DESIGN AND IMPLEMENTATION OF AN ADAPTIVE HIGH
EFFICIENCY FPGA-ACCELERATED SYSTEM FOR MULTI-DISCIPLINARY
APPLICATION DOMAINS

by
SVORONOS LEIVADAROS

B.Sc., Technological Educational Institute of Crete, 2017

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

SCHOOL OF ENGINEERING

HELLENIC MEDITERRANEAN UNIVERSITY

2020

Approved by:

George Kornaros

Copyright
SVORONOS LEIVADAROS

2020

Abstract

The scope of this thesis is the design and implementation of an FPGA platform that
utilizes state-of-the-art techniques and methodologies to allow improved energy
efficiency and performance in carrying out computationally intensive tasks. The goal
is to develop a framework for FPGA-based architectures that can be used in
environments that include but are not limited to Cloud Computing Clusters, High
Performance Computational Clusters and Distributed Data Centers. A proof of
concept implementation of this framework with 3 accelerated tasks (Black and White
Image Thresholding, Image Convolution with a 3x3 Kernel, Genome 2-mer
Distribution Analysis) is also presented and compared with implementation of the
same tasks on an FPGA and ARMv7 architecture CPU. To our knowledge, the
methodology in designing the Partial Reconfiguration platform employed in this work
is novel and allows designing Dynamic Partial Reconfiguration-enabled hardware
platforms on an FPGA without the need for wrapper logic or the need to register all
inputs and outputs to every reconfigurable module, facilitating the establishment of
compatibility across implemented reconfigurable modules in early development and
future integration of new accelerated functions on the FPGA platform. Performance
and energy efficiency metrics are also presented for the 2 different implementation
platforms.

Mepianym

To avtikeipevo HEAETNG OWTNG NG OWMAMUATIKNG epyaciog eivor 1 oyediaon kot
vAomoinon pwog mAateopuag Xvotoyieg [TvAdv Ilpoypappatilopeveg oto Iledio
(FPGA) n omoio a&lomolel cvyypoveg texvikés kot pebodoroyiec yio vo emiTiyel
HEYIOTN EVEPYELNKT OMOOOTIKOTNTO KOl 0TOO0GT OTNV OEKTEPUIMOT VITOAOYIGTIKA
ATOTNTIKOV Olepyaciav gupeiov edopatog. O otdyog eivar va avomtoéovpe €va
A0 AOYIGHIKOD Y10 VAOTOINGT OPYLTEKTOVIKMV VITOAOYIOTIKOV GUOTNUAT®OV
Bacwopéva oe FPGAs vy ypnion oe mepifdiiovta epyaciog Om®G XVGTOLXIES
Ynohroyotikeov vepav (Cloud Computing Clusters), Ymoloylotikéc Xvototyieg
YynAng Amoédooncg (High Performance Computing) wotr Kotavepnuéva Kévipa
Agdopévav (Distributed Data Centers). Mw vAomoinon proof-of-concept Tov
TPOTEWVOUEVOL TAOLICIOL pHE 3 €QUPUOYEG TOL UTOPOVV VO ETLTOYLVOOLV
(Acmpdpovpn Katogrioon Ewdvog, XuvéMEn ewovag pe mopnva dtootdcewy 3x3,
Koatavopury Awyepav Novkieotwiov Tovidwwpdtov) 0o mapovoiacHel kot o
oLYKpOel pe avTioTOLEG VAOTONGELS G GUUPATIKES OPYLTEKTOVIKES VITOAOYIGTMV LIE
enefepyaot) ARMv7. Katd v ektipnomn pog, avt) sivor m mpdTN €pguva Tov
nePypaQetl por véa pebodoloyion Tov va EMITPETEL TOV OYEOIOGUO TAATEOPUOV UE
duvatdtteg Avvapikng Mepikig Avadapdpemong yxopig v avaykn LAOTOINGoNG
AOYIKNG mEPTOMENG 1 KATOYOPOONS OA®V TV €1600mV Kol €£00mV Ge OAeG TIG
avampocsoppolopeveg Hovadeg, devkoAbvovtag tnv eykobidpvon cvuPatdtnrog
petalld TV VAOTOMUEVEOV HOVAO®MV EMTAYLVONG Kol TNV UEAAOVTIKY EMEKTAGT TNG
TAOTQOPUOG HE VEOLG aAyopiBuovg, emtayvvopevoug and v mioateopua FPGA.
Emiong, 6o mopovcidcovpe HETPNOELS EMOOCEMV KOl EVEPYELNKNG OTOS00NG OO TIg
VAOTOIMUEVES TAATPOPLLEG.

Table of Contents

ADSITACE ...ttt sttt bttt ettt et b ettt b bt et aeenee 3
TIEPTATIUM ceeetieett ettt ettt ettt et et e et e e sbe e teeenbeesaeeenbeensseensaennseanseennns 4
Table Of CONLENLSeetieiiriieiietee ettt et sttt et sae e 5
TabIe Of FIGUIESveieeiieeciee ettt et e e et e e ssvae e saaeeesaseeennns 7
Table OF TaABLEScoueeiiieiiee ettt et e 9
L. TNEPOAUCHION ..ottt ettt et e s 10
2. Theoretical Background and Related Workcccvveviiiiiiiiciiiiieeeeee 13
2.1. Cloud Computing Definition..........cceervuiiiriiieeriieeriee e 13
2.2. Fundamental Characteristics of Cloud Computing........c..cccccevveverieneennennne. 14
2.3. Field Programmable Gate Arrays (FPGAS)c..ccocvviniininiicniiinicneceee, 15
2.4. Dynamic Partial Reconfiguration of FPGAS.......cc.cocccviiiiniiniiininiinicce. 16
2.5. Energy Efficient COMPULINGcc.eevuiriiriiiiniirieeientesieeieeteseee e 19
2.6. Related Work on FPGA-based Cloud Computing.........cccceceeeeeverieneennenne. 23
2.7. Related Work on Dynamic Partial Reconfigurationcccccoeviinienncnee. 24
3. Proposed System Architecture and Development Environment 26
3.1. Proposed System Architecture and FIOWc.ccccvevvieviiiiienciiiieeieeee, 26
3.2. FPGA Platform System Specificationscccceerveevierieeiiienieerieeeieeneenens 28
3.3. System Design and Development Environment..............ccccceeveveeriieenneennee. 30
4. Implementation MethodolOgYcc.eeveuiiiiiiiiiiiiecieeiee e 32
4.1. Multidisciplinary Algorithms Implemented...........cccccvveiiiieiiiiniiieeieeeeeeee, 32
4.1.1. Image Black and White Thresholding............ccceevvevviieniieiniiiieeeeee 33
4.1.2. Image CONVOIULIONccccuiiieiiieeiiieeiiee et eee et ree e e e e e 34
4.1.3. Dimer Genome DiStributionccocueeiiiiiiiiiiiiieniceeeiceeeeeeee e 37

4.2. Vivado HLS Design Workflow..........cccoeviiiiiiiiiniieeiieeeeeeeeeeeee e 39
4.3. Vivado Design WOrKfIOWcociiiiiiiiiiiiieiieeeee e 44
4.3.1. Block Diagram Design and Synthesisccccocueeeieviiiiieniieeienieeieeee 44
4.3.2. Floorplanning and Implementation of the Hardware Design 49

4.3.3. Verify Partial Reconfiguration Compatibility and Generate Bitstreams....56

4.4. Vivado SDK Design WOrKflOWccccieeiiiiiiiiieiiecieeeeeee e 57
4.5. Power Analysis Methodologyccceeiiiiiiiniiiiiieiecieee e 59
4.6. DPR-Aware Task Scheduler Implementation.............cccoccveeeienieeiiienieeniienns 61
5. System Operational MEIIiCS.ueviieriieriieiieeieeiie ettt ettt e eae e ens 66

5.1. ARM Cortex A9 CPU benchmarksS........ooooiviiiiiiiiiiii 67

5.1.1. Black and White Thresholding Benchmarks — ARM CPU. 67
5.1.2. Convolution Benchmarks — ARM CPUccoceviiniiiiinieniiiccieneecene 68
5.1.3. Dimer Genome Distribution Benchmarks — ARM CPUc..cccceeeene. 69

5.2. DPR-Enabled FPGA Design benchmarks............cccceceveeiiienieeniienieeienieeeene 70
5.2.1. Black and White Thresholding Benchmarks - FPGAccccccvenennnee. 70
5.2.2. Convolution Benchmarks - FPGA..........cccccoiiiiiiiiiieeee, 71
5.2.3. Dimer Genome Distribution Benchmarks - FPGA............ccccooiiiiinennee. 71

5.3. Partial Reconfiguration Energy Overheadcccovvveviieiiiiiniiiieieeeeee, 72
6. Experimental results diSCUSSIONiiecvieeiiieeiiie et e et e e e e e eevee e 75
6.1. Execution runtime COMPATISON......c.ueeerureeerureeeiieeerreeeireesneeesreeesreeesseeenenes 75
6.1.1. Black and White Image Thresholding runtime.........c..cccccccevvieninncnnen. 75
6.1.2. Image Convolution runtime COMPAriSONccceeevueereeerreeneeenreeneeenees 76
6.1.3. Dimer Genome Distribution runtime comparisoncceceeevveereveennen. 76

6.2. Performance throughput comparisoncceecueeviiriienieenieniceeeceeeeee 78
6.2.1. Black and White image Thresholding performance throughput............ 78
6.2.2. Image Convolution with 3x3 kernel performance throughput 79
6.2.3. Dimer Genome Distribution performance throughputccccceeeenennnee. 80

6.3. Energy efficiency COmMPAriSON.........cccvieeiiiieriiieeeiieeeireeeiee e esreeesreeeevee e 81
6.3.1. Black and White image thresholding energy efficiency..........c.cccccvveuneenn. 81
6.3.2. Image Convolution with 3x3 kernel energy efficiencycccceeevveernnenne 82
6.3.3. Dimer Genome Distribution energy efficiencycccceevvveeiieeniveencnnenns 83

6.4. Cycles per byte performance COmMpPAriSONcccuveeeeureeriireeriiieerireenireeenreeenenes 84
6.4.1. Black and White image thresholding clock cycles/byte..........c.ccccuvveeneennne 84
6.4.2. Image Convolution with 3x3 kernel clock cycles/byte performance 85
6.4.3. Dimer Genome Distribution clock cycles/byte performance...................... 86

7. Conclusion and fUuture WOTrK.........cocuooiiiiiiiiiiiiiee e 87
7.1 CONCIUSION. ...ttt ettt sttt sae et saeens 87
7.2 FULUIE WOTK ...ttt ettt 88
RETETEICES ...ttt 90

Table of Figures

Figure 1 — Architectural Diagram of Cloud Computing - Created by Sam Johnston using OmniGroup's
OmniGraffle and Inkscape https://commons.wikimedia.org/w/index.php ?curid=6080417 13
Figure 2 — Time multiplexing of multiple functions on a single reconfigurable partition reduces area

requirements 19
Figure 3 - Example of software monitoring system operational metrics such as wattage and
temperature. 21
Figure 4 — Summary overview of a Zynq-7000 device with partially user-defined workload parameters
22
Figure 5 — Proposed System Architecture Diagram 26
Figure 6 — Operational snapshot of the proposed system. 27
Figure 7 — The Zedboard, choice of implementation for proof-of-concept 28

Figure 8 — Basic workflow for designing the DPR-enabled platform on Xilinx Vivado Design Suite ___ 31
Figure 9 — Interface of the implemented algorithms as defined in C++ source code. Note that the port
names and types are exactly the same. This is important for enabling dynamic partial reconfiguration.
32
Figure 10 — Result of Black and White thresholding with threshold T = 120 applied on an image. ___ 33
Figure 11 — Element-wise multiplication of a subsection of the source image (red) with a kernel (blue)

34
Figure 12 — Example of clamping a negative value from resulting element-wise array summation to 0

35
Figure 13 — Example of applying the sharpen convolution filter on an image. (a) is the input image, (b)
is the kernel applied, (c) is the resulting image 36
Figure 14 - Example of applying the edge-detect convolution filter on an image. (a) is the input image,
(b) is the kernel applied, (c) is the resulting image 37
Figure 15 — Design workflow of Vivado DPR in this work 39
Figure 16 — Example of VHDL code for expressing the behavior of an AND gate 40
Figure 17 — Synthesis report for BW Threshold function in Vivado HLS. This report shows timing
estimates and resource utilization estimates 41
Figure 18 — Sample C++ code of the BW Thresholding Function 41
Figure 19 — Example of decreasing execution time of a loop via use of pipelining 42
Figure 20 — Result of partitioning an array of N elements with 3 different methods. 42
Figure 21 — Export RTL dialog box. 43
Figure 22 — Add directories of exported HLS IPs on the Vivado project 44
Figure 23 — Vivado block diagram of DPR platform 45
Figure 24 — AXI DMA Vivado IP Block settings 45
Figure 25 — PS-PL Configuration settings on ZYNQ7 Processing System IP 46
Figure 26 — PL Fabric clock settings of ZYNQ7 Processing System IP 47
Figure 27 — Generate output products in ‘O0C per IP’ mode 47
Figure 28 — Writing synthesized design and reconfigurable cells checkpoints. 48
Figure 29 — BW Thresholds IPs inserted in place of Dimer Distributions HLS IPs. 49
Figure 30 — Setting the HD.RECONFIGURABLE property of the design cells intended to be reconfirable

50
Figure 31 — Setting the DONT_TOUCH property of the reconfigurable cells 50
Figure 32 — Pblock creation dialog 51
Figure 33 — Created pblock resource utilization estimates for first module. 52
Figure 34 - Floorplanned device with 2 partial reconfiguration regions 52
Figure 35 — Property setting of the RESET_AFTER_RECONFIG and SNAPPING_MODE properties _____ 53
Figure 36 — DRC Rule subset selection for Partial Reconfiguration 54

7

Figure 37 — Updated blackbox partitions and locked design of routing resources 55

Figure 38 — Create boot image dialog box. 58
Figure 39 — Experimental setup for measuring power consumption of the developed FPGA platform. 60
Figure 40 — Computational overhead of Dynamic Partial Reconfiguration. 63
Figure 41 — Flow diagram for launching an acceleration task for requested data on the platform ___ 64
Figure 42 — Energy cost of programming a partial region 72
Figure 43 — BW Threshold runtime in milliseconds graph, all platforms compared, semi-logarithmic

graph 75
Figure 44 — Image Convolution with 3*3 Kernel runtime, all platforms compared, semi-logarithmic

graph 76
Figure 45 — Dimer genome distribution runtime, all platforms compared, semi-logarithmic graph __ 77
Figure 46 — Timing information of Dimer Genome Distribution HLS IP 78
Figure 47 — BW threshold performance in MB/sec. All platforms. Sizes 64bytes-8MBs. 78
Figure 48 — Image Convolution performance in MB/sec. All platforms. Sizes 64bytes-8MBs. 79

Figure 49 — Dimer Genome Distribution performance in MB/sec. All platforms. Sizes 64bytes-8MBs. 80
Figure 50 — Energy efficiency of BW Image Thresholding in relation to input data size on ARM CPU and

FPGA HLS IP. 81
Figure 51 - Energy efficiency of Image Convolution in relation to input data size ARM CPU and FPGA
HLS IP. 82
Figure 52 - Energy efficiency of Dimer Genome Distribution in relation to input data size ARM CPU and
FPGA HLS IP. 83
Figure 53 — Performance in cycles/byte of BW Image Thresholding in relation to input data size on
ARM CPU and FPGA HLS IP. 84
Figure 54 — Performance in cycles/byte of Image Convolution in relation to input data size on ARM CPU
and FPGA HLS IP. 85
Figure 55 - Performance in cycles/byte of Dimer Genome Distribution in relation to input data size on
ARM CPU and FPGA HLS IP. 86

Table of Tables

Table 1 — Target FPGA platform available resources 29
Table 2 — Dimer distribution of H. Influenza. (From [49], page 14) 38
Table 3 — Dimer distribution of SARS-COV-2, RefSeq ID NC_045512.2 38
Table 4 — Maximum utilization value for each category of resource for the 3 implemented algorithms
51
Table 5 —INA219 internal gain configurations. 59
Table 6 — BW Threshold benchmark metrics. ARM A9 CPU, -O3 optimized 68
Table 7 — Convolution benchmark metrics. ARM A9 CPU, -03 optimized 68
Table 8 — Dimer Genome Distribution benchmark metrics. ARM A9 CPU, -0O3 optimized 69
Table 9 — BW Threshold benchmark metrics. FPGA Coprocessor 70
Table 10 — Convolution benchmark metrics. FPGA coprocessor 71
Table 11 — Dimer Genome Distribution benchmark metrics. FPGA coprocessor 72

1. Introduction
The fields of Computer Engineering and Computer Science have played a
significant role in the advancement of nearly every aspect of human society.
Computational systems have found use in multiple disciplines with the result of
facilitating experts in all scientific and engineering fields to advance their respective
field’s knowledge and increase our quality of life.

In recent years, a field of computational systems based on clusters of
interconnected processing and storage nodes that are connected to the internet has
been established as the go-to method for covering a wide range of computational and
data storage needs. This field is called Cloud Computing and many variations of
Cloud Computing architectures and models have arisen as a result of extended
research on the topic.

Although popularized in 2006 with the release of the AWS (Amazon Web
Services) platform, the term ‘cloud computing’ is believed to have been first coined in
1996 [1] by Sean O’Sullivan in a business plan report detailing the need for a
migration of communication and collaboration systems to the ‘Internet cloud’.

Cloud computing solutions and ongoing research focus on a wide range of
objectives which includes but is not limited to the following:

e Secure remote storage of sensitive data (Microsoft OneDrive, Google Drive,
Dropbox) [2]

e Mass processing of data acquired from web services and IoT Devices [3]

e Big Data and Machine Learning algorithms to extract trends in demand of
services and products [4]

e An application development platform where projects are shared, stored and
compiled on the computing cluster instead of the user’s personal computer [5]

e Efficient acceleration of data intensive processes thanks to the economies of
scale [6]

Another field of Computer Science deals with development of computational
systems on specialized integrated circuits called FPGAs (Field-Programmable Gate
Arrays). FPGAs are meshes of primitive logic cells that usually consist of look-up
tables, flip-flops and digital signal processors. Both the primitive blocks of logic as
well as the interconnections in the fabric can be programmed and configured as per
the developer’s needs.

The designs on an FPGA fabric are usually developed using a special type of
programming language called Hardware Description Language such as VHDL and
Verilog to selectively interconnect these primitive logic cells in such a way that they
perform a specific task or even a whole algorithm.

10

Another type of programming paradigm used to design FPGA hardware
platforms is High-Level Synthesis (HLS). HLS refers to the methodology where a
developer uses a more conventional programming language more often used in
developing applications in static, mainstream CPU architectures such as C, C++ or
SystemC. The resulting code is then parsed and transformed into equivalent HDL
code (usually VHDL or Verilog). HLS as a development methodology is advertised as
an enabler of shorter development cycles, reduced time-to-market and facilitation of
porting implemented C code to new devices.

The complexity of such designs can range from basic mathematical and logic
operations such as addition and comparison to fully implemented algorithms that deal
with data encryption [7], image filtering [8], video processing [9] and many more.

Some of the benefits of implementing such designs on an FPGA compared to
other platforms such as a CPU or a GPU include but are not limited to the following:

e Considerable speedup compared to CPU implementations

e Comparable performance to GPU accelerated implementations

e Considerable increase in performance per watt compared to CPU and
FPGA implementations

e Decreased overall system power consumption

e Soft and hard real-time application capabilities

It is the aim of this thesis to explore the viability of utilizing FPGA-based
systems in Cloud Computing environments that leverage multidisciplinary workloads.

