup 

chr22:g.50579773_50579776del 

chr22:g.50579776del 

chr22:g.50579774_50579776del 

rs73881903 chr22:g.33269832G>A 

rs12485214 chr22:g.48957989G>T 

chr22:g.48957989G>A 

rs73878646 chr22:g.23442691G>T 

rs180912911 chr22:g.47177568C>A 

Table 4.4:  Getting and compare variants from a web database. 

In table above we use the myVariants API in Python 3. We select to download from ClinVar 

database. Now we analyze and compare similarities from the table data. “chrXX” is the 

Chromosome and “X>Y” is allele. According the top first table rows the alleles are not the same 

so results are not valid. 
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5 Second Experiment 

5.1 Problem definition 

Some single nucleotide polymorphism (SNP) are very similar so we need to use some 

mathematical methodologies like “Independent Samples T” and “p-value”, to be able to verify 

if are really similar [36] but we are not sure for the results because in genetics we must find if 

a SNP affects the protein activity [37] of a target disease. 

On the second experiment, the objective is to categorize a SNP dataset to a specific 

disease. According to dataset where is selected by the criteria if exists a cancerous SNP. An 

expert in the field of bioinformatics provided to us a list of mutations that fall into one of the 

three following categories LIKELY_BENIGN: 11119, BENIGN: 3547 and PATHOGENIC: 

14499 - TOTAL: 29165 SNP’s. We discovered after using Principal Component Analysis 

(PCA) and we plot it, that it’s hard to cluster only “cancer” and “possibly cancer” variants and 

preview all those datasets by their unique attributes. 

One another challenge after the plotting those cancerous SNPs we need to verify the 

results and somehow be able to find if a mutation has some correlation (or the opposite) with 

another and if they are similar so that we can study them and possibly find new conclusions 

about these (e.g. a patient with mutation rs1234 has a predisposition to cancer). 

According to the architecture we introduce in the methodology chapter we believe a deep 

learning neural model and more specific a natural language processing deep neural model will 

be able to help us analyses our data while the PCA to plot this type of data. Such a model is 

designed to process documents and produce vectors of words to be able to plot them to find the 

similarities between them. Again in the second experiment, we will try to use variant data 

instead of words to be able to produce vectors of variants. 

5.2 Data 

Some of those fields (specific RS and Classification) will be used in the neural network as input. 

The dataset fields are described below: 

VariantType 

Gene 

RS 

Chr 

Start 

End 

Ref_Allele 

Alt_Allele 
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Submisson_Review 

Num_Submitters 

Cancer_MedGen_Pheno 

Classification 

Table 5.1: Cancer Variants  

5.3 Results 

 In the second experiment, we have a database of cancerous SNPs and possibly 

cancerous. This data has many similarities in their information and consist of a 

multidimensional structure. To begin with, it was analyzed by PCA, resulting in the observation 

that the sample is quite homogeneous in the first phase. Then, contexts and labels where created 

for these groups (“Cancer Variants” and “Likely Benign Cancer Variants” group). The need to 

separate our dataset in one-hot (binary encode) groups are the cause of the CBOW model 

architecture that requires a target context to start processing it. The context and labels where 

that are the input for the neural network where word embedding will be formed after the 

training. Finally, with the use of PCA, a better representation will be made in terms of their 

reparability. 

Before Training: 

 

Figure 5.2:  Cancer Variants in 3D  before training in neural network (Red bullets means 

“Cancer Variants”, Green bullets means “Likely Benign Cancer Variants”). 
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Figure 5.3:  Cancer Variants in 2D PCA plot before training in neural network (Red bullets 

means “Cancer Variants”, Green bullets means “Likely Benign Cancer Variants”). 

 

After Training: 
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Figure 5.4:  Embedding Projection of 900 Cancer SNPs and Likely Being Cancer SNPs. 

 

In Figure 5.2 and 5.4 we noticed the embedding results after the training of our model (150 

epochs ≈ 5 days) with 900 SNPs, 900 dimensions and variation data of two categories “Cancer” 

and “Likely being cancer”. As an evaluation, we choose a random SNP and we search and 

watch the closest SNP’s using Cosine Similarity. Then searching in the literature and genomics 

databases we try to find evidence for the similarity or common ground for these two SNPs in 

terms of disease. The result seems to be accurate because the data was fewer than Experiment 

1 and have class. The total variance description rate is 61.2% (3rd Dimension) on figure 5.4 

according to TensorFlow projector. Also, the colours represent how much close is a target SNP 

with others by a query using Cosine Similarity. 
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After Isolation: 

 

Figure 5.5:  Embedding Projection of 100 Isolated Cancer SNPs and Likely Being Cancer 

SNPs (3D). 

