

DESIGN AND IMPLEMENTATION OF AN ADAPTIVE HIGH

EFFICIENCY FPGA-ACCELERATED SYSTEM FOR MULTI-DISCIPLINARY

APPLICATION DOMAINS

by

SVORONOS LEIVADAROS

B.Sc., Technological Educational Institute of Crete, 2017

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SCHOOL OF ENGINEERING

HELLENIC MEDITERRANEAN UNIVERSITY

2020

Approved by:

George Kornaros

2

Copyright

SVORONOS LEIVADAROS

2020

3

Abstract

The scope of this thesis is the design and implementation of an FPGA platform that

utilizes state-of-the-art techniques and methodologies to allow improved energy

efficiency and performance in carrying out computationally intensive tasks. The goal

is to develop a framework for FPGA-based architectures that can be used in

environments that include but are not limited to Cloud Computing Clusters, High

Performance Computational Clusters and Distributed Data Centers. A proof of

concept implementation of this framework with 3 accelerated tasks (Black and White

Image Thresholding, Image Convolution with a 3x3 Kernel, Genome 2-mer

Distribution Analysis) is also presented and compared with implementation of the

same tasks on an FPGA and ARMv7 architecture CPU. To our knowledge, the

methodology in designing the Partial Reconfiguration platform employed in this work

is novel and allows designing Dynamic Partial Reconfiguration-enabled hardware

platforms on an FPGA without the need for wrapper logic or the need to register all

inputs and outputs to every reconfigurable module, facilitating the establishment of

compatibility across implemented reconfigurable modules in early development and

future integration of new accelerated functions on the FPGA platform. Performance

and energy efficiency metrics are also presented for the 2 different implementation

platforms.

4

Περίληψη
To αληηθείκελν κειέηεο απηήο ηεο δηπισκαηηθήο εξγαζίαο είλαη ε ζρεδίαζε θαη

πινπνίεζε κηαο πιαηθόξκαο Σπζηνηρίεο Ππιώλ Πξνγξακκαηηδόκελεο ζην Πεδίν

(FPGA) ε νπνία αμηνπνηεί ζύγρξνλεο ηερληθέο θαη κεζνδνινγίεο γηα λα επηηύρεη

κέγηζηε ελεξγεηαθή απνδνηηθόηεηα θαη απόδνζε ζηελ δηεθπεξαίσζε ππνινγηζηηθά

απαηηεηηθώλ δηεξγαζηώλ επξείνπ θάζκαηνο. Ο ζηόρνο είλαη λα αλαπηύμνπκε έλα

πιαίζην ινγηζκηθνύ γηα πινπνίεζε αξρηηεθηνληθώλ ππνινγηζηηθώλ ζπζηεκάησλ

βαζηζκέλα ζε FPGAs γηα ρξήζε ζε πεξηβάιινληα εξγαζίαο όπσο Σπζηνηρίεο

Υπνινγηζηηθώλ λεθώλ (Cloud Computing Clusters), Υπνινγηζηηθέο Σπζηνηρίεο

Υςειήο Απόδνζεο (High Performance Computing) θαη Καηαλεκεκέλα Κέληξα

Δεδνκέλσλ (Distributed Data Centers). Μηα πινπνίεζε proof-of-concept ηνπ

πξνηεηλόκελνπ πιαηζίνπ κε 3 εθαξκνγέο πνπ κπνξνύλ λα επηηαρπλζνύλ

(Αζπξόκαπξε Καησθιίσζε Εηθόλαο, Σπλέιημε εηθόλαο κε ππξήλα δηαζηάζεσλ 3x3,

Καηαλνκή Δηκεξώλ Ννπθιενηηδίσλ Γνληδησκάησλ) ζα παξνπζηαζζεί θαη ζα

ζπγθξηζεί κε αληίζηνηρεο πινπνηήζεηο ζε ζπκβαηηθέο αξρηηεθηνληθέο ππνινγηζηώλ κε

επεμεξγαζηή ARMv7. Καηά ηελ εθηίκεζε καο, απηή είλαη ε πξώηε έξεπλα πνπ

πεξηγξάθεη κηα λέα κεζνδνινγία πνπ λα επηηξέπεη ηνλ ζρεδηαζκό πιαηθόξκσλ κε

δπλαηόηεηεο Δπλακηθήο Μεξηθήο Αλαδηακόξθσζεο ρσξίο ηελ αλάγθε πινπνίεζεο

ινγηθήο πεξηηύιημεο ή θαηνρύξσζεο όισλ ησλ εηζόδσλ θαη εμόδσλ ζε όιεο ηηο

αλαπξνζαξκνδόκελεο κνλάδεο, δηεπθνιύλνληαο ηελ εγθαζίδξπζε ζπκβαηόηεηαο

κεηαμύ ησλ πινπνηεκέλσλ κνλάδσλ επηηάρπλζεο θαη ηελ κειινληηθή επέθηαζε ηεο

πιαηθόξκαο κε λένπο αιγνξίζκνπο, επηηαρπλόκελνπο από ηελ πιαηθόξκα FPGA.

Επίζεο, ζα παξνπζηάζνπκε κεηξήζεηο επηδόζεσλ θαη ελεξγεηαθήο απόδνζεο από ηηο

πινπνηεκέλεο πιαηθόξκεο.

5

Table of Contents
Abstract .. 3

Πεξίιεςε ... 4

Table of Contents ... 5

Table of Figures ... 7

Table of Tables .. 9

1. Introduction .. 10

2. Theoretical Background and Related Work ... 13

2.1. Cloud Computing Definition ... 13

2.2. Fundamental Characteristics of Cloud Computing 14

2.3. Field Programmable Gate Arrays (FPGAs) .. 15

2.4. Dynamic Partial Reconfiguration of FPGAs ... 16

2.5. Energy Efficient Computing ... 19

2.6. Related Work on FPGA-based Cloud Computing .. 23

2.7. Related Work on Dynamic Partial Reconfiguration 24

3. Proposed System Architecture and Development Environment 26

3.1. Proposed System Architecture and Flow .. 26

3.2. FPGA Platform System Specifications ... 28

3.3. System Design and Development Environment.. 30

4. Implementation Methodology .. 32

4.1. Multidisciplinary Algorithms Implemented .. 32

4.1.1. Image Black and White Thresholding .. 33

4.1.2. Image Convolution ... 34

4.1.3. Dimer Genome Distribution ... 37

4.2. Vivado HLS Design Workflow ... 39

4.3. Vivado Design Workflow ... 44

4.3.1. Block Diagram Design and Synthesis .. 44

4.3.2. Floorplanning and Implementation of the Hardware Design 49

4.3.3. Verify Partial Reconfiguration Compatibility and Generate Bitstreams 56

4.4. Vivado SDK Design Workflow .. 57

4.5. Power Analysis Methodology ... 59

4.6. DPR-Aware Task Scheduler Implementation ... 61

5. System Operational Metrics ... 66

6

5.1. ARM Cortex A9 CPU benchmarks ... 67

5.1.1. Black and White Thresholding Benchmarks – ARM CPU 67

5.1.2. Convolution Benchmarks – ARM CPU ... 68

5.1.3. Dimer Genome Distribution Benchmarks – ARM CPU 69

5.2. DPR-Enabled FPGA Design benchmarks ... 70

5.2.1. Black and White Thresholding Benchmarks - FPGA 70

5.2.2. Convolution Benchmarks - FPGA .. 71

5.2.3. Dimer Genome Distribution Benchmarks - FPGA..................................... 71

5.3. Partial Reconfiguration Energy Overhead .. 72

6. Experimental results discussion ... 75

6.1. Execution runtime comparison.. 75

6.1.1. Black and White Image Thresholding runtime 75

6.1.2. Image Convolution runtime comparison ... 76

6.1.3. Dimer Genome Distribution runtime comparison 76

6.2. Performance throughput comparison .. 78

6.2.1. Black and White image Thresholding performance throughput 78

6.2.2. Image Convolution with 3x3 kernel performance throughput 79

6.2.3. Dimer Genome Distribution performance throughput 80

6.3. Energy efficiency comparison ... 81

6.3.1. Black and White image thresholding energy efficiency 81

6.3.2. Image Convolution with 3x3 kernel energy efficiency 82

6.3.3. Dimer Genome Distribution energy efficiency .. 83

6.4. Cycles per byte performance comparison ... 84

6.4.1. Black and White image thresholding clock cycles/byte 84

6.4.2. Image Convolution with 3x3 kernel clock cycles/byte performance 85

6.4.3. Dimer Genome Distribution clock cycles/byte performance 86

7. Conclusion and future work ... 87

7.1. Conclusion ... 87

7.2. Future work ... 88

References .. 90

7

Table of Figures
Figure 1 – Architectural Diagram of Cloud Computing - Created by Sam Johnston using OmniGroup's

OmniGraffle and Inkscape https://commons.wikimedia.org/w/index.php?curid=6080417 ________ 13

Figure 2 – Time multiplexing of multiple functions on a single reconfigurable partition reduces area

requirements __ 19

Figure 3 - Example of software monitoring system operational metrics such as wattage and

temperature. __ 21

Figure 4 – Summary overview of a Zynq-7000 device with partially user-defined workload parameters

 ___ 22

Figure 5 – Proposed System Architecture Diagram __ 26

Figure 6 – Operational snapshot of the proposed system. ___________________________________ 27

Figure 7 – The Zedboard, choice of implementation for proof-of-concept ______________________ 28

Figure 8 – Basic workflow for designing the DPR-enabled platform on Xilinx Vivado Design Suite ___ 31

Figure 9 – Interface of the implemented algorithms as defined in C++ source code. Note that the port

names and types are exactly the same. This is important for enabling dynamic partial reconfiguration.

 ___ 32

Figure 10 – Result of Black and White thresholding with threshold T = 120 applied on an image. ___ 33

Figure 11 – Element-wise multiplication of a subsection of the source image (red) with a kernel (blue)

 ___ 34

Figure 12 – Example of clamping a negative value from resulting element-wise array summation to 0

 ___ 35

Figure 13 – Example of applying the sharpen convolution filter on an image. (a) is the input image, (b)

is the kernel applied, (c) is the resulting image __ 36

Figure 14 - Example of applying the edge-detect convolution filter on an image. (a) is the input image,

(b) is the kernel applied, (c) is the resulting image ___ 37

Figure 15 – Design workflow of Vivado DPR in this work ____________________________________ 39

Figure 16 – Example of VHDL code for expressing the behavior of an AND gate _________________ 40

Figure 17 – Synthesis report for BW Threshold function in Vivado HLS. This report shows timing

estimates and resource utilization estimates ___ 41

Figure 18 – Sample C++ code of the BW Thresholding Function ______________________________ 41

Figure 19 – Example of decreasing execution time of a loop via use of pipelining ________________ 42

Figure 20 – Result of partitioning an array of N elements with 3 different methods. ______________ 42

Figure 21 – Export RTL dialog box. ___ 43

Figure 22 – Add directories of exported HLS IPs on the Vivado project _________________________ 44

Figure 23 – Vivado block diagram of DPR platform __ 45

Figure 24 – AXI DMA Vivado IP Block settings __ 45

Figure 25 – PS-PL Configuration settings on ZYNQ7 Processing System IP ______________________ 46

Figure 26 – PL Fabric clock settings of ZYNQ7 Processing System IP ___________________________ 47

Figure 27 – Generate output products in ‘OOC per IP’ mode _________________________________ 47

Figure 28 – Writing synthesized design and reconfigurable cells checkpoints. ___________________ 48

Figure 29 – BW Thresholds IPs inserted in place of Dimer Distributions HLS IPs. _________________ 49

Figure 30 – Setting the HD.RECONFIGURABLE property of the design cells intended to be reconfirable

 ___ 50

Figure 31 – Setting the DONT_TOUCH property of the reconfigurable cells _____________________ 50

Figure 32 – Pblock creation dialog ___ 51

Figure 33 – Created pblock resource utilization estimates for first module. _____________________ 52

Figure 34 - Floorplanned device with 2 partial reconfiguration regions ________________________ 52

Figure 35 – Property setting of the RESET_AFTER_RECONFIG and SNAPPING_MODE properties ____ 53

Figure 36 – DRC Rule subset selection for Partial Reconfiguration ____________________________ 54

8

Figure 37 – Updated blackbox partitions and locked design of routing resources ________________ 55

Figure 38 – Create boot image dialog box. ___ 58

Figure 39 – Experimental setup for measuring power consumption of the developed FPGA platform. 60

Figure 40 – Computational overhead of Dynamic Partial Reconfiguration. _____________________ 63

Figure 41 – Flow diagram for launching an acceleration task for requested data on the platform ___ 64

Figure 42 – Energy cost of programming a partial region ___________________________________ 72

Figure 43 – BW Threshold runtime in milliseconds graph, all platforms compared, semi-logarithmic

graph __ 75

Figure 44 – Image Convolution with 3*3 Kernel runtime, all platforms compared, semi-logarithmic

graph __ 76

Figure 45 – Dimer genome distribution runtime, all platforms compared, semi-logarithmic graph __ 77

Figure 46 – Timing information of Dimer Genome Distribution HLS IP _________________________ 78

Figure 47 – BW threshold performance in MB/sec. All platforms. Sizes 64bytes-8MBs. ____________ 78

Figure 48 – Image Convolution performance in MB/sec. All platforms. Sizes 64bytes-8MBs. _______ 79

Figure 49 – Dimer Genome Distribution performance in MB/sec. All platforms. Sizes 64bytes-8MBs. 80

Figure 50 – Energy efficiency of BW Image Thresholding in relation to input data size on ARM CPU and

FPGA HLS IP. ___ 81

Figure 51 - Energy efficiency of Image Convolution in relation to input data size ARM CPU and FPGA

HLS IP. __ 82

Figure 52 - Energy efficiency of Dimer Genome Distribution in relation to input data size ARM CPU and

FPGA HLS IP. ___ 83

Figure 53 – Performance in cycles/byte of BW Image Thresholding in relation to input data size on

ARM CPU and FPGA HLS IP. ___ 84

Figure 54 – Performance in cycles/byte of Image Convolution in relation to input data size on ARM CPU

and FPGA HLS IP. ___ 85

Figure 55 - Performance in cycles/byte of Dimer Genome Distribution in relation to input data size on

ARM CPU and FPGA HLS IP. ___ 86

9

Table of Tables
Table 1 – Target FPGA platform available resources _______________________________________ 29

Table 2 – Dimer distribution of H. Influenza. (From [49], page 14) ____________________________ 38

Table 3 – Dimer distribution of SARS-COV-2, RefSeq ID NC_045512.2 _________________________ 38

Table 4 – Maximum utilization value for each category of resource for the 3 implemented algorithms

 ___ 51

Table 5 – INA219 internal gain configurations. ___ 59

Table 6 – BW Threshold benchmark metrics. ARM A9 CPU, -O3 optimized ______________________ 68

Table 7 – Convolution benchmark metrics. ARM A9 CPU, -O3 optimized _______________________ 68

Table 8 – Dimer Genome Distribution benchmark metrics. ARM A9 CPU, -O3 optimized __________ 69

Table 9 – BW Threshold benchmark metrics. FPGA Coprocessor ______________________________ 70

Table 10 – Convolution benchmark metrics. FPGA coprocessor _______________________________ 71

Table 11 – Dimer Genome Distribution benchmark metrics. FPGA coprocessor __________________ 72

10

1. Introduction
The fields of Computer Engineering and Computer Science have played a

significant role in the advancement of nearly every aspect of human society.

Computational systems have found use in multiple disciplines with the result of

facilitating experts in all scientific and engineering fields to advance their respective

field‟s knowledge and increase our quality of life.

In recent years, a field of computational systems based on clusters of

interconnected processing and storage nodes that are connected to the internet has

been established as the go-to method for covering a wide range of computational and

data storage needs. This field is called Cloud Computing and many variations of

Cloud Computing architectures and models have arisen as a result of extended

research on the topic.

Although popularized in 2006 with the release of the AWS (Amazon Web

Services) platform, the term „cloud computing‟ is believed to have been first coined in

1996 [1] by Sean O‟Sullivan in a business plan report detailing the need for a

migration of communication and collaboration systems to the „Internet cloud‟.

