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Abstract 

The scope of this thesis is the design and implementation of an FPGA platform that 

utilizes state-of-the-art techniques and methodologies to allow improved energy 

efficiency and performance in carrying out computationally intensive tasks. The goal 

is to develop a framework for FPGA-based architectures that can be used in 

environments that include but are not limited to Cloud Computing Clusters, High 

Performance Computational Clusters and Distributed Data Centers. A proof of 

concept implementation of this framework with 3 accelerated tasks (Black and White 

Image Thresholding, Image Convolution with a 3x3 Kernel, Genome 2-mer 

Distribution Analysis) is also presented and compared with implementation of the 

same tasks on an FPGA and ARMv7 architecture CPU. To our knowledge, the 

methodology in designing the Partial Reconfiguration platform employed in this work 

is novel and allows designing Dynamic Partial Reconfiguration-enabled hardware 

platforms on an FPGA without the need for wrapper logic or the need to register all 

inputs and outputs to every reconfigurable module, facilitating the establishment of 

compatibility across implemented reconfigurable modules in early development and 

future integration of new accelerated functions on the FPGA platform. Performance 

and energy efficiency metrics are also presented for the 2 different implementation 

platforms.  
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Περίληψη 
To αληηθείκελν κειέηεο απηήο ηεο δηπισκαηηθήο εξγαζίαο είλαη ε ζρεδίαζε θαη 

πινπνίεζε κηαο πιαηθόξκαο Σπζηνηρίεο Ππιώλ Πξνγξακκαηηδόκελεο ζην Πεδίν 

(FPGA) ε νπνία αμηνπνηεί ζύγρξνλεο ηερληθέο θαη κεζνδνινγίεο γηα λα επηηύρεη 

κέγηζηε ελεξγεηαθή απνδνηηθόηεηα θαη απόδνζε ζηελ δηεθπεξαίσζε ππνινγηζηηθά 

απαηηεηηθώλ δηεξγαζηώλ επξείνπ θάζκαηνο. Ο ζηόρνο είλαη λα αλαπηύμνπκε έλα 

πιαίζην ινγηζκηθνύ γηα πινπνίεζε αξρηηεθηνληθώλ ππνινγηζηηθώλ ζπζηεκάησλ 

βαζηζκέλα ζε FPGAs γηα ρξήζε ζε πεξηβάιινληα εξγαζίαο όπσο Σπζηνηρίεο 

Υπνινγηζηηθώλ λεθώλ (Cloud Computing Clusters), Υπνινγηζηηθέο Σπζηνηρίεο 

Υςειήο Απόδνζεο (High Performance Computing) θαη Καηαλεκεκέλα Κέληξα 

Δεδνκέλσλ (Distributed Data Centers). Μηα πινπνίεζε proof-of-concept ηνπ 

πξνηεηλόκελνπ πιαηζίνπ κε 3 εθαξκνγέο πνπ κπνξνύλ λα επηηαρπλζνύλ 

(Αζπξόκαπξε Καησθιίσζε Εηθόλαο, Σπλέιημε εηθόλαο κε ππξήλα δηαζηάζεσλ 3x3, 

Καηαλνκή Δηκεξώλ Ννπθιενηηδίσλ Γνληδησκάησλ) ζα παξνπζηαζζεί θαη ζα 

ζπγθξηζεί κε αληίζηνηρεο πινπνηήζεηο ζε ζπκβαηηθέο αξρηηεθηνληθέο ππνινγηζηώλ κε 

επεμεξγαζηή ARMv7. Καηά ηελ εθηίκεζε καο, απηή είλαη ε πξώηε έξεπλα πνπ 

πεξηγξάθεη κηα λέα κεζνδνινγία πνπ λα επηηξέπεη ηνλ ζρεδηαζκό πιαηθόξκσλ κε 

δπλαηόηεηεο Δπλακηθήο Μεξηθήο Αλαδηακόξθσζεο ρσξίο ηελ αλάγθε πινπνίεζεο 

ινγηθήο πεξηηύιημεο ή θαηνρύξσζεο όισλ ησλ εηζόδσλ θαη εμόδσλ ζε όιεο ηηο 

αλαπξνζαξκνδόκελεο κνλάδεο, δηεπθνιύλνληαο ηελ εγθαζίδξπζε ζπκβαηόηεηαο 

κεηαμύ ησλ πινπνηεκέλσλ κνλάδσλ επηηάρπλζεο θαη ηελ κειινληηθή επέθηαζε ηεο 

πιαηθόξκαο κε λένπο αιγνξίζκνπο, επηηαρπλόκελνπο από ηελ πιαηθόξκα FPGA. 

Επίζεο, ζα παξνπζηάζνπκε κεηξήζεηο επηδόζεσλ θαη ελεξγεηαθήο απόδνζεο από ηηο 

πινπνηεκέλεο πιαηθόξκεο. 
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1. Introduction 
The fields of Computer Engineering and Computer Science have played a 

significant role in the advancement of nearly every aspect of human society. 

Computational systems have found use in multiple disciplines with the result of 

facilitating experts in all scientific and engineering fields to advance their respective 

field‟s knowledge and increase our quality of life. 

In recent years, a field of computational systems based on clusters of 

interconnected processing and storage nodes that are connected to the internet has 

been established as the go-to method for covering a wide range of computational and 

data storage needs. This field is called Cloud Computing and many variations of 

Cloud Computing architectures and models have arisen as a result of extended 

research on the topic. 

Although popularized in 2006 with the release of the AWS (Amazon Web 

Services) platform, the term „cloud computing‟ is believed to have been first coined in 

1996 [1] by Sean O‟Sullivan in a business plan report detailing the need for a 

migration of communication and collaboration systems to the „Internet cloud‟.  

Cloud computing solutions and ongoing research focus on a wide range of 

objectives which includes but is not limited to the following: 

 Secure remote storage of sensitive data (Microsoft OneDrive, Google Drive, 

Dropbox) [2] 

 Mass processing of data acquired from web services and IoT Devices [3] 

 Big Data and Machine Learning algorithms to extract trends in demand of 

services and products [4] 

 An application development platform where projects are shared, stored and 

compiled on the computing cluster instead of the user‟s personal computer [5] 

 Efficient acceleration of data intensive processes thanks to the economies of 

scale [6] 

Another field of Computer Science deals with development of computational 

systems on specialized integrated circuits called FPGAs (Field-Programmable Gate 

Arrays). FPGAs are meshes of primitive logic cells that usually consist of look-up 

tables, flip-flops and digital signal processors. Both the primitive blocks of logic as 

well as the interconnections in the fabric can be programmed and configured as per 

the developer‟s needs.  

The designs on an FPGA fabric are usually developed using a special type of 

programming language called Hardware Description Language such as VHDL and 

Verilog to selectively interconnect these primitive logic cells in such a way that they 

perform a specific task or even a whole algorithm.  
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Another type of programming paradigm used to design FPGA hardware 

platforms is High-Level Synthesis (HLS). HLS refers to the methodology where a 

developer uses a more conventional programming language more often used in 

developing applications in static, mainstream CPU architectures such as C, C++ or 

SystemC. The resulting code is then parsed and transformed into equivalent HDL 

code (usually VHDL or Verilog). HLS as a development methodology is advertised as 

an enabler of shorter development cycles, reduced time-to-market and facilitation of 

porting implemented C code to new devices. 

The complexity of such designs can range from basic mathematical and logic 

operations such as addition and comparison to fully implemented algorithms that deal 

with data encryption [7], image filtering [8], video processing [9] and many more.  

Some of the benefits of implementing such designs on an FPGA compared to 

other platforms such as a CPU or a GPU include but are not limited to the following: 

 Considerable speedup compared to CPU implementations 

 Comparable performance to GPU accelerated implementations 

 Considerable increase in performance per watt compared to CPU and 

FPGA implementations 

 Decreased overall system power consumption  

 Soft and hard real-time application capabilities 

It is the aim of this thesis to explore the viability of utilizing FPGA-based 

systems in Cloud Computing environments that leverage multidisciplinary workloads.  

The goal is to develop a cloud computing platform that performs 

computationally intensive tasks by utilizing algorithms implemented on an FPGA. 

FPGAs can offer lots of benefits to businesses and organizations if utilized correctly 

and to their full capabilities.  

There are several objectives that the proposed solution aims to cover. The 3 

main characteristics of the proposed system are 

1. Adaptability:  the proposed system is capable of adapting to a computing 

environment where data-intensive acceleration requests for a wide variety of 

functions take place. In the proposed system, this adaptability refers to the 

ability to efficiently reprogram portions of the FPGA marked as 

reprogrammable in a manner that minimizes the chance that a reprogramming 

is needed by employing a number of techniques which includes but is not 

limited to the following 

 

a. Utilizing reconfigurable modules that are already programmed in the FPGA 

fabric 

b. If reprogramming is needed, reprogram Reconfigurable Partitions on the 

FPGA that are least recently used. 
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2. High Efficiency: the proposed FPGA-based platform must implement 

techniques and design methodologies that will allow it to offer the maximum 

possible energy efficiency, while also maintaining high performance and QoR 

(Quality of Results) comparable to Cloud Computing platforms based on 

other, non-FPGA based architectures. Dynamic Partial Reconfiguration is the 

main tool driving this objective. Additionally, reprogramming a RP 

(Reconfigurable Partition) with a blank bitstream after it has not been used for 

some time can also help with decreasing idle power consumption of the 

system. 

 

3. Multi-disciplinary Task Execution: the proposed system is designed in a 

way that accommodates the execution of many different algorithms on the 

same Reconfigurable Partitions (RP). Any type of algorithm that might work 

on different types of data such as image data or genome sequences can be 

programmed in the defined RPs and used by a system user, as long as specific 

conventions, outlined in later chapters, have been followed at design time.  

Several methodologies and techniques, some specific to FPGAs, will be 

employed in order to ensure that the developed platform meets power efficiency, 

performance and QoR metrics that Cloud Computing solutions can benefit from. 

These include but are not limited to the following 

 Dynamic Partial Reconfiguration (DPR) 

 Workload parallelization 

 Custom Pipelining Architectures 

 Energy-aware scheduling 

In the next chapters the following will be covered: 

 In chapter 2 a theoretical background will be presented that pertains to the 

methodologies, techniques and systems employed in this work as well as 

related work on the field of Cloud Computing, FPGAs and Energy Efficient 

Computing. 

 In chapter 3 the architecture of the proposed system will be presented along 

with the software and hardware development environments utilized as well as 

the hardware specifications of the target FPGA platform. 

 In chapter 4 implementation details regarding the proposed system as well as 

pseudo code and algorithms that were utilized as use cases will be outlined. 

 In chapter 5 performance metrics such as computational throughput and 

energy consumption of the implemented will be presented.  

 Ιn chapter 6, we discuss and comment on the system‟s operational results. 

 Finally in chapter 7 we conclude this report and discuss future work that can 

extend the findings of this thesis. 
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2. Theoretical Background and Related Work 
In this chapter, information relating to the theories, techniques and 

technologies employed and build upon in this thesis are presented. Additionally, 

related research work on Cloud Computing and FPGAs, both as separate fields as well 

as in conjunction with each other, will be presented.  

2.1. Cloud Computing Definition 
Businesses and organizations constantly strive to meet their strategic goals and 

objectives by minimizing their operational costs and increasing the quality of services 

and products they offer.  

The field of Cloud Computing has facilitated the operation of organizations by 

presenting an opportunity to offload data processing and storage to clusters of 

compute nodes and storage facilities and use the processing power offered by these 

clusters to employ Machine Learning and Big Data Analytics applications that can 

help shape the strategic choices of businesses. 

 

Figure 1 – Architectural Diagram of Cloud Computing - Created by Sam Johnston using OmniGroup's 

OmniGraffle and Inkscape https://commons.wikimedia.org/w/index.php?curid=6080417  

But what exactly is Cloud Computing? As with many term definitions, the 

linguistic definition of Cloud Computing is subject to personal interpretation. Several 

definitions have been given by experts and researchers on the field.  

 



14 

 

The National Institute of Standards and Technology (NIST) [10] defines cloud 

computing as “a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction”. 

In 2009, in their research on current trends and design considerations 

regarding Cloud Computing integration on organizational and business environments 

with the goal of establishing Computing as the 5
th

 utility, Buyya et. al [11] described 

Cloud Computing as “a type of parallel and distributed system consisting of a 

collection of inter-connected and virtualized computers that are dynamically 

provisioned and presented as one or more unified computing resource(s) based on 

service-level agreements established through negotiation between the service provider 

and consumers.” 

2.2. Fundamental Characteristics of Cloud Computing 
When deploying a cloud compute cluster, there are specific requirements that 

such a platform should meet in order to fully realize its goal of efficiently carrying out 

the processing and storage of massive amounts of data from different users. 

Correspondingly, in 2011 NIST [10] included in its definition of Cloud 

Computing 5 essential characteristics that define a well-implemented cloud 

computing cluster. These characteristics are 

1. On-demand self-service: An end-user can utilize computing resources such 

as server time and storage automatically without the need for human 

interaction with service providers. 

2. Broad network access: Cloud capabilities are readily available over internet 

connection enabled devices and accessed through standard mechanisms that 

allow usage using a variety of client platforms such as personal computers, 

mobile phones and tablets. 

