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Abstract
Controller Area Network(CAN-bus) created and mostly is used in automobile sys-
tem such as cars, however his use expand in trams,light railways,operating room
at hospitals many others including outer space applications. The reason of this is
the low cost, the credibility of not losing messages and flexibility from several dif-
ferent physical layers. Every one of them has their complexity and different usage.
The diversity varies from application to application , however the time integrity is
always important. Taking advantage of this application, will adapt the frequency to
the maximum beneficial output for time trigger message systems, instead of using
a fixed data rate that will waste the optimal results. Controller Area Network(CAN-
bus) is a system that include nodes who communicate with each other, whenever
the bus is free the compete with each other to send their messages to accomplice
their tasks. In some applications with specific requirements the bus can be idle
with nodes not sending messages wasting time. We produce a application that
adapt measuring the optimal frequency of sending messages while maintains the
message integrity by calculating with worst case scenario of our system. The
research was based in trial and error, repeatedly testing same frequencies to ob-
serve their differences. Would the results of the same frequency will change in a
practical test or would be the exact same. Our observation conclude with some
interesting results. The variety of the results could differ in different systems that
could be applied, but adjusting our application in wider systems maximizing their
potential by minimizing their reaction time and preserve the message integrity
could upgrade existing or future systems.

i



Abstract
Controller Area Network(CAN-bus) δημιουργήθηκε και κυρίως χρησιμοποιήθηκε στα
αυτόκίνητα συστήματα όπως των αμαξιών, παρόλα αυτά η χρήση του επεκτάθηκε στα

τραμς, τραίνα ελαφρού τύπου, νοσοκομειακά χειρουργία και σε πολλά άλλα καθώς και

σε εφαργμογές που αφορούν το διάστημα. Ο λόγος ο οποίο συμβαίνει αυτό είναι το

χαμηλό κόστος του, η αξιοπιστία του και η ευελιξία του σε πολλά διαφορετικά επίπε-

δα. Κάθε επίπεδο έχει την δικιό του επίπεδο δυσκολίας και την δική του χρήση. Η

ποικιλία αυτή μεταβάλλεται από εφαρμογή σε εφαρμογή, παρ΄όλα αυτά η ακεραιότη-

τα τοου χρόνου διατηρείται σημαντική. Εκμεταλλευόμενοι την εφαρμογή, η συχότητα

θα προσαρμόζεται στην μεγαλύτερη ωφέλιμη έξοδο για συστήματα που εξιδικεύονται

σε σεγκεκριμένη χρονική αποστολή μηνύμάτων, αντί να χρησιμοποιηθεί συσκεκριμένη

ροή δεδομένων η οποία θα σπαταλήσει θα βέλτιστα αποτελέσματα. Controller Area
Network(CAN-bus) είναι σύστημα επικοινωνίας μεταξύ κόμβων, οποιαδήποτε στιγμή
ο δίαυλος είναι διαθέσιμος οι κόμβοι ανταγωνίζονται μεταξύ τους έτσι ώστα να στε-

ίλει ο καθένας το μήνυμα του έτσι ώστε να ολοκληρώσουν τον σκοπό τους. Κάποιες

εφαρμογές με συγκεκριμένες προϋποθέσεις ο δίαυλος μπορεί να μένει αδρανής, χω-

ρίς τους κόβους να στέλνουν μηνύματα ο χρόνος σπαταλάτε. Εμείς κατασκευάσαμε

μία εφαρμογή η οποία προσαρμόζεται στην βέλτιστη συχνότητα αποστολής μηνυμάτων

διατηρώντας την ακαιραιώτητα τους, μέσω της χείριστης υπάρχουσας περίπτωσης που

μπορεί να υπάρξει στο σύστημά μας. Η έρευνα αυτή βασίστηκε σε δοκιμές και λάθη,

δοκιμάζοντας επαναλαμβανόμενα τις ίδιες συχνότητες για να παρακολουθήσουμε τις

διαφορές μεταξύ τους. ΄Ηταν τα αποτελέσματα της ίδιας συχνότητας τηα αλλάξουν σε

μία πρακτική δοκιμή ή θα είναι ακριβώς τα ίδια. Οι παρατήρηση μας αυτή κατέληξε σε

ενδιαφέρον αποτελέσματα. Η ποικιλία των αποτελεσμάτων μπορεί να διαφοροποιείται σε

διαφορετικά συστήματα στα οποία μπορεί να εφαρμοστεί, η προσαρμοστηκότητα της

εφαρμογής σε ευρήτερα συστήματα μπορεί να μεγιστοποιήσει τις δυνατότητες τους,

ελαχιστοποιώντας τον χρόνο αντίδρασης καθώς διατηρώντας την ακεραιότητα των μη-

νυμάτων θα μπορούσε να αναβαθμίσει μελοντικά συστήματα.
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Chapter 1

1.1 Introduction

Controller Area Network(CAN bus) protocol was created by Robert Bosch GmbH
and released in 1986 at the society of automotive engineering. One of the results
of this protocol was the reduction of the wiring harnesses but this wasn’t the
intention it was a by-product. The mainly purpose of the protocol presented the
day of the release was a non-destructive arbitration mechanism. Without a central
bus master, grants access to the frame with the highest priority. Furthermore, they
implemented many error detection mechanisms for the error handling.

It’s a vehicle standard design that allows micro-controllers and devices to commu-
nicate with each other without a host computer. It’s a message broadcast system
with maximum signal of 1 Megabit per second (bps), that can broadcast many
short length messages to every node. It has the privilege to not be a point to point
connection under a bus master supervision, but it cant send large length of data.
A typical vehicle is equipment with at least 70 Electronic Control Units(ECUs)
divided in groups with different role per group. The ECUs and sensors communi-
cate via CAN bus with each other to fulfil the group’s role. This importance of the
roles can be from air-bags, power steering, battery recharging systems to mirror
adjustment, audio system etc.

Every message is programmed to has unique Id before transmission. Their in-
novation include that sending priority is based on message’s content and not the
transmitter’s or receiver’s node Identifier. Messages can sporadic or periodic de-
pending on the system’s requirements. Using specific requirements the frequency
of transmitting message could be longer, without knowing the true potential of the
application.As a result, bus staying idle wasting time. Although,when CAN bus re-
liability is one of the strong points, using a wrong hypothetical minimal frequency
will have unwanted results as losing frames.

1
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So the adaptation of the application/firmware that communicates over CAN-bus[7][8][9][10]
to address the challenges:

(i) Variances of bus traffic and thus better - automatic - fault tolerance and
more robust, reliable communication,

(ii) Malicious traffic which intends to affect proper pre-designed traffic patterns,

(iii) Exploration, bus/networking investigation,

(iv) Variance of application in terms of real-time requirements.

