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ABSTRACT 

Coverage-Based Summaries for RDF KBs 

 

As more and more data become available as linked data, the need for efficient and effective 

methods for their exploration becomes apparent. Semantic summaries try to extract meaning 

from data, while reducing its size. State of the art structural semantic summaries, focus pri-

marily on the graph structure of the data, trying to maximize the summary’s utility for query 

answering, i.e. the query coverage. In this thesis, we present four algorithms, trying to max-

imize the aforementioned query coverage using ideas borrowed from result diversification. 

The key idea among all algorithms is, instead of focusing only to the “central” nodes, to push 

node selection also to the perimeter of the graph. Our experiments show the potential of our 



algorithms and demonstrate the considerable advantages gained for answering larger frag-

ments of user queries. 

 

 

 

 

 

 

 

 

 



Table of Contents 

1 Introduction ...........................................................................................................9 

2 Preliminaties ........................................................................................................13 

2.1 RDF.............................................................................................................13 

2.2 RDF Schema (RDFS) ................................................................................14 

2.3 SPARQL.....................................................................................................15 

3 Related work........................................................................................................16 

3.1 Works on summaries .................................................................................18 

3.1.1 Returning only the nodes ......................................................................19 

3.1.2 Trying to extract sentences ...................................................................21 

3.1.3 Combining with user preferences ..............................................................22 

3.1.4 RDFDigest+ ................................................................................................23 

3.1.5 A comparison of the structural summaries ...............................................24 

3.1.6 Relation to graph summaries .....................................................................25 

3.2 Comparison with our approach .................................................................26 

3.3 Works on result diversification .................................................................27 

4 Coverage-based summaries ................................................................................28 

4.1 Methodology for creating a summary ......................................................36 

5 Constructing Coverage-Based Summaries ........................................................37 



6 

 

5.1 The LSP Algorithm....................................................................................37 

5.2 The DisC algorithm. ..................................................................................39 

5.3 The LSP-DisC Algorithm..........................................................................41 

5.4 The 1-LSP-DisC Algorithm ......................................................................43 

6 Evaluation ............................................................................................................46 

6.1 Results on the SWDF dataset....................................................................47 

6.2 Evaluation on DBpedia..............................................................................49 

6.3 Efficiency ...................................................................................................50 

7 Conclusions & Future Work...............................................................................53 

7.1 Future Work ...............................................................................................53 

References ....................................................................................................................56 

 

 

 

 

 

 



7 

 

List of Figures 

 

Figure 1 - RDF graph and its implicit triple....................................................................14 

Figure 2 – A taxonomy of the works in the area (as presented in [1]) ..........................18 

Figure 3- CARRank Algorithm .......................................................................................20 

Figure 4 - Creating Sentences S.......................................................................................21 

Figure 5 - BRP-Ontology summarization .......................................................................23 

Figure 6 - The RDFDigest System ..................................................................................24 

Figure 7 – Works on non-quotient, structural RDF summaries.....................................25 

Figure 8. - A summary from DBpedia as produced by RDFDigest+ ............................33 

Figure 9.  - A summary from DBpedia as produced by 1-LSP-DISC...........................34 

Figure 10 - Summary Creation Workflow ......................................................................37 

Figure 11 - LSP based summary creation .......................................................................38 

Figure 12 – DisC based summary creation .....................................................................39 

Figure 13 - LSP-DisC summary creation ........................................................................41 

Figure 14 - 1-LSP-Disc summary creation .....................................................................43 



8 

 

Figure. 15. - Coverage for the various algorithms for the SWDF dataset....................48 

Figure. 16. - Coverage for the summaries generated by the various algorithms for 

DBpedia.............................................................................................................................50 

Figure. 17. - Execution time for the SWDF dataset. .....................................................51 

Figure 18 Execition time for DBPedia ............................................................................51 

Figure. 19. - Execution time for the DBpedia dataset. Error! Bookmark not defined. 

 

 

 
 
 

  



9 

 

1 Introduction 

The rapid explosion of the available data in the web has led to an enor-

mous amount of widely available RDF datasets. However, these datasets 

often have extremely complex and large schemas, which are difficult to 

comprehend, limiting the exploitation potential of the information they 

contain. As a result, there is an increasing need to develop methods and 

tools that facilitate the quick understanding and exploration of these data 

sources [1], [8]. 

One method for condensing and simplifying such datasets is through 

semantic summaries. According to our recent survey [1], a semantic 

summary is a compact information, extracted from the original RDF 

graph, intuitively; summarization is a way to extract meaning from data 

while reducing its size, and/or a graph, which some applications can ex-

ploit instead of the original graph to perform certain tasks more effi-

ciently. 

Structural summaries focus first and foremost on the graph structure, 

respectively the paths and sub-graphs one encounters in the RDF graph. 

State of the art works in the area of structural summarization [8], [9] first 

try to identify the most important nodes of the schema graph, and then to 

optimally link those, producing a connected schema sub-graph. As such, 
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the size of the presented schema graph is reduced to a minimum size, so 

that end users are easier to understand the contents of the generated sum-

mary, while in parallel the most important nodes are selected and pre-

sented to the user.  

The problem. The problem with the state of the are structural seman-

tic summaries is that the selected, most important nodes, are in most of 

the cases nodes located centrally to the schema graph, missing explora-

tion opportunities for the nodes are located at the perimeter of the graph. 