3. Resource pooling: The provider‟s computing resources are pooled to serve 

multiple consumers using a multi-tenant model, with different physical and 

virtual resources dynamically assigned and reassigned according to consumer 

demand. There is a sense of location independence in that the customer 

generally has no control or knowledge over the exact location of the provided 

resources but may be able to specify location at a higher level of abstraction 

(e.g., country, state, or datacenter). Examples of resources include storage, 

processing, memory, and network bandwidth. 

4. Rapid elasticity: Capabilities can be elastically provisioned and released, in 

some cases automatically, to scale rapidly outward and inward commensurate 

with demand. To the consumer, the capabilities available for provisioning 

often appear to be unlimited and can be appropriated in any quantity at any 

time. 
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5. Measured service: Cloud systems automatically control and optimize 

resource use by leveraging a metering capability at some level of abstraction 

appropriate to the type of service (e.g., storage, processing, bandwidth, and 

active user accounts). Resource usage can be monitored, controlled, and 

reported, providing transparency for both the provider and consumer of the 

utilized service. 

 

2.3. Field Programmable Gate Arrays (FPGAs) 
Field-Programmable Gate Arrays are specialized integrated circuits that are 

structured in such a way that allows them to be electronically reprogrammed, 

changing their functionality according to users‟ needs on the fly.  

An FPGA is comprised of various types of primitive programmable logic and 

reconfigurable wiring that allows the fabric inside to be connected in a way specified 

by a Hardware Description Language (HDL) in order to carry out either a simple task 

such as an AND or XOR calculation or a complex task or algorithm such as a Sobel 

Image Filter or an encryption scheme like AES. 

Besides specialized task acceleration, FPGAs can be programmed to operate 

like a CPU that implements a custom or standardized architecture of instructions like 

RISC. These types of processors are usually referred to as „Soft cores‟ and many 

parameters such as pipeline depth or cache size can be user-defined. An example of a 

Soft Core is MicroBlaze [12]. 

FPGAs as the name suggests can be “programmed on the field” after 

deployment. This task can be carried out by the device itself which according to 

operational needs can reprogram the FPGA with new bitstreams, implementing new 

functionality. This type of device is referred to as In-System Programmable (ISP) 

[13].  

An FPGA-based implementation of a task is usually much faster and more 

efficient than similar implementations on x86_64 or ARM architecture CPUs such as 

the ARM A9 or Intel CPUs [14], [15]. This benefit is usually offset by that fact that 

HDL-based designs are harder to develop, debug and test than implementations of 

algorithms running on conventional CPU architectures, although extensive effort to 

facilitate development of FPGA designs has been made in the last years through the 

use of High-Level Synthesis development paradigms. 

FPGAs offer many benefits when compared to ASICs such as design reuse 

and ease of maintenance. Errors made in the design process can be easily fixed after 

provisioning an FPGA device by sending the new corrected bitstreams. This is not 

possible for an ASIC platform. Additionally, ASICs incur very high non-recurrent 

engineering costs compared to FPGAs, although after initial R&D and prototyping, 

ASICs are cheaper on a per-unit basis than FPGAs. 
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2.4. Dynamic Partial Reconfiguration of FPGAs 
In an environment such as a Cloud Computing cluster which is the main focus 

of this work, functionality of FPGA accelerators needs to change depending on the 

demands of the users or background services that process data. One solution to avoid 

reprogramming is to house all accelerated tasks in an FPGA and leave it running 

indefinitely, however this brings with it immense inefficiencies in idle power 

consumption and drastically increases resource requirements of the FPGA platform. 

As such reprograming a smaller FPGA with the modules that it needs at any one time 

is preferable. 

One method of reprogramming the FPGA involves downloading a full 

bitstream, either via a standard interface such as a JTAG port or from volatile memory 

where it is preloaded at boot time and fetched on demand. However, full bitstream 

reprogramming brings with it a host of disadvantages such as 

1. FPGA logic shutdown – all operations conducted by other services or users in 

the Programmable Logic must terminate when full bitstream reprogramming 

takes place. This can cause users to see drastic performance decrease when 

multiple users are requesting different acceleration tasks at once. 

2. High reconfiguration overhead – reprogramming a full bitstream, both in 

terms of time and energy consumed is non-trivial and needs to be minimized 

where possible 

3. Increased design complexity – a full bitstream may implement a wide range 

of algorithms and each algorithm may be present in the bitstream as a different 

PE (Processing Element). This can result in an increased design complexity in 

cases where we want a platform that can be extended and updated with new 

functionality during its lifecycle and that many different users may utilize to 

accelerate tasks that may not coincide. This forms a combinatorial problem 

where repetitions of modules are allowed (a user may request the same module 

another user has requested) and order doesn‟t matter (a user doesn‟t care 

which partition region houses the module he wants to accelerate). The formula 

for this case is 

Equation 1 – Unordered combination equation for calculating the total number of possible 

bitstreams that can serve any combination of tasks to carry out 

(     ) 
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Where  

a. r is the maximum number of PEs that can fit in the FPGA 

b. n is the total number of tasks that have been developed to be 

accelerated 

If we imagine a scenario where we have developed 8 different algorithms(n = 

8) to be integrated in an FPGA hardware design and all 8 PEs require more or 

less the same number of resources. If we use a FPGA chip that can house 8 of 

these modules (r = 8), the number of different full bitstreams that must be 

generated to be able to delegate any combination of requested tasks is 6435. If 

we take into account that typical full bitstreams range from 2 MB to several 

tens of MBs, the memory requirements to allow such a system to store all 

these bitstreams would be in the several hundreds of GBs. In an environment 

where different users use the FPGA platform as an acceleration service and 

where each user may request a different task to be delegated, this can prove 

infeasible. Alternatively, and much more realistically, an FPGA can simply 

implement a single bitstream where each algorithm is expressed once as a 

single Processing Element; however multiple acceleration calls to this 

coprocessor from different users would cause congestion and performance 

decrease. 

4. High device area requirements – even if we employ a large FPGA chip to 

avoid the pitfalls of the previous points by housing all modules multiple times 

to avoid reconfiguration, this still leads to the implementation of an inefficient, 

power-demanding platform that is mostly underutilized. 

5. Difficult to maintain and update – updating a bitstream with new 

functionality or correcting a mistake made at design time is much harder for 

full bitstreams than for partial bitstreams. If a small part of the full bitstream 

needed change, the whole design has to be redesigned and updated. In the case 

of partial bitstreams, most of the time only the IP Block with the erroneous 

behavior needs to be changed and redeployed. 

 

Dynamic Partial Reconfiguration is a development paradigm on the field of 

FPGA design whereupon specific parts of the Programmable Logic are marked as 

dynamically reprogrammable. This means that while an FPGA is executing tasks, a 

partial section of the FPGA can be hot-swapped with other generated partial 

bitstreams, essentially reconfiguring that subsection of the FPGA with a different 

functionality.  
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Benefits of DPR over static programming of an FPGA are immediately 

apparent  

1. FPGA logic uninterrupted during reconfiguration – all operations 

conducted by other services or users in the FPGA can continue uninterrupted 

while a specific Partial Region is being reconfigured. This is important for 

mission-critical applications or to decrease the chance a user will experience 

slowdown of requested services. This capability is true for the case of 

Dynamic PR only. Static Partial Reconfiguration (SPR) is the similar to DPR, 

with the exception that the device must shutdown for the duration of the 

reprogramming stage.  

2. Low reconfiguration overhead – reprogramming a partial bitstream is 

significantly faster and incurs much smaller energy consumption and time 

overhead than programming a full bitstream. This is especially apparent for 

large FPGA devices where a programmable region may be a small percentage 

of the overall full bitstream. Of course, this overhead is still non-zero and 

needs to be taken into account, and in this sense intelligent scheduling and 

resource reuse is important to reduce the chance partial reconfiguration is 

needed. 

3. Significantly reduced design complexity – a DPR-enabled hardware design 

requires only that each partition marked as reconfigurable implements the 

reconfigurable module intended to run in it at runtime. In the case of Cloud 

Computing environments we assume in this work that all regions should be 

able to house any accelerated task. In Xilinx‟s DPR methodology, each 

partition requires its own copy of a partial bitstream for a given task 

implemented. A generated full bitstream that has DPR enabled can house at 

any time, any partial bitstream that was generated with this design as 

reference. As such only a single full bitstream needs to be loaded at boot time 

and any functionality can be loaded on demand later from the partial 

bitstreams. This means that for 8 regions marked as reconfigurable (r = 8) that 

can house any of 8 accelerated tasks (n = 8) the total number of partial 

bitstreams needed is 64. The general equation describing the memory 

requirements of storing all partial bitstreams of a DPR FPGA design is the 

following 

Equation 2 – Equation for calculating the size of all partial bitstreams in a Dynamic Partial Reconfiguration 

design where all Reconfigurable Regions can house any of the implemented algorithms 

                  ∑            

 

   

 

Where 

PartialSizetot is the total size of all the partial bitstreams generated by 

the design measured in bytes 

 

n is the number of accelerated tasks developed 
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r is the number of Reconfigurable Partitions defined at design time 

 

PartialSizei is the size of the partial bitstreams that program 

Reconfigurable Partition i measured in bytes 

Assuming near full utilization of the FPGA‟s resource from the 8 regions, the 

calculated total memory needed for the 64 partial bitstreams is close to n*Sfull 

where n is the number of implemented modules and Sfull is the size of the full 

bitstream.  

4. Easier to maintain and update functionality – updating functionality of 

deployed partial bitstreams and correcting errors made at design time is much 

easier for DPR-enabled platforms. The caveat to this is that the newly 

developed partial bitstreams must be able to fit into the region marked by the 

full bitstream; else a new redesign process needs to be done where 

Reconfigurable Partitions are resized or the whole platform is migrated onto a 

bigger FPGA chip. In order to avoid this, overprovisioning of FPGA resources 

in Partial Reconfiguration Regions can be employed.  

Benefits of employing dynamic partial reconfiguration include  

1. The ability to time-multiplex tasks on an FPGA by swapping functions 

in and out, reducing area and power requirements 

2. Allow flexibility in algorithms and subtasks available to applications 

3. Allowing uninterruptible workload execution of static logic, useful for 

multi-tenant systems 

4. Accelerated Reconfigurable Computing 

5. Updating hardware functions marked as reconfigurable can be done 

easily and remotely.  

 

Figure 2 – Time multiplexing of multiple functions on a single reconfigurable partition reduces area 

requirements 

2.5. Energy Efficient Computing 
In this work, power consumption of the proposed system is an important 

metric that needs to be measured. This is necessary in order to accurately evaluate the 

benefits that FPGA-based cloud computing can offer to businesses and organizations.  

Information and Computer Technology (ICT) offers the capability to increase 

efficiency of resources utilized in industrial and enterprise environments by 

optimizing and automating processes [16]. ICT infrastructure itself however needs 
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energy to operate and when employing such solutions it is important to apply the 

same principles of energy efficiency on the infrastructure itself.  

Development of energy efficient computing solutions can help companies save 

money by reducing electricity bills, permit battery-powered devices to operate for 

longer times before needing recharge (such as for mobile phones, laptops and sensor 

devices) or before they are decommissioned from service (for one-time deployed 

devices such as IoT devices). 

In the case of Cloud Computing infrastructure, these energy savings can help 

reduce costs of maintaining such infrastructure as well as meet criteria of legislation 

on eco-friendly design of ICT infrastructure such as (EU) No 617/2013 implementing 

Directive 2009/125/EC [17]. 

Research work on the impact of ICT on global energy consumption has been 

conducted extensively in the last years.  

In 2015, Andrae and Edler [18] published their work on energy consumption 

trends in the ICT sector. In their work, they presented categorized estimations of 

worst-case, expected and best-case scenarios of power consumption in TWh that 

various groups of ICT infrastructure would incur. If left unchecked, GreenHouse 

Gases (GHG) emissions of ICT infrastructure could contribute up to 23% of global 

GHG emissions. Reducing energy usage can help reduce GHG emissions that are 

incurred as a byproduct of the generation of electrical power that feeds these devices 

and data centers.  

There are 2 main procedures involved in implementing energy efficient 

computing platforms. 

1. Power consumption measurement of the device at runtime, both at full 

capacity usage as well as while in idle mode 

2. Redesigning the platform both at system level as well as at the application 

level to decrease power consumption of the system 

There are several methods described in the literature that are used to measure 

power consumption in computing systems.  

In 2019, Fahad et al. [19] published a comparative study of methods that can 

be utilized to measure power consumption of computing systems.  

One method is using external power metering devices that measure the power 

consumption of a workstation as it operates. This method offers relatively accurate 

results but is only suited for system-wide power sensing, not allowing for highly 

granular, component level power consumption measuring, such as measuring the 

energy consumption of the CPU or the GPU. 
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An example of an external power metering device is the Kill-a-Watt [20]. Kill-

a-Watt is an electricity usage monitoring device manufactured by Prodigit that acts as 

an intermediate between devices and wall-mounted power sockets and measures 

power that a connected device draws. 