Cloud computing solutions and ongoing research focus on a wide range of

objectives which includes but is not limited to the following:

 Secure remote storage of sensitive data (Microsoft OneDrive, Google Drive,

Dropbox) [2]

 Mass processing of data acquired from web services and IoT Devices [3]

 Big Data and Machine Learning algorithms to extract trends in demand of

services and products [4]

 An application development platform where projects are shared, stored and

compiled on the computing cluster instead of the user‟s personal computer [5]

 Efficient acceleration of data intensive processes thanks to the economies of

scale [6]

Another field of Computer Science deals with development of computational

systems on specialized integrated circuits called FPGAs (Field-Programmable Gate

Arrays). FPGAs are meshes of primitive logic cells that usually consist of look-up

tables, flip-flops and digital signal processors. Both the primitive blocks of logic as

well as the interconnections in the fabric can be programmed and configured as per

the developer‟s needs.

The designs on an FPGA fabric are usually developed using a special type of

programming language called Hardware Description Language such as VHDL and

Verilog to selectively interconnect these primitive logic cells in such a way that they

perform a specific task or even a whole algorithm.

11

Another type of programming paradigm used to design FPGA hardware

platforms is High-Level Synthesis (HLS). HLS refers to the methodology where a

developer uses a more conventional programming language more often used in

developing applications in static, mainstream CPU architectures such as C, C++ or

SystemC. The resulting code is then parsed and transformed into equivalent HDL

code (usually VHDL or Verilog). HLS as a development methodology is advertised as

an enabler of shorter development cycles, reduced time-to-market and facilitation of

porting implemented C code to new devices.

The complexity of such designs can range from basic mathematical and logic

operations such as addition and comparison to fully implemented algorithms that deal

with data encryption [7], image filtering [8], video processing [9] and many more.

Some of the benefits of implementing such designs on an FPGA compared to

other platforms such as a CPU or a GPU include but are not limited to the following:

 Considerable speedup compared to CPU implementations

 Comparable performance to GPU accelerated implementations

 Considerable increase in performance per watt compared to CPU and

FPGA implementations

 Decreased overall system power consumption

 Soft and hard real-time application capabilities

It is the aim of this thesis to explore the viability of utilizing FPGA-based

systems in Cloud Computing environments that leverage multidisciplinary workloads.

The goal is to develop a cloud computing platform that performs

computationally intensive tasks by utilizing algorithms implemented on an FPGA.

FPGAs can offer lots of benefits to businesses and organizations if utilized correctly

and to their full capabilities.

There are several objectives that the proposed solution aims to cover. The 3

main characteristics of the proposed system are

1. Adaptability: the proposed system is capable of adapting to a computing

environment where data-intensive acceleration requests for a wide variety of

functions take place. In the proposed system, this adaptability refers to the

ability to efficiently reprogram portions of the FPGA marked as

reprogrammable in a manner that minimizes the chance that a reprogramming

is needed by employing a number of techniques which includes but is not

limited to the following

a. Utilizing reconfigurable modules that are already programmed in the FPGA

fabric

b. If reprogramming is needed, reprogram Reconfigurable Partitions on the

FPGA that are least recently used.

12

2. High Efficiency: the proposed FPGA-based platform must implement

techniques and design methodologies that will allow it to offer the maximum

possible energy efficiency, while also maintaining high performance and QoR

(Quality of Results) comparable to Cloud Computing platforms based on

other, non-FPGA based architectures. Dynamic Partial Reconfiguration is the

main tool driving this objective. Additionally, reprogramming a RP

(Reconfigurable Partition) with a blank bitstream after it has not been used for

some time can also help with decreasing idle power consumption of the

system.

3. Multi-disciplinary Task Execution: the proposed system is designed in a

way that accommodates the execution of many different algorithms on the

same Reconfigurable Partitions (RP). Any type of algorithm that might work

on different types of data such as image data or genome sequences can be

programmed in the defined RPs and used by a system user, as long as specific

conventions, outlined in later chapters, have been followed at design time.

Several methodologies and techniques, some specific to FPGAs, will be

employed in order to ensure that the developed platform meets power efficiency,

performance and QoR metrics that Cloud Computing solutions can benefit from.

These include but are not limited to the following

 Dynamic Partial Reconfiguration (DPR)

 Workload parallelization

 Custom Pipelining Architectures

 Energy-aware scheduling

In the next chapters the following will be covered:

 In chapter 2 a theoretical background will be presented that pertains to the

methodologies, techniques and systems employed in this work as well as

related work on the field of Cloud Computing, FPGAs and Energy Efficient

Computing.

 In chapter 3 the architecture of the proposed system will be presented along

with the software and hardware development environments utilized as well as

the hardware specifications of the target FPGA platform.

 In chapter 4 implementation details regarding the proposed system as well as

pseudo code and algorithms that were utilized as use cases will be outlined.

 In chapter 5 performance metrics such as computational throughput and

energy consumption of the implemented will be presented.

 Ιn chapter 6, we discuss and comment on the system‟s operational results.

 Finally in chapter 7 we conclude this report and discuss future work that can

extend the findings of this thesis.

13

2. Theoretical Background and Related Work
In this chapter, information relating to the theories, techniques and

technologies employed and build upon in this thesis are presented. Additionally,

related research work on Cloud Computing and FPGAs, both as separate fields as well

as in conjunction with each other, will be presented.

2.1. Cloud Computing Definition
Businesses and organizations constantly strive to meet their strategic goals and

objectives by minimizing their operational costs and increasing the quality of services

and products they offer.

The field of Cloud Computing has facilitated the operation of organizations by

presenting an opportunity to offload data processing and storage to clusters of

compute nodes and storage facilities and use the processing power offered by these

clusters to employ Machine Learning and Big Data Analytics applications that can

help shape the strategic choices of businesses.

Figure 1 – Architectural Diagram of Cloud Computing - Created by Sam Johnston using OmniGroup's

OmniGraffle and Inkscape https://commons.wikimedia.org/w/index.php?curid=6080417

But what exactly is Cloud Computing? As with many term definitions, the

linguistic definition of Cloud Computing is subject to personal interpretation. Several

definitions have been given by experts and researchers on the field.

14

The National Institute of Standards and Technology (NIST) [10] defines cloud

computing as “a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction”.

In 2009, in their research on current trends and design considerations

regarding Cloud Computing integration on organizational and business environments

with the goal of establishing Computing as the 5
th

 utility, Buyya et. al [11] described

Cloud Computing as “a type of parallel and distributed system consisting of a

collection of inter-connected and virtualized computers that are dynamically

provisioned and presented as one or more unified computing resource(s) based on

service-level agreements established through negotiation between the service provider

and consumers.”

2.2. Fundamental Characteristics of Cloud Computing
When deploying a cloud compute cluster, there are specific requirements that

such a platform should meet in order to fully realize its goal of efficiently carrying out

the processing and storage of massive amounts of data from different users.

Correspondingly, in 2011 NIST [10] included in its definition of Cloud

Computing 5 essential characteristics that define a well-implemented cloud

computing cluster. These characteristics are

1. On-demand self-service: An end-user can utilize computing resources such

as server time and storage automatically without the need for human

interaction with service providers.

2. Broad network access: Cloud capabilities are readily available over internet

connection enabled devices and accessed through standard mechanisms that

allow usage using a variety of client platforms such as personal computers,

mobile phones and tablets.

3. Resource pooling: The provider‟s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer

demand. There is a sense of location independence in that the customer

generally has no control or knowledge over the exact location of the provided

resources but may be able to specify location at a higher level of abstraction

(e.g., country, state, or datacenter). Examples of resources include storage,

processing, memory, and network bandwidth.

4. Rapid elasticity: Capabilities can be elastically provisioned and released, in

some cases automatically, to scale rapidly outward and inward commensurate

with demand. To the consumer, the capabilities available for provisioning

often appear to be unlimited and can be appropriated in any quantity at any

time.

15

5. Measured service: Cloud systems automatically control and optimize

resource use by leveraging a metering capability at some level of abstraction

appropriate to the type of service (e.g., storage, processing, bandwidth, and

active user accounts). Resource usage can be monitored, controlled, and

reported, providing transparency for both the provider and consumer of the

utilized service.

2.3. Field Programmable Gate Arrays (FPGAs)
Field-Programmable Gate Arrays are specialized integrated circuits that are

structured in such a way that allows them to be electronically reprogrammed,

changing their functionality according to users‟ needs on the fly.

An FPGA is comprised of various types of primitive programmable logic and

reconfigurable wiring that allows the fabric inside to be connected in a way specified

by a Hardware Description Language (HDL) in order to carry out either a simple task

such as an AND or XOR calculation or a complex task or algorithm such as a Sobel

Image Filter or an encryption scheme like AES.

Besides specialized task acceleration, FPGAs can be programmed to operate

like a CPU that implements a custom or standardized architecture of instructions like

RISC. These types of processors are usually referred to as „Soft cores‟ and many

parameters such as pipeline depth or cache size can be user-defined. An example of a

Soft Core is MicroBlaze [12].

FPGAs as the name suggests can be “programmed on the field” after

deployment. This task can be carried out by the device itself which according to

operational needs can reprogram the FPGA with new bitstreams, implementing new

functionality. This type of device is referred to as In-System Programmable (ISP)

[13].

An FPGA-based implementation of a task is usually much faster and more

efficient than similar implementations on x86_64 or ARM architecture CPUs such as

the ARM A9 or Intel CPUs [14], [15]. This benefit is usually offset by that fact that

HDL-based designs are harder to develop, debug and test than implementations of

algorithms running on conventional CPU architectures, although extensive effort to

facilitate development of FPGA designs has been made in the last years through the

use of High-Level Synthesis development paradigms.

FPGAs offer many benefits when compared to ASICs such as design reuse

and ease of maintenance. Errors made in the design process can be easily fixed after

provisioning an FPGA device by sending the new corrected bitstreams. This is not

possible for an ASIC platform. Additionally, ASICs incur very high non-recurrent

engineering costs compared to FPGAs, although after initial R&D and prototyping,

ASICs are cheaper on a per-unit basis than FPGAs.

16

2.4. Dynamic Partial Reconfiguration of FPGAs
In an environment such as a Cloud Computing cluster which is the main focus

of this work, functionality of FPGA accelerators needs to change depending on the

demands of the users or background services that process data. One solution to avoid

reprogramming is to house all accelerated tasks in an FPGA and leave it running

indefinitely, however this brings with it immense inefficiencies in idle power

consumption and drastically increases resource requirements of the FPGA platform.

As such reprograming a smaller FPGA with the modules that it needs at any one time

is preferable.

One method of reprogramming the FPGA involves downloading a full

bitstream, either via a standard interface such as a JTAG port or from volatile memory

where it is preloaded at boot time and fetched on demand. However, full bitstream

reprogramming brings with it a host of disadvantages such as

1. FPGA logic shutdown – all operations conducted by other services or users in

the Programmable Logic must terminate when full bitstream reprogramming

takes place. This can cause users to see drastic performance decrease when

multiple users are requesting different acceleration tasks at once.

2. High reconfiguration overhead – reprogramming a full bitstream, both in

terms of time and energy consumed is non-trivial and needs to be minimized

where possible

3. Increased design complexity – a full bitstream may implement a wide range

of algorithms and each algorithm may be present in the bitstream as a different

PE (Processing Element). This can result in an increased design complexity in

cases where we want a platform that can be extended and updated with new

functionality during its lifecycle and that many different users may utilize to

accelerate tasks that may not coincide. This forms a combinatorial problem

where repetitions of modules are allowed (a user may request the same module

another user has requested) and order doesn‟t matter (a user doesn‟t care

which partition region houses the module he wants to accelerate). The formula

for this case is

Equation 1 – Unordered combination equation for calculating the total number of possible

bitstreams that can serve any combination of tasks to carry out

()

 ()

17

Where

a. r is the maximum number of PEs that can fit in the FPGA

b. n is the total number of tasks that have been developed to be

accelerated

If we imagine a scenario where we have developed 8 different algorithms(n =

8) to be integrated in an FPGA hardware design and all 8 PEs require more or

less the same number of resources. If we use a FPGA chip that can house 8 of

these modules (r = 8), the number of different full bitstreams that must be

generated to be able to delegate any combination of requested tasks is 6435. If

we take into account that typical full bitstreams range from 2 MB to several

tens of MBs, the memory requirements to allow such a system to store all

these bitstreams would be in the several hundreds of GBs. In an environment

where different users use the FPGA platform as an acceleration service and

where each user may request a different task to be delegated, this can prove

infeasible. Alternatively, and much more realistically, an FPGA can simply

implement a single bitstream where each algorithm is expressed once as a

single Processing Element; however multiple acceleration calls to this

coprocessor from different users would cause congestion and performance

decrease.

4. High device area requirements – even if we employ a large FPGA chip to

avoid the pitfalls of the previous points by housing all modules multiple times

to avoid reconfiguration, this still leads to the implementation of an inefficient,

power-demanding platform that is mostly underutilized.

5. Difficult to maintain and update – updating a bitstream with new

functionality or correcting a mistake made at design time is much harder for

full bitstreams than for partial bitstreams. If a small part of the full bitstream

needed change, the whole design has to be redesigned and updated. In the case

of partial bitstreams, most of the time only the IP Block with the erroneous

behavior needs to be changed and redeployed.

Dynamic Partial Reconfiguration is a development paradigm on the field of

FPGA design whereupon specific parts of the Programmable Logic are marked as

dynamically reprogrammable. This means that while an FPGA is executing tasks, a

partial section of the FPGA can be hot-swapped with other generated partial

bitstreams, essentially reconfiguring that subsection of the FPGA with a different

functionality.

18

Benefits of DPR over static programming of an FPGA are immediately

apparent

1. FPGA logic uninterrupted during reconfiguration – all operations

conducted by other services or users in the FPGA can continue uninterrupted

while a specific Partial Region is being reconfigured. This is important for

mission-critical applications or to decrease the chance a user will experience

slowdown of requested services. This capability is true for the case of

Dynamic PR only. Static Partial Reconfiguration (SPR) is the similar to DPR,

with the exception that the device must shutdown for the duration of the

reprogramming stage.

2. Low reconfiguration overhead – reprogramming a partial bitstream is

significantly faster and incurs much smaller energy consumption and time

overhead than programming a full bitstream. This is especially apparent for

large FPGA devices where a programmable region may be a small percentage

of the overall full bitstream. Of course, this overhead is still non-zero and

needs to be taken into account, and in this sense intelligent scheduling and

resource reuse is important to reduce the chance partial reconfiguration is

needed.

3. Significantly reduced design complexity – a DPR-enabled hardware design

requires only that each partition marked as reconfigurable implements the

reconfigurable module intended to run in it at runtime. In the case of Cloud

Computing environments we assume in this work that all regions should be

able to house any accelerated task. In Xilinx‟s DPR methodology, each

partition requires its own copy of a partial bitstream for a given task

implemented. A generated full bitstream that has DPR enabled can house at

any time, any partial bitstream that was generated with this design as

reference. As such only a single full bitstream needs to be loaded at boot time

and any functionality can be loaded on demand later from the partial

bitstreams. This means that for 8 regions marked as reconfigurable (r = 8) that

can house any of 8 accelerated tasks (n = 8) the total number of partial

bitstreams needed is 64. The general equation describing the memory

requirements of storing all partial bitstreams of a DPR FPGA design is the

following

Equation 2 – Equation for calculating the size of all partial bitstreams in a Dynamic Partial Reconfiguration

design where all Reconfigurable Regions can house any of the implemented algorithms

 ∑

Where

PartialSizetot is the total size of all the partial bitstreams generated by

the design measured in bytes

n is the number of accelerated tasks developed

19

r is the number of Reconfigurable Partitions defined at design time

PartialSizei is the size of the partial bitstreams that program

Reconfigurable Partition i measured in bytes

Assuming near full utilization of the FPGA‟s resource from the 8 regions, the

calculated total memory needed for the 64 partial bitstreams is close to n*Sfull

where n is the number of implemented modules and Sfull is the size of the full

bitstream.