 

In Figure 5.5 we notice after using isolate in TensorFlow Projector that the total variance 

description was increased on 77.5% to a specific region based of the cosine similarity of one 

random chosen SNP. Also the dataset had some duplicate SNP’s with some variations on 

START and END fields. In the figure above, it proves that the model works by putting them 

side by side the same contexts. And we guess that remains to find the SNP key that separates 

the "potentially cancerous" SNPs from the "cancerous". To do that we must check where are 

concentrated the most of cancerous variants and where “potentially cancerous variants” until 

guess semantically the category of each. The logic of some embedding it's like the roots of a 

tree. Based on some experiments such as the "Word Embedding Visual Inspector". 

http://ronxin.github.io/wevi/
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6 Third Experiment 

6.1 Problem definition 

On the third experiment, the objective is to categorize a SNP dataset to a specific 

disease. According to dataset where is selected by the criteria if exists a cancerous SNP. An 

expert in the field of bioinformatics provided to us a list of mutations that fall into one of the 

three following categories LIKELY_BENIGN: 11119, BENIGN: 3547 and PATHOGENIC: 

14499 - TOTAL: 29165 SNP’s. We discovered after using Principal Component Analysis 

(PCA) and we plot it, that it’s hard to cluster only “cancer” and “possibly cancer” variants and 

preview all those datasets by their unique attributes. 

Another challenge after plotting those cancerous SNPs is to verify the results and 

somehow be able to find if a mutation has some correlation (or the opposite) with another one 

and if they are similar so that we can study them and possibly find new conclusions about these 

(e.g. a patient with mutation rs1234 has a predisposition to cancer). 

According to the architecture we introduced in the methodology chapter we believe a 

deep learning neural model and more specific a natural language processing deep neural model 

will be able to help us analyses our data while the PCA to plot this type of data. Such a model 

is designed to process documents and produce vectors of words to be able to plot them to find 

the similarities between them. Again in the third experiment, we will try to use variant data 

instead of words to be able to produce vectors of variants. 

6.2 Data 

Some of these fields in table below will be used in the neural network as input. Those fields 

are a basic description of a mutation. 

VariantType 

Gene 

RS 

Chr 

Ref_Allele 

Alt_Allele 

Cancer_MedGen_Pheno 

Classification 

Table 6.1: Cancer Variants Attributes 
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6.3 Results 

 In the third experiment, we have a database of cancerous SNPs and possibly cancerous. 

This data has many similarities in their information and consist of a multidimensional structure. 

To begin with, it was analyzed by PCA, resulting in the observation that the sample is quite 

homogeneous in the first phase. Then, contexts and labels where created for these groups 

(“Cancer Variants” and “Likely Benign Cancer Variants” group). The need to separate our 

dataset in groups for a better experience in visualization. The context (positions of attributes) 

and labels (RS) where that are the input for the neural network where word embedding will be 

formed after the training. Finally, with the use of PCA, a better representation will be made in 

terms of their reparability. 

 

After Training: 

 

Figure 6.2:  Embedding Projection of 143 Cancer SNPs and Likely Being Cancer SNPs (Red 

bullets are cancer SNPs). 

 

In Figure 6.2 we noticed the embedding results after the training of our model (118 epochs ≈ 8 

hours) with 143 SNPs, 143 dimensions and variation data of two categories “Cancer” and 

“Likely being cancer”. The result seems to be accurate because the data was fewer than 

Experiment 1 and have class as attribute and visualization taxonomy. The total variance 

description rate is 95.5% (3rd Dimension). 
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Figure 6.3:  Embedding Projection of one random chosen SNP from 143 Cancer SNPs and 

Likely Being Cancer SNPs. 