A second method used for measuring energy consumption is using power 

sensors installed on CPUs and GPUs at manufacturing time. These sensors provide a 

more granular power measuring methodology than using external power meters.  

 

Figure 3 - Example of software monitoring system operational metrics such as wattage and temperature. 

Finally, a third method is based on software that utilizes energy predictive 

models that take as input operational metrics such as FLOPS and cache miss rate and 

calculate an estimated energy consumption. These energy prediction models have 

been researched thoroughly, however they have been found to be inaccurate often due 

to the fact that there are a large number of available models to choose from and 

selecting the subset most relevant to interpreting power rating is difficult. These 

models can sometimes be inaccurate and/or incomplete in describing the power 

requirements of the device they attempt to model. 

One example of software implemented energy consumption forecasting is 

Xilinx Power Estimator (XPE) [21] and Vivado Power Report tools.  



22 

 

 

Figure 4 – Summary overview of a Zynq-7000 device with partially user-defined workload parameters 

XPE is a set of Excel-based spreadsheets created by Xilinx which is used to 

calculate power consumption of Xilinx FPGA devices in a pre-synthesis design stage. 

The developer can input the model of the device he wishes, workload of independent 

FPGA and peripheral devices in a highly granular manner, read and write rates of off-

chip DDR memory and other parameters. The tool will then estimate the expected 

wattage of the device and give component-level power consumption metrics as well. 

Design techniques utilized for conserving energy have been employed that are 

unique to FPGA environments. As noted before, Dynamic Partial Reconfiguration is a 

system level energy optimization method that allows a decrease of required energy 

resources by reducing device area and subsequently power requirements as well as 

allowing the programming of blank partial bitstreams that further reduces energy 

consumption in an idle platform. This alongside an implementation of a DPR-aware 

scheduler to minimize the probability that reconfigurations take place can further help 

in meeting both performance and energy efficiency goals. 
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2.6. Related Work on FPGA-based Cloud Computing 
In recent years, the viability of utilizing FPGAs in Cloud Computing 

environments has been recognized and researched upon. Cloud computing solutions 

are increasingly utilized to address processing needs in big data and data acquired 

from web services, multicore computing systems [22] and intelligent IoT Devices 

[23]. 

Moreover, various techniques have been the focus of research for on-chip and 

system monitoring for power and energy efficiency [24], [25] and additionally to 

manage SoC power and energy [26], [27], [28] 

In 2011, Yu et al. [29] proposed a web server implementation that utilizes the 

FPGA of the BEE3 multi-FPGA chassis system to carry out web data processing 

using a Microblaze Soft-core processor [12] and a custom Web Processing Module 

that handles tasks such as TCP packet decomposition and URL parsing. The proposed 

implementation offered up to 4 times higher performance per watt while maintaining 

an overall comparable performance to a Xeon 5520 implementation of the web server.  

In 2012, Eguro and Venkatesan [30] present a system architecture based on an 

FPGA for trusted cloud computing applications that emulates homomorphic 

encryption [31] by providing a safe area in the FPGA that allows secure processing of 

sensitive data. 

In 2015, Fahmy et al. [32] present a model of a platform for integrating 

virtualized accelerator modules of FPGAs to existing cloud computing infrastructure 

in order to ensure high efficiency and performance goals. In their proposed model, 

they use Partial Reconfiguration and a scheduler to dynamically reprogram partitions 

in the PL according to the user requests and maximize usage of FPGA resources.  

In 2018, Vaishnav et al. [33] introduced the concept of resource elasticity by 

enabling the reallocation of FPGA spatial resources using OpenCL and dynamic 

partial reconfiguration to allow higher performance and resource utilization of FPGA 

accelerator platforms. Their experiments on different types of scheduling schemes for 

allocating accelerator resources showed that cooperative scheduling is a better method 

for FPGA platforms. 

FPGA based cloud computing solutions often referred to as FPGA as a Service 

(FaaS) have been proposed in the literature in recent years and early commercial 

implementations have shown promising results, both for businesses as well as for end 

users. 

  



24 

 

With their EC2 F1 cloud service, AWS [34] aims to provide a flexible 

computing environment of Virtex Ultrascale+ family FPGAs alongside a development 

environment. Amazon‟s EC2 is characterized by the capability of designing and 

deploying a variable amount of FPGA platforms running hardware designs created by 

developers on Xilinx‟s IDEs integrated in the Amazon ecosystem [35]. 

Alibaba has also released commercially viable cloud computing resources 

utilizing FPGAs as computing platforms that cloud users can employ for their needs 

[36]. The FaaS provided by Alibaba features 2 different instances of F1 and F2 

instances providing both Intel and Xilinx small-scale devices for customers with ease 

of deployment. 

2.7. Related Work on Dynamic Partial Reconfiguration 
Before developing a system capable of DPR in a cloud computer environment, 

it is important to research upon the benefits of Dynamic Partial Reconfiguration as 

advertised by Xilinx as well as from published research work that attempts to evaluate 

these benefits. 

To improve efficiency of reconfigurable resources, solutions have been 

proposed [37]–[40]. 

In UG909 on Dynamic Partial Reconfiguration [41], Xilinx gives an 

introductory overview of DPR and what benefits it can bring to the table for FPGA 

developers. In this guide basic terminology and design considerations as well as some 

example applications which could benefit from DPR are presented. 

Nguyen et al. [42] present their findings in evaluating and quantifying the 

benefits that DPR can offer to embedded vision applications when compared to static 

FPGA design methodologies. Power savings of up to 30% can be reached by 

implementing DPR on a platform. Their findings show that embedded solutions that 

benefit from the effects of DPR share 2 main characteristics. First, all implemented 

tasks of the system are not needed at all times. Only 1 or a small subset of the 

implemented tasks needs to run concurrently at any one time. Second, the embedded 

solution has energy efficiency needs that need to be maximized due to the fact the 

device operates on batteries and area/device costs need to be minimized.  

These findings coincide with the needs and nature of Cloud Computing 

environments. Not all implemented tasks need to be executed at all times.  

Sometimes users make use of other resources that do not require FPGA 

resources such as File I/O or environment settings management. A given user‟s 

requested tasks have no effect on when and how often other users request tasks.  

Secondly, DPR can increase energy efficiency of the cloud computing cluster 

by implementing the design in a smaller FPGA chip that can time-multiplex the 

requested tasks in the partial regions defined. In addition, reprogramming a blank 
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bitstream inside a region not utilized can further decrease power consumption when in 

idle mode.  

Nafkha and Louet [43] researched upon the overhead of power consumption when 

DPR is employed in a platform. In their work, 94 KB sized partial bitstreams are 

programmed through the ICAP interface at runtime, increasing the power 

consumption from 340 mW to 500 mW for the duration of the reconfiguration. In our 

work, partial bitstreams are larger (700-1100 KBytes) and the reconfiguration 

overhead is much bigger when compared to the execution time of the typical size of 

data users may request. 

This brings up an important metric that needs to be taken into account when 

designing a DPR-enabled FPGA platform. This metric is the Execution-to-

Reconfiguration (ER) ratio of execution time over reconfiguration time.  

Equation 3 – Equation for computing the ratio of the time spent executing to the time spent reconfiguring a 

reconfigurable partition in a Dynamic Partial Reconfiguration design 

          
          

                
 

For example, if the partial bitstream requested to be reconfigured takes 10 

msec to be programmed and the programmed module runs for 5 msec on requested 

data, the ER ratio is 0.5.  

High ER ratios indicate the partial reconfiguration is a small overhead in the 

computing process. Low ER ratios indicate a high reconfiguration overhead. This 

means that reconfiguration needs to happen sparsely in order to meet energy 

efficiency and performance goals.  

Luo et al. [44] proposed a DPR model of FPGA platform that utilizes the 

multi-threaded nature of a Linux operating system to delegate tasks to HW 

accelerators at runtime in an efficient, demand-driven manner. The aim is to solve the 

lack of Partial Reconfiguration enabled platforms operating under Linux. Linux-based 

DPR development could decrease the time needed to create an efficient FPGA 

acceleration platform and increase design flexibility thanks to the widespread support 

and contributions of the Linux community.  
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3. Proposed System Architecture and Development 

Environment 
In this chapter, the system architecture is presented for the developed platform 

as well as information on the development environment and specifications of the 

FPGA platform used to develop the system. 

3.1. Proposed System Architecture and Flow 
Below is an architectural diagram of the implemented system on the Zedboard 

SoC. 

 

Figure 5 – Proposed System Architecture Diagram 

In the proposed system shown in Figure 5, the Reconfigurable Partitions (RPs) 

1 and 2 are regions of the FPGA fabric that are defined post-synthesis to house any 

functionality inside so long as it covers the following criteria 

1. The function implemented in the partition, named a Reconfigurable 

Module (RM) must utilize fewer logic resources than the resources 

allocated to the reconfigurable partition at design time. 

2. The RM added to the platform on a RP (Reconfigurable Partition) must 

have the exact same interfacing as the interfacing of all other RMs that 

can be programmed on the RP. For the purposes of our system, all RPs 

are capable of housing any of our implemented algorithms on the 

FPGA. This means that both RPs have the same interfacing logic. 
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Each reconfigurable partition can house any of the developed HLS IPs inside. 

Implementing and generating bitstreams for a design where DPR has been enabled 

leads to the generation of partial bitstreams. These partial bitstreams are the files that 

need to be programmed to the PL at runtime in order to program the capability of each 

function in the fabric.  

Because the partial bitstreams implement only part of the FPGA, they are 

much smaller than the full bitstream. The size of a partial bitstream is directly 

proportional to the size of the PL that partition is allocated on at floorplanning time. 

 

Figure 6 – Operational snapshot of the proposed system. 

Generated partial bitstreams are loaded from the SD card on the DDR at 

system boot time. In Figure 6, Partition 1 partial bitstreams are only compatible with 

partition region 1 (blue). Different partial bitstreams need to be generated for partition 

2 (red) even if they implement the same functionality.  
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3.2. FPGA Platform System Specifications 
The proposed system is developed and evaluated on a Zedboard All-

Programmable SoC development platform [45]. The Zedboard is a development board 

featuring both an ARMv7 CPU and an FPGA chip. It is equipped with a 512 MB 

DDR3 memory module clocked at 533 MHz and an interface width of 32 bits.  The 

CPU is a dual-core ARM A9 and the FPGA chip is a Zynq-7000 family chip, the 

XC7Z020-CLG484.  

 

Figure 7 – The Zedboard, choice of implementation for proof-of-concept 

The ARM A9 Dual-Core CPU is a low power processing unit used mainly in 

embedded circuits. Its TDP is rated at approximately 0.25 W per core.. 

The FPGA chip of the Zedboard is comprised of a moderate amount of 

programmable logic that is mostly suited for evaluating applications at a small scale 

before porting them to larger, more resourceful FPGA chips. The table below shows 

the number of Flip Flops, Look-Up Tables, Digital Signal Processors and Block RAM 

available in 36Kbit tiles and in KBytes that the XC7Z020-CLG484-1 is comprised of. 
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Table 1 – Target FPGA platform available resources 

FPGA Model Name LUTs FFs DSPs BRAM36 Tiles 
BRAM  

(in Kbytes) 

XC7Z020-CLG484-1 53200 106400 220 140 615 

 

Besides resource availability, architectural specifications of the Zynq-7000 

need to be taken into account when designing an accelerator IP. The Zynq-7000 

family of SoCs features a PS-PL interface that allows FPGA IPs to access the DDR at 

a configurable rate. More specifically, the interface options between the 

Programmable Logic and the Processing System is comprised of the following 

 Accelerator Coherency port (ACP) (1 port, 64-bit width, cache coherent 

memory accesses) 

 High performance (HP) PL interfaces, (4 ports, 32 or 64 bit width, non-

cache-coherent accesses) 

 General purpose PL interfaces (GP) (2 ports, 32-bit width, no FIFOs 

meaning lower performance than HP ports) 

 Device configuration (DevC port, used for configuring the device at 

runtime)  

In this work, 2 HP ports and a single GP port are used to connect to 

reconfigurable partitions (1 port per partition) to the PS side and 1 GP port is used, 

connected to both partitions.  

Each HP port has a dedicated channel for receiving and transmitting data. The 

HP ports are responsible for transferring the main bulk of the data to be processed at 

the PL as well as the algorithm-specific metadata for each application (e.g. the kernel 

values of the convolution filter). The GP port is used to transfer only the size of the 

input data and the output data and is used to transfer this data on both partitions. 

Besides the width of the port used to transfer data, the rate at which the data is 

transferred is also important. In this case, the PL clock is set at 7ns period or at a 

frequency of approximately ~143 MHz. This coupled with the width of 8 bytes of the 

HP port creates a maximum theoretical bandwidth of 1089.9 Mbytes/sec. This is 

calculated from the equation 

Equation 4 – Maximum bandwidth of PS-PL ports on the Zynq-7000 family of devices 
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Where: 

 BW is the maximum theoretical bandwidth (measured in bytes/sec) 

 f is the bus frequency (measured in Hz) 

 w is the width of the bus (measured in bytes) 

 

This upper limit is a very important metric that is used to verify the correct 

setup and operation of the FPGA accelerator platform and evaluate the viability of 

migrating a task to the FPGA in early design stages. 