To this direction, result diversification has also attracted considerable at-

tention as a means of enhancing the quality of the exploration results 

presented to the users, as it offers, intuitively more informative results 

than a homogeneous result [3]. However, to the best of our knowledge, 

those ideas, although notably useful and interesting, have not yet mi-

grated into structural semantic summaries. 

Contribution. In this thesis, we focus on summaries that try to max-

imize query coverage, exploiting ideas from the result diversification 

field. More specifically, we provide four diverse algorithms for selecting 

the nodes in the summary to be presented to the user: 

 Node selection based on topology: Based solely on the struc-

ture/topology of the schema graph, we select the nodes with the 



11 

 

maximum shortest path distance. We name the corresponding al-

gorithm LSP as it focuses on the Longest Shortest Paths. 

 Node selection based on importance: The idea here is to maximize 

both the topological diversity and the importance of the selected 

nodes. As already mentioned, structural semantic summarization 

methods, first provide an ordering of the nodes in terms of im-

portance and then select the top-k nodes to be used for the sum-

mary. Our idea here is to select one by one the individual nodes 

and each time to exclude all its neighbors in distance r from the 

ordering, trying to get representatives from other “importance 

neighborhoods” as well. 

 Hybrid node selection: The idea is to combine semantic and struc-

tural diversity in order to further improve the generated summary, 

by starting from the nodes with the longest shortest paths and elim-

inating the nodes in the ranking within a specific radius. Two var-

iations have been created, the 1- LSP-DisC, and the LSP-DisC, 

starting with different sets of nodes from the ones with the longest 

shortest paths as a seed, and progressing to the list of the most im-

portant nodes for selecting the remaining ones. 
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 We experimentally evaluated our approach using real world da-

tasets (DBPedia and SWDF) and show that the produced summar-

ies surpass current state of the art in terms of quality. 

To the best of our knowledge, we are the first to incorporate notions 

from result diversification in structural semantic summaries. Although, 

in the first two cases, we adapt existing algorithms in our setting, we 

progress even further producing two novel, hybrid node selection algo-

rithms outperforming other approaches.  

 The rest of this thesis is structured as follows: In Section 2, we present 

preliminaries required for understanding the remaining of this thesis, 

whereas related work is presented in Section 3. Section 4 defines cover-

age-based summaries and Section 5 presents the individual algorithms. 

Finally, Section 6 presents evaluation and Section 7 concludes this thesis 

and presents directions for future work. 
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2 Preliminaties 

Our study of graph summarization techniques is centrally motivated 

by their interest when summarizing RDF graphs. RDF is the standard 

data model promoted by the W3C for Semantic Web applications.  

2.1 RDF  

An RDF graph (in short a graph – figure 1) is a set of triples of the 

form (s, p, o). A triple states that a subject s has the property p, and the 

value of that property is the object o. We consider only well-formed tri-

ples, as per the RDF specification belonging to (U∪B)×U ×(U∪B∪L) 

where U is a set of Uniform Resource Identifiers (URIs), L a set of typed 

or untyped literals (constants), and B a set of blank nodes (unknown 

URIs or literals); U, B,L are pairwise disjoint. Blank nodes are essential 

features of RDF allowing to support unknown URI/literal token. As de-

scribed above, it is easy to see that any RDF graph is a labeled graph. 

However, as we explain below, RDF graphs may contain an ontology, 

that is, a set of graph edges to which standard ontology languages attach 

a special interpretation. The presence of ontologies raises specific chal-

lenges when summarizing RDF graphs, which do not occur when only 

plain data graphs are considered. 
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 Notations. We use s, p, and o as placeholders for subjects, properties 

and objects, respectively. The RDF standard has a set of built-in classes 

and properties, as part of the rdf: and rdfs: pre-defined namespaces. We 

use these namespaces exactly for these classes and properties, e.g., 

rdf:type specifies the class(es) to which a resource belongs.  

2.2 RDF Schema (RDFS) 

 RDFS allows enhancing the assertions made in an RDF graph with the 

use of an ontology, i.e., by declaring semantic constraints between the 

classes and the properties they use.  

Figure 1 - RDF graph and its implicit triple 

An example is shown in Figure 1, where we see the classes Book, Pub-

lication and DOI (for the description of a book), where Book is subclass 
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of Publication and “has” DOI. A specific book instance for  DOI  is “Le 

port des Brumes” (title) and “1932” (published), “G.Simenon”(writ-

tenBy). A Book is also “writtenBy” a “Person”, and whatever is “writ-

tenBy” also “has Author”. 

2.3 SPARQL 

SPARQL on the other hand, is the standard W3C query language used 

to query RDF graphs. We consider its popular conjunctive fragment con-

sisting of Basic Graph Pattern (BGP) queries. BGP queries are also the 

most widely used in real-world applications. A BGP is a generalization 

of an RDF graph in which variables may also appear as subject, property 

and object of triples. 

PREFIX type: <http://dbpedia.org/class/yago/> 

PREFIX prop: <http://dbpedia.org/property/> 

SELECT ?country_name ?population 

WHERE { 

    ?country a type:LandlockedCountries ; 

             rdfs:label ?country_name ; 

             prop:populationEstimate ?population . 

    FILTER (?population > 15000000 && lang-

Matches(lang(?country_name), "EN")) . 