The goal is to develop a cloud computing platform that performs
computationally intensive tasks by utilizing algorithms implemented on an FPGA.
FPGAs can offer lots of benefits to businesses and organizations if utilized correctly
and to their full capabilities.

There are several objectives that the proposed solution aims to cover. The 3
main characteristics of the proposed system are

1. Adaptability: the proposed system is capable of adapting to a computing
environment where data-intensive acceleration requests for a wide variety of
functions take place. In the proposed system, this adaptability refers to the
ability to efficiently reprogram portions of the FPGA marked as
reprogrammable in a manner that minimizes the chance that a reprogramming
is needed by employing a number of techniques which includes but is not
limited to the following

a. Utilizing reconfigurable modules that are already programmed in the FPGA
fabric

b. If reprogramming is needed, reprogram Reconfigurable Partitions on the
FPGA that are least recently used.

11

2.

High Efficiency: the proposed FPGA-based platform must implement
techniques and design methodologies that will allow it to offer the maximum

possible energy efficiency, while also maintaining high performance and QoR
(Quality of Results) comparable to Cloud Computing platforms based on
other, non-FPGA based architectures. Dynamic Partial Reconfiguration is the
main tool driving this objective. Additionally, reprogramming a RP
(Reconfigurable Partition) with a blank bitstream after it has not been used for
some time can also help with decreasing idle power consumption of the
system.

Multi-disciplinary Task Execution: the proposed system is designed in a

way that accommodates the execution of many different algorithms on the
same Reconfigurable Partitions (RP). Any type of algorithm that might work
on different types of data such as image data or genome sequences can be
programmed in the defined RPs and used by a system user, as long as specific
conventions, outlined in later chapters, have been followed at design time.

Several methodologies and techniques, some specific to FPGAs, will be

employed in order to ensure that the developed platform meets power efficiency,

performance and QoR metrics that Cloud Computing solutions can benefit from.

These include but are not limited to the following

Dynamic Partial Reconfiguration (DPR)
Workload parallelization

Custom Pipelining Architectures
Energy-aware scheduling

In the next chapters the following will be covered:

In chapter 2 a theoretical background will be presented that pertains to the
methodologies, techniques and systems employed in this work as well as
related work on the field of Cloud Computing, FPGAs and Energy Efficient
Computing.

In chapter 3 the architecture of the proposed system will be presented along
with the software and hardware development environments utilized as well as
the hardware specifications of the target FPGA platform.

In chapter 4 implementation details regarding the proposed system as well as
pseudo code and algorithms that were utilized as use cases will be outlined.

In chapter 5 performance metrics such as computational throughput and
energy consumption of the implemented will be presented.

In chapter 6, we discuss and comment on the system’s operational results.
Finally in chapter 7 we conclude this report and discuss future work that can
extend the findings of this thesis.

12

2. Theoretical Background and Related Work

In this chapter, information relating to the theories, techniques and
technologies employed and build upon in this thesis are presented. Additionally,
related research work on Cloud Computing and FPGAs, both as separate fields as well
as in conjunction with each other, will be presented.

2.1. Cloud Computing Definition
Businesses and organizations constantly strive to meet their strategic goals and
objectives by minimizing their operational costs and increasing the quality of services
and products they offer.

The field of Cloud Computing has facilitated the operation of organizations by
presenting an opportunity to offload data processing and storage to clusters of
compute nodes and storage facilities and use the processing power offered by these
clusters to employ Machine Learning and Big Data Analytics applications that can
help shape the strategic choices of businesses.

Laptops

Application

2 = 9

Collaboration .
Finance

Content Communication
Platform
=S R T3
[ITRCCOIT]
% Identity Quene

Object Storage Runtime Database

Infrastructure

i (o]

Compute Network

Tablets

Block Storage
Phones

Cloud computing

Figure 1 — Architectural Diagram of Cloud Computing - Created by Sam Johnston using OmniGroup's
OmniGraffle and Inkscape https://commons.wikimedia.org/w/index.php?curid=6080417

But what exactly is Cloud Computing? As with many term definitions, the
linguistic definition of Cloud Computing is subject to personal interpretation. Several
definitions have been given by experts and researchers on the field.

13

The National Institute of Standards and Technology (NIST) [10] defines cloud
computing as “a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction”.

In 2009, in their research on current trends and design considerations
regarding Cloud Computing integration on organizational and business environments
with the goal of establishing Computing as the 5™ utility, Buyya et. al [11] described
Cloud Computing as “a type of parallel and distributed system consisting of a
collection of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s) based on
service-level agreements established through negotiation between the service provider
and consumers.”

2.2. Fundamental Characteristics of Cloud Computing
When deploying a cloud compute cluster, there are specific requirements that
such a platform should meet in order to fully realize its goal of efficiently carrying out
the processing and storage of massive amounts of data from different users.

Correspondingly, in 2011 NIST [10] included in its definition of Cloud
Computing 5 essential characteristics that define a well-implemented cloud
computing cluster. These characteristics are

1. On-demand self-service: An end-user can utilize computing resources such

as server time and storage automatically without the need for human
interaction with service providers.

2. Broad network access: Cloud capabilities are readily available over internet
connection enabled devices and accessed through standard mechanisms that

allow usage using a variety of client platforms such as personal computers,
mobile phones and tablets.

3. Resource pooling: The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer
demand. There is a sense of location independence in that the customer
generally has no control or knowledge over the exact location of the provided
resources but may be able to specify location at a higher level of abstraction
(e.g., country, state, or datacenter). Examples of resources include storage,
processing, memory, and network bandwidth.

4. Rapid elasticity: Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities available for provisioning

often appear to be unlimited and can be appropriated in any quantity at any
time.

14

5. Measured service: Cloud systems automatically control and optimize
resource use by leveraging a metering capability at some level of abstraction
appropriate to the type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the
utilized service.

2.3. Field Programmable Gate Arrays (FPGASs)

Field-Programmable Gate Arrays are specialized integrated circuits that are
structured in such a way that allows them to be electronically reprogrammed,
changing their functionality according to users’ needs on the fly.

An FPGA is comprised of various types of primitive programmable logic and
reconfigurable wiring that allows the fabric inside to be connected in a way specified
by a Hardware Description Language (HDL) in order to carry out either a simple task
such as an AND or XOR calculation or a complex task or algorithm such as a Sobel
Image Filter or an encryption scheme like AES.

Besides specialized task acceleration, FPGAs can be programmed to operate
like a CPU that implements a custom or standardized architecture of instructions like
RISC. These types of processors are usually referred to as ‘Soft cores’ and many
parameters such as pipeline depth or cache size can be user-defined. An example of a
Soft Core is MicroBlaze [12].

FPGAs as the name suggests can be “programmed on the field” after
deployment. This task can be carried out by the device itself which according to
operational needs can reprogram the FPGA with new bitstreams, implementing new
functionality. This type of device is referred to as In-System Programmable (ISP)
[13].

An FPGA-based implementation of a task is usually much faster and more
efficient than similar implementations on x86 64 or ARM architecture CPUs such as
the ARM A9 or Intel CPUs [14], [15]. This benefit is usually offset by that fact that
HDL-based designs are harder to develop, debug and test than implementations of
algorithms running on conventional CPU architectures, although extensive effort to
facilitate development of FPGA designs has been made in the last years through the
use of High-Level Synthesis development paradigms.

FPGAs offer many benefits when compared to ASICs such as design reuse
and ease of maintenance. Errors made in the design process can be easily fixed after
provisioning an FPGA device by sending the new corrected bitstreams. This is not
possible for an ASIC platform. Additionally, ASICs incur very high non-recurrent
engineering costs compared to FPGAs, although after initial R&D and prototyping,
ASICs are cheaper on a per-unit basis than FPGAs.

15

2.4. Dynamic Partial Reconfiguration of FPGAs

In an environment such as a Cloud Computing cluster which is the main focus
of this work, functionality of FPGA accelerators needs to change depending on the
demands of the users or background services that process data. One solution to avoid
reprogramming is to house all accelerated tasks in an FPGA and leave it running
indefinitely, however this brings with it immense inefficiencies in idle power
consumption and drastically increases resource requirements of the FPGA platform.
As such reprograming a smaller FPGA with the modules that it needs at any one time
is preferable.

One method of reprogramming the FPGA involves downloading a full
bitstream, either via a standard interface such as a JTAG port or from volatile memory
where it is preloaded at boot time and fetched on demand. However, full bitstream
reprogramming brings with it a host of disadvantages such as

1. FPGA logic shutdown — all operations conducted by other services or users in
the Programmable Logic must terminate when full bitstream reprogramming
takes place. This can cause users to see drastic performance decrease when

multiple users are requesting different acceleration tasks at once.
2. High reconfiguration overhead — reprogramming a full bitstream, both in

terms of time and energy consumed is non-trivial and needs to be minimized
where possible

3. Increased design complexity — a full bitstream may implement a wide range
of algorithms and each algorithm may be present in the bitstream as a different
PE (Processing Element). This can result in an increased design complexity in
cases where we want a platform that can be extended and updated with new
functionality during its lifecycle and that many different users may utilize to

accelerate tasks that may not coincide. This forms a combinatorial problem
where repetitions of modules are allowed (a user may request the same module
another user has requested) and order doesn’t matter (a user doesn’t care
which partition region houses the module he wants to accelerate). The formula
for this case is

Equation 1 — Unordered combination equation for calculating the total number of possible
bitstreams that can serve any combination of tasks to carry out

(r+n-1)!
r'(n—1)!

16

Where

a. ris the maximum number of PEs that can fit in the FPGA

b. n is the total number of tasks that have been developed to be

accelerated

If we imagine a scenario where we have developed 8 different algorithms(n =
8) to be integrated in an FPGA hardware design and all 8 PEs require more or
less the same number of resources. If we use a FPGA chip that can house 8§ of
these modules (r = 8), the number of different full bitstreams that must be
generated to be able to delegate any combination of requested tasks is 6435. If
we take into account that typical full bitstreams range from 2 MB to several
tens of MBs, the memory requirements to allow such a system to store all
these bitstreams would be in the several hundreds of GBs. In an environment
where different users use the FPGA platform as an acceleration service and
where each user may request a different task to be delegated, this can prove
infeasible. Alternatively, and much more realistically, an FPGA can simply
implement a single bitstream where each algorithm is expressed once as a
single Processing Element; however multiple acceleration calls to this
coprocessor from different users would cause congestion and performance
decrease.

4. High device area requirements — even if we employ a large FPGA chip to
avoid the pitfalls of the previous points by housing all modules multiple times
to avoid reconfiguration, this still leads to the implementation of an inefficient,
power-demanding platform that is mostly underutilized.

5. Difficult to maintain _and update — updating a bitstream with new

functionality or correcting a mistake made at design time is much harder for
full bitstreams than for partial bitstreams. If a small part of the full bitstream
needed change, the whole design has to be redesigned and updated. In the case
of partial bitstreams, most of the time only the IP Block with the erroneous
behavior needs to be changed and redeployed.

Dynamic Partial Reconfiguration is a development paradigm on the field of
FPGA design whereupon specific parts of the Programmable Logic are marked as
dynamically reprogrammable. This means that while an FPGA 1is executing tasks, a
partial section of the FPGA can be hot-swapped with other generated partial
bitstreams, essentially reconfiguring that subsection of the FPGA with a different
functionality.

17

Benefits of DPR over static programming of an FPGA are immediately

apparent

1.

FPGA logic uninterrupted during reconfiguration — all operations
conducted by other services or users in the FPGA can continue uninterrupted
while a specific Partial Region is being reconfigured. This is important for
mission-critical applications or to decrease the chance a user will experience
slowdown of requested services. This capability is true for the case of
Dynamic PR only. Static Partial Reconfiguration (SPR) is the similar to DPR,
with the exception that the device must shutdown for the duration of the
reprogramming stage.

Low_reconfiguration overhead — reprogramming a partial bitstream is
significantly faster and incurs much smaller energy consumption and time
overhead than programming a full bitstream. This is especially apparent for
large FPGA devices where a programmable region may be a small percentage
of the overall full bitstream. Of course, this overhead is still non-zero and
needs to be taken into account, and in this sense intelligent scheduling and
resource reuse is important to reduce the chance partial reconfiguration is
needed.

Significantly reduced design complexity — a DPR-enabled hardware design
requires only that each partition marked as reconfigurable implements the
reconfigurable module intended to run in it at runtime. In the case of Cloud
Computing environments we assume in this work that all regions should be
able to house any accelerated task. In Xilinx’s DPR methodology, each
partition requires its own copy of a partial bitstream for a given task
implemented. A generated full bitstream that has DPR enabled can house at
any time, any partial bitstream that was generated with this design as

reference. As such only a single full bitstream needs to be loaded at boot time
and any functionality can be loaded on demand later from the partial
bitstreams. This means that for 8 regions marked as reconfigurable (r = 8) that
can house any of 8 accelerated tasks (n = 8) the total number of partial
bitstreams needed is 64. The general equation describing the memory
requirements of storing all partial bitstreams of a DPR FPGA design is the
following

Equation 2 — Equation for calculating the size of all partial bitstreams in a Dynamic Partial Reconfiguration

design where all Reconfigurable Regions can house any of the implemented algorithms

T
PartialSize;,; = n * Z PartialSize;
i=1
Where
PartialSize 1s the total size of all the partial bitstreams generated by
the design measured in bytes

n is the number of accelerated tasks developed

18

r is the number of Reconfigurable Partitions defined at design time

PartialSize; is the size of the partial bitstreams that program
Reconfigurable Partition i measured in bytes
Assuming near full utilization of the FPGA’s resource from the 8 regions, the
calculated total memory needed for the 64 partial bitstreams is close to n*Sg
where n is the number of implemented modules and Sg is the size of the full
bitstream.

4. Easier to maintain_and update functionality — updating functionality of
deployed partial bitstreams and correcting errors made at design time is much
easier for DPR-enabled platforms. The caveat to this is that the newly
developed partial bitstreams must be able to fit into the region marked by the
full bitstream; else a new redesign process needs to be done where
Reconfigurable Partitions are resized or the whole platform is migrated onto a
bigger FPGA chip. In order to avoid this, overprovisioning of FPGA resources

in Partial Reconfiguration Regions can be employed.
Benefits of employing dynamic partial reconfiguration include

1. The ability to time-multiplex tasks on an FPGA by swapping functions
in and out, reducing area and power requirements

2. Allow flexibility in algorithms and subtasks available to applications

3. Allowing uninterruptible workload execution of static logic, useful for
multi-tenant systems

4. Accelerated Reconfigurable Computing

5. Updating hardware functions marked as reconfigurable can be done
easily and remotely.

Figure 2 — Time multiplexing of multiple functions on a single reconfigurable partition reduces area
requirements
2.5. Energy Efficient Computing
In this work, power consumption of the proposed system is an important
metric that needs to be measured. This is necessary in order to accurately evaluate the
benefits that FPGA-based cloud computing can offer to businesses and organizations.

Information and Computer Technology (ICT) offers the capability to increase
efficiency of resources utilized in industrial and enterprise environments by
optimizing and automating processes [16]. ICT infrastructure itself however needs

19

energy to operate and when employing such solutions it is important to apply the
same principles of energy efficiency on the infrastructure itself.

Development of energy efficient computing solutions can help companies save
money by reducing electricity bills, permit battery-powered devices to operate for
longer times before needing recharge (such as for mobile phones, laptops and sensor
devices) or before they are decommissioned from service (for one-time deployed
devices such as IoT devices).

In the case of Cloud Computing infrastructure, these energy savings can help
reduce costs of maintaining such infrastructure as well as meet criteria of legislation
on eco-friendly design of ICT infrastructure such as (EU) No 617/2013 implementing
Directive 2009/125/EC [17].

Research work on the impact of ICT on global energy consumption has been
conducted extensively in the last years.

In 2015, Andrae and Edler [18] published their work on energy consumption
trends in the ICT sector. In their work, they presented categorized estimations of
worst-case, expected and best-case scenarios of power consumption in TWh that
various groups of ICT infrastructure would incur. If left unchecked, GreenHouse
Gases (GHG) emissions of ICT infrastructure could contribute up to 23% of global
GHG emissions. Reducing energy usage can help reduce GHG emissions that are
incurred as a byproduct of the generation of electrical power that feeds these devices
and data centers.

There are 2 main procedures involved in implementing energy efficient
computing platforms.

1. Power consumption measurement of the device at runtime, both at full
capacity usage as well as while in idle mode

2. Redesigning the platform both at system level as well as at the application
level to decrease power consumption of the system

There are several methods described in the literature that are used to measure
power consumption in computing systems.

In 2019, Fahad et al. [19] published a comparative study of methods that can
be utilized to measure power consumption of computing systems.

One method is using external power metering devices that measure the power
consumption of a workstation as it operates. This method offers relatively accurate
results but is only suited for system-wide power sensing, not allowing for highly
granular, component level power consumption measuring, such as measuring the
energy consumption of the CPU or the GPU.

20

An example of an external power metering device is the Kill-a-Watt [20]. Kill-
a-Watt is an electricity usage monitoring device manufactured by Prodigit that acts as
an intermediate between devices and wall-mounted power sockets and measures
power that a connected device draws.

A second method used for measuring energy consumption is using power
sensors installed on CPUs and GPUs at manufacturing time. These sensors provide a
more granular power measuring methodology than using external power meters.

(2) Core #0 Critical Temperature Mo Mo Mo
(2 Core #1 Critical Temperature No Mo Mo
(=) Core #0 Power Limit Exceeded Mo Mo Mo
(=) Core #1 Power Limit Exceeded Mo Mo Mo
(=) Package Ring Thermal Throtting No Mo Mo
(=) Package Ring Critical Temperature Mo Mo Mo
(2) Package Ring Power Limit Exceeded Mo Mo Mo

B cru) Intel Pentium GA500: Enhanced

I cpu Package 31°C 29 5C 37 °C 33°C
@. CPU IA Cores 31eC 20 ¢°C 37eC 33°C
m CPU GT Cores {Graphics) 29 °C 29 °C 30 °C 29 °C
‘-j A Voltage Offset 0.000V 0.000 vV 0.000 v 0.000 v
‘-j GT (Slice) Voltage Offset 0.000V 0.000 vV 0.000 v 0.000 v
% CLR (CBojLLC Ring) Voltage Offset 0.000V 0,000V 0.000V 0,000V
‘-j GT (Unslice) Voltage Offset 0.000V 0.000 vV 0.000 v 0,000V
‘-j UncorefSA Voltage Offset 0.000 vV 0.000 vV 0.000 v 0.000 v
¥
¥ 3.325W 8.129W
¥ 0.3% W
B cru 207 Inte! Pentium GH500: C-State Residency

(2) Core #0 Thread 0 CO Residency 6.0 % 2.4% 51.8 % 14.5 %
(=) Core #0 Thread 1CO0 Residency 6.3 % 1.7 % 29.7 % 12.8 %
(2) Core #1 Thread 0 CO Residency 6.0 % 2.1% 44,3 % 17.6 %
(=) Core #1Thread 1 C0 Residency 5.9 % 1.7 % 64.8 % 21.5 %

B rMemory Timings
emory Clo L200, z 9 L Fd g . F4 9 , F4
oM Clock 1,200.0MHz 1,199.1MHz 1,200.9MHz 1,199.8 MH

F0 M Flasle Aadn ER LR ER IR R 47 A

Figure 3 - Example of software monitoring system operational metrics such as wattage and temperature.