4. Easier to maintain and update functionality – updating functionality of

deployed partial bitstreams and correcting errors made at design time is much

easier for DPR-enabled platforms. The caveat to this is that the newly

developed partial bitstreams must be able to fit into the region marked by the

full bitstream; else a new redesign process needs to be done where

Reconfigurable Partitions are resized or the whole platform is migrated onto a

bigger FPGA chip. In order to avoid this, overprovisioning of FPGA resources

in Partial Reconfiguration Regions can be employed.

Benefits of employing dynamic partial reconfiguration include

1. The ability to time-multiplex tasks on an FPGA by swapping functions

in and out, reducing area and power requirements

2. Allow flexibility in algorithms and subtasks available to applications

3. Allowing uninterruptible workload execution of static logic, useful for

multi-tenant systems

4. Accelerated Reconfigurable Computing

5. Updating hardware functions marked as reconfigurable can be done

easily and remotely.

Figure 2 – Time multiplexing of multiple functions on a single reconfigurable partition reduces area

requirements

2.5. Energy Efficient Computing
In this work, power consumption of the proposed system is an important

metric that needs to be measured. This is necessary in order to accurately evaluate the

benefits that FPGA-based cloud computing can offer to businesses and organizations.

Information and Computer Technology (ICT) offers the capability to increase

efficiency of resources utilized in industrial and enterprise environments by

optimizing and automating processes [16]. ICT infrastructure itself however needs

20

energy to operate and when employing such solutions it is important to apply the

same principles of energy efficiency on the infrastructure itself.

Development of energy efficient computing solutions can help companies save

money by reducing electricity bills, permit battery-powered devices to operate for

longer times before needing recharge (such as for mobile phones, laptops and sensor

devices) or before they are decommissioned from service (for one-time deployed

devices such as IoT devices).

In the case of Cloud Computing infrastructure, these energy savings can help

reduce costs of maintaining such infrastructure as well as meet criteria of legislation

on eco-friendly design of ICT infrastructure such as (EU) No 617/2013 implementing

Directive 2009/125/EC [17].

Research work on the impact of ICT on global energy consumption has been

conducted extensively in the last years.

In 2015, Andrae and Edler [18] published their work on energy consumption

trends in the ICT sector. In their work, they presented categorized estimations of

worst-case, expected and best-case scenarios of power consumption in TWh that

various groups of ICT infrastructure would incur. If left unchecked, GreenHouse

Gases (GHG) emissions of ICT infrastructure could contribute up to 23% of global

GHG emissions. Reducing energy usage can help reduce GHG emissions that are

incurred as a byproduct of the generation of electrical power that feeds these devices

and data centers.

There are 2 main procedures involved in implementing energy efficient

computing platforms.

1. Power consumption measurement of the device at runtime, both at full

capacity usage as well as while in idle mode

2. Redesigning the platform both at system level as well as at the application

level to decrease power consumption of the system

There are several methods described in the literature that are used to measure

power consumption in computing systems.

In 2019, Fahad et al. [19] published a comparative study of methods that can

be utilized to measure power consumption of computing systems.

One method is using external power metering devices that measure the power

consumption of a workstation as it operates. This method offers relatively accurate

results but is only suited for system-wide power sensing, not allowing for highly

granular, component level power consumption measuring, such as measuring the

energy consumption of the CPU or the GPU.

21

An example of an external power metering device is the Kill-a-Watt [20]. Kill-

a-Watt is an electricity usage monitoring device manufactured by Prodigit that acts as

an intermediate between devices and wall-mounted power sockets and measures

power that a connected device draws.

A second method used for measuring energy consumption is using power

sensors installed on CPUs and GPUs at manufacturing time. These sensors provide a

more granular power measuring methodology than using external power meters.

Figure 3 - Example of software monitoring system operational metrics such as wattage and temperature.

Finally, a third method is based on software that utilizes energy predictive

models that take as input operational metrics such as FLOPS and cache miss rate and

calculate an estimated energy consumption. These energy prediction models have

been researched thoroughly, however they have been found to be inaccurate often due

to the fact that there are a large number of available models to choose from and

selecting the subset most relevant to interpreting power rating is difficult. These

models can sometimes be inaccurate and/or incomplete in describing the power

requirements of the device they attempt to model.

One example of software implemented energy consumption forecasting is

Xilinx Power Estimator (XPE) [21] and Vivado Power Report tools.

22

Figure 4 – Summary overview of a Zynq-7000 device with partially user-defined workload parameters

XPE is a set of Excel-based spreadsheets created by Xilinx which is used to

calculate power consumption of Xilinx FPGA devices in a pre-synthesis design stage.

The developer can input the model of the device he wishes, workload of independent

FPGA and peripheral devices in a highly granular manner, read and write rates of off-

chip DDR memory and other parameters. The tool will then estimate the expected

wattage of the device and give component-level power consumption metrics as well.

Design techniques utilized for conserving energy have been employed that are

unique to FPGA environments. As noted before, Dynamic Partial Reconfiguration is a

system level energy optimization method that allows a decrease of required energy

resources by reducing device area and subsequently power requirements as well as

allowing the programming of blank partial bitstreams that further reduces energy

consumption in an idle platform. This alongside an implementation of a DPR-aware

scheduler to minimize the probability that reconfigurations take place can further help

in meeting both performance and energy efficiency goals.

23

2.6. Related Work on FPGA-based Cloud Computing
In recent years, the viability of utilizing FPGAs in Cloud Computing

environments has been recognized and researched upon. Cloud computing solutions

are increasingly utilized to address processing needs in big data and data acquired

from web services, multicore computing systems [22] and intelligent IoT Devices

[23].

Moreover, various techniques have been the focus of research for on-chip and

system monitoring for power and energy efficiency [24], [25] and additionally to

manage SoC power and energy [26], [27], [28]

In 2011, Yu et al. [29] proposed a web server implementation that utilizes the

FPGA of the BEE3 multi-FPGA chassis system to carry out web data processing

using a Microblaze Soft-core processor [12] and a custom Web Processing Module

that handles tasks such as TCP packet decomposition and URL parsing. The proposed

implementation offered up to 4 times higher performance per watt while maintaining

an overall comparable performance to a Xeon 5520 implementation of the web server.

In 2012, Eguro and Venkatesan [30] present a system architecture based on an

FPGA for trusted cloud computing applications that emulates homomorphic

encryption [31] by providing a safe area in the FPGA that allows secure processing of

sensitive data.

In 2015, Fahmy et al. [32] present a model of a platform for integrating

virtualized accelerator modules of FPGAs to existing cloud computing infrastructure

in order to ensure high efficiency and performance goals. In their proposed model,

they use Partial Reconfiguration and a scheduler to dynamically reprogram partitions

in the PL according to the user requests and maximize usage of FPGA resources.

In 2018, Vaishnav et al. [33] introduced the concept of resource elasticity by

enabling the reallocation of FPGA spatial resources using OpenCL and dynamic

partial reconfiguration to allow higher performance and resource utilization of FPGA

accelerator platforms. Their experiments on different types of scheduling schemes for

allocating accelerator resources showed that cooperative scheduling is a better method

for FPGA platforms.

FPGA based cloud computing solutions often referred to as FPGA as a Service

(FaaS) have been proposed in the literature in recent years and early commercial

implementations have shown promising results, both for businesses as well as for end

users.

24

With their EC2 F1 cloud service, AWS [34] aims to provide a flexible

computing environment of Virtex Ultrascale+ family FPGAs alongside a development

environment. Amazon‟s EC2 is characterized by the capability of designing and

deploying a variable amount of FPGA platforms running hardware designs created by

developers on Xilinx‟s IDEs integrated in the Amazon ecosystem [35].

Alibaba has also released commercially viable cloud computing resources

utilizing FPGAs as computing platforms that cloud users can employ for their needs

[36]. The FaaS provided by Alibaba features 2 different instances of F1 and F2

instances providing both Intel and Xilinx small-scale devices for customers with ease

of deployment.

2.7. Related Work on Dynamic Partial Reconfiguration
Before developing a system capable of DPR in a cloud computer environment,

it is important to research upon the benefits of Dynamic Partial Reconfiguration as

advertised by Xilinx as well as from published research work that attempts to evaluate

these benefits.

To improve efficiency of reconfigurable resources, solutions have been

proposed [37]–[40].

In UG909 on Dynamic Partial Reconfiguration [41], Xilinx gives an

introductory overview of DPR and what benefits it can bring to the table for FPGA

developers. In this guide basic terminology and design considerations as well as some

example applications which could benefit from DPR are presented.

Nguyen et al. [42] present their findings in evaluating and quantifying the

benefits that DPR can offer to embedded vision applications when compared to static

FPGA design methodologies. Power savings of up to 30% can be reached by

implementing DPR on a platform. Their findings show that embedded solutions that

benefit from the effects of DPR share 2 main characteristics. First, all implemented

tasks of the system are not needed at all times. Only 1 or a small subset of the

implemented tasks needs to run concurrently at any one time. Second, the embedded

solution has energy efficiency needs that need to be maximized due to the fact the

device operates on batteries and area/device costs need to be minimized.

These findings coincide with the needs and nature of Cloud Computing

environments. Not all implemented tasks need to be executed at all times.

Sometimes users make use of other resources that do not require FPGA

resources such as File I/O or environment settings management. A given user‟s

requested tasks have no effect on when and how often other users request tasks.

Secondly, DPR can increase energy efficiency of the cloud computing cluster

by implementing the design in a smaller FPGA chip that can time-multiplex the

requested tasks in the partial regions defined. In addition, reprogramming a blank

25

bitstream inside a region not utilized can further decrease power consumption when in

idle mode.

Nafkha and Louet [43] researched upon the overhead of power consumption when

DPR is employed in a platform. In their work, 94 KB sized partial bitstreams are

programmed through the ICAP interface at runtime, increasing the power

consumption from 340 mW to 500 mW for the duration of the reconfiguration. In our

work, partial bitstreams are larger (700-1100 KBytes) and the reconfiguration

overhead is much bigger when compared to the execution time of the typical size of

data users may request.

This brings up an important metric that needs to be taken into account when

designing a DPR-enabled FPGA platform. This metric is the Execution-to-

Reconfiguration (ER) ratio of execution time over reconfiguration time.

Equation 3 – Equation for computing the ratio of the time spent executing to the time spent reconfiguring a

reconfigurable partition in a Dynamic Partial Reconfiguration design

For example, if the partial bitstream requested to be reconfigured takes 10

msec to be programmed and the programmed module runs for 5 msec on requested

data, the ER ratio is 0.5.

High ER ratios indicate the partial reconfiguration is a small overhead in the

computing process. Low ER ratios indicate a high reconfiguration overhead. This

means that reconfiguration needs to happen sparsely in order to meet energy

efficiency and performance goals.

Luo et al. [44] proposed a DPR model of FPGA platform that utilizes the

multi-threaded nature of a Linux operating system to delegate tasks to HW

accelerators at runtime in an efficient, demand-driven manner. The aim is to solve the

lack of Partial Reconfiguration enabled platforms operating under Linux. Linux-based

DPR development could decrease the time needed to create an efficient FPGA

acceleration platform and increase design flexibility thanks to the widespread support

and contributions of the Linux community.

26

3. Proposed System Architecture and Development

Environment
In this chapter, the system architecture is presented for the developed platform

as well as information on the development environment and specifications of the

FPGA platform used to develop the system.

3.1. Proposed System Architecture and Flow
Below is an architectural diagram of the implemented system on the Zedboard

SoC.

Figure 5 – Proposed System Architecture Diagram

In the proposed system shown in Figure 5, the Reconfigurable Partitions (RPs)

1 and 2 are regions of the FPGA fabric that are defined post-synthesis to house any

functionality inside so long as it covers the following criteria

1. The function implemented in the partition, named a Reconfigurable

Module (RM) must utilize fewer logic resources than the resources

allocated to the reconfigurable partition at design time.

2. The RM added to the platform on a RP (Reconfigurable Partition) must

have the exact same interfacing as the interfacing of all other RMs that

can be programmed on the RP. For the purposes of our system, all RPs

are capable of housing any of our implemented algorithms on the

FPGA. This means that both RPs have the same interfacing logic.

27

Each reconfigurable partition can house any of the developed HLS IPs inside.

Implementing and generating bitstreams for a design where DPR has been enabled

leads to the generation of partial bitstreams. These partial bitstreams are the files that

need to be programmed to the PL at runtime in order to program the capability of each

function in the fabric.

Because the partial bitstreams implement only part of the FPGA, they are

much smaller than the full bitstream. The size of a partial bitstream is directly

proportional to the size of the PL that partition is allocated on at floorplanning time.

Figure 6 – Operational snapshot of the proposed system.

Generated partial bitstreams are loaded from the SD card on the DDR at

system boot time. In Figure 6, Partition 1 partial bitstreams are only compatible with

partition region 1 (blue). Different partial bitstreams need to be generated for partition

2 (red) even if they implement the same functionality.

28

3.2. FPGA Platform System Specifications
The proposed system is developed and evaluated on a Zedboard All-

Programmable SoC development platform [45]. The Zedboard is a development board

featuring both an ARMv7 CPU and an FPGA chip. It is equipped with a 512 MB

DDR3 memory module clocked at 533 MHz and an interface width of 32 bits. The

CPU is a dual-core ARM A9 and the FPGA chip is a Zynq-7000 family chip, the

XC7Z020-CLG484.

Figure 7 – The Zedboard, choice of implementation for proof-of-concept

The ARM A9 Dual-Core CPU is a low power processing unit used mainly in

embedded circuits. Its TDP is rated at approximately 0.25 W per core..

The FPGA chip of the Zedboard is comprised of a moderate amount of

programmable logic that is mostly suited for evaluating applications at a small scale

before porting them to larger, more resourceful FPGA chips. The table below shows

the number of Flip Flops, Look-Up Tables, Digital Signal Processors and Block RAM

available in 36Kbit tiles and in KBytes that the XC7Z020-CLG484-1 is comprised of.

29

Table 1 – Target FPGA platform available resources

FPGA Model Name LUTs FFs DSPs BRAM36 Tiles
BRAM

(in Kbytes)

XC7Z020-CLG484-1 53200 106400 220 140 615

Besides resource availability, architectural specifications of the Zynq-7000

need to be taken into account when designing an accelerator IP. The Zynq-7000

family of SoCs features a PS-PL interface that allows FPGA IPs to access the DDR at

a configurable rate. More specifically, the interface options between the

Programmable Logic and the Processing System is comprised of the following

 Accelerator Coherency port (ACP) (1 port, 64-bit width, cache coherent

memory accesses)

 High performance (HP) PL interfaces, (4 ports, 32 or 64 bit width, non-

cache-coherent accesses)

 General purpose PL interfaces (GP) (2 ports, 32-bit width, no FIFOs

meaning lower performance than HP ports)

 Device configuration (DevC port, used for configuring the device at

runtime)

In this work, 2 HP ports and a single GP port are used to connect to

reconfigurable partitions (1 port per partition) to the PS side and 1 GP port is used,

connected to both partitions.

Each HP port has a dedicated channel for receiving and transmitting data. The

HP ports are responsible for transferring the main bulk of the data to be processed at

the PL as well as the algorithm-specific metadata for each application (e.g. the kernel

values of the convolution filter). The GP port is used to transfer only the size of the

input data and the output data and is used to transfer this data on both partitions.

Besides the width of the port used to transfer data, the rate at which the data is

transferred is also important. In this case, the PL clock is set at 7ns period or at a

frequency of approximately ~143 MHz. This coupled with the width of 8 bytes of the

HP port creates a maximum theoretical bandwidth of 1089.9 Mbytes/sec. This is

calculated from the equation

Equation 4 – Maximum bandwidth of PS-PL ports on the Zynq-7000 family of devices

30

Where:

 BW is the maximum theoretical bandwidth (measured in bytes/sec)

 f is the bus frequency (measured in Hz)

 w is the width of the bus (measured in bytes)

This upper limit is a very important metric that is used to verify the correct

setup and operation of the FPGA accelerator platform and evaluate the viability of

migrating a task to the FPGA in early design stages.