 

In Figure 6.3 as an evaluation, we choose a random SNP and we search and watch the closest 

SNP’s using Cosine Similarity. The colours represent how much close is a target SNP with 

others by a query using Cosine Similarity. Then searching in the literature and genomics 

databases we try to find evidence for the similarity or common ground for these two SNPs in 

terms of disease. We notice in TensorFlow Projector that the dataset had some duplicate SNP’s 

with some variations on START and END fields (OR data from another variants database). In 

the figure above, it proves that the model works by putting them side by side the same contexts. 

The next step is to verify some of the similarities of rs1555461517.  

No SNPs ATTRIBUTES 

1 rs1555461517 ['duplication' 'PALB2' 'rs1555461517' '16' 

'23635570' '23635570' 'A' 'AA' 

'criteria provided, multiple submitters, no 

conflicts' '2' 'C0006142' 

'Pathogenic'] 

2 rs1555461413 ['duplication' 'PALB2' 'rs1555461413' '16' 

'23635360' '23635360' 'A' 'AA' 

'criteria provided, multiple submitters, no 

conflicts' '2' 'C0006142' 

'Pathogenic'] 

3 rs1060503764 ['duplication' 'SDHB' 'rs1060503764' '1' '1

7349151' '17349151' 'A' 'AA' 

'criteria provided, multiple submitters, no 

conflicts' '2' 'C0031511' 

'Pathogenic'] 

Table 6.4:  Compare variants from our dataset. 
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According table 6.4 the result seems valid I choose the SNP rs1555461517 as target and the 

results is like a chain.  

The rs1555461517 (no. 1) with rs1555461413 (no. 2) they are almost the same. Specific the: 

• VariantType = ‘duplication’ 

• Gene = ‘PALB2’ 

• Chromosome = 16 

• Ref_Allele = ‘A’ 

• Alt_Allele = ‘AA’ 

• Cancer_MedGen_Pheno = ‘C0006142’ 

• Category = ‘Pathogenic’ (Cancer). 

The no. 1,2 shares with no.3: 

• VariantType = ‘duplication’ 

• Ref_Allele = ‘A’, 

• Alt_Allele = ‘AA’  

• Category = ‘Pathogenic’ (Cancer).  
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7 Discussion 

  

The thesis aimed to represent and compare mutations in the human genome using deep 

learning methodologies. Deep learning is an AI discipline that the last years have gained great 

momentum in many research areas. One of the areas is the bioinformatics where we can find 

methodologies for gene expression inference [38] response to therapy [39], predicts missing 

methylation states [40] and many other in the fields of gene signatures, pathway analysis 

[41][42] and radiogenomics [43][44]. To our knowledge, this is the first study that tries to map 

the human mutations as a text mining problem where the DNA sequencing per sample/human 

can act as a document and the known mutations as words of this imaginary vocabulary. There 

is a lot of research in the field of natural language processing for word prediction and the last 

years' solutions that take advantage of deep learning methods have proven to provide much 

better results that traditional method [45][46]. 

NLP methods can assist us in predicting protein activity after found a valid SNP from 

experiments, wherein bioinformatics is one of the most basic research topics. It includes the 

localization of subcellular protein [47], prediction of protein to protein interactions and 

interaction sites [48], the detection of protein remote homology, the classification of protein 

functions, the prediction and classification of a transmembrane protein, the recognition of 

multifunctional enzymes and the identification of DNA binding protein. [37] 

In this dissertation, we did three experiments to analyze human DNA and find mutations. 

Regarding the first experiment, the desired result was to produce the appropriate vectors to 

highlight the best representation of the mutations. We conclude that the volume of data greatly 

affects the processing time of the results in a long delay. This affects the validity of the results 

because it will take months for the validity of the results to be able to verify and compare the 

mutations according to the model used. Also, for this particular experiment, an analysis was 

made only for chromosome 22, which shows us that for a multidimensional mutation that will 

target more chromosomes, the diagnosis will be more complex and time-consuming. 

For the realization of the second experiment we followed the almost the same procedure 

with the first experiment with the exception that the input is encoded in one-hot and not 

implemented in Tensorflow. We concluded that the results given could be said to be quite valid 

by classification criteria. The improved accuracy can be attributed to the reduced input used 

instead of the whole number of mutations to two specific categories of carcinogens and potential 

carcinogens. Using categorization, we concluded that the data in our experiment due to the 

training of the neural model (150 epochs) and the production of vectors can become more 

efficient operations and find inhomogeneity. An important part that facilitated this process is 

that the volume of data is now smaller and the training of the model used required a shorter 

period of time than the first experiment performed. This provided a solution to the above 

experiment for which its main problem was the long processing time due to the oversized 

volume of information. 