Achieving such challenges we can make an adaptive frequency application that
will explore the system by running it and adapt to the closest optimal frequency.
Depending of the system that is given will run with the worst case scenario and
change suitably to match users needs without sacrificing the reasons why we
choose to use CAN-bus. This application will provide robust communication be-
tween nodes and etc. without any need of adjustment of the user. It can choose
the path and the correction that the sees more appropriate by the setting that
is installed. The adaptability of firmware[9]10] can be used as a breakthrough
and foundation of many projects that can follow in the future of CAN bus taking
advantage every source of a system. With automotive progressing and securing
vehicular communication[12] plus utilizing one time programmable ECUs[13] give
prominence to designate the importance of an adaptive system. Importance that
a system that can auto-correct it self will be useful even if the needs change.

It became very popular to many industries as robust protocol, applied to a vari-
ety applications. The easy and simply implementation, the reliability of message
integrity help held the popularity at top.

This paper is focused in auto-improving application. A system that the message-
integrity is a top priority, minimizing the possibility of corruption,a continues mes-
sage flow while focusing on the highest frequency data rate. This is organized
as following Chapter 2 will introduce CAN-Bus 2.0B basic knowledge about Data
transmission . Chapter 3 will represent the software and hardware implementa-
tion of the application. Chapter 4 include the theoretical and practical approach of
our application.Chapter 5 has the results of testing the application and the theory
behind them.

CHAPTER 1. CHAPTER 1 2



Chapter 2

2.1 Data transmission

CAN data transmission specifications is designed to whenever the bus is free
every node can compete to take the priority to transmit his data. They use the
tern of dominant and recessive bit, where dominant is logical 0 and recessive
logical 1. When they start transmitting, the priority is taken by the node with
lowest message Identifier ,prioritizing the important messages. If a node lose the
arbitration (priority) it enters the receive state. This happens to prevent any data
to be destroyed or lost. Message identifier is unique for every node so there won’t
be a case with two nodes take priority at by winning the arbitration at same time.

2.1.1 Frames

Frames in CAN bus is the messages that the node broadcast in the bus. There are
different types of frames and each one of them has his role. Every message can
have different length however there is a maximum size.An application that support
extended CAN frame(2.0B), include standard CAN frames(2.0A) too. There are
two types of frames (messages) formats. The difference between them is that
standard frame CAN 2.0A with 11 bit identifier and the extended frame CAN 2.0B
with 29 bit identifier, however applications that support CAN 2.0B can also send
standard frame CAN 2.0A.

Basic frame Format

The extended frame CAN 2.0B format has 29 bits identifier plus a Substitute
Remote Request(SRR) field instead of 11 bits identifier of standard CAN frame.
As we already said an application that supports extended CAN frame can send
standard CAN frame too, but their frames fields differs. In the next figures 2.1
and 2.2 we define the differences and explain the role of Substitute Remote Re-
quest(SRR) and it position. In Figure 2.1 we can see the standard Data frame
format and in table 2.1 will show us the size, roles, and possible values.

3
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Figure 2.1: Basic frame format

As we see there is only a 11 bit Identifier and no Substitute Remote Request(SRR).Furthermore
Table 2.1 will show us info about a Standard CAN data frame.

Table 2.1: Standard CAN data frame properties and info

Acronyms Size Role Value
Start Of Frame 1 Commence the start of frames 0
11-Bit Identifier 11 The first 11 bits of The message ID 1rst bit 1,rest 1 or 0

Remote Ttransmission Request 1
Data frame or
Remote Frame

0 or
1

Identifier Extension Bit 1 Standard CAN data frame 0
R0 1 Reserved Bit 0 or 1

Data Length Code 4 Data’s Size 0000-1000 bytes
DATA 0-64 Data that will be transmitted 0x00-0xFF per Data

Cyclic Redundancy Check 15
Receivers check for
error in messages

Inserted by CAN bus

CRC Delimiter 1 Must be 1 0 or 0 or 1

Acknowledgment 1
Transceiver

Receiver asserts
1
0

ACK Delimiter 1 Must be 1 0 or 1
End Of Frame 7 Commence the end of frame 1111111

Intermission Of Frame 3 Help with Synchronization 111

We have to note that Remote Transmission Request(RTR) has value 0 to be a
data frame, either it’s a Standard CAN data frame or Extended CAN data frame.
Notice too in Figure 2.2 that Remote Transmission Request(RTR) field moved
further in to the CAN frame and his place was taken by Substitute Remote Re-
quest(SRR) field.

CHAPTER 2. CHAPTER 2 4
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Figure 2.2: Extended frame format

This happens because Standard CAN data frames have bigger priority in the bus
from the Extended CAN data frames. As we can see in Table 2.2 Substitute
Remote Request(SRR) of Extended CAN data frame has value 1 and Remote
Transmission Request (RTR) in standard has 0. Table 2.2 shows the size,roles,
and possible values of the an Extended CAN data frame.

Table 2.2: Extended CAN data frame properties and info

Acronyms Size Role Value
Start Of Frame 1 Commence the start of frames 0
11-Bit Identifier 11 The first 11 bits of The message ID 1rst bit 1,rest 1 or 0

Substitute Remote Request 1 Replace RTR bit 1

Identifier Extension Bit 1
Standard CAN frame

or Extended Can frame
0
1

18-bit Identifier 18 The rest 18 bits of the message ID 0 or 1

Remote Ttransmission Request 1
Data frame

or Remote Frame
0

or 1
R0 1 Reserved Bit 0 or 1
R1 1 Reserved Bit 0 or 1

Data Length Code 4 Data’s size 0000-1000
DATA 0-64 Data that will be transmitted 0x00-0xFF per Data

Cyclic Redundancy Check 15 Receivers check for error in messagesInserted by CAN bus
CRC Delimiter 1 Must be 1 0 or 1

Acknowledgment 1
Transceiver

Receiver asserts
1
0

ACK Delimiter 1 Must be 1 0 or 1
End Of Frame 7 Commence the end of frame 1111111

Intermission Of Frame 3 Help with Synchronization 111

CHAPTER 2. CHAPTER 2 5
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There are 4 different types of frames.
• Data frame
• Remote frame
• Error frame
• Overload frame

Data Frame

Data packets are the most commonly used. Their purpose is to contain the Data
that will be transmitted in the payload.

Remote Frame

Request data from a node. Remote frame doesn’t contains data , but DLC has
the value of data that are requested. To submit an Remote frame RTR has to be
recessive.

Error Frame

Two fields in Error Frame:

• Error Flags contributed from different stations (6–12 dominant/recessive
bits)

◦ Active Error flag has 6 dominant bits and is transmitted by a node
when there is an error on the network and is in "error active" state

◦ Passive Error Flag has 6 recessive bits and is transmitted when there
is an error active frame with the state "error passive".

• Error Delimiter (8 recessive bits).

Overload Frame

Overload frame is transmitted from a node when it becomes to busy. Its similar to
Error frame regarding the format but isn’t increase the error counter or does not
cause retransmission.

