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Abstract 

In this thesis we present an automotive engineering platform that allows designing and 

experimenting with security solutions for automotive networks, and more specifically CAN 

bus. The hardware implementation of the platform is based on Arduino Uno with the addition 

of the DFRobot CAN bus shield v2 which integrates an MCP2515 CAN bus controller chip 

and MCP2551 CAN transceiver chip. 

On top of this platform new protocols have been developed that support authentication, data 

integrity and strong defense against replay and masquerade attacks. More specifically, our open 

source protocol, called vatiCAN-G, extends Vetted Authenticated CAN (namely, vatiCAN 

protocol), designed by Stefan Nurn berger and Christian Rossow in 2016 [40], towards 

supporting on-the-fly secure group communication. The major components and functions used 

are detailed in this thesis. 

The platform allows further experimentation to design large scale systems to examine 

scalability and energy overhead of our solution. It may also integrate other nodes, such as 

ECUsim 2000, to create realistic scenarios by connecting “or exposing” Engine Control Units, 

sensors and actuators on the CAN bus. 
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Περίληψη 

Η εργασία αφορά την ανάπτυξη ενσωματωμένης πλατφόρμας που επιτρέπει τη μελέτη 

πρωτοκόλλων ασφαλούς προσπέλασης δεδομένων σε συστήματα που ελέγχουν κρίσιμες 

παραμέτρους λειτουργίας έξυπνων οχημάτων. 

Στα πλαίσια της παρούσας εργασίας υλοποιήθηκε μια πλατφόρμα που προσφέρεται για 

πειραματισμό σε θέματα in-vehicle security. Επίσης παράλληλα προτάθηκε και μελετήθηκε 

μια λύση που εξασφαλίζει αυθεντικοποίηση,  ακεραιότητα  δεδομένων και προστασία απο  

επιθέσεις επανάληψης (replay) και πλαστοπροσωπίας (masquerade). Η προτεινόμενη λύση που 

ονομάζεται vatiCAN-G προσφέρει επιπροσθέτως ασφαλή επικοινωνία σε ομάδες κόμβων και 

βασίζεται στο vatiCAN (Vetted Authenticated, CAN bus) που προτάθηκε από τους Stefan 

Nurnberger και Christian Rossow το 2016. Το υλικό και οι συναρτήσεις επεξηγούνται 

περαιτέρω στα κεφάλαια που ακολουθούν. 

Η υλοποίηση της πλατφόρμας βασίζεται σε Arduino Uno με επεκτάσεις DFRobots CAN bus 

shield V2  που παρέχουν ενσωματωμένα  τσιπ  α) MCP2515 που λειτουργεί σαν CAN 

controller (διεπαφή με το CAN δίκτυο σε επίπεδο data link) και β) MCP2551 που λειτουργεί 

σαν transceiver (διεπαφή με φυσικό επίπεδο).  Η πλατφόρμα είναι επεκτάσιμη με άλλες 

συσκευές όπως το Ecusim 2000 για τη δημιουργία ρεαλιστικών σεναρίων, και προσφέρεται 

για τη μελέτη της επεκτασιμότητας και ενεργειακής κατανάλωσης πρωτοκόλλων ασφάλειας 

σε δίκτυα που αφορούν έξυπνα οχήματα. 
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1. Introduction 

In recent years automotive technology has made leaps forward, as modern cars have become 

more and more connected among them and with other devices for the sake of comfort, 

efficiency and safety. This varies from the driving experience while driving through icy roads, 

to passenger entertainment and smoother on-board experience. 

Operation of electric steering wheel, airbags, lights and other modern automotive 

subsystems. rely on more than 70 ECUs (Engine Control Units) with tens of sensors and 

actuators all of them are connected on the vehicle’s network bus, usually a CAN (Controlled 

Area Network) which is an automotive network standard since 1990s. 

Despite the features available to the driver, the smart car is still in its first steps, basically 

lacking the security features that are largely available for other software [48]. When the CAN 

bus set sail around thirty years ago, threats were invisible to designers, so the protocol remained 

without security extensions for many years. As the technology matured, the problems came to 

the surface and the lack of security was addressed as a visible problem.  This made the 

automotive industry prone to security vulnerabilities. 

 In Section 1, the CAN bus is presented. Possible threats and attacks, hardware or software 

in nature, are defined in Section 2. Asymmetric and symmetric cryptographic algorithms are 

described in Section 3. Section 4 describes the embedded components used in the proposed 

automotive engineering platform and explains open extensions (including the software API) to 

support on-the-fly group security. A Section on future work and conclusions is also provided. 
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2. The CAN Bus 

 CAN (Controller Area Network) is a serial communication protocol that simplifies 

installation, reduces wiring, and enables very reliable, real-time data exchange among 

electronic control units (ECUs), providing standardization of the ECU infrastructure and 

network. CAN created by Bosch in 1980s is an ensemble of nodes mounted on the bus (see 

Figure 1). In the 1990s, CAN bus was standardized (e.g. ISO 11898-1, 11898-2, and 11898-3) 

and automotive industry began manufacturing it. Replacing previously heavily wired networks 

with a two-wire bus simplifies wiring and seriously reduces the weight of the vehicle. This also 

helps reduce the fuel consumption as the car becomes lighter. 

Apart from sensors and actuators, Engine Control Units (ECUs) are major control 

components that connect to CAN bus. In upper class vehicle models, there can be more than 

70 ECUs connected to multiple buses. True numbers vary between companies. On-board 

diagnostics (OBD) used by mechanics (and sometimes experienced owners) can search for 

problems and solutions on the devices connected to the CAN bus, making vehicle maintenance 

both fast, and reliable [1]. 

 

2.1 CAN Bus Protocol 

 CAN protocol defines an asynchronous, event-driven prioritized communication 

protocol based on two OSI layers: Physical Layer specifies data rates from 125 Kbit/s to 

1Mbit/s, and Data Link Layer [2]. 

More specifically, at the physical layer, as shown in Figure 2, the bus consists of two wires, 

CAN High and CAN Low.  The maximum distance of the bus is 40 meters. There are two 

different physical layer protocols available: CAN high (specified in ISO 11898-2 protocol) with 

 

Figure 1: Example of automotive network solutions without CAN and with CAN [1] 
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speeds up to 1Mb/s, and CAN low (specified in ISO 11898-3) which reaches a speed up to 125 

Kb/s and offers higher fault tolerance. 