3.3. System Design and Development Environment 
The development of the proposed system was carried out on a Linux CentOS 7 

workstation running on an Intel i5. The software tools utilized for designing the 

hardware platform on the Zedboard are Xilinx Vivado HLx 2017.4 Suite. Specifically, 

3 different IDEs were utilized 

1. Vivado HLS 2017.4 for implementing the 3 algorithms in C++ and 

compiling to RTL code 

2. Vivado 2017.4 for designing the DPR platform with the 3 algorithms 

designed on Vivado HLS and enabling their dynamic reconfiguration 

on 2 separate reconfigurable partitions. 

3. Xilinx SDK 2017.4 for developing the baremetal application 

responsible for system initialization, scheduling of requested tasks to 

be programmed on the RPs of the FPGA, file I/O and delegating 

workloads on the accelerators programmed on the FPGA. 
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Figure 8 – Basic workflow for designing the DPR-enabled platform on Xilinx Vivado Design Suite 

The reason for using version 2017.4 of Vivado was because after this version, 

Xilinx deprecated the driver responsible for the runtime reconfiguration of full/partial 

bitstreams in favor of the FPGA Manager Linux API of device-agnostic and 

manufacturer-agnostic bitstream programming of FPGA devices running on a Linux 

OS [46].  

However, during development of the platform on later versions of Vivado, 

issues arose due to Xilinx not having released partial bitstream reprogramming 

functionality of these drivers for the Zynq-7000 family of chips. As such, the latest 

version of Vivado Design Suite that supported the xdevcfg driver was used. 

In Vivado HLS, the applications were developed using the C++ programming 

language. IDE-specific libraries that are designed by Xilinx such as HLS_Stream and 

Arbitrary-Precision Integers were utilized [47] [48]. These libraries contain functions 

and data objects optimized for implementation in an FPGA and can help developers 

reach QoR goals. 
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4. Implementation Methodology 

4.1. Multidisciplinary Algorithms Implemented 
In this chapter we present the 3 algorithms that were developed to run on the 

Zedboard FPGA platform. These algorithms are 

1. A black and white thresholding (BW Threshold) algorithm for 

grayscale images. The user can select the threshold to use. The 

threshold value is in the range [0,255]. 

2. A 3x3 image convolution filter for grayscale images. The user can 

select the type of kernel to use in the convolution filter. 

3. A dimer global base distribution algorithm that measures the 

distribution of nucleotides of length 2 in DNA genome sequences. 

In order for all 3 modules to be interchangeable in the reconfigurable regions, 

their interfaces were developed to be exactly the same. 

 
(a) 

 
(b) 

 
(c) 

Figure 9 – Interface of the implemented algorithms as defined in C++ source code. Note that the 

port names and types are exactly the same. This is important for enabling dynamic partial reconfiguration. 

 All 3 algorithms have the exact same interface definition to allow 

Dynamic Partial Reconfiguration. The AXI_STREAM type is a custom-defined 

structure of an AXI stream type structure exclusive to Vivado HLS with a user-

defined data width of 8 bytes (64-bit width).  

Both input and output streams are defined as 64-bit width ports to be used for 

transferring and receiving data. The sizeIn and sizeOut parameters are 32-bit integer 

values used to declare the number of 64-bit input and out elements respectively to be 

transferred. sizeIn and sizeOut variables are transferred to the HLS IP blocks using 

the AXILite interface through the GP port. 

As mentioned before, one of the main goals of this project is the development 

of an acceleration platform for multi-disciplinary tasks. Since interfaces in a DPR-

enabled platform‟s RPs must be identical among RMs, relaying each individual IP‟s 

parameters using the AXILite interface is inefficient.  

In light of this, the selected algorithms were developed in Vivado HLS to use 

the input AXI_STREAM port to receive the parameters (such as the 3x3 kernel for the 

convolution kernel) just before receiving the main data input from the A9 CPU at 

execution time. 

In order for the transfer of the parameters to the HLS IP Block to be 

successful, the parameters must be passed to the IP in the exact same order they are 

parsed in the HLS IP Block. 
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For example, in the Image Convolution Filter application, we need to pass the 

source image‟s width as well as the 9 values of the 3x3 kernel. As such, the HLS IP 

first reads a 64-bit value from the stream and casts it as a 32-bit unsigned value to 

store the source image‟s width in local memory. Then, to read the kernel, the IP block 

reads 9 more 64-bit values and casts them as 16-bit signed integer values in local 

memory.  

When the ARM A9 CPU sends this data using the AXI DMAs, the IP block 

assumes that they are sent in this exact order. It is the developer‟s duty to ensure the 

application running on the CPU that handles service offloading to the PL sends the 

parameters in the correct order. These considerations do not impact the hardware 

platform design flow in Vivado.  

4.1.1. Image Black and White Thresholding 

Black and White thresholding is an algorithm that transforms images to a 

format of black and white only pixels. It is a method used to partition an image to 

foreground and background constituents and is mainly used in object identification 

tasks.  

The input image is transformed to a black and white image where each pixel is 

white if its input value is greater than a selected threshold value or black if it‟s smaller 

or equal to a selected threshold. In general 
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Where:  

 Po is the output pixel value 

 T is the threshold value (           ) 

Pi is the input pixel value 

 

  
Figure 10 – Result of Black and White thresholding with threshold T = 120 applied on an image.  
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4.1.2. Image Convolution 

The second application developed is an image convolution filter. Image 

convolution is the process of applying a kernel of n*n values to each pixel of an 

image with the goal of extracting specific features from the image. The process 

involves performing an element-wise multiplication of the kernel with an n*n 

subsection of the image where the center pixel of the sub-array is the pixel to 

convolve. This results in n*n products which are subsequently summed. 

 

Figure 11 – Element-wise multiplication of a subsection of the source image (red) with a kernel (blue) 

This sum is the convolved pixel. This number may well be a value above 255 

or below 0, meaning it can‟t be represented correctly by an 8-bit unsigned integer for 

grayscale images. This problem can be resolved by simply clamping the values to the 

range [0,255]. Negative values are set to 0 and values greater than 255 are set to 255. 

This is the clamping method used in this implementation. 
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Figure 12 – Example of clamping a negative value from resulting element-wise array summation to 0 

One thing to note is that depending on the size of the kernel n applied to the 

image, the outer region of pixels that is ((n / 2) – 1) pixels wide will not have 

sufficient pixels within the bounds of the image to apply the convolution on.  

For example for a 3x3 kernel, the top and bottom row as well as the leftmost 

and rightmost column of the image will not have all necessary neighboring pixels to 

apply the convolution. One solution to this is to check which row and column we are 

currently convolving and if it‟s a pixel with insufficient neighbor pixels, assume 0 

values for the missing pixels.  

The number of rows and columns n of the kernel array should generally be an 

odd number. Variations for even numbers of rows/columns can be implemented but 

are generally avoided. The resulting image is a transformed version of the input 

image. The type of output image depends on the values populating the n*n kernel 

array. 

Image convolution is usually utilized as a preprocessing task that facilitates 

computer vision tasks such as object identification and feature extraction, among 

others. 

The figures below showcases the resulting images from applying 2 commonly 

used kernels on an image. 
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Figure 13 – Example of applying the sharpen convolution filter on an image. (a) is the input image, 

(b) is the kernel applied, (c) is the resulting image 
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Figure 14 - Example of applying the edge-detect convolution filter on an image. (a) is the input image, (b) is 

the kernel applied, (c) is the resulting image 

 

4.1.3. Dimer Genome Distribution 

Finally, the third implemented algorithm is a dimer base genome sequence 

global distribution counter. In the field of Computational Genomics, an n-mer base 

global distribution is a feature of genomic sequences that measures the relative 

distribution of nucleotide words of length n. Statistical analysis of the genome of an 

organism can offer insight to its function [49]. 

DNA sequences are comprised of 4 possible nucleobases, Adenine, Cytosine, 

Guanine and Thymine, coded for convenience as A, C, G and T respectively. This 

means that there are 16 possible combinations of base words of length 2. 

 The result of the dimer distribution is a 4x4 array where each row denotes the 

first base in the possible base pairs and the each column denotes the second base. 
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Table 2 – Dimer distribution of H. Influenza. (From [49], page 14) 

 

The table below shows the dimer genome distribution of the SARC-COV-2 

virus. The genome sequence was taken from the RefSeq genetic sequence database 

[50], reference sequence NC_045512.2. The sequence was first made available from 

work published from Wu et al. [51] where they sequenced the virus (yet unnamed at 

the time of publication) from a patient working in the seafood market in Wuhan. 

Table 3 – Dimer distribution of SARS-COV-2, RefSeq ID NC_045512.2 

 *A *C *G *T 

A* 0.0964 0.0676 0.0583 0.0772 

C* 0.0697 0.0297 0.0147 0.0696 

G* 0.0539 0.0391 0.0365 0.0665 

T* 0.0795 0.0472 0.0866 0.1075 

 

DNA dimer base distribution is a metric that can help researchers detect 

unusual patterns in the genome sequence of an organism and consequently understand 

the structure and behavior of the organism analyzed. 

For a base word of length k, we move along the genome one base at a time and 

check what word of length k is formed starting at each subsequent base. This means 

that for a genome sequence of length L, and a nucleotide word of length k, there is a 

total number of words W 

W = (L - k) + 1 
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4.2. Vivado HLS Design Workflow 

 

Figure 15 – Design workflow of Vivado DPR in this work 

 

In Vivado HLS, the HLS acronym stands for High-Level Synthesis. In FPGA 

design, there are several methods to develop an accelerator block to be implemented 

in the FPGA fabric. One method is writing code to implement an intended algorithm‟s 

behavior in a Hardware Description Language (HDL) such as VHDL or Verilog. 

Below is an example of VHDL code for implementing a simple AND gate on an 

FPGA. 
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Figure 16 – Example of VHDL code for expressing the behavior of an AND gate 

 

Another methodology is using a higher-level programming language such as 

SystemC or C++ to develop the algorithm and then use a C-to-RTL synthesis tool like 

Vivado HLS to convert the code to HDL-equivalent format such as VHDL or Verilog 

and then utilize it in a FPGA Hardware Platform IDE e.g. Vivado. 
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Figure 17 – Synthesis report for BW Threshold 

function in Vivado HLS. This report shows timing 

estimates and resource utilization estimates 

 

 
Figure 18 – Sample C++ code of the BW 

Thresholding Function 

 

 

 

Vivado HLS utilizes directives in the form of pragmas or tcl-based commands 

to allow developers to reduce latency, improve throughput or reduce resource 

utilization of the exported RTL code. 

The most important performance enabling pragmas are  

1. #pragma pipeline – inserted inside loop type command blocks in the 

C/C++ code. This directive guides the compiler to create RTL code 

that implements the target command block in a pipeline. If the code 

structure allows it, a pipeline initiation interval of 1 can be achieved, 

leading to immense performance increase. [52] 
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Figure 19 – Example of decreasing execution time of a loop via use of pipelining 

2. #pragma HLS partition_array – a pragma directive that is used on 

array variables in C/C++ code which forces the resulting Block RAM 

implemented RTL code to partition the array into multiple smaller 

arrays. This is usually applied to allow concurrent access to elements 

in the BRAM, either to read or to write values. 

 

Figure 20 – Result of partitioning an array of N elements with 3 different methods. 

3. #pragma HLS unroll – directive that is implemented in loop-type 

command blocks (much like the pipeline directive). This directive 

guides the compiler to implement RTL logic that calculates all 

commands in the loop concurrently. 

 

After creating the HLS IP and synthesizing it, the next step involves exporting 

the IP in a format that can be imported and used in a Vivado hardware design. The 

user can select either VHDL or Verilog as his language of use to transform the C code 

to. In our case, VHDL code was selected.  
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Optionally, if we want to we can check the „Vivado synthesis, place and route‟ 

option in the Export RTL dialog window to get a more accurate resource utilization 

and timing report than the HLS synthesis value, since these are estimates of the tool 

and may differ greatly from actually synthesized and implemented design blocks. 

 

Figure 21 – Export RTL dialog box.  
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4.3. Vivado Design Workflow 
After creating the HLS IP Blocks in Vivado, the next step is to create a 

hardware platform in Vivado and integrate the accelerator blocks with DMA 

controllers and AXI peripheral interconnects and generate the bitstream that will 

implement the desired functionality. 

DMA controllers are responsible for handling I/O operations instead of the 

CPU. While a DMA transfer takes places, the CPU can handle other operations. 

4.3.1. Block Diagram Design and Synthesis 

In order to create the necessary bitstreams, we need to create the first block 

design with 2 HLS IP blocks of our choice and then synthesize it. It is best to choose 

the most resource-demanding HLS IP modules as the initial reconfigurable modules 

to implement since this makes it easier to floorplan the design and ensure latter 

modules fit adequately inside the marked partition. In our case, the dimer distribution 

HLS IP is the first that was synthesized.  

After creating the initial hardware platform project with Vivado 2017.4, we 

selected the 3 HLS IP blocks to be available in the repository. 

 

Figure 22 – Add directories of exported HLS IPs on the Vivado project 
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After adding the IPs in the repository, the block diagram was designed with 

the 2 initial implementations of the Dimer Genome Distribution HLS IP. 