Again, with the realization of the third experiment which followed the same procedure with 

the first experiment, we concluded that the results given could be said are valid. Using this 

technique, we concluded that the data in our experiment due to the training of the neural model 

(118 epochs) and the production of vectors can provide valuable results. An important part that 

facilitated this process is that the volume of data is now smaller and the training of the model 

used required a shorter period of time than the first experiment performed. This provided a 

solution to the first experiment for which its main problem was the long processing time due to 

the oversized volume of information. Thus, according to the first experiment, it is understood 

that the categorization and focus on specific groups of mutations result in the export of faster 

and more valid results so that verification can be performed in a shorter period of time. 
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8 Conclusions 

This section presents a brief synopsis of the dissertation, assessing major points of the 

implemented model and experiments. After all, we conclude by mentioning some beneficial 

improvements and extensions that could be developed in the near future. 

To begin with, the need for identification of differences between variants for a better 

understanding of the human mutations is the key-point of the specific dissertation. To deal with 

such a problem, specific data selected as input to our deep learning model. This data was 

generated through Ensembl Variant Effect Predictor (VEP) [1] giving us the mutations that are 

taking place. At the next step, we preprocess the mutation data and transform them into numbers 

and choose the most valuable information about the variants. The main criteria for this selection 

are the uniqueness, statistics, the correlation of attributes and of course the contribution of 

bioinformaticians and biologists. Those attributes were used as input to a Continues Bags of 

Words Model (CBOW) [4] [49], and NLP model that gives us the ability to use as input multi-

words contexts. When computing the hidden layer output, the CBOW model takes the average 

of the vectors of the input context words and use the average vector as the output. That model 

allows us to cluster N number of SNPs by their correlation since it uses the contexts as input 

and as target all the SNP’s. Those vectors, also called word embeddings, used as input to PCA 

[30] to calculate the principal components (2D or 3D), and visualize our results. After that 

analysis will see and understand the general picture of variants and the differences between 

them. 

It could also be argued that with the implementation of the first experiment we concluded 

that the volume of data affects the data processing time resulting in a long delay in the creation 

of a representation. Also, for this particular experiment, an analysis was made only for 

chromosome 22 were described by 1.083.881 variants, which highlight that for an extended 

analysis with more chromosomes, the diagnosis will be more complex and time-consuming. 

Then with the completion of the second experiment which followed the same procedure as the 

first experiment, we concluded that the results given could be said to be quite valid. The reason 

is that instead of using the whole number of mutations we limited to two specific categories 

(carcinogens and potential carcinogens). Using categorization, we concluded that the model in 

our second and third experiment can produce more efficient operations and find inhomogeneity. 

Furthermore, an important part that facilitated this process is that the volume of data is now 

smaller and the training of the model used required less time than the first experiment. 

Unfortunately, there can be no doubt that the problem of optimization in TensorFlow 

version 2.X remains. Taking into consideration this problem, future research about the 

optimization and the training time. Moreover, another research in this area could be done to 

optimize CBOW and prevent the use of target contexts. Last but not least, results presentation 

improvements could be made, where a program could be created using an API in SNP databases 

(e.g., MCBI) where the software would compare an SNP with the nearest SNPs and some from 

the fields described in the database. The user will increase the success rate of our model so that 

we can make a second evaluation of it beyond the training. 

 Upon completion of the research, the essential conclusions are that the human genome 

consists of a chaotic set of information in which the method we followed confirmed both the 

difficulty and the complexity of analyzing this information. For this reason, categorizing and 
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focusing on a smaller amount of information can give us specific information relatively more 

effectively and clarifying, giving us a more meaningful picture. 
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9 Appendix 

9.1 Formula of PCA 

9.1.1 Example: From 3-Dim to 2-Dim with Principal Component Analysis 

Imagine that you have a 3-dimensional dataset A with 5 row and 3 columns. Where every 

dimension named x, y and z. 