Finally, a third method is based on software that utilizes energy predictive
models that take as input operational metrics such as FLOPS and cache miss rate and
calculate an estimated energy consumption. These energy prediction models have
been researched thoroughly, however they have been found to be inaccurate often due
to the fact that there are a large number of available models to choose from and
selecting the subset most relevant to interpreting power rating is difficult. These
models can sometimes be inaccurate and/or incomplete in describing the power
requirements of the device they attempt to model.

One example of software implemented energy consumption forecasting is
Xilinx Power Estimator (XPE) [21] and Vivado Power Report tools.

21

C XI LI NX@ Xilinx Power Estimator (XPE) - 2019.1.2 Qia
Spartan®-7, Artix®-7, Kintex®-7, Virtex®-7, Zynq®-7000 poie.ce: 14.aug2018
R & B] Py
Set Defult Rates

Manz{ge IP | Snapshot

Import File Export File Quick E stimate Reset to Defaults
i Summary
Total On-Chip Power Tr— 0000w
[T 0.000W
T $ PSWPGAD. 1.4BEBW
Thermal Margin RS \DeviceSue. . D.349W
Effective ©JA | 106°CW| " Foma suspiied o s deie 6.600W
Temp Grade
Process — On-Chip Power — ————— — Power Supply
Resource Power Voltage |Tota| (A)
Characterization (Jump to sheet)| (W) (%) 1.000{ 0.104
1.000 0.040
Environment 1.800/ 0.080
Junction Temperature ™ User Owerride
Ambient Temp 260°C) Core 3.300
Effective BJA [~ User Override Dynamic PLL 0.000 2500
Airflow 250 LFM MMCM 0.000 1.800
Heat Sink Other 0.000 1.500
OSA 1.350
Board Selection Medium (107x107) 10 0.000 0 1.200
of Board Layers 12t0 15 .
Transceiver
Board Temperature PS Dynamic PS5 1.486 81
Static 0.186 10 1000/ 0.836
PL Static 0.164 9 1.800 0.0?3'
1.800 0.016
1.500 0.463
1.800
1.800 0.030
KLINX Power Advantage (check for updates) File Support Reguest (WebCase; Xilinx Power Estimator User Guid
@ Copyright 1994-2018 Xilinx, Inc. All Rights Reserved Introduction to XPE (videa) Whitepaper - 7 Steps for Worst Case Fower Estimation|
UserEntry | CalculatedValue | SummaryValue | UserOverride Warning [l Error |

Figure 4 — Summary overview of a Zynq-7000 device with partially user-defined workload parameters

XPE is a set of Excel-based spreadsheets created by Xilinx which is used to
calculate power consumption of Xilinx FPGA devices in a pre-synthesis design stage.
The developer can input the model of the device he wishes, workload of independent
FPGA and peripheral devices in a highly granular manner, read and write rates of off-
chip DDR memory and other parameters. The tool will then estimate the expected
wattage of the device and give component-level power consumption metrics as well.

Design techniques utilized for conserving energy have been employed that are
unique to FPGA environments. As noted before, Dynamic Partial Reconfiguration is a
system level energy optimization method that allows a decrease of required energy
resources by reducing device area and subsequently power requirements as well as
allowing the programming of blank partial bitstreams that further reduces energy
consumption in an idle platform. This alongside an implementation of a DPR-aware
scheduler to minimize the probability that reconfigurations take place can further help
in meeting both performance and energy efficiency goals.

22

2.6. Related Work on FPGA-based Cloud Computing

In recent years, the viability of utilizing FPGAs in Cloud Computing
environments has been recognized and researched upon. Cloud computing solutions
are increasingly utilized to address processing needs in big data and data acquired
from web services, multicore computing systems [22] and intelligent IoT Devices
[23].

Moreover, various techniques have been the focus of research for on-chip and
system monitoring for power and energy efficiency [24], [25] and additionally to
manage SoC power and energy [26], [27], [28]

In 2011, Yu et al. [29] proposed a web server implementation that utilizes the
FPGA of the BEE3 multi-FPGA chassis system to carry out web data processing
using a Microblaze Soft-core processor [12] and a custom Web Processing Module
that handles tasks such as TCP packet decomposition and URL parsing. The proposed
implementation offered up to 4 times higher performance per watt while maintaining
an overall comparable performance to a Xeon 5520 implementation of the web server.

In 2012, Eguro and Venkatesan [30] present a system architecture based on an
FPGA for trusted cloud computing applications that emulates homomorphic
encryption [31] by providing a safe area in the FPGA that allows secure processing of
sensitive data.

In 2015, Fahmy et al. [32] present a model of a platform for integrating
virtualized accelerator modules of FPGAs to existing cloud computing infrastructure
in order to ensure high efficiency and performance goals. In their proposed model,
they use Partial Reconfiguration and a scheduler to dynamically reprogram partitions
in the PL according to the user requests and maximize usage of FPGA resources.

In 2018, Vaishnav et al. [33] introduced the concept of resource elasticity by
enabling the reallocation of FPGA spatial resources using OpenCL and dynamic
partial reconfiguration to allow higher performance and resource utilization of FPGA
accelerator platforms. Their experiments on different types of scheduling schemes for
allocating accelerator resources showed that cooperative scheduling is a better method
for FPGA platforms.

FPGA based cloud computing solutions often referred to as FPGA as a Service
(FaaS) have been proposed in the literature in recent years and early commercial
implementations have shown promising results, both for businesses as well as for end
users.

23

With their EC2 F1 cloud service, AWS [34] aims to provide a flexible
computing environment of Virtex Ultrascale+ family FPGAs alongside a development
environment. Amazon’s EC2 is characterized by the capability of designing and
deploying a variable amount of FPGA platforms running hardware designs created by
developers on Xilinx’s IDEs integrated in the Amazon ecosystem [35].

Alibaba has also released commercially viable cloud computing resources
utilizing FPGAs as computing platforms that cloud users can employ for their needs
[36]. The FaaS provided by Alibaba features 2 different instances of F1 and F2
instances providing both Intel and Xilinx small-scale devices for customers with ease
of deployment.

2.7. Related Work on Dynamic Partial Reconfiguration
Before developing a system capable of DPR in a cloud computer environment,
it is important to research upon the benefits of Dynamic Partial Reconfiguration as
advertised by Xilinx as well as from published research work that attempts to evaluate
these benefits.

To improve efficiency of reconfigurable resources, solutions have been
proposed [37]-[40].

In UG909 on Dynamic Partial Reconfiguration [41], Xilinx gives an
introductory overview of DPR and what benefits it can bring to the table for FPGA
developers. In this guide basic terminology and design considerations as well as some
example applications which could benefit from DPR are presented.

Nguyen et al. [42] present their findings in evaluating and quantifying the
benefits that DPR can offer to embedded vision applications when compared to static
FPGA design methodologies. Power savings of up to 30% can be reached by
implementing DPR on a platform. Their findings show that embedded solutions that
benefit from the effects of DPR share 2 main characteristics. First, all implemented
tasks of the system are not needed at all times. Only 1 or a small subset of the
implemented tasks needs to run concurrently at any one time. Second, the embedded
solution has energy efficiency needs that need to be maximized due to the fact the
device operates on batteries and area/device costs need to be minimized.

These findings coincide with the needs and nature of Cloud Computing
environments. Not all implemented tasks need to be executed at all times.

Sometimes users make use of other resources that do not require FPGA
resources such as File I/O or environment settings management. A given user’s
requested tasks have no effect on when and how often other users request tasks.

Secondly, DPR can increase energy efficiency of the cloud computing cluster
by implementing the design in a smaller FPGA chip that can time-multiplex the
requested tasks in the partial regions defined. In addition, reprogramming a blank

24

bitstream inside a region not utilized can further decrease power consumption when in
idle mode.

Nafkha and Louet [43] researched upon the overhead of power consumption when
DPR is employed in a platform. In their work, 94 KB sized partial bitstreams are
programmed through the ICAP interface at runtime, increasing the power
consumption from 340 mW to 500 mW for the duration of the reconfiguration. In our
work, partial bitstreams are larger (700-1100 KBytes) and the reconfiguration
overhead is much bigger when compared to the execution time of the typical size of
data users may request.

This brings up an important metric that needs to be taken into account when
designing a DPR-enabled FPGA platform. This metric is the Execution-to-
Reconfiguration (ER) ratio of execution time over reconfiguration time.

Equation 3 — Equation for computing the ratio of the time spent executing to the time spent reconfiguring a
reconfigurable partition in a Dynamic Partial Reconfiguration design

Texecution

ER ratio =
reconfiguration

For example, if the partial bitstream requested to be reconfigured takes 10
msec to be programmed and the programmed module runs for 5 msec on requested
data, the ER ratio is 0.5.

High ER ratios indicate the partial reconfiguration is a small overhead in the
computing process. Low ER ratios indicate a high reconfiguration overhead. This
means that reconfiguration needs to happen sparsely in order to meet energy
efficiency and performance goals.

Luo et al. [44] proposed a DPR model of FPGA platform that utilizes the
multi-threaded nature of a Linux operating system to delegate tasks to HW
accelerators at runtime in an efficient, demand-driven manner. The aim is to solve the
lack of Partial Reconfiguration enabled platforms operating under Linux. Linux-based
DPR development could decrease the time needed to create an efficient FPGA
acceleration platform and increase design flexibility thanks to the widespread support
and contributions of the Linux community.

25

3. Proposed System Architecture and Development

Environment
In this chapter, the system architecture is presented for the developed platform
as well as information on the development environment and specifications of the
FPGA platform used to develop the system.

3.1. Proposed System Architecture and Flow

Below is an architectural diagram of the implemented system on the Zedboard
SoC.

Zedboard SoC

m | Processing System | | Programmable Logic

Accelerator
ARM A9 Cores Reconfigurable
Partition 2

512 MB DDR

Module
533 MHz x 32-bit Width

Accelerator
Memory Controller Reconfigurable
Partition 1

Figure 5 — Proposed System Architecture Diagram

In the proposed system shown in Figure 5, the Reconfigurable Partitions (RPs)
1 and 2 are regions of the FPGA fabric that are defined post-synthesis to house any
functionality inside so long as it covers the following criteria

1. The function implemented in the partition, named a Reconfigurable
Module (RM) must utilize fewer logic resources than the resources
allocated to the reconfigurable partition at design time.

2. The RM added to the platform on a RP (Reconfigurable Partition) must
have the exact same interfacing as the interfacing of all other RMs that
can be programmed on the RP. For the purposes of our system, all RPs
are capable of housing any of our implemented algorithms on the
FPGA. This means that both RPs have the same interfacing logic.

26

Each reconfigurable partition can house any of the developed HLS IPs inside.
Implementing and generating bitstreams for a design where DPR has been enabled
leads to the generation of partial bitstreams. These partial bitstreams are the files that
need to be programmed to the PL at runtime in order to program the capability of each
function in the fabric.

Because the partial bitstreams implement only part of the FPGA, they are
much smaller than the full bitstream. The size of a partial bitstream is directly
proportional to the size of the PL that partition is allocated on at floorplanning time.

DDR Memory m
~
Convolution
partial
bitstream q DDR > PS AXI
Controller Interconnect l
Partition BW Image A DevC
1 » Threshold (Device
Partial partial v Configuration
Bitstreams bitstream Inte:ffce)
: ARM A9 Cores
Dimer
Y
Genome
Distribution PCAP Interface
partial
bitstream

Convolution
partial
bitstream Reconfigurable Reconfigurable . .
Parition Parition Stat_lc Logic
1 2 (Clocking, DMAs,
Partition BW Image Interconnects)

2 Threshold
Partial _partial

Bitstreams bitstream

Dimer
Genome
Distribution

partial
bitstream

Figure 6 — Operational snapshot of the proposed system.

Generated partial bitstreams are loaded from the SD card on the DDR at
system boot time. In Figure 6, Partition 1 partial bitstreams are only compatible with
partition region 1 (blue). Different partial bitstreams need to be generated for partition
2 (red) even if they implement the same functionality.

27

3.2. FPGA Platform System Specifications

The proposed system is developed and evaluated on a Zedboard All-
Programmable SoC development platform [45]. The Zedboard is a development board
featuring both an ARMv7 CPU and an FPGA chip. It is equipped with a 512 MB
DDR3 memory module clocked at 533 MHz and an interface width of 32 bits. The
CPU is a dual-core ARM A9 and the FPGA chip is a Zyng-7000 family chip, the
XC7Z020-CLG484.

Figure 7 — The Zedboard, choice of implementation for proof-of-concept

The ARM A9 Dual-Core CPU is a low power processing unit used mainly in
embedded circuits. Its TDP is rated at approximately 0.25 W per core..

The FPGA chip of the Zedboard is comprised of a moderate amount of
programmable logic that is mostly suited for evaluating applications at a small scale
before porting them to larger, more resourceful FPGA chips. The table below shows
the number of Flip Flops, Look-Up Tables, Digital Signal Processors and Block RAM
available in 36Kbit tiles and in KBytes that the XC7Z2020-CLG484-1 is comprised of.

28

Table 1 — Target FPGA platform available resources

. BRAM
FPGA Model Name | LUTs | FFs DSPs BRAM36 Tiles in Kbytes
XC772020-CLG484-1 | 53200 | 106400 220 140 615

Besides resource availability, architectural specifications of the Zyng-7000
need to be taken into account when designing an accelerator IP. The Zyng-7000
family of SoCs features a PS-PL interface that allows FPGA IPs to access the DDR at
a configurable rate. More specifically, the interface options between the
Programmable Logic and the Processing System is comprised of the following

e Accelerator Coherency port (ACP) (1 port, 64-bit width, cache coherent
memory accesses)

e High performance (HP) PL interfaces, (4 ports, 32 or 64 bit width, non-
cache-coherent accesses)

e General purpose PL interfaces (GP) (2 ports, 32-bit width, no FIFOs
meaning lower performance than HP ports)

e Device configuration (DevC port, used for configuring the device at
runtime)

In this work, 2 HP ports and a single GP port are used to connect to
reconfigurable partitions (1 port per partition) to the PS side and 1 GP port is used,
connected to both partitions.

Each HP port has a dedicated channel for receiving and transmitting data. The
HP ports are responsible for transferring the main bulk of the data to be processed at
the PL as well as the algorithm-specific metadata for each application (e.g. the kernel
values of the convolution filter). The GP port is used to transfer only the size of the
input data and the output data and is used to transfer this data on both partitions.

Besides the width of the port used to transfer data, the rate at which the data is
transferred 1s also important. In this case, the PL clock is set at 7ns period or at a
frequency of approximately ~143 MHz. This coupled with the width of 8 bytes of the
HP port creates a maximum theoretical bandwidth of 1089.9 Mbytes/sec. This is
calculated from the equation

Equation 4 — Maximum bandwidth of PS-PL ports on the Zynq-7000 family of devices

Max BW = f xw

29

Where:
BW s the maximum theoretical bandwidth (measured in bytes/sec)
fis the bus frequency (measured in Hz)

w is the width of the bus (measured in bytes)

This upper limit is a very important metric that is used to verify the correct
setup and operation of the FPGA accelerator platform and evaluate the viability of
migrating a task to the FPGA in early design stages.

3.3. System Design and Development Environment

The development of the proposed system was carried out on a Linux CentOS 7
workstation running on an Intel i5. The software tools utilized for designing the
hardware platform on the Zedboard are Xilinx Vivado HLx 2017.4 Suite. Specifically,
3 different IDEs were utilized

1. Vivado HLS 2017.4 for implementing the 3 algorithms in C++ and
compiling to RTL code

2. Vivado 2017.4 for designing the DPR platform with the 3 algorithms
designed on Vivado HLS and enabling their dynamic reconfiguration
on 2 separate reconfigurable partitions.

3. Xilinx SDK 2017.4 for developing the baremetal application
responsible for system initialization, scheduling of requested tasks to
be programmed on the RPs of the FPGA, file /O and delegating
workloads on the accelerators programmed on the FPGA.

30

i
Wivado™ HLS

g

Create the Accelerator IPs in HLS
Ensure common interfacing
pragma direcfives

!

Create the Vivado Hardware

design using exported HLS IPs. VlV)&DO'

Open XSDK and develop the

baremetal application handling v
Partial Reconfiguration and PL
Coprocessor Execution A FILINX
Scheduling.

Figure 8 — Basic workflow for designing the DPR-enabled platform on Xilinx Vivado Design Suite

The reason for using version 2017.4 of Vivado was because after this version,
Xilinx deprecated the driver responsible for the runtime reconfiguration of full/partial
bitstreams in favor of the FPGA Manager Linux API of device-agnostic and
manufacturer-agnostic bitstream programming of FPGA devices running on a Linux
OS [46].

However, during development of the platform on later versions of Vivado,
issues arose due to Xilinx not having released partial bitstream reprogramming
functionality of these drivers for the Zyng-7000 family of chips. As such, the latest
version of Vivado Design Suite that supported the xdevcfg driver was used.

In Vivado HLS, the applications were developed using the C++ programming
language. IDE-specific libraries that are designed by Xilinx such as HLS Stream and
Arbitrary-Precision Integers were utilized [47] [48]. These libraries contain functions
and data objects optimized for implementation in an FPGA and can help developers
reach QoR goals.

31

4. Implementation Methodology

4.1. Multidisciplinary Algorithms Implemented
In this chapter we present the 3 algorithms that were developed to run on the
Zedboard FPGA platform. These algorithms are

I. A black and white thresholding (BW Threshold) algorithm for
grayscale images. The user can select the threshold to use. The
threshold value is in the range [0,255].

2. A 3x3 image convolution filter for grayscale images. The user can
select the type of kernel to use in the convolution filter.

3. A dimer global base distribution algorithm that measures the
distribution of nucleotides of length 2 in DNA genome sequences.

In order for all 3 modules to be interchangeable in the reconfigurable regions,
their interfaces were developed to be exactly the same.

void bw_thres(void convolution(void dimer_genome_distribution_64bit(
AXI_STREAM & input, AXI_STREAM & input, AXI_STREAM & input,
AXI_STREAM & output, AXI_STREAM & output, AXI_STREAM & output,
int sizeln, int sizeln, int sizeln,
int sizeOut) { int sizeoOut) { int sizeout) {
(a) (b) (c)

Figure 9 — Interface of the implemented algorithms as defined in C++ source code. Note that the
port names and types are exactly the same. This is important for enabling dynamic partial reconfiguration.
All 3 algorithms have the exact same interface definition to allow
Dynamic Partial Reconfiguration. The AXI STREAM type is a custom-defined
structure of an AXI stream type structure exclusive to Vivado HLS with a user-
defined data width of 8 bytes (64-bit width).

Both input and output streams are defined as 64-bit width ports to be used for
transferring and receiving data. The sizeln and sizeOut parameters are 32-bit integer
values used to declare the number of 64-bit input and out elements respectively to be
transferred. sizeln and sizeOut variables are transferred to the HLS IP blocks using
the AXILite interface through the GP port.

As mentioned before, one of the main goals of this project is the development
of an acceleration platform for multi-disciplinary tasks. Since interfaces in a DPR-
enabled platform’s RPs must be identical among RMs, relaying each individual IP’s
parameters using the AXILite interface is inefficient.

In light of this, the selected algorithms were developed in Vivado HLS to use
the input AXI STREAM port to receive the parameters (such as the 3x3 kernel for the
convolution kernel) just before receiving the main data input from the A9 CPU at
execution time.

In order for the transfer of the parameters to the HLS IP Block to be
successful, the parameters must be passed to the IP in the exact same order they are
parsed in the HLS IP Block.