 

Figure 23 – Vivado block diagram of DPR platform 

The only IP blocks in the design that needed editing is the 2 DMA engines 

(each performing transfers from each HLS IP block) and the PS7 IP. 

 

Figure 24 – AXI DMA Vivado IP Block settings 

The DMA is set to allow 64-bit data transfers to allow 8 bytes per PLL clock 

cycle to flow through the DMA and into the IP block. The width of buffer length 

register setting of 23 bits means that the maximum transfer that the DMA can carry 

out per call in the software is 8MB. 
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Figure 25 – PS-PL Configuration settings on ZYNQ7 Processing System IP 

 Enabling the GP master axi interface is necessary for propagation of scalar 

function arguments of HLS IPs, specifically the input and output size of data. 

Additionally, we make sure to enable 2 of the 4 HP Slave AXI interfaces which will 

be used to transfer data in and out of the 2 partitions. HP port 0 will be connected to 

partially reconfigurable partition 0 and HP port 1 to partition 1. It‟s important to set 

the data width to 64 bits to allow in conjunction with the 64-bit width of the DMA to 

flow in 8 bytes every clock cycle. 
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Figure 26 – PL Fabric clock settings of ZYNQ7 Processing System IP 

Lastly, the clock of the PL Fabric FCLK_CLK0 is set to 142MHz, which will 

be set automatically by Vivado to the appropriate 7 nanosecond period – 

142.857132MHz frequency.  

After settings the appropriate settings in IP blocks and verifying correct 

configuration with the Verify functionality, the HDL wrapper for the block design 

was created and output products were generated in „Out of context per IP‟ mode. 

 

Figure 27 – Generate output products in ‘OOC per IP’ mode 



48 

 

Generating OOC per IP is important to allow Dynamic Partial Reconfiguration 

in the design in later stages. After generating output products the design was run 

through synthesis only. 

After the synthesis is complete, using TCL Console and commands, we need 

to open the synthesized design and export the design and the cells of the Dimer 

Genome Distribution blocks as Design Checkpoint (.dcp) files. The cell files exported 

in .dcp format will later be used to be loaded into the defined Partial Region in later 

steps. 

write_checkpoint -cell <design_path_to_cell0_dimer> <path_to_save_dcp_file> 

write_checkpoint -cell <design_path_to_cell0_dimer> <path_to_save_dcp_file> 

write_checkpoint <path_to_full_synth_dcp_file>  

The name of the cells we want to export can be viewed in the Cell Properties 

panes upon selection of the cell in the Netlist pane. 

 

Figure 28 – Writing synthesized design and reconfigurable cells checkpoints. 

After storing the DCP files, we return to the block design and replace the 2 

dimer distribution blocks with any 2 copies of the implemented HLS IPs. In this case 

we will replace them with the BW Threshold IPs. 
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Figure 29 – BW Thresholds IPs inserted in place of Dimer Distributions HLS IPs. 

After assigning the address in the Address Editor pane automatically, we 

verify correct connection and synthesize this design as well. After synthesis is done 

we open the synthesized design and press the reload design shortcut in the top of the 

window to view the newly synthesized design in the netlist. 

Next we export to DCP files the 2 partial cells and the whole design as we did 

for the dimer distribution design. After exporting, we go back to the design and repeat 

the same process for as many modules we have implemented as we want. In this case 

one more remains, the Convolution Image Filter HLS IP. 

4.3.2. Floorplanning and Implementation of the Hardware Design 

After creating all synthesis dcp files, we set the reconfigurable cells‟ 

HD.RECONFIGURABLE property to 1. This enables Dynamic Partial 

Reconfiguration on the project and is non-reversible 

set_property HD.RECONFIGURABLE 1 [get_cells <path_to_rm_cell1>] 

set_property HD.RECONFIGURABLE 1 [get_cells <path_to_rm_cell2>] 
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Figure 30 – Setting the HD.RECONFIGURABLE property of the design cells intended to be reconfirable 

The property „Don‟t touch‟ of the 2 cells marked must be selected 

 

Figure 31 – Setting the DONT_TOUCH property of the reconfigurable cells 

After confirming the don‟t touch property is set, we move on to the 

floorplanning stage. In this stage we need to make sure to assign the reconfigurable 

modules to a partition on the FPGA fabric that contains enough resources for all other 

synthesized modules to be programmed on.  

This involves reading the utilization reports of the synthesis stage of all 

generated full design checkpoint files by opening the full .dcp files generated 

previously, running the open_checkpoint tcl command, running the report_utilization 

command on the opened design checkpoint and measuring for each reconfigurable 

cell in each design the maximum utilization value for each of the 4 main categories of 

resources, Look-Up Tables, Flip-Flops, BRAM36 modules and Digital Signal 

Processors.  
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The relevant values for the current design are listed below. 

Table 4 – Maximum utilization value for each category of resource for the 3 implemented algorithms 

HLS IP Block LUTs FFs BRAM36 Tiles DSPs 

Dimer Distribution 4254 5150 0 0 

BW Threshold 406 429 0 0 

Convolution 3056 5538 24 0 

Maximum Value 4254 5538 24 0 

 

After measuring this maximum value, we right click on the cells marked for 

reconfiguration on the opened synthesis design of the last synthesized block diagram 

and select Floorplanning→Draw Pblock to draw a p-block for each cell‟s partition, 

making sure each partition contains enough resources to fit all RMs. A good practice 

noted by Xilinx guides is to add an additional 10% of resources to allow leeway for 

additional routing resources.  

 

Figure 32 – Pblock creation dialog 
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Figure 33 – Created pblock resource utilization estimates for first module. 

Note the Available column in the above figure that the appropriate number of 

LUTs, FFs and BRAM36 tiles have been allocated for latter modules to be inserted.  

 

Figure 34 - Floorplanned device with 2 partial reconfiguration regions 
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Xilinx devices offer the capability of resetting a partial module‟s partition 

when programmed to ensure a predictable starting condition of the programmed 

module. In Zynq-7000 devices, this is enabled by checking the 

RESET_AFTER_RECONFIGURATION property of each defined partition. In order 

to enable this property however, the floorplanned pblock must be vertically aligned 

with the clock region it resides. This means that its height must be equal to the height 

of its encompassing clock region. The width does not matter.  

After drawing pblocks for both cells, we set the properties  

RESET_AFTER_RECONFIGURATION to 1 and SNAPPING_MODE to ON for 

both partitions by clicking on a pblock in the Device view, going to the Properties 

pane and setting the appropriate values. 

 

Figure 35 – Property setting of the RESET_AFTER_RECONFIG and SNAPPING_MODE properties 

After setting the SNAPPING_MODE property, it‟s important to confirm that 

the floorplanned pblocks contain the necessary amount of resources to fit all modules. 

If resizing is needed, simply dragging an edge of the pblock should suffice.  

In order to ensure correct configuration of the design up to this point we must 

run a Design Rule Check (DRC) report on the project. We select the Tools  Report 

 Report DRC…. Next we select only the Partial Reconfiguration rule subset to 

check in the report. 
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Figure 36 – DRC Rule subset selection for Partial Reconfiguration 

If everything has been configured correctly, the „No Violations Found‟ pop-up 

window should appear. Next we implement the design by running the 3 TCL 

commands below 

opt_design 

place_design 

route_design 
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After the opt-place-route phase is over, we save a dcp file, this time in the 

post-implementation stage of the inserted modules that will constitute the first 

configuration of the DPR platform. This is done with the write_checkpoint TCL 

command 

write_checkpoint <path_to_save_dcp_file_full_impl> 

 

Next we must clear the 2 defined partitions by setting them as blackbox areas 

and lock the design routing. This stage is saved as a design checkpoint to allocate the 

other synthesized cells on the partial regions later and generate the blank partial 

bitstreams. 

update_design -cells <path_to_rm_cell1> -black_box 

update_design -cells <path_to_rm_cell2> -black_box 

lock_design -level routing 

write_checkpoint <dcp_save_directory>/blackbox_locked_design.dcp 

 

 

Figure 37 – Updated blackbox partitions and locked design of routing resources 

At the next step we must insert the partial synth files of the remaining modules 

generated previously inside each corresponding partition to generate the 

implementation design checkpoints that will be used to generate each configuration‟s 

partial and full bitstreams. 
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For all the other reconfigurable modules do the following procedure using 

TCL commands 

 

1. Read the checkpoints for the modules not taken care of 

read_checkpoint -cell <path_to_cell0> <path_to_partial_synth_file0> 

read_checkpoint -cell <path_to_cell1> <path_to_partial_synth_file1> 

2. Do Opt-place-route process 

opt_design 

place_design 

route_design 

3. Write the implemented configuration checkpoint 

write_checkpoint <path_to_dcp_file_full_impl> 

4. Close the Project using the following command 

close_project 

5. Read the blackbox locked checkpoint  

open_checkpoint blackbox_locked_design.dcp 

6. If no more modules are left to implement, exit this loop, else go to 1) 

 

In the opened design checkpoint of the locked blackbox design, we execute 

the commands below to insert LUTs tied to constant values that will ensure the 

outputs of the reconfigurable partition are not left floating. Additionally we will also 

place and route the design to create the blackbox configuration of the platform and get 

blank partial bitstreams. 

 

update_design -buffer_ports -cell <path to RM cell0> 

update_design -buffer_ports -cell <path to RM cell1> 

place_design 

route_design 

write_checkpoint <path_to_impl_blackbox_design_dcp> 

close_design 

 

4.3.3. Verify Partial Reconfiguration Compatibility and Generate 

Bitstreams 

After generating all implementation checkpoints, we must verify that all 

implementation configurations are replaceable on board. To do this we use the 

pr_verify command 

pr_verify -initial <path_to_rm1_full_impl_design> -additional 

{<path_to_rm2_full_impl_design> <path_to_rm3_full_impl_design> 

<path_to_blackbox_full_impl_design>} 

If the pr_verify command outputs that all dcp files are compatible with the 

initial defined, the next step is to generate the bitstreams. 
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For each implemented design checkpoint, we generate the partial and full 

bitstreams using the command loop below 

1. Open the dcp file of a configuration 

open_checkpoint <path_to_implemented_dcp_file> 

2. Write the partial and full bitstreams in .bit format 

write_bitstream –file <path_to_save_bitstream> 

3. Create the .bin format of the partial .bit files. .bit files are not 

programmable at runtime. .bin format is the necessary format to allow 

runtime reconfiguration 

write_cfgmem -format BIN -interface SMAPX32 -disablebitswap -

loadbit "up 0 <read_path_to_partial_bitfile>" 

<write_path_to_partial_bin> 

4. Close the design 

close_design 

5. If bitstreams are generated for all configurations exit, else go to step 1.  

 

The last step needed is to export the hdf file of the initial design synthesized to 

allow development of applications on Vivado SDK. To do this, we must open the first 

synthesized .xpr project, create implementation and bitstream results and export the 

hdf file. 

file mkdir <dpr_platform_directory>/dpr_platform_2_RPs.sdk 

write_hwdef -force -file <dpr_platform_directory>/dpr_platform_2_RPs.sdk 

/system_wrapper.hdf 

Tha names of the partial .bin files generated in this phase are needed in the 

next implementation step. The application that will read the .bin files and store them 

on the DDR memory must know the names of the bin files and how many regions 

have been defined in the hardware design. 

4.4. Vivado SDK Design Workflow 
After creating the hardware platform in Vivado and generating all the 

necessary partial and full bitstreams, we launch the Vivado SDK environment to 

develop the baremetal application that will handle file I/O, schedule the incoming job 

requests, handle the partial bitstream reconfigurations and delegate acceleration tasks 

to the PL. 

First we create a Zynq FSBL application on the SDK to enable booting the 

application on an SD card. The FSBL is responsible for device initialization and 

programming the PL with the full bitstream. 
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Next we create the main application that will handle task scheduling and file 

I/O. In order to enable SD card reading (to load the partial .bin files on memory and 

the images and genome files to test the accelerators on) and writing (to write the 

images and statistical distribution .csv format files from the results of these 

acceleration tasks) we include the XilFFS library. The XilFFS library is a 

manufacturer-specific implementation of Fat File System drivers made by Xilinx that 

allows devices to read and write on non-volatile memory media formatted as FAT32. 

After developing the application and building the FSBL and application 

binaries we use the bootgen tool [53] developed by Xilinx and integrated in Vivado 

SDK to create the bootable image that will be transferred to the SD card and used to 

boot the Zedboard. The STB Image library was used to enable reading and writing of 

grayscale images [54]. 

 

Figure 38 – Create boot image dialog box. 
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4.5. Power Analysis Methodology 
As mentioned previously, there are several methods available for measuring 

the power consumption of electronic devices and computing platforms. In this work 

we measured power consumption of the developed FPGA platform on the Zedboard 

using an external current sensor, specifically the INA219 current measurement sensor 

[55]. 

INA219 sensor can measure DC in the range of +-3.2 Amps with a precision 

of 1%. It also comes equipped with a 12-bit resolution ADC. The resolution means 

that the INA219 can detect current changes of 0.8 milliamperes.  