} ORDER BY DESC(?population) 

An example SPARQL  query using DBPedia, which finds all land-

locked countries with a population greater than 15 million, with the 

highest population country first, is shown below. 
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3 Related work 

Summarization has been applied to RDF data to extract concise and 

meaningful information from RDF knowledge bases, representing their 

content as faithfully as possible. There is no single concept of RDF sum-

mary, and not a single but many approaches to build such summaries; 

each is better suited for some uses, and each presents specific challenges 

with respect to its construction. RDF summarization has been used in 

multiple application scenarios, such as id visualization to get a quick un-

derstanding of the data. It should be noted that indexing, query optimi-

zation and query evaluation were studied as standalone problems in the 

data management areas, before the focus went to semantic RDF graphs; 

therefore, several summarization methods initially studied for data 

graphs were later adapted to RDF. Among the currently known RDF 

summarization approaches, some only consider the graph data without 

the ontology, some others consider only the ontology. Finally some use 

a mix of the two. Summarization methods rely on a large variety of con-

cepts and tools, comprising structural graph characteristics, statistics, 

pattern mining or a mix thereof. Summarization methods also differ in 

their usage scope. 
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Some summarize an RDF graph into a smaller one, allowing some RDF 

processing (e.g., query answering) to be applied on the summary (also). 

The output of other summarization methods is a set of rules, or a set of 

frequent patterns, an ontology etc. 

Based on a recent survey [1] An RDF summary is one or both among 

the following: 

1. A compact information, extracted from the original RDF graph; 

intuitively, summarization is a way to extract meaning from 

data while reducing its size; 

2. A graph, which some applications can exploit instead of the 

original RDF graph, to perform some tasks more efficiently; in 

this vision, a summary represents (or stands for) the graph in 

specific settings. 

Certainly, these notions intersect, e.g., many graph summaries extracted 

from the RDF graphs are compact and can be used for instance to make 

some query optimization decisions; these fit into both categories. How-

ever, some RDF summaries are not graphs; some (graph or non-graph) 

summaries are not always very compact, yet they can be very useful 

etc. 
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3.1 Works on summaries 

Figure 2 – A taxonomy of the works in the area (as presented in [1]) 

Based on the methods employed (fig.2), we have four main trends in 

summary creation. 

Structural methods  exploit the graph structure, respectively the paths 

and the sub-graphs one encounters in the RDF graph. They can further 

classified to the quotient methods that consider some notion of “equiva-

lence” identifying node’s representatives and non-quotient that mostly 

select individual nodes out of the RDF graph. 
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Patter mining methods, employ mining techniques for discovering 

patterns in the data, the summary is then built out of the patterns identi-

fied. 

Statistical methods : These methods summarize the contents of a 

graph quantitatively. The focus is on counting occurrences, such as 

counting class instances or building value histograms per class, property 

and value type; other quantitative measures are frequency of usage of 

certain properties, vocabularies, average length of string literals etc.  

Hybrid methods: To this category belong works that combine struc-

tural, statistical and pattern mining techniques. 

As our approach is a non-quotient structural summarization ap-

proach we will focus next only on the works from  that specific area.(fig-

ure 3) 

3.1.1 Returning only the nodes 

Peroni et al. [6] and Wu et al. [11] focused on non-quotient structural 

summarization. The former tries to automatically identify the key con-
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cepts in an ontology combining cognitive principles, lexical and topo-

logical measurements such as the density and the coverage. The algo-

rithm created is evaluated against results produced by human experts. In 

the latter the authors use similar algorithms to identify the most im-

portant concepts and relations in an iterative manner. Most precisely the 

incorporate a custom algorithm named CARRank (figure 4) trying to 

rank important concepts and relations in the ontology simultaneously 

evaluating against user specified important nodes (concepts) and rela-

tionships in a case study and comparing with other ranking algorithms. 

Figure 3- The CARRank Algorithm 

However, both of these efforts focus only on returning the most im-

portant nodes and not on returning an entire graph summary.  
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3.1.2 Trying to extract sentences 

Zhang et al. [12] propose the use of RDF sentence as the basic unit of 

summarization. Using a user provided ontology, it is mapped to a set of 

RDF sentences (figure 4) by extracting those using specific algorithmic 

strategies, and using them as units for the summary creation.  

Figure 4 - Creating Sentences  

Using measures such as the degree-centrality, the betweenness and the 

eigenvector centrality, the salience of a RDF sentence is assessed. Col-

lecting the RDF Sentences leads to the creating to the RDF Sentence 

Graph, which provides the links between the RDF sentences.  
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3.1.3 Combining with user preferences 

In Queiroz-Sousa et al. [7] the authors try to combine user preferences 

with the degree centrality and the closeness to calculate the importance 

of a node and then they use an algorithm to find paths that include the 

most important nodes in the final graph. “Two tasks are needed to build 

an ontology summary: identify the key concepts and select them in order 

to produce a subontology of the original ontology. The first task is ac-

complished using relevance measures and user-defined parameters 

whilst the second one is performed by the Broaden Relevant Paths (BRP) 

algorithm, proposed to identify the best path (ontology summary) in a 

graph (ontology)that represents a set of interrelated vertexes (concepts).  