Higher data rates are useful for safety-critical applications in powertrain and vehicle chassis 

areas. With CAN protocol, a CSMA/CA (Carrier Sense Multiple Access with Collision 

Avoidance) policy is used. Hence, although any node has the right to access the bus, at the end 

of the arbitration phase, only the higher priority CAN node (the one with the lowest ID) is 

authorized by its interface (CAN controller and transceiver) to broadcast a message to the bus. 

Thus, for high bus loads, CAN protocol can cause increased delay for less critical, lower-

priority CAN messages. Upon message transmission, CAN nodes with lower priority messages 

switch to the receiving state to listen to the broadcast message 50. 

 

 

Figure 2: ECU Layers 
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 ECUs connected to the bus (see Figure 3), are used to send information to each other in 

order to monitor and control the function of the car. ECUs importance varies from a secondary 

role, e.g. related to road plan statistics, to ensuring safety of passengers in the ECU steering or 

ABS. Each ECU has a transceiver that connects the node to the physical layer of the CAN, with 

one connection to the CAN high wire, and one to the CAN low wire. The controller implements 

the data link layer (ISO 11898-1) that is responsible for sending and receiving packets (so-

called frames) to/from the CAN network. 

2.2 Bit Arbitration 

 CAN nodes do not send their messages to other nodes of interest using point to point 

communication [1]. In contrast, they transmit their messages to all nodes connected on the bus. 

Only the nodes that are interested on the message react. The CAN bus protocol is based on 

bitwise arbitration to prevent collisions that may happen from concurrent access to the CAN 

bus. CAN nodes use specific IDs to communicate. When multiple nodes broadcast 

simultaneously only the node with the smallest CAN ID gets priority to send its message to the 

bus (“0” has highest priority), thus one node sends at the time. The nodes with lower priorities 

try to broadcast as soon as the network is available. This way all messages may eventually be 

transmitted, while higher priority messages are favored for real-time communication. 

Figure 3: The car network  [3] 
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For example, if node 1 with ID 0010 and node 2 with ID 1010 try to broadcast at the same 

time on the CAN bus, the node with the smallest ID, in this case node 1, will broadcast first. 

Node 2 will have to wait and listen, until the bus is available for transmission again. 

2.3  Frames 

 The messages used by the CAN bus protocol are named CAN frames [4][5] There are 

four different kind of frames available according to frame size. 

Data Frames 
The Data messages has two types: The standard or base frame format has 11 identifier bits, 

while the Extended frame format has 29 identifiers bits. 

  

Data Frame: The most common CAN Frame is the Data Frame and this is divided to two 

versions with small bit changes but different size. The Standard Data (see in Figure 4) Frame 

(CAN 2.0A) and the Extended Data (see Figure 5) Frame (CAN 2.0B). 

• The first bit of the CAN 2.0 A and B is zero to show that a broadcast began as the 

Interframe State of the CAN bus is logical one. 

•  The next 11 bits are the identifier. 

•  The Remote Transmission Request (RTR) is a bit whose value is zero in case of a Data 

Frame and one in case of a Remote Frame . 

• The next part of this is the Identifier Extension (IDE) bit that is zero in case of a 

Standard Frame. 

• The following bit Reserved  Bit Zero (RB0) is also zero. 

Figure 4: The Standard Data Frame 
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• After that comes a four bit representation of the size of the data field named Data Length 

Code (DLC). 

• Data Length that can be up to 8 bytes and are the data transmitted. 

• Cyclic Redundancy Check (CRC) is used to identify errors that may occurred during 

the broadcast and is 15 bits long [2] 

• CRC Delimiter that always has the value of one. 

• Acknowledgment Slot (ACK Slot) bit has the value one when a node receives a Data 

Frame with no mistakes. The ACK Slot takes the value zero if there is any errors. 

• At the end of the frame there are 7 logical one bits. 

➢ Extended vs Standard Data Frame 

 The major difference between the Extended and the Standard Data Frame is the size. 

The larger version is 20 bits more than the other and the main reason is the Identifier as it is 29 

bits. The purpose for this is the need of the automotive companies to have universally unique 

identifiers their products even if there are not unique at their function. So, in this Frame the 

arbitration field is 32 bits instead of 12. After the 11-bit Identifier that exists in both versions 

the Extended version uses the Substitute Remote Request (SRR) bit that has the value of one. 

IDE comes next as logical one. Finally, we have the 18-bit part of the Extended Identifier. 

2.3.1 Remote Frame 
 Remote Frames (see Figure 6) are used when a node needs information from another 

node. The data field of this frame is empty. 

Figure 5: Extended Data Frame 
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2.3.2 Error Frame 
 As shown in Figure 7, nodes broadcast an Error Frame whenever an error is spotted on 

the bus. When more than 5 bits in the row (non-return-to-zero) have the same value. In this 

case the other nodes recognize the error and broadcast an Error Frame with the field of the 

Error Flag being filled with 8 zeros and as a result the transmission stops. 

2.3.3 Overload Frame 
 Overload Frames, shown in Figure 8, are transmitted during the Interframe State. They 

are similar to Error Frames, but transmission of the frame does not stop. 

Figure 7: Error Frame 

Figure 6: Remote Frame 
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 Besides CAN bus, some other in-vehicle network technologies are available with each 

one dedicated to a different purpose. 

• Media Oriented Systems Transport (MOST) is an optical fiber bus used for media 

transmission, such as audio, video, voice [6]. It spans all the OSI layers and offers 

bandwidth up to 150Mbp/s. Cars that use at least one MOST Network are Audi, 

BMW, General Motors, Honda, Hyundai, Jaguar, Lancia, Land Rover, Mercedes-

Benz, Porsche, Toyota, Volkswagen, SAAB, SKODA, SEAT and Volvo. 

• Local Interconnect Network (LIN) is a cost efficient, single wire bus on the vehicle 

that is used for connecting sensors and actuators [7]. LIN is a single master bus and 

each master holds up to 16 slave nodes. Speeds are limited to 19.2 Kbp/s. 

• Flexray is designed as a fast bus for subnetworks with high priority [8]. It offers 

speeds up to 10Mbp/s, but is not widely available due to the high cost of 

implementation. 

These networks also do not offer any security. However, since CAN remains the single most 

important bus used in almost all modern cars, it is the network of choice examined in this thesis. 