Preliminary power measurements with the ISNS20 Pmod [56] indicated that 

average current drawn doesn‟t exceed 340-350 milliamperes. INA219 is equipped 

with a software-configurable internal gain. The gain settings allow higher current 

measurement resolution at the cost of a smaller range of maximum current that we can 

measure. The table below shows how resolution and current measurement range 

change depending on the setting of the internal gain. 

Table 5 – INA219 internal gain configurations. 

Internal Gain 

Configuration 
Current measurement 

range (in milliamps) 
Current measurement 

resolution (in milliamps) 
Div1 +-3200 0.8 

Div2 +-1600 0.4 

Div4 +-800 0.2 

Div8 +-400 0.1 

 

Since the maximum current measured with the ISNS20 pmod was measured to 

be at most 350 milliamps, we set the internal gain at div8 to allow for the maximum 

resolution that the INA219 can offer while remaining within the range of current 

drawn from the applications running on the Zedboard. 

The INA219 utilizes the I2C interface to transfer measured values to a 

microcontroller. A second Zedboard was utilized to develop and operate a platform 

capable of reading and outputting measured values from the INA219 sensor module. 

This was done to ensure zero power consumption overhead as incurred from the 

operation of the INA219 was included in the measurements. 

To facilitate differentiating between the Zedboard platform running the Partial 

Reconfiguration design and the Zedboard platform running the INA219 measurement 

design, we will refer to them as «Zedboard PR platform» and «Zedboard INA219 

platform» respectively. The diagram below shows the connection setup of the 2 

boards for measuring power drawn from the Zedboard PR platform. 
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Figure 39 – Experimental setup for measuring power consumption of the developed FPGA platform. 
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4.6. DPR-Aware Task Scheduler Implementation 
Although FPGA logic usually consumes less energy than equivalent x86_64 

implementations, in order to minimize power consumption of the platform, we need to 

make sure to program partitions that are not used with blank partial bitstreams.  

Additionally, in a cloud computing environment an FPGA could potentially 

accelerate a broad range of tasks, which in turn means a large number of 

programming bitstreams featuring all kinds of accelerators in all kinds of 

heterogeneous or multicore configurations, making it cumbersome to schedule them 

in the platform. Implementation of a task scheduler that efficiently reprograms parts 

of the FPGA chip on-demand while leaving the rest of the chip to function 

uninterrupted is necessary to increase efficiency of the platform and provide 

acceptable QoS. 

Dynamic Partial Reconfiguration offers the capability to program a partition 

with a blank bitstream, a „blackbox‟ Reconfigurable Module (which is termed 

„greybox‟ in Xilinx devices), in order to reduce power consumption when not 

utilizing a RP. This is useful to achieve high overall power efficiency in our system 

and reduce idle power consumption; however there is a downside to this. 

The ARM CPU utilizes the PCAP interface to program the Programmable 

Logic at runtime. Reprogramming requires a non-trivial amount of time to complete.  

Whether we want to program a blank bitstream to reduce idle power 

consumption of the Programmable Logic, or we want to program a reconfigurable 

module to offer an acceleration service, this energy overhead must be taken into 

account and necessary actions need to be taken from the developer to ensure that the 

chance that a reconfiguration takes place is as small as possible. 

From the aforementioned, the following questions are formulated that are 

important to answer in order to reap the benefits of partial reconfiguration in the 

domain of power saving. 

1. What is the minimum amount of time a reconfigurable partition should retain a 

programmed blank bitstream in order to save more energy than the energy 

incurred to program it on the FPGA? 

2. Given an acceleration task that has been completed by a programmed 

reconfigurable module on a reconfigurable region, what is the expected 

average time that the same task might be requested again? 

In order to answer the first question we must be able to measure 2 different 

energy dissipation values. The first is the energy consumed by the FPGA device while 

reconfiguration takes place. This value is given by the equation  

Equation 5 – Energy overhead of programming a partial bitstream to a reconfigurable region 
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Prcnfg is the power draw of the platform during reconfiguration  

Trcnfg is the time needed to reconfigure a partition.  

Prcnfg in this work is taken from measuring the wattage of the Zedboard while it 

is reconfiguring a partition using the INA219 sensor.  

The second energy dissipation value must be given by finding the energy 

difference of the energy dissipated while the reconfigurable region is loaded with a 

partial bitstream of an implemented algorithm while in idle mode 

Equation 6 – Idle function module energy dissipation equation 

                                   

and while the same region is loaded with a blank bitstream. 

Equation 7 – Idle blackbox module energy dissipation equation 

                               

Eblank is the energy dissipated by the Zedboard, measured in Joules, while it is 

programmed with a blank bitstream.  

PblankModule is the power consumption of the Zedboard, measured in Watts, 

while programmed with a blank bitstream. 

Tidle is the time period in seconds that a region operates in idle mode. 

EmoduleIdle is the energy dissipation of a region loaded with a specific function 

reconfigurable module 

PrcnfgModule is the power drawn from the logic residing in the programmed 

partial region 

After finding the above 2 energy values, the difference energy value needs to 

be estimated to deduce the energy savings that the blank bitstream has incurred, since 

a blank bitstream will almost always draw less power than an equivalent area 

functioning module. 

Equation 8 – Energy savings incurred from programming a blank bitstream over a functioning module 

                                 

The following comparison must be true in order to incur energy savings when 

programming blank partial bitstreams in a DPR platform. 

Equation 9 – Equation to check if programming a blank bitstream incurred enough energy savings to 

compensate for the energy cost of programming it 
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From the above equations, it becomes apparent that we need to maximize the 

EsavePartial value and the main method that we can do this is by making sure that the 

expected Tidle time span that a region is programmed with a blank bitstream is as long 

as possible, or at the very least long enough to incur power savings. 

Calculating Ercnfg values is trivial and can be calculated by measuring time 

needed to reprogram a partition and the wattage of the system while reconfiguring. 

Calculating EsavePartial on the other hand is less straightforward since it requires 

knowing the power consumption of the PL while it is programmed with a blank 

bitstream and while it is programmed with a function module and operating in idle 

mode.  

Additionally, if we reprogrammed a partition with a blank bitstream every 

time a task was completed, the computational overhead incurred due to the partition 

reconfiguration would severely undermine the efficiency of the platform in carrying 

out data-intensive workloads. As such, reprogramming a partition with a blank 

bitstream immediately after completion of a task should be done only if said task is 

called sparsely.  

The graph below shows the computation overhead of reconfiguring a partition 

with a module and carrying out the computation on 2 different test cases. One is 

applying a convolution filter on a 1920x1080 grayscale image and the other is 

calculating the dimer genome distribution of E. Coli. 

 

Figure 40 – Computational overhead of Dynamic Partial Reconfiguration. 

Convolving a 1920x1080 grayscale image takes 1.8 msec while configuring a 

partition with the partial bitstream that handles convolution takes almost 4 times 

longer. The need for an intelligent scheduling becomes evident. 
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In light of the above, a task scheduler was implemented. This scheduler is 

responsible for monitoring which jobs are requested and effectively handling FPGA 

and memory resources to complete these jobs. For example, if a task (e.g. applying a 

Black and White threshold of 120 on a 512x512 grayscale image) is requested, the 

scheduler must check to see if a partition is already programmed with the module 

handling the requested task and if idle, simply delegates the service to this module.  

Additionally, if a task is requested and no partition is already loaded with the 

module handling it, the partition with the module that was Least Recently Used 

(LRU) is loaded with the requested partial bitstream. This is akin to the LRU 

replacement policy used in cache memory.  

Below is a generic flow diagram showcasing the scenario where a user 

requests processing of data for a specific task. 

 

Figure 41 – Flow diagram for launching an acceleration task for requested data on the platform 

In step 1, the user selects the input data (such as an image or a txt file) and the 

algorithm to execute on the input data. The system has been design to automatically 

resolve whether the input data and the requested task are compatible and an 

appropriate error message is issued if they are not (e.g., can‟t run a Black and White 

Threshold algorithm on a .txt file) 

In step 2, the Processing System (PS) is responsible for deducing on which 

partition to run the selected task on. First, the PS checks all RPs to deduce whether a 

requested function/RM is already programmed in a RP, either from system startup or 

from a previous task allocation.  

1. If a RP is programmed with the requested module, the selected task 

launches on this RP.  

2. If no partition is loaded with the requested module, the least recently 

used partition is chosen to be programmed with the module. 
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Step 3 is optional and is only called if no partition is programmed with the 

requested module. Depending on which partition we used least recently, the 

appropriate partition binary file is fetched and programmed. 

Finally, in step 4, the bitstream is loaded (if fetched from DDR) and the 

algorithm is offloaded to the PL.  

During execution, the scheduler monitors how often each service has been 

called.  

1. If a service is called and its average interval during its last 5 calls is 

smaller than the minimum amount of time that the blank bitstream 

must be retained in a partition to incur energy savings, than the 

scheduler will not reprogram it immediately after completing 

execution.  

2. If a service is called and its average interval is longer than the 

minimum amount of time needed for the blank bitstream to incur 

savings, then the scheduler reprograms the partition with a blank 

bitstream immediately after completion. 

Each accelerated service has its own timer for tracking their average call 

interval. 
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5. System Operational Metrics 
In this chapter, benchmark results are presented from operation of the 

implemented system on various platforms. The specific metrics that will be presented 

on each platform are 

The 3 selected algorithms were developed on 2 distinct platform 

configurations 

1. Configuration 1 is the baremetal application that executes the 3 

algorithms on the ARM A9 CPU of the Zedboard. The specifications 

of the platform are the following 

a. CPU : ARM A9 Dual-Core @667MHz  

b. Cache  

i. L1 32KB Data Cache (per core) 

ii. L2 512 KB cache (shared) 

c. DDR-RAM : 512 MB of DDR3 @533MHz 

d. Power Consumption : 3.82-4.02 watts (calculated wattage of 

the whole device, values taken from INA219 sensor readings) 

2. Configuration 2 consists of the proposed FPGA system architecture 

that utilizes DPR techniques to allow time-multiplexed and efficient 

dispatching of data-intensive tasks. In this implementation, the 

hardware design is developed to allow partial reconfiguration of 2 

regions in the FPGA whose purpose is to house any of the 3 RMs 

developed in Vivado HLS. Each RP requires its own partial bitstream 

variation of each algorithm. One synthesized and bitstream-generated 

RM cannot fit into any RP defined in the hardware design. A generated 

partial bitstream meant for partition A will not be compatible with 

partition B. For a given DPR-enabled platform where we want all 

regions marked as reconfigurable to house any of the functions 

developed in Vivado HLS, the equation that calculates how many 

different partial bitstreams need to be generated is given by the simple 

formula 

      ( 

Where: 

 N is the total number of partial bitstreams needed 

 p is the total number of RPs defined in the hardware platform 

 m is the number of different HLS IP algorithms  

For each of the 2 test configuration platform and for each algorithm 

implementation on each platform, the following metrics will be presented 

1. Computation time in milliseconds 

2. Performance throughput in Mbytes/sec  

3. Energy efficiency in MB processed/joule spent 
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4. CPU ClockCycles/byte metrics. For the ARM CPU implementation, 

the CPU frequency of 667 MHz will be used. For the FPGA 

implementation, the clocking frequency set for the PL will be used 

(~143MHz) 

5.1. ARM Cortex A9 CPU benchmarks  
In this chapter, performance and energy efficiency metrics of the ARMv7 

Cortex A9 CPU embedded on the Zedboard are presented. The development 

environment is Vivado SDK 2017.4. The programming language used to implement 

the algorithms is C. Compiler optimization was set to –O3 when building the 

applications.  

The timer used to measure runtime of each case is the Snoop Control Unit 

Timer (SCU Timer) embedded in Zynq family devices. SCU timer has a resolution of 

3 nanoseconds. 

Power efficiency was calculated from power consumption measurements 

taken from the INA219 current sensor. 

Clock cycles per byte metrics are based on the ARM A9 CPU‟s clock 

frequency of 667 MHz. 

5.1.1. Black and White Thresholding Benchmarks – ARM CPU 

The table below showcases benchmark metrics for computing BW Threshold. 

The test data is sample data of random values in the range of [0, 255]. The sample 

size starts from 64 bytes and doubles until it reaches 8MB.  

Power efficiency for the software implementation of the Black and White 

Thresholding application is calculated with a measured wattage of 3913 milliWatts. 
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Table 6 – BW Threshold benchmark metrics. ARM A9 CPU, -O3 optimized 

Size(bytes) Time (msec) 
Throughput (in 

MB/sec) 
Clockcycles/byte 

Power 

Efficiency (in 

MB/Joule) 

64 0.0004 147.64 4.31 37.73 

128 0.0007 186.91 3.40 47.77 

256 0.0012 196.10 3.24 50.11 

512 0.0025 198.95 3.20 50.84 

1024 0.0049 199.88 3.18 51.08 

2048 0.0098 199.96 3.18 51.10 

4096 0.0197 198.31 3.21 50.68 

8192 0.0378 206.68 3.08 52.82 

16384 0.0807 193.64 3.28 49.49 

32768 0.1987 157.26 4.04 40.19 

65536 0.4143 150.87 4.21 38.56 

131072 0.8249 151.53 4.20 38.72 

262144 1.6821 148.62 4.28 37.98 

524288 3.5451 141.04 4.51 36.04 

1048576 7.1957 138.97 4.57 35.52 

2097152 14.2956 139.90 4.54 35.75 

4194304 29.7955 134.25 4.74 34.31 

8388608 60.0289 133.27 4.77 34.06 

5.1.2. Convolution Benchmarks – ARM CPU 

The table below showcases benchmark metrics for convolution. The test data 

is sample data of random values in the range of [0, 255]. The sample size starts from 

64 bytes and doubles until it reaches 8MB. Power efficiency for the software 

implementation of the Image Convolution  application is calculated with a measured 

wattage of 3857 milliWatts. 