3.3. System Design and Development Environment
The development of the proposed system was carried out on a Linux CentOS 7

workstation running on an Intel i5. The software tools utilized for designing the

hardware platform on the Zedboard are Xilinx Vivado HLx 2017.4 Suite. Specifically,

3 different IDEs were utilized

1. Vivado HLS 2017.4 for implementing the 3 algorithms in C++ and

compiling to RTL code

2. Vivado 2017.4 for designing the DPR platform with the 3 algorithms

designed on Vivado HLS and enabling their dynamic reconfiguration

on 2 separate reconfigurable partitions.

3. Xilinx SDK 2017.4 for developing the baremetal application

responsible for system initialization, scheduling of requested tasks to

be programmed on the RPs of the FPGA, file I/O and delegating

workloads on the accelerators programmed on the FPGA.

31

Figure 8 – Basic workflow for designing the DPR-enabled platform on Xilinx Vivado Design Suite

The reason for using version 2017.4 of Vivado was because after this version,

Xilinx deprecated the driver responsible for the runtime reconfiguration of full/partial

bitstreams in favor of the FPGA Manager Linux API of device-agnostic and

manufacturer-agnostic bitstream programming of FPGA devices running on a Linux

OS [46].

However, during development of the platform on later versions of Vivado,

issues arose due to Xilinx not having released partial bitstream reprogramming

functionality of these drivers for the Zynq-7000 family of chips. As such, the latest

version of Vivado Design Suite that supported the xdevcfg driver was used.

In Vivado HLS, the applications were developed using the C++ programming

language. IDE-specific libraries that are designed by Xilinx such as HLS_Stream and

Arbitrary-Precision Integers were utilized [47] [48]. These libraries contain functions

and data objects optimized for implementation in an FPGA and can help developers

reach QoR goals.

32

4. Implementation Methodology

4.1. Multidisciplinary Algorithms Implemented
In this chapter we present the 3 algorithms that were developed to run on the

Zedboard FPGA platform. These algorithms are

1. A black and white thresholding (BW Threshold) algorithm for

grayscale images. The user can select the threshold to use. The

threshold value is in the range [0,255].

2. A 3x3 image convolution filter for grayscale images. The user can

select the type of kernel to use in the convolution filter.

3. A dimer global base distribution algorithm that measures the

distribution of nucleotides of length 2 in DNA genome sequences.

In order for all 3 modules to be interchangeable in the reconfigurable regions,

their interfaces were developed to be exactly the same.

(a)

(b)

(c)

Figure 9 – Interface of the implemented algorithms as defined in C++ source code. Note that the

port names and types are exactly the same. This is important for enabling dynamic partial reconfiguration.

 All 3 algorithms have the exact same interface definition to allow

Dynamic Partial Reconfiguration. The AXI_STREAM type is a custom-defined

structure of an AXI stream type structure exclusive to Vivado HLS with a user-

defined data width of 8 bytes (64-bit width).

Both input and output streams are defined as 64-bit width ports to be used for

transferring and receiving data. The sizeIn and sizeOut parameters are 32-bit integer

values used to declare the number of 64-bit input and out elements respectively to be

transferred. sizeIn and sizeOut variables are transferred to the HLS IP blocks using

the AXILite interface through the GP port.

As mentioned before, one of the main goals of this project is the development

of an acceleration platform for multi-disciplinary tasks. Since interfaces in a DPR-

enabled platform‟s RPs must be identical among RMs, relaying each individual IP‟s

parameters using the AXILite interface is inefficient.

In light of this, the selected algorithms were developed in Vivado HLS to use

the input AXI_STREAM port to receive the parameters (such as the 3x3 kernel for the

convolution kernel) just before receiving the main data input from the A9 CPU at

execution time.

In order for the transfer of the parameters to the HLS IP Block to be

successful, the parameters must be passed to the IP in the exact same order they are

parsed in the HLS IP Block.

33

For example, in the Image Convolution Filter application, we need to pass the

source image‟s width as well as the 9 values of the 3x3 kernel. As such, the HLS IP

first reads a 64-bit value from the stream and casts it as a 32-bit unsigned value to

store the source image‟s width in local memory. Then, to read the kernel, the IP block

reads 9 more 64-bit values and casts them as 16-bit signed integer values in local

memory.

When the ARM A9 CPU sends this data using the AXI DMAs, the IP block

assumes that they are sent in this exact order. It is the developer‟s duty to ensure the

application running on the CPU that handles service offloading to the PL sends the

parameters in the correct order. These considerations do not impact the hardware

platform design flow in Vivado.

4.1.1. Image Black and White Thresholding

Black and White thresholding is an algorithm that transforms images to a

format of black and white only pixels. It is a method used to partition an image to

foreground and background constituents and is mainly used in object identification

tasks.

The input image is transformed to a black and white image where each pixel is

white if its input value is greater than a selected threshold value or black if it‟s smaller

or equal to a selected threshold. In general

 () {

(

2)

Where:

 Po is the output pixel value

 T is the threshold value ()

Pi is the input pixel value

Figure 10 – Result of Black and White thresholding with threshold T = 120 applied on an image.

34

4.1.2. Image Convolution

The second application developed is an image convolution filter. Image

convolution is the process of applying a kernel of n*n values to each pixel of an

image with the goal of extracting specific features from the image. The process

involves performing an element-wise multiplication of the kernel with an n*n

subsection of the image where the center pixel of the sub-array is the pixel to

convolve. This results in n*n products which are subsequently summed.

Figure 11 – Element-wise multiplication of a subsection of the source image (red) with a kernel (blue)

This sum is the convolved pixel. This number may well be a value above 255

or below 0, meaning it can‟t be represented correctly by an 8-bit unsigned integer for

grayscale images. This problem can be resolved by simply clamping the values to the

range [0,255]. Negative values are set to 0 and values greater than 255 are set to 255.

This is the clamping method used in this implementation.

35

Figure 12 – Example of clamping a negative value from resulting element-wise array summation to 0

One thing to note is that depending on the size of the kernel n applied to the

image, the outer region of pixels that is ((n / 2) – 1) pixels wide will not have

sufficient pixels within the bounds of the image to apply the convolution on.

For example for a 3x3 kernel, the top and bottom row as well as the leftmost

and rightmost column of the image will not have all necessary neighboring pixels to

apply the convolution. One solution to this is to check which row and column we are

currently convolving and if it‟s a pixel with insufficient neighbor pixels, assume 0

values for the missing pixels.

The number of rows and columns n of the kernel array should generally be an

odd number. Variations for even numbers of rows/columns can be implemented but

are generally avoided. The resulting image is a transformed version of the input

image. The type of output image depends on the values populating the n*n kernel

array.

Image convolution is usually utilized as a preprocessing task that facilitates

computer vision tasks such as object identification and feature extraction, among

others.

The figures below showcases the resulting images from applying 2 commonly

used kernels on an image.

36

(a)

0

0

-

-1

0

0

-

-1

5

5

-

-1

0

0

-

-1

0

0

(b)

(c)

Figure 13 – Example of applying the sharpen convolution filter on an image. (a) is the input image,

(b) is the kernel applied, (c) is the resulting image

37

(a)

-

-1

-

-1

-

-1

-

-1

8

8

-

-1

-

-1

-

-1

-

-1

(b)

(c)

Figure 14 - Example of applying the edge-detect convolution filter on an image. (a) is the input image, (b) is

the kernel applied, (c) is the resulting image

4.1.3. Dimer Genome Distribution

Finally, the third implemented algorithm is a dimer base genome sequence

global distribution counter. In the field of Computational Genomics, an n-mer base

global distribution is a feature of genomic sequences that measures the relative

distribution of nucleotide words of length n. Statistical analysis of the genome of an

organism can offer insight to its function [49].

DNA sequences are comprised of 4 possible nucleobases, Adenine, Cytosine,

Guanine and Thymine, coded for convenience as A, C, G and T respectively. This

means that there are 16 possible combinations of base words of length 2.

 The result of the dimer distribution is a 4x4 array where each row denotes the

first base in the possible base pairs and the each column denotes the second base.

38

Table 2 – Dimer distribution of H. Influenza. (From [49], page 14)

The table below shows the dimer genome distribution of the SARC-COV-2

virus. The genome sequence was taken from the RefSeq genetic sequence database

[50], reference sequence NC_045512.2. The sequence was first made available from

work published from Wu et al. [51] where they sequenced the virus (yet unnamed at

the time of publication) from a patient working in the seafood market in Wuhan.

Table 3 – Dimer distribution of SARS-COV-2, RefSeq ID NC_045512.2

 *A *C *G *T

A* 0.0964 0.0676 0.0583 0.0772

C* 0.0697 0.0297 0.0147 0.0696

G* 0.0539 0.0391 0.0365 0.0665

T* 0.0795 0.0472 0.0866 0.1075

DNA dimer base distribution is a metric that can help researchers detect

unusual patterns in the genome sequence of an organism and consequently understand

the structure and behavior of the organism analyzed.

For a base word of length k, we move along the genome one base at a time and

check what word of length k is formed starting at each subsequent base. This means

that for a genome sequence of length L, and a nucleotide word of length k, there is a

total number of words W

W = (L - k) + 1

39

4.2. Vivado HLS Design Workflow

Figure 15 – Design workflow of Vivado DPR in this work

In Vivado HLS, the HLS acronym stands for High-Level Synthesis. In FPGA

design, there are several methods to develop an accelerator block to be implemented

in the FPGA fabric. One method is writing code to implement an intended algorithm‟s

behavior in a Hardware Description Language (HDL) such as VHDL or Verilog.

Below is an example of VHDL code for implementing a simple AND gate on an

FPGA.

40

Figure 16 – Example of VHDL code for expressing the behavior of an AND gate

Another methodology is using a higher-level programming language such as

SystemC or C++ to develop the algorithm and then use a C-to-RTL synthesis tool like

Vivado HLS to convert the code to HDL-equivalent format such as VHDL or Verilog

and then utilize it in a FPGA Hardware Platform IDE e.g. Vivado.

41

Figure 17 – Synthesis report for BW Threshold

function in Vivado HLS. This report shows timing

estimates and resource utilization estimates

Figure 18 – Sample C++ code of the BW

Thresholding Function

Vivado HLS utilizes directives in the form of pragmas or tcl-based commands

to allow developers to reduce latency, improve throughput or reduce resource

utilization of the exported RTL code.

The most important performance enabling pragmas are

1. #pragma pipeline – inserted inside loop type command blocks in the

C/C++ code. This directive guides the compiler to create RTL code

that implements the target command block in a pipeline. If the code

structure allows it, a pipeline initiation interval of 1 can be achieved,

leading to immense performance increase. [52]

42

Figure 19 – Example of decreasing execution time of a loop via use of pipelining

2. #pragma HLS partition_array – a pragma directive that is used on

array variables in C/C++ code which forces the resulting Block RAM

implemented RTL code to partition the array into multiple smaller

arrays. This is usually applied to allow concurrent access to elements

in the BRAM, either to read or to write values.

Figure 20 – Result of partitioning an array of N elements with 3 different methods.

3. #pragma HLS unroll – directive that is implemented in loop-type

command blocks (much like the pipeline directive). This directive

guides the compiler to implement RTL logic that calculates all

commands in the loop concurrently.

After creating the HLS IP and synthesizing it, the next step involves exporting

the IP in a format that can be imported and used in a Vivado hardware design. The

user can select either VHDL or Verilog as his language of use to transform the C code

to. In our case, VHDL code was selected.

43

Optionally, if we want to we can check the „Vivado synthesis, place and route‟

option in the Export RTL dialog window to get a more accurate resource utilization

and timing report than the HLS synthesis value, since these are estimates of the tool

and may differ greatly from actually synthesized and implemented design blocks.

Figure 21 – Export RTL dialog box.

44

4.3. Vivado Design Workflow
After creating the HLS IP Blocks in Vivado, the next step is to create a

hardware platform in Vivado and integrate the accelerator blocks with DMA

controllers and AXI peripheral interconnects and generate the bitstream that will

implement the desired functionality.

DMA controllers are responsible for handling I/O operations instead of the

CPU. While a DMA transfer takes places, the CPU can handle other operations.

4.3.1. Block Diagram Design and Synthesis

In order to create the necessary bitstreams, we need to create the first block

design with 2 HLS IP blocks of our choice and then synthesize it. It is best to choose

the most resource-demanding HLS IP modules as the initial reconfigurable modules

to implement since this makes it easier to floorplan the design and ensure latter

modules fit adequately inside the marked partition. In our case, the dimer distribution

HLS IP is the first that was synthesized.

After creating the initial hardware platform project with Vivado 2017.4, we

selected the 3 HLS IP blocks to be available in the repository.

Figure 22 – Add directories of exported HLS IPs on the Vivado project

45

After adding the IPs in the repository, the block diagram was designed with

the 2 initial implementations of the Dimer Genome Distribution HLS IP.

Figure 23 – Vivado block diagram of DPR platform

The only IP blocks in the design that needed editing is the 2 DMA engines

(each performing transfers from each HLS IP block) and the PS7 IP.

Figure 24 – AXI DMA Vivado IP Block settings

The DMA is set to allow 64-bit data transfers to allow 8 bytes per PLL clock

cycle to flow through the DMA and into the IP block. The width of buffer length

register setting of 23 bits means that the maximum transfer that the DMA can carry

out per call in the software is 8MB.

46

Figure 25 – PS-PL Configuration settings on ZYNQ7 Processing System IP

 Enabling the GP master axi interface is necessary for propagation of scalar

function arguments of HLS IPs, specifically the input and output size of data.

Additionally, we make sure to enable 2 of the 4 HP Slave AXI interfaces which will

be used to transfer data in and out of the 2 partitions. HP port 0 will be connected to

partially reconfigurable partition 0 and HP port 1 to partition 1. It‟s important to set

the data width to 64 bits to allow in conjunction with the 64-bit width of the DMA to

flow in 8 bytes every clock cycle.

47

Figure 26 – PL Fabric clock settings of ZYNQ7 Processing System IP

Lastly, the clock of the PL Fabric FCLK_CLK0 is set to 142MHz, which will

be set automatically by Vivado to the appropriate 7 nanosecond period –

142.857132MHz frequency.

After settings the appropriate settings in IP blocks and verifying correct

configuration with the Verify functionality, the HDL wrapper for the block design

was created and output products were generated in „Out of context per IP‟ mode.

Figure 27 – Generate output products in ‘OOC per IP’ mode

48

Generating OOC per IP is important to allow Dynamic Partial Reconfiguration

in the design in later stages. After generating output products the design was run

through synthesis only.

After the synthesis is complete, using TCL Console and commands, we need

to open the synthesized design and export the design and the cells of the Dimer

Genome Distribution blocks as Design Checkpoint (.dcp) files. The cell files exported

in .dcp format will later be used to be loaded into the defined Partial Region in later

steps.

write_checkpoint -cell <design_path_to_cell0_dimer> <path_to_save_dcp_file>

write_checkpoint -cell <design_path_to_cell0_dimer> <path_to_save_dcp_file>

write_checkpoint <path_to_full_synth_dcp_file>

The name of the cells we want to export can be viewed in the Cell Properties

panes upon selection of the cell in the Netlist pane.

Figure 28 – Writing synthesized design and reconfigurable cells checkpoints.

After storing the DCP files, we return to the block design and replace the 2

dimer distribution blocks with any 2 copies of the implemented HLS IPs. In this case

we will replace them with the BW Threshold IPs.

49

Figure 29 – BW Thresholds IPs inserted in place of Dimer Distributions HLS IPs.

After assigning the address in the Address Editor pane automatically, we

verify correct connection and synthesize this design as well. After synthesis is done

we open the synthesized design and press the reload design shortcut in the top of the

window to view the newly synthesized design in the netlist.

Next we export to DCP files the 2 partial cells and the whole design as we did

for the dimer distribution design. After exporting, we go back to the design and repeat

the same process for as many modules we have implemented as we want. In this case

one more remains, the Convolution Image Filter HLS IP.