32

For example, in the Image Convolution Filter application, we need to pass the
source image’s width as well as the 9 values of the 3x3 kernel. As such, the HLS IP
first reads a 64-bit value from the stream and casts it as a 32-bit unsigned value to
store the source image’s width in local memory. Then, to read the kernel, the IP block
reads 9 more 64-bit values and casts them as 16-bit signed integer values in local
memory.

When the ARM A9 CPU sends this data using the AXI DMAs, the IP block
assumes that they are sent in this exact order. It is the developer’s duty to ensure the
application running on the CPU that handles service offloading to the PL sends the
parameters in the correct order. These considerations do not impact the hardware
platform design flow in Vivado.

4.1.1. Image Black and White Thresholding

Black and White thresholding is an algorithm that transforms images to a
format of black and white only pixels. It is a method used to partition an image to
foreground and background constituents and is mainly used in object identification
tasks.

The input image is transformed to a black and white image where each pixel is
white if its input value is greater than a selected threshold value or black if it’s smaller
or equal to a selected threshold. In general

(255, P;>T
Po(T)‘{o, P,<T 2)
Where:
P, is the output pixel value

T is the threshold value (T € [0,255])

P; is the input pixel value

Figure 10 — Result of Black and White thresholding with threshold T = 120 applied on an image.

33

4.1.2. Image Convolution

The second application developed is an image convolution filter. Image
convolution is the process of applying a kernel of n*n values to each pixel of an
image with the goal of extracting specific features from the image. The process

involves performing an element-wise multiplication of the kernel with an n*n
subsection of the image where the center pixel of the sub-array is the pixel to
convolve. This results in n*n products which are subsequently summed.

’

Figure 11 — Element-wise multiplication of a subsection of the source image (red) with a kernel (blue)

This sum is the convolved pixel. This number may well be a value above 255
or below 0, meaning it can’t be represented correctly by an 8-bit unsigned integer for
grayscale images. This problem can be resolved by simply clamping the values to the
range [0,255]. Negative values are set to 0 and values greater than 255 are set to 255.
This is the clamping method used in this implementation.

34

Step 1 - Elementwise multiplication

Step 2 - Sum elements of resulting
array.

Step 3 - Clamp value, if less than
0 set to zero, if higher than 255 v
set to 255

Figure 12 — Example of clamping a negative value from resulting element-wise array summation to 0

One thing to note is that depending on the size of the kernel n applied to the
image, the outer region of pixels that is ((n / 2) — 1) pixels wide will not have
sufficient pixels within the bounds of the image to apply the convolution on.

For example for a 3x3 kernel, the top and bottom row as well as the leftmost
and rightmost column of the image will not have all necessary neighboring pixels to
apply the convolution. One solution to this is to check which row and column we are
currently convolving and if it’s a pixel with insufficient neighbor pixels, assume 0
values for the missing pixels.

The number of rows and columns n of the kernel array should generally be an
odd number. Variations for even numbers of rows/columns can be implemented but
are generally avoided. The resulting image is a transformed version of the input
image. The type of output image depends on the values populating the n*n kernel
array.

Image convolution is usually utilized as a preprocessing task that facilitates
computer vision tasks such as object identification and feature extraction, among
others.

The figures below showcases the resulting images from applying 2 commonly
used kernels on an image.

35

-1 5 -1
0 -1 0
(b)

Figure 13 — Example of applying the sharpen convolution filter on an image. (a) is the input image,
(b) is the kernel applied, (c) is the resulting image

36

-1 8 -1
-1 -1 -1
(b)

Figure 14 - Example of applying the edge-detect convolution filter on an image. (a) is the input image, (b) is
the kernel applied, (c) is the resulting image

4.1.3. Dimer Genome Distribution

Finally, the third implemented algorithm is a dimer base genome sequence
global distribution counter. In the field of Computational Genomics, an n-mer base
global distribution is a feature of genomic sequences that measures the relative
distribution of nucleotide words of length n. Statistical analysis of the genome of an
organism can offer insight to its function [49].

DNA sequences are comprised of 4 possible nucleobases, Adenine, Cytosine,
Guanine and Thymine, coded for convenience as A, C, G and T respectively. This
means that there are 16 possible combinations of base words of length 2.

The result of the dimer distribution is a 4x4 array where each row denotes the
first base in the possible base pairs and the each column denotes the second base.

37

Table 2 — Dimer distribution of H. Influenza. (From [49], page 14)

*A *C *G *T

A* | 0.1202 0.0505 0.0483 0.0912
c* | 0.0665 0.0372 0.0396 0.0484
G* | 0.0514 0.0522 0.0363 0.0499
T+ 1 0.0721 0.0518 0.0656 0.1189

The table below shows the dimer genome distribution of the SARC-COV-2
virus. The genome sequence was taken from the RefSeq genetic sequence database
[50], reference sequence NC 045512.2. The sequence was first made available from
work published from Wu et al. [51] where they sequenced the virus (yet unnamed at
the time of publication) from a patient working in the seafood market in Wuhan.

Table 3 — Dimer distribution of SARS-COV-2, RefSeq ID NC_045512.2

A* 0.0964 0.0676 0.0583 0.0772
c* 0.0697 0.0297 0.0147 0.0696
G* 0.0539 0.0391 0.0365 0.0665
T* 0.0795 0.0472 0.0866 0.1075

DNA dimer base distribution is a metric that can help researchers detect
unusual patterns in the genome sequence of an organism and consequently understand
the structure and behavior of the organism analyzed.

For a base word of length k, we move along the genome one base at a time and
check what word of length k is formed starting at each subsequent base. This means
that for a genome sequence of length L, and a nucleotide word of length k, there is a
total number of words W

W=(L-k+1

38

4.2. Vivado HLS Design Workflow

- Vivado HLS
- Develop the 3 algorithms
Synthesize and Export to RTL
Information on interfaces of
IPs (data bit width, max clock
frequency synthesized for
etc.) Vivado
Create synthesis checkpoints of the 3
algorithms
L Floorplan the last synthesized design,

Information on the order that
HLS IPs must process
metadata
(e.g. for convolution

the application must send the

width of the input image and
then the 9 kernel values)

placing the partial synth dcp files in the
partitions and create implementation
results
Generate full and partial bitstreams in
.bin format

Vivado SDK
Develop the scheduling, offloading and
file I/O application to run in an SD card

Information on the number of
regions that were defined in
the hardware platform as well
as names of the partial .bin
files given

Figure 15 — Design workflow of Vivado DPR in this work

In Vivado HLS, the HLS acronym stands for High-Level Synthesis. In FPGA
design, there are several methods to develop an accelerator block to be implemented
in the FPGA fabric. One method is writing code to implement an intended algorithm’s
behavior in a Hardware Description Language (HDL) such as VHDL or Verilog.
Below is an example of VHDL code for implementing a simple AND gate on an

FPGA.

39

—— [this iz a VHDL comment)

-— import std logic from the IEEE library
libhrarv IEEE:
uze IEEE.std logic 1164.all:

—— this i=s the entity
entity name of entity is
part |
IN1 : in std logic;
INZ : in std logicy
OUT1: out =td logic):
end entity name of entity:

—— here cowmes the architecture
architecture name of architecture of name of entity is

—— Internal signals and cowponents would be defined here
hegin
OUT1 <= IN1 and INZ:

end architecture nsmwe_of architecture;

Figure 16 — Example of VHDL code for expressing the behavior of an AND gate

Another methodology is using a higher-level programming language such as
SystemC or C++ to develop the algorithm and then use a C-to-RTL synthesis tool like
Vivado HLS to convert the code to HDL-equivalent format such as VHDL or Verilog
and then utilize it in a FPGA Hardware Platform IDE e.g. Vivado.

40

Eﬁ Synthesis(solution1) &2 [g core.cpp

Synthesis Report for "bw_thres’

General Information

Date: Tue Dec 17 03:27:46 2019

Wersion: 2017.4 (Build 2086221 on Fri Dec 13 21:13:33 MST 2017)
Project: bw_thres_64

Solution: solutionl

Product family: zyng
Target device: xc7z020clg484-1

Performance Estimates
= Timing (ns)
= Summary
Clock Target Estimated Uncertainty
ap_clk 10.00 3.84 1.25
=l Latency (clock cycles)

= Summary

Latency Interval
min max min max Type

1028 1028 1028 1028 none /=1 Synthesis{solutionT) [€] core.cpp 52

=l Detail P 1 Binclude <hls_stream.h>
H Instance G 2 #include <ap_axi_sdata.h>
3 #include <stdint.h>
+ Loop 4 #define GS_PIXELS_PER_STREAME4 8

5 typedef ap_axiu<64,1,1,1> streamsd;
6 typedef hls::stream<streams4> AXI_STREAM;

Utilization Estimates
8 typedef ap_ufixed<64, 64> AP_64;

= Summary 9= void Im_thr'es(AXI_STREN-I.E inputf AXI_STREAM & output, int size
18 #pragma HLS INTERFACE axis port=input

Name BRAM_13K DSPASE FF LT 11 #pragma HLS INTERFACE axis port=output
Dsp - - - - 12 #pragma HLS INTERFACE s_axilite port=sizeIn bundle=CTRL_BUS
Expression - - 0 614 13 #pragma HLS INTERFACE s_axilite port=sizeOut bundle=CTRL_BUS
FIFO - - - - 14 #pragma HLS INTERFACE s_sxilite port=return bundle=CTRL_BUS
Instance 0 - 112 168 15
Memory - - - - 16 int i = 8;
Multiplexer - - - 408 17 int dataIn, dataOut;
Reqgister - - 496 18 AP_64 inValue, outValue;
Total 0 0 608 1190 19 uint8_t pixelArrayIn[GS_PIXELS_PER_STREAMG4];
Loailable 280 220 106400 53200 n al 7
Utilization (%) i ~ = o Figure 18 — Sample C++ code of the BW

Figure 17 — Synthesis report for BW Threshold Thresholding Function

function in Vivado HLS. This report shows timing
estimates and resource utilization estimates

Vivado HLS utilizes directives in the form of pragmas or tcl-based commands
to allow developers to reduce latency, improve throughput or reduce resource
utilization of the exported RTL code.

The most important performance enabling pragmas are

1. #pragma pipeline — inserted inside loop type command blocks in the
C/C++ code. This directive guides the compiler to create RTL code
that implements the target command block in a pipeline. If the code
structure allows it, a pipeline initiation interval of 1 can be achieved,

leading to immense performance increase. [52]

41

void func(m,n,o) {
for (i=2ji==0;i-) {
op_Read;
op_Compute; —
op_Write I
}
}
- -
3 cycles 1 cycle
= EAEN = EJEA = 3 = ECEEE
< . R |
8 cycles = EJKE3
D 4 cycles o

() Without Loop Pipelining (B) With Loop Pipelining

¥1277110217
Figure 19 — Example of decreasing execution time of a loop via use of pipelining

2. f#ipragma HLS partition array — a pragma directive that is used on
array variables in C/C++ code which forces the resulting Block RAM
implemented RTL code to partition the array into multiple smaller
arrays. This is usually applied to allow concurrent access to elements
in the BRAM, either to read or to write values.

array [N] array4[N/2]
I—:> mse [N/2 N2 N-1
[T 1T 2. [ns][nz]|n1] |block LB 5 : N2
arrayle] array5[N/2]
: MSB 7 N3 N-1
(o721 Iwslwelna] [oydic > Voo 2 N2
array6[1]
array3[N] MSB | N-1
I T P O T I S |C°mp'e‘e:> —
:
Lse| 0
14307110217

Figure 20 — Result of partitioning an array of N elements with 3 different methods.

3. #pragma HLS unroll — directive that is implemented in loop-type
command blocks (much like the pipeline directive). This directive
guides the compiler to implement RTL logic that calculates all
commands in the loop concurrently.

After creating the HLS IP and synthesizing it, the next step involves exporting
the IP in a format that can be imported and used in a Vivado hardware design. The
user can select either VHDL or Verilog as his language of use to transform the C code
to. In our case, VHDL code was selected.

42

Optionally, if we want to we can check the ‘Vivado synthesis, place and route’
option in the Export RTL dialog window to get a more accurate resource utilization
and timing report than the HLS synthesis value, since these are estimates of the tool
and may differ greatly from actually synthesized and implemented design blocks.

u Export RTL

Export RTL as IP

Format Selection

IP Catalog ~ | | Configuration...

Evaluate Generated FTL
YHDL w

[Vivado synthesis
[JVivado synthesis, place and route

[] Do not show this dialog box again.

Figure 21 — Export RTL dialog box.

43

4.3. Vivado Design Workflow

After creating the HLS IP Blocks in Vivado, the next step is to create a
hardware platform in Vivado and integrate the accelerator blocks with DMA
controllers and AXI peripheral interconnects and generate the bitstream that will
implement the desired functionality.

DMA controllers are responsible for handling I/O operations instead of the
CPU. While a DMA transfer takes places, the CPU can handle other operations.

4.3.1. Block Diagram Design and Synthesis

In order to create the necessary bitstreams, we need to create the first block
design with 2 HLS IP blocks of our choice and then synthesize it. It is best to choose
the most resource-demanding HLS IP modules as the initial reconfigurable modules
to implement since this makes it easier to floorplan the design and ensure latter
modules fit adequately inside the marked partition. In our case, the dimer distribution
HLS IP is the first that was synthesized.

After creating the initial hardware platform project with Vivado 2017.4, we
selected the 3 HLS IP blocks to be available in the repository.

IP > Repository
Project Settings Add directories to the list of repositories. You may then add additional IP to a selected ‘
repository. If an IP is disabled then atool-tip will alert you to the reason.

General
Simulation TSI ITooTTiooTionooionoees
Elaboration IP Repositories
Synthesis
. + - '

Implementation
diXilinx_Workspace/2017_4/HLS/bw_thres_6&4 (Project)
diXilinx_Workspace/2017_4/HLS/convolution_G4 (Froject)

~ |
P d:fXilinx_Workspace/2017_4/HLS/dimer_genome_distribution_&4 (Froject)

Bitstream

Repository
Packager |

Tool Settings Refresh All

Project
IP Defaults
Source File
Display
WebTalk
Help

> Text Editor
3rd Party Simulators

» Colors
Selection Rules
Shorcuts

» Strategies

» Window Behavior

{:'E'l | Cancel | | Apply ‘ |Best0re...

Figure 22 — Add directories of exported HLS IPs on the Vivado project

44

After adding the IPs in the repository, the block diagram was designed with
the 2 initial implementations of the Dimer Genome Distribution HLS IP.

Figure 23 — Vivado block diagram of DPR platform

The only IP blocks in the design that needed editing is the 2 DMA engines
(each performing transfers from each HLS IP block) and the PS7 IP.

AXI Direct Memory Access (7.1)
@ Documentation - IP Location

Show disabled ports Component Name axi_dma_0

Enable Scatter Gather Engine

Enable Micro DA

Width of Buffer Length Register (8-23) bits
Address Width (32-54) |32 bits
WM_AHI_MMZS 4 [
. : /| Enaple Read Channel /| Enable Write Channel
I S_AXILITE M_AXLSIMM 42
=+ S_AXKIS_S2MM M_AXIS_MM2S + Number of Channels | 1 Number of Channels 1
s_axi_lite_aclk mm2s_prmry_reset_out_n
— LIl fEEIE DU Memory Map Data Width 64 v @IS Memory Map Data Widih | 64 v
m_axi_mm2s_aclk s2mm_prmry_reset_out_n
r_axi_s2mm_aclk rAm2s_introut Stream Data Width 64 v Stream Data Width (Auto) 64
axi_resetn s2mm_introut Max Burst Size 256 v Max Burst Size 256 v
axi_dma_tstvec[31:0]
- - Allow Unaligned Transfers Allow Unaligned Transfers

Figure 24 — AXI DMA Vivado IP Block settings

The DMA is set to allow 64-bit data transfers to allow 8 bytes per PLL clock
cycle to flow through the DMA and into the IP block. The width of buffer length
register setting of 23 bits means that the maximum transfer that the DMA can carry
out per call in the software is SMB.

45

% Re-customize IP x

ZYNQT Processing Syste

@ Documentation £F Presets

Page Navigator -

Zyng Block Design
PS-PL Configuration
Peripheral /0 Pins

MIO Configuration
Clock Configuration
DDR Configuration
SMC Timing Calculation

Interrupts

m (5.5)

IP Location & Import XPS Settings

PS-PL Configuration

Search: | ©L
Name
» General
~ AXINon Secure Enablement
~ GP Master AX! Interface
> MAX GPO interface
> MAX GP1interface
> GP Slave AX] Interface
~ HP Slave AXI Interface
~ S AXIHPO interface
S AXIHPO DATAWIDTH
~ 5 AXIHP1 interface
3 AXIHP1 DATAWIDTH
> 3 AXIHPZ interface
> S AXHPZinterface
> ACP Slave AXl Interface
> DMA Controller
» PS-PL Cross Trigger interface

g

Summary Report

Select Description

0 ~ Enable A¥I Mon Secure Transaction

Enables General purpose AXI master interface 0

Enables General purpose AXI master interface 1

i Enables AXI high performance slave interface 0
64 | Allows HPO to be used in 32/64 bit data width mode
¥ Enables AX high performance slave interface 1
64 ~ | Allows HP1 to be used in 32/64 bit data width mode
Enables AXI high performance slave interface 2

Enables AXI high performance slave interface 3

Enables PL cross trigger signals to PS and vice-versa

Figure 25 — PS-PL Configuration settings on ZYNQ?7 Processing System IP

Enabling the GP master axi interface is necessary for propagation of scalar
function arguments of HLS IPs, specifically the input and output size of data.
Additionally, we make sure to enable 2 of the 4 HP Slave AXI interfaces which will
be used to transfer data in and out of the 2 partitions. HP port 0 will be connected to
partially reconfigurable partition 0 and HP port 1 to partition 1. It’s important to set
the data width to 64 bits to allow in conjunction with the 64-bit width of the DMA to

flow in 8 bytes every clock cycle.

46

ZYNQT Processing System (5.5) ‘
| @ Documentation £¥ Presets IP Location €% Import XPS Settings
|
| Page Navigator - Clock Configuration Summary Report
| P O N i [
Zynq Block Design Basic Clocking Advanced Clocking
PS-PL Configuration Input Frequency (MHz) 33.333333 CPU Clock Ratio| 6:2:1 hd
Peripheral IO Pi = a
eripheral ins « gz 2 =&
MIO Configuration Search: | O
; Clack Configuration Component Clock Source Requested Frequ... Actual Frequency(... Range(MHz)
| > ProcessorMemory Clocks .
DDR Configuration 2 |0 Peripheral Clocks

~ PLFabric Clocks
{ SMC Timing Calculation

~ FCLK_CLKD IOPLL ~ |142000000 142857132 0.100000 : 250.00000C
Interrupts FCLK_CLK1 10 PLL 150.000000 10.000000 0.100000 : 250.00000¢

i FCLK_CLK2 I0PLL 50 10.000000 0.100000 : 250.00000¢
FCLK_CLK3 I0PLL 50 10.000000 0.100000 : 250.00000¢

2 System Debug Clocks

» Timers G
< ¥

| 0K | | Cancel

Figure 26 — PL Fabric clock settings of ZYNQ?7 Processing System IP

Lastly, the clock of the PL Fabric FCLK CLKO is set to 142MHz, which will
be set automatically by Vivado to the appropriate 7 nanosecond period —
142.857132MHz frequency.

After settings the appropriate settings in IP blocks and verifying correct
configuration with the Verify functionality, the HDL wrapper for the block design
was created and output products were generated in ‘Out of context per [P’ mode.