However, the corresponding algorithm prioritizes direct neighbors ignor-

ing that the selection of other paths that could maximize the importance 

of the selected summary.  (figure 5) 
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Figure 5 - BRP-Ontology summarization 

3.1.4 RDFDigest+ 

Finally, RDFDigest+ (figure 6) proposes the betweenness centrality 

for effectively constructing summaries, and show that the generated sum-

maries dominate other existing approaches in the area [8], [5].  
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Figure 6 - The RDFDigest System 

3.1.5 A comparison of the structural summaries 

In figure 7 we present some of the main structural summaries ap-

proaches. We can see that some of them are using as input both the 

schema and the instances graph and others just the schema. Some have 

as target only visualization of the final (reduced) schema and others cope 

with query answering. Some have as output the final schema (a con-

nected graph) and others present only the selected nodes finally. 
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3.1.6 Relation to graph summaries 
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Since our focus is on RDF graph summarization techniques, we leave 

out of our scope graph summarization techniques tailored for other clas-

ses of graphs, e.g., biological data graphs , social networks etc. We focus 

on techniques that have either been specifically devised for RDF, or 

adapted to the task of summarizing RDF graphs.  Nevertheless our ap-

proach can be directly applied to generic graph summaries as well, as the 

centralities measures and the notions of diversity adopted, hold for ge-

neric summaries as well. 

3.2 Comparison with our approach 

The state-of-the-art work regarding Structural Summaries is 

RDFDigest+.  In a way, it produces the summaries with the best results 

of the finally created schema graph regarding the coverage of the bench-

mark queries nodes. 

However, as we will show both analytically and experimentally in the 

sequel, RDFDigest+ focuses on selecting only centrally located nodes, 

missing the opportunity to exploit also nodes in the perimeter of the 

graph, for improving the quality of the generated summaries. So by mov-

ing the summary nodes’ selection (by using result diversification) away 

from the central nodes, we have a way to exploit an area that was not 
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explored before and give the user another “view” of the initial graph 

which (as we will prove) competes and even surpasses  in  benchmark 

queries nodes’ coverage the state-of-the-art works. 

3.3 Works on result diversification 

For our summary creating algorithms we used ideas from result diver-

sifcation which is a topic which explores results retrieved by user queries 

to improve the results quality. The widely used diversification models are 

MAXMIN and MAXSUM, which aim at selecting a subset S of P so that 

the minimum or the average pairwise distance of the selected objects is 

maximized [13, 14, 15]. Another way to achieve diversification of results 

is the DisC algorithm proposed by Drosou et al. [3] “A DisC diverse subset 

of a query result contains objects such that each object in the result is rep-

resented by a similar object in the diverse subset and the objects in the 

diverse subset are dissimilar to each other.”  Describing the algorithm from 

the original thesis: “Let P be the set of objects in a query result. We con-

sider two objects p1 and p2 in P to be similar, if  dist(p1, p2) ≤ r for some 

distance function dist and real number r, where r is a tuning parameter that 

we call radius. Given P, we select a representative subset S ⊆   P to be 
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presented to the user such that: (i) all objects in P are similar with at least 

one object in S and (ii) no two objects in S are similar with each other. The 

first condition ensures that all objects in P are represented, or covered, by 

at least one object in the selected subset. The second condition ensures that 

the selected objects of P    are dissimilar. We call the set S r-Dissimilar 

and Covering subset or r-DisC diverse subset.”  

So far and to the best of our knowledge there are no current works using 

diversification ideas for RDF schema summarization. In our case the im-

plementation of the DisC algorithm shifts the selection of the nodes away 

from the center and pushes the node selection out to the perimeter of the 

RDF schema, trying to diversify the result without neglecting the fact that 

the central nodes could be useful for our summary. 

4 Coverage-based summaries 

Here, we will follow an approach similar to [8] and [9], which imposes 

a convenient graph-theoretic view of RDF data that is closer to the way 

the users perceive their datasets. As such, we separate between the 

schema and the instances of an RDFS KB, represented in separate graphs 

(GS and GI, respectively). The schema graph contains all classes and the 
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properties the classes associated with (via the properties domain/range 

specification); multiple domains/ranges per property are allowed, by 

having the property URI be a label on the edge, via a labeling function λ, 

rather than the edge itself. The instance graph contains all individuals, 

and the instantiations of schema properties; the labeling function λ ap-

plies here as well for the same reasons. Finally, the two graphs are related 

via the τc function, which determines the class(es) each individual is in-

stantiated under. 

Definition 1. (RDFS KB) An RDFS KB is a tuple V = <GS, GI , λ, τc> 

where:  

- GS is a labelled directed graph GS = (VS, ES) such that VS, ES are 

the nodes and edges of GS, respectively, and VS ⊆ C ∪ L.  

- GI is a labelled directed graph GI = (VI , EI ) such that VI , EI are the 

nodes and edges of GI , respectively, and VI ⊆ I ∪ L.  

- A labelling function λ: ES ∪ EI → 2P determines the property URI 

that each edge corresponds to (properties with multiple do-

mains/ranges may appear in more than one edge).  

- A function τc : I → 2C associating each individual with the classes 

that it is instantiated under. 