CHAPTER 2. CHAPTER 2 6
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2.1.2 Arbitration

When two node start transmitting simultaneously there will be an arbitration that
decides who will take the priority to broadcast the message. Priority will be taken
by the node with lowest message Identifier. To check the lowest identifier there
will be a bit to bit compare. Nodes will start transmitting their frame, when a node
transmit a dominant bit and other node transmit recessive bit, instantly the node
with the recessive has lost the arbitration and goes into recessive state. This
happens until only one node has won all the comparisons. It’s important that
every message id will be unique so the "winner" of the arbitration will be only one
and the rest will receive the broadcast message.

For example we have two node that transmit simultaneously. Both of them will
start transmitting their frame. As we see in figure 2.3 the data at first is identical
so both will keep transmit the bits.

Figure 2.3: Arbitration

At ID 4, node 16 has transmitted a recessive bit and node 15 a dominant. At that
time node 16 will stop transmit,go in receive state, and the data in the bus will be
same as node 15.

In a case that several nodes start transmit frames with the same identifier, bus if
following some ground rules. Either if its Standard CAN frame or Extended CAN
frame, Data frames have higher priority than remote frame and as we already
mention Standard over Extended. In a case that a remote frame of a Standard
frame is transmitting and an Extended data frame as well, that happens to have
the first 11 bit equal, the Standard remote frame will win the arbitration.

2.1.3 Bit-stuffing

Bit-stuffing is used to maintain the synchronization. Every 5 consecutive bits of
the same polarity a bit of the opposite polarity will be placed .The stuffed bit
after the placement will be participate to the count for next 5 consecutive bits.Six

CHAPTER 2. CHAPTER 2 7
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consecutive bits of the same polarity are considered error. All fields in CAN frame
can be bit-stuffed except CRC delimiter , ACK field , ACK delimiter and the end
of frame. After transmission the frame will be de-stuffed by the receiver. The
only way we can interfere with bit stuffing is by placing specific values to the
frame,however the bit stuffing is handled by the CAN bus it self and it’s not visible
by the user.

Example :

Figure 2.4: Bit Stuffing

CHAPTER 2. CHAPTER 2 8



Chapter 3

3.1 Adaptive application Software implementation

The application is focused on software development. Processing the existed soft-
ware of CAN bus to adjust it for our goals. Some of the changes was to enable
interrupts, include and implement timers and other. More details are explicate
bellow.

3.1.1 Frame of the application

Hans-Christian Reuss in his research mention the minimum and maximum sizes
of a frame:

Table 3.1: Frame size

Size of Size of

Conditions Standard frame Extended frame

Regular bits 47+8·DLC 67+8·DLC

With Bit-stuffing 55+10·DLC 80+10·DLC

Standard frame format

• Without bit-stuffing: 111 us.

• With bit-stuffing :135 us.

9
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Extended frame format

• Without bit-stuffing: 131 us.

• With bit-stuffing :160 us.

Based on Hans-Christian Reuss research the largest size of a frame has 160
bits size per message after being bit-stuffed.The closer case we achieved was a
frame with size of 155 bits of the 160. The reason we artificial made this frame
was to test our application to the limits by overloading our system with the worst
case scenario. Unfortunately, as user we can’t put specific values to fields such
as CRC, CRC delimiter, ACK, ACK delimiter and EOF and the result of this was
not to reach Hans-Christian Reuss mark of 160 bits.

Frame has values of:

• Frame ID:0x1F0C3C3C

• IDE:1

• DLC:8

• DATA[0]:0x3C

• DATA[1]:0x3C

• DATA[2]:0x3C

• DATA[3]:0x3C

• DATA[4]:0x3C

• DATA[5]:0x3C

• DATA[6]:0x3C

• DATA[7]:0x3C

Table 3.2 will display the detailed hexadecimal and binary values from the fields of
the extended CAN frame and the stuffed bits that occurs based on the bit-stuffing
theory.

CHAPTER 3. CHAPTER 3 10
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Table 3.2: Extended CAN frame binary

Name Value(hex) Binary

Start of Frame 0 0

11-bit Identifier 0x1F0 and 2 bits of C 11111 00000 111

SRR 1 1

IDE 1 1

18-bit Identifier 2 bits of C and 0x3C3C 00000 11111 00000 11111 000

Remote Transmission Request 1 1

R0 1 1

R1 1 1

Data Length Code 0x8 1000

DATA[0] 0x3C 0011111000

DATA[1] 0x3C 0011111000

DATA[2] 0x3C 0011111000

DATA[3] 0x3C 0011111000

DATA[4] 0x3C 0011111000

DATA[5] 0x3C 0011111000

DATA[6] 0x3C 0011111000

DATA[7] 0x3C 0011111000

CRC Putted by CAN Controller

CRC Delimiter Putted by CAN Controller

ACK Putted by CAN Controller

Table continued on next page

CHAPTER 3. CHAPTER 3 11
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Name Value(hex) Binary

ACK Demimiter Putted by CAN Controller

End Of Frame Putted by CAN Controller

Intermission Of Frame Putted by CAN Controller 111

3.1.2 Interrupts

Interrupt is a signal created by hardware or software when an event or a pro-
cess needs to be executed. It alerts the processor with a high priority process
that requires execution. There are two kinds of interrupts software and hardware
interrupt.

Software Interrupts

Software Interrupts are interrupts which is requested by the processor to execute
when certain conditions are met. This interrupts can be intentionally produced by
executing a special instruction. An software interrupt can be :

• Periodic Interrupt: Occurs at fixed interval in timeline .

• Aperidic Interrupt: Can not be predicted.

• Synchronous Interrupt: Are dependent to the system clock and in phase to
the system clock.

• Asynchronous Interrupt: Are independent to the system clock and are not
phase to the system clock.

Hardware Interrupts

Hardware interrupt is the state of the hardware currently happens to be. All the
devices are connected to Interrupt Request Line(IRQ) or detected by the em-
bedded operating system, if there is no an operating system then the bare-metal
program that is running. Hardware interrupts can arrive asynchronously however
they have respect to the processor clock. Hardware interrupts arise in low level
protocols or electrical conditions, the already running block code will stay in stand
by and the interrupt handler manage the occurred event.

CHAPTER 3. CHAPTER 3 12
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Interrupt Handler

Interrupt Handler is a block of code with the purpose to handle and execute spe-
cific interrupt conditions. In systems that many devices exist they have a partic-
ular interrupt request line (IRQ). This happens to determine the needed service
of a device, or the event that occurred. Hardware interrupts is used to have high
priority therefore it stops the running code to handle the interrupt. Later it was
found convenient to be able to trigger this mechanism by software too, instead of
hard-coded blocks.

Interrupts Checking methods

With multiple devices in a system there can be multiple IRQ signals simultane-
ously, then additional information is needed to decide which one will be managed
first. Therefore the are some methods to decide the priority:

• Polling: The first device set the IRQ bit set is the device that will be handled
first. Although it’s simple to implement and is commonly used, it waste time
checking IRQs of all devices.