Y Generate Output Products X

The following output products will be generated. ‘

Preview
o T =
~ [0 design_1.bd (DOC per IF)
1l Synthesis

(il Implementation
[simulation

Synthesis Options

Global
*) Qut of context per [P

Qut of context per Block Design

Run Settings

Mumber of jobs: | 2 ~

(?) . G
2/ App Generate Cancel

Figure 27 — Generate output products in ‘OOC per IP’ mode

47

Generating OOC per IP is important to allow Dynamic Partial Reconfiguration

in the design in later stages. After generating output products the design was run
through synthesis only.

After the synthesis is complete, using TCL Console and commands, we need
to open the synthesized design and export the design and the cells of the Dimer
Genome Distribution blocks as Design Checkpoint (.dcp) files. The cell files exported

in .dcp format will later be used to be loaded into the defined Partial Region in later
steps.

write_checkpoint -cell <design_path_to_cell0_dimer> <path_to_save_dcp_file>
write_checkpoint -cell <design_path_to_cell0_dimer> <path_to_save _dcp_file>
write_checkpoint <path_to_full synth dcp_file>

The name of the cells we want to export can be viewed in the Cell Properties
panes upon selection of the cell in the Netlist pane.

% dpr_platform_2RPs_windows - [D:/klink_Workspace/2017_4/Vivado/dpr_platform_2RPs windows/dpr_platform 2Ps windows xpr] - Vivado 20174

Eis Edt Flow Toals w Laoul View Heip

) Synthesis Complete
=, B ®ar WHuBBH e E »t

Flow Navigator ERCIE A vNTHE SIZED DESIGN - synih_1] sc720200i0434-1 (acive;

~ PROJECT MANAGER

Default Layout

Netist

F ipcatiog

~ IPINTEGRATOR

me_diskibulion_545il_0 (design_1_dimer_genome_
S40i1_1

Cell Proparties

dimer_genome_disiribution_54bit_0 - &

er_genome_distribution_845it_ 0

Reference name: design_1_dimer_genome_disiibulion_4ait_0_0

Q n &8 E @

Report Memodology

ReponDRC

" P _i/diner_genome_distribution_€4bic_0 D:/%ilink Workspace/2017_4/Vivado/dps_placform IRPs_y

RepenNoise write_checkpoint -cell design) i/dimes genome distribution €4bit_1 Di/¥ilinx Workspace/2017_i/Vivado/dps_platfors IMPs_wind
write checipolnt D:/Xilinx Forkspace/2017_d/Vivado/dpr_platfors JRPs_Windows/checkDolnts/syath dimer_full.dcp

| diner]
Report Utilizstion

% Report Power

¥ Schematic

Figure 28 — Writing synthesized design and reconfigurable cells checkpoints.

After storing the DCP files, we return to the block design and replace the 2
dimer distribution blocks with any 2 copies of the implemented HLS IPs. In this case
we will replace them with the BW Threshold IPs.

48

o
o
B
@
+

B C g9 & &

axi_dma_1
bw_thres_64_1
.. M_AXI_MM2S
=+ s_axi CTRL_BUS e+ | = §_AXI_LITE . 1
I %+ inout tput ¢ 4 ZZ+ S AXIS S2MM M_AXI_S2MM 4
== input_r output_r = £ =
= P P] e M_AXIS_MM2S 4
— ap_clk ﬂ interrupt — s_axi_lite_aclk B B
R mm2s_prmry_reset_out_n
ap_rst_n m_axi_mm2s_aclk
R s2mm_prmry reset_out_n
Bw_thres_64 (Pre-Production) ILEZLCRTILCR S mm2s_introut
——a axi_resein -
s2mm_introut

AXI Direct Memory Access

ps7_0_axi_periph bw_thres_64_0 axi_dma_0

m 4 s_axi_CTRL_BUS o M_AXI_MM2S 4
i 4 s00_AXI e s tput r 4 [+ SAxLLITE W_AXI_S21M o
- pr——r input_r output_r — = | AXI]
—— ACLK = N =+ S_AXIS_S2MM
ap_clk y interrupt M_AXIS_MM2S 4
ARESETN s_axi_lite_aclk
ap_rst_n R mm2s_prmry_reset_out_n
¥ +——— S00_ACLK m_axi_mm2s_aclk = N
SDO_ARESETN Bw_lhres_64 (Pre-Production) ST mm_prmry_eset_out_n
- MO0_AXI o - mm2s_introut
MOO_ACLK axi_resein
..« MO1_AXI s2mm_introut
MDO_ARESETN =i%
MO1_ACLK Ll 3 AX| Direct Memory Access
- MO3_AXI i
MO1_ARESETN N
M02_ACLK

M02_ARESETN

Figure 29 — BW Thresholds IPs inserted in place of Dimer Distributions HLS IPs.

After assigning the address in the Address Editor pane automatically, we
verify correct connection and synthesize this design as well. After synthesis is done
we open the synthesized design and press the reload design shortcut in the top of the
window to view the newly synthesized design in the netlist.

Next we export to DCP files the 2 partial cells and the whole design as we did
for the dimer distribution design. After exporting, we go back to the design and repeat
the same process for as many modules we have implemented as we want. In this case
one more remains, the Convolution Image Filter HLS IP.

4.3.2. Floorplanning and Implementation of the Hardware Design

After creating all synthesis dcp files, we set the reconfigurable cells’
HD.RECONFIGURABLE property to 1. This enables Dynamic Partial
Reconfiguration on the project and is non-reversible

set property HD.RECONFIGURABLE 1 [get cells <path to rm celll>]
set property HD.RECONFIGURABLE 1 [get cells <path to rm cell2>]

49

Tcl Console ® Messages Log Reports Design Runs

Q = s I B B @

Writing XDEF routing special nets.

Write XLDEF Complete: Time {(3): cpu = 00:00:01 ; elapsed = 00:00:00.211 . Me
INFO: [Common 17-1381] The checkpoint 'D:/fXilinx Workspace/2017_4/Vivado/dp
write_checkpoint: Time (s): cpu = 00:00:15 ; elapsed = 00:00:0% . Memory (M
D:/Eilinx Workspace/2017_4/Vivado/dpr_platform 2RFs_windows/checkpoints/syn
get_property HD.BECONFIGUERABLE 1 [get_cells deaign 1 i/fconvolution g4 0]
get_property HD.BRECONFIGUBRABLE 1 [get_cells design 1 ifconvolution g4 1]

Figure 30 — Setting the HD.RECONFIGURABLE property of the design cells intended to be reconfirable

The property ‘Don’t touch’ of the 2 cells marked must be selected

Cell Properties ? _0O0 X
[T convolution_B4_0 L
Q = $ 42 + = 06 2
CLASS cell -
DONT_TOUCH | v,
FILE_MAME Deiiling_Workspace/2017 _dMNivadol/dpr,
» HD
General Properties Statistics Mets CellP 4 ¢ =

Figure 31 — Setting the DONT_TOUCH property of the reconfigurable cells

After confirming the don’t touch property is set, we move on to the
floorplanning stage. In this stage we need to make sure to assign the reconfigurable
modules to a partition on the FPGA fabric that contains enough resources for all other
synthesized modules to be programmed on.

This involves reading the utilization reports of the synthesis stage of all
generated full design checkpoint files by opening the full .dcp files generated
previously, running the open_checkpoint tcl command, running the report utilization
command on the opened design checkpoint and measuring for each reconfigurable
cell in each design the maximum utilization value for each of the 4 main categories of
resources, Look-Up Tables, Flip-Flops, BRAM36 modules and Digital Signal
Processors.

50

The relevant values for the current design are listed below.

Table 4 — Maximum utilization value for each category of resource for the 3 implemented algorithms

HLS IP Block LUTSs FFs BRAM236 Tiles DSPs
Dimer Distribution 4254 5150 0 0
BW Threshold 406 429 0 0
Convolution 3056 5538 24 0
Maximum Value 4254 5538 24 0

After measuring this maximum value, we right click on the cells marked for
reconfiguration on the opened synthesis design of the last synthesized block diagram
and select Floorplanning—Draw Pblock to draw a p-block for each cell’s partition,
making sure each partition contains enough resources to fit all RMs. A good practice
noted by Xilinx guides is to add an additional 10% of resources to allow leeway for
additional routing resources.

% New Pblock

Mame:

Grids

bl

bl

b

b

Create a new Pblock.

pblock_0|

SLICE (1200)
DSP43 (40)
EAMBA1S (60)

RAMB3G (20)

' Assign selected cell

Figure 32 — Pblock creation dialog

51

Pblock Properties
3 pblock_D 4= &
Physical Resource Estimates -
Site Type 1 Ayvailable Assigned % Uil
Block RAM Tile 30 24 80.00
DSPs 40 0 0.00
F7 Muxes 2400 0 0.00
F& Muxes 1200 0 0.00
LUT as Logic 4800 3053 6360
LUT as Memary 2000 3 0.15
RAMB18 B0 36 60.00
RAMB3G/FIFO 30 6 2000
Register as Flip Flop 9600 AR38 57.69
Register as Latch 9600 0 0.00
Slice LUTs 4800 3056 6367
Slice Registers 9600 hR38 A7.69
< > :
General Properties Statistics Cells conn

Figure 33 — Created pblock resource utilization estimates for first module.

Note the Available column in the above figure that the appropriate number of
LUTs, FFs and BRAMZ36 tiles have been allocated for latter modules to be inserted.

Device

- @ XElo A R @ o o

Convolution_64_0

Figure 34 - Floorplanned device with 2 partial reconfiguration regions

52

Xilinx devices offer the capability of resetting a partial module’s partition
when programmed to ensure a predictable starting condition of the programmed
module. In Zyng-7000 devices, this is enabled by checking the
RESET AFTER RECONFIGURATION property of each defined partition. In order
to enable this property however, the floorplanned pblock must be vertically aligned
with the clock region it resides. This means that its height must be equal to the height
of its encompassing clock region. The width does not matter.

After drawing pblocks for both cells, we set the properties
RESET AFTER RECONFIGURATION to 1 and SNAPPING MODE to ON for
both partitions by clicking on a pblock in the Device view, going to the Properties
pane and setting the appropriate values.

Pblock Properties ? 00 X

@ pblock_0 4= o

Q = & @2 + 0 »

ruraL P
FARENT ROOT
PARTPIMN_SPREADIMG 5
FRIMITIVE_COUNT 8955
RECTANGLE_COUNT 1
RESET_AFTER_RECOMFIG v
SMNAPPING_MODE on b

General Properties Statistics Cells Conn =

Figure 35 — Property setting of the RESET_AFTER_RECONFIG and SNAPPING_MODE properties

After setting the SNAPPING_MODE property, it’s important to confirm that
the floorplanned pblocks contain the necessary amount of resources to fit all modules.
If resizing is needed, simply dragging an edge of the pblock should suffice.

In order to ensure correct configuration of the design up to this point we must
run a Design Rule Check (DRC) report on the project. We select the Tools = Report
- Report DRC.... Next we select only the Partial Reconfiguration rule subset to
check in the report.

53

% Report DRC

Check design against selected rule decks andfor individual
design rules.

Results name: drc_1
Dutput file:

Interactive report file:

Rule Decks

~ YWivado Rule Decks (7)

= defanlt

Rules (81 of 3714)
Q = =
~ B AllRules (3714)
Metlist (1210)
PS7 (1)
Pin Flanning (749)
Clocking (1)
Memory (146)
Floorplan (9]
Implementation (190)
+'| Partial Reconfiguration (21)
Physical Configuration (15295]
DRC System (1)
SelectlQ (1)

A A A . . A A

+'| Openin a new tab

/

@ oK Cancel

Figure 36 — DRC Rule subset selection for Partial Reconfiguration

If everything has been configured correctly, the ‘No Violations Found’ pop-up
window should appear. Next we implement the design by running the 3 TCL

commands below

opt _design
place design
route design

54

After the opt-place-route phase is over, we save a dcp file, this time in the
post-implementation stage of the inserted modules that will constitute the first
configuration of the DPR platform. This is done with the write checkpoint TCL
command

write checkpoint <path to save dcp file full impl>

Next we must clear the 2 defined partitions by setting them as blackbox areas
and lock the design routing. This stage is saved as a design checkpoint to allocate the
other synthesized cells on the partial regions later and generate the blank partial
bitstreams.

update design -cells <path to rm celll> -black box

update design -cells <path to rm cell2> -black box

lock design -level routing

write checkpoint <dcp save directory>/blackbox locked design.dcp

Netlist Device
zu o a HE o H R g o
5 design_1_wrapper =
b Nets (13
~ [@ design_1_i (design_1
> Nets (2041
> Leaf Cells (2

> axi_dma_0 (design_1_axi_dma_0_0
> axi_dma_1
> [@ axi_smc
> @ axi_sme (design_1_axi_smcl_
i convolution_64_0 (design_1_convolution_54_0_0_bb)
convalution_64_1 (des bb
> processing_system7_0 (d
b4 ps7_0_axi_periph (de
> rst_ps7_0_100M (des 0
£ >

Cell Properties

B convolution_64_0 £
MName design_1_i/convolution_B4_0
Parent design_1_i
Pblock: 3 pblock_0
Reference name: design_1_convolution_64_0_0_bb
Type Black Box ~
General Properties Statistics Nets Cell Pins
Tcl Console
QT £ I B E @

update design —cells design 1 i/convelution €4 0 -black box
update design —cells design 1 i/convelution €4 1 -black box

lock design -level routing

write_checkpoint D:/Xilinx Workspace/2017_4/Vivado/dpr platform 2RPs windows/checkpoints/blackbox locked design.dcp

Figure 37 — Updated blackbox partitions and locked design of routing resources

At the next step we must insert the partial synth files of the remaining modules
generated previously inside each corresponding partition to generate the
implementation design checkpoints that will be used to generate each configuration’s
partial and full bitstreams.

55

For all the other reconfigurable modules do the following procedure using
TCL commands

1. Read the checkpoints for the modules not taken care of
read_checkpoint -cell <path_to cell0> <path_to partial synth _file0>
read_checkpoint -cell <path_to_celll> <path_to_partial synth_file]>

2. Do Opt-place-route process
opt_design
place_design
route_design

3. Write the implemented configuration checkpoint
write_checkpoint <path_to dcp file full impl>

4. Close the Project using the following command
close_project

5. Read the blackbox locked checkpoint
open_checkpoint blackbox_locked _design.dcp

6. If no more modules are left to implement, exit this loop, else go to 1)

In the opened design checkpoint of the locked blackbox design, we execute
the commands below to insert LUTs tied to constant values that will ensure the
outputs of the reconfigurable partition are not left floating. Additionally we will also
place and route the design to create the blackbox configuration of the platform and get
blank partial bitstreams.

update_design -buffer_ports -cell <path to RM cell(0>
update_design -buffer_ports -cell <path to RM cellI>
place_design

route_design

write_checkpoint <path_to _impl _blackbox_design_dcp>
close _design

4.3.3. Verify Partial Reconfiguration Compatibility and Generate
Bitstreams

After generating all implementation checkpoints, we must verify that all
implementation configurations are replaceable on board. To do this we use the
pr_verify command

pr_verify -initial <path_to_rml_full impl design> -additional
{<path_to_rm2_full impl design> <path_to_rm3_full impl design>
<path_to_blackbox full impl design>}

If the pr_verify command outputs that all dcp files are compatible with the
initial defined, the next step is to generate the bitstreams.

56

For each implemented design checkpoint, we generate the partial and full
bitstreams using the command loop below

1. Open the dcp file of a configuration
open_checkpoint <path_to_implemented dcp file>

2. Write the partial and full bitstreams in .bit format
write_bitstream —file <path_to_save_bitstream>

3. Create the .bin format of the partial .bit files. .bit files are not
programmable at runtime. .bin format is the necessary format to allow
runtime reconfiguration
write_cfgmem -format BIN -interface SMAPX32 -disablebitswap -
loadbit "up 0 <read _path_to_partial bitfile>"
<write_path_to_partial_bin>

4. Close the design
close _design

5. If bitstreams are generated for all configurations exit, else go to step 1.

The last step needed is to export the hdf file of the initial design synthesized to
allow development of applications on Vivado SDK. To do this, we must open the first
synthesized .xpr project, create implementation and bitstream results and export the
hdf file.

file mkdir <dpr_platform_directory>/dpr_platform 2 RPs.sdk

write_hwdef -force -file <dpr platform_directory>/dpr _platform 2 RPs.sdk
/system_wrapper.hdf

Tha names of the partial .bin files generated in this phase are needed in the
next implementation step. The application that will read the .bin files and store them
on the DDR memory must know the names of the bin files and how many regions
have been defined in the hardware design.

4.4. Vivado SDK Design Workflow

After creating the hardware platform in Vivado and generating all the
necessary partial and full bitstreams, we launch the Vivado SDK environment to
develop the baremetal application that will handle file I/O, schedule the incoming job
requests, handle the partial bitstream reconfigurations and delegate acceleration tasks
to the PL.

First we create a Zynq FSBL application on the SDK to enable booting the
application on an SD card. The FSBL is responsible for device initialization and
programming the PL with the full bitstream.

57

Next we create the main application that will handle task scheduling and file
I/O. In order to enable SD card reading (to load the partial .bin files on memory and
the images and genome files to test the accelerators on) and writing (to write the
images and statistical distribution .csv format files from the results of these
acceleration tasks) we include the XilFFS library. The XilFFS library is a
manufacturer-specific implementation of Fat File System drivers made by Xilinx that
allows devices to read and write on non-volatile memory media formatted as FAT32.

After developing the application and building the FSBL and application
binaries we use the bootgen tool [53] developed by Xilinx and integrated in Vivado
SDK to create the bootable image that will be transferred to the SD card and used to
boot the Zedboard. The STB Image library was used to enable reading and writing of
grayscale images [54].

| Create Boot Image
| Creates Zyng Boot Image in .bin format from given FSBL elf and partition files in specified output folder, @

| Architecture: | Zyng ~
| (®) Create new BIF file () Import from existing BIF file

: Basic Security

| Output BIF file path: | DXiling_Workspace\2017_d\Vivado\dpr_platform_2RPs_windows\dpr_platform_2RPs_windows.sdk\dpr_application\bootimage\dpr_application.bif ‘ Browse...
UDF data: | ‘ Browse...
[split Output format: BIN ~
Output path: | DXiling_Workspace\2017_d\Vivado\dpr_platform_2RPs_windows\dpr_platform_2RPs_windows.sdk\dpr_application\bootimage\BOOT.bin ‘ Browse...

Boot image partitions

File path Encrypted Authenticated

(bootloader) D\ Xilinx_Workspace\2017_\Vivado\dpr_platform_2RPs_windows\dpr_platform_2RPs_windows.sdk\zyng_fshl\Debug'zyng_fsbl.elf none none

D:\Xilink_Workspace\2017_4\Vivado\dpr_platform_2RPs_windows\bitstreams\blackbox.bit none none

DXiling_Workspace\2017_d\Vivado\dpr_platform_2RPs_windows\dpr_platform_2RPs_windows.sdk\dpr_application\Debug\dpr_application.elf none none Add
Delete
Edit
Up
Down

@

i) Preview BIF Changes Cancel

Figure 38 — Create boot image dialog box.

58

4.5. Power Analysis Methodology

As mentioned previously, there are several methods available for measuring
the power consumption of electronic devices and computing platforms. In this work
we measured power consumption of the developed FPGA platform on the Zedboard

using an external current sensor, specifically the INA219 current measurement sensor
[55].

INA219 sensor can measure DC in the range of +-3.2 Amps with a precision
of 1%. It also comes equipped with a 12-bit resolution ADC. The resolution means
that the INA219 can detect current changes of 0.8 milliamperes.