3. Threats and Attacks 

Increased level of sophistication enhances vehicle functionality, but possibly leads to 

increased vulnerability. Lima et al. have identified different types of automotive security 

weaknesses: reading or modifying control-sensitive sensor data, compromising internal, 

Figure 8: Overload Frame 
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external, or coordinated global network communications (e.g. CAN bus, short- and long-range 

wireless), exploiting OS software vulnerabilities by embedding malicious code which possibly 

modifies data on vehicle ECUs and road-side units, bypassing authentication mechanisms from 

trusted authorities, e.g. during firmware update, and physical-layer attacks [2]. 

In this section we focus on some types of threats that target vehicle network communications.    

3.1 Masquerade (or spoofing) attacks 

 Masquerade attacks happen when an attacker imitates the identity of a legitimate user 

or component in a network. Some specific spoofing attacks are: E-mail address spoofing, GPS 

spoofing, and ID address Spoofing [9]. Another spoofing attack can consider the DNS 

spoofing. In this case a malicious node spoofs the IP address of another user, without his 

knowledge and requests an address from a DNS server. The DNS server replies to the victim’s 

server. The malevolent queries are small and chosen to need much bigger replies, all of which 

are being sent to the victim’s server. This causes the server to be unable to handle the traffic 

[10].    

A masquerade (or spoofing) attack in CAN Bus means that an attacker sends a fraudulent 

CAN message which misleads other nodes on its identity, thereby causing malicious message 

data to be accepted by the system. 

3.2 Replay or Playback attacks 

A replay attack takes place when data extracted and sent again by a harmful third party 

posing as a reliable member of the conversation [11]. 

For example, in a CAN network a perpetrator retransmits earlier data in the system, e.g., a 

message it has received from the CAN network, thereby misleading the system on the current 

value of a physical signal. While pair-wise keys can help protect from masquerade attack, they 

are not effective for replay attacks, i.e. a node may accept a message which it should reject 

(false acceptance). 

Denial of Service attack 

A Denial of Service (DoS) attack focuses on making a service unavailable. This type of 

violation takes place on a network (such as LAN), in a web service, in a device (attacks to a 

CPU or cache) etc. A DoS attack is created from a machine, in contrast to DDoS attacks that 

are caused from many machines as described in next subsection [13].   

Researchers examine a DoS attack on the hardware is the HDD DoS attack. The attack was 

accomplished by the resonance produced by sound waves, causing the examined devices 
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(personal computer and a CCTV circuit) to stop working and restart. The CCTV permanently 

lost its data [16]. 

3.3 Distributed Denial of Service attack 

Distributed Denial of Servive (DDoS) attack is a strike to the victim’s server coming from 

multiple sources. The attacking devices such as smartphones, IoT and computers which have 

been maliciously compromised and teamed up against the victim by the attack shepherd and 

they are called a Botnet (see Figure 9). Botnets are also increasingly available for rent by 

companies who offer DDoS attack services [12].    

 

 

Figure 9: DDoS attacks [13] 
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3.4 SYN Flood 

The SYN flood attacks is like a denial-of- service attacks as referred above. It works with two 

types of attacks the TCP SYN flood attacks that uses the TCP protocol and the SYN Flood attacks.A 

TCP SYN Flood is achieved by a mischievous user taking advantage of TCP’s three-way-

handshake. As shown in Figure 10, in the three-Layer handshake three steps take place: Firstly, 

a client sends a SYN message to the server, next the server rejects (if is not available at the 

time) or replies with a SYN-ACK message. In the last step, the user sends an ACK message to 

the server and the connection can start [14]. 

 

➢ As shown in Figure 11, in the SYN flood scenario the client sends a request to the 

server. When the server replies with the SYN acknowledgement, the attacker does not 

send the last ACK to the server. This causes the server to spend its resources waiting 

the reply from the user until a connection time-out [15]. 

 

Figure 10: Three-way handshake 
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3.5  UDP Flood attack 

UDP flood attacks are less common than TCP Flood Attacks. This technique occurs by 

sending multiple UDP packets to various ports of the victim’s computer. The server watches 

and sees that no application is responding, thus sends ICMP packets to every UDP requested 

by the attacker. During this time legitimate users cannot communicate with the server as the 

ports are occupied. 

3.6 HTTP Flood Attack 

HTTP Flood Attack divides in two ways, HTTP GET flood and HTTP POST flood. HTTP 

GET flood takes place while the assailant downloads large files from the victim’s server with 

high frequency, as a result legitimate user cannot be served. HTTP POST attack occurs when 

the server requests to repeatedly fetch results from the database, making the server unavailable. 

4. Cryptography 

 Cryptography is the actions taken to protect a communication between two or more 

parties. There are many technologies of cryptography. These are:  symmetric and asymmetric 

cryptography. 

Basic Terminology 

➢ Plaintext: The initial text (without cryptography). 

 

Figure 11: SYN-TCP flood attack 
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➢ Encryption: Encoding initial text with cryptography algorithms. 

➢ Ciphertext: The output of the initial text after encryption. 

➢ Decryption: Takes the output text (encrypted text) and converting it via the same 

algorithm to initial text. 

In general, the first step in cryptography is encryption. This is the alteration of readable 

plaintext to something undefined, that looks random. This output is named ciphertext. The 

reverse process is called decryption and is used to turn the encrypted information back to 

plaintext again when it is considered safe. Both procedures need the same cryptography key to 

take place. 

4.1 Asymmetric (or public key) Cryptography 

  In asymmetric cryptography each member of a communication has a unique public and 

private key. The public key of each user is visible and potentially known to all users while the 

private key is only known to its owner. This solves the problem of symmetric cryptography 

(referred in next subsection) where the key is common and must be distributed to all involved 

users securely prior to the data exchange. This was not optimal as it is restrictive while secure 

channels are not available, or the cost can be inefficient. 

 Despite that the public key is known to others, it’s not making the asymmetric encryption 

vulnerable because there is and the private key. The mathematical relation between the two 

keys shall be indistinguishable as the system relies on that and the secrecy of the private key. 

As shown in Figure 12, when a communication starts a pair of keys is created from each party. 

In this case (see Figure 13), Bob wants to send a secure message (Hello Alice!) to Alice. Hence, 

via specific algorithms and with the Alice Public Key encoding the message and send it to 

Alice. Next, Alice decrypts the message with her private key. 

             

 

Figure 12: Alice pair of keys 
 

Figure 13: Asymmetric Cryptography 



22 

 

4.2 Symmetric Cryptography 

 As shown in Figure 14, symmetric cryptography uses a shared secret key (same shared 

key) between two or more parties for data encryption and decryption. 

The communication using symmetric cryptography is as follows: A sender wants to send a 

message to another person. The sender encrypts the information to be transmitted with the 

shared key and then transmits it. Receiver uses the same shared key to decrypt the message. 