• Vector Interrupts: They are identified by special code with the privilege to
identify even the device that generate the interrupt.

• Interrupt Nesting: Priority is organised by the high-priority of the devices.
This means that high priority device is recognised and low priority device is
not.

3.2 Adaptive application Hardware implementation

This paper was focused on software development, however the hardware imple-
mentation is important to be addressed.

3.2.1 ZedBoard Zynq-7000 ARM/FPGA SoC Development Board

The communication via CAN bus was between two ZedBoard Zynq-7000. This
board contains everything necessary to build a Windows, Linux,Android, Real
Time Operating system(RTOS). Additionally, it provides all the necessary inter-
faces and supporting functions to enable a wide range of applications. This ap-
plication was running on bare machine(bare metal). Having this opportunity one
of the boards was used as Transmitter(Tx) and the other as Receiver(Rx) .

CHAPTER 3. CHAPTER 3 13
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3.2.2 Timers

In this application two types of timers were enabled from the ZedBoard Zynq-
7000:
•SCU timer.
•AXI timer.

SCU Timer

SCU timer is implemented to the board design and is running with frequency of
666.666.687 Hz. When is loaded with a value and start, will decrease the value
until it will become 0.

The purpose of SCU timer was to represent the period of transmitting messages.
Every time the timer will expire an interrupt will occur that enables the transmit of
a message.This value is the a number cycles. However making the SCU timer
have a specific period we must loaded with the correct cycles that correspond to
the period.

To load the timer with cycles that correspond to the frequency we made a formula:

SCUCycles = (
SCUHz

2
) · period

Where SCUHz

2
is frequency of the SCU timer divided by 2 can be counted per

second, and period is putted by user.

AXI timer

The AXI timer that was implemented in the design has frequency of 100.000.000
Hz. When the AXI start running from default will take a value and increase it until
become equal to a value that is loaded. AXI has two timers that were enabled
and used.

There was cases when the user could put a period that interrupts occurred before
the CAN bus send the frame, as result frame will be lost or didn’t send with the de-
sirable order.Therefore are two cases that AXI timer was used.The first AXI timer
used to major updates to SCU timer and the second used for minor updates.To
resolve cases like this if an interrupt occurred before another was cleared the first
AXI timer counted the how much time was needed and added to the SCU timer.
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But, as we can saw the AXI timer is has almost 1
3

frequency of a SCU. So after
AXI calculate we need to made sure that:

SCUCycles = AXICycles · 4

We multiplexed with 4 to be sure that the "new" SCUCycles will be enough.
The second AXI timer was used to update if the delay inside the transmit started
to getting longer.That was implemented to make the transmission more stable.
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Chapter 4

4.1 SW Adaptive frequency

Time and message integrity is very important for CAN bus, we can have fixated
time messages but in some applications we can decrease it to improve it based
on our demands. It’s an application that is able to find fixated minimum frequency
of a system, maintaining the periodic consistency of the messages. Lowering
the correspondence time without sacrificing the integrity, can be innovative for
researches. Testing the potential of their system and real-time upgrading their
application without additional workload to their part.

The application is supporting the extended CAN frame(CAN 2.0B).User can de-
fine different periods due to his preferences. If period is long enough to send the
frame, transmission will complete without any changes. However there are cases
where the adaptation is needed. The length of period also depends from the baud
rate of the system, and that is because baud rate is a measure of the number of
bits that a system can transmit.In this application Baud rate of 1,000 bit/s .

4.1.1 Theoretical Adaptive frequency application

This application is programmed to send frames between two zedboard. One will
represent the transmitter(Tx) and the other the receiver(Rx). After the period is
defined, the SCU timer will be loaded with the cycles that represent it. Period will
be set at the Transmitter(Tx), and every time the SCU timer expire an interrupt will
occur from the timer, enabling the block code to start the transmission. Depend-
ing the period, the program will not alter the frequency .If the frequency of the
messages is low, the system wouldn’t find delay between them it will not modify
the frequency. As we can see at Figure 4.1 there is a stable period between SCU
timer’s interrupts happen.
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Figure 4.1: Transmission message process

Because of the long period for the frame to be transmitted, received and wait until
the next interrupt to occur there was no need for adjusting. However, if the period

was not enough or the delay inside of the transmitting process was accumulated
the frequency would be changed.

In a case that the frequency of the messages needs to be changed we will have
the Transmitter(Tx) to send frames to Receiver(Rx) without losing any frame and
in the proper order. The fixated period set by the user it may be less than the
system can handle.Problems arise in this case. It was either "missing messages"
or the disarranged messages from the order that was supposed to be sent. Ad-
justing the frequency of sending frames can resolve both of the problems. In
case that the period is low the transmit message process will be changed to an
optimal frequency. At the follow figure 4.2 we are going to see the theoretical ap-
proach behind the process of the adapted period. The SCU timer will start count
down and create an interrupt. When the interrupt occur the interrupt handler will
be enabled and the transmission will begin. Before the process of the transmis-
sion ends another interrupt occurred defining that the frequency of transmitting
messages is not enough. This event enabled the AXI timer start counting.
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Figure 4.2: Adapt Transmission message process

After transmitting the frame, inside the handler a block of code is enabled for cal-
culating the additional period needed. The additional period will be added to the
existed or replace it and the SCU timer will be loaded with the new one; start
the count down for the next frame. Adjusting the frequency of sending frames re-
solved out problems of "missing messages" and the received order of the frames
by Rx. After testing it with the largest possible frame made by the user and suc-
ceed , we changed our approach to investigate if the frames wasn’t received by
Rx with the order that were made; to secure the message sending integrity.
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4.1.2 Practical Adaptive frequency application

The purpose of this was because inside the CAN bus there were already a default
delay if two messages with about to be send from a node. Some times because
of the high frequency a third message occurred and happen to be send before
the second had a chance. Even if the message was sent and received later, we
aimed for the accurate order and uppermost integrity. Another way to secure the
uppermost integrity was to interfere with the default delay. By interfere, we count
the time that the packages were inside of the wait loop. To avoid the possibility
frames to be collapse in the wait or lose their priority; we count the time with the for
a frame in wait loop to be executed and set some parameters. If the parameters
were fulfilled, minors adjustments ensue to the period.

To ensure the integrity of the messages and order we gave DATA[0] value equal
to 0 and increase it every time we send a package, Rx will receive the frame and
compare if the value of DATA[0] is the one that would be expected. If the the
value of DATA[0] didn’t match the Rx will stop receiving. The following Table 4.1
will show us the variables that is important and some changed unlike tests we
did with the largest frame that we create and run before. Every block that will be
shown is an important highlight of the code that can change the message transmit
flow.