Preliminary power measurements with the ISNS20 Pmod [56] indicated that
average current drawn doesn’t exceed 340-350 milliamperes. INA219 is equipped
with a software-configurable internal gain. The gain settings allow higher current
measurement resolution at the cost of a smaller range of maximum current that we can
measure. The table below shows how resolution and current measurement range
change depending on the setting of the internal gain.

Table 5 — INA219 internal gain configurations.

Internal Gain Current measurement Current measurement
Configuration range (in milliamps) resolution (in milliamps)
Divl +-3200 0.8
Div2 +-1600 04
Div4 +-800 0.2
Div8 +-400 0.1

Since the maximum current measured with the ISNS20 pmod was measured to
be at most 350 milliamps, we set the internal gain at div8 to allow for the maximum
resolution that the INA219 can offer while remaining within the range of current
drawn from the applications running on the Zedboard.

The INA219 utilizes the 12C interface to transfer measured values to a
microcontroller. A second Zedboard was utilized to develop and operate a platform
capable of reading and outputting measured values from the INA219 sensor module.
This was done to ensure zero power consumption overhead as incurred from the
operation of the INA219 was included in the measurements.

To facilitate differentiating between the Zedboard platform running the Partial
Reconfiguration design and the Zedboard platform running the INA219 measurement
design, we will refer to them as «Zedboard PR platform» and «Zedboard INA219
platform» respectively. The diagram below shows the connection setup of the 2
boards for measuring power drawn from the Zedboard PR platform.

59

Zedboard PR Platform
Power Source

-

INA219 Board

Zedboard INA219 Platform
Power Source

“ i

Zedboard PR Platform

Figure 39 — Experimental setup for measuring power consumption of the developed FPGA platform.

Zedboard INA219 Platform

60

4.6. DPR-Aware Task Scheduler Implementation

Although FPGA logic usually consumes less energy than equivalent x86 64
implementations, in order to minimize power consumption of the platform, we need to
make sure to program partitions that are not used with blank partial bitstreams.

Additionally, in a cloud computing environment an FPGA could potentially
accelerate a broad range of tasks, which in turn means a large number of
programming bitstreams featuring all kinds of accelerators in all kinds of
heterogeneous or multicore configurations, making it cumbersome to schedule them
in the platform. Implementation of a task scheduler that efficiently reprograms parts
of the FPGA chip on-demand while leaving the rest of the chip to function
uninterrupted is necessary to increase efficiency of the platform and provide
acceptable QoS.

Dynamic Partial Reconfiguration offers the capability to program a partition
with a blank bitstream, a ‘blackbox’ Reconfigurable Module (which is termed
‘greybox’ in Xilinx devices), in order to reduce power consumption when not
utilizing a RP. This is useful to achieve high overall power efficiency in our system
and reduce idle power consumption; however there is a downside to this.

The ARM CPU utilizes the PCAP interface to program the Programmable
Logic at runtime. Reprogramming requires a non-trivial amount of time to complete.

Whether we want to program a blank bitstream to reduce idle power
consumption of the Programmable Logic, or we want to program a reconfigurable
module to offer an acceleration service, this energy overhead must be taken into
account and necessary actions need to be taken from the developer to ensure that the
chance that a reconfiguration takes place is as small as possible.

From the aforementioned, the following questions are formulated that are
important to answer in order to reap the benefits of partial reconfiguration in the
domain of power saving.

1. What is the minimum amount of time a reconfigurable partition should retain a
programmed blank bitstream in order to save more energy than the energy
incurred to program it on the FPGA?

2. Given an acceleration task that has been completed by a programmed
reconfigurable module on a reconfigurable region, what is the expected
average time that the same task might be requested again?

In order to answer the first question we must be able to measure 2 different
energy dissipation values. The first is the energy consumed by the FPGA device while
reconfiguration takes place. This value is given by the equation

Equation 5 — Energy overhead of programming a partial bitstream to a reconfigurable region

Ercnfg = Frenfg * lrenfg

61

Prenfy 18 the power draw of the platform during reconfiguration
Trente 1S the time needed to reconfigure a partition.

Prenfg in this work is taken from measuring the wattage of the Zedboard while it
is reconfiguring a partition using the INA219 sensor.

The second energy dissipation value must be given by finding the energy
difference of the energy dissipated while the reconfigurable region is loaded with a
partial bitstream of an implemented algorithm while in idle mode

Equation 6 — Idle function module energy dissipation equation
Emoduleldle = PfuncModuleIdle * lidle
and while the same region is loaded with a blank bitstream.
Equation 7 — Idle blackbox module energy dissipation equation
Epiank = Ppiankmoduterdte * Tiale

Eblank 1s the energy dissipated by the Zedboard, measured in Joules, while it is
programmed with a blank bitstream.

PolankModule 18 the power consumption of the Zedboard, measured in Watts,
while programmed with a blank bitstream.

Tiqie 1s the time period in seconds that a region operates in idle mode.

Emoduterdre 18 the energy dissipation of a region loaded with a specific function
reconfigurable module

PrenfoModule 1S the power drawn from the logic residing in the programmed
partial region

After finding the above 2 energy values, the difference energy value needs to
be estimated to deduce the energy savings that the blank bitstream has incurred, since
a blank bitstream will almost always draw less power than an equivalent area
functioning module.

Equation 8 — Energy savings incurred from programming a blank bitstream over a functioning module
EsavePartial = Emoduleldle - Eblank

The following comparison must be true in order to incur energy savings when
programming blank partial bitstreams in a DPR platform.

Equation 9 — Equation to check if programming a blank bitstream incurred enough energy savings to
compensate for the energy cost of programming it

EsavePartial > Ercnfg

62

From the above equations, it becomes apparent that we need to maximize the
Egavepartial Value and the main method that we can do this is by making sure that the
expected Tig time span that a region is programmed with a blank bitstream is as long
as possible, or at the very least long enough to incur power savings.

Calculating Ecnge values is trivial and can be calculated by measuring time
needed to reprogram a partition and the wattage of the system while reconfiguring.
Calculating Eguyepartial On the other hand is less straightforward since it requires
knowing the power consumption of the PL while it is programmed with a blank
bitstream and while it is programmed with a function module and operating in idle
mode.

Additionally, if we reprogrammed a partition with a blank bitstream every
time a task was completed, the computational overhead incurred due to the partition
reconfiguration would severely undermine the efficiency of the platform in carrying
out data-intensive workloads. As such, reprogramming a partition with a blank
bitstream immediately after completion of a task should be done only if said task is
called sparsely.

The graph below shows the computation overhead of reconfiguring a partition
with a module and carrying out the computation on 2 different test cases. One is
applying a convolution filter on a 1920x1080 grayscale image and the other is
calculating the dimer genome distribution of E. Coli.

Execution time including partial reconfiguration time for region 1 of DPR platform
14.00

12.00
10.00
m
=}
<
S
b 8.00
4
E
£ 6.00
L
£
[
4.00
2.00
0.00
Convolution of Full HD grayscale image Dimer Genome Distribution for E. Coli
M Execution Time (msec) 1.85 5.24
M Reconfig Time (msec) 6.88 6.88

Figure 40 — Computational overhead of Dynamic Partial Reconfiguration.

Convolving a 1920x1080 grayscale image takes 1.8 msec while configuring a
partition with the partial bitstream that handles convolution takes almost 4 times
longer. The need for an intelligent scheduling becomes evident.

63

In light of the above, a task scheduler was implemented. This scheduler is
responsible for monitoring which jobs are requested and effectively handling FPGA
and memory resources to complete these jobs. For example, if a task (e.g. applying a
Black and White threshold of 120 on a 512x512 grayscale image) is requested, the
scheduler must check to see if a partition is already programmed with the module
handling the requested task and if idle, simply delegates the service to this module.

Additionally, if a task is requested and no partition is already loaded with the
module handling it, the partition with the module that was Least Recently Used
(LRU) is loaded with the requested partial bitstream. This is akin to the LRU
replacement policy used in cache memory.

Below is a generic flow diagram showcasing the scenario where a user
requests processing of data for a specific task.

O

User

Zedboard SoC 1. User requests an accelerator service from the platform
Y
DDR Memory —| Processing System |——>| Programmable Logic

3. Fetch appropriate 5 PS searches 4. Program vacant partition if needed and

partial bitfile ; launch accelerator on requested data
if reproarammin for available
progrs o partition
required

Figure 41 — Flow diagram for launching an acceleration task for requested data on the platform

In step 1, the user selects the input data (such as an image or a txt file) and the
algorithm to execute on the input data. The system has been design to automatically
resolve whether the input data and the requested task are compatible and an
appropriate error message is issued if they are not (e.g., can’t run a Black and White
Threshold algorithm on a .txt file)

In step 2, the Processing System (PS) is responsible for deducing on which
partition to run the selected task on. First, the PS checks all RPs to deduce whether a
requested function/RM is already programmed in a RP, either from system startup or
from a previous task allocation.

1. If a RP is programmed with the requested module, the selected task
launches on this RP.

2. If no partition is loaded with the requested module, the least recently
used partition is chosen to be programmed with the module.

64

Step 3 is optional and is only called if no partition is programmed with the
requested module. Depending on which partition we used least recently, the
appropriate partition binary file is fetched and programmed.

Finally, in step 4, the bitstream is loaded (if fetched from DDR) and the
algorithm is offloaded to the PL.

During execution, the scheduler monitors how often each service has been
called.

1. If a service is called and its average interval during its last 5 calls is
smaller than the minimum amount of time that the blank bitstream
must be retained in a partition to incur energy savings, than the
scheduler will not reprogram it immediately after completing
execution.

2. If a service is called and its average interval is longer than the
minimum amount of time needed for the blank bitstream to incur
savings, then the scheduler reprograms the partition with a blank
bitstream immediately after completion.

Each accelerated service has its own timer for tracking their average call
interval.

65

5. System Operational Metrics

In this chapter, benchmark results are presented from operation of the
implemented system on various platforms. The specific metrics that will be presented
on each platform are

The 3 selected algorithms were developed on 2 distinct platform
configurations

1. Configuration 1 is the baremetal application that executes the 3
algorithms on the ARM A9 CPU of the Zedboard. The specifications
of the platform are the following

a. CPU: ARM A9 Dual-Core @667MHz
b. Cache
i. L1 32KB Data Cache (per core)
ii. L2 512 KB cache (shared)
c. DDR-RAM : 512 MB of DDR3 @533MHz
d. Power Consumption : 3.82-4.02 watts (calculated wattage of
the whole device, values taken from INA219 sensor readings)

2. Configuration 2 consists of the proposed FPGA system architecture
that utilizes DPR techniques to allow time-multiplexed and efficient
dispatching of data-intensive tasks. In this implementation, the
hardware design is developed to allow partial reconfiguration of 2
regions in the FPGA whose purpose is to house any of the 3 RMs
developed in Vivado HLS. Each RP requires its own partial bitstream
variation of each algorithm. One synthesized and bitstream-generated

RM cannot fit into any RP defined in the hardware design. A generated
partial bitstream meant for partition A will not be compatible with
partition B. For a given DPR-enabled platform where we want all
regions marked as reconfigurable to house any of the functions
developed in Vivado HLS, the equation that calculates how many
different partial bitstreams need to be generated is given by the simple
formula
N=pxm

Where:

N is the total number of partial bitstreams needed

p is the total number of RPs defined in the hardware platform

m is the number of different HLS IP algorithms

For each of the 2 test configuration platform and for each algorithm
implementation on each platform, the following metrics will be presented

1. Computation time in milliseconds
2. Performance throughput in Mbytes/sec
3. Energy efficiency in MB processed/joule spent

66

4. CPU ClockCycles/byte metrics. For the ARM CPU implementation,
the CPU frequency of 667 MHz will be used. For the FPGA
implementation, the clocking frequency set for the PL will be used
(~143MHz)

5.1. ARM Cortex A9 CPU benchmarks

In this chapter, performance and energy efficiency metrics of the ARMv7
Cortex A9 CPU embedded on the Zedboard are presented. The development
environment is Vivado SDK 2017.4. The programming language used to implement
the algorithms is C. Compiler optimization was set to —O3 when building the
applications.

The timer used to measure runtime of each case is the Snoop Control Unit
Timer (SCU Timer) embedded in Zynq family devices. SCU timer has a resolution of
3 nanoseconds.

Power efficiency was calculated from power consumption measurements
taken from the INA219 current sensor.

Clock cycles per byte metrics are based on the ARM A9 CPU’s clock
frequency of 667 MHz.

5.1.1. Black and White Thresholding Benchmarks - ARM CPU

The table below showcases benchmark metrics for computing BW Threshold.
The test data is sample data of random values in the range of [0, 255]. The sample
size starts from 64 bytes and doubles until it reaches SMB.

Power efficiency for the software implementation of the Black and White
Thresholding application is calculated with a measured wattage of 3913 milliWatts.

67

Table 6 — BW Threshold benchmark metrics. ARM A9 CPU, -O3 optimized

Size(bytes) Time (msec) Throughput (in Clockcycles/byte Efﬁl:ioe‘;vlg (in
MBi/sec) MB/Joule)
64 0.0004 147.64 431 37.73
128 0.0007 186.91 3.40 47.77
256 0.0012 196.10 3.24 50.11
512 0.0025 198.95 3.20 50.84
1024 0.0049 199.88 3.18 51.08
2048 0.0098 199.96 3.18 51.10
4096 0.0197 198.31 3.21 50.68
8192 0.0378 206.68 3.08 52.82
16384 0.0807 193.64 3.28 49.49
32768 0.1987 157.26 4.04 40.19
65536 0.4143 150.87 421 38.56
131072 0.8249 151.53 4.20 38.72
262144 1.6821 148.62 4.28 37.98
524288 3.5451 141.04 4.51 36.04
1048576 7.1957 138.97 4.57 35.52
2097152 14.2956 139.90 4.54 35.75
4194304 29.7955 134.25 4.74 34.31
8388608 60.0289 133.27 4.77 34.06

5.1.2. Convolution Benchmarks - ARM CPU

The table below showcases benchmark metrics for convolution. The test data
is sample data of random values in the range of [0, 255]. The sample size starts from
64 bytes and doubles until it reaches 8MB. Power efficiency for the software
implementation of the Image Convolution application is calculated with a measured
wattage of 3857 milliWatts.

Table 7 — Convolution benchmark metrics. ARM A9 CPU, -O3 optimized

Size(bytes) Time (msec) Throughput (in Clockceycles/byte Efﬁlc)i(:ezg (in
MB/sec) MB/Joule)

64 0.0024 25.19 25.24 6.53
128 0.0054 22.68 28.04 5.88
256 0.0113 21.53 29.52 5.58
512 0.0226 21.58 29.46 5.59
1024 0.0491 19.90 31.94 5.16
2048 0.0954 20.46 31.07 5.31
4096 0.1957 19.96 31.85 5.18
8192 0.3854 20.27 31.36 5.26
16384 0.7768 20.12 31.61 5.22
32768 1.5409 20.28 31.35 5.26
65536 3.0997 20.16 31.53 5.23
131072 6.1715 20.25 31.39 5.25
262144 12.5095 19.98 31.81 5.18
524288 24.7851 20.17 31.52 5.23
1048576 49.5933 20.16 31.53 5.23
2097152 99.2031 20.16 31.54 5.23
4194304 198.4374 20.16 31.54 5.23
8388608 396.9096 20.16 31.54 5.23

68

Convolution using a 3x3 kernel is a more complex algorithm, requiring more
computations to carry out compared to a BW Thresholding task, hence the lower

throughput and efficiency measurements.

5.1.3. Dimer Genome Distribution Benchmarks - ARM CPU
The table below showcases benchmark metrics for dimer genome di stribution.
The test data is sample data of random nucleobase values in the set [‘A’,*C’,°G’,‘T’].

The sample size starts from 64 bytes and doubles until it reaches SMB.

Power efficiency for the software implementation of the Dimer Genome
Distribution application is calculated with a measured wattage of 4012 milliWatts.

Table 8 — Dimer Genome Distribution benchmark metrics. ARM A9 CPU, -O3 optimized

. . Throughput (in _P.O wer .
Size(bytes) Time (msec) MB/sec Clockceycles/byte | Efficiency (in
MB/sec) MB/Joule)
64 0.0015 40.70 15.62 10.14
128 0.0029 41.76 15.22 10.41
256 0.0058 41.95 15.16 10.46
512 0.0116 42.11 15.10 10.50
1024 0.0231 42.19 15.07 10.52
2048 0.0463 42.22 15.06 10.52
4096 0.0925 42.25 15.05 10.53
8192 0.1849 42.25 15.05 10.53
16384 0.3698 42.25 15.05 10.53
32768 0.7435 42.03 15.13 10.48
65536 1.5360 40.69 15.62 10.14
131072 3.1016 40.30 15.78 10.05
262144 6.2099 40.26 15.79 10.03
524288 12.4212 40.25 15.79 10.03
1048576 24.8944 40.17 15.83 10.01
2097152 49.8139 40.15 15.84 10.01
4194304 99.6344 40.15 15.84 10.01
8388608 199.2731 40.15 15.84 10.01

69

5.2. DPR-Enabled FPGA Design benchmarks

In this chapter, performance and energy efficiency metrics of the FPGA
coprocessors in the Zynq 7020 chip embedded on the Zedboard are presented. The
development environment is Vivado SDK 2017.4. The programming language used to
implement the algorithms in Vivado HLS is C++.

Power efficiency was calculated from readings taken from the INA219 current
Sensor.

Because the CPU must read the images/genome sequences to process and
write the results as .png or .csv files respectively and because the PS-PL data
propagates through the HP ports which are not cache-coherent, cache flushing and
invalidation must be used in the test runs. The time and energy expedited for file I/O
and cache flushing/invalidating is not taken into account in the following tests.

Clock cycles per byte metrics are based on the FCLK CLKO used in the
Vivado Hardware design and set to operate at 142.85 MHz.

5.2.1. Black and White Thresholding Benchmarks - FPGA

The table below showcases benchmark metrics for computing BW Threshold. The test
data is sample data of random values in the range of [0, 255]. The sample size starts
from 64 bytes and doubles until it reaches SMB.

Power efficiency for the hardware implementation of the Black and White
Thresholding application is calculated with a measured wattage of 4012 milliWatts.

Table 9 — BW Threshold benchmark metrics. FPGA Coprocessor

Throughput (in Power
Size(bytes) Time (msec) 21D Clockcycles/byte Efficiency (in
MB/sec)
MB/Joule)
64 0.0021 29.76 4.58 6.50
128 0.0022 54.56 2.50 11.91
256 0.0022 109.78 1.24 23.97
512 0.0026 191.01 0.71 41.71
1024 0.0029 337.15 0.40 73.61
2048 0.0039 497.93 0.27 108.72
4096 0.0058 677.92 0.20 148.02
8192 0.0093 840.43 0.16 183.50
16384 0.0165 945.68 0.14 206.48
32768 0.0308 1014.68 0.13 221.55
65536 0.0595 1049.89 0.13 229.23
131072 0.1168 1070.09 0.13 233.64
262144 0.2316 1079.65 0.13 235.73
524288 0.4609 1084.89 0.13 236.87
1048576 0.9197 1087.33 0.13 237.41
2097152 1.8371 1088.65 0.13 237.70
4194304 3.6722 1089.27 0.13 237.83
8388608 7.3422 1089.60 0.13 237.90

70

5.2.2. Convolution Benchmarks - FPGA

The table below showcases benchmark metrics for convolution. The test data
is sample data of random values in the range of [0, 255]. The sample size starts from
64 bytes and doubles until it reaches SMB.