30 

 

In the following, we will write p(υ1, υ2) to denote an edge e in GS, where 

υ1, υ2 ∈ VS,  such that, λ(e) = p. In addition, for brevity, we will call 

schema node a node s ∈ VS, class node a node c ∈ C ∩VS, and instance 

node a node i ∈ I∩VI. A path from a node υs to υi, denoted by path(υs → 

υi), is the finite sequence of edges, which connect a sequence of nodes, 

starting from υs and ending at υi . The length of a path, denoted by 

dpath(υs → υi), is the number of the edges that exist in that path. Finally, 

having a schema graph GS, the closure of GS, denoted by Cl(GS), contains 

all triples that can be inferred from GS using inference. From now on, 

when we use GS, we will mean Cl(GS) for reasons of simplicity, unless 

stated otherwise. This is to ensure that the result will be the same, inde-

pendent of the number of inferences applied on an input schema graph 

GS, 

Schema summarization aims to highlight the most representative con-

cepts of a schema, preserving important information and reducing the 

size and the complexity of the whole schema. Central questions to sum-

marization are (i) how to select the schema nodes for generating the sum-

mary, and (ii) how to link selected nodes in order to produce a valid sub-

schema graph.  
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However, independent of the way we select the schema nodes, we can 

safely assume the existence of a function select_nodes(GS), that for a 

given schema graph GS,  returns the k  nodes to participate in the sum-

mary. Then, we can define a summary schema graph of size k  to be the 

following: 

 

Definition 2. (Summary Schema Graph of size k). Let V = (GS, GI, λ, 

τc) be an RDFS KB. A summary schema graph of size k  for V is a con-

nected schema graph G'S=(V'S, E'S), G'S ⊆ Cl(GS), with:  

 V'S = select_nodes(GS) ∪ VADD, VADD represents the nodes in the sum-

mary used only to link the nodes in select_nodes(GS) 

 ∀vi, vj ∈ select_nodes(GS), ∃path(vi, vj) ∈ G'S,  

 ∄summary schema graph G''S=(V''S, E''S) including the nodes in se-

lect_nodes(GS), such that, |V''S|<|V'S|.  

According to the aforementioned algorithm having a set of nodes se-

lected by the select_nodes function, we are looking then the minimum 

number of the additional nodes to be introduced out of the initial schema 

graph in order to link those selected nodes. This is due to the fact that, 

introducing many additional nodes shifts the focus of the summary and 



32 

 

decreases summary’s quality. As such, we model the problem of linking 

the most important nodes as a variation of the well-known Graph Steiner-

Tree problem (GSTP) [10]:  

 

Definition 3. (The Graph Steiner-Tree problem (GSTP)) Given an 

undirected graph GS = (VS, ES), with edge weights w: ES → R + and a 

node set of terminals select_nodes(GS) ⊆ VS, find a minimum-weight tree 

T ∈ GS such that select_nodes(GS) ⊆ VT and ET ⊆ E. 

In our case, we ignore as well the direction in the edges, we assume 

equal weights for all edges, whereas the node set of terminals are the 

schema nodes selected by the select_nodes function. The corresponding 

algorithm, targets at minimizing the additional nodes introduced for con-

necting the selected nodes. However, the problem is NP-hard, and as 

such the CHINS approximation algorithm is used in our case [5]. 

Next, we focus on how to implement the function select_nodes(GS). 

Ideally, we would like to select important, informative nodes that are best 

suited to describe the contents of the entire KB, maximizing the sum-

mary’s utility for query answering. State of the art structural semantic 
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summaries so far, adopt centrality measures to identify the most im-

portant nodes.  

Figure 8. - A summary from DBpedia as produced by RDFDigest+ 

An example is shown in figure 8  from RDFDigest+, that exploits be-

tweenness centrality. We can see that the summary focuses on a central 

part of the entire graph. Although such a summary would be really useful 

for queries around the Agent class (in the center), for a non-homogeneous 
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query workload a summary like the one presented on the figure 9 would 

arguably be better. 

 

Figure 9.  - A summary from DBpedia as produced by 1-LSP-DISC 

As such, assuming a query log, we would like to maximize the frag-

ments of queries that are answered by the summary. More specifi-

cally, having a summary, we can calculate for each query that can be 

partially be answered by the summary, the percentage of the classes and 

properties that are included in the summary, i.e. the success nodes and 
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the success properties. A class/property appears within a query either di-

rectly or indirectly. Directly when the said class/property appears within 

a triple pattern of the query. Indirectly for a class is when the said class 

is the type of an instance or the domain/range of a property that appear 

in a triple pattern of the query. Indirectly for a property is when the said 

property is the type of an instance. Having the percentages of the classes 

and properties included in the summary, the query coverage is the 

weighted sum of these percentages.  

 

Definition 4. (Coverage). Assuming a graph GS = (Vs, ES), a query 

workload Q={q1, …, qn}, and two weights for nodes and edges, i.e. wnodes 

and wprop, we define coverage as follows: 

Coverage(Gs, Q)= 𝐴𝑉𝐺𝑞 =𝑖
𝑛 (𝑤𝑛𝑜𝑑𝑒𝑠

𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑛𝑜𝑑𝑒𝑠(𝑞𝑖,)

𝑛𝑜𝑑𝑒𝑠(𝑞𝑖)
+

𝑤𝑝𝑟𝑜𝑝
𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑞𝑖,)

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑞𝑖)
) 

 

As our summaries are node-based (they are generated based on the 

selected nodes) the weight on the nodes is larger than the one on the 

properties (for our experiments we used 0.8 for nodes and 0.2 for 

edges). Now, having defined the coverage for a given query workload 

we can describe a coverage-based summary schema graph: 
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Definition 5. (Coverage-based Summary Schema Graph of size k). 