Table 7 – Convolution benchmark metrics. ARM A9 CPU, -O3 optimized 

Size(bytes) Time (msec) 
Throughput (in 

MB/sec) 
Clockcycles/byte 

Power 

Efficiency (in 

MB/Joule) 

64 0.0024 25.19 25.24 6.53 

128 0.0054 22.68 28.04 5.88 

256 0.0113 21.53 29.52 5.58 

512 0.0226 21.58 29.46 5.59 

1024 0.0491 19.90 31.94 5.16 

2048 0.0954 20.46 31.07 5.31 

4096 0.1957 19.96 31.85 5.18 

8192 0.3854 20.27 31.36 5.26 

16384 0.7768 20.12 31.61 5.22 

32768 1.5409 20.28 31.35 5.26 

65536 3.0997 20.16 31.53 5.23 

131072 6.1715 20.25 31.39 5.25 

262144 12.5095 19.98 31.81 5.18 

524288 24.7851 20.17 31.52 5.23 

1048576 49.5933 20.16 31.53 5.23 

2097152 99.2031 20.16 31.54 5.23 

4194304 198.4374 20.16 31.54 5.23 

8388608 396.9096 20.16 31.54 5.23 
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Convolution using a 3x3 kernel is a more complex algorithm, requiring more 

computations to carry out compared to a BW Thresholding task, hence the lower 

throughput and efficiency measurements. 

5.1.3. Dimer Genome Distribution Benchmarks – ARM CPU 

The table below showcases benchmark metrics for dimer genome di stribution. 

The test data is sample data of random nucleobase values in the set [„A‟,„C‟,„G‟,„T‟]. 

The sample size starts from 64 bytes and doubles until it reaches 8MB.  

Power efficiency for the software implementation of the Dimer Genome 

Distribution application is calculated with a measured wattage of 4012 milliWatts. 

Table 8 – Dimer Genome Distribution benchmark metrics. ARM A9 CPU, -O3 optimized 

Size(bytes) Time (msec) 
Throughput (in 

MB/sec) 
Clockcycles/byte 

Power 

Efficiency (in 

MB/Joule) 

64 0.0015 40.70 15.62 10.14 

128 0.0029 41.76 15.22 10.41 

256 0.0058 41.95 15.16 10.46 

512 0.0116 42.11 15.10 10.50 

1024 0.0231 42.19 15.07 10.52 

2048 0.0463 42.22 15.06 10.52 

4096 0.0925 42.25 15.05 10.53 

8192 0.1849 42.25 15.05 10.53 

16384 0.3698 42.25 15.05 10.53 

32768 0.7435 42.03 15.13 10.48 

65536 1.5360 40.69 15.62 10.14 

131072 3.1016 40.30 15.78 10.05 

262144 6.2099 40.26 15.79 10.03 

524288 12.4212 40.25 15.79 10.03 

1048576 24.8944 40.17 15.83 10.01 

2097152 49.8139 40.15 15.84 10.01 

4194304 99.6344 40.15 15.84 10.01 

8388608 199.2731 40.15 15.84 10.01 
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5.2. DPR-Enabled FPGA Design benchmarks 
In this chapter, performance and energy efficiency metrics of the FPGA 

coprocessors in the Zynq 7020 chip embedded on the Zedboard are presented. The 

development environment is Vivado SDK 2017.4. The programming language used to 

implement the algorithms in Vivado HLS is C++.  

Power efficiency was calculated from readings taken from the INA219 current 

sensor. 

Because the CPU must read the images/genome sequences to process and 

write the results as .png or .csv files respectively and because the PS-PL data 

propagates through the HP ports which are not cache-coherent, cache flushing and 

invalidation must be used in the test runs. The time and energy expedited for file I/O 

and cache flushing/invalidating is not taken into account in the following tests. 

Clock cycles per byte metrics are based on the FCLK_CLK0 used in the 

Vivado Hardware design and set to operate at 142.85 MHz. 

5.2.1. Black and White Thresholding Benchmarks - FPGA 

The table below showcases benchmark metrics for computing BW Threshold. The test 

data is sample data of random values in the range of [0, 255]. The sample size starts 

from 64 bytes and doubles until it reaches 8MB.  

Power efficiency for the hardware implementation of the Black and White 

Thresholding application is calculated with a measured wattage of 4012 milliWatts. 

Table 9 – BW Threshold benchmark metrics. FPGA Coprocessor 

Size(bytes) Time (msec) 
Throughput (in 

MB/sec) 
Clockcycles/byte 

Power 

Efficiency (in 

MB/Joule) 

64 0.0021 29.76 4.58 6.50 

128 0.0022 54.56 2.50 11.91 

256 0.0022 109.78 1.24 23.97 

512 0.0026 191.01 0.71 41.71 

1024 0.0029 337.15 0.40 73.61 

2048 0.0039 497.93 0.27 108.72 

4096 0.0058 677.92 0.20 148.02 

8192 0.0093 840.43 0.16 183.50 

16384 0.0165 945.68 0.14 206.48 

32768 0.0308 1014.68 0.13 221.55 

65536 0.0595 1049.89 0.13 229.23 

131072 0.1168 1070.09 0.13 233.64 

262144 0.2316 1079.65 0.13 235.73 

524288 0.4609 1084.89 0.13 236.87 

1048576 0.9197 1087.33 0.13 237.41 

2097152 1.8371 1088.65 0.13 237.70 

4194304 3.6722 1089.27 0.13 237.83 

8388608 7.3422 1089.60 0.13 237.90 
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5.2.2. Convolution Benchmarks - FPGA 

The table below showcases benchmark metrics for convolution. The test data 

is sample data of random values in the range of [0, 255]. The sample size starts from 

64 bytes and doubles until it reaches 8MB.  

Table 10 – Convolution benchmark metrics. FPGA coprocessor 

Size(bytes) Time (msec) 
Throughput (in 

MB/sec) 
Clockcycles/byte 

Power 

Efficiency (in 

MB/Joule) 

64 0.018 3.354 40.618 0.70 

128 0.018 6.698 20.341 1.40 

256 0.018 13.276 10.262 2.77 

512 0.019 26.302 5.180 5.49 

1024 0.019 51.325 2.654 10.71 

2048 0.020 97.641 1.395 20.38 

4096 0.022 179.494 0.759 37.47 

8192 0.025 308.829 0.441 64.47 

16384 0.032 480.771 0.283 100.37 

32768 0.047 666.756 0.204 139.20 

65536 0.076 827.363 0.165 172.73 

131072 0.133 940.793 0.145 196.41 

262144 0.247 1010.125 0.135 210.88 

524288 0.477 1048.448 0.130 218.88 

1048576 0.936 1068.840 0.127 223.14 

2097152 1.853 1079.236 0.126 225.31 

4194304 3.688 1084.547 0.126 226.42 

8388608 7.358 1087.238 0.125 226.98 

FPGA implementations tend to be more deterministic than conventional CU 

architectures, hence the similar to the BW Threshold performance 

5.2.3. Dimer Genome Distribution Benchmarks - FPGA 

The table below showcases benchmark metrics for dimer genome distribution. 

The test data is sample data of random nucleobase values in the set [„A‟,„C‟,„G‟,„T‟]. 

The sample size starts from 64 bytes and doubles until it reaches 8MB.  
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Table 11 – Dimer Genome Distribution benchmark metrics. FPGA coprocessor 

Size(bytes) Time (msec) 
Throughput (in 

MB/sec) 
Clockcycles/byte 

Power 

Efficiency (in 

MB/Joule) 

64 0.010 6.051 22.515 1.48 

128 0.010 12.047 11.309 2.94 

256 0.010 23.875 5.706 5.82 

512 0.010 46.579 2.925 11.36 

1024 0.011 89.355 1.525 21.79 

2048 0.012 165.959 0.821 40.48 

4096 0.014 286.986 0.475 70.00 

8192 0.017 453.790 0.300 110.68 

16384 0.024 642.703 0.212 156.76 

32768 0.039 808.540 0.169 197.20 

65536 0.067 928.629 0.147 226.49 

131072 0.125 1002.316 0.136 244.47 

262144 0.239 1044.298 0.130 254.71 

524288 0.469 1066.672 0.128 260.16 

1048576 0.928 1078.158 0.126 262.97 

2097152 1.845 1083.998 0.126 264.39 

4194304 3.680 1086.967 0.125 265.11 

8388608 7.350 1088.440 0.125 265.47 

5.3. Partial Reconfiguration Energy Overhead 
In this chapter, we will present measurements from reconfiguration time and 

energy overheads incurred when loading a partial bitstream on a RP.  

In the graph below we can see the time and energy cost of reconfiguring each 

of the 2 partial regions defined in this work. 

 

Figure 42 – Energy cost of programming a partial region 
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From the graph above, it becomes evident that each region has each own cost 

of reprogramming it. It is not easy to define partial regions in a DPR platform design 

that house the necessary resources inside and simultaneously have the same size when 

generated as partial bitstreams. 

 

From analysis done on the power drawn from the Image Convolution module 

and the Blackbox module when they are programmed on region 1 of the DPR 

platform we have concluded that the device draws approximately 12.7 milliWatts less 

when programmed with the blackbox module. As such from Equation 8 and Equation 

9 we derive that EsavePartial must be higher than 4.13 milliJoules. Solving for Tidle to 

find the minimum time needed  

       
              

         
  

       

      
                

 Where  

Ercnfg_region0 is the energy cost of reconfiguring region 0 

PdiffIdle is the power draw difference of the blackbox module and the 

convolution module. 

As such, after programming region 1 with the blank partial bitstream, it should 

remain at least 323 milliseconds in the region in order to incur enough energy savings 

to compensate for its reprogramming cost. The same Tidle value computed for region 2 

which is a larger region, incurring a larger energy overhead cost to reprogram is 490 

milliseconds. 

For different modules this time is different, since other modules may draw 

lower or higher power when in idle mode. This means that the time needed for a blank 

bitstream to remain in the region to compensate its reprogramming cost may be 

different when replacing different modules. 
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Additionally, different reconfigurable regions have different sizes in partial 

bitstreams and thus take different time spans to reprogram. This should be taken into 

account when dynamically reprogramming regions in an energy-aware platform. 

Although results show that a partial region could remain programmed with a 

blank bitstream for a few hundreds of milliseconds before incurring energy savings, 

performance goals may indicate that we may still want to retain an idle module on a 

configured region for longer than this time span.  

This is due to the fact that an acceleration platform needs to meet performance 

demands alongside energy efficiency goals and a service or user that may request the 

same acceleration task can utilize this module and not incur the performance overhead 

of reprogramming a region with that module. 

As such, the option to keep a programmed module for a time longer than Tidle 

has been implemented as well. System administrators may select this mode of 

operation as per their requirements at any time.  
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6. Experimental results discussion 
In this chapter the findings of the implementation in this work are presented 

and experimental results of the proposed system are discussed and analyzed. 

6.1. Execution runtime comparison 
Execution runtime of the 3 algorithms on the 3 testing platforms are presented. 

File I/O time is not included in the measurements. 

6.1.1. Black and White Image Thresholding runtime 

The graph below shows the runtime of the BW Image Thresholding algorithm 

in relation to the input size of the data measured in milliseconds on the 2 test 

platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the execution 

time is in logarithmic scale. 

 

 

Figure 43 – BW Threshold runtime in milliseconds graph, all platforms compared, semi-logarithmic graph 

The FPGA implementation shows an almost static 2 microseconds execution 

time for the first 4 input sizes, which is attributed attribute to the latency in 

transferring data from the DDR to the Programmable Logic.  

As the size of the processed data increases however, this 2 microsecond 

latency takes up an ever smaller percentage of overall execution time. We also notice 

that for input sizes in the range [32KB-8MB] the FPGA coprocessor is almost 1 order 

of magnitude faster than the ARM CPU implementation. 
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6.1.2. Image Convolution runtime comparison 

The graph below shows the runtime of the Image Convolution with 3x3 kernel 

algorithm in relation to the input size of the data measured in milliseconds on the 2 

test platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the 

execution time is in logarithmic scale. 

 

Figure 44 – Image Convolution with 3*3 Kernel runtime, all platforms compared, semi-

logarithmic graph  

In the case of the Image Convolution algorithm, it is clear that the FPGA 

implementation is much faster than the ARMv7 CPU implementation. For an input 

size of 2MB (almost exactly the size of a full HD grayscale image) the processing 

time on the FPGA platform is 1.86 milliseconds, while the ARMv7 CPU platform is 

55 times slower at 99.2 milliseconds. 