Table 10 — Convolution benchmark metrics. FPGA coprocessor

Throughput (in Power
Size(bytes) Time (msec) 21p Clockceycles/byte Efficiency (in
MB/sec)
MB/Joule)
64 0.018 3.354 40.618 0.70
128 0.018 6.698 20.341 1.40
256 0.018 13.276 10.262 2.77
512 0.019 26.302 5.180 5.49
1024 0.019 51.325 2.654 10.71
2048 0.020 97.641 1.395 20.38
4096 0.022 179.494 0.759 37.47
8192 0.025 308.829 0.441 64.47
16384 0.032 480.771 0.283 100.37
32768 0.047 666.756 0.204 139.20
65536 0.076 827.363 0.165 172.73
131072 0.133 940.793 0.145 196.41
262144 0.247 1010.125 0.135 210.88
524288 0.477 1048.448 0.130 218.88
1048576 0.936 1068.840 0.127 223.14
2097152 1.853 1079.236 0.126 225.31
4194304 3.688 1084.547 0.126 226.42
8388608 7.358 1087.238 0.125 226.98

FPGA implementations tend to be more deterministic than conventional CU

architectures, hence the similar to the BW Threshold performance

5.2.3. Dimer Genome Distribution Benchmarks - FPGA
The table below showcases benchmark metrics for dimer genome distribution.
The test data is sample data of random nucleobase values in the set ['A’,‘C’,°G’,*T’].

The sample size starts from 64 bytes and doubles until it reaches SMB.

71

Table 11 — Dimer Genome Distribution benchmark metrics. FPGA coprocessor

Power
. . ghput (i .
Size(bytes) Time (msec) Throughput (in Clockcycles/byte Efficiency (in
MB/sec)
MB/Joule)
64 0.010 6.051 22.515 1.48
128 0.010 12.047 11.309 2.94
256 0.010 23.875 5.706 5.82
512 0.010 46.579 2.925 11.36
1024 0.011 89.355 1.525 21.79
2048 0.012 165.959 0.821 40.48
4096 0.014 286.986 0.475 70.00
8192 0.017 453.790 0.300 110.68
16384 0.024 642.703 0.212 156.76
32768 0.039 808.540 0.169 197.20
65536 0.067 928.629 0.147 226.49
131072 0.125 1002.316 0.136 244.47
262144 0.239 1044.298 0.130 254.71
524288 0.469 1066.672 0.128 260.16
1048576 0.928 1078.158 0.126 262.97
2097152 1.845 1083.998 0.126 264.39
4194304 3.680 1086.967 0.125 265.11
8388608 7.350 1088.440 0.125 265.47

5.3. Partial Reconfiguration Energy Overhead
In this chapter, we will present measurements from reconfiguration time and
energy overheads incurred when loading a partial bitstream on a RP.

In the graph below we can see the time and energy cost of reconfiguring each
of the 2 partial regions defined in this work.

Energy dissipation when configuring each
region of the DPR platform in Joules

0.007

3

0.005

0.004 -~

0.003 -

0.002 -~

Energy dissipated (in Joules)

e

=}

©

=
|

=]
|

Partial Region

M Energy cost per region
(inJ)

Figure 42 — Energy cost of programming a partial region

72

From the graph above, it becomes evident that each region has each own cost
of reprogramming it. It is not easy to define partial regions in a DPR platform design
that house the necessary resources inside and simultaneously have the same size when
generated as partial bitstreams.

Idle Power Consumption of all 4 possible pair programming
configuration of DPR Platform
__3.7450
% 3.7400
= 3.7350
£ 3.7300
§ 3.7250
=
g 3.7200 u |dle Power Consumption
3 3.7150
§ 3.7100 l I
5 3.7050
2 3.7000 . . .
& Blank Black and Convolution Dimer
White Distribution

From analysis done on the power drawn from the Image Convolution module
and the Blackbox module when they are programmed on region 1 of the DPR
platform we have concluded that the device draws approximately 12.7 milliWatts less
when programmed with the blackbox module. As such from Equation 8 and Equation
9 we derive that Egyepartiat must be higher than 4.13 milliJoules. Solving for Tig to
find the minimum time needed

Tidle -

Ercnfg_regiono _ 0.00413

= 0.323 seconds
Paiffrate 0.0127

Where
Erenfe_regiono 18 the energy cost of reconfiguring region 0

Pgisriaie 1s the power draw difference of the blackbox module and the
convolution module.

As such, after programming region 1 with the blank partial bitstream, it should
remain at least 323 milliseconds in the region in order to incur enough energy savings
to compensate for its reprogramming cost. The same Tig,e value computed for region 2
which is a larger region, incurring a larger energy overhead cost to reprogram is 490
milliseconds.

For different modules this time is different, since other modules may draw
lower or higher power when in idle mode. This means that the time needed for a blank
bitstream to remain in the region to compensate its reprogramming cost may be
different when replacing different modules.

73

Additionally, different reconfigurable regions have different sizes in partial
bitstreams and thus take different time spans to reprogram. This should be taken into
account when dynamically reprogramming regions in an energy-aware platform.

Although results show that a partial region could remain programmed with a
blank bitstream for a few hundreds of milliseconds before incurring energy savings,
performance goals may indicate that we may still want to retain an idle module on a
configured region for longer than this time span.

This is due to the fact that an acceleration platform needs to meet performance
demands alongside energy efficiency goals and a service or user that may request the
same acceleration task can utilize this module and not incur the performance overhead
of reprogramming a region with that module.

As such, the option to keep a programmed module for a time longer than Ty,
has been implemented as well. System administrators may select this mode of
operation as per their requirements at any time.

74

6. Experimental results discussion
In this chapter the findings of the implementation in this work are presented
and experimental results of the proposed system are discussed and analyzed.

6.1. Execution runtime comparison
Execution runtime of the 3 algorithms on the 3 testing platforms are presented.
File I/O time is not included in the measurements.

6.1.1. Black and White Image Thresholding runtime
The graph below shows the runtime of the BW Image Thresholding algorithm
in relation to the input size of the data measured in milliseconds on the 2 test
platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the execution
time is in logarithmic scale.

BW Threshold runtime in milliseconds in relation to input data size - All
platforms
100
0
S 10
L
£
= 1
@
oo
o
& 0.1
a
£
£ 0.01
o
£
€ 0.001
=]
[-4
0.0001
I T - TN VN N N O VN s K S N I VN
RN RS R S SR N R < R AN N S AN Y
SO S P A R I R
LS AN A N
Input Data Size (in bytes)
=g ARM A9 CPU e=fl==FPGA Performance

Figure 43 — BW Threshold runtime in milliseconds graph, all platforms compared, semi-logarithmic graph

The FPGA implementation shows an almost static 2 microseconds execution
time for the first 4 input sizes, which is attributed attribute to the latency in
transferring data from the DDR to the Programmable Logic.

As the size of the processed data increases however, this 2 microsecond
latency takes up an ever smaller percentage of overall execution time. We also notice
that for input sizes in the range [32KB-8MB] the FPGA coprocessor is almost 1 order
of magnitude faster than the ARM CPU implementation.

75

6.1.2. Image Convolution runtime comparison
The graph below shows the runtime of the Image Convolution with 3x3 kernel
algorithm in relation to the input size of the data measured in milliseconds on the 2
test platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the
execution time is in logarithmic scale.

Convolution runtime in relation to input data size - All platforms

1000

100

Runtime (in msec, logarithmic scale)
=
= S)

0.1
0.01
0.001
» > © J g Q> 0 42 ™ o) © v ™ > © v] o
R ARSI LIS SR QN A S S R AN N AN SR
R N A N SR S R S AN)
Y v “ Q N " %)
~ v b ®
Input Data Size (in bytes)
=== ARM A9 CPU === FPGA Performance
Figure 44 — Image Convolution with 3*3 Kernel runtime, all platforms compared, semi-

logarithmic graph

In the case of the Image Convolution algorithm, it is clear that the FPGA
implementation is much faster than the ARMv7 CPU implementation. For an input
size of 2MB (almost exactly the size of a full HD grayscale image) the processing
time on the FPGA platform is 1.86 milliseconds, while the ARMv7 CPU platform is
55 times slower at 99.2 milliseconds.

Similarly to the BW Image Thresholding algorithm, the Image Convolution
FPGA accelerator shows a steady runtime of almost 18 microseconds for the first 5
input sizes tested due to the latency of transferring data. The additional 16
microseconds delay compared to the previous algorithm is caused from the setup of
look-up tables and parsing of operational parameters that take place prior to
processing the actual input image data.

6.1.3. Dimer Genome Distribution runtime comparison
The graph below shows the runtime of the Dimer Genome Distribution
algorithm in relation to the input size of the data measured in milliseconds on the 2
test platforms (ARM A9 CPU, FPGA accelerator IP). The Y axis showing the
execution time is in logarithmic scale.

76

Dimer Genome Distribution runtime in milliseconds in relation to input data size
- All platforms

1000
100 /
10

0.1

0.01

Runtime (in msec, logarithmic scale)
=

0.001

™ D © %z " b 0 v ™) © Vv] D © Vv] Db
© W%) N {V X 9) D ©) Q \a o) A) Q' Q
A G I SRR SR A A RS BRI U SR S Qg
NS SRS N <
Input Data Size (in bytes)
e==gu== ARM A9 CPU === FPGA Performance

Figure 45 — Dimer genome distribution runtime, all platforms compared, semi-logarithmic graph

The FPGA implementation of the algorithm shows considerable speedup in
the ranges of [16KB-8MB], with the FPGA implementation processing 8 MB of
genome data (which translates to 8 million bases in the current encoding utilized) in
7.35 milliseconds while the ARMv7 implementation processes the same genome in
199.2 milliseconds, 27 times slower.

Similarly to the previous 2 algorithms, the FPGA implementation of the Dimer
Genome Distribution shows a steady execution time of 10 microseconds for sizes of
64-2048 bytes due to the latency incurred from transferring data from the DDR to the
PL.

The added 8 microseconds latency when compared to the latency of the BW
Image Thresholding algorithm is attributed to the fact that there needs to be some
preprocessing in the accelerator IP before the DMA engine starts sending actual
genome data to the PL for processing. Additional latency is incurred due to post
processing where we have to add all individual counters in the IP to a single array of
dimer distribution counters before sending them to the DDR.

77

Loop Name Ijatency Iteration Latency Imtujmon Interval Trip Count|Pipelined
min | max achieved | target

- first read loop 21 21 3 - - 7 no
- first add arr loop 294 294 42 - - 7 no
+ first add row_loop 40/ 40 10 - - 4 no
++ first add col loop 8 8 2 - - 4 no
- first_init_arr loop 294 294 42 - - 7 no
+ first_init row_loop 40, 40 10 - - 4 no
++ first_init _col loop 8 8 2 - - 4 no
- main_loop 32771|32771 5 1 1 32768 yes
- leftover pairs add loop| 32| 32 4 - - 8 no
- final add arr loop 294 294 42 - - 7 no
+ final add row loop 40, 40 10 - - 4 no
++ final add col loop 8 8 2 - - 4 no
- send loop row 40, 40 10 - - 4 no
+send loop col 8 8 2 - - 4 no

Figure 46 — Timing information of Dimer Genome Distribution HLS IP

6.2. Performance throughput comparison

6.2.1. Black and White image Thresholding performance throughput

The graph below shows the performance in relation to input size of the data

processed measured in MB/sec for the BW Image Thresholding application on the 2
test platforms.

Throughput (in MB/sec)

BW Threshold performance in MB/sec in relation to input data size - All
platforms

1200

1000

800
600 /
400

200

UTTC T P G AR o
gV S S

] > © Qv " Ve © v] o) ©
© 9% 2 N {V > % & > © i)
RO S S S SN A RO S QR g
OSSP
Input Data Size (in bytes)
=== ARM A9 CPU e=fi==FPGA

Figure 47 — BW threshold performance in MB/sec. All platforms. Sizes 64bytes-8MBs.

78

Throughput results show a clear performance benefit when utilizing the FPGA
co-processor to calculate the BW threshold of an image. As the size of the input
image increases, the FPGA throughput converges to the theoretical peak performance
value of 1089.9135 MB/sec, with the 8MB input size computation reaching 99.997%
of the theoretical maximum throughput.

6.2.2. Image Convolution with 3x3 kernel performance throughput
The graph below shows the performance in relation to input size of the data
processed measured in MB/sec for the Image Convolution application on the 2 test

platforms.
Convolution performance in MB/sec in relation to input data size - All platforms

1200

1000
T
3

= 800
=
E

= 600
=3
Q
=

& /

3 400
-
(=

200

0

Input Data Size (in bytes)

g ARM A9 CPU e=fl==FPGA Performance

Figure 48 — Image Convolution performance in MB/sec. All platforms. Sizes 64bytes-8MBs.

Results of the image convolution application paint a different image in this
case compared to the BW image Thresholding. Convolution requires many more
operations applied on multiple data, some of them even reused during the process.

It is evident here that the FPGA with its concurrent computation capabilities
and with the implementation of a sliding window buffer in the FPGA to allow
resource reuse results in an implementation that is up to 5300% faster than the ARM
implementation.

It is important to note however once again that for relatively small sizes of
input data the FPGA performance drops dramatically. In the range of 64-256 bytes,
the ARMv7 implementation is faster, although processing images that are so small
may not be a common occurrence.

79

6.2.3. Dimer Genome Distribution performance throughput

The graph below shows the performance in relation to input size of the data
processed measured in MB/sec for the Dimer Genome Distribution application on the
2 test platforms.

Dimer Genome Distribution performance in MB/sec in relation to input data size -
All platforms

1200

1000

800

600

400 /
200

Throughput (in MB/sec)

Input Data Size (in bytes)

e=g==ARM A9 CPU e=f==FPGA

Figure 49 — Dimer Genome Distribution performance in MB/sec. All platforms. Sizes 64bytes-8MBs.

Similarly to the previous 2 algorithms, the FPGA implementation of the Dimer
Genome Distribution algorithm is many times faster than the ARMv7
implementation.

The FPGA co-processor reaches 99.9% of the theoretical maximum when
processing 8MB of genome data. This translates to a processing throughput of 8.38
Megabases/second (1 base = 1 byte). If the .2bit encoding was used we could
theoretically achieve 4 times higher base processing throughput at the cost of
increased resource utilization.

80

6.3. Energy efficiency comparison

6.3.1. Black and White image thresholding energy efficiency

The graph below shows the energy efficiency in relation to input size of the
data processed measured in MB/joule (megabytes of input data processed per joule
spent) for the BW Image Thresholding application on the 2 test platforms.

BW Image Thresholding energy efficiency in MB/Joule in relation to input data
size - All Platforms

250.00

200.00 r

150.00

100.00

50.00

Energy Efficiency (in MB/joule)

0.00

e==g=== FPGA Coprocessor ==ill==ARM CPU

Figure 50 — Energy efficiency of BW Image Thresholding in relation to input data size on ARM CPU and
FPGA HLS IP.

The FPGA implementation offers a clear advantage in power efficiency thanks
to its much higher throughput. The device wattage is slightly higher when running on
the FPGA coprocessor but because the runtime is several times faster, the overall
energy expendited is up to 7 times less than the energy expendited to run the
algorithm on the ARMv7 CPU.

Future FPGA implementations where the bit-width of the PS-PL port is higher
such as Ultrascalet+ devices or implementing a device hardware platform that can
accommodate 200MHz of frequency in the PL could lead to dramatic increase in
performance of the FPGA implementation.

81

6.3.2. Image Convolution with 3x3 kernel energy efficiency

The graph below shows the energy efficiency in relation to input size of the
data processed measured in MB/joule (megabytes of input data processed per joule
spent) for the Image Convolution application on the 2 test platforms.

Image Convolution energy efficiency in MB/Joule in relation to input data size -
All Platforms

250

200 /‘

150

100

50

OM

™ O © v g o) © v g > © Vv] N

R R A Pt A P
N it © > © V x O o o}

RO S A SR S

Energy Efficiency (in MB/joule)

=g FPGA Coprocessor ==iil==ARM CPU

Figure 51 - Energy efficiency of Image Convolution in relation to input data size ARM CPU and
FPGA HLS IP.

Similar to the BW Thresholding application, the FPGA is capable of
outperforming the ARM processor in energy efficiency. However, this time the
difference in efficiency is much more visible than the aforementioned application.

The FPGA implementation reaches 227 MB/joule energy efficiency when
processing 8MB of data. Compared to the ARM CPU which has an energy efficiency
of 5.22 MB/joule in the 8MB input size, the FPGA offers a x44 increase respectively
in energy efficiency.

82

6.3.3. Dimer Genome Distribution energy efficiency

The graph below shows the energy efficiency in relation to input size of the
data processed measured in MB/joule (megabytes of data processed per joule spent)
for the Dimer Genome Distribution application on the 2 test platforms.

Dimer Genome Distribution energy efficiency in MB/Joule in relation to input
data size - All Platforms

250.00

e

200.00 /

100.00

50.00
0.00 4.=H=I4l=l=l=l=l=l=l=l=l=l=l,
AN S N AN S S SN VR S N
S A U A I A A A
R R < I <

-
Ul
©
o
s}

Energy Efficiency (in MB/joule)

=g FPGA Coprocessor ==ill==ARM CPU

Figure 52 - Energy efficiency of Dimer Genome Distribution in relation to input data size ARM CPU and
FPGA HLS IP.
Finally, Dimer Genome Distribution is similarly much more efficient when
running on the FPGA thanks to a combination of both high parsing throughput of the
genome as well as low power consumption.

Energy efficiency metrics are similar to the previous 2 algorithms, with the
FPGA implementation offering up to 43x increase in energy efficiency when
processing 8 MB of genome sequence data. Only for very small sequences is the
ARMvV7 implementation more energy efficient (ranges of 64-512 bytes of genome
sequence data).

83

6.4. Cycles per byte performance comparison

6.4.1. Black and White image thresholding clock cycles/byte
The graph below shows the performance in clock cycles per byte processed for
the BW Image Thresholding application on the 2 test platforms.

BW Image Thresholding processor cycles per byte processed in relation to input
data size - All Platforms
6.00
5.00
£ 400
=
S~
(%)
K,
S 3.00
-
[%]
9 2,00 \
) A
1.00
0.00 \.\"l—I:I=I=l=l=l=l=l=l=l=l=l,
R S I I T T T S - < N VA S X - S VA S
MG "NQ%“PV@Q%@G’%{@%&'@/\’L"Vv"('b%‘;\’\”%v?’o%“’g
I L SR IR S A S| SN AR K-
R R AR I
Input Data Size (in bytes)
@m=g== ARM A9 CPU (667 MHz) === FPGA (142.85MHz)
Figure 53 — Performance in cycles/byte of BW Image Thresholding in relation to input data size on ARM

CPU and FPGA HLS IP.

Clock cycles per byte metrics show that the FPGA implementation offers
unparalleled performance in concurrent execution of input data, managing up to a
little over 0.125 cycles per byte processed, up to 38 times better performance than the
implementation on the ARMv7.

The 0.125 cycles per byte performance of the FPGA indicates that an increase
in clock frequency of the PL logic can result in a drastic increase in overall
performance, as long as the bandwidth of the DDR module from which we read data
and write output results can support it.

84

6.4.2. Image Convolution with 3x3 kernel clock cycles/byte performance
The graph below shows the performance in clock cycles per byte processed for
the Image Convolution application on the 2 test platforms.

Convolution processor cycles per byte processed in relation to input data size - All
Platforms

50.00
45.00

40.00 —\
35.00

[

5

£ 30,00

4

% 25.00

§ 20.00

G 15.00
10.00
5.00
0.00

Input Data Size (in bytes)

== ARM A9 CPU (667 MHz) === FPGA (142.85MHz)

Figure 54 — Performance in cycles/byte of Image Convolution in relation to input data size on ARM CPU
and FPGA HLS IP.