Assuming a query workload Q, a coverage-based summary schema 

graph of size k , is a summary schema graph of size k  maximizing the 

coverage for the queries in Q. 

Ideally, we would like to product summaries without exploiting a 

query log for their construction, as in most of the cases those query logs 

are not available (we were only able to collect query logs with thousands 

of real user queries only for a few hand-picked datasets). As such the 

target of our thesis is to generate heuristic algorithms that can lead to the 

same result without exploiting user queries for constructing the summar-

ies. 

4.1 Methodology for creating a summary 

To create the schema summaries (figure 10), we get as input the original 

schema graph. Every algorithm of ours is producing the nodes to be in-

cluded in the final schema graph (of course the number of the nodes to 

be included is given as a parameter by the user). We use the Graph Stei-

ner Tree algorithm to connect the possible unconnected nodes we have 

from the previous step and thus have the final schema summary as a con-

nected graph. 
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Figure 10 - Summary Creation Workflow 

5 Constructing Coverage-Based Summaries 

 In this thesis, we implement four, diverse algorithms for constructing 

coverage-based summaries. The first one (LSP) is solely based on the 

topology of the graph completely ignoring other aspects, the second one 

(DiSC) focuses is an adaptation of an algorithm for result diversification 

[3], exploiting individual nodes’ importance, whereas the LSP-DisC, 1-

LSP-DisC are our own contributions combining topology and im-

portance in order to select schema nodes. In the sequel, we present the 

corresponding algorithms in detail.  

 

5.1 The LSP Algorithm 
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Figure 11 - LSP based summary creation – Targets the perimeter nodes of the graph 

The Longest Shortest Paths (LSP) algorithm, shown in algorithm 1, 

calculates all shortest paths between the schema nodes in the schema 

graph (line 1), ranks them based on the calculated distance in a descend-

ing order (line 2) and then selects the first k nodes from that list (line 3). 

The complexity of Algorithm 1 is O(m|Vs|) and mainly comes from cal-

culating all pairs shortest paths, where |Vs| is the number of nodes in GS  

and m a quantity based on |Vs| as shown in [2]. 

Algorithm 1: LSP(GS,k) 

Input: A schema graph GS, k  the number of schema nodes to select. 

Output: A set of schema nodes N. 

1. LSP := Calculate_all_pairs_shortest_paths(GS)  

2. Sort (LSP) in descending order based on the distance  

3. N := Select top-k  nodes from LSP  

4. Return N 
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5.2 The DisC algorithm.  

 

 

Figure 12 – DisC based summary creation – Diversifies the central nodes’ selection 

The DisC algorithm is based on a related approach [3], introduced for 

result diversification. The main idea here is not only to select nodes based 

on an importance measure but in each selection step to exclude its neigh-

bors (in a radius r). As such, node selection is guided to select nodes out 

of the entire graph instead of selecting only the central ones (which usu-

ally importance measures find as more important).  

The corresponding algorithm is shown in Algorithm 2. Initially we 

calculate for each node its centrality measure (lines 2-3). As previous 

works on structural semantic summaries have identified that the be-

tweenness centrality has an excellent performance for producing sum-

maries that optimize query answering, we are reusing it here as well. 
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Then we sort them based on their centrality measure in descending order 

(line 4). Then we get the first node of the list (the most important one 

based on its centrality measure (line 6) and, and we exclude from the list 

all its neighbors in a distance r (line 7). We repeat the node selection and 

the corresponding exclusions of the neighbors, till out list is empty or we 

have selected the k  nodes required (line 5). Finally, we return the selected 

nodes to the users.  

Algorithm 2: DisC(GS,k , r) 

Input: A schema graph GS, k  the number of schema nodes to select, r 
the radius of the nodes to be excluded. 

Output: A set of schema nodes N. 

1. N:= ∅ 

2. for each node in GS do 

3.       betweennes[node]:=calculate_ betweennees(GS) 

4. sort_nodes(betweennes) 

5. while betweennes != ∅ and |N| < k do 

6.     Add top node in  betweennes to N 

7.     Remove node neighbors in a radious r from the betweennes list 

4. Return N 
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For calculating the betweennes for all nodes we need O(|Vs|+|Es|), then 

for sorting the nodes in a descending order based on their centrality 

O(|Vs|) and then O(|Vs|) for constructing the final list by removing each 

node’s neighbors, assuming appropriate adjacency structures. As such, 

the overall complexity of our algorithm is O(|Vs|+|Es|). 