After this procedure the receiver can see the original information. Symmetric algorithms are 

divided in two categories, block and stream ciphers. 

 

4.3 Block Ciphers 

 Block ciphers splits the data to be encrypted in predefined n-sized volumes of bytes using a 

n-size cryptography key. More specifically, Block ciphers take as an input a message and divide 

it in n-byte blocks which is multiple times smaller than the original message. Each block is 

manipulated in a way that along with their cryptographic key will produce a ciphertext, 

according to the mode of operation used. There are two main categories of Block cipher: the 

Feistel Cipher and the Modes of operations (ECB, CBC, CTR, GSM etc.). 

4.3.1 Feistel Cipher 
 Feistel Cipher is the foundation for many block ciphers [17][18]. Encryption and decryption 

are achieved by splitting the plaintext or the ciphertext block in a left (L) and a right part (R). 

The following steps take place for the cipher’s implementation for encryption (see Figure 15): 

 
Figure 14: Symmetric Key Encryption 
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• An encryption function f is created based on a subkey (Ki) and R part, (f (Ki,Ri)). The 

L part XOR f become the input for R in the next step. The R part is kept as it is and 

becomes the L part of the next step. 

Li + 1 = Ri 

Ri + 1 = Li XOR f(Ki, Ri) 

• The subkeys used in each step are related to the key, but there are not the key itself. 

Another subkey is used in each step. 

• In the last step of the encryption, the Ln+1 and Rn+1 parts are joined in one piece. 

For the Feistel decryption, the scheme follows the same philosophy. 

 

• The process begins with the ciphertext, split again in two L and R pieces, starting from 

Ln+1 and Rn+1 and each subtracts 1 in each step. 

• The subkey Ki starts from Kn going down by 1 each round, until it reaches K0. 

 

4.3.2 Modes of Operation   
As shown in Figure 16, ECB (Electronic Code Book) encrypts the plaintext in combination 

with key [19]. The outcome is the ciphertext produced. Each block is isolated and independent 

from all the others. The decryption (see Figure 17) follows the same approach, the ciphertext 

combined with the key produces the original plaintext. In ECB a plaintext that are exactly the 

 
Figure 15: Feistel cipher encryption and decryption 
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same will produce the same ciphertexts. Repetition is not recommended therefore ECB is not 

ideal for type of cryptography for large files, accordingly so is being used for small size data. 

ECB Encryption: Ci = Ek(Pi). 

ECB Decryption: Mi = Dk(Ci). 

 

 

CBC (Cipher Block Chaining) provides confidentiality. In this procedure a ciphertext is 

XORed with the following plaintext. The first plaintext is XORed with an Initializing Vector 

(IV) due to the lack of a prior ciphertext. The outcome of the XOR is encrypted using the 

cryptographic key and this produces the next ciphertext. 

 

CBC Encryption (see Figure 18): 

 Ci = Ek (Mi XOR Ci-1) 

 C0 = VI 

CBC Decryption (see Figure 19): 

 Mi = Dk (Ci) XOR Ci-1 

 C0 = IV 

 
Figure 17: ECB Decryption 

 
Figure 16: ECB Encryption 
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If any mistake occurs during the encryption of Ci would make the Ci block to be corrupted. 

Due to the function of CBC decryption thought the corruption would affect only Mi and Mi+1.   

 

 

Counter Mode (CTR) is a confidentiality mode that a series of input blocks have stored a 

nonce (random value) in the first part along with a n-size incrementing counter in their second 

part. This is encrypted together with the key and the result is XORed with th plaintext. On this 

mode of operation is that encryption and decryption can occur in parallel, as in Figure 20, 21. 

 

Figure 18: CBC Encryption 

Figure 19: CBC Decryption 
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Galois Counter Mode (GCM) is a block cipher of 128 bits, that provides authenticity and 

confidentiality. Similar to CTR GCM, it uses an IV and an incrementing counter. The IV is 

hashed along with the key and XORed with the plaintext and this has the ciphertext as a result. 

To ensure data integrity and authentication, the GCM makes use of the Galois Message 

Authentication Code (GMAC). The output of the first ciphertext along with 128 zeros that have 

been hashed, are used on an operation called multiplication and the result is XORed with the 

next block’s ciphertext to produce the next multiplication block. The last multiplication is 

XORed with the ciphertext’s length and the length of the additional data [20]. 

 

 
Figure 20: CTR encryption 

 
Figure 21: CTR decryption 
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4.3.2.1 Advanced Encryption Standard (AES) 

AES is a block cipher that is being widely used for network and storage security, that was 

chosen by National Institution of Standards Technology (NIST) after a contest for 

cryptographic algorithms for a new, secure and symmetric algorithm standard with the name 

AES [22][23] The algorithm is named Rijndael by the creators [24]. AES came to replace Data 

Encryption Standard (DES) which was the previous standard. DES at the time was not able to 

be as effective with the technological progress of the time. In 1998 a DES cracker was already 

made and was able to brute force the algorithm in a few days.  

 The requirements for the new algorithm were: 

1) To be symmetric 

2) The size of the key should be at least 128 bits, with the option to support 192- 

and 256-bit keys 

3) To be able to provide security against the known attacks 

4) To be cost and power efficient 

 
Figure 22: GCM 
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AES key size is 128, 192 or 256 bits denoted Nk and specifies the number of columns of the 

key matrix, extended versions of AES have since been created with the key to reach up to 1024 

bits size [21]. The possible number of columns are 4, 6 or 8 in both matrices to the 128-, 192- 

or 256-bit values subsequently. Accordingly, to the key and the block size the Rijndael rounds 

that take place are 10, 12 or 14, as in Figure 23. Both block and key sizes are multiple of 32 

and can have different sizes as they are is no relation between them. The plaintext is arranged 

in a 4 rows * Nb column, column major order and represented as binary or decimal or 

hexadecimal values. The same principal applies for the key matrix with Nk columns. If there 

are remaining, plane cells in the matrix are padded to fill the gaps and complete the 4 * Number 

of columns * 8 bits of the matrix. 

 

The size of the original cipher key is 4 * Number of rows. The size of the expanded key = 

the original cipher key * (original cipher key + 1) 

Prior to the first round and in the end of each round, a subkey is used. The subkey is 

originates from the original cipher key, its size is equal as the state’s block size and a different 

subkey is used in each round. The subkey is XORed byte by byte with the state block. 