4.3.2. Floorplanning and Implementation of the Hardware Design

After creating all synthesis dcp files, we set the reconfigurable cells‟

HD.RECONFIGURABLE property to 1. This enables Dynamic Partial

Reconfiguration on the project and is non-reversible

set_property HD.RECONFIGURABLE 1 [get_cells <path_to_rm_cell1>]

set_property HD.RECONFIGURABLE 1 [get_cells <path_to_rm_cell2>]

50

Figure 30 – Setting the HD.RECONFIGURABLE property of the design cells intended to be reconfirable

The property „Don‟t touch‟ of the 2 cells marked must be selected

Figure 31 – Setting the DONT_TOUCH property of the reconfigurable cells

After confirming the don‟t touch property is set, we move on to the

floorplanning stage. In this stage we need to make sure to assign the reconfigurable

modules to a partition on the FPGA fabric that contains enough resources for all other

synthesized modules to be programmed on.

This involves reading the utilization reports of the synthesis stage of all

generated full design checkpoint files by opening the full .dcp files generated

previously, running the open_checkpoint tcl command, running the report_utilization

command on the opened design checkpoint and measuring for each reconfigurable

cell in each design the maximum utilization value for each of the 4 main categories of

resources, Look-Up Tables, Flip-Flops, BRAM36 modules and Digital Signal

Processors.

51

The relevant values for the current design are listed below.

Table 4 – Maximum utilization value for each category of resource for the 3 implemented algorithms

HLS IP Block LUTs FFs BRAM36 Tiles DSPs

Dimer Distribution 4254 5150 0 0

BW Threshold 406 429 0 0

Convolution 3056 5538 24 0

Maximum Value 4254 5538 24 0

After measuring this maximum value, we right click on the cells marked for

reconfiguration on the opened synthesis design of the last synthesized block diagram

and select Floorplanning→Draw Pblock to draw a p-block for each cell‟s partition,

making sure each partition contains enough resources to fit all RMs. A good practice

noted by Xilinx guides is to add an additional 10% of resources to allow leeway for

additional routing resources.

Figure 32 – Pblock creation dialog

52

Figure 33 – Created pblock resource utilization estimates for first module.

Note the Available column in the above figure that the appropriate number of

LUTs, FFs and BRAM36 tiles have been allocated for latter modules to be inserted.

Figure 34 - Floorplanned device with 2 partial reconfiguration regions

53

Xilinx devices offer the capability of resetting a partial module‟s partition

when programmed to ensure a predictable starting condition of the programmed

module. In Zynq-7000 devices, this is enabled by checking the

RESET_AFTER_RECONFIGURATION property of each defined partition. In order

to enable this property however, the floorplanned pblock must be vertically aligned

with the clock region it resides. This means that its height must be equal to the height

of its encompassing clock region. The width does not matter.

After drawing pblocks for both cells, we set the properties

RESET_AFTER_RECONFIGURATION to 1 and SNAPPING_MODE to ON for

both partitions by clicking on a pblock in the Device view, going to the Properties

pane and setting the appropriate values.

Figure 35 – Property setting of the RESET_AFTER_RECONFIG and SNAPPING_MODE properties

After setting the SNAPPING_MODE property, it‟s important to confirm that

the floorplanned pblocks contain the necessary amount of resources to fit all modules.

If resizing is needed, simply dragging an edge of the pblock should suffice.

In order to ensure correct configuration of the design up to this point we must

run a Design Rule Check (DRC) report on the project. We select the Tools  Report

 Report DRC…. Next we select only the Partial Reconfiguration rule subset to

check in the report.

54

Figure 36 – DRC Rule subset selection for Partial Reconfiguration

If everything has been configured correctly, the „No Violations Found‟ pop-up

window should appear. Next we implement the design by running the 3 TCL

commands below

opt_design

place_design

route_design

55

After the opt-place-route phase is over, we save a dcp file, this time in the

post-implementation stage of the inserted modules that will constitute the first

configuration of the DPR platform. This is done with the write_checkpoint TCL

command

write_checkpoint <path_to_save_dcp_file_full_impl>

Next we must clear the 2 defined partitions by setting them as blackbox areas

and lock the design routing. This stage is saved as a design checkpoint to allocate the

other synthesized cells on the partial regions later and generate the blank partial

bitstreams.

update_design -cells <path_to_rm_cell1> -black_box

update_design -cells <path_to_rm_cell2> -black_box

lock_design -level routing

write_checkpoint <dcp_save_directory>/blackbox_locked_design.dcp

Figure 37 – Updated blackbox partitions and locked design of routing resources

At the next step we must insert the partial synth files of the remaining modules

generated previously inside each corresponding partition to generate the

implementation design checkpoints that will be used to generate each configuration‟s

partial and full bitstreams.

56

For all the other reconfigurable modules do the following procedure using

TCL commands

1. Read the checkpoints for the modules not taken care of

read_checkpoint -cell <path_to_cell0> <path_to_partial_synth_file0>

read_checkpoint -cell <path_to_cell1> <path_to_partial_synth_file1>

2. Do Opt-place-route process

opt_design

place_design

route_design

3. Write the implemented configuration checkpoint

write_checkpoint <path_to_dcp_file_full_impl>

4. Close the Project using the following command

close_project

5. Read the blackbox locked checkpoint

open_checkpoint blackbox_locked_design.dcp

6. If no more modules are left to implement, exit this loop, else go to 1)

In the opened design checkpoint of the locked blackbox design, we execute

the commands below to insert LUTs tied to constant values that will ensure the

outputs of the reconfigurable partition are not left floating. Additionally we will also

place and route the design to create the blackbox configuration of the platform and get

blank partial bitstreams.

update_design -buffer_ports -cell <path to RM cell0>

update_design -buffer_ports -cell <path to RM cell1>

place_design

route_design

write_checkpoint <path_to_impl_blackbox_design_dcp>

close_design

4.3.3. Verify Partial Reconfiguration Compatibility and Generate

Bitstreams

After generating all implementation checkpoints, we must verify that all

implementation configurations are replaceable on board. To do this we use the

pr_verify command

pr_verify -initial <path_to_rm1_full_impl_design> -additional

{<path_to_rm2_full_impl_design> <path_to_rm3_full_impl_design>

<path_to_blackbox_full_impl_design>}

If the pr_verify command outputs that all dcp files are compatible with the

initial defined, the next step is to generate the bitstreams.

57

For each implemented design checkpoint, we generate the partial and full

bitstreams using the command loop below

1. Open the dcp file of a configuration

open_checkpoint <path_to_implemented_dcp_file>

2. Write the partial and full bitstreams in .bit format

write_bitstream –file <path_to_save_bitstream>

3. Create the .bin format of the partial .bit files. .bit files are not

programmable at runtime. .bin format is the necessary format to allow

runtime reconfiguration

write_cfgmem -format BIN -interface SMAPX32 -disablebitswap -

loadbit "up 0 <read_path_to_partial_bitfile>"

<write_path_to_partial_bin>

4. Close the design

close_design

5. If bitstreams are generated for all configurations exit, else go to step 1.

The last step needed is to export the hdf file of the initial design synthesized to

allow development of applications on Vivado SDK. To do this, we must open the first

synthesized .xpr project, create implementation and bitstream results and export the

hdf file.

file mkdir <dpr_platform_directory>/dpr_platform_2_RPs.sdk

write_hwdef -force -file <dpr_platform_directory>/dpr_platform_2_RPs.sdk

/system_wrapper.hdf

Tha names of the partial .bin files generated in this phase are needed in the

next implementation step. The application that will read the .bin files and store them

on the DDR memory must know the names of the bin files and how many regions

have been defined in the hardware design.

4.4. Vivado SDK Design Workflow
After creating the hardware platform in Vivado and generating all the

necessary partial and full bitstreams, we launch the Vivado SDK environment to

develop the baremetal application that will handle file I/O, schedule the incoming job

requests, handle the partial bitstream reconfigurations and delegate acceleration tasks

to the PL.

First we create a Zynq FSBL application on the SDK to enable booting the

application on an SD card. The FSBL is responsible for device initialization and

programming the PL with the full bitstream.

58

Next we create the main application that will handle task scheduling and file

I/O. In order to enable SD card reading (to load the partial .bin files on memory and

the images and genome files to test the accelerators on) and writing (to write the

images and statistical distribution .csv format files from the results of these

acceleration tasks) we include the XilFFS library. The XilFFS library is a

manufacturer-specific implementation of Fat File System drivers made by Xilinx that

allows devices to read and write on non-volatile memory media formatted as FAT32.

After developing the application and building the FSBL and application

binaries we use the bootgen tool [53] developed by Xilinx and integrated in Vivado

SDK to create the bootable image that will be transferred to the SD card and used to

boot the Zedboard. The STB Image library was used to enable reading and writing of

grayscale images [54].

Figure 38 – Create boot image dialog box.

59

4.5. Power Analysis Methodology
As mentioned previously, there are several methods available for measuring

the power consumption of electronic devices and computing platforms. In this work

we measured power consumption of the developed FPGA platform on the Zedboard

using an external current sensor, specifically the INA219 current measurement sensor

[55].

INA219 sensor can measure DC in the range of +-3.2 Amps with a precision

of 1%. It also comes equipped with a 12-bit resolution ADC. The resolution means

that the INA219 can detect current changes of 0.8 milliamperes.

Preliminary power measurements with the ISNS20 Pmod [56] indicated that

average current drawn doesn‟t exceed 340-350 milliamperes. INA219 is equipped

with a software-configurable internal gain. The gain settings allow higher current

measurement resolution at the cost of a smaller range of maximum current that we can

measure. The table below shows how resolution and current measurement range

change depending on the setting of the internal gain.

Table 5 – INA219 internal gain configurations.

Internal Gain

Configuration
Current measurement

range (in milliamps)
Current measurement

resolution (in milliamps)
Div1 +-3200 0.8

Div2 +-1600 0.4

Div4 +-800 0.2

Div8 +-400 0.1

Since the maximum current measured with the ISNS20 pmod was measured to

be at most 350 milliamps, we set the internal gain at div8 to allow for the maximum

resolution that the INA219 can offer while remaining within the range of current

drawn from the applications running on the Zedboard.

The INA219 utilizes the I2C interface to transfer measured values to a

microcontroller. A second Zedboard was utilized to develop and operate a platform

capable of reading and outputting measured values from the INA219 sensor module.

This was done to ensure zero power consumption overhead as incurred from the

operation of the INA219 was included in the measurements.

To facilitate differentiating between the Zedboard platform running the Partial

Reconfiguration design and the Zedboard platform running the INA219 measurement

design, we will refer to them as «Zedboard PR platform» and «Zedboard INA219

platform» respectively. The diagram below shows the connection setup of the 2

boards for measuring power drawn from the Zedboard PR platform.

60

Figure 39 – Experimental setup for measuring power consumption of the developed FPGA platform.

61

4.6. DPR-Aware Task Scheduler Implementation
Although FPGA logic usually consumes less energy than equivalent x86_64

implementations, in order to minimize power consumption of the platform, we need to

make sure to program partitions that are not used with blank partial bitstreams.

Additionally, in a cloud computing environment an FPGA could potentially

accelerate a broad range of tasks, which in turn means a large number of

programming bitstreams featuring all kinds of accelerators in all kinds of

heterogeneous or multicore configurations, making it cumbersome to schedule them

in the platform. Implementation of a task scheduler that efficiently reprograms parts

of the FPGA chip on-demand while leaving the rest of the chip to function

uninterrupted is necessary to increase efficiency of the platform and provide

acceptable QoS.

Dynamic Partial Reconfiguration offers the capability to program a partition

with a blank bitstream, a „blackbox‟ Reconfigurable Module (which is termed

„greybox‟ in Xilinx devices), in order to reduce power consumption when not

utilizing a RP. This is useful to achieve high overall power efficiency in our system

and reduce idle power consumption; however there is a downside to this.

The ARM CPU utilizes the PCAP interface to program the Programmable

Logic at runtime. Reprogramming requires a non-trivial amount of time to complete.

Whether we want to program a blank bitstream to reduce idle power

consumption of the Programmable Logic, or we want to program a reconfigurable

module to offer an acceleration service, this energy overhead must be taken into

account and necessary actions need to be taken from the developer to ensure that the

chance that a reconfiguration takes place is as small as possible.

From the aforementioned, the following questions are formulated that are

important to answer in order to reap the benefits of partial reconfiguration in the

domain of power saving.

1. What is the minimum amount of time a reconfigurable partition should retain a

programmed blank bitstream in order to save more energy than the energy

incurred to program it on the FPGA?

2. Given an acceleration task that has been completed by a programmed

reconfigurable module on a reconfigurable region, what is the expected

average time that the same task might be requested again?

In order to answer the first question we must be able to measure 2 different

energy dissipation values. The first is the energy consumed by the FPGA device while

reconfiguration takes place. This value is given by the equation

Equation 5 – Energy overhead of programming a partial bitstream to a reconfigurable region

62

Prcnfg is the power draw of the platform during reconfiguration

Trcnfg is the time needed to reconfigure a partition.

Prcnfg in this work is taken from measuring the wattage of the Zedboard while it

is reconfiguring a partition using the INA219 sensor.

The second energy dissipation value must be given by finding the energy

difference of the energy dissipated while the reconfigurable region is loaded with a

partial bitstream of an implemented algorithm while in idle mode

Equation 6 – Idle function module energy dissipation equation

and while the same region is loaded with a blank bitstream.

Equation 7 – Idle blackbox module energy dissipation equation

Eblank is the energy dissipated by the Zedboard, measured in Joules, while it is

programmed with a blank bitstream.

PblankModule is the power consumption of the Zedboard, measured in Watts,

while programmed with a blank bitstream.

Tidle is the time period in seconds that a region operates in idle mode.

EmoduleIdle is the energy dissipation of a region loaded with a specific function

reconfigurable module

PrcnfgModule is the power drawn from the logic residing in the programmed

partial region

After finding the above 2 energy values, the difference energy value needs to

be estimated to deduce the energy savings that the blank bitstream has incurred, since

a blank bitstream will almost always draw less power than an equivalent area

functioning module.

Equation 8 – Energy savings incurred from programming a blank bitstream over a functioning module

The following comparison must be true in order to incur energy savings when

programming blank partial bitstreams in a DPR platform.

Equation 9 – Equation to check if programming a blank bitstream incurred enough energy savings to

compensate for the energy cost of programming it

63

From the above equations, it becomes apparent that we need to maximize the

EsavePartial value and the main method that we can do this is by making sure that the

expected Tidle time span that a region is programmed with a blank bitstream is as long

as possible, or at the very least long enough to incur power savings.

Calculating Ercnfg values is trivial and can be calculated by measuring time

needed to reprogram a partition and the wattage of the system while reconfiguring.

Calculating EsavePartial on the other hand is less straightforward since it requires

knowing the power consumption of the PL while it is programmed with a blank

bitstream and while it is programmed with a function module and operating in idle

mode.

Additionally, if we reprogrammed a partition with a blank bitstream every

time a task was completed, the computational overhead incurred due to the partition

reconfiguration would severely undermine the efficiency of the platform in carrying

out data-intensive workloads. As such, reprogramming a partition with a blank

bitstream immediately after completion of a task should be done only if said task is

called sparsely.

The graph below shows the computation overhead of reconfiguring a partition

with a module and carrying out the computation on 2 different test cases. One is

applying a convolution filter on a 1920x1080 grayscale image and the other is

calculating the dimer genome distribution of E. Coli.

Figure 40 – Computational overhead of Dynamic Partial Reconfiguration.

Convolving a 1920x1080 grayscale image takes 1.8 msec while configuring a

partition with the partial bitstream that handles convolution takes almost 4 times

longer. The need for an intelligent scheduling becomes evident.

64

In light of the above, a task scheduler was implemented. This scheduler is

responsible for monitoring which jobs are requested and effectively handling FPGA

and memory resources to complete these jobs. For example, if a task (e.g. applying a

Black and White threshold of 120 on a 512x512 grayscale image) is requested, the

scheduler must check to see if a partition is already programmed with the module

handling the requested task and if idle, simply delegates the service to this module.

Additionally, if a task is requested and no partition is already loaded with the

module handling it, the partition with the module that was Least Recently Used

(LRU) is loaded with the requested partial bitstream. This is akin to the LRU

replacement policy used in cache memory.