Table 4.1: Settings

Name Variable Value

period TPERIOD Set by the user(us)

SCUHz FFACTOR (CPU CORTEXA9 0 CPU CLK FREQ HZ)/ 2

SCUcycles TIMER LOAD VALUE ((u32)FFACTOR*TPERIOD)

Frames Messages Set by the user

DATA[0] CanFrm->DATA[0] 0x00

A frame is send with a period set by the user, calculate the cycles that correspond
the the period and load the value to the SCU timer; Start the count down and wait
for an interrupt to occur.
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Figure 4.3: Phase 1

After the interrupt occurred the transmission of the frame will start and check if
a frame is already in progress of transmitting. If it is not then the SCU timer will
start the count down again,

Figure 4.4: Phase 2 case 1

However if a transmission is already in progress then one of AXI’s timers will be
enabled to count the extra period needed,wait until the send ends. Next it will
convert the additional period to cycles and reload The SCU timer.

Figure 4.5: Phase 2 case 2
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This will be repeating until the period becomes the optimal for the system. Fur-
thermore, there is the case with the minor adjustments that AXI timer1 manage.
Minor changes can happen either after the period changed or before depends on
the period set by the user.

Figure 4.6: Phase 2 case 3

The was stable message frequency and better synchronized nodes.So changing
the frequency to an optimal for sending messages was what we aimed.

After seeing all the stages and cases that a transmission of a frame can take
enabling different parts of the code, at the follow figure we will see the complete
flowchart it looks like.

Figure 4.7: Flowchart of the transmitting process

CHAPTER 4. CHAPTER 4 21



Chapter 5

5.1 Test and results

In this chapter will be shown the samples, the results and we will provide informa-
tion about them. What happen during the transmissions, what changed and what
blocks of code were enabled. Bellow we will see the variables that we already
mention at Chapter 4 section 4.1.2. The follow variables of the Tx will be seen
and discussed later on.

Transmitter(Tx):

• SCUcycles : Is the Load Value representing Cycles Loaded to SCU timer

• InterruptSCU : is The timer Expired representing how many times SCU timer
expired

• AXIcounter0 :If the AXI timer0 was used for major changes in period

• AXIcounter1 :If the AXI timer1 was used for minor changes in period

• Delay in side the Bus : txBusyPkt the delay inside of the bus during the
transmission.

• Adaption Times :How many times the period change.

• Last SCUcycles: The adjusted value of the SCUcycles.

• Time(seconds): Time that Tx needed to send all the frames.

And Receiver(Rx) as well will show us the number of packages that receive, the
value of the last package and the time was needed for the whole process.

Receiver(Rx):

• Packets Receive: Frame that was received by Tx.

• Last Package Value: The value of DATA[0] of the last frame that was re-
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ceived.

• Time(seconds) : The time needed for the transmission of all frames.

• Time(seconds): Time that Rx needed to receive all the frames.

The test and results that follow was selected based on the robust outcome. Be-
tween 500ms and 150 us there was no major changes but later the adjustments
needed we took more samples.

SCU period: 500ms

Setting period equal to 1.
2

we accomplish 500ms and running the application mul-
tiple times the results was.

Table 5.1: Tx results case 500ms

Result

Run
1 2 3 4 M.O.

SCUcycles 166,666,671 166,666,671 166,666,671 166,666,671 166,666,671

InterruptSCU 100 100 100 100 100

Packets Send 100 100 100 100 100

Delay Inside Bus 0 0 0 0 0

AxiTimer0 0 0 0 0 0

AxiTimer1 0 0 0 0 0

Adaption Times 0 0 0 0 0

Last SCUcycles 166,666,671 166,666,671 166,666,671 166,666,671 166,666,671

Time(seconds) 50.000004 50.000004 50.000004 50.000004 50.000004

As we saw at Table 5.1 the period between frames was long enough so no
changes happen. Therefore at Figure 5.1 we can see a graph behaviour of the
SCUcycles in every transmission of the frame and Figure 5.2 the analytic values of
cycles that is loaded in SCU timer from frame to frame send per send.
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Figure 5.1: Graph SCUcycles per Packet

Here we see the value of SCUcycles in every transmission .

Figure 5.2: Analytic SCUcycles per frame
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Rx results identical except time as we can see at Table 5.2 . The times receiv-
ing cant me identical cause we in real time system many factor can change the
results.

Table 5.2: Rx results

Result

Run
1 2 3 4 MO

Packets Received 100 100 100 100 100

Last Packet Value 99 99 99 99 99

Time(seconds) 50.476523 50.372872 50.416506 50.556708 50.455652

Without the need to change the SCUcycles in our program we observe that the
period was long enough to need adjustments. Without adjustments the only
blocks or lines of code were enabled was:

Figure 5.3: Blocks/lines of code enabled in 500ms
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With SCUcycles staying the same from the start to the end and no AXI timer en-
abled. As we see in Figure 5.3 the program run with the follow steps:

1. Start the program

2. Load the calculated value as cycles to SCU timer: 166,666,671.

3. The SCU timer start the count down: Until SCU timer equal to 0.

4. When it end, an interrupt occurs:

5. Simultaneously:

5.1. Check if there is already a frame transmitting.

5.2. Transmit the frame.

6. Check if the all the frames has been send:100/100.

7. End:Show the results and Terminate the program .

Step 4 has two paths that happens at the same time and both of them has different
goals. Path 5.1 is to check if there is another frame in the transmit process and
path 5.2 the transmit process. However even if step 5.1 depends on step 5.2
will happen parallelly so time is not wasted and when the step 6 is completed
everything unnecessary for the rest of the program will stop.
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SCU period: 1ms

Setting period equal to 1.
1000

we accomplish 1 ms.

Table 5.3: Tx results case 1ms

Result

Run
1 2 3 4 M.O.

SCUcycles 333,333 333,333 333,333 333,333 333,333
InterruptSCU 100 100 100 100 100

Packets Send 100 100 100 100 100
Delay Inside Bus 0 0 0 0 0

AxiTimer0 0 0 0 0 0
AxiTimer1 0 0 0 0 0

Adaption Times 0 0 0 0 0
Last SCUcycles 333,333 333,333 333,333 333,333 333,333
Time(seconds) 0.100005 0.100005 0.100005 0.100005 0.100005

As we see in Table 5.3 frames was send without a delay, no changes in frequency
was needed. Figure 5.4 show as the behaver oh SCUcycles per run. In every
transmit the SCUcycles didn’t change in each run.

Figure 5.4: Graph SCUcycles per Packet
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Figure 5.5 show as analytic values of SCUcycles for every test of the sequence.
After testing it multiple times non of the wanted results didn’t differ from each
other. Pointing out that the period overall was long enough not even need the
default delay of the bus as we see in table 5.3 variable Inside the bus was equal
to 0.