Prior to the first round and in the end of each round, a round key is used (see Figure 24). The 

round key originates from an extended cipher key. The extended key is equal with the original 

key size * (original key size + 1). In each round a different round key is used. The round key 

size is equal as the state’s block size. The subkey is XORed byte by byte with the state block. 

 

 

Figure 23: AES Rounds 

 

Figure 24: Add Round Key 
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The Sub bytes step of each round in the AES cryptography corresponds to confusion. This 

is a byte by byte operation, as in Figure 25 that an input of the x byte will become S(x) = y, 

after the byte passes through the S-box. 

 

In the next step, the shift row operation the values of the matrix are being shifted left 

according to the number of the row they are in (see Figure 26), starting to count from row 0. 

Shifting rows adds diffusion to AES. 

 

As shown in Figure 27, the Mix Column is used after the S-Box operation and Shift Row 

whereas both contribute to the cipher’s diffusion. This operation is a transformation that takes 

each column and change its value by a matrix multiplication. 

 

 

Figure 25: Sub bytes operation 

 

Figure 26: Shift row 

 

Figure 27: Mix Column 
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4.3.3 Stream Ciphers 
 Stream ciphers are one of two categories of the symmetric cryptographic algorithms. In 

contrast to the Block ciphers who take a portion of the plaintext each time, manipulate it and 

produce a ciphertext. Stream ciphers, receive and encrypt the messages, character by character 

using pseudorandom bits XORed with the plaintext for this purpose. Block ciphers are more 

widely used on the Internet but due to the small computational power required by the Stream 

ciphers, they are popular among smaller devices e.g. embedded devices and mobile phones, 

also are generally faster than Block ciphers. In cases of continuous streams of bytes where 

errors can occur during encryption Stream ciphers are preferable due to increased fault 

tolerance. Although the Stream ciphers are considered less secure in comparison to Block 

ciphers, their advantages still make them useful and preferable for certain applications [25]. 

Two kind of Stream ciphers exist. The first kind is synchronous Stream ciphers, in this case 

the keystream is based on the key. The second case is the self-syncronizing Stream ciphers 

where the keystream also relies on the cipher text. To encrypt the message the keystream is 

XORed with the plaintext and produces the ciphertext. The same function creates the same 

plaintext out of the ciphertext XORed with the keystream if the same key as the encryption is 

used. 

Encryption: yi = esi (xi) ≡ xi + si mod 2 

Decryption: xi = dsi (yi) ≡ yi + si mod 2 

4.3.3.1 Salsa20 

 Salsa 20 has emerged at the eSTREAM program [27][28], which was an attempt to 

stimulate Stream cipher encryption, organized by the European Network of Excellence in 

Cryptography (ECRYPT). The eSTREAM program focuses in two profiles: Profile 1 for 

ciphers based on software applications with bigger requirements and profile 2 that points to 

cryptographic ciphers for devices with limited resources. Salsa20 belongs to profile 1 ciphers 

and while typically operates with 20 rounds, a 12-round edition Salsa20/12 and a 8 round 

edition Salsa20/8 exists. The reduced rounds versions of the algorithm exist and are some of 

the faster stream ciphers.  Two key sizes exist, one with 128 bits and one with 256 bits [26]. As 

for August 2018 there are not any attack recorded against Salsa20/20 or Salsa20/12. Salsa20 

produce a ciphertext by XORing the same number of bits each time from a plaintext and a 

keystream.  The same procedure follows for the decryption. 
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Inputs and outputs 

If y is a 4-word sequence then quarterround(y) is a 4-word sequence. 

Definition 

If y = (y 0 , y 1 , y 2 , y 3 ) then quarterround(y) = (z 0 , z 1 , z 2 , z 3 ) where 

z 1 = y 1 ⊕ ((y 0 + y 3 ) <<< 7), 

z 2 = y 2 ⊕ ((z 1 + y 0 ) <<< 9), 

z 3 = y 3 ⊕ ((z 2 + z 1 ) <<< 13), 

z 0 = y 0 ⊕ ((z 3 + z 2 ) <<< 18). [27] 

 

4.3.4 Cryptographic Hash Function 
 Hash Functions are used to verify message and data integrity among users. Sites with 

content available for download offer their data’s hash value for the users to compare the 

downloaded file’s value with the genuine hash. Some hashing algorithms are outdated, and 

they no longer provide enough security because the computational power of modern computers 

surpassed the limits of the older algorithms (e.g. MD5). This makes the older algorithms not 

 

Figure 28: Salsa20 
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trustworthy with hash breakers being available online and don’t require any skills for the user 

to crack a hash value [29]. A combination of a hash function and Message Authentication Code 

(MAC) creates the Hash based MAC (HMAC) that verifies the sender of a message and 

security against reply attacks. 

A hash algorithm takes as an input data called message, of any size and turn them to a fixed 

smaller size hash value. The output also named digest. The ideal hash functions follows some 

principles. 

1. The original data must be untraceable for someone who only possesses the hash value. 

2. Every digest ideally must correspond to only one input. It be probabilistically 

impossible for two inputs to have the same hash value. (In the real-world scenario of a 

collision there are solutions available.) 

3. Different inputs will produce different outputs, even the smallest intercept on a file 

would produce another hash value due to the avalanche effect. As a result, hash 

algorithms also provide data integrity [30].    

4. The same input will always produce the same digest. 

5. The functions must be fast. 

The Secure Hash Algorithm family consists from SHA-1, SHA-2 and SHA-3 which is also 

named Keccak. The input size depends to the SHA of choice. 

SHA-1 is one of the algorithms that are considered insecure and federal agencies are 

instructed by NIST not to use them [31]. Artificial collisions were created by Centrum 

Wiskunde & Informatica (CWI) and Google when they succeed to create the same digest from 

two different files [32]. SHA-2 and Keccak are the current algorithms in use. SHA-2 produces 

224, 256, 384 for 512 bit digest size and has 80 rounds. Keccak has the same variety and value 

of outputs as SHA-2, is based on the sponge construction and uses 24 rounds and is the 

algorithm that will be used in the platform created in this thesis. The collision resistance (cr) is 

depended on the n-bit Keccak used each time, cr = 2n/2, the preimage resistance is 2n and the 

capacity is 2n. Keccak offers the possibility to lower the capacity, which lowers the security 

levels and as a tradeoff boosts performance.  
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5. Platform 

5.1 Board Project Boards 

In this work, two main boards are used: Arduino Uno and DFRobot CAN Bus Shield v2.0, 

as discussed below. Moreover, another board Ecusim 2000 has been tested and is referenced 

below, but not yet integrated in our security scenarios. 

