
Coverage-Based Summaries for RDF KBs

By

Giannis G. Vassiliou

A thesis submitted in partial fulfillment of
the requirements for the degree of

Informatics Engineering

Hellenic Mediterranean University

Heraklion, 2021

Approved by

 Papadakis Nikolaos, Associate Professor HMU

Marakakis Manolis, Professor HMU

Dr. Kondylakis Haridimos, Collaborating Researcher, FORTH-ICS

To Giorgos and Rafailia, my loving children

ACKNOWLEDGMENTS

I would like to thank my advisor Associate Professor Nikos Papadakis for his help

in completing and writing this thesis.

I also would like to thank Professor Manolis Marakakis for his suggestions and

comments.

Further I would like to thank Georgia Troullinou for the excellent cooperation we

had.

Finally, I would also like to thank Dr. Haridimos Kondylakis for his guidance and

the valuable ideas he shared with me through the whole procedure for starting,

completing and writing this thesis.

HELLENIC MEDITERRANEAN UNIVERSITY

ABSTRACT

Coverage-Based Summaries for RDF KBs

As more and more data become available as linked data, the need for efficient and effective

methods for their exploration becomes apparent. Semantic summaries try to extract meaning

from data, while reducing its size. State of the art structural semantic summaries, focus pri-

marily on the graph structure of the data, trying to maximize the summary’s utility for query

answering, i.e. the query coverage. In this thesis, we present four algorithms, trying to max-

imize the aforementioned query coverage using ideas borrowed from result diversification.

The key idea among all algorithms is, instead of focusing only to the “central” nodes, to push

node selection also to the perimeter of the graph. Our experiments show the potential of our

algorithms and demonstrate the considerable advantages gained for answering larger frag-

ments of user queries.

Table of Contents

1 Introduction ...9

2 Preliminaties ..13

2.1 RDF...13

2.2 RDF Schema (RDFS) ..14

2.3 SPARQL...15

3 Related work..16

3.1 Works on summaries ...18

3.1.1 Returning only the nodes ..19

3.1.2 Trying to extract sentences ...21

3.1.3 Combining with user preferences ..22

3.1.4 RDFDigest+ ..23

3.1.5 A comparison of the structural summaries ...24

3.1.6 Relation to graph summaries ...25

3.2 Comparison with our approach ...26

3.3 Works on result diversification ...27

4 Coverage-based summaries ..28

4.1 Methodology for creating a summary ..36

5 Constructing Coverage-Based Summaries ..37

6

5.1 The LSP Algorithm..37

5.2 The DisC algorithm. ..39

5.3 The LSP-DisC Algorithm..41

5.4 The 1-LSP-DisC Algorithm ..43

6 Evaluation ..46

6.1 Results on the SWDF dataset..47

6.2 Evaluation on DBpedia..49

6.3 Efficiency ...50

7 Conclusions & Future Work...53

7.1 Future Work ...53

References ..56

7

List of Figures

Figure 1 - RDF graph and its implicit triple..14

Figure 2 – A taxonomy of the works in the area (as presented in [1])18

Figure 3- CARRank Algorithm ...20

Figure 4 - Creating Sentences S...21

Figure 5 - BRP-Ontology summarization ...23

Figure 6 - The RDFDigest System ..24

Figure 7 – Works on non-quotient, structural RDF summaries.....................................25

Figure 8. - A summary from DBpedia as produced by RDFDigest+33

Figure 9. - A summary from DBpedia as produced by 1-LSP-DISC...........................34

Figure 10 - Summary Creation Workflow ..37

Figure 11 - LSP based summary creation ...38

Figure 12 – DisC based summary creation ...39

Figure 13 - LSP-DisC summary creation ..41

Figure 14 - 1-LSP-Disc summary creation ...43

8

Figure. 15. - Coverage for the various algorithms for the SWDF dataset....................48

Figure. 16. - Coverage for the summaries generated by the various algorithms for

DBpedia...50

Figure. 17. - Execution time for the SWDF dataset. ...51

Figure 18 Execition time for DBPedia ..51

Figure. 19. - Execution time for the DBpedia dataset. Error! Bookmark not defined.

9

1 Introduction

The rapid explosion of the available data in the web has led to an enor-

mous amount of widely available RDF datasets. However, these datasets

often have extremely complex and large schemas, which are difficult to

comprehend, limiting the exploitation potential of the information they

contain. As a result, there is an increasing need to develop methods and

tools that facilitate the quick understanding and exploration of these data

sources [1], [8].

One method for condensing and simplifying such datasets is through

semantic summaries. According to our recent survey [1], a semantic

summary is a compact information, extracted from the original RDF

graph, intuitively; summarization is a way to extract meaning from data

while reducing its size, and/or a graph, which some applications can ex-

ploit instead of the original graph to perform certain tasks more effi-

ciently.

Structural summaries focus first and foremost on the graph structure,

respectively the paths and sub-graphs one encounters in the RDF graph.

State of the art works in the area of structural summarization [8], [9] first

try to identify the most important nodes of the schema graph, and then to

optimally link those, producing a connected schema sub-graph. As such,

10

the size of the presented schema graph is reduced to a minimum size, so

that end users are easier to understand the contents of the generated sum-

mary, while in parallel the most important nodes are selected and pre-

sented to the user.

The problem. The problem with the state of the are structural seman-

tic summaries is that the selected, most important nodes, are in most of

the cases nodes located centrally to the schema graph, missing explora-

tion opportunities for the nodes are located at the perimeter of the graph.

To this direction, result diversification has also attracted considerable at-

tention as a means of enhancing the quality of the exploration results

presented to the users, as it offers, intuitively more informative results

than a homogeneous result [3]. However, to the best of our knowledge,

those ideas, although notably useful and interesting, have not yet mi-

grated into structural semantic summaries.

Contribution. In this thesis, we focus on summaries that try to max-

imize query coverage, exploiting ideas from the result diversification

field. More specifically, we provide four diverse algorithms for selecting

the nodes in the summary to be presented to the user:

 Node selection based on topology: Based solely on the struc-

ture/topology of the schema graph, we select the nodes with the

11

maximum shortest path distance. We name the corresponding al-

gorithm LSP as it focuses on the Longest Shortest Paths.

 Node selection based on importance: The idea here is to maximize

both the topological diversity and the importance of the selected

nodes. As already mentioned, structural semantic summarization

methods, first provide an ordering of the nodes in terms of im-

portance and then select the top-k nodes to be used for the sum-

mary. Our idea here is to select one by one the individual nodes

and each time to exclude all its neighbors in distance r from the

ordering, trying to get representatives from other “importance

neighborhoods” as well.

 Hybrid node selection: The idea is to combine semantic and struc-

tural diversity in order to further improve the generated summary,

by starting from the nodes with the longest shortest paths and elim-

inating the nodes in the ranking within a specific radius. Two var-

iations have been created, the 1- LSP-DisC, and the LSP-DisC,

starting with different sets of nodes from the ones with the longest

shortest paths as a seed, and progressing to the list of the most im-

portant nodes for selecting the remaining ones.

12

 We experimentally evaluated our approach using real world da-

tasets (DBPedia and SWDF) and show that the produced summar-

ies surpass current state of the art in terms of quality.

To the best of our knowledge, we are the first to incorporate notions

from result diversification in structural semantic summaries. Although,

in the first two cases, we adapt existing algorithms in our setting, we

progress even further producing two novel, hybrid node selection algo-

rithms outperforming other approaches.

 The rest of this thesis is structured as follows: In Section 2, we present

preliminaries required for understanding the remaining of this thesis,

whereas related work is presented in Section 3. Section 4 defines cover-

age-based summaries and Section 5 presents the individual algorithms.

Finally, Section 6 presents evaluation and Section 7 concludes this thesis

and presents directions for future work.

13

2 Preliminaties

Our study of graph summarization techniques is centrally motivated

by their interest when summarizing RDF graphs. RDF is the standard

data model promoted by the W3C for Semantic Web applications.

2.1 RDF

An RDF graph (in short a graph – figure 1) is a set of triples of the

form (s, p, o). A triple states that a subject s has the property p, and the

value of that property is the object o. We consider only well-formed tri-

ples, as per the RDF specification belonging to (U∪B)×U ×(U∪B∪L)

where U is a set of Uniform Resource Identifiers (URIs), L a set of typed

or untyped literals (constants), and B a set of blank nodes (unknown

URIs or literals); U, B,L are pairwise disjoint. Blank nodes are essential

features of RDF allowing to support unknown URI/literal token. As de-

scribed above, it is easy to see that any RDF graph is a labeled graph.

However, as we explain below, RDF graphs may contain an ontology,

that is, a set of graph edges to which standard ontology languages attach

a special interpretation. The presence of ontologies raises specific chal-

lenges when summarizing RDF graphs, which do not occur when only

plain data graphs are considered.

14

 Notations. We use s, p, and o as placeholders for subjects, properties

and objects, respectively. The RDF standard has a set of built-in classes

and properties, as part of the rdf: and rdfs: pre-defined namespaces. We

use these namespaces exactly for these classes and properties, e.g.,

rdf:type specifies the class(es) to which a resource belongs.

2.2 RDF Schema (RDFS)

 RDFS allows enhancing the assertions made in an RDF graph with the

use of an ontology, i.e., by declaring semantic constraints between the

classes and the properties they use.

Figure 1 - RDF graph and its implicit triple

An example is shown in Figure 1, where we see the classes Book, Pub-

lication and DOI (for the description of a book), where Book is subclass

15

of Publication and “has” DOI. A specific book instance for DOI is “Le

port des Brumes” (title) and “1932” (published), “G.Simenon”(writ-

tenBy). A Book is also “writtenBy” a “Person”, and whatever is “writ-

tenBy” also “has Author”.

2.3 SPARQL

SPARQL on the other hand, is the standard W3C query language used

to query RDF graphs. We consider its popular conjunctive fragment con-

sisting of Basic Graph Pattern (BGP) queries. BGP queries are also the

most widely used in real-world applications. A BGP is a generalization

of an RDF graph in which variables may also appear as subject, property

and object of triples.

PREFIX type: <http://dbpedia.org/class/yago/>

PREFIX prop: <http://dbpedia.org/property/>

SELECT ?country_name ?population

WHERE {

 ?country a type:LandlockedCountries ;

 rdfs:label ?country_name ;

 prop:populationEstimate ?population .

 FILTER (?population > 15000000 && lang-

Matches(lang(?country_name), "EN")) .

} ORDER BY DESC(?population)

An example SPARQL query using DBPedia, which finds all land-

locked countries with a population greater than 15 million, with the

highest population country first, is shown below.

16

3 Related work

Summarization has been applied to RDF data to extract concise and

meaningful information from RDF knowledge bases, representing their

content as faithfully as possible. There is no single concept of RDF sum-

mary, and not a single but many approaches to build such summaries;

each is better suited for some uses, and each presents specific challenges

with respect to its construction. RDF summarization has been used in

multiple application scenarios, such as id visualization to get a quick un-

derstanding of the data. It should be noted that indexing, query optimi-

zation and query evaluation were studied as standalone problems in the

data management areas, before the focus went to semantic RDF graphs;

therefore, several summarization methods initially studied for data

graphs were later adapted to RDF. Among the currently known RDF

summarization approaches, some only consider the graph data without

the ontology, some others consider only the ontology. Finally some use

a mix of the two. Summarization methods rely on a large variety of con-

cepts and tools, comprising structural graph characteristics, statistics,

pattern mining or a mix thereof. Summarization methods also differ in

their usage scope.

17

Some summarize an RDF graph into a smaller one, allowing some RDF

processing (e.g., query answering) to be applied on the summary (also).

The output of other summarization methods is a set of rules, or a set of

frequent patterns, an ontology etc.

Based on a recent survey [1] An RDF summary is one or both among

the following:

1. A compact information, extracted from the original RDF graph;

intuitively, summarization is a way to extract meaning from

data while reducing its size;

2. A graph, which some applications can exploit instead of the

original RDF graph, to perform some tasks more efficiently; in

this vision, a summary represents (or stands for) the graph in

specific settings.

Certainly, these notions intersect, e.g., many graph summaries extracted

from the RDF graphs are compact and can be used for instance to make

some query optimization decisions; these fit into both categories. How-

ever, some RDF summaries are not graphs; some (graph or non-graph)

summaries are not always very compact, yet they can be very useful

etc.

18

3.1 Works on summaries

Figure 2 – A taxonomy of the works in the area (as presented in [1])

Based on the methods employed (fig.2), we have four main trends in

summary creation.

Structural methods exploit the graph structure, respectively the paths

and the sub-graphs one encounters in the RDF graph. They can further

classified to the quotient methods that consider some notion of “equiva-

lence” identifying node’s representatives and non-quotient that mostly

select individual nodes out of the RDF graph.

19

Patter mining methods, employ mining techniques for discovering

patterns in the data, the summary is then built out of the patterns identi-

fied.

Statistical methods : These methods summarize the contents of a

graph quantitatively. The focus is on counting occurrences, such as

counting class instances or building value histograms per class, property

and value type; other quantitative measures are frequency of usage of

certain properties, vocabularies, average length of string literals etc.

Hybrid methods: To this category belong works that combine struc-

tural, statistical and pattern mining techniques.

As our approach is a non-quotient structural summarization ap-

proach we will focus next only on the works from that specific area.(fig-

ure 3)

3.1.1 Returning only the nodes

Peroni et al. [6] and Wu et al. [11] focused on non-quotient structural

summarization. The former tries to automatically identify the key con-

20

cepts in an ontology combining cognitive principles, lexical and topo-

logical measurements such as the density and the coverage. The algo-

rithm created is evaluated against results produced by human experts. In

the latter the authors use similar algorithms to identify the most im-

portant concepts and relations in an iterative manner. Most precisely the

incorporate a custom algorithm named CARRank (figure 4) trying to

rank important concepts and relations in the ontology simultaneously

evaluating against user specified important nodes (concepts) and rela-

tionships in a case study and comparing with other ranking algorithms.

Figure 3- The CARRank Algorithm

However, both of these efforts focus only on returning the most im-

portant nodes and not on returning an entire graph summary.

21

3.1.2 Trying to extract sentences

Zhang et al. [12] propose the use of RDF sentence as the basic unit of

summarization. Using a user provided ontology, it is mapped to a set of

RDF sentences (figure 4) by extracting those using specific algorithmic

strategies, and using them as units for the summary creation.

Figure 4 - Creating Sentences

Using measures such as the degree-centrality, the betweenness and the

eigenvector centrality, the salience of a RDF sentence is assessed. Col-

lecting the RDF Sentences leads to the creating to the RDF Sentence

Graph, which provides the links between the RDF sentences.

22

3.1.3 Combining with user preferences

In Queiroz-Sousa et al. [7] the authors try to combine user preferences

with the degree centrality and the closeness to calculate the importance

of a node and then they use an algorithm to find paths that include the

most important nodes in the final graph. “Two tasks are needed to build

an ontology summary: identify the key concepts and select them in order

to produce a subontology of the original ontology. The first task is ac-

complished using relevance measures and user-defined parameters

whilst the second one is performed by the Broaden Relevant Paths (BRP)

algorithm, proposed to identify the best path (ontology summary) in a

graph (ontology)that represents a set of interrelated vertexes (concepts).

However, the corresponding algorithm prioritizes direct neighbors ignor-

ing that the selection of other paths that could maximize the importance

of the selected summary. (figure 5)

23

Figure 5 - BRP-Ontology summarization

3.1.4 RDFDigest+

Finally, RDFDigest+ (figure 6) proposes the betweenness centrality

for effectively constructing summaries, and show that the generated sum-

maries dominate other existing approaches in the area [8], [5].

24

Figure 6 - The RDFDigest System

3.1.5 A comparison of the structural summaries

In figure 7 we present some of the main structural summaries ap-

proaches. We can see that some of them are using as input both the

schema and the instances graph and others just the schema. Some have

as target only visualization of the final (reduced) schema and others cope

with query answering. Some have as output the final schema (a con-

nected graph) and others present only the selected nodes finally.

25

Work RDF

input
compo-

nent

Input re-

quirements

Pur

pose

Out-

put
type

Out-

put Na-
ture

Sys

tem
The-

ory

RDFDiges
t

Instance
and
Schema

Required
schema,
Parameter-
ized

user input,

RDF/OWL
,

Seman-
tics-aw are,

Handle
implicit

data

Visuali-
zation,
query
an-
sw ering

task
s

Labeled
graph

Schema Sys-
tem

Queiroz et
al.

Schema Required
schema,
Parameter-
ized user in-

put,
RDF/OWL

Visuali-
zation

Labeled
graph

Schem
a

Sys-
tem

RDF Sen-
tence

Graph
(Zhang et

al)

Schema Required
schema,
Parameter-
ized user in-

put,
RDF/OWL

Visuali-
zation

Labeled
Graph

Schem
a

Sys-
tem

Peroni at
al.

Schema Required
schema,
Parameter-
ized user in-

put,
RDF/OWL

Visuali-
zation

Nodes Nodes

Wu et al. Schem
a

Required
schema,
Parameter-
ized

user input,

RDF/OWL

Vis-
ualiza-
tion

Node
s

Nodes

Figure 7 – Works on non-quotient, structural RDF summaries

3.1.6 Relation to graph summaries

26

Since our focus is on RDF graph summarization techniques, we leave

out of our scope graph summarization techniques tailored for other clas-

ses of graphs, e.g., biological data graphs , social networks etc. We focus

on techniques that have either been specifically devised for RDF, or

adapted to the task of summarizing RDF graphs. Nevertheless our ap-

proach can be directly applied to generic graph summaries as well, as the

centralities measures and the notions of diversity adopted, hold for ge-

neric summaries as well.

3.2 Comparison with our approach

The state-of-the-art work regarding Structural Summaries is

RDFDigest+. In a way, it produces the summaries with the best results

of the finally created schema graph regarding the coverage of the bench-

mark queries nodes.

However, as we will show both analytically and experimentally in the

sequel, RDFDigest+ focuses on selecting only centrally located nodes,

missing the opportunity to exploit also nodes in the perimeter of the

graph, for improving the quality of the generated summaries. So by mov-

ing the summary nodes’ selection (by using result diversification) away

from the central nodes, we have a way to exploit an area that was not

27

explored before and give the user another “view” of the initial graph

which (as we will prove) competes and even surpasses in benchmark

queries nodes’ coverage the state-of-the-art works.

3.3 Works on result diversification

For our summary creating algorithms we used ideas from result diver-

sifcation which is a topic which explores results retrieved by user queries

to improve the results quality. The widely used diversification models are

MAXMIN and MAXSUM, which aim at selecting a subset S of P so that

the minimum or the average pairwise distance of the selected objects is

maximized [13, 14, 15]. Another way to achieve diversification of results

is the DisC algorithm proposed by Drosou et al. [3] “A DisC diverse subset

of a query result contains objects such that each object in the result is rep-

resented by a similar object in the diverse subset and the objects in the

diverse subset are dissimilar to each other.” Describing the algorithm from

the original thesis: “Let P be the set of objects in a query result. We con-

sider two objects p1 and p2 in P to be similar, if dist(p1, p2) ≤ r for some

distance function dist and real number r, where r is a tuning parameter that

we call radius. Given P, we select a representative subset S ⊆ P to be

28

presented to the user such that: (i) all objects in P are similar with at least

one object in S and (ii) no two objects in S are similar with each other. The

first condition ensures that all objects in P are represented, or covered, by

at least one object in the selected subset. The second condition ensures that

the selected objects of P are dissimilar. We call the set S r-Dissimilar

and Covering subset or r-DisC diverse subset.”

So far and to the best of our knowledge there are no current works using

diversification ideas for RDF schema summarization. In our case the im-

plementation of the DisC algorithm shifts the selection of the nodes away

from the center and pushes the node selection out to the perimeter of the

RDF schema, trying to diversify the result without neglecting the fact that

the central nodes could be useful for our summary.

4 Coverage-based summaries

Here, we will follow an approach similar to [8] and [9], which imposes

a convenient graph-theoretic view of RDF data that is closer to the way

the users perceive their datasets. As such, we separate between the

schema and the instances of an RDFS KB, represented in separate graphs

(GS and GI, respectively). The schema graph contains all classes and the

29

properties the classes associated with (via the properties domain/range

specification); multiple domains/ranges per property are allowed, by

having the property URI be a label on the edge, via a labeling function λ,

rather than the edge itself. The instance graph contains all individuals,

and the instantiations of schema properties; the labeling function λ ap-

plies here as well for the same reasons. Finally, the two graphs are related

via the τc function, which determines the class(es) each individual is in-

stantiated under.

Definition 1. (RDFS KB) An RDFS KB is a tuple V = <GS, GI , λ, τc>

where:

- GS is a labelled directed graph GS = (VS, ES) such that VS, ES are

the nodes and edges of GS, respectively, and VS ⊆ C ∪ L.

- GI is a labelled directed graph GI = (VI , EI) such that VI , EI are the

nodes and edges of GI , respectively, and VI ⊆ I ∪ L.

- A labelling function λ: ES ∪ EI → 2P determines the property URI

that each edge corresponds to (properties with multiple do-

mains/ranges may appear in more than one edge).

- A function τc : I → 2C associating each individual with the classes

that it is instantiated under.

30

In the following, we will write p(υ1, υ2) to denote an edge e in GS, where

υ1, υ2 ∈ VS, such that, λ(e) = p. In addition, for brevity, we will call

schema node a node s ∈ VS, class node a node c ∈ C ∩VS, and instance

node a node i ∈ I∩VI. A path from a node υs to υi, denoted by path(υs →

υi), is the finite sequence of edges, which connect a sequence of nodes,

starting from υs and ending at υi . The length of a path, denoted by

dpath(υs → υi), is the number of the edges that exist in that path. Finally,

having a schema graph GS, the closure of GS, denoted by Cl(GS), contains

all triples that can be inferred from GS using inference. From now on,

when we use GS, we will mean Cl(GS) for reasons of simplicity, unless

stated otherwise. This is to ensure that the result will be the same, inde-

pendent of the number of inferences applied on an input schema graph

GS,

Schema summarization aims to highlight the most representative con-

cepts of a schema, preserving important information and reducing the

size and the complexity of the whole schema. Central questions to sum-

marization are (i) how to select the schema nodes for generating the sum-

mary, and (ii) how to link selected nodes in order to produce a valid sub-

schema graph.

31

However, independent of the way we select the schema nodes, we can

safely assume the existence of a function select_nodes(GS), that for a

given schema graph GS, returns the k nodes to participate in the sum-

mary. Then, we can define a summary schema graph of size k to be the

following:

Definition 2. (Summary Schema Graph of size k). Let V = (GS, GI, λ,

τc) be an RDFS KB. A summary schema graph of size k for V is a con-

nected schema graph G'S=(V'S, E'S), G'S ⊆ Cl(GS), with:

 V'S = select_nodes(GS) ∪ VADD, VADD represents the nodes in the sum-

mary used only to link the nodes in select_nodes(GS)

 ∀vi, vj ∈ select_nodes(GS), ∃path(vi, vj) ∈ G'S,

 ∄summary schema graph G''S=(V''S, E''S) including the nodes in se-

lect_nodes(GS), such that, |V''S|<|V'S|.

According to the aforementioned algorithm having a set of nodes se-

lected by the select_nodes function, we are looking then the minimum

number of the additional nodes to be introduced out of the initial schema

graph in order to link those selected nodes. This is due to the fact that,

introducing many additional nodes shifts the focus of the summary and

32

decreases summary’s quality. As such, we model the problem of linking

the most important nodes as a variation of the well-known Graph Steiner-

Tree problem (GSTP) [10]:

Definition 3. (The Graph Steiner-Tree problem (GSTP)) Given an

undirected graph GS = (VS, ES), with edge weights w: ES → R + and a

node set of terminals select_nodes(GS) ⊆ VS, find a minimum-weight tree

T ∈ GS such that select_nodes(GS) ⊆ VT and ET ⊆ E.

In our case, we ignore as well the direction in the edges, we assume

equal weights for all edges, whereas the node set of terminals are the

schema nodes selected by the select_nodes function. The corresponding

algorithm, targets at minimizing the additional nodes introduced for con-

necting the selected nodes. However, the problem is NP-hard, and as

such the CHINS approximation algorithm is used in our case [5].

Next, we focus on how to implement the function select_nodes(GS).

Ideally, we would like to select important, informative nodes that are best

suited to describe the contents of the entire KB, maximizing the sum-

mary’s utility for query answering. State of the art structural semantic

33

summaries so far, adopt centrality measures to identify the most im-

portant nodes.

Figure 8. - A summary from DBpedia as produced by RDFDigest+

An example is shown in figure 8 from RDFDigest+, that exploits be-

tweenness centrality. We can see that the summary focuses on a central

part of the entire graph. Although such a summary would be really useful

for queries around the Agent class (in the center), for a non-homogeneous

34

query workload a summary like the one presented on the figure 9 would

arguably be better.

Figure 9. - A summary from DBpedia as produced by 1-LSP-DISC

As such, assuming a query log, we would like to maximize the frag-

ments of queries that are answered by the summary. More specifi-

cally, having a summary, we can calculate for each query that can be

partially be answered by the summary, the percentage of the classes and

properties that are included in the summary, i.e. the success nodes and

35

the success properties. A class/property appears within a query either di-

rectly or indirectly. Directly when the said class/property appears within

a triple pattern of the query. Indirectly for a class is when the said class

is the type of an instance or the domain/range of a property that appear

in a triple pattern of the query. Indirectly for a property is when the said

property is the type of an instance. Having the percentages of the classes

and properties included in the summary, the query coverage is the

weighted sum of these percentages.

Definition 4. (Coverage). Assuming a graph GS = (Vs, ES), a query

workload Q={q1, …, qn}, and two weights for nodes and edges, i.e. wnodes

and wprop, we define coverage as follows:

Coverage(Gs, Q)= 𝐴𝑉𝐺𝑞 =𝑖
𝑛 (𝑤𝑛𝑜𝑑𝑒𝑠

𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑛𝑜𝑑𝑒𝑠(𝑞𝑖,)

𝑛𝑜𝑑𝑒𝑠(𝑞𝑖)
+

𝑤𝑝𝑟𝑜𝑝
𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑞𝑖,)

𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑞𝑖)
)

As our summaries are node-based (they are generated based on the

selected nodes) the weight on the nodes is larger than the one on the

properties (for our experiments we used 0.8 for nodes and 0.2 for

edges). Now, having defined the coverage for a given query workload

we can describe a coverage-based summary schema graph:

36

Definition 5. (Coverage-based Summary Schema Graph of size k).

Assuming a query workload Q, a coverage-based summary schema

graph of size k , is a summary schema graph of size k maximizing the

coverage for the queries in Q.

Ideally, we would like to product summaries without exploiting a

query log for their construction, as in most of the cases those query logs

are not available (we were only able to collect query logs with thousands

of real user queries only for a few hand-picked datasets). As such the

target of our thesis is to generate heuristic algorithms that can lead to the

same result without exploiting user queries for constructing the summar-

ies.

4.1 Methodology for creating a summary

To create the schema summaries (figure 10), we get as input the original

schema graph. Every algorithm of ours is producing the nodes to be in-

cluded in the final schema graph (of course the number of the nodes to

be included is given as a parameter by the user). We use the Graph Stei-

ner Tree algorithm to connect the possible unconnected nodes we have

from the previous step and thus have the final schema summary as a con-

nected graph.

37

Figure 10 - Summary Creation Workflow

5 Constructing Coverage-Based Summaries

 In this thesis, we implement four, diverse algorithms for constructing

coverage-based summaries. The first one (LSP) is solely based on the

topology of the graph completely ignoring other aspects, the second one

(DiSC) focuses is an adaptation of an algorithm for result diversification

[3], exploiting individual nodes’ importance, whereas the LSP-DisC, 1-

LSP-DisC are our own contributions combining topology and im-

portance in order to select schema nodes. In the sequel, we present the

corresponding algorithms in detail.

5.1 The LSP Algorithm

38

Figure 11 - LSP based summary creation – Targets the perimeter nodes of the graph

The Longest Shortest Paths (LSP) algorithm, shown in algorithm 1,

calculates all shortest paths between the schema nodes in the schema

graph (line 1), ranks them based on the calculated distance in a descend-

ing order (line 2) and then selects the first k nodes from that list (line 3).

The complexity of Algorithm 1 is O(m|Vs|) and mainly comes from cal-

culating all pairs shortest paths, where |Vs| is the number of nodes in GS

and m a quantity based on |Vs| as shown in [2].

Algorithm 1: LSP(GS,k)

Input: A schema graph GS, k the number of schema nodes to select.

Output: A set of schema nodes N.

1. LSP := Calculate_all_pairs_shortest_paths(GS)

2. Sort (LSP) in descending order based on the distance

3. N := Select top-k nodes from LSP

4. Return N

39

5.2 The DisC algorithm.

Figure 12 – DisC based summary creation – Diversifies the central nodes’ selection

The DisC algorithm is based on a related approach [3], introduced for

result diversification. The main idea here is not only to select nodes based

on an importance measure but in each selection step to exclude its neigh-

bors (in a radius r). As such, node selection is guided to select nodes out

of the entire graph instead of selecting only the central ones (which usu-

ally importance measures find as more important).

The corresponding algorithm is shown in Algorithm 2. Initially we

calculate for each node its centrality measure (lines 2-3). As previous

works on structural semantic summaries have identified that the be-

tweenness centrality has an excellent performance for producing sum-

maries that optimize query answering, we are reusing it here as well.

40

Then we sort them based on their centrality measure in descending order

(line 4). Then we get the first node of the list (the most important one

based on its centrality measure (line 6) and, and we exclude from the list

all its neighbors in a distance r (line 7). We repeat the node selection and

the corresponding exclusions of the neighbors, till out list is empty or we

have selected the k nodes required (line 5). Finally, we return the selected

nodes to the users.

Algorithm 2: DisC(GS,k , r)

Input: A schema graph GS, k the number of schema nodes to select, r
the radius of the nodes to be excluded.

Output: A set of schema nodes N.

1. N:= ∅

2. for each node in GS do

3. betweennes[node]:=calculate_ betweennees(GS)

4. sort_nodes(betweennes)

5. while betweennes != ∅ and |N| < k do

6. Add top node in betweennes to N

7. Remove node neighbors in a radious r from the betweennes list

4. Return N

41

For calculating the betweennes for all nodes we need O(|Vs|+|Es|), then

for sorting the nodes in a descending order based on their centrality

O(|Vs|) and then O(|Vs|) for constructing the final list by removing each

node’s neighbors, assuming appropriate adjacency structures. As such,

the overall complexity of our algorithm is O(|Vs|+|Es|).

5.3 The LSP-DisC Algorithm.

Figure 13 - LSP-DisC summary creation – a way to combine perimeter nodes and di-

versified central nodes

To select schema nodes using the LSP-DisC algorithm, we combine

the LSP and the DisC algorithms. The corresponding algorithm is shown

in Algorithm 3. At the beginning, again, we calculate the betweenneess

of all nodes (lines 3-4) and we sort the nodes in a descending order based

on their betweenness (line 5). Then we calculate all pairs shortest paths

(line 6) and we sort them in descending order based on their distance

(line 7). Then we select the m unique nodes from the LSP list (in our test

42

case; 50% of the expected nodes). We add them in the final list and elim-

inate them from the descending betweenness list along with their r-hop

neighbors (lines 9-11). We continue by choosing the first available node

from the betweenness list that has not been deleted so far, adding it in

the final list until we have the total number of required nodes. Obviously,

the complexity of the algorithm is O(m|Vs|)+ O(|Vs|+|Es|) ≤ O(|Vs|+|Es|)

Algorithm 3: LSP-DisC(GS,k , r)

Input: A schema graph GS, k the number of schema nodes to select,
r the radius of the nodes to be excluded.

Output: A set of schema nodes N.

1. N:= ∅

2. NLSP:= ∅

3. for each node in GS do

4. betweenness[node]:=calculate_ betweennees(GS)

5. sort_nodes(betweenness)

6. LSP := Calculate_all_pairs_shortest_paths(GS)

7. Sort (LSP) in descending order based on the distance

8. NLSP := Select top-m nodes from LSP

9. for each node in NLSP do

10. Add node to N

11. Remove node and node’s neighbors in a radious r from the

betweenness list

43

12. while betweenness != ∅ and |N| < k do

13. Add top node in betweenness to N

14. Remove node neighbors in a radious r from the betweenness
list

15. Return N

5.4 The 1-LSP-DisC Algorithm

Figure 14 - 1-LSP-Disc summary creation – focusing on a central part of the graph and

utilizing again the LSP and DisC algorithms

Another algorithm trying to optimally select schema nodes is the 1-LSP-

DisC algorithm, presented in Algorithm 4. The algorithm constructs the

ordered list of schema nodes based on their betweenness (lines 3-5).

Then we select the top-m nodes from that list (in our case about 10-15%

of the total nodes number) and we calculate all pair shortest paths for

those m schema nodes (line 6). Then we select the two most distant nodes

44

(lines 7-8), adding them to the list of the selected nodes and removing

their r-hop neighbors (lines 9-11). Then the algorithm proceeds as the

previous two algorithms by selecting the next more important node in

the ordered list and removing each time its r-hop neighbors (lines 12-14).

Then the result nodes are returned to the users. Again, the complexity of

the corresponding algorithm is O(m|VS|)+ O(|VS |+|ES|) ≤ O(|VS|+|ES|)

Algorithm 4: 1-LSP-DisC(GS,k , r)

 Input: A schema graph GS, k the number of schema nodes to select,
r the radius of the nodes to be excluded.

Output: A set of schema nodes N.

1. N:= ∅

2. NLSP:= ∅

3. for each node in GS do

4. betweenness[node]:=calculate_betweenness(GS)

5. sort_nodes(betweenness)

6. NBETt:=Select top-m nodes from betweenness

6. LSP := Calculate_all_pairs_shortest_paths(NBET)

7. Sort (LSP) in descending order based on the distance

8. NLSP := Select top-2 nodes from LSP

9. for each node in NLSP do

10. Add node to N

45

11. Remove node and node’s neighbors in a radious r from the

betweenness list

12. while betweenness != ∅ and |N| < k do

13. Add top node in betweenness to N

14. Remove node neighbors in a radious r from the betweenness
list

15. Return N

5.5 Conclusion

We implemented four algorithms trying to focus on no central nodes of

the graph. We used ideas from result diversification and combine them

with structural ideas like choosing distant nodes with LSP. Some of the

produced summaries focus on central (but diverse) nodes, some on pe-

rimeter nodes and some try to combine the view from both worlds.

46

6 Evaluation

In this section, we present the evaluation performed for the implemented

algorithms.

Setup. All experiments reported in this section were performed in a

laptop computer running Windows 10 with an Intel i5 3320M- 2.6 GHz

CPU and 8GB of main memory. All algorithms and were implemented

in Java JDK 8.

Competitors. We contrast our results with the state-of-the-art ap-

proach on structural summaries, the RDFDigest+ [9] and report our find-

ings. Our goal is to assess the added value of our implemented algorithms

on maximizing query coverage. In addition, we have to node that in our

case the radius was set to one for DisC-based algorithms, as this was the

only case were we could get in the summary the 10% of the available

nodes (for r>1, many neighbors were excluded from the list and as such

only a few nodes were eventually left).

Datasets . For evaluating our approach, we use DBpedia and Semantic

Web Dog Food (SWDF) KBs. SWDF consists of 120 classes, 72 prop-

erties and more than 300K triples. We use a query log containing 902

user queries provided by SWDF SPARQL end-point for this dataset ver-

sion. DBpedia v3.8 consists of 422 classes, 1323 properties and more

47

than 2.3M instances, and offers an interesting use-case for exploration.

To identify the quality of our approach, we use a query log containing

56K user queries provided by the DBpedia SPARQL end-point for the

corresponding DBpedia version.

6.1 Results on the SWDF dataset

For evaluating our algorithms on the SWDF dataset, we request a sum-

mary with 16 summary schema nodes (~10% summary). As the Steiner

Tree algorithm for linking the selected schema nodes introduces addi-

tional nodes in the summary, at the end, the final summary includes 16

nodes in the case of RDFDigest+, 22 nodes in the case of DisC, 22 nodes

in the case of LSP, 19 nodes in the case of LSP-DisC and 20 nodes in the

case of 1-LSP-DisC.

Already this is an indication that our coverage-based summaries select

more distant nodes, which requires more nodes to be introduced for con-

necting those into a summary schema graph.

48

Figure. 15. - Coverage for the various algorithms for the SWDF dataset.

Based on the summaries generated by the various algorithms, we cal-

culate next the coverage for the available queries. We have to note that

in this dataset all schema graph nodes are queried at least once in every

user query. The results are shown in 6. As shown, the RDFDigest+ gen-

erates a summary with a coverage of 47 %, whereas all coverage-based

algorithms, besides DisC outperform RDFDigest+. In essence, most of

our algorithms are able to answer larger fragments of user queries, re-

sulting in a better summary quality. The 1-LSP-DisC method has the best

coverage (52%), showing the benefits of adopting it, for subsequent

query answering.

49

6.2 Evaluation on DBpedia

Next we move to a different, more challenging dataset, DBpedia. Here

we request a summary based on 36 nodes using the corresponding algo-

rithms (~10% summary). Again, the Steiner Tree algorithm for linking

the selected schema nodes introduces additional nodes in the summary.

At the end, the final summary included 36 nodes in the case of

RDFDigest+, 61 nodes in the case of DisC, 47 nodes in the case of LSP,

51 nodes in the case of LSP-DisC and 58 nodes in the case of 1-LSP-

DisC.

Similarly to SWDF, already this is an indication, that our coverage-

based summaries select more distant nodes, which requires more nodes

to be introduced for connecting those into the summary schema graph.

Moving our attention to the DBpedia queries, we observe that large

parts of the schema graph are completely ignored by the users. More spe-

cifically from the 422 schema nodes of the DBPedia, only 177 of them

appear in the queries whereas the remaining nodes do not. Figure 7 pre-

sents the results for the various algorithms for the coverage. As shown,

again 1-LSP-DisC outperforms RDFDigest+. Looking at the produced

summaries, the ones produced by RDFDigest+ tend to include more pop-

ular nodes whereas our coverage-based summaries are able to include

50

nodes also on the perimeter, offering a more diverse view of the schema

graph. However, as most of the user queries are ignoring a large fragment

of the available nodes, this has an impact on the summaries produces by

our coverage-based algorithms as well.

Figure. 16. - Coverage for the summaries generated by the various algorithms for

DBpedia.

6.3 Efficiency

Next, we evaluate efficiency for the various algorithms presented in

the thesis. More specifically, for the two datasets in our evaluation, we

produce the 10% summaries using the various methods and we report the

51

average of ten executions. The results are shown in Fig 8 for the SWDF

dataset and in Fig.9 for the DBpedia dataset.

Figure. 17. - Execution time for the SWDF dataset.

Figure 18 Execution time for DBPedia

As shown selecting the nodes for the SWDF is one order of magnitude

faster in all cases than DBpedia. This is reasonable as DBpedia’s schema

graph is about four times larger than SWDF.

52

In addition, we can see that LSP is the fastest algorithms of all, in-

dependent of the fact that it has to compute all pairs shortest paths.

This is reasonable, however, and in accordance to the complexity of

the various algorithms, as the remaining algorithms have to compute

the betweenness, which is a really costly procedure. RDFDigest+ has

only to compute the betweenness whereas the other algorithms have

to do additional computations. In addition, as shown, the most time-

consuming algorithms are the hybrid ones as they involve both the

creation of the betweenness list and the calculation of all pairs shortest

paths. The same applies for the 1-LSP-DisC, however here the all pairs

shortest paths are only calculated for a subset of the schema nodes (the

top-m ones).

53

7 Conclusions & Future Work

In this thesis, we focus on producing summaries that maximize their util-

ity for query answering. We explore ideas from result diversification and

we present four diverse algorithms for constructing structural semantic

summaries, pushing nodes’ selection to the perimeter of the graph trying

to collect representative nodes from both each topological and im-

portance “neighborhood” of the graph. Our experiments confirm that the

produced summaries indeed maximize the coverage of thousands of user

queries, although they have been constructed, without using the specific

workload.

7.1 Future Work

As next step, we intend to explore personalized summaries that will be

constructed based on an initial node selection performed by the user. The

seed nodes could come from text resources or specific queries based on

which the users would like to explore the graph. The fact is that building

a non-personalized summary (like the ones in this work), you can never

be sure whether the particular summary could be useful to a specific user

case, because you do not know the interests of the user. On the other side,

the current work can be valuable when building personalized summaries

54

when combining the interest of the user that could be in the perimeter of

the graph, so a “diverse” view of the summary could be very promising.

7.2 Potential Extensions to Generic Graphs

Our implementation can be directly extended to generic graphs besides

RDF/S graphs as our algorithms exploit centrality measures and ideas

from the diversity domain that both have been initially proposed for ge-

neric graphs.

55

56

References

1. Cebiric, S., Kondylakis, H., Kotzinos, D., Manolescu, I., Troullinou, G., Zneika, M.: Sum-

marizing semantic graphs: a survey. VLDB J., 2019:28(3): 295-327.

2. Chan, T .M. All-pairs shortest paths for unweighted undirected graphs in o (mn) time. ACM

Transactions on Algorithms (TALG) 8.4, 2012, 1-17.

3. Drosou, M., Pitoura, E.: DisC diversity: result diversification based on dissimilarity and

coverage. Proc. VLDB Endow, 2012, 6(1): 13-24.

4. Kondylakis, H., Kotzinos, D., Manolescu, I.: RDF graph summarization: principles, tech-

niques and applications. EDBT, 2019, 433-436.

5. Pappas, A., Troullinou, G., Roussakis, G., Kondylakis, H., Plexousakis, D.: Exploring Im-

portance Measures for Summarizing RDF/S KBs. In ESWC, 2017, 387-403.

6. Peroni, S., Motta, E., d'Aquin, M.: Identifying key concepts in an on tology, through the

integration of cognitive principles with statistical and topological measures. In Asian Se-

mantic Web Conference (ASWC), 2008, 242-256.

7. Queiroz-Sousa, P.O., Salgado, A.C., Pires, C.E.: A method for building personalized ontol-

ogy summaries. Journal of Information and Data Management, 2013, 4(3):236.

8. Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.: Exploring RDFS KBs Using

Summaries. International Semantic Web Conference (1) 2018: 268 -284.

9. Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: Ontology understanding

without tears: The summarization approach. Semantic Web 2017, 8(6): 797-815.

10. Voß, S.: Steiner’s problem in graphs: Heuristic methods. Discrete Applied Mathematics,

1992, 40(1):45–72.

11. Wu, G., Li, J., Feng, L., Wang, K.: Identifying potentially important concepts and relations

in an ontology. In International Semantic Web Conference (ISWC), 2008, 33 -49.

12. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence graph.

WWW, 2007, 707–716.

13.] S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In WWW,

2009.

14. A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversifcation, monotone submodular functions

and dynamic updates. In PODS, 2012.

15. M. R. Vieira, H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou, D. Srivastava, C. Traina,

and V. J. Tsotras. On query result diversification. In ICDE, 2011

https://dblp.uni-trier.de/db/journals/vldb/vldb28.html#CebiricGKKMTZ19