Figure 5.5: Analytic SCUcycles per Packet

As we see in the graph and analytic as the values stayed same until the end of
our testing. And Rx results was:

Table 5.4: Rx results

Result

Run
1 2 3 4 MO

Packets Received 100 100 100 100 100

Last Packet Value 99 99 99 99 99

Time(seconds) 0.487357 0.311256 0.511107 0.317147 0,40671675

This case has the same results with the period of 500 ms. Only the values of
SCUcycles and the time needed to execute the whole transmission were different.
Without major or minor changes in the frequency the line or blocks of code were
enabled was:
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Figure 5.6: Analytic SCUcycles per Packet

1. Start the program

2. Load the calculated value as cycles to SCU timer: 333,333.

3. The SCU timer start the count down: SCU timer until is equal to 0.

4. When it end, an interrupt occurs:

5. Simultaneously:

5.1. Check if there is already a frame transmitting.

5.2. Transmit the frame.

6. Check if the all the frames has been send:100/100.

7. End:Show the results and Terminate.

As we can see after testing 500 ms and then 1 ms we skipped many periods that
we could show, but the results would be the same with the only value that differs
would be the execute time. Notice that even after this major skip of frequency
the results didn’t change and not even a delay inside the bus occurred. This
was bound to happen as we read at at Chapter 3 section 3.1.1 the research of
Hans-Christian Reuss.
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SCU period: 150us

With many trails the first minor differences appeared in 150 us. Setting the period

to 150.
100,000

(150us) we can see the results at Table 5.5. The CAN bus could send the
frames properly without any error because the default code had an mechanism
to delay a frame if the bus was not busy. So this mechanism handle some of the
frames.

Table 5.5: Tx results case 150us

Result

Run
1 2 3 4 M.O.

SCUcycles 50,0000 50,0000 50,0000 50,0000 50,0000

InterruptSCU 100 100 100 100 100

Packets Send 100 100 100 100 100

Delay Inside Bus 161 8 157 42 131

AxiTimer0 0 0 0 0 0

AxiTimer1 0 0 0 0 0

Adaption Times 0 0 0 0 0

Last SCUcycles 50,0000 50,0000 50,0000 50,0000 50,0000

Time(seconds) 0.100005 0.100005 0.100005 0.100005 0.100005

As we already discuss based on Hans-Christian Reuss research and our maxi-
mum bit frame; theoretically in period equal to 150us it should have be changed.
This should happen because our frame has the length of 155 bits and it would
need at least 155us to be transmitted. However, changing the value of DATA[0]
we change the bit-stuffing as well, as a result we have a frame with the length
of 139 bits. This is where we can see that the theoretical approach differs from
practical application. Even with the frame of 139 bits the frequency of 150 us en-
abled only the default delay of the bus. The default delay was enough to handle
the message transmit frequency, as result no changes needed as we saw at table
5.5 and we will see at the follow graph Figure 5.9.
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Figure 5.7: Graph SCUcycles per Packet

As we can see at analytic values at Figure 5.8 the follow values in every transmis-
sion stayed the same because there was no need either for major or minor adjust
of the period.

Figure 5.8: Graph SCUcycles per Packet

CHAPTER 5. CHAPTER 5 31



Control of CAN-BUS TIME-TRIGGER Messages for Adaptive Networking Thesis Report

The results of Rx will show how much time was needed for the receive of all
packages in every case. This case was the first one that a delay occurred, but
seeing that Rx show us the results means that the frames was receive by the
order that were made in Tx. Otherwise, as we already mention in chapter 4
section 4.1.1 Rx would deny the messages. The results of Rx was:

Table 5.6: Rx results

Result

Run
1 2 3 4 MO

Packets Received 100 100 100 100 100

Last Packet Value 99 99 99 99 99

Time(seconds) 0.219557 0.219558 0.212057 0.220015 0.21779675

The code that was enabled at 150 us and the code lines/blocks was :

Figure 5.9: Graph SCUcycles per Packet

1. Start the program

2. Load the calculated value as cycles to SCU timer: 50,000.

3. The SCU timer start the count down: SCU timer until is equal to 0.

4. When it end, an interrupt occurs (at the same time):

5. Simultaneously:

5.1. Check if there is already a frame transmitting.
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5.2. Transmit the frame.

6. Frame entering the CAN bus default delay.

7. Check if the Delay is long to enable AXI timer1.

8. Adjust or not the Period of the system.

9. Check if the all the frames has been send:100/100.

10. End:Show the results and end the program.

As we saw after step 4 there are two paths of our program that happens at the
same time. Step 5.1 can lead to a major or minor adjustment and 5.2 is the
transmit. The process of transmit can be delayed if there is already a frame in
this procedure, entering in the default wait of the bus. If the requirements are met
then a minor or a major adjustment can happen. In case that the frame stays
inside the delay for long enough then AXI timer1 will be enabled to adjust the
frequency, if another interrupt occur then AXI timer0 will be enabled for a major
adjustment. With period equal to 150 us, the frame stay only inside the default
delay and no interrupt occurred. However, the delay wasn’t enough to enable AXI
timer1, so no adjustments happen.
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SCU period: 140ms

Setting period at 140.
100,000

the first major change happen. However because of the
adaptiveness, our application didn’t lost any packages. After period changed even
the delay inside bus was 0 cause the frequency was optimal to transmit packets
in this system.

Table 5.7: Tx results case 140us

Result

Run
1 2 3 4 M.O.

SCUcycles 46,666 46,666 46,666 46,666 46,666

InterruptSCU 100 100 100 100 100

Packets Send 100 100 100 100 100

Delay Inside Bus 0 0 0 0 0

AxiTimer0 14,112 14,107 14,116 14,106 14,110

AxiTimer1 0 0 0 0 0

Adaption Times 1 1 1 1 1

Last SCUcycles 56,448 56,428 56,464 56,444 56,441

Time(seconds) 0.015677 0.015673 0.015680 0.015671 0.015674

As we already mention and we can see at table 5.7 an interrupt occurred be-
fore the previous frame was send enabling AXI timer0. Until the previous frame
end the transmission AXI timer0 count the extra period that we need add in SCU
timer. The average value of additional cycles we needed was 14.110 cycles. Fig-
ure 5.10 that the SCUcycles until the delay started to pounding. At that point an
InterruptSCU has occurred before the last one transmitted.So the AXI Timer0 en-
abled and starting to count for optimal frequency. After the message transmission
served the next value SCUcycles increased for no furthermore delay. We can see
as result at table 5.7 there is no delay inside the bus too.
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Figure 5.10: Graph SCUcycles per Packet

Figure 5.11 will show the exact values and on what messages the SCUcycles

changed. We can see that even if the hardware or software was the same, results
wasn’t identical however they were close enough.

Figure 5.11: Analytic SCUcycles per Packet
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The results of Rx will show that in every case all packets arrived in "safe" and the
times that needed

Table 5.8: Rx results

Result

Run
1 2 3 4 MO

Packets Received 100 100 100 100 100

Last Packet Value 99 99 99 99 99

Time(seconds) 0.415609 0.415591 0.415621 0.415623 0.415611

The first major adjustment happen with our period equal to 140 us and our frames
having the size 139 bits. For this to happen the blocks and lines of code that were
enabled was :

Figure 5.12: Analytic SCUcycles per Packet

And the follow steps that explain the figure 5.12 :

1. Start the program

2. Load the calculated value as cycles to SCU timer: 46,666.

3. The SCU timer start the count down: SCU timer until is equal to 0.

4. When it end, an interrupt occurs.

5. Simultaneously:
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5.1. Check if there is already a frame transmitting.