5.1.1 Arduino Uno 
 Arduino (shown in Figure 29) is an open source board family that have been designed 

as open source and imitated by several other companies. It is widely used by people who 

develop their own prototypes, e.g. in education, research, industrial automation, etc. An 

Arduino is relatively easy to program, in contrast to microcontroller programming in the past. 

As many other projects, the Arduino Uno is the backbone of this project. Arduino Uno is an 

inexpensive, simple and highly configurable microcontroller that facilitates different shields 

that mount to Arduino pins to provide additional functionalities. A microcontroller is a small 

16-bit computer consuming much less computational power, and in little need of electrical 

power. Arduino can quickly execute small and simple programs alone, or in combination with 

an Arduino shield [53][54] 

 

 

Figure 29: Arduino Uno 
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5.1.2 DFRobot CAN Bus Shield 2.0 
 The DFRobot CAN bus shield (see Figure 30, 31) is used in the proposed platform. It 

is compatible with Arduino Uno [35], Mega [36] and Leonardo [37] and serves as a CAN bus 

node able to send and receive data from/to the CAN network using different IDs. The DFRobot 

Can bus shield uses a common CAN controller MCP2515 and a MCP2551 transceiver chip 

that allows efficient data exchange. The shield offers two CAN bus channels (connectors), one 

through the standard DB9 (equivalently, DE9) interface and the second through a pair of CAN 

high/low twisted wires [38]. In this work, an Arduino library provided by DFRobots has been 

adapted for sending and receiving messages from Arduino Uno board. 

 

 

 

Figure 30: CAN-Bus Shield 

 

Figure 31: CAN-Bus Overview 
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5.1.3 Ecusim 2000 
 Ecusim 2000 (see Figure 32) is a simulator that generates artificial CAN events for 

testing and development [39]. Ecusim can be either directly connected to a CAN bus or to a 

PC via a USB to OBD2 cable. The board has 5 potentiometers that imitate certain PIDs and a 

button to create fault events called Malfunction Indicator Light. The PIDs of the 

potentiometers, from left to right, correspond to: 

1. Coolant Temperature 

2. Engine Speed (RPM) 

3. Vehicle Speed 

4. Oxygen Sensor Voltage 

5. Mass Airflow (MAF) 

5.2 Sender - Receiver Example 

An example of a CAN sender and receiver is shown below. For the implementation we have 

used two Arduinos with two CAN bus shields which communicate via an OBD2 cable (in the 

example the Y cable has three ends, only two of them were used), as in Figure 33. Alternatively, 

they can be connected using the green CAN H/L signal interface, connecting as in Figure 2. 

 

Figure 32: Ecusim 2000 
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5.2.1 Can_sender Node 
Can_sender supports the following basic methods: 

CAN.init(); 

CAN.begin(speed); 

CAN.sendMsgBuf((id, ext, len, buf); 

 The method CAN.init is used to initialize the CAN bus interface; 

The method CAN.begin sets the bits per second (baud transfer rate). We use 500Kb/s. A code 

of snippet is shown below. 

//init can bus with //baudrate  5ps00kb 

if(CAN_OK == CAN.begin(CAN_500KBPS)) {  

  Serial.println("DFROBOT's CAN BUS Shield init ok!"); 

  break; 

 } else{ 

  Serial.println("DFROBOT's CAN BUS Shield init fail"); 

  Serial.println("Please Init CAN BUS Shield again"); 

  delay(1000); 

Figure 33: CAN Bus over CAN Shield - Sender, Receiver 
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 if (count <= 1) 

  Serial.println("Please give up trying!, trying is 

useless!"); 

  } 

The method sendMsgBuf sends data to receiver. This is accomplished by setting a specific 

receiver ID, the data transmission format, the data length and the data to be transferred. 

For example: 

can_id  = 0x44; 

unsigned char data[8] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 

0x07}; 

// 0x7e0 worked, 0x7df, 0x18db33f1 

CAN.sendMsgBuf(can_id, 0, 8, data);  

Serial.println("A... sending message:"); 

5.2.2 Can_receiver Node 
Can receiver supports the following basic methods: 

CAN.init(); 

CAN.begin(speed); 

CAN.checkReceive(); 

CAN.readMsgBuf(&len, buf); 

CAN.getCanId(); 

The methods CAN.init  and CAN.begin are the same as with sender. Notice that both sender, 

receiver must use the same baud rate (500kbps). 

The method CAN.checkReceive checks for new messages and saves them in a variable 

(here an integer variable named code). Returns 1 if a frame arrives, and 0 if nothing arrives. 

For example: 

int code; 

code = CAN.checkReceive(); 

The method  CAN.readMsgBuf  reads the data from the sender after the CAN.checkReceive 

method This is accomplished by setting  a specific  length and a buffer. For example: 

unsigned char len=0; //global variable 

unsigned char buf[8]; // global variable 
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CAN.readMsgBuf(&len, buf); 

Finally, the method CAN.getCanId obtains the value of the sender’s ID if data arrived. 

can_id = CAN.getCanId(); 

Serial.print("CAN ID: "); 

Serial.println(can_id); 

As shown in Figure 34 (left part) the sender sends a message “0 1 2 3 4 5 6 7” to receiver.  

Subsequently, receiver (right part) reads the data with length 8 bytes and the sender CAN id. 

 

5.3 VatiCAN and vatiCAN-G 

In the original vatiCAN protocol [40], secure CAN nodes who communicate via vatiCAN 

messages are declared statically. Our proposed extension (called VatiCAN-G) [46] focuses on 

supporting dynamic security groups (called Cliques). Hence, with our protocol, any 

communication message, identified by its ID, can be defined on-the-fly, as a secure vatiCAN-

G message, Unidentified messages are non-secure, i.e. they are treated as legacy messages. 

In the case of secure messages, a vatiCAN-G Clique defines a group of CAN nodes   who 

intend to participate next, in a single round of secure communications, i.e., broadcasting 

authenticated data from one sender to a specific set of receivers. Participants in a vatiCAN-G 

Clique instance are uniquely identified by an ID. These nodes share a common session key 

composed by hashing their corresponding secret keys. These secret keys are distributed at 

initialization time to define a secure clique sometime during system life. As explained in 

Figure 34: Sender (left side) and Receiver (right side) 
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Section 2, similar to vatiCAN, we protect from masquerade and replay attacks by 

authenticating payload data using the ID together with the session key associated with this ID, 

and a global counter (called GRC) which increments based on the number of announced 

vatiCAN-G Cliques. 