Below is a generic flow diagram showcasing the scenario where a user

requests processing of data for a specific task.

Figure 41 – Flow diagram for launching an acceleration task for requested data on the platform

In step 1, the user selects the input data (such as an image or a txt file) and the

algorithm to execute on the input data. The system has been design to automatically

resolve whether the input data and the requested task are compatible and an

appropriate error message is issued if they are not (e.g., can‟t run a Black and White

Threshold algorithm on a .txt file)

In step 2, the Processing System (PS) is responsible for deducing on which

partition to run the selected task on. First, the PS checks all RPs to deduce whether a

requested function/RM is already programmed in a RP, either from system startup or

from a previous task allocation.

1. If a RP is programmed with the requested module, the selected task

launches on this RP.

2. If no partition is loaded with the requested module, the least recently

used partition is chosen to be programmed with the module.

65

Step 3 is optional and is only called if no partition is programmed with the

requested module. Depending on which partition we used least recently, the

appropriate partition binary file is fetched and programmed.

Finally, in step 4, the bitstream is loaded (if fetched from DDR) and the

algorithm is offloaded to the PL.

During execution, the scheduler monitors how often each service has been

called.

1. If a service is called and its average interval during its last 5 calls is

smaller than the minimum amount of time that the blank bitstream

must be retained in a partition to incur energy savings, than the

scheduler will not reprogram it immediately after completing

execution.

2. If a service is called and its average interval is longer than the

minimum amount of time needed for the blank bitstream to incur

savings, then the scheduler reprograms the partition with a blank

bitstream immediately after completion.

Each accelerated service has its own timer for tracking their average call

interval.

66

5. System Operational Metrics
In this chapter, benchmark results are presented from operation of the

implemented system on various platforms. The specific metrics that will be presented

on each platform are

The 3 selected algorithms were developed on 2 distinct platform

configurations

1. Configuration 1 is the baremetal application that executes the 3

algorithms on the ARM A9 CPU of the Zedboard. The specifications

of the platform are the following

a. CPU : ARM A9 Dual-Core @667MHz

b. Cache

i. L1 32KB Data Cache (per core)

ii. L2 512 KB cache (shared)

c. DDR-RAM : 512 MB of DDR3 @533MHz

d. Power Consumption : 3.82-4.02 watts (calculated wattage of

the whole device, values taken from INA219 sensor readings)

2. Configuration 2 consists of the proposed FPGA system architecture

that utilizes DPR techniques to allow time-multiplexed and efficient

dispatching of data-intensive tasks. In this implementation, the

hardware design is developed to allow partial reconfiguration of 2

regions in the FPGA whose purpose is to house any of the 3 RMs

developed in Vivado HLS. Each RP requires its own partial bitstream

variation of each algorithm. One synthesized and bitstream-generated

RM cannot fit into any RP defined in the hardware design. A generated

partial bitstream meant for partition A will not be compatible with

partition B. For a given DPR-enabled platform where we want all

regions marked as reconfigurable to house any of the functions

developed in Vivado HLS, the equation that calculates how many

different partial bitstreams need to be generated is given by the simple

formula

 (

Where:

 N is the total number of partial bitstreams needed

 p is the total number of RPs defined in the hardware platform

 m is the number of different HLS IP algorithms

For each of the 2 test configuration platform and for each algorithm

implementation on each platform, the following metrics will be presented

1. Computation time in milliseconds

2. Performance throughput in Mbytes/sec

3. Energy efficiency in MB processed/joule spent

67

4. CPU ClockCycles/byte metrics. For the ARM CPU implementation,

the CPU frequency of 667 MHz will be used. For the FPGA

implementation, the clocking frequency set for the PL will be used

(~143MHz)

5.1. ARM Cortex A9 CPU benchmarks
In this chapter, performance and energy efficiency metrics of the ARMv7

Cortex A9 CPU embedded on the Zedboard are presented. The development

environment is Vivado SDK 2017.4. The programming language used to implement

the algorithms is C. Compiler optimization was set to –O3 when building the

applications.

The timer used to measure runtime of each case is the Snoop Control Unit

Timer (SCU Timer) embedded in Zynq family devices. SCU timer has a resolution of

3 nanoseconds.

Power efficiency was calculated from power consumption measurements

taken from the INA219 current sensor.

Clock cycles per byte metrics are based on the ARM A9 CPU‟s clock

frequency of 667 MHz.

5.1.1. Black and White Thresholding Benchmarks – ARM CPU

The table below showcases benchmark metrics for computing BW Threshold.

The test data is sample data of random values in the range of [0, 255]. The sample

size starts from 64 bytes and doubles until it reaches 8MB.

Power efficiency for the software implementation of the Black and White

Thresholding application is calculated with a measured wattage of 3913 milliWatts.

68

Table 6 – BW Threshold benchmark metrics. ARM A9 CPU, -O3 optimized

Size(bytes) Time (msec)
Throughput (in

MB/sec)
Clockcycles/byte

Power

Efficiency (in

MB/Joule)

64 0.0004 147.64 4.31 37.73

128 0.0007 186.91 3.40 47.77

256 0.0012 196.10 3.24 50.11

512 0.0025 198.95 3.20 50.84

1024 0.0049 199.88 3.18 51.08

2048 0.0098 199.96 3.18 51.10

4096 0.0197 198.31 3.21 50.68

8192 0.0378 206.68 3.08 52.82

16384 0.0807 193.64 3.28 49.49

32768 0.1987 157.26 4.04 40.19

65536 0.4143 150.87 4.21 38.56

131072 0.8249 151.53 4.20 38.72

262144 1.6821 148.62 4.28 37.98

524288 3.5451 141.04 4.51 36.04

1048576 7.1957 138.97 4.57 35.52

2097152 14.2956 139.90 4.54 35.75

4194304 29.7955 134.25 4.74 34.31

8388608 60.0289 133.27 4.77 34.06

5.1.2. Convolution Benchmarks – ARM CPU

The table below showcases benchmark metrics for convolution. The test data

is sample data of random values in the range of [0, 255]. The sample size starts from

64 bytes and doubles until it reaches 8MB. Power efficiency for the software

implementation of the Image Convolution application is calculated with a measured

wattage of 3857 milliWatts.

Table 7 – Convolution benchmark metrics. ARM A9 CPU, -O3 optimized

Size(bytes) Time (msec)
Throughput (in

MB/sec)
Clockcycles/byte

Power

Efficiency (in

MB/Joule)

64 0.0024 25.19 25.24 6.53

128 0.0054 22.68 28.04 5.88

256 0.0113 21.53 29.52 5.58

512 0.0226 21.58 29.46 5.59

1024 0.0491 19.90 31.94 5.16

2048 0.0954 20.46 31.07 5.31

4096 0.1957 19.96 31.85 5.18

8192 0.3854 20.27 31.36 5.26

16384 0.7768 20.12 31.61 5.22

32768 1.5409 20.28 31.35 5.26

65536 3.0997 20.16 31.53 5.23

131072 6.1715 20.25 31.39 5.25

262144 12.5095 19.98 31.81 5.18

524288 24.7851 20.17 31.52 5.23

1048576 49.5933 20.16 31.53 5.23

2097152 99.2031 20.16 31.54 5.23

4194304 198.4374 20.16 31.54 5.23

8388608 396.9096 20.16 31.54 5.23

69

Convolution using a 3x3 kernel is a more complex algorithm, requiring more

computations to carry out compared to a BW Thresholding task, hence the lower

throughput and efficiency measurements.

5.1.3. Dimer Genome Distribution Benchmarks – ARM CPU

The table below showcases benchmark metrics for dimer genome di stribution.

The test data is sample data of random nucleobase values in the set [„A‟,„C‟,„G‟,„T‟].

The sample size starts from 64 bytes and doubles until it reaches 8MB.

Power efficiency for the software implementation of the Dimer Genome

Distribution application is calculated with a measured wattage of 4012 milliWatts.

Table 8 – Dimer Genome Distribution benchmark metrics. ARM A9 CPU, -O3 optimized

Size(bytes) Time (msec)
Throughput (in

MB/sec)
Clockcycles/byte

Power

Efficiency (in

MB/Joule)

64 0.0015 40.70 15.62 10.14

128 0.0029 41.76 15.22 10.41

256 0.0058 41.95 15.16 10.46

512 0.0116 42.11 15.10 10.50

1024 0.0231 42.19 15.07 10.52

2048 0.0463 42.22 15.06 10.52

4096 0.0925 42.25 15.05 10.53

8192 0.1849 42.25 15.05 10.53

16384 0.3698 42.25 15.05 10.53

32768 0.7435 42.03 15.13 10.48

65536 1.5360 40.69 15.62 10.14

131072 3.1016 40.30 15.78 10.05

262144 6.2099 40.26 15.79 10.03

524288 12.4212 40.25 15.79 10.03

1048576 24.8944 40.17 15.83 10.01

2097152 49.8139 40.15 15.84 10.01

4194304 99.6344 40.15 15.84 10.01

8388608 199.2731 40.15 15.84 10.01

70

5.2. DPR-Enabled FPGA Design benchmarks
In this chapter, performance and energy efficiency metrics of the FPGA

coprocessors in the Zynq 7020 chip embedded on the Zedboard are presented. The

development environment is Vivado SDK 2017.4. The programming language used to

implement the algorithms in Vivado HLS is C++.

Power efficiency was calculated from readings taken from the INA219 current

sensor.

Because the CPU must read the images/genome sequences to process and

write the results as .png or .csv files respectively and because the PS-PL data

propagates through the HP ports which are not cache-coherent, cache flushing and

invalidation must be used in the test runs. The time and energy expedited for file I/O

and cache flushing/invalidating is not taken into account in the following tests.

Clock cycles per byte metrics are based on the FCLK_CLK0 used in the

Vivado Hardware design and set to operate at 142.85 MHz.

5.2.1. Black and White Thresholding Benchmarks - FPGA

The table below showcases benchmark metrics for computing BW Threshold. The test

data is sample data of random values in the range of [0, 255]. The sample size starts

from 64 bytes and doubles until it reaches 8MB.

Power efficiency for the hardware implementation of the Black and White

Thresholding application is calculated with a measured wattage of 4012 milliWatts.

Table 9 – BW Threshold benchmark metrics. FPGA Coprocessor

Size(bytes) Time (msec)
Throughput (in

MB/sec)
Clockcycles/byte

Power

Efficiency (in

MB/Joule)

64 0.0021 29.76 4.58 6.50

128 0.0022 54.56 2.50 11.91

256 0.0022 109.78 1.24 23.97

512 0.0026 191.01 0.71 41.71

1024 0.0029 337.15 0.40 73.61

2048 0.0039 497.93 0.27 108.72

4096 0.0058 677.92 0.20 148.02

8192 0.0093 840.43 0.16 183.50

16384 0.0165 945.68 0.14 206.48

32768 0.0308 1014.68 0.13 221.55

65536 0.0595 1049.89 0.13 229.23

131072 0.1168 1070.09 0.13 233.64

262144 0.2316 1079.65 0.13 235.73

524288 0.4609 1084.89 0.13 236.87

1048576 0.9197 1087.33 0.13 237.41

2097152 1.8371 1088.65 0.13 237.70

4194304 3.6722 1089.27 0.13 237.83

8388608 7.3422 1089.60 0.13 237.90

71

5.2.2. Convolution Benchmarks - FPGA

The table below showcases benchmark metrics for convolution. The test data

is sample data of random values in the range of [0, 255]. The sample size starts from

64 bytes and doubles until it reaches 8MB.

Table 10 – Convolution benchmark metrics. FPGA coprocessor

Size(bytes) Time (msec)
Throughput (in

MB/sec)
Clockcycles/byte

Power

Efficiency (in

MB/Joule)

64 0.018 3.354 40.618 0.70

128 0.018 6.698 20.341 1.40

256 0.018 13.276 10.262 2.77

512 0.019 26.302 5.180 5.49

1024 0.019 51.325 2.654 10.71

2048 0.020 97.641 1.395 20.38

4096 0.022 179.494 0.759 37.47

8192 0.025 308.829 0.441 64.47

16384 0.032 480.771 0.283 100.37

32768 0.047 666.756 0.204 139.20

65536 0.076 827.363 0.165 172.73

131072 0.133 940.793 0.145 196.41

262144 0.247 1010.125 0.135 210.88

524288 0.477 1048.448 0.130 218.88

1048576 0.936 1068.840 0.127 223.14

2097152 1.853 1079.236 0.126 225.31

4194304 3.688 1084.547 0.126 226.42

8388608 7.358 1087.238 0.125 226.98

FPGA implementations tend to be more deterministic than conventional CU

architectures, hence the similar to the BW Threshold performance

5.2.3. Dimer Genome Distribution Benchmarks - FPGA

The table below showcases benchmark metrics for dimer genome distribution.

The test data is sample data of random nucleobase values in the set [„A‟,„C‟,„G‟,„T‟].

The sample size starts from 64 bytes and doubles until it reaches 8MB.

72

Table 11 – Dimer Genome Distribution benchmark metrics. FPGA coprocessor

Size(bytes) Time (msec)
Throughput (in

MB/sec)
Clockcycles/byte

Power

Efficiency (in

MB/Joule)

64 0.010 6.051 22.515 1.48

128 0.010 12.047 11.309 2.94

256 0.010 23.875 5.706 5.82

512 0.010 46.579 2.925 11.36

1024 0.011 89.355 1.525 21.79

2048 0.012 165.959 0.821 40.48

4096 0.014 286.986 0.475 70.00

8192 0.017 453.790 0.300 110.68

16384 0.024 642.703 0.212 156.76

32768 0.039 808.540 0.169 197.20

65536 0.067 928.629 0.147 226.49

131072 0.125 1002.316 0.136 244.47

262144 0.239 1044.298 0.130 254.71

524288 0.469 1066.672 0.128 260.16

1048576 0.928 1078.158 0.126 262.97

2097152 1.845 1083.998 0.126 264.39

4194304 3.680 1086.967 0.125 265.11

8388608 7.350 1088.440 0.125 265.47

5.3. Partial Reconfiguration Energy Overhead
In this chapter, we will present measurements from reconfiguration time and

energy overheads incurred when loading a partial bitstream on a RP.

In the graph below we can see the time and energy cost of reconfiguring each

of the 2 partial regions defined in this work.

Figure 42 – Energy cost of programming a partial region

73

From the graph above, it becomes evident that each region has each own cost

of reprogramming it. It is not easy to define partial regions in a DPR platform design

that house the necessary resources inside and simultaneously have the same size when

generated as partial bitstreams.

From analysis done on the power drawn from the Image Convolution module

and the Blackbox module when they are programmed on region 1 of the DPR

platform we have concluded that the device draws approximately 12.7 milliWatts less

when programmed with the blackbox module. As such from Equation 8 and Equation

9 we derive that EsavePartial must be higher than 4.13 milliJoules. Solving for Tidle to

find the minimum time needed

 Where

Ercnfg_region0 is the energy cost of reconfiguring region 0

PdiffIdle is the power draw difference of the blackbox module and the

convolution module.

As such, after programming region 1 with the blank partial bitstream, it should

remain at least 323 milliseconds in the region in order to incur enough energy savings

to compensate for its reprogramming cost. The same Tidle value computed for region 2

which is a larger region, incurring a larger energy overhead cost to reprogram is 490

milliseconds.

For different modules this time is different, since other modules may draw

lower or higher power when in idle mode. This means that the time needed for a blank

bitstream to remain in the region to compensate its reprogramming cost may be

different when replacing different modules.

3.7000

3.7050

3.7100

3.7150

3.7200

3.7250

3.7300

3.7350

3.7400

3.7450

Blank Black and
White

Convolution Dimer
Distribution

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 (
in

 W
at

ts
)

Idle Power Consumption of all 4 possible pair programming
configuration of DPR Platform

Idle Power Consumption

74

Additionally, different reconfigurable regions have different sizes in partial

bitstreams and thus take different time spans to reprogram. This should be taken into

account when dynamically reprogramming regions in an energy-aware platform.

Although results show that a partial region could remain programmed with a

blank bitstream for a few hundreds of milliseconds before incurring energy savings,

performance goals may indicate that we may still want to retain an idle module on a

configured region for longer than this time span.