Image Convolution with 3x3 kernel implementation on the FPGA is much
faster than the ARMv7 implementation even though the FPGA is clocked at a little
less than 5 times lower clock frequency.

This means that the cycles/byte performance of the FPGA implementation can
be up to 252 times better than the ARMv7 CPU implementation.

85

6.4.3. Dimer Genome Distribution clock cycles/byte performance
The graph below shows the performance in clock cycles per byte processed for
the Dimer Genome Distribution application on the 2 test platforms.

Dimer Genome Distribution processor cycles per byte processed in relation to
input data size - All Platforms

25.00
20.00 ‘
[]
18
£ 15,00
w
2
o
)
% 10.00
o
(&}
5.00
0.00
I I TN S < S|V S SV N S - JEOL R SR
N R S LA SR - M - A R MO SN | A NN L A
AL SR N S RIS (P R AN .
LG A AN G O~
Input Data Size (in bytes)
=== ARM A9 CPU (667 MHz) == FPGA (142.85MHz)

Figure 55 - Performance in cycles/byte of Dimer Genome Distribution in relation to input data size on ARM
CPU and FPGA HLS IP.

Cycles/byte metrics for the 2-mer genome distribution application showcase
that the FPGA implementation offers the lowest value of the 2 platforms. Similarly to
the previous 2 algorithms for data sizes of 8KB and higher, it reaches its theoretical
maximum of 0.125.

This shows promising results for implementations of the hardware platform
that can run on 200MHz on the Zedboard or even for FPGA platforms that can be
clocked at higher frequencies than the Zynq-7000 chip utilized in this work.

86

7. Conclusion and future work

7.1. Conclusion
Implementation results of the 3 algorithms that were executed on the 2
different platforms show measurements that coincide with results of past work.

As far as pure performance throughput metrics go, both in latency as well as
average throughput in MB/sec of executing tasks of small size, it is clear that an ARM
CPU is better than an FPGA. This is due to the fact that the data path from the DDR
to the PL in an FPGA is longer and needs to pass through more interconnecting logic
to reach the accelerator.

In their work on improvement of serving answers to web browser queries,
Owaida et al. [57] showed that for input sizes of a few thousand or less scoring
requests, the FPGA offers low bandwidth due to the static overhead of initiating
transfers and kernel invocation time overhead. Because these metrics are mostly
independent of input size however, as the input data size increases they take up
smaller and smaller percentage of the overall time and the computation efficiency
becomes higher.

However, for larger input data size, the FPGA can offer significantly better
performance than the ARMv7 CPU across all 3 algorithms and in almost all measured
benchmark metrics.

This of course can result in higher resource utilization on the FPGA; however
the use of arbitrary precision structures of Vivado HLS when creating an IP can offer
resource usage optimizations that will allow reconfigurable modules to fit in a defined
Reconfigurable Region of a DPR-enabled design.

In regards to energy efficiency metrics, the expected results from past
literature and reports indicate that the FPGA implementations of all 3 algorithms and
for nearly all input data sizes offers much greater results than conventional
architecture CPUs.

The most prevalent example of this can be seen when we compare the
convolution of 8MBs of image data on the ARMv7 CPU and on the FPGA where the
ARM CPU computes the convolution and consumes 1.53 Joules of energy while the
FPGA implementation consumes 0.035 Joules, resulting in an overall increase in
energy efficiency of 4271%.

ARMvV7 implementation shows better results for very small input sizes, which
are not expected to be common.

Clock cycles per byte processed metrics can indicate viability of increasing the
clocking frequency of an FPGA device in order to increase performance throughput of

87

an implemented application or migrating the FPGA accelerator platform to a device
that can handle higher frequencies.

The main contribution of this work is the implementation of a multi-
disciplinary hardware acceleration platform on an FPGA that utilizes Dynamic Partial
Reconfiguration and is designed to allow any type of Reconfigurable Module to be
housed in a Reconfigurable Region.

Partial Reconfiguration constraints limit the reprogramming of a RP because
the interface ports of each module need to be exactly the same in order for them to be
compatible.

By transferring the metadata and the parameters of the computation process
such as the threshold value in the Black and White Image Thresholding application or
the Convolution Filter in the Image Convolution function through the same data port
that the input data is transferred, we remove the obstacle of having to develop each
acceleration function with the same interface ports.

Of course this means that the during development, the software handling
delegation to the Programmable Logic coprocessors in later stages of the development
cycle needs to be aware in which order each parameter is being sent.

To our knowledge, this is the first work that demonstrates this design
paradigm to allow any function, regardless of the parameters that need to be passed in,
to be included in a DPR-enabled FPGA hardware platform.

7.2. Future work
In this study we implemented a partial reconfiguration platform for offering
computation acceleration services to users in a cloud computing environment. The use

cases selected were much more energy efficient and cycle efficient on the FPGA
platform than on the ARM CPU.

We believe that future work for the specific algorithms implemented should
include the following

1. Black and White thresholding application should output data in a single bit per
pixel format instead of an 8-bit value. This can help decrease write rates of the
FPGA to the DDR and lower the consumed bandwidth of the DDR during
processing of this application, freeing up bandwidth resources for other FPGA
COProcessors.

2. The Dimer Genome Distribution application should be extended to allow
processing of .2bit format genomes. This will allow the FPGA to showcase its
bit-accurate processing capabilities and its viability as an acceleration platform
for genome sequencing. Of course, this would result in more resources needed
to be allocated for this coprocessor, meaning it may exceed resources of the

88

partial reconfigurations regions defined during floorplanning. This must be
taken into account.

Besides the above, additional future work should focus on adding different,
more computationally complex algorithms on the platform and evaluating their
performance when compared to a CPU or GPU implementation. Theoretical
maximum performance bandwidth given from Equation 4 can help designers evaluate
the viability of migrating a task to the FPGA platform before beginning development
on the hardware platform by first evaluating its performance on a conventional CPU
or GPU platform.

Additionally, future work should focus on evaluating the performance of the
scheduling algorithms used in this work to ensure resource reuse of the reconfigurable
partitions and to select which partitions will be reprogrammed when it is needed. The
fact that we use the Least Recently Used partition when a user requests an
acceleration service may not offer the lowest overall probability that a reconfiguration
will take place. It depends heavily on access patterns. For example, there may be
cases where a Least Frequently Used (LFU) scheduling scheme offers better results.

&9

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

S. O’Sullivan, “Internet Solutions Division Strategy for Cloud Computing,”
1996. [Online]. Available:
https://s3.amazonaws.com/files.technologyreview.com/p/pub/legacy/compaq c
st 1996 0.pdf.

X. Zenuni, J. Ajdari, F. Ismaili, and B. Raufi, “Cloud storage providers: A
comparison review and evaluation Cloud Storage Providers: A Comparison
Review and Evaluation,” in International Conference on Computer Systems
and Technologies - CompSysTech’l4 Cloud, 2014, no. June, doi:
10.1145/2659532.26596009.

L. M. Dang, J. Piran, D. Han, K. Min, and H. Moon, “A Survey on Internet of
Things and Cloud Computing for Healthcare,” Electronics, vol. 8, no. 7, pp. 1-
49, 2019, doi: 10.3390/electronics8070768.

G. Crespo-perez and A. Ojeda-castro, “Convergence Of Cloud Computing ,
Internet Of Things , And Machine Learning : The Future Of Decision Support
Systems,” Int. J. Sci. Technol. Res., vol. 6, no. 7, 2017.

J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud applications:
an empirical study on software development for the cloud,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2015, 2015, pp. 393-403, doi: 10.1145/2786805.2786826.

P. Mvelase, H. Sithole, T. Modipa, and S. Mathaba, “The Economics of Cloud
Computing : A Review,” no. November, 2016, doi:
10.1109/ICACCE.2016.8073741.

D. Lee, D. Kim, D. Kwon, and H. Kim, “Efficient Hardware Implementation of
the Lightweight Block Encryption Algorithm LEA,” Sensors, vol. 14, no. 1, pp.
975-994, 2014, doi: 10.3390/s140100975.

C. Pal, A. Kotal, A. Samanta, A. Chakrabarti, and R. Ghosh, “An Efficient
FPGA Implementation of Optimized Anisotropic Diffusion Filtering of
Images,” Int. J. Reconfigurable Comput., vol. 2016, p. 17, 2016, doi:
10.1155/2016/3020473.

Y. Said, T. Saidani, F. Smach, M. Atri, and H. Snoussi, “Embedded Real-Time
Video Processing System on FPGA,” 2012, doi: 10.1007/978-3-642-31254-0.

P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” 2011.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering

computing as the 5th utility,” Futur. Gener. Comput. Syst., vol. 25, no. 6, pp.
599-616, 2009, doi: 10.1016/j.future.2008.12.001.

Xilinx, “MicroBlaze Soft Processor Core.”
https://www xilinx.com/products/design-tools/microblaze.html (accessed Jan.
03, 2020).

C. Maxfield, The Design Warrior’s Guide to FPGAs. Elsevier, 2004,

90

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

ISBN:9780750676045.

J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, “Understanding
Performance Differences of FPGAs and GPUs,” in 2018 IEEE 26th Annual

International Symposium on Field-Programmable Custom Computing
Machines (FCCM), Apr. 2018, pp. 93-96, doi: 10.1109/FCCM.2018.00023.

E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh, and D.
Marr, “Accelerating Binarized Neural Networks: Comparison of FPGA, CPU,
GPU, and ASIC,” in 2016 International Conference on Field-Programmable
Technology (FPT), Dec. 2016, pp. 77-84, doi: 10.1109/FPT.2016.7929192.

J. A. S. Laitner, “The Energy Efficiency Benefits and the Economic Imperative
of ICT-Enabled Systems,” 2015, pp- 3748,
http://link.springer.com/10.1007/978-3-319-09228-7 2.

Commission Regulation (EU) No 617/2013 of 26 June 2013 implementing
Directive 2009/125/EC regading ecodesign requirements for computers and
computer servers. European Union Commision, 2013, p. 29.

A. Andrae and T. Edler, “On Global Electricity Usage of Communication
Technology: Trends to 2030,” Challenges, vol. 6, no. 1, pp. 117-157, 2015,
doi: 10.3390/challe6010117.

M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A Comparative
Study of Methods for Measurement of Energy of Computing,” Energies, vol.
12, no. 11, p. 2204, Jun. 2019, doi: 10.3390/en12112204.

P3International, “Kill-a-Watt Power Metering Device.”
http://www.p3international.com/products/p4400.html (accessed Aug. 21,
2020).

Xilinx, “Xilinx Power Estimator,” 2009.

https://www .xilinx.com/products/technology/power/xpe.html (accessed Feb.
23, 2020).

G. Kornaros (Editor), Multi-Core Embedded Systems. CRC Press/Taylor &
Francis Group, 2010, ISBN:978-1-4398-1161-0.

O. Vermesan et al., “New Waves of [oT Technologies Research - Transcending
Intelligence and Senses at the Edge to Create Multi Experience Environments,”
in Internet of Things — The Call of the Edge - Everything Intelligent
Everywhere, DK: River Publishers, 2020, https://european-iot-
pilots.eu/internet-of-things-the-call-of-the-edge-everything-intelligent-
everywhere/.

G. Kornaros and D. Pnevmatikatos, “A survey and taxonomy of on-chip
monitoring of multicore systems-on-chip,” ACM Trans. Des. Autom. Electron.
Syst., vol. 18, no. 2, pp. 1-38, Mar. 2013, doi: 10.1145/2442087.2442088.

M. D. Grammatikakis, G. Kornaros, and M. Coppola, “Power-Aware Multicore
SoC and NoC Design,” in Multiprocessor System-on-Chip, M. Hiibner and J.
Becker, Eds. New York, NY: Springer New York, 2011, pp. 167-193,

91

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

http://link.springer.com/10.1007/978-1-4419-6460-1.

G. Kornaros and D. Pnevmatikatos, “Dynamic Power and Thermal
Management of NoC-Based Heterogeneous MPSoCs,” ACM Trans.
Reconfigurable Technol. Syst., vol. 7, no. 1, pp. 1-26, Feb. 2014, doi:
10.1145/2567658.

G. Kornaros and D. Pnevmatikatos, “Hardware-assisted dynamic power and
thermal management in multi-core SoCs,” in Proceedings of the 21st edition of
the great lakes symposium on Great lakes symposium on VLSI - GLSVLSI 11,
2011, p. 115, doi: 10.1145/1973009.1973033.

I. Christoforakis, O. Tomoutzoglou, D. Bakoyiannis, and G. Kornaros,
“Dithering-Based Power and Thermal Management on FPGA-Based Multi-
core Embedded Systems,” in 2015 IEEE 13th International Conference on
Embedded and Ubiquitous Computing, Oct. 2015, pp. 173-177, doi:
10.1109/EUC.2015.18.

J. Yu, Y. Zhu, L. Xial, M. Qiu, Y. Ful, and G. Rongl, “Grounding High
Efficiency Cloud Computing Architecture: HW-SW Co-Design and
Implementation of a Stand-alone Web Server on FPGA,” in Fourth

International Conference on the Applications of Digital Information and Web
Technologies, 2011, pp. 124—129, doi: 10.1109/ICADIWT.2011.6041412.

K. Eguro and R. Venkatesan, “FPGAs For Trusted Cloud Computing,” in 22nd
International Conference on Field Programmable Logic and Applications,
2012, pp. 63-70, doi: 10.1109/FPL.2012.6339242.

F. Armknecht et al., “A Guide to Fully Homomorphic Encryption,” IACR
Cryptol. ePrint Arch., vol. 2015, 2015.

S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA Accelerators for
Efficient Cloud Computing,” in International Conference on Cloud Computing
Technology and Science, 2015, pp. 430-435.

A. Vaishnav, K. D. Pham, D. Koch, and J. Garside, “Resource Elastic
Virtualization for FPGAs using OpenCL,” in 28th International Conference on

Field Programmable Logic and Applications, 2018, no. September, doi:
10.1109/FPL.2018.00028.

A. W. Services, “Amazon EC2 F1.” Accessed: Feb. 22, 2020. [Online].
Available: https://aws.amazon.com/ec2/instance-types/fl/.

S. Karandikar et al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out
System Simulation in the Public Cloud,” in 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture (ISCA), Jun. 2018, pp. 29—
42, doi: 10.1109/ISCA.2018.00014.

Alibaba Cloud ECS, “Deep dive into alibaba cloud F3 FPGA as a service
instances.,” 2018. .

O. Tomoutzoglou, D. Mbakoyiannis, G. Kornaros, and M. Coppola, “Efficient
Job Offloading in Heterogeneous Systems Through Hardware-Assisted Packet-

92

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Based Dispatching and User-Level Runtime Infrastructure,” IEEE Trans.
Comput. Des. Integr. Circuits Syst., vol. 39, no. 5, pp. 1017-1030, May 2020,
doi: 10.1109/TCAD.2019.2907912.

D. Mbakoyiannis, O. Tomoutzoglou, and G. Kornaros, “Energy-Performance
Considerations for Data Offloading to FPGA-Based Accelerators Over PCle,”
ACM Trans. Archit. Code Optim., vol. 15, no. 1, pp. 1-24, Apr. 2018, doi:
10.1145/3180263.

G. Kornaros and M. Coppola, “Enabling Efficient Job Dispatching in
Accelerator-Extended Heterogeneous Systems with Unified Address Space,” in
2018 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Sep. 2018, pp. 180-188, doi:
10.1109/CAHPC.2018.8645945.

G. Kornaros and M. Pratikakis, “VWQS: A dispatching mechanism of
variable-size tasks in heterogeneous systems,” in 2016 International
Conference on High Performance Computing & Simulation (HPCS), Jul. 2016,
pp- 196203, doi: 10.1109/HPCSim.2016.7568335.

Xilinx, “Vivado Design Suite User Guide: Partial Reconfiguration (UG909),”
2017, [Online]. Available:
https://www xilinx.com/support/documentation/sw_manuals/xilinx2017_4/ug9
09-vivado-partial-reconfiguration.pdf.

M. Nguyen, R. Tamburo, S. Narasimhan, and J. C. Hoe, “Quantifying the
Benefits of Dynamic Partial Reconfiguration for Embedded Vision
Applications,” in 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), Sep. 2019, pp. 129-135, doi:
10.1109/FPL.2019.00029.

A. Nafkha and Y. Louet, “Accurate measurement of power consumption
overhead during FPGA dynamic partial reconfiguration,” in 2016 International
Symposium on Wireless Communication Systems (ISWCS), Sep. 2016, vol.
2016-Octob, pp. 586—591, doi: 10.1109/ISWCS.2016.7600972.

D. Luo, G. Pan, and G. Wang, “A Linux-based Dynamic Partial
Reconfiguration System Applied on Xilinx Zynq,” in Proceedings of The 7th

International Conference on Computer Engineering and Networks —
PoS(CENet2017), Jul. 2017, no. July 2017, p. 047, doi: 10.22323/1.299.0047.

Avnet, “Zedboard APSoC Integrated Circuit.”
https://www xilinx.com/products/boards-and-kits/1-elhabt.html (accessed Jan.
02, 2020).

Linux Foundation, “FPGA Manager Linux Kernel Documentation.”
https://www kernel.org/doc/html/v4.18/driver-api/fpga/fpga-mgr.html
(accessed Feb. 27, 2020).

S. Neuendorffer, T. Li, and D. Wang, “Accelerating OpenCV Applications
with Zyng-7000 All Programmable SoC using Vivado HLS Video Librarie,”
Xilinx ~ Wiki, vol. 1167, p. 1, 2013, [Online]. Available:
http://www.wiki.xilinx.com/XAPP1167.

93

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

N.-M. Ho, E. Manogaran, W.-F. Wong, and A. Anoosheh, “Efficient floating
point precision tuning for approximate computing,” in 2017 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan. 2017, vol. 0,
pp. 6368, doi: 10.1109/ASPDAC.2017.7858297.

N. Cristianini and M. Hahn, Introduction to Computational Genomics.
Cambridge University Press, 2006, ISBN:9780521856034.

NCBI, “RefSeq Genetic Sequence Database.”
https://www.ncbi.nlm.nih.gov/refseq/ (accessed Feb. 28, 2020).

F. Wu ef al., “A new coronavirus associated with human respiratory disease in
China,” Nature, Feb. 2020, doi: 10.1038/s41586-020-2008-3.

Xilinx, “Pipeline HLS Pragma,” 2017.
https://www .xilinx.com/html docs/xilinx2017 4/sdaccel doc/fde15040343600
78.html (accessed Feb. 23, 2020).

Xilinx, “Bootgen User Guide - UGI1283,” 2018. [Online]. Available:
https://www xilinx.com/support/documentation/sw_manuals/xilinx2018 2/ugl
283-bootgen-user-guide.pdf.

B. Sean, “STB Image C Library,” 2014. https://github.com/nothings/stb
(accessed Feb. 28, 2020).

Adafruit, “INA219 Current Sensor.” https://www.adafruit.com/product/904
(accessed Oct. 18, 2020).

Digilent, “ISNS20 Pmod Current Sensor.” https://store.digilentinc.com/pmod-
1sns20-20a-current-sensor/ (accessed Oct. 18, 2020).

M. Owaida, G. Alonso, L. Fogliarini, A. Hock-Koon, and P.-E. Melet,
“Lowering the latency of data processing pipelines through FPGA based

hardware acceleration,” Proc. VLDB Endow., vol. 13, no. 1, pp. 71-85, Sep.
2019, doi: 10.14778/3357377.3357383.

94