5.4 Related work 

Nilsson et al. have proposed to calculate a 64-bit MAC (CBC-MAC) over four consecutive 

CAN messages and transfer the MAC as four 16-bit blocks in the CRC field of the next four 

CAN-messages [41]. Notice that eight messages are needed for validation. Moreover, if MAC 

fails, the actual individual message that was wrong cannot be determined, and there is no 

protection against replay (data integrity). 

TESLA (IETF-RFC 4082) is an efficient broadcast authentication protocol employed in 

wireless sensor networks and recently on CAN bus  Unlike all protocols discussed here, the 

protocol does not provide shared keys, instead a key released in round i, is sent (possible 

alongside with data of subsequent message) to authenticate the previous message from the same 

ID [42]. This introduces additional delays unsuitable for many real-time automotive 

applications, except where high security is needed. 

Szilagyi and Koopman have proposed an efficient authentication protocol (called One MAC 

Per Receiver, OMPR)[43], whereas each pair of CAN nodes shares a secret key (exchanged 

using one-way hash functions). This key is used to calculate a MAC for CAN messages (64-

bit data) exchanged between these two nodes [44]. The MAC (message signature) is reduced 

to a few bits and is concatenated to the end of the message. Since it is easy to forge a message 

with only a few bits of the MAC available, the authors propose that authentication is provided 

by successfully verifying the MAC over a set of messages, making spoofing many messages 

in a short time period unlikely. In their scheme, a sender only computes as many MACs as its 

corresponding receivers. The proposed protocol can also protect from replay attacks by 

including a global clock, together with the pair-wise key and message data, in its MAC 

computation. Thus, a receiver can check the corresponding receiving counter to see if a 

message is fresh, However, a global clock, is only available on time-triggered CAN. While 

voting and TESLA are more appropriate for high assurance systems with large number of 

receivers and, OMPR and voting are better for low assurance systems with a small number of 

receivers. 

Lin and Sangiovanni-Vincentelli propose an alternative mechanism to protect from 

masquerade and replay attacks. Their method does not need to maintain a global time, but uses 
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symmetric secret keys and message round counters [45]. Their scheme reduces overheads by 

transmitting only the least significant bits of counters, and providing reset mechanisms when 

counters are out of synchronization due to network errors, ECU restarts, or failures. Simulation 

results from real testbenches prove that their security mechanism achieves sufficient security, 

without introducing high communication overhead (bus load and message latency). 

Nürnberger and Rossow developed Vetted Authenticated CAN (VatiCAN), the first open 

source solution for authentication and ID/data integrity protection [40]. Their solution 

establishes a secure way for messaging among critical nodes, while non-protected components 

continue to communicate using the original CAN messages (called legacy), thus providing 

backward compatibility. The algorithms resemble the proposed scheme by Lin and 

Sangiovanni-Vincentelli in computing the MAC, i.e. as function of the packet body, pair-wise 

shared key and counter specific to each sender (called global nonce). However, instead of 

distributing the MAC over multiple messages, it is propagated in a second message that 

validates the previously transmitted data, so that receivers can authenticate the source of the 

message in a subsequent step (similar to how TESLA treats the keys).   

5.5 VatiCAN-G API 

Our protocol enhances security by supporting separate 32-bit MAC for group mask and 64-bit 

MAC for data, compared to 64-bit MAC for data in vatiCAN. Notice that an adversary listening 

to CAN cannot easily attempt to detect an ID and announce a spoofed group start message with 

the ID, since the group mask is authenticated with 32-bit MAC1 (Phase I). Similarly, an attacker 

cannot replay a group start message (i.e. resending a spoofed message), since group mask is 

protected by incorporating GRC in the authentication scheme. Similarly, confidentiality and 

integrity in Phases II and III as referred in next subsections, are accomplished via 

authentication, i.e. using the GRC in the MAC2 computation. 

VATICAN-G supports secure vatiCAN-G messages. As shown in Figure 35, a group ID 

mask is used to define a vatiCAN-G Clique using InitGroupMask as a group of CAN nodes 

who intend to participate next, in a single round of secure communications. Participants in a 

vatiCAN-G Clique instance, uniquely identified by a group mask, share a session key, 

computed via calcSessionKey function by hashing on the pairwise keys of all group nodes 

[46]. A sender announces a Group Start Message via Send function and receives a message via 

MsgAvailable . 
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More specifically, VATICAN-G uses the following basic functions, as shown in Figure 35. 

Explanations of all the remaining functions will be provided in a vatiCAN-G manual, once this 

work matures and is delivered as open source (expected in 03/2019). 

• void InitGroupMask( uint16_t groupID, int index); 

• uint64_t GetGrcCounter(); 

• uint8_t MsgAvailable(uint16_t id, uint8_t ** buffer, uint8_t& 

length, uint64_t *KeyList, uint16_t *PartList, uint8_t 

*PartListLen, uint16_t localNodeID, uint16_t ArduID,uint8_t * 

server_grc, const unsigned char * getcode, uint8_t * 

critical); 

• void send(CSENDER ID, uint8_t *payload, uint8_t len,uint64_t 

*KeyList, uint16_t *PartList, uint8_t *PartListLen, uint32_t 

pmask,uint8_t *want_flag); 

• void MessageAuthenticate( uint16_t ID, uint64_t grc, const 

uint8_t *msg, int16_t msglength, uint8_t *mac, uint16_t 

caller, uint16_t realCaller); 

• void calcSessionKey(uint64_t *KeyList, uint16_t *PartList, 

uint8_t *PartListLen, uint16_t id); 
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5.5.1 InitGroupMask 
The InitGroupMask maps each group CAN id to a specific index number. 

• void InitGroupMask(uint16_t groupID, int index); 

The function uses the following two arguments: 

• groupID corresponds to secure group IDs. For example, 0x32, 0x34 etc. 

• index defines the array number that sets the group IDs. 

5.5.2 GetGrcCounter 

The GetGrcCounter function sets the counters of the secure node to the previously 

broadcasted value (from GRC server). The function returns a verified state GRC_UPDATED 

(uint_8). 

• uint8_t GetGrcCounter(); 

5.5.3 Send 

The function Send broadcasts vatiCAN-G (authenticated messages) or legacy messages. 

 

Figure 35: Vatican-G protocol with three send/receive control flow phases and GRC generator. 
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• void Send( uint16_t id,uint8_t *payload, uint8_t len, uint64_t 

*KeyList, uint16_t *PartList, uint8_t *PartListLen, uint32_t 

pmask,uint8_t *want_ok_flag); 

This function extends the send function of VatiCAN [47] which defines three arguments: 

• id is the sender’s ID. 