𝐴 =  

[
 
 
 
 
1.5 2.4 1.9
2.0 0.7 1.2
1.2 2.9 4.9
1.4 2.2 4.2
5.1 3.0 5.0]

 
 
 
 

 

The mean for matrix A is: 

𝑀𝑒𝑎𝑛𝐴 = 

[
 
 
 
 
(1.5 − 𝑥̅) = −0.94 (2.4 − 𝑦̅) = 0.16 (1.9 − 𝑧̄) = −1.54
(2.0 − 𝑥̅) = −0.44 (0.7 − 𝑦̅) = −1.54 (1.2 − 𝑧̄) = −2.24
(1.2 − 𝑥̅) = −0.24 (2.9 − 𝑦̅) = 0.66 (4.9 − 𝑧̄) = 1.46
(1.4 − 𝑥̅) = −1.04 (2.2 − 𝑦̅) = −0.04 (4.2 − 𝑧̄) = 0.76
(5.1 − 𝑥̅) = 2.66 (3.0 − 𝑦̅) = 0.76 (5.0 − 𝑧̄) = 1.56 ]

 
 
 
 

 

The covariance for 𝑀𝑒𝑎𝑛𝐴: 

𝑐𝑜𝑣(𝑀𝑒𝑎𝑛𝐴) =  [

𝑐𝑜𝑛𝑣(𝑥, 𝑥) 𝑐𝑜𝑛𝑣(𝑥, 𝑦) 𝑐𝑜𝑛𝑣(𝑥, 𝑧)
𝑐𝑜𝑛𝑣(𝑦, 𝑥) 𝑐𝑜𝑛𝑣(𝑦, 𝑦) 𝑐𝑜𝑛𝑣(𝑦, 𝑧)
𝑐𝑜𝑛𝑣(𝑧, 𝑥) 𝑐𝑜𝑛𝑣(𝑧, 𝑦) 𝑐𝑜𝑛𝑣(𝑧, 𝑧)

] 

𝑐𝑜𝑣(𝑥, 𝑥) =  𝑣𝑎𝑟(𝑥) =
(−0.94)2 + (−0,44)2 + (−0.24)2 + (−1.04)2 + (2.66)2

(5 − 1)
= 2.3230 

𝑐𝑜𝑣(𝑦, 𝑦) = 𝑣𝑎𝑟(𝑦) =
(0.16)2 + (−1.54)2 + (0.66)2 + (−0.04)2 + (0.76)2

(5 − 1)
= 0.8530 

𝑐𝑜𝑣(𝑧, 𝑧) = 𝑣𝑎𝑟(𝑧) =
(−1.54)2 + (−2.24)2 + (1.46)2 + (0.76)2 + (1.56)2

(5 − 1)
= 3.1330 

𝑐𝑜𝑣(𝑥, 𝑦) = 𝑐𝑜𝑣(𝑦, 𝑥)

=
1

(5 − 1)
[(−0.94 − 𝑥̅)(0.16 − 𝑦̅) + (−0.44 − 𝑥̅)(1.54 − 𝑦̅)

+ (−0.24 − 𝑥̅)(0.66 − 𝑦̅) + (−1.04 − 𝑥̅)(−0.04 − 𝑦̅)

+ (2.66 − 𝑥̅)(0.76 − 𝑦̅)] = 0.6080 

𝑐𝑜𝑣(𝑥, 𝑧) = 𝑐𝑜𝑣(𝑧, 𝑥)

=
1

(𝑛 − 1)
[(−0.94 − 𝑥̅)(−1.54 − 𝑧̄) + (−0.44 − 𝑥̅)(−2.24 − 𝑧̄)

+ (−0.24 − 𝑥̅)(1.46 − 𝑧̄) + (−1.04 − 𝑥̅)(0.76 − 𝑧̄) + (2.66 − 𝑥̅)(1.56 − 𝑧̄)]

= 1.3605 
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𝑐𝑜𝑣(𝑦, 𝑧) = 𝑐𝑜𝑣(𝑧, 𝑦)

=
1

(𝑛 − 1)
[(0.16 − 𝑦̅)(−1.54 − 𝑧̄) + (−1.54 − 𝑦̅)(−2.24 − 𝑧̄)

+ (0.66 − 𝑦̅)(1.46 − 𝑧̄) + (−0.04 − 𝑦̅)(0.76 − 𝑧̄) + (0.76 − 𝑦̅)(1.56 − 𝑧̄)