5.3 The LSP-DisC Algorithm. 

 

Figure 13 - LSP-DisC summary creation – a way to combine perimeter nodes and di-

versified central nodes 

To select schema nodes using the LSP-DisC algorithm, we combine 

the LSP and the DisC algorithms. The corresponding algorithm is shown 

in Algorithm 3. At the beginning, again, we calculate the betweenneess 

of all nodes (lines 3-4) and we sort the nodes in a descending order based 

on their betweenness (line 5). Then we calculate all pairs shortest paths 

(line 6) and we sort them in descending order based on their distance 

(line 7). Then we select the m unique nodes from the LSP list (in our test 
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case; 50% of the expected nodes). We add them in the final list and elim-

inate them from the descending betweenness list along with their r-hop 

neighbors (lines 9-11). We continue by choosing the first available node 

from the betweenness list that has not been deleted so far, adding it in 

the final list until we have the total number of required nodes. Obviously, 

the complexity of the algorithm is O(m|Vs|)+ O(|Vs|+|Es|) ≤ O(|Vs|+|Es|) 

Algorithm 3: LSP-DisC(GS,k , r) 

Input: A schema graph GS, k  the number of schema nodes to select, 
r the radius of the nodes to be excluded. 

Output: A set of schema nodes N. 

1. N:= ∅ 

2. NLSP:= ∅ 

3. for each node in GS do 

4.       betweenness[node]:=calculate_ betweennees(GS) 

5. sort_nodes(betweenness) 

6. LSP := Calculate_all_pairs_shortest_paths(GS)  

7. Sort (LSP) in descending order based on the distance  

8. NLSP := Select top-m nodes from LSP  

9. for each node in NLSP do 

10.     Add node to N 

11.     Remove node and node’s neighbors in a radious r from the 

betweenness list 
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12. while betweenness != ∅ and |N| < k do 

13.     Add top node in  betweenness to N 

14.     Remove node neighbors in a radious r from the betweenness 
list 

15. Return N 

5.4 The 1-LSP-DisC Algorithm 

 

Figure 14 - 1-LSP-Disc summary creation – focusing on a central part of the graph and 

utilizing again the LSP and DisC algorithms 

 

Another algorithm trying to optimally select schema nodes is the 1-LSP-

DisC algorithm, presented in Algorithm 4. The algorithm constructs the 

ordered list of schema nodes based on their betweenness (lines 3-5). 

Then we select the top-m nodes from that list (in our case about 10-15% 

of the total nodes number) and we calculate all pair shortest paths for 

those m schema nodes (line 6). Then we select the two most distant nodes 
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(lines 7-8), adding them to the list of the selected nodes and removing 

their r-hop neighbors (lines 9-11). Then the algorithm proceeds as the 

previous two algorithms by selecting the next more important node in 

the ordered list and removing each time its r-hop neighbors (lines 12-14). 

Then the result nodes are returned to the users. Again, the complexity of 

the corresponding algorithm is O(m|VS|)+ O(|VS |+|ES|) ≤ O(|VS|+|ES|) 

Algorithm 4: 1-LSP-DisC(GS,k , r) 

 Input: A schema graph GS, k  the number of schema nodes to select, 
r the radius of the nodes to be excluded. 

Output: A set of schema nodes N. 

1. N:= ∅ 

2. NLSP:= ∅ 

3. for each node in GS do 

4.       betweenness[node]:=calculate_betweenness(GS) 

5. sort_nodes(betweenness) 

6. NBETt:=Select top-m nodes from betweenness 

6. LSP := Calculate_all_pairs_shortest_paths(NBET) 

7. Sort (LSP) in descending order based on the distance  

8. NLSP := Select top-2 nodes from LSP  

9. for each node in NLSP do 

10.     Add node to N 
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11.    Remove node and node’s neighbors in a radious r from the 

betweenness list 

12. while betweenness != ∅ and |N| < k do 

13.     Add top node in  betweenness to N 

14.     Remove node neighbors in a radious r from the betweenness 
list 

15. Return N 

5.5 Conclusion 

We implemented four algorithms trying to focus on no central nodes of 

the graph. We used ideas from result diversification and combine them 

with structural ideas like choosing distant nodes with LSP. Some of the 

produced summaries focus on central (but diverse) nodes, some on pe-

rimeter nodes and some try to combine the view from both worlds. 
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6 Evaluation 

In this section, we present the evaluation performed for the implemented 

algorithms. 

Setup. All experiments reported in this section were performed in a 

laptop computer running Windows 10 with an Intel i5 3320M- 2.6 GHz 

CPU and 8GB of main memory. All algorithms and were implemented 

in Java JDK 8. 

Competitors. We contrast our results with the state-of-the-art ap-

proach on structural summaries, the RDFDigest+ [9] and report our find-

ings. Our goal is to assess the added value of our implemented algorithms 

on maximizing query coverage. In addition, we have to node that in our 

case the radius was set to one for DisC-based algorithms, as this was the 

only case were we could get in the summary the 10% of the available 

nodes (for r>1, many neighbors were excluded from the list and as such 

only a few nodes were eventually left). 

Datasets . For evaluating our approach, we use DBpedia and Semantic 

Web Dog Food (SWDF) KBs. SWDF consists of 120 classes, 72 prop-

erties and more than 300K triples. We use a query log containing 902 

user queries provided by SWDF SPARQL end-point for this dataset ver-

sion. DBpedia v3.8 consists of 422 classes, 1323 properties and more 
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than 2.3M instances, and offers an interesting use-case for exploration. 

To identify the quality of our approach, we use a query log containing 

56K user queries provided by the DBpedia SPARQL end-point for the 

corresponding DBpedia version.  