• payload defines the bytes to send (0 to 8). 

• len defines the length of the supplied payload. 

The new send uses the following five extra arguments: 

• Keylist holds the keys of all secure group participants. 

• Partlist stores the secure node IDs of secure group participants; notice that the node 

is a member of this group. 

• PartListLen sets the length of participants (partList). 

• pmask is a 32-bit mask (integer) representing the group participants via (possibly also 

mapped to an ArduID). 

• want_ok_flag is used by the secure nodes to establish a new counter value using the 

GRC protocol. For example, with a 1 value, a want message is sent, while with a 0 

value an ok message is sent. These messages are used to distinguish between different 

phases of the GRC protocol. 

The Send function is used in the following three phases: 

• Phase I: A sender announces a Group Start message that contains the id, the pmask, 

and a 32-bit MAC1 message authentication code (computed via 

MessageAuthentication, see below); these last four bytes of the payload ensure that 

an authorized sender has transmitted the group start message. 

• Phase II: The sender sends 64-bit data (with the same sender ID). 

• Phase III: Send: The final step involves transmitting the sender ID with a MAC2 (as 

payload) for authentication. MAC2 is computed using data, GRC, and session key. 

5.5.4 MsgAvailable 

The function MsgAvailable is called periodically to manage received messages coming 

from Send method. 
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• uint8_t MsgAvailable (uint16_t id, uint8_t** buffer, uint8_t& 

length, uint64_t *KeyList, uint16_t *PartList, uint8_t 

*PartListLen, uint16_t localNodeID, uint16_t ArduID, uint8_t * 

server_grc, const unsigned char *getcode, uint8_t *critical); 

This function extends the Available function of VatiCAN [47] re-using the following three 

arguments: 

• id returns a value that holds the sender's CAN ID (legacy ID, VatiCAN-G 

ID). 

• buffer sets value that points to the payload buffer. 

• length returns the payload's length. 

The new MsgAvailable functions has eight extra arguments: 

• Keylist holds the keys of all secure group participants. 

• Partlist stores the secure node IDs of secure group participants; notice that the node 

is a member of this group. 

• PartListLen sets the length of participants (partList). 

• localNodeID sets the vatiCAN-G ID of the caller node. 

• ArduID defines the Arduino’s predefined ID written in EEPROM. By writing a unique 

number (e.g. 0 to 15) in the microcontroller’s EEPROM, we are able to provide unique 

node identification and unify programming across CAN nodes, increasing reuse and 

software maintenance. 

• server_grc is a uint8_t pointer used internally by the GRC Server in the context 

of the GRC protocol. 

• getcode is a pointer to a buffer used as an argument in different authentication 

functions. 

• critical is a pointer used in the GRC protocol related to the GRC server. 

The MsgReceive function consists of three following phases: 

Phase I: Each CAN node receiving a group start message authenticates the group mask by 

comparing MAC1 to a hash obtained by considering the group mask, the secret keys of Clique 
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participants (indexed by mask), and a global counter (GRC). If the group mask is successfully 

authenticated, the node shall wait next for secure data transmission (Phases II/III). 

Phase II: Upon message receipt, a message authentication code is computed at each intended 

receiver (via MessageAuthenticate as explained below). This code is computed as a hash 

based on the data, GRC, and session key of all Clique participants. 

Phase III: The receiver accepts the message only if the previously computed MAC2 matches 

the transmitted MAC code. Otherwise, the receiver rejects the data. 

5.5.5 MessageAuthenticate 

The function MessageAuthenticate is called periodically to validate received messages 

in secure group communication. 

• void EPOCH::MessageAuthentication(uint16_t ID, uint64_t grc, 

const uint8_t* msg, int16_t msglength, uint8_t *mac, CSENDER 

calltype, uint16_t realCaller); 

This function extends the MessageAuthedication function of  VatiCAN [47] which has 

the following five arguments: 

• id defines sender/receiver CAN ID that is used for computing the MAC. 

• grc sets the counter that will be used for the crypto hash functions. 

• msg defines the message for which to compute the code. 

• msglength is the length of that message (typically 1 to 8 bytes for CAN). 

• mac is a buffer to save the MAC computed (64 bits). 

The new MessageAuthenticate has two extra arguments: 

• calltype is an integer variable that distinguishes internal computations in the Keccak 

cryptographic algorithm (i.e. vatiCAN-G secure group, or GRC/ticket protocol). 

• realCaller is the secure vatiCAN-G ID of the caller used for the GRC protocol 

cryptographic hashing. 

5.5.6 calcSessionKey 

The calcSessionKey creates a SessionKey according to KeyList and partList. Only 

groups participant can calculate and use the session key. 

• void calcSessionKey(uint64_t *KeyList, uint16_t *PartList, 

uint8_t *PartListLen, uint16_t id); 
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This is accomplished by four arguments: 

• Keylist holds the keys of all secure group participants. 

• Partlist stores the secure node IDs of secure group participants; notice that the node 

is a member of this group. 

• PartListLen sets the length of participants (partList). 

• Id is the vatiCAN-G ID of the caller node. 

5.5.7 vatiCAN-G example 
 In the following figure an example of one sender and two receivers is presented using the 

 vatiCAN-G platform. 

 

 

Figure 36: vatiCAN-G send & receive phases 
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6. Conclusions 

CAN is still the network of choice in automobiles and related automated real-time 

communication environments. However, CAN bus messages have no sender or receiver 

address, and are not protected by any Message Authentication Code (MAC) or digital signature. 

Thus, it is possible for an attacker to gain control of a car by directly spoofing or replaying the 

velocity sensors of anti-lock braking systems, thereby corrupting critical sensor data by 

manipulating exchanged packets in the CAN network. We design and implement open source, 

lightweight, group-based CAN authentication protocols for protecting from masquerade and 

replay attacks and evaluate performance overheads when supporting real-time task (message 

communication and computation) schedules. 

 
 

7. Future work 

In the future it would be interesting to explore the following technical aspects, and possibly 

add to vatiCAN-G’s weaponry: 

• Intrusion detection based on abnormal activity on the CAN bus; vatiCAN-G must react 

to such a DDoS attack. 

• Event logging capabilities could possibly be used to analyze the whole system as well 

as cooperate with the intrusion detection system. 

• Validity voting, adding overhead and increasing security. 
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