= 1.3305 

𝑐𝑜𝑣𝐴 = [
2.3230 0.6080 1.3605
0.6080 0.8530 1.3305
1.3605 1.3305 3.1330

] 

𝑑𝑒𝑡 ([
2.3230 0.6080 1.3605
0.6080 0.8530 1.3305
1.3605 1.3305 3.1330

] − 𝜆 [
1 0 0
0 1 0
0 0 1

]) 

= −𝜆3 + 6,309𝜆2 − 7,9410725𝜆 + 1,559964375 

Now we must solve: −𝜆3 + 6,309𝜆2 − 7,9410725𝜆 + 1,559964375 = 0 

You can use Newton-Raphson method to find roots with formula: 

𝑋𝑛 + 1 = 𝑋𝑛 −
𝑓(𝑋𝑛)

𝑓′(𝑋𝑛)
 

So we found 3 Eigen Values: 

𝜆 ≈ 0.24072 

𝜆 ≈ 1.38316 

𝜆 ≈ 4.68510 

And Eigen Vectors are: 

𝑒𝑖𝑔1 = (𝑐𝑜𝑣_𝐴 − 𝜆𝛪) =  (
2.0827 0.6080 1.3605
0.6080 0.61227 1.3305
1.3605 1.3305 2.89227

) 

  

Now let’s reduce the matrix to this form: (
𝑎 ⋯ 𝑏
0 ⋱ ⋮
0 0 𝑐

) 

= (
2.0827 0.6080 1.3605
0.6080 0.61227 1.3305
1.3605 1.3305 2.89227

) 
𝑅2←𝑅2−0.29198∙𝑅1
⇒              (

2.0827 0.6080 1.3605
0 0.43474 0.93324

1.3605 1.3305 2.89227
) 

𝑅3←𝑅3−0,65337∙𝑅1
⇒              (

2.0827 0.6080 1.3605
0 0.43474 0.93324
0 0.93324 2.00336

) 
𝑅2↔𝑅3
⇒    (

2.0827 0.6080 1.3605
0 0.93324 2.00336
0 0.43474 0.93324

) 

𝑅3←𝑅3−0,46584∙𝑅2
⇒              (

2.0827 0.6080 1.3605
0 0.93324 2.00336
0 0 0

) 
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Reduce matrix to this form (
1 ⋯ 𝑏
0 ⋱ ⋮
0 0 1

) 

(
2.0827 0.6080 1.3605
0 0.93324 2.00336
0 0 0

)
𝑅2←1.07152∙𝑅2
⇒          (

2.0827 0.6080 1.3605
0 1 2.14665
0 0 0

) 

𝑅1←𝑅1−0.608∙𝑅2
⇒            (

2.0827 0 0.05533
0 1 2.14665
0 0 0

)
𝑅1←0.48024∙𝑅1
⇒           (

1 0 0.02657
0 1 2.14665
0 0 0

) 

The system with Eigen value λ≈0.24072: 

(𝐴 − 0.24072 ∙ 𝐼) (
𝑥
𝑦
𝑧
) = (

1 0 0.02657
0 1 2.14665
0 0 0

) ∙ (
𝑥
𝑦
𝑧
) = (

0
0
0
) 

}𝑦+2.14665+𝑧=0
𝑥+0.02657𝑧=0 = }𝑦−2.14665+𝑧=0

𝑥−0.02657𝑧=0 = (
−0.0265
−2.14665

1
) 

We do the same to find the Eigen vector 1 and Eigen vector 2. So: 

eig2 = (
−1.76308
0.48766
1

)  eig3 =  (
0.69366
0.45725
1

) 

Next we must sort all Eigen vectors, as Inversed Feature Vector (Descending Sort): 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑒𝑐𝑡𝑜𝑟 = [
0.53354838 0.3517079 0.76917337
0.84569511 −0.23391879 −0.47966842
−0.01122093 −0.90641246  0.42224464

] 

𝑃𝐶𝐴 = 𝑂𝑅𝐼𝐺𝐼𝑁𝐴𝐿_𝐷𝐴𝑇𝐴𝑇𝑥 𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑉𝑒𝑐𝑡𝑜𝑟 

 

 

 

And the dot product is: 

PC1 PC2 

-1.629789 -0.093691 

-2.499340  1.062586 

1.227069 -1.057669 

0.015613 -1.234714 

2.886447 1.323488 

[30] 
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