This is due to the fact that an acceleration platform needs to meet performance

demands alongside energy efficiency goals and a service or user that may request the

same acceleration task can utilize this module and not incur the performance overhead

of reprogramming a region with that module.

As such, the option to keep a programmed module for a time longer than Tidle

has been implemented as well. System administrators may select this mode of

operation as per their requirements at any time.

75

6. Experimental results discussion
In this chapter the findings of the implementation in this work are presented

and experimental results of the proposed system are discussed and analyzed.

6.1. Execution runtime comparison
Execution runtime of the 3 algorithms on the 3 testing platforms are presented.

File I/O time is not included in the measurements.

6.1.1. Black and White Image Thresholding runtime

The graph below shows the runtime of the BW Image Thresholding algorithm

in relation to the input size of the data measured in milliseconds on the 2 test

platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the execution

time is in logarithmic scale.

Figure 43 – BW Threshold runtime in milliseconds graph, all platforms compared, semi-logarithmic graph

The FPGA implementation shows an almost static 2 microseconds execution

time for the first 4 input sizes, which is attributed attribute to the latency in

transferring data from the DDR to the Programmable Logic.

As the size of the processed data increases however, this 2 microsecond

latency takes up an ever smaller percentage of overall execution time. We also notice

that for input sizes in the range [32KB-8MB] the FPGA coprocessor is almost 1 order

of magnitude faster than the ARM CPU implementation.

0.0001

0.001

0.01

0.1

1

10

100

R
u

n
ti

m
e

 (
in

 m
se

c,
 lo

ga
ri

th
m

ic
 s

ca
le

)

Input Data Size (in bytes)

BW Threshold runtime in milliseconds in relation to input data size - All
platforms

ARM A9 CPU FPGA Performance

76

6.1.2. Image Convolution runtime comparison

The graph below shows the runtime of the Image Convolution with 3x3 kernel

algorithm in relation to the input size of the data measured in milliseconds on the 2

test platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the

execution time is in logarithmic scale.

Figure 44 – Image Convolution with 3*3 Kernel runtime, all platforms compared, semi-

logarithmic graph

In the case of the Image Convolution algorithm, it is clear that the FPGA

implementation is much faster than the ARMv7 CPU implementation. For an input

size of 2MB (almost exactly the size of a full HD grayscale image) the processing

time on the FPGA platform is 1.86 milliseconds, while the ARMv7 CPU platform is

55 times slower at 99.2 milliseconds.

Similarly to the BW Image Thresholding algorithm, the Image Convolution

FPGA accelerator shows a steady runtime of almost 18 microseconds for the first 5

input sizes tested due to the latency of transferring data. The additional 16

microseconds delay compared to the previous algorithm is caused from the setup of

look-up tables and parsing of operational parameters that take place prior to

processing the actual input image data.

6.1.3. Dimer Genome Distribution runtime comparison

The graph below shows the runtime of the Dimer Genome Distribution

algorithm in relation to the input size of the data measured in milliseconds on the 2

test platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the

execution time is in logarithmic scale.

0.001

0.01

0.1

1

10

100

1000

R
u

n
ti

m
e

 (
in

 m
se

c,
 lo

ga
ri

th
m

ic
 s

ca
le

)

Input Data Size (in bytes)

Convolution runtime in relation to input data size - All platforms

ARM A9 CPU FPGA Performance

77

Figure 45 – Dimer genome distribution runtime, all platforms compared, semi-logarithmic graph

The FPGA implementation of the algorithm shows considerable speedup in

the ranges of [16KB-8MB], with the FPGA implementation processing 8 MB of

genome data (which translates to 8 million bases in the current encoding utilized) in

7.35 milliseconds while the ARMv7 implementation processes the same genome in

199.2 milliseconds, 27 times slower.

Similarly to the previous 2 algorithms, the FPGA implementation of the Dimer

Genome Distribution shows a steady execution time of 10 microseconds for sizes of

64-2048 bytes due to the latency incurred from transferring data from the DDR to the

PL.

The added 8 microseconds latency when compared to the latency of the BW

Image Thresholding algorithm is attributed to the fact that there needs to be some

preprocessing in the accelerator IP before the DMA engine starts sending actual

genome data to the PL for processing. Additional latency is incurred due to post

processing where we have to add all individual counters in the IP to a single array of

dimer distribution counters before sending them to the DDR.

0.001

0.01

0.1

1

10

100

1000
R

u
n

ti
m

e
 (

in
 m

se
c,

 lo
ga

ri
th

m
ic

 s
ca

le
)

Input Data Size (in bytes)

Dimer Genome Distribution runtime in milliseconds in relation to input data size
- All platforms

ARM A9 CPU FPGA Performance

78

Figure 46 – Timing information of Dimer Genome Distribution HLS IP

6.2. Performance throughput comparison

6.2.1. Black and White image Thresholding performance throughput

The graph below shows the performance in relation to input size of the data

processed measured in MB/sec for the BW Image Thresholding application on the 2

test platforms.

Figure 47 – BW threshold performance in MB/sec. All platforms. Sizes 64bytes-8MBs.

0

200

400

600

800

1000

1200

Th
ro

u
gh

p
u

t
(i

n
 M

B
/s

e
c)

Input Data Size (in bytes)

BW Threshold performance in MB/sec in relation to input data size - All
platforms

ARM A9 CPU FPGA

79

Throughput results show a clear performance benefit when utilizing the FPGA

co-processor to calculate the BW threshold of an image. As the size of the input

image increases, the FPGA throughput converges to the theoretical peak performance

value of 1089.9135 MB/sec, with the 8MB input size computation reaching 99.997%

of the theoretical maximum throughput.

6.2.2. Image Convolution with 3x3 kernel performance throughput

The graph below shows the performance in relation to input size of the data

processed measured in MB/sec for the Image Convolution application on the 2 test

platforms.

Figure 48 – Image Convolution performance in MB/sec. All platforms. Sizes 64bytes-8MBs.

Results of the image convolution application paint a different image in this

case compared to the BW image Thresholding. Convolution requires many more

operations applied on multiple data, some of them even reused during the process.

It is evident here that the FPGA with its concurrent computation capabilities

and with the implementation of a sliding window buffer in the FPGA to allow

resource reuse results in an implementation that is up to 5300% faster than the ARM

implementation.

It is important to note however once again that for relatively small sizes of

input data the FPGA performance drops dramatically. In the range of 64-256 bytes,

the ARMv7 implementation is faster, although processing images that are so small

may not be a common occurrence.

0

200

400

600

800

1000

1200

Th
ro

u
gh

p
u

t
(i

n
 M

B
/s

e
c)

Input Data Size (in bytes)

Convolution performance in MB/sec in relation to input data size - All platforms

ARM A9 CPU FPGA Performance

80

6.2.3. Dimer Genome Distribution performance throughput

The graph below shows the performance in relation to input size of the data

processed measured in MB/sec for the Dimer Genome Distribution application on the

2 test platforms.

Figure 49 – Dimer Genome Distribution performance in MB/sec. All platforms. Sizes 64bytes-8MBs.

Similarly to the previous 2 algorithms, the FPGA implementation of the Dimer

Genome Distribution algorithm is many times faster than the ARMv7

implementation.

The FPGA co-processor reaches 99.9% of the theoretical maximum when

processing 8MB of genome data. This translates to a processing throughput of 8.38

Megabases/second (1 base = 1 byte). If the .2bit encoding was used we could

theoretically achieve 4 times higher base processing throughput at the cost of

increased resource utilization.

0

200

400

600

800

1000

1200

Th
ro

u
gh

p
u

t
(i

n
 M

B
/s

e
c)

Input Data Size (in bytes)

Dimer Genome Distribution performance in MB/sec in relation to input data size -
All platforms

ARM A9 CPU FPGA

81

6.3. Energy efficiency comparison

6.3.1. Black and White image thresholding energy efficiency

The graph below shows the energy efficiency in relation to input size of the

data processed measured in MB/joule (megabytes of input data processed per joule

spent) for the BW Image Thresholding application on the 2 test platforms.

Figure 50 – Energy efficiency of BW Image Thresholding in relation to input data size on ARM CPU and

FPGA HLS IP.

The FPGA implementation offers a clear advantage in power efficiency thanks

to its much higher throughput. The device wattage is slightly higher when running on

the FPGA coprocessor but because the runtime is several times faster, the overall

energy expendited is up to 7 times less than the energy expendited to run the

algorithm on the ARMv7 CPU.

Future FPGA implementations where the bit-width of the PS-PL port is higher

such as Ultrascale+ devices or implementing a device hardware platform that can

accommodate 200MHz of frequency in the PL could lead to dramatic increase in

performance of the FPGA implementation.

0.00

50.00

100.00

150.00

200.00

250.00

En
e

rg
y

Ef
fi

ci
e

n
cy

 (
in

 M
B

/j
o

u
le

)

BW Image Thresholding energy efficiency in MB/Joule in relation to input data
size - All Platforms

FPGA Coprocessor ARM CPU

82

6.3.2. Image Convolution with 3x3 kernel energy efficiency

The graph below shows the energy efficiency in relation to input size of the

data processed measured in MB/joule (megabytes of input data processed per joule

spent) for the Image Convolution application on the 2 test platforms.

Figure 51 - Energy efficiency of Image Convolution in relation to input data size ARM CPU and

FPGA HLS IP.

Similar to the BW Thresholding application, the FPGA is capable of

outperforming the ARM processor in energy efficiency. However, this time the

difference in efficiency is much more visible than the aforementioned application.

The FPGA implementation reaches 227 MB/joule energy efficiency when

processing 8MB of data. Compared to the ARM CPU which has an energy efficiency

of 5.22 MB/joule in the 8MB input size, the FPGA offers a x44 increase respectively

in energy efficiency.

0

50

100

150

200

250

En
e

rg
y

Ef
fi

ci
e

n
cy

 (
in

 M
B

/j
o

u
le

)

Image Convolution energy efficiency in MB/Joule in relation to input data size -
All Platforms

FPGA Coprocessor ARM CPU

83

6.3.3. Dimer Genome Distribution energy efficiency

The graph below shows the energy efficiency in relation to input size of the

data processed measured in MB/joule (megabytes of data processed per joule spent)

for the Dimer Genome Distribution application on the 2 test platforms.

Figure 52 - Energy efficiency of Dimer Genome Distribution in relation to input data size ARM CPU and

FPGA HLS IP.

Finally, Dimer Genome Distribution is similarly much more efficient when

running on the FPGA thanks to a combination of both high parsing throughput of the

genome as well as low power consumption.

Energy efficiency metrics are similar to the previous 2 algorithms, with the

FPGA implementation offering up to 43x increase in energy efficiency when

processing 8 MB of genome sequence data. Only for very small sequences is the

ARMv7 implementation more energy efficient (ranges of 64-512 bytes of genome

sequence data).

0.00

50.00

100.00

150.00

200.00

250.00

En
e

rg
y

Ef
fi

ci
e

n
cy

 (
in

 M
B

/j
o

u
le

)

Dimer Genome Distribution energy efficiency in MB/Joule in relation to input
data size - All Platforms

FPGA Coprocessor ARM CPU

84

6.4. Cycles per byte performance comparison

6.4.1. Black and White image thresholding clock cycles/byte

The graph below shows the performance in clock cycles per byte processed for

the BW Image Thresholding application on the 2 test platforms.

Figure 53 – Performance in cycles/byte of BW Image Thresholding in relation to input data size on ARM

CPU and FPGA HLS IP.

Clock cycles per byte metrics show that the FPGA implementation offers

unparalleled performance in concurrent execution of input data, managing up to a

little over 0.125 cycles per byte processed, up to 38 times better performance than the

implementation on the ARMv7.

The 0.125 cycles per byte performance of the FPGA indicates that an increase

in clock frequency of the PL logic can result in a drastic increase in overall

performance, as long as the bandwidth of the DDR module from which we read data

and write output results can support it.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

C
lo

ck
 c

yc
le

s/
b

yt
e

Input Data Size (in bytes)

BW Image Thresholding processor cycles per byte processed in relation to input
data size - All Platforms

ARM A9 CPU (667 MHz) FPGA (142.85MHz)

85

6.4.2. Image Convolution with 3x3 kernel clock cycles/byte performance

The graph below shows the performance in clock cycles per byte processed for

the Image Convolution application on the 2 test platforms.

Figure 54 – Performance in cycles/byte of Image Convolution in relation to input data size on ARM CPU

and FPGA HLS IP.

Image Convolution with 3x3 kernel implementation on the FPGA is much

faster than the ARMv7 implementation even though the FPGA is clocked at a little

less than 5 times lower clock frequency.

This means that the cycles/byte performance of the FPGA implementation can

be up to 252 times better than the ARMv7 CPU implementation.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

C
lo

ck
 c

yc
le

s/
b

yt
e

Input Data Size (in bytes)

Convolution processor cycles per byte processed in relation to input data size - All
Platforms

ARM A9 CPU (667 MHz) FPGA (142.85MHz)

86

6.4.3. Dimer Genome Distribution clock cycles/byte performance

The graph below shows the performance in clock cycles per byte processed for

the Dimer Genome Distribution application on the 2 test platforms.

Figure 55 - Performance in cycles/byte of Dimer Genome Distribution in relation to input data size on ARM

CPU and FPGA HLS IP.

Cycles/byte metrics for the 2-mer genome distribution application showcase

that the FPGA implementation offers the lowest value of the 2 platforms. Similarly to

the previous 2 algorithms for data sizes of 8KB and higher, it reaches its theoretical

maximum of 0.125.

This shows promising results for implementations of the hardware platform

that can run on 200MHz on the Zedboard or even for FPGA platforms that can be

clocked at higher frequencies than the Zynq-7000 chip utilized in this work.

0.00

5.00

10.00

15.00

20.00

25.00

C
lo

ck
 c

yc
le

s/
b

yt
e

Input Data Size (in bytes)

Dimer Genome Distribution processor cycles per byte processed in relation to
input data size - All Platforms

ARM A9 CPU (667 MHz) FPGA (142.85MHz)

87

7. Conclusion and future work

7.1. Conclusion
Implementation results of the 3 algorithms that were executed on the 2

different platforms show measurements that coincide with results of past work.

As far as pure performance throughput metrics go, both in latency as well as

average throughput in MB/sec of executing tasks of small size, it is clear that an ARM

CPU is better than an FPGA. This is due to the fact that the data path from the DDR

to the PL in an FPGA is longer and needs to pass through more interconnecting logic

to reach the accelerator.

In their work on improvement of serving answers to web browser queries,

Owaida et al. [57] showed that for input sizes of a few thousand or less scoring

requests, the FPGA offers low bandwidth due to the static overhead of initiating

transfers and kernel invocation time overhead. Because these metrics are mostly

independent of input size however, as the input data size increases they take up

smaller and smaller percentage of the overall time and the computation efficiency

becomes higher.

However, for larger input data size, the FPGA can offer significantly better

performance than the ARMv7 CPU across all 3 algorithms and in almost all measured

benchmark metrics.

This of course can result in higher resource utilization on the FPGA; however

the use of arbitrary precision structures of Vivado HLS when creating an IP can offer

resource usage optimizations that will allow reconfigurable modules to fit in a defined

Reconfigurable Region of a DPR-enabled design.

In regards to energy efficiency metrics, the expected results from past

literature and reports indicate that the FPGA implementations of all 3 algorithms and

for nearly all input data sizes offers much greater results than conventional

architecture CPUs.

The most prevalent example of this can be seen when we compare the

convolution of 8MBs of image data on the ARMv7 CPU and on the FPGA where the

ARM CPU computes the convolution and consumes 1.53 Joules of energy while the

FPGA implementation consumes 0.035 Joules, resulting in an overall increase in

energy efficiency of 4271%.

ARMv7 implementation shows better results for very small input sizes, which

are not expected to be common.

Clock cycles per byte processed metrics can indicate viability of increasing the

clocking frequency of an FPGA device in order to increase performance throughput of

88

an implemented application or migrating the FPGA accelerator platform to a device

that can handle higher frequencies.