5.2. Transmit the frame.

6. Simultaneously:

6.1. Frame entering the CAN bus default delay.

6.2. Enable AXI timer0 and adjust the AXIcycles to SCUcycles .

7. Check if the Delay is long to enable AXI timer1.

8. The end of the transmission of the last frame and Load the new value of the
cycles to SCU timer.

9. Check if the all the frames has been send:100/100.

10. End:Show the results and end the program.

Step 4 has two paths that will be enabled simultaneously with the interrupt, path
5.1 was enabled properly until frame 43. At frame 43 the block of 5.2 was enabled
and led to blocks of code 6.1 and 6.2. The frame insert in the internal delay and
the AXI timer0 start to count. Until the AXI timer0 ends, path 7 was checked to
see if there is need to enable AXI timer1. When our frame start his transmission,
AXI timer0 stop the count and a specific block of code made the adjustment and
load the new value as SCUcycles in to SCU timer. With the SCU timer having a
new value, the period changed and continue until all the frames was sent without
further changes. That conclude the program and show us the results of the new
adjusted period.
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SCU period: 120 us

The period was set at 120.
100,000

. cause of the adaptiveness, our application didn’t
lost any packages. Even after the period changed the delay inside bus was accu-
mulated so minor adjustment occurred by AXI timer1.

Table 5.9: Tx results case 120us

Result

Run
1 2 3 4 M.O.

SCUcycles 40,000 40,000 40,000 40,000 40,000

InterruptSCU 100 100 100 100 100

Packets Send 100 100 100 100 100

Delay Inside Bus 42 98 60 13 53

AxiTimer0 12,111 12,113 11,700 11,199 11,780

AxiTimer1 3,156 3,140 1,692 3,328 2,579

Adaption Times 1 1 1 1 1

Last SCUcycles 51,600 51,592 50,492 51,324 51,252

Time(seconds) 0.015419 0.015416 0.015303 0.015498 0.015489

As we saw at table 5.11, AXI timer1 was enabled to do the final adjustment for
our system. The result of this was for an utmost synchronisation of the messages
maintaining the delay inside the bus at low values. We can see that the follow
figure 5.13 and figure 5.14 the bus kept a steady transmit sequence until frame
93 that needed the major adjustment. However the internal delay accumulated
and a second adjust happen to the frequency.
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Figure 5.13: Graph SCUcycles per Packet

And here we see the specific changes and values of the SCUcycles per transmis-
sion of the frames.

Figure 5.14: Graph SCUcycles per Packet
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The results of Rx in period equal to 120 us was:

Table 5.10: Rx results

Result

Run
1 2 3 4 MO

Packets Received 100 100 100 100 100

Last Packet Value 99 99 99 99 99

Time(seconds) 0,450890 0,450894 0,450846 0,450899 0,450882

This was the first case that the two adjustments happen enabling the follow block
code we will see at the follow figure.

Figure 5.15: Graph SCUcycles per Packet

The flow of our system executing the block codes is explained in the follow steps
:

1. Start the program

2. Load the calculated value as cycles to SCU timer: 40.000

3. The SCU timer start the count down: SCU timer until is equal to 0.

4. When it end, an interrupt occurs.

5. Simultaneously:

5.1. Check if there is already a frame transmitting.
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5.2. Transmit the frame.

6. Simultaneously:

6.1. Frame entering the CAN bus default delay.

6.2. Enable AXI timer0 and adjust the AXIcycles to SCUcycles .

7. Check if the Delay is long to enable AXI timer1.

8. Either:

8.1. The end of the transmission of the last frame and Load the new value
of the cycles to SCU timer..

8.2. Enable AXI timer1 count and adjust the AXIcycles to SCUcycles.

9. Check if the all the frames has been send:100/100.

10. End:Show the results and end the program.

Until now the as we already discuss many of the steps is the same, the difference
is that in Step 8 there is two separate path that the system will follow. However,
step 8.2 will lead to step 8.1 when the transmit of the last frame end his transmit.
In this case the after the major adjustment happen another was was needed and
the block of code 8.2 was enabled. The MO was 2.579 cycles of the AXI timer1 to
achieve the optimal synchronisation sequence of the messages and the minimum
delay in the internal delay of the bus. Lastly, the rest of the messages was send
without any furthermore adjustments.
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SCU period: 90 us

The period was set at 90.
100,000

. Because of the adaptiveness, our application didn’t
lost any packages. However, because some of specification didn’t met and the
AXI timer0 cycles wasn’t enough there were added to the first value of the SCUcycles.

Table 5.11: Tx results case 90us

Result

Run
1 2 3 4 M.O.

SCUcycles 30,000 30,000 30,000 30,000 30,000

InterruptSCU 100 100 100 100 100

Packets Send 100 100 100 100 100

Delay Inside Bus 269 112 23 87 49

AxiTimer0 9.106 8.936 9.096 8.873 9.009

AxiTimer1 0 0 0 0 0

Adaption Times 1 1 1 1 1

Last SCUcycles 66.424 65.744 66.384 65.492 66.036

Time(seconds) 0.019932 0.018156 0.019184 0.016941 0.018778
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This was the first case that instead of replacing the already SCUcycles with the
new value the program chose to add it to the existed. This happen because to
replace the value or to add it some statements of code needed to be fulfilled. In
next figure 5.16 .

Figure 5.16: Graph SCUcycles per Packet
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In the next figure 5.17 we are going to see the analytic changes of the values of
the the cycles that was load to SCU timer.

Figure 5.17: Graph SCUcycles per Packet

After the analytic we can see in Rx too that the frame were receive properly:

Table 5.12: Rx results

Result

Run
1 2 3 4 MO

Packets Received 100 100 100 100 100

Last Packet Value 99 99 99 99 99

Time(seconds) 0.9812482 0.9812500 0.98124504 0.9812490 0,981248

Adding the cycles of AXI timer0 to the already existed SCUcycles create an period
long enough without the need for furthermore adjustments. So the step to enable
the code of block of AXI timer1 was skipped.
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The enabled blocks was:

Figure 5.18: Analytic SCUcycles per Packet

And the next steps explain the flow 5.18.

1. Start the program

2. Load the calculated value as cycles to SCU timer: 30,000.

3. The SCU timer start the count down: SCU timer until is equal to 0.

4. When it end, an interrupt occurs.

5. Simultaneously:

5.1. Check if there is already a frame transmitting.

5.2. Transmit the frame.

6. Simultaneously:

6.1. Frame entering the CAN bus default delay.

6.2. Enable AXI timer0 and adjust the AXIcycles to SCUcycles .

7. Check if the Delay is long to enable AXI timer1.

8. The end of the transmission of the last frame and load the new value of the
cycles to SCU timer.

9. Check if the all the frames has been send:100/100.
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10. End:Show the results and end the program.