6.1 Results on the SWDF dataset 

For evaluating our algorithms on the SWDF dataset, we request a sum-

mary with 16 summary schema nodes (~10% summary). As the Steiner 

Tree algorithm for linking the selected schema nodes introduces addi-

tional nodes in the summary, at the end, the final summary includes 16 

nodes in the case of RDFDigest+, 22 nodes in the case of DisC, 22 nodes 

in the case of LSP, 19 nodes in the case of LSP-DisC and 20 nodes in the 

case of 1-LSP-DisC.  

Already this is an indication that our coverage-based summaries select 

more distant nodes, which requires more nodes to be introduced for con-

necting those into a summary schema graph. 
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Figure. 15. - Coverage for the various algorithms for the SWDF dataset. 

Based on the summaries generated by the various algorithms, we cal-

culate next the coverage for the available queries. We have to note that 

in this dataset all schema graph nodes are queried at least once in every 

user query. The results are shown in 6. As shown, the RDFDigest+ gen-

erates a summary with a coverage of 47 %, whereas all coverage-based 

algorithms, besides DisC outperform RDFDigest+. In essence, most of 

our algorithms are able to answer larger fragments of user queries, re-

sulting in a better summary quality. The 1-LSP-DisC method has the best 

coverage (52%), showing the benefits of adopting it, for subsequent 

query answering. 



49 

 

6.2 Evaluation on DBpedia 

Next we move to a different, more challenging dataset, DBpedia. Here 

we request a summary based on 36 nodes using the corresponding algo-

rithms (~10% summary). Again, the Steiner Tree algorithm for linking 

the selected schema nodes introduces additional nodes in the summary. 

At the end, the final summary included 36 nodes in the case of 

RDFDigest+, 61 nodes in the case of DisC, 47 nodes in the case of LSP, 

51 nodes in the case of LSP-DisC and 58 nodes in the case of 1-LSP-

DisC.  

Similarly to SWDF, already this is an indication, that our coverage-

based summaries select more distant nodes, which requires more nodes 

to be introduced for connecting those into the summary schema graph. 

Moving our attention to the DBpedia queries, we observe that large 

parts of the schema graph are completely ignored by the users. More spe-

cifically from the 422 schema nodes of the DBPedia, only 177 of them 

appear in the queries whereas the remaining nodes do not. Figure 7 pre-

sents the results for the various algorithms for the coverage. As shown, 

again 1-LSP-DisC outperforms RDFDigest+. Looking at the produced 

summaries, the ones produced by RDFDigest+ tend to include more pop-

ular nodes whereas our coverage-based summaries are able to include 
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nodes also on the perimeter, offering a more diverse view of the schema 

graph. However, as most of the user queries are ignoring a large fragment 

of the available nodes, this has an impact on the summaries produces by 

our coverage-based algorithms as well. 

 

Figure. 16. - Coverage for the summaries generated by the various algorithms  for 

DBpedia. 

6.3 Efficiency 

Next, we evaluate efficiency for the various algorithms presented in 

the thesis. More specifically, for the two datasets in our evaluation, we 

produce the 10% summaries using the various methods and we report the 
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average of ten executions. The results are shown in Fig 8 for the SWDF 

dataset and in Fig.9 for the DBpedia dataset.  

 

Figure. 17. - Execution time for the SWDF dataset. 

 

Figure 18 Execution time for DBPedia 

As shown selecting the nodes for the SWDF is one order of magnitude 

faster in all cases than DBpedia. This is reasonable as DBpedia’s schema 

graph is about four times larger than SWDF. 
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In addition, we can see that LSP is the fastest algorithms of all, in-

dependent of the fact that it has to compute all pairs shortest paths. 

This is reasonable, however, and in accordance to the complexity of 

the various algorithms, as the remaining algorithms have to compute 

the betweenness, which is a really costly procedure. RDFDigest+ has 

only to compute the betweenness whereas the other algorithms have 

to do additional computations. In addition, as shown, the most time-

consuming algorithms are the hybrid ones as they involve both the 

creation of the betweenness list and the calculation of all pairs shortest 

paths. The same applies for the 1-LSP-DisC, however here the all pairs 

shortest paths are only calculated for a subset of the schema nodes (the 

top-m ones). 
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7 Conclusions & Future Work 

In this thesis, we focus on producing summaries that maximize their util-

ity for query answering. We explore ideas from result diversification and 

we present four diverse algorithms for constructing structural semantic 

summaries, pushing nodes’ selection to the perimeter of the graph trying 

to collect representative nodes from both each topological and im-

portance “neighborhood” of the graph. Our experiments confirm that the 

produced summaries indeed maximize the coverage of thousands of user 

queries, although they have been constructed, without using the specific 

workload. 

7.1 Future Work 

As next step, we intend to explore personalized summaries that will be 

constructed based on an initial node selection performed by the user. The 

seed nodes could come from text resources or specific queries based on 

which the users would like to explore the graph. The fact is that building 

a non-personalized summary (like the ones in this work), you can never 

be sure whether the particular summary could be useful to a specific user 

case, because you do not know the interests of the user. On the other side, 

the current work can be valuable when building personalized summaries 
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when combining the interest of the user that could be in the perimeter of 

the graph, so a “diverse” view of the summary could be very promising.  

7.2 Potential Extensions to Generic Graphs 

Our implementation can be directly extended to generic graphs besides 

RDF/S graphs as our algorithms exploit centrality measures and ideas 

from the diversity domain that both have been initially proposed for ge-

neric graphs.  
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