The main contribution of this work is the implementation of a multi-

disciplinary hardware acceleration platform on an FPGA that utilizes Dynamic Partial

Reconfiguration and is designed to allow any type of Reconfigurable Module to be

housed in a Reconfigurable Region.

Partial Reconfiguration constraints limit the reprogramming of a RP because

the interface ports of each module need to be exactly the same in order for them to be

compatible.

By transferring the metadata and the parameters of the computation process

such as the threshold value in the Black and White Image Thresholding application or

the Convolution Filter in the Image Convolution function through the same data port

that the input data is transferred, we remove the obstacle of having to develop each

acceleration function with the same interface ports.

Of course this means that the during development, the software handling

delegation to the Programmable Logic coprocessors in later stages of the development

cycle needs to be aware in which order each parameter is being sent.

To our knowledge, this is the first work that demonstrates this design

paradigm to allow any function, regardless of the parameters that need to be passed in,

to be included in a DPR-enabled FPGA hardware platform.

7.2. Future work
In this study we implemented a partial reconfiguration platform for offering

computation acceleration services to users in a cloud computing environment. The use

cases selected were much more energy efficient and cycle efficient on the FPGA

platform than on the ARM CPU.

We believe that future work for the specific algorithms implemented should

include the following

1. Black and White thresholding application should output data in a single bit per

pixel format instead of an 8-bit value. This can help decrease write rates of the

FPGA to the DDR and lower the consumed bandwidth of the DDR during

processing of this application, freeing up bandwidth resources for other FPGA

coprocessors.

2. The Dimer Genome Distribution application should be extended to allow

processing of .2bit format genomes. This will allow the FPGA to showcase its

bit-accurate processing capabilities and its viability as an acceleration platform

for genome sequencing. Of course, this would result in more resources needed

to be allocated for this coprocessor, meaning it may exceed resources of the

89

partial reconfigurations regions defined during floorplanning. This must be

taken into account.

Besides the above, additional future work should focus on adding different,

more computationally complex algorithms on the platform and evaluating their

performance when compared to a CPU or GPU implementation. Theoretical

maximum performance bandwidth given from Equation 4 can help designers evaluate

the viability of migrating a task to the FPGA platform before beginning development

on the hardware platform by first evaluating its performance on a conventional CPU

or GPU platform.

Additionally, future work should focus on evaluating the performance of the

scheduling algorithms used in this work to ensure resource reuse of the reconfigurable

partitions and to select which partitions will be reprogrammed when it is needed. The

fact that we use the Least Recently Used partition when a user requests an

acceleration service may not offer the lowest overall probability that a reconfiguration

will take place. It depends heavily on access patterns. For example, there may be

cases where a Least Frequently Used (LFU) scheduling scheme offers better results.

90

References
[1] S. O‟Sullivan, “Internet Solutions Division Strategy for Cloud Computing,”

1996. [Online]. Available:

https://s3.amazonaws.com/files.technologyreview.com/p/pub/legacy/compaq_c

st_1996_0.pdf.

[2] X. Zenuni, J. Ajdari, F. Ismaili, and B. Raufi, “Cloud storage providers : A

comparison review and evaluation Cloud Storage Providers : A Comparison

Review and Evaluation,” in International Conference on Computer Systems

and Technologies - CompSysTech’14 Cloud, 2014, no. June, doi:

10.1145/2659532.2659609.

[3] L. M. Dang, J. Piran, D. Han, K. Min, and H. Moon, “A Survey on Internet of

Things and Cloud Computing for Healthcare,” Electronics, vol. 8, no. 7, pp. 1–

49, 2019, doi: 10.3390/electronics8070768.

[4] G. Crespo-perez and A. Ojeda-castro, “Convergence Of Cloud Computing ,

Internet Of Things , And Machine Learning : The Future Of Decision Support

Systems,” Int. J. Sci. Technol. Res., vol. 6, no. 7, 2017.

[5] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud applications:

an empirical study on software development for the cloud,” in Proceedings of

the 2015 10th Joint Meeting on Foundations of Software Engineering -

ESEC/FSE 2015, 2015, pp. 393–403, doi: 10.1145/2786805.2786826.

[6] P. Mvelase, H. Sithole, T. Modipa, and S. Mathaba, “The Economics of Cloud

Computing : A Review,” no. November, 2016, doi:

10.1109/ICACCE.2016.8073741.

[7] D. Lee, D. Kim, D. Kwon, and H. Kim, “Efficient Hardware Implementation of

the Lightweight Block Encryption Algorithm LEA,” Sensors, vol. 14, no. 1, pp.

975–994, 2014, doi: 10.3390/s140100975.

[8] C. Pal, A. Kotal, A. Samanta, A. Chakrabarti, and R. Ghosh, “An Efficient

FPGA Implementation of Optimized Anisotropic Diffusion Filtering of

Images,” Int. J. Reconfigurable Comput., vol. 2016, p. 17, 2016, doi:

10.1155/2016/3020473.

[9] Y. Said, T. Saidani, F. Smach, M. Atri, and H. Snoussi, “Embedded Real-Time

Video Processing System on FPGA,” 2012, doi: 10.1007/978-3-642-31254-0.

[10] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” 2011.

[11] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud

computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility,” Futur. Gener. Comput. Syst., vol. 25, no. 6, pp.

599–616, 2009, doi: 10.1016/j.future.2008.12.001.

[12] Xilinx, “MicroBlaze Soft Processor Core.”

https://www.xilinx.com/products/design-tools/microblaze.html (accessed Jan.

03, 2020).

[13] C. Maxfield, The Design Warrior’s Guide to FPGAs. Elsevier, 2004,

91

ISBN:9780750676045.

[14] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding

Performance Differences of FPGAs and GPUs,” in 2018 IEEE 26th Annual

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), Apr. 2018, pp. 93–96, doi: 10.1109/FCCM.2018.00023.

[15] E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh, and D.

Marr, “Accelerating Binarized Neural Networks: Comparison of FPGA, CPU,

GPU, and ASIC,” in 2016 International Conference on Field-Programmable

Technology (FPT), Dec. 2016, pp. 77–84, doi: 10.1109/FPT.2016.7929192.

[16] J. A. S. Laitner, “The Energy Efficiency Benefits and the Economic Imperative

of ICT-Enabled Systems,” 2015, pp. 37–48,

http://link.springer.com/10.1007/978-3-319-09228-7_2.

[17] Commission Regulation (EU) No 617/2013 of 26 June 2013 implementing

Directive 2009/125/EC regading ecodesign requirements for computers and

computer servers. European Union Commision, 2013, p. 29.

[18] A. Andrae and T. Edler, “On Global Electricity Usage of Communication

Technology: Trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015,

doi: 10.3390/challe6010117.

[19] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A Comparative

Study of Methods for Measurement of Energy of Computing,” Energies, vol.

12, no. 11, p. 2204, Jun. 2019, doi: 10.3390/en12112204.

[20] P3International, “Kill-a-Watt Power Metering Device.”

http://www.p3international.com/products/p4400.html (accessed Aug. 21,

2020).

[21] Xilinx, “Xilinx Power Estimator,” 2009.

https://www.xilinx.com/products/technology/power/xpe.html (accessed Feb.

23, 2020).

[22] G. Kornaros (Editor), Multi-Core Embedded Systems. CRC Press/Taylor &

Francis Group, 2010, ISBN:978-1-4398-1161-0.

[23] O. Vermesan et al., “New Waves of IoT Technologies Research - Transcending

Intelligence and Senses at the Edge to Create Multi Experience Environments,”

in Internet of Things – The Call of the Edge - Everything Intelligent

Everywhere, DK: River Publishers, 2020, https://european-iot-

pilots.eu/internet-of-things-the-call-of-the-edge-everything-intelligent-

everywhere/.

[24] G. Kornaros and D. Pnevmatikatos, “A survey and taxonomy of on-chip

monitoring of multicore systems-on-chip,” ACM Trans. Des. Autom. Electron.

Syst., vol. 18, no. 2, pp. 1–38, Mar. 2013, doi: 10.1145/2442087.2442088.

[25] M. D. Grammatikakis, G. Kornaros, and M. Coppola, “Power‐Aware Multicore

SoC and NoC Design,” in Multiprocessor System-on-Chip, M. Hübner and J.

Becker, Eds. New York, NY: Springer New York, 2011, pp. 167–193,

92

http://link.springer.com/10.1007/978-1-4419-6460-1.

[26] G. Kornaros and D. Pnevmatikatos, “Dynamic Power and Thermal

Management of NoC-Based Heterogeneous MPSoCs,” ACM Trans.

Reconfigurable Technol. Syst., vol. 7, no. 1, pp. 1–26, Feb. 2014, doi:

10.1145/2567658.

[27] G. Kornaros and D. Pnevmatikatos, “Hardware-assisted dynamic power and

thermal management in multi-core SoCs,” in Proceedings of the 21st edition of

the great lakes symposium on Great lakes symposium on VLSI - GLSVLSI ’11,

2011, p. 115, doi: 10.1145/1973009.1973033.

[28] I. Christoforakis, O. Tomoutzoglou, D. Bakoyiannis, and G. Kornaros,

“Dithering-Based Power and Thermal Management on FPGA-Based Multi-

core Embedded Systems,” in 2015 IEEE 13th International Conference on

Embedded and Ubiquitous Computing, Oct. 2015, pp. 173–177, doi:

10.1109/EUC.2015.18.

[29] J. Yu, Y. Zhu, L. Xial, M. Qiu, Y. Ful, and G. Rongl, “Grounding High

Efficiency Cloud Computing Architecture : HW-SW Co-Design and

Implementation of a Stand-alone Web Server on FPGA,” in Fourth

International Conference on the Applications of Digital Information and Web

Technologies, 2011, pp. 124–129, doi: 10.1109/ICADIWT.2011.6041412.

[30] K. Eguro and R. Venkatesan, “FPGAs For Trusted Cloud Computing,” in 22nd

International Conference on Field Programmable Logic and Applications,

2012, pp. 63–70, doi: 10.1109/FPL.2012.6339242.

[31] F. Armknecht et al., “A Guide to Fully Homomorphic Encryption,” IACR

Cryptol. ePrint Arch., vol. 2015, 2015.

[32] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA Accelerators for

Efficient Cloud Computing,” in International Conference on Cloud Computing

Technology and Science, 2015, pp. 430–435.

[33] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside, “Resource Elastic

Virtualization for FPGAs using OpenCL,” in 28th International Conference on

Field Programmable Logic and Applications, 2018, no. September, doi:

10.1109/FPL.2018.00028.

[34] A. W. Services, “Amazon EC2 F1.” Accessed: Feb. 22, 2020. [Online].

Available: https://aws.amazon.com/ec2/instance-types/f1/.

[35] S. Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out

System Simulation in the Public Cloud,” in 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture (ISCA), Jun. 2018, pp. 29–

42, doi: 10.1109/ISCA.2018.00014.

[36] Alibaba Cloud ECS, “Deep dive into alibaba cloud F3 FPGA as a service

instances.,” 2018. .

[37] O. Tomoutzoglou, D. Mbakoyiannis, G. Kornaros, and M. Coppola, “Efficient

Job Offloading in Heterogeneous Systems Through Hardware-Assisted Packet-

93

Based Dispatching and User-Level Runtime Infrastructure,” IEEE Trans.

Comput. Des. Integr. Circuits Syst., vol. 39, no. 5, pp. 1017–1030, May 2020,

doi: 10.1109/TCAD.2019.2907912.

[38] D. Mbakoyiannis, O. Tomoutzoglou, and G. Kornaros, “Energy-Performance

Considerations for Data Offloading to FPGA-Based Accelerators Over PCIe,”

ACM Trans. Archit. Code Optim., vol. 15, no. 1, pp. 1–24, Apr. 2018, doi:

10.1145/3180263.

[39] G. Kornaros and M. Coppola, “Enabling Efficient Job Dispatching in

Accelerator-Extended Heterogeneous Systems with Unified Address Space,” in

2018 30th International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD), Sep. 2018, pp. 180–188, doi:

10.1109/CAHPC.2018.8645945.

[40] G. Kornaros and M. Pratikakis, “VWQS: A dispatching mechanism of

variable-size tasks in heterogeneous systems,” in 2016 International

Conference on High Performance Computing & Simulation (HPCS), Jul. 2016,

pp. 196–203, doi: 10.1109/HPCSim.2016.7568335.

[41] Xilinx, “Vivado Design Suite User Guide: Partial Reconfiguration (UG909),”

2017, [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug9

09-vivado-partial-reconfiguration.pdf.

[42] M. Nguyen, R. Tamburo, S. Narasimhan, and J. C. Hoe, “Quantifying the

Benefits of Dynamic Partial Reconfiguration for Embedded Vision

Applications,” in 2019 29th International Conference on Field Programmable

Logic and Applications (FPL), Sep. 2019, pp. 129–135, doi:

10.1109/FPL.2019.00029.

[43] A. Nafkha and Y. Louet, “Accurate measurement of power consumption

overhead during FPGA dynamic partial reconfiguration,” in 2016 International

Symposium on Wireless Communication Systems (ISWCS), Sep. 2016, vol.

2016-Octob, pp. 586–591, doi: 10.1109/ISWCS.2016.7600972.

[44] D. Luo, G. Pan, and G. Wang, “A Linux-based Dynamic Partial

Reconfiguration System Applied on Xilinx Zynq,” in Proceedings of The 7th

International Conference on Computer Engineering and Networks —

PoS(CENet2017), Jul. 2017, no. July 2017, p. 047, doi: 10.22323/1.299.0047.

[45] Avnet, “Zedboard APSoC Integrated Circuit.”

https://www.xilinx.com/products/boards-and-kits/1-elhabt.html (accessed Jan.

02, 2020).

[46] Linux Foundation, “FPGA Manager Linux Kernel Documentation.”

https://www.kernel.org/doc/html/v4.18/driver-api/fpga/fpga-mgr.html

(accessed Feb. 27, 2020).

[47] S. Neuendorffer, T. Li, and D. Wang, “Accelerating OpenCV Applications

with Zynq-7000 All Programmable SoC using Vivado HLS Video Librarie,”

Xilinx Wiki, vol. 1167, p. 1, 2013, [Online]. Available:

http://www.wiki.xilinx.com/XAPP1167.

94

[48] N.-M. Ho, E. Manogaran, W.-F. Wong, and A. Anoosheh, “Efficient floating

point precision tuning for approximate computing,” in 2017 22nd Asia and

South Pacific Design Automation Conference (ASP-DAC), Jan. 2017, vol. 0,

pp. 63–68, doi: 10.1109/ASPDAC.2017.7858297.

[49] N. Cristianini and M. Hahn, Introduction to Computational Genomics.

Cambridge University Press, 2006, ISBN:9780521856034.

[50] NCBI, “RefSeq Genetic Sequence Database.”

https://www.ncbi.nlm.nih.gov/refseq/ (accessed Feb. 28, 2020).

[51] F. Wu et al., “A new coronavirus associated with human respiratory disease in

China,” Nature, Feb. 2020, doi: 10.1038/s41586-020-2008-3.

[52] Xilinx, “Pipeline HLS Pragma,” 2017.

https://www.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/fde15040343600

78.html (accessed Feb. 23, 2020).

[53] Xilinx, “Bootgen User Guide - UG1283,” 2018. [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug1

283-bootgen-user-guide.pdf.

[54] B. Sean, “STB Image C Library,” 2014. https://github.com/nothings/stb

(accessed Feb. 28, 2020).

[55] Adafruit, “INA219 Current Sensor.” https://www.adafruit.com/product/904

(accessed Oct. 18, 2020).

[56] Digilent, “ISNS20 Pmod Current Sensor.” https://store.digilentinc.com/pmod-

isns20-20a-current-sensor/ (accessed Oct. 18, 2020).

[57] M. Owaida, G. Alonso, L. Fogliarini, A. Hock-Koon, and P.-E. Melet,

“Lowering the latency of data processing pipelines through FPGA based

hardware acceleration,” Proc. VLDB Endow., vol. 13, no. 1, pp. 71–85, Sep.

2019, doi: 10.14778/3357377.3357383.