The same steps we already saw them before, however even if in the flow 5.18 is
the same the the process inside the block of code in step 6.2 was different. In
this case the requirements of changing the whole SCUcycles didn’t met, but the
requirements to add the cycles to SCU timer met; ignoring the chance to enable
AXI timer1 because the adapted frequency fit for the role. In case that the period
still had delay in the default mechanism of the bus, it could do a minor adjustment
or even a major. Depends on what the program choose as more suitable.
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SCU period: Frequency’s equalization overflowed

A case of wrong period might occur if the user don’t insert a proper value. Setting
the period as fraction ( Numerator

Denominator
), user has to put a dot(.) to numerator or the

compiler will resulting to an overflow. The mathematical operation is

SCUCycles = (
SCUHz

2
) · period ⇒

SCUCycles = (
SCUHz

2
) · Numerator

Denominator

But the Compiler will read it as:

SCUCycles = [
(Numerator × SCUHz)

2
]÷Denominator

Because of this there is a chance that the result of multiplication will exceed the
maximum value of an integer and the compiler will take re remain value of the
subtraction: Overflowint

SCUCycles = [
Overflowint

2
]÷Denominator

At the end SCUcycles will be inserted with wrong value. Placing the dot(.) to
numerator the compiler will operate it as float.
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Overflow example:

Table 5.13: Application Overflow Settings

Name Value

period 13/75000

SCUHz (CPU CORTEXA9 0 CPU CLK FREQ HZ)/ 2

SCUcycles period * SCUHz

The value of zedboard’s CPU CORTEXA9 0 CPU CLK FREQ HZ is equal to
666,666,687 and mathematical sequence that will be executed:

SCUCycles = [
(Numerator × SCUHz)

2
]÷Denominator ⇒

SCUCycles = [
(13× 666, 666, 687)

2
]÷ 75, 000 ⇒

The result of (Numerator×SCUHz)
2

is equal to 4,333,333,465 when the maximum value
of an integer is 232 (4,294,967,296). There is our Overflowint that will have the
value of:

Overflowint = 4, 333, 333, 465− 4, 294, 967, 296 ⇒ Overflowint = 38366169

Concluding the mathematical sequence with

SCUCycles = 38366169÷ 75, 000 ⇒

SCUCycles = 511
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Overflow adaptiveness test case

As the user insert period equal to 13
75,000

that cause the overflow case,application
handled it. Table 3.12 show a the values of every run. Even if the SCUCycles

compared to other tests had tremendous difference the results was satisfying
with no losses of packets and send at the right order. After the adaption period

was set at 168us.

Table 5.14: Tx results case Overflow

Result

Run
1 2 3 4 M.O.

SCUcycles 511 511 511 511 511

InterruptSCU 100 100 100 100 100

Packets Send 100 100 100 100 100

Delay Inside Bus 1,373 1,376 1,278 1,301 1,332

AxiTimer0 13,994 13,991 13,986 13,987 13,989

AxiTimer1 0 0 0 0 0

Adaption Times 2 2 2 2 2

Time(seconds) 0.016312 0.016292 0.016289 0.016291 0.016295

The follow Figures 5.19 and 5.20 show behavioural of our system at the graph for
SCUcycles per message and the precise values of the runs.Differences between
ever run was minimal that can’t be easily distinguish in graph but the exact value
can be shown in Figure 5.20 . In this case the adaption of SCUcycles happen
twice,both of them from AXI timer0.Because the first time wasn’t enough it had
to calculate the next optimal value.After inserting the optimal value in SCU timer
there at the transmission of the second frame there was no need of any other
changes. Even with a delay of calculating and reprogramming the SCU timer
frames send with no losses or miss-order.
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Figure 5.19: Graph SCUcycles per Packet

The specific values in every change of the period was:

Figure 5.20: Analytic SCUcycles per Packet

As we already mention AXI timer0 did both changes in the period. The user cant
be involved to choose the proper adjustment, however the system by it self will
choose the optimal.
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As for the Rx results Table certificate that all frames received and in order.

Table 5.15: Rx results

Result

Run
1 2 3 4 MO

Packets Received 100 100 100 100 100

Last Packet Value 99 99 99 99 99

Time(seconds) 0,856550 0,856565 0,856548 0,856577 0,856560

Even if a miscalculation happen by the user, our system was prepared and cor-
respond perfectly to the needs that is programmed without any problems. All the
frames arrived at Rx without sacrificing the message integrity of CAN-bus or even
a misplaced frame in the order that we wanted. The following flow will show as
the blocks of code were enabled.

Figure 5.21: Analytic SCUcycles per Packet

And next we will discuss the steps of the process:

1. Start the program

2. Load the calculated value as cycles to SCU timer: 511.

3. The SCU timer start the count down: SCU timer until is equal to 0.

4. When it end, an interrupt occurs.

5. Simultaneously:
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5.1. Check if there is already a frame transmitting.

5.2. Transmit the frame.

6. Simultaneously:

6.1. Frame entering the CAN bus default delay.

6.2. Enable AXI timer0 and adjust the AXIcycles to SCUcycles .

7. Check if the Delay is long to enable AXI timer1.

8. The end of the transmission of the last frame and Load the new value of the
cycles to SCU timer.

9. Check if the all the frames has been send:100/100.

10. End:Show the results and end the program.

The program start with 511 calculating the period that the user set. And load the
overflowed value to SCU timer. The SCU timer expired generating a Interrupt.
Next, Step 5.2 the first frame start transmitting and step 5.1 was enabled simul-
taneously. With no other frame transmitting at the time SCU timer start again the
count down and an generate another interrupt. Having this happen in so low pe-
riod step 6.1 and 6.2 enabled. However, our first frame was send and AXI timer0
did the first adjustment giving the SCU timer a new value and repeat step 3 and
step 4. Without time to even end the second transmission an interrupt occurred
again and AXI timer0 was enabled to calculate the second adjustment that the
period needed. After the second change of the period every message was send
to Rx safely and received.
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Chapter 6

6.1 Conclusions and Future Extensions

Having thoughtfully evaluate this application working, we resorted that an appli-
cation that can investigate, adapt, correct itself so can’t be easily replaced. This
happens because it’s an innovative application that can be used in many differ-
ent systems and will choose the optimal solution based on the system and not
on the user. The importance of this, is because a user can insert "wrong" val-
ues, however the application can change something "wrong" to the appropriate
to work with, with reasonable results that represent the existed system and not a
hypothetical scenario inserted by mistake.

Even if its an application that cant be easily replaced, this doesn’t mean that can’t
be upgraded. In future it can take any frequency low and high and find the optimal
for the system, without wasting any time making it more robust that already is. We
could adjust it in system that support only Standard CAN frame or make it to have
the application it self easily swap the option based on our desires.
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