Similarly to the BW Image Thresholding algorithm, the Image Convolution 

FPGA accelerator shows a steady runtime of almost 18 microseconds for the first 5 

input sizes tested due to the latency of transferring data. The additional 16 

microseconds delay compared to the previous algorithm is caused from the setup of 

look-up tables and parsing of operational parameters that take place prior to 

processing the actual input image data. 

6.1.3. Dimer Genome Distribution runtime comparison 

The graph below shows the runtime of the Dimer Genome Distribution 

algorithm in relation to the input size of the data measured in milliseconds on the 2 

test platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the 

execution time is in logarithmic scale. 
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Figure 45 – Dimer genome distribution runtime, all platforms compared, semi-logarithmic graph 

The FPGA implementation of the algorithm shows considerable speedup in 

the ranges of [16KB-8MB], with the FPGA implementation processing 8 MB of 

genome data (which translates to 8 million bases in the current encoding utilized) in 

7.35 milliseconds while the ARMv7 implementation processes the same genome in 

199.2 milliseconds, 27 times slower.  

Similarly to the previous 2 algorithms, the FPGA implementation of the Dimer 

Genome Distribution shows a steady execution time of 10 microseconds for sizes of 

64-2048 bytes due to the latency incurred from transferring data from the DDR to the 

PL.  

The added 8 microseconds latency when compared to the latency of the BW 

Image Thresholding algorithm is attributed to the fact that there needs to be some 

preprocessing in the accelerator IP before the DMA engine starts sending actual 

genome data to the PL for processing. Additional latency is incurred due to post 

processing where we have to add all individual counters in the IP to a single array of 

dimer distribution counters before sending them to the DDR. 
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Figure 46 – Timing information of Dimer Genome Distribution HLS IP 

 

6.2. Performance throughput comparison 

6.2.1. Black and White image Thresholding performance throughput 

The graph below shows the performance in relation to input size of the data 

processed measured in MB/sec for the BW Image Thresholding application on the 2 

test platforms. 

 

Figure 47 – BW threshold performance in MB/sec. All platforms. Sizes 64bytes-8MBs. 
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Throughput results show a clear performance benefit when utilizing the FPGA 

co-processor to calculate the BW threshold of an image. As the size of the input 

image increases, the FPGA throughput converges to the theoretical peak performance 

value of 1089.9135 MB/sec, with the 8MB input size computation reaching 99.997% 

of the theoretical maximum throughput. 

6.2.2. Image Convolution with 3x3 kernel performance throughput 

The graph below shows the performance in relation to input size of the data 

processed measured in MB/sec for the Image Convolution application on the 2 test 

platforms. 

 

Figure 48 – Image Convolution performance in MB/sec. All platforms. Sizes 64bytes-8MBs. 

Results of the image convolution application paint a different image in this 

case compared to the BW image Thresholding. Convolution requires many more 

operations applied on multiple data, some of them even reused during the process.  

It is evident here that the FPGA with its concurrent computation capabilities 

and with the implementation of a sliding window buffer in the FPGA to allow 

resource reuse results in an implementation that is up to 5300% faster than the ARM 

implementation. 

It is important to note however once again that for relatively small sizes of 

input data the FPGA performance drops dramatically. In the range of 64-256 bytes, 

the ARMv7 implementation is faster, although processing images that are so small 

may not be a common occurrence. 
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6.2.3. Dimer Genome Distribution performance throughput 

The graph below shows the performance in relation to input size of the data 

processed measured in MB/sec for the Dimer Genome Distribution application on the 

2 test platforms. 

 

Figure 49 – Dimer Genome Distribution performance in MB/sec. All platforms. Sizes 64bytes-8MBs. 

Similarly to the previous 2 algorithms, the FPGA implementation of the Dimer 

Genome Distribution algorithm is many times faster than the ARMv7 

implementation.  

The FPGA co-processor reaches 99.9% of the theoretical maximum when 

processing 8MB of genome data. This translates to a processing throughput of 8.38 

Megabases/second (1 base = 1 byte). If the .2bit encoding was used we could 

theoretically achieve 4 times higher base processing throughput at the cost of 

increased resource utilization. 
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6.3. Energy efficiency comparison 

6.3.1. Black and White image thresholding energy efficiency 

The graph below shows the energy efficiency in relation to input size of the 

data processed measured in MB/joule (megabytes of input data processed per joule 

spent) for the BW Image Thresholding application on the 2 test platforms. 

 

Figure 50 – Energy efficiency of BW Image Thresholding in relation to input data size on ARM CPU and 

FPGA HLS IP. 
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6.3.2. Image Convolution with 3x3 kernel energy efficiency 

The graph below shows the energy efficiency in relation to input size of the 

data processed measured in MB/joule (megabytes of input data processed per joule 

spent) for the Image Convolution application on the 2 test platforms. 

 

Figure 51 - Energy efficiency of Image Convolution in relation to input data size ARM CPU and 

FPGA HLS IP. 

Similar to the BW Thresholding application, the FPGA is capable of 

outperforming the ARM processor in energy efficiency. However, this time the 

difference in efficiency is much more visible than the aforementioned application. 

The FPGA implementation reaches 227 MB/joule energy efficiency when 

processing 8MB of data. Compared to the ARM CPU which has an energy efficiency 

of 5.22 MB/joule in the 8MB input size, the FPGA offers a x44 increase respectively 

in energy efficiency. 
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6.3.3. Dimer Genome Distribution energy efficiency 

The graph below shows the energy efficiency in relation to input size of the 

data processed measured in MB/joule (megabytes of data processed per joule spent) 

for the Dimer Genome Distribution application on the 2 test platforms. 

 

Figure 52 - Energy efficiency of Dimer Genome Distribution in relation to input data size ARM CPU and 

FPGA HLS IP. 

Finally, Dimer Genome Distribution is similarly much more efficient when 

running on the FPGA thanks to a combination of both high parsing throughput of the 

genome as well as low power consumption. 

Energy efficiency metrics are similar to the previous 2 algorithms, with the 

FPGA implementation offering up to 43x increase in energy efficiency when 

processing 8 MB of genome sequence data. Only for very small sequences is the 

ARMv7 implementation more energy efficient (ranges of 64-512 bytes of genome 

sequence data). 
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6.4. Cycles per byte performance comparison  

6.4.1. Black and White image thresholding clock cycles/byte  

The graph below shows the performance in clock cycles per byte processed for 

the BW Image Thresholding application on the 2 test platforms. 

 

Figure 53 – Performance in cycles/byte of BW Image Thresholding in relation to input data size on ARM 

CPU and FPGA HLS IP. 

 

Clock cycles per byte metrics show that the FPGA implementation offers 

unparalleled performance in concurrent execution of input data, managing up to a 

little over 0.125 cycles per byte processed, up to 38 times better performance than the 

implementation on the ARMv7. 

The 0.125 cycles per byte performance of the FPGA indicates that an increase 

in clock frequency of the PL logic can result in a drastic increase in overall 

performance, as long as the bandwidth of the DDR module from which we read data 

and write output results can support it.  
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6.4.2. Image Convolution with 3x3 kernel clock cycles/byte performance 

The graph below shows the performance in clock cycles per byte processed for 

the Image Convolution application on the 2 test platforms. 

 

Figure 54 – Performance in cycles/byte of Image Convolution in relation to input data size on ARM CPU 

and FPGA HLS IP. 

Image Convolution with 3x3 kernel implementation on the FPGA is much 

faster than the ARMv7 implementation even though the FPGA is clocked at a little 

less than 5 times lower clock frequency.  

This means that the cycles/byte performance of the FPGA implementation can 

be up to 252 times better than the ARMv7 CPU implementation. 
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6.4.3. Dimer Genome Distribution clock cycles/byte performance 

The graph below shows the performance in clock cycles per byte processed for 

the Dimer Genome Distribution application on the 2 test platforms. 

 

Figure 55 - Performance in cycles/byte of Dimer Genome Distribution in relation to input data size on ARM 

CPU and FPGA HLS IP. 

Cycles/byte metrics for the 2-mer genome distribution application showcase 

that the FPGA implementation offers the lowest value of the 2 platforms. Similarly to 

the previous 2 algorithms for data sizes of 8KB and higher, it reaches its theoretical 

maximum of 0.125.  

This shows promising results for implementations of the hardware platform 

that can run on 200MHz on the Zedboard or even for FPGA platforms that can be 

clocked at higher frequencies than the Zynq-7000 chip utilized in this work. 
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7. Conclusion and future work 

7.1. Conclusion 
Implementation results of the 3 algorithms that were executed on the 2 

different platforms show measurements that coincide with results of past work.  

As far as pure performance throughput metrics go, both in latency as well as 

average throughput in MB/sec of executing tasks of small size, it is clear that an ARM 

CPU is better than an FPGA. This is due to the fact that the data path from the DDR 

to the PL in an FPGA is longer and needs to pass through more interconnecting logic 

to reach the accelerator.  

In their work on improvement of serving answers to web browser queries, 

Owaida et al. [57] showed that for input sizes of a few thousand or less scoring 

requests, the FPGA offers low bandwidth due to the static overhead of initiating 

transfers and kernel invocation time overhead. Because these metrics are mostly 

independent of input size however, as the input data size increases they take up 

smaller and smaller percentage of the overall time and the computation efficiency 

becomes higher. 

However, for larger input data size, the FPGA can offer significantly better 

performance than the ARMv7 CPU across all 3 algorithms and in almost all measured 

benchmark metrics.  

This of course can result in higher resource utilization on the FPGA; however 

the use of arbitrary precision structures of Vivado HLS when creating an IP can offer 

resource usage optimizations that will allow reconfigurable modules to fit in a defined 

Reconfigurable Region of a DPR-enabled design. 

In regards to energy efficiency metrics, the expected results from past 

literature and reports indicate that the FPGA implementations of all 3 algorithms and 

for nearly all input data sizes offers much greater results than conventional 

architecture CPUs.  

The most prevalent example of this can be seen when we compare the 

convolution of 8MBs of image data on the ARMv7 CPU and on the FPGA where the 

ARM CPU computes the convolution and consumes 1.53 Joules of energy while the 

FPGA implementation consumes 0.035 Joules, resulting in an overall increase in 

energy efficiency of 4271%. 

ARMv7 implementation shows better results for very small input sizes, which 

are not expected to be common. 

Clock cycles per byte processed metrics can indicate viability of increasing the 

clocking frequency of an FPGA device in order to increase performance throughput of 
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an implemented application or migrating the FPGA accelerator platform to a device 

that can handle higher frequencies.  

The main contribution of this work is the implementation of a multi-

disciplinary hardware acceleration platform on an FPGA that utilizes Dynamic Partial 

Reconfiguration and is designed to allow any type of Reconfigurable Module to be 

housed in a Reconfigurable Region.  

Partial Reconfiguration constraints limit the reprogramming of a RP because 

the interface ports of each module need to be exactly the same in order for them to be 

compatible. 

By transferring the metadata and the parameters of the computation process 

such as the threshold value in the Black and White Image Thresholding application or 

the Convolution Filter in the Image Convolution function through the same data port 

that the input data is transferred, we remove the obstacle of having to develop each 

acceleration function with the same interface ports. 

Of course this means that the during development, the software handling 

delegation to the Programmable Logic coprocessors in later stages of the development 

cycle needs to be aware in which order each parameter is being sent. 

To our knowledge, this is the first work that demonstrates this design 

paradigm to allow any function, regardless of the parameters that need to be passed in, 

to be included in a DPR-enabled FPGA hardware platform. 

7.2. Future work 
In this study we implemented a partial reconfiguration platform for offering 

computation acceleration services to users in a cloud computing environment. The use 

cases selected were much more energy efficient and cycle efficient on the FPGA 

platform than on the ARM CPU. 

We believe that future work for the specific algorithms implemented should 

include the following 

1. Black and White thresholding application should output data in a single bit per 

pixel format instead of an 8-bit value. This can help decrease write rates of the 

FPGA to the DDR and lower the consumed bandwidth of the DDR during 

processing of this application, freeing up bandwidth resources for other FPGA 

coprocessors. 

2. The Dimer Genome Distribution application should be extended to allow 

processing of .2bit format genomes. This will allow the FPGA to showcase its 

bit-accurate processing capabilities and its viability as an acceleration platform 

for genome sequencing. Of course, this would result in more resources needed 

to be allocated for this coprocessor, meaning it may exceed resources of the 
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partial reconfigurations regions defined during floorplanning. This must be 

taken into account.  

Besides the above, additional future work should focus on adding different, 

more computationally complex algorithms on the platform and evaluating their 

performance when compared to a CPU or GPU implementation. Theoretical 

maximum performance bandwidth given from Equation 4 can help designers evaluate 

the viability of migrating a task to the FPGA platform before beginning development 

on the hardware platform by first evaluating its performance on a conventional CPU 

or GPU platform. 

Additionally, future work should focus on evaluating the performance of the 

scheduling algorithms used in this work to ensure resource reuse of the reconfigurable 

partitions and to select which partitions will be reprogrammed when it is needed. The 

fact that we use the Least Recently Used partition when a user requests an 

acceleration service may not offer the lowest overall probability that a reconfiguration 

will take place. It depends heavily on access patterns. For example, there may be 

cases where a Least Frequently Used (LFU) scheduling scheme offers better results